
Mobile Payment using HCE and
mPoint payment gateway based

on NFC enabled phones.

AUTHOR : GRZEGORZ MILCARZ
S111040

DATE NOVEMBER 27, 2014

2

Summary

The goal of the thesis is to create a proof of concept that NFC payments can

be performed using mPoint payment gateway and Android device.

The technology used in this project is mPoint payment gateway, mPoint

SDK, together with NFC enabled Android devices that support HCE technology.

The final goal of the system is to cooperate with POS terminals in the shops,

however for this thesis second Android phone was used to emulate the terminal

behavior.

One of the devices is configured to act as a customer application emulating

the credit card using HCE technology, second device is configured to mimic the

behavior of POS terminal and read the credit card data passed via NFC radio.

3

Results

This thesis proved that mPoint payment gateway with mPoint SDK is capable of

handling NFC payments.

4

Acknowledgements

I would like to thank both my supervisors Stig Høgh and Jonatan Evald Buus,

for the supervision of this project. For all the help I received from them, patience

and knowledge shared.

5

Abbreviations and Symbols

NFC – Near Field Communication

HCE – Host-based Card Emulation

NDEF – NFC Data Exchange Format

SE – Secure Element

API – Application Programming Interface

OS – Operating System

GNU – Gnu`s Not Unix

AID – Application ID , Application Identifier

SDK – Software Development Kit

ISO-DEP – ISO/IEC 14443-4 – standard defining near field contactless cards and

protocols used during communication

XML – Extensible Markup Language

GUI – Graphical User Interface

6

Contents
Summary ... 2

Results ... 3

Acknowledgements .. 4

Abbreviations and Symbols .. 5

Introduction .. 8

Technology .. 11

NFC – Near Field Communication ... 11

NFC – Tag Dispatch System ... 12

NFC Implementation ... 14

HCE – Host-based Card Emulation .. 15

HCE Service ... 17

HCE Service Implementation .. 17

Android ... 19

mPoint Server ... 20

mPoint SDK ... 21

mPoint SDK - Implementation .. 21

Payment Initialization ... 21

Payment Authorisation ... 22

Status Handling ... 22

Project ... 23

Payment Flows .. 24

Stored Funds Payment .. 24

Credit Card Payment ... 25

Approach 1 .. 25

Approach 2 .. 26

mPoint SDK ... 28

Card Emulation ... 28

contactlessPayment() method.. 28

Card Detection .. 29

login() .. 29

transfer() ... 30

initialize() .. 31

authorize() .. 32

Utility methods ... 33

mPoint Server ... 33

Login.. 33

Transfer ... 34

Initialize ... 35

Authorize .. 35

7

Integration .. 36

processCommandApdu() .. 36

OnTagDiscovered() ... 36

handleSuccessfulLogin() ... 36

handleInitialization() ... 36

displayPaymentConfirmation() ... 36

handleStatus() ... 36

handleError() .. 37

Performance ... 37

User Application ... 38

Merchant Application ... 46

Discussion and Conclusions .. 48

Extras .. 49

List of Figures .. 49

List of Tables ... 49

List of Codes .. 49

References .. 51

Appendixes ... 52

Error Codes ... 52

8

Introduction

In Modern World mobile technology is accompanying us in every part of

our lives. Mobile phones are slowly replacing a need for personal computer

offering almost the same performance in normal usage and having advantage of

being mobile and small. Phones are used to write e-mails, play games, monitor

health or set up meetings. Thanks to technological advance mobile phones can

now replace credit cards. Near Field Communication radio with Host-based Card

Emulation technology can emulate user`s smart card. Now it is possible to

completely replace users wallet using mobile phone.

This thesis goal is to create a proof of concept that mobile payments can be

performed using Near Field Communication and Host-based Card Emulation

technologies with help of mPoint server and mPoint SDK on Android devices. For

the purpose of this thesis payment will be performed between two Android

phones that support NFC technology. One phone will act as a Customer Device

emulating the card, as second device will be used as an NFC reader to emulate the

use of POS terminal.

 This thesis focuses of key communication between customer – merchant

device, as well as describing the work flow of the payment process that happens

between merchant device using mPoint SDK and mPoint Server. Simplified

overview of this communication can be seen below. Green arrows highlight focus

of this thesis.

This project will showcase the ability of mPoint to easily integrate into

already existing application and seamlessly perform payments. Wallet application

will be used as a basis and will be modified to handle NFC payments. The idea is to

present the real life scenario of merchant application that can handle payments.

Most of shops already develop their own application that handles Loyalty

programs or notify about promotions. This system can be easily integrated into

Figure 1. Simplified Communication Schema

9

those applications and create one centralized system. The complete workflow of

the system is illustrated on Figure 2. System Overview. Application workflow is

defined by following steps:

1. User Account Registration

2. Card Emulation

3. Payment using mPoint

4. Card authorization

5. Payment Confirmation

Thesis main focus are steps number 2 and 3 highlighted with green arrows

on the picture. Step 2 handles card emulation and detection, while step 3 is

responsible for verification and transfer of money.

10

Figure 2. System Overview

11

Technology

NFC – Near Field Communication
Near Field Communication (NFC) is a short-range, high frequency radio

standard allowing for wireless data transmission. This technology is a simple

extension of the ISO/IEC 14443 (proximity card) standard that connects the

interface of a smart card and reader in one device. NFC devices can communicate

both with existing ISO/IEC 14443 standard card and readers, as well as with other

NFC devices, making it compatible with already existing public transport and

payment infrastructure. NFC is mainly focused for usage in mobile devices.

Near Field Communication dates back to 1983 when the first patent was

associated with the abbreviation RFID and granted to Charles Walton. Later on in

year 2002 Sony and Phillips on establishing a new technology specification and

created a technical outline. In 2004 Nokia, Sony and Phillips joined Near Field

Communication (NFC) Forum - a non-profit producers association established to

develop contactless communication technology, later in year 2006 Nokia 6131

become the first NFC enabled phone. In year 2010 Samsung`s Nexus S became the

first Android NFC enabled phone and NFC started to gain more attention.

Near Field Communication operates on 13.56 MHz on ISO/IEC 18000-3 and

at rates ranging from 106 kbit/s to 424 kbit/s. Theoretical working distance is up

to 20 centimeters, however practical working distance is about 4 centimeters.

NFC has two communication modes:

 Passive communication mode: The initiator device provides the carrier

field and the target device answers by modulating the existing field.

 Active communication mode: Both initiator and target devices

communicate by alternately generating their own fields. A device

deactivates its RF (radio frequency) field while it is waiting for data.

However there are 3 main operating modes that Android devices support:

 Read/Write mode – android devices can read from or write to passive

NFC tags.

 P2P mode – android devices can exchange data with other NFC peers.

Used by Android Beam.

 Card emulation mode – android device can act as NFC card.

Basic functionality of NFC on Android devices it reading NDEF data from

NFC tags or beaming NDEF messages between devices with Android Beam. This

12

thesis interest is not in NDEF message exchange, but it is important to understand

how tad dispatch system works on android devices.

NFC – Tag Dispatch System
NFC enabled android devices is looking for NFC tags when device screen is

turned on. When NFC tag is discovered, desired behavior is to start the correct

application without having to ask user which one it is. Since NFC works on a small

range it is possible that selecting correct application by user will break the

connection by moving the device away from the reader. That is why ones

application should be designed to only handle specific NFC tags that are relevant

and can be handled appropriately. Android have its own tag dispatch system to

help with this issue. Tag dispatch system works in three simple steps:

1. Parse the NFC tag and figure out MIME type or URI to identify payload

in the tag.

2. Encapsulate MIME type or URI and the payload into an intent.

3. Start an activity based on intent.

There are 3 intents defined in tag dispatch system that works on the

priority basis shown on (PICTURE NUMBER) and listed below:

1. ACTION_NDEF_DISCOVERED – used when scanned tag contains an

NDEF payload and is of recognized type.

2. ACTION_TECH_DISCOVERED – used when tag contains NDEF data that

cannot be mapped to MIME type or URI or does not contain NDEF data

but is of known tag technology.

3. ACTION_TAG_DISCOVERED – started when there is no activity handlers

defined for two previous ones.

Figure 3. Tag Dispatch System [2]

13

Work in this thesis will be dealing with ACTION_TECH_DISCOVERED intents.

There are several supported technologies in the android.nfc.tech package. They

are listed in the (TABLE NUMBER). Technology used this project is IsoDep, that

allows for sending raw ISO-DEP data to the tag and receive response, using byte[]

transceiver(byte[] data) method.

Class Description
TagTechnology The interface that all tag technology classes must implement.
NfcA Provides access to NFC-A (ISO 14443-3A) properties and I/O

operations.
NfcB Provides access to NFC-B (ISO 14443-3B) properties and I/O

operations.
NfcF Provides access to NFC-F (JIS 6319-4) properties and I/O

operations.
NfcV Provides access to NFC-V (ISO 15693) properties and I/O

operations.
IsoDep Provides access to ISO-DEP (ISO 14443-4) properties and I/O

operations.
Ndef Provides access to NDEF data and operations on NFC tags that

have been formatted as NDEF.
NdefFormatable Provides a format operations for tags that may be NDEF

formatable.
Table 1. Supported tag technology

https://developer.android.com/reference/android/nfc/tech/TagTechnology.html
https://developer.android.com/reference/android/nfc/tech/NfcA.html
https://developer.android.com/reference/android/nfc/tech/NfcB.html
https://developer.android.com/reference/android/nfc/tech/NfcF.html
https://developer.android.com/reference/android/nfc/tech/NfcV.html
https://developer.android.com/reference/android/nfc/tech/IsoDep.html
https://developer.android.com/reference/android/nfc/tech/Ndef.html
https://developer.android.com/reference/android/nfc/tech/NdefFormatable.html

14

NFC Implementation
NFC support implementation begins with declaring access to NFC features

in AndroidManifest.xml file:

<uses-permission android:name="android.permission.NFC" />

<uses-sdk android:minSdkVersion="10"/>

<uses-feature android:name="android.hardware.nfc" android:required="true" />

Code 1. NFC features declarations [2]

Element <uses-permission> is used to access NFC hardware. Element <uses-

sdk> specifies minimum required SDK version. API lower than level 10 only

support limited tad dispatch via ACTION_TAG_DISCOVERED. Element <uses-

feature> lists application in Google Play store only for devices that support NFC

hardware. Second step is to create an XML resource file listing the technologies

that activity supports with tech-list set. Following sample specifies all of the

technologies for ACTION_TECH_DISCOVERED intent.

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">

 <tech-list>

 <tech>android.nfc.tech.IsoDep</tech>

 <tech>android.nfc.tech.NfcA</tech>

 <tech>android.nfc.tech.NfcB</tech>

 <tech>android.nfc.tech.NfcF</tech>

 <tech>android.nfc.tech.NfcV</tech>

 <tech>android.nfc.tech.Ndef</tech>

 <tech>android.nfc.tech.NdefFormatable</tech>

 <tech>android.nfc.tech.MifareClassic</tech>

 <tech>android.nfc.tech.MifareUltralight</tech>

 </tech-list>

</resources>

Code 2. XML file listing nfc.tech technologies [2]

Similar file listing only supported technologies should be created and saved

under <project-root>/res/xml folder.

Last step is to specify XML resource file in AndroidManifest.xml file in the

<meta-data> element under the <activity> element, similar to the example shown

on Code 3. <meta-data> element declaration in Manifest.xml

 [2]

<activity>

...

<intent-filter>

 <action android:name="android.nfc.action.TECH_DISCOVERED"/>

</intent-filter>

<meta-data android:name="android.nfc.action.TECH_DISCOVERED"

15

 android:resource="@xml/nfc_tech_filter" />

...

</activity>

Code 3. <meta-data> element declaration in Manifest.xml [2]

HCE – Host-based Card Emulation
Host Card Emulation (HCE) is a method of representing a smart card on a

mobile device using only software. Before HCE, NFC payments were relying on

using the Secure Element, that stored the card credentials on a piece of hardware

inside the users phone.

Term Host Card Emulation was created in 2011 by founders of SimplyTapp,

Doug Yeager and Ted Fifelski. A year later in August 2012 the first payment wallet

using NFC technology was released. However HCE technology needed direct

access to the Android OS that was not officially supported by Google at the point.

Meaning only technological enthusiasts with rooted (modified) versions of

Android were able to use the application.

In October 31, 2013 Android adopted the HCE technology. Google hoped

that by including HCE within the Android OS, the largest mobile OS will gain a

rapid growth in mobile payments ecosystem. In year 2014 Visa and MasterCard

announced coming support for HCE.

HCE allows for secure element to be outside the mobile device, bypassing

Secure Element Issuers and passing control directly to the developers, without

third-party involvement.

It allows NFC data transfer between Near Field Communication terminal or

NFC enabled device and smart card or mobile device configured to emulate the

smart card. Host Card Emulations requirement is access to main Android

Operating System (Android OS) to bypass the need to access local hardware-

based Secure Element (SE) chip configured to act like a card.

Secure Element (SE) is a hardware. It is a protected memory, granting

access only to applications having valid key, that can be issued from the chipset

manufacturer. SE security is based on invalid key entry attempts and is disabling

access completely.

When NFC card emulation is settled up to work with secure element all the

communication between NFC reader and device is rooted to the secure element.

As pictured on Figure 4. Provisioning using physical Secure Element. This concept

puts whole communication with NFC reader in hand of Secure Element

manufacturer, no application on the device can interrupt that transaction. After

16

the transaction is made, desired application can call secure element directly for

transaction status and display the status to the user.

When NFC card is emulated using HCE Figure 5. Provisioning using Secure

Element stored in the cloud - HCE, communication from NFC reader is rooted

directly to device CPU on which all the applications are working.

Figure 4. Provisioning using physical Secure Element

Figure 5. Provisioning using Secure Element stored in the cloud - HCE

17

HCE Service
The best advantage of using HCE is the usage of Android Service

components. Android Service components are designed to work in background

not to interfere with normal usage of the phone. In case of mobile payments, it

gives a great advantage of being able to emulate the smart card while doing

anything else on the phone. One does not have to start the appropriate

application to make a payment, the only requirement is to unlock the phone and

put it in the proximity of NFC reader.

Service selection is very important since phone needs to know which HCE

service should be started for particular NFC reader. Service selection is based on

Application ID (AID) and specified in ISO/IEC 7816-4 document. AIDs of different

payment systems are a public knowledge and registered accordingly to ISO/IEC

7816-5 specification to avoid collisions and multiple systems trying to handle

different requests. As this projects is a proof of concept and is not being deployed

to the market yet, AID is not being officially registered and choose just to work

between two selected phones without interfering with the system.

Android distinguishes two categories CATEGORY_PAYMENT and

CATEGORY_OTHER. This separation is designed to allow multiple HCE services in

the system. CATEGORY_PAYMENT is storing AID groups from application handling

all or most of credit card protocols. However only one AID group can be enabled

by default in the system, meaning only one payment application can be enabled

on the users phone. CATEGORY_OTHER keeps all the other AID groups that are to

be used in one merchant only situations. This category allows, that all AID groups

defined in it, to be always active in background and take priority while NFC reader

AID selection.

HCE Service Implementation
Host-based Card Emulation implementations begins with check if device

supports HCE feature. This is done by use of <uses-feature> tag in the manifest of

the app. FETURE_NFC_HOST_CARD_EMULATION needs to be set to true.

Android 4.4 comes with the service class that can be used as a basis of

Service component implementation, the HostApduService class that need to be

extended. Thos class contains two abstract methods that developer has to

implement to handle the process.

public class MyHostApduService extends HostApduService {

 @Override

 public byte[] processCommandApdu(byte[] apdu, Bundle extras) {

 ...

 }

18

 @Override

 public void onDeactivated(int reason) {

 ...

 }

}

Code 4. HostAdpuService Example [3]

processCommandApdu() method is being called each time NFC reader sends

an Application Protocol Data Unit (APDU) to the service. APDUs are packets

exchanged between NFC reader and HCE service, that are being send as a request

and response. Normally the first APDU sent by NFC reader is “SELECT AID”

request, containing Application ID that it wants to communicate with. Android

isolates this AID and selects appropriate HCE service.

onDeactivated() method is called in one of two cases. First when “SELECT

AID” request was resolved to correct service, or when the link between device and

reader had split.

Implemented service needs to be declared in the manifest with some

modifications. Example of such declaration is shown in Code 5. HostApduService

declaration in Manifest.xml file example.

<service android:name=".MyHostApduService" android:exported="true"

 android:permission="android.permission.BIND_NFC_SERVICE">

 <intent-filter>

 <action

android:name="android.nfc.cardemulation.action.HOST_APDU_SERVICE"/>

 </intent-filter>

 <meta-data android:name="android.nfc.cardemulation.host_apdu_service"

 android:resource="@xml/apduservice"/>

</service>

Code 5. HostApduService declaration in Manifest.xml file example [3]

Service declaration requires android.permission.BIND_NFC_SERVICE

permission and android:exported attribute set to true to be able to work with

external applications. Additionally <intent-filter> declaring the Intent that is

handled by that service. Finally the <meta-data> tag with resource file that

specifies which AID groups are requested by the service. Example of resource file

containing AID group is shown in Code 6. Resource file defining AID group.

<host-apdu-service

xmlns:android="http://schemas.android.com/apk/res/android"

 android:description="@string/servicedesc"

 android:requireDeviceUnlock="false">

 <aid-group android:description="@string/aiddescription"

 android:category="other">

 <aid-filter android:name="F0010203040506"/>

19

 <aid-filter android:name="F0394148148100"/>

 </aid-group>

</host-apdu-service>

Code 6. Resource file defining AID group [3]

The last thing to do is to give the application permissions to use NFC and

HCE features.

<uses-permission android:name="android.permission.NFC" />

<uses-feature android:name="android.hardware.nfc" android:required="true" />

Code 7. NFC & HCE permissions [3]

Android
Android Operating System (Android OS) is the most common mobile

operating system in the world. Google started developing this open source

operating system in year 2006, later in year 2007 Open Handset Alliance was

established by Google, HTC, Motorola, Intel, Qualcomm, T-Mobile, Sprint Nextel

and NVIDIA with an aspiration to develop open standards for mobile phones. First

Android OS was presented. However the first public release of Android OS

happened in year 2008.

Android OS is a Linux system and it is based on Linux kernel and GNU

licensed software. Android OS was design primary for mobile phones with touch

displays, however through the years of development and numerous iterations it

grew to the position of operating system for mobile phones, tablets, wearable

devices, television or even cars. Android applications are commonly written using

Java programming language using Android application programming interface

(API).

With latest Android 4.4 Kitkat Google integrated HCE within the operating

system itself allowing developers to use this new technology. Together with most

of new devices being NFC enabled, it create a enormous opportunity to increase

the mobile payment market and make it easy accessible and effortless for millions

of users.

mPoint Server
mPoint is a powerful payment gateway through which clients have access

to multiple funding sources for securely processing payments. mPoint has been

architected to provide cloud based access to available sources across merchant

channel. The diagram below illustrates how mPoint provides access to multiple

funding sources for merchants and customers.

Figure 6. mPoint system schema [1]

21

mPoint comes with and SDK for iOS and Android to simplify integration into

the merchant`s mobile application. mPoint Solution is very well equipped to

process mobile payments, however it was not designed for Near Field

Communication payments and requires two steps. NFC payments needs to be

executed immediately, that is why mPoint Server will be expanded with new

methods specifically design for that purpose.

mPoint SDK
As illustrated by Błąd! Nie można odnaleźć źródła odwołania., the mPoint

SDKs have been designed for asynchronous communication using the delegate

pattern which requires the Merchant application to implement the methods

defined by the provided mPoint interfaces:

The mPointDelegate interface for merchants using basic mPoint features

set to process card based payments through one of the supported Payment

Service Providers (PSP).

The mPointWalletDelegate interface for merchants using full feature set of

mPoint to provide enhanced security and 1-click payment.

Diagram can be broken down into following logical parts:

 Payment Initialisation

 Payment Authorisation

 Save Card

mPoint SDK - Implementation

To use mPoint SDK Android developer needs to place the mpointsdk.jar file

in the /libs directory and add reference to the JAR file to the Java build path.

Payment Initialization
Initializing payment through mPoint SDK involves the following high-level

tasks:

1. Invoke the initialize method on the SDK instance.

2. Handle the SDK callback through the handleInitialize() method.

3. Construct the GUI for enabling customers to enter their card details or

select sorted card.

22

Payment Authorisation

Authorizing the payment using the mPoint SDK invokes the following high-

level tasks:

1. Invoke one of the authorize methods on the SDK instance

2. Handle the SDK callback through the displayPaymentConfirmation

method.

3. Construct the GUI for presenting customers with a payment

confirmation screen.

Status Handling

Handling return status from mPoint server, will result in callbacks from the

SDK to one of two methods that must be implemented by the application.

handleStatus is called by the SDK for “high-level” errors when the mPoint

server rejects the request and returns one or more status codes giving the reason

or for operations that does not return any data where mPoint server returns the

operation status.

handleError is called for “low-level” errors such as network connectivity

problems.

As one can see mPoint SDK is a very powerful library that speeds up process

of creating wallet or mobile payment application. However it does not include

methods that could speed up development of the Near Field Communication

payment using Host-based Card Emulation that is possible since the release of

Android 4.4 platform. This thesis will expand capabilities of mPoint SDK for

Android to allow rapid development or fast and easy integration of NFC payments

using HCE technology on supported devices.

Project

The goal of the project is to allow Wallet application to conduct NFC

payments using HCE by extending mPoint SDK and mPoint server with needed

methods.

Current capabilities of mPoint SDK and server allow for seamless mobile

payments and are used in several mobile applications like Mobileperiodekort or

DSB App. However current implementation have to be changed to process NFC

payments. NFC payments have to be fast and secure to be competitive with Smart

Cards payment.

mPoint has a big advantage over Smart Cards that merchants, which is

stored funds payments. Smart Cards issuers like Visa or MasterCard get a small

fee from each card usage. Card users are not aware of that since it is a merchant

that has to handle that fee. Fee is usually a small percentage of transaction

amount, but also has “not less than” amount. This “not less than” amount is really

visible with small purchases. Huge stores all around the world are trying to find a

way to get rid of that fees with different approaches. Most talked about is

approach to make direct bank transfers from users to merchants that is being

developed by CurrentC with support of big retailers. That, however requires each

user to give access to bank account, that causes a lot of security risks. With Stored

Funds merchant can get rid of that “not less than” fees using direct mPoint

account to mPoint account money transfer. The fee is paid only when user uses

credit card, that means that system can be modified to be most profitable for

merchant and offer minimum amount of cash to be transferred to stored funds to

minimize fees.

 Stored Funds approach gives us 2 possible payment flows to be

considered. Payment using Stored Funds and payment using stored Credit Card.

24

Payment Flows

Stored Funds Payment
Stored Funds Payment flow is the fastest possible scenario, since there is no

need for authorization of the credit card information. This allows for seamless

experience for user. Payment flows is illustrated on Figure 7. Payment Flow using

Stored Funds

Figure 7. Payment Flow using Stored Funds

25

Credit Card Payment
Payment using stored credit card is a little slower and involves request to

Payment Service Provider like DIBS, WorldPay or PayPal for card authorization,

adding one step to the flow. This payment flow is described on Figure 8. Payment

Flow using stored Credit Card

Figure 8. Payment Flow using stored Credit Card

Approach 1
This paragraph describes first approach that was taken to solve contactless

mobile payments using mPoint payment gateway. The main idea was to secure

the user that their card/mPoint account data will be guarded at all time. Android

with HCE gives the first step of security, only transmitting data when the screen of

device is activated. Second step of security is possibility to force user to unlock the

screen before the payment is made by setting android:requireDeviceUnlock to

true in the resource files that holds list of recognizable AIDs.

The third step of security is designed to guard the data while it is being

transmitted to the NFC receiver. The OneTimePassword that can only be used

26

once for payment authorization and prevent skimming of the complete user info

that could potentially lead to duplicating the user account and performing

payments.

The idea is to introduce OneTimePasswords that are generated on the

server and pushed to users device. There are two OneTimePasswords generated

for a user and each one can be used to authorize one payment. OneTimePassword

is verified on the server and if matching par is found payment can be processed.

Next step is generation of new OneTimePassword and pushing it to user device.

 OneTimePassword requires changes to whole payment channel starting

from the server, through database and the SDKs. Server needs expansion with

new methods that can generate, validate, save and push OneTimePasswords. Also

DataBase needs extension with new table for storing the passwords. Next all the

SDKs would need to implement new payment schema and extensions to handle

saving and retrieving OneTimePasswords needs to be added.

 Another security measure is assured by only verified merchants being able

to use contactless payment approach. That means that even if you card/account

data would be stolen, the “copied” account would only be useful in verified sell

points and cannot be used to make money transfer to any other account.

Last security measure and suggestion from CellPointMobile CTO Jonatan

Evald Buus lead to leaving OneTimePassword implementation half way. It was

pointed out that introduction of OneTimePassword is just a minor security

upgrade and does not offer greater security than transferring user password.

Meaning that on successful skimming attack user`s password or user`s

OneTimePassword is stolen and can be used to make transaction. Main point is

that you can empty user`s credit card only once, meaning that it does not matter

which password would be used to do that. That lead to changing the payment

approach to Approach 2.

Approach 2
As discussed in previous paragraph there are several security measures

starting from Android`s device screen on, to only verified merchants being able to

complete transfers. That lead to changing approach and putting the password

security measure in hands of the user. People are used to making payments using

credit cards, which requires entering PIN code or signing the receipt. That is why

new flow was introduced based on the user input. Change in a new flow requires

user to manually input password on the merchants phone or decide that they

trust that system is secure and allow for transferring it via NFC during payment.

27

This change, adds a new (optional) step to the payment flow. Complete payment

flow is illustrated on Figure 9. Complete Payment Flow .

Figure 9. Complete Payment Flow

28

mPoint SDK
Despite mPoint SDK`s powerful and robust set of methods it lacks ability to

support NFC payments. Work done for mPoint SDK includes creating methods to

allow developers to easily implement NFC payments into their application.

Work can be separated into two main categories :

 card emulation - methods supporting host card emulation

 card detection - methods supporting detection of specific card

 utility methods - methods that are considered helpers

Card Emulation
As described in HCE Service - Implementation there are several steps that

developer needs to implement to support HCE. This part describes all the

methods that were incorporated into mPoint SDK to support HCE and take control

of Application Protocol Data Units that can be recognised by system.

New method byte[] contactlessPayment(byte[] commandApdu, Bundle

extras, mPointClientInfo clientInfo, String oneTimePassword) was introduced to

process the received APDU and return appropriate response upon verification of

received data. This method also handles all the data that is being returned

together with response APDU. Implemented method also takes instance of

mPointClientInfo and client one time password for authentication on server.

Due to change in approach OneTimePassword is change with String

password field to allow for seamless payments. The new method is byte[]

contactlessPayment(byte[] commandApdu, Bundle extras, mPointClientInfo

clientInfo, String Password) and can be called using mPoint instance.

This method is supposed to be called from the class that is extending

HostApduService and implements processCommandApdu() and onDeactivated()

methods. contactlessPayment() methods processes all the information needed by

processCommandApdu() methods and returns byte[] with prepared response.

contactlessPayment() method
This method is designed to handle card emulation. Calling this method

requires following inputs:

 byte[] commandApdu

 Bundle extras

 mPointClientInfo clientInfo

 String Password

29

This method handles creation of byte[] holding information needed to perform

contactless payment. First thing that happens in the method is check if the

appropriate APDU received matches SELECT_APDU command for the service by

comparing arrays:

Arrays.equals(SELECT_APDU, commandApdu) == true

If that statement is correct, clientInfo and password received are combined to

create one string that is than translated to byte[] and concatenate with byte[]

holding “OK” status word. Such created byte[] is then returned to the application

as a response. Application sends byte[] as response to NFC reader (another mobile

phone in this case).

Card Detection
As mentioned in HCE Service - Implementation there are certain methods

that needs to be implemented to detect NFC card. This paragraph describes

methods incorporated into mPoint SDK that allows easy usage of HCE in the

project.

New method onTagDiscovered(Tag tag) was implemented to handle

discovery of another phone trying to communicate via NFC. This method uses

isoDep.connect() method to connect with remote NFC device. Next the byte[]

consisting of ISO DEP command HEADER (00A40400) and CARD AID is constructed

using utility method BuildSelectApdu(String aid). Such prepared command is send

to connected device and waits for response. If AID was successfully selected

0x9000 is sent as last two bytes of the response. Everything before that is payload

used to transmit data needed to perform payments. In this project data

transmitted via NFC consists of mPointClientInfo and String containing

OneTimePassword. After approach change OneTimePassword is changed to user

password. When data is received merchant application combines received data

with merchant specific information and performs a call to transfer() method

implemented in mPoint SDK.

login()
Login method was extended to handle data in byte[] format. New

login(byte[] data) method is added to work with data transferred via NFC directly.

Method takes last 2 bytes form the array and performs a check is new byte[]

statusWord consisting of last 2 bytes from transferred data is equal to

SELECT_OK_SW command. SELECT_OK_SW is a byte[] consisting of 2 elements

(byte)0x90 and (byte)0x00, the “OK” status word. Next the utility method

ByteArrayToHexString(byte[] bytes) is called and remaining byte[] data is

translated to String value. byte[] data translated to String value is shown on Code

8. String containing payload information

30

<password>password</password><client-info language="da" version="1.00"

platform="Android/4.4.2(19)" app-id="5"><mobile country-

id="100">12345678</mobile><email>random@random.dk</email><device-id>4AEA1125-5D85-49F1-

98F1-9897061170E1</device-id></client-info>

Code 8. String containing payload information

Information received from payload can be used to perform a login() request

to verify, that account exist, and receive security token for transaction as well as

stored funds amount.

login() method creates XML combining passed information and performs a

request to mPoint Server. Example of such XML is shown below.

"<?xml version="1.0" encoding="UTF-8"?>

<root>

<login account="100034" client-id="10025">

<password>PASSWORD</password>

<client-info language="da" version="2.00" platform ANDROID/4.4.2(19)" app-

id="5">

<mobile country-id="100">12345678</mobile>

<email>random@random.dk</email>

<device-id>8B97FEE6-E40E-4EB7-9B5B-07F16420528D</device-id>

</client-info>

</login>

</root>"

Code 9. Login XML

Login response XML contains information about the account that is trying

to perform a payment. mPoint method processResponse() is called and redirects

data to handleSuccessfulLogin() method that has to be implemented by developer

in the application delegate.

transfer()
transfer() was extended to handle NFC transfer seamlessly. Calling this

method requires following input information:

 byte[] payload – byte[] containing client information and password

passed via NFC

 int amount – amount to be paid

 int countryId – id of the country for currency recognition

 int operator – network operator

 long mobile – merchant`s phone number

 String password – merchant`s password

 String message – message to be displayed

31

 mPointClientInfo merchantInfo – merchant information

 This method takes all the information about merchant account like

countryId, operatorId, mobile number, merchant password and merchantInfo

(containing merchant deviceId) together with byte[] payload containing data

transferred from user`s device, and also amount that needs to be transferred. The

byte[] payload is translated to String value using utility methods.

transfer() method creates XML to be sent to the mPoint Server. XML

example is shown on Code 10. XML created by transfer() method

"<?xml version="1.0" encoding="UTF-8"?>

<root>

 <transfer account="100006" client-id="10007">

 <amount country-id="100">10000</amount>

 <mobile country-id="100">87654321</mobile>

 <password>password</password>

 <message >optional message</message>

 <client-info language="da" version="1.00" platform="Android/4.4.2(19)" app-id="5">

 <mobile country-id="100">12345678</mobile>

 <email>random@random.dk</email>

 <device-id>4AEA1125-5D85-49F1-98F1-9897061170E1</device-id>

 </client-info>

 </transfer>

</root>"

Code 10. XML created by transfer() method

mPoint processResponse(Object response, Client client) method handles

redirection of all responses from mPoint Server. If response is received from

transfer path than it is redirected to delegate method

_handleStatus(ArrayMap<RecordMap<String, Object> >statuses, Client client,

mPoint mpoint) that has to be implemented in the merchant application to display

successful payment confirmation.

initialize()
initialize() method is called immediately after determining that stored funds

are not sufficient to perform a transfer. This method begins the payment process,

creating a trace record in the transaction_tbl in database. initialize() method takes

following data as input:

 int amount – amount to be paid

 int country – unique country ID to define currency of the payment

32

 int reward – number of loyalty point to be rewarded for the payment

 int operator – unique mobile network operator ID

 long mobile – user`s mobile number

 String email – user`s e-mail address

 LANGUAGE language – language to be used by mPoint in any

following communication

Method transforms input data into nice XML form that is sent to mPoint

server as a request. Example of such request is displayed below :

"<?xml version="1.0" encoding="UTF-8"?>

<root>

 <initialize-payment account="100026" client-id="10019">

 <amount country-id="100">36000</amount>

 <client-info language="da" version="1.23" platform="Android/4.4.2(19)">

 <mobile operator-id="20000" country-id="200">5151515151</mobile>

 <email>random@random.dk</email>

 <device-id>ffffffff-cfa4-cca9-f5f9-348d0033c587</device-id>

 </client-info>

 </initialize-payment>

</root>"

Code 11. Initialize XML

Data returned by the server are passed to handleInitialize() method that has

to be implemented in the delegate class by developer.

authorize()
This method is called directly after receiving response data from initialize()

call. This method takes following data as input :

 mPointStoredCardInfo card – instance of the stored card

 String pwd – user`s password

Authorize method creates the XML format data to be send to mPoint

server. XML example is shown below.

"<?xml version="1.0" encoding="UTF-8"?>

<root>

 <authorize-payment account="100026" client-id="10019">

 <transaction type-id="1009" id="1805851">

 <card type-id="9" id="65546">

 <amount country-id="200">36000</amount>

 </card>

33

 </transaction>

 <password>qwerty</password>

 <client-info language="da" version="1.23" platform="Android/4.4.2(19)">

 <mobile operator-id="20000" country-id="200">5151515151</mobile>

 <email>random@random.dk</email>

 <device-id>ffffffff-cfa4-cca9-f5f9-348d0033c587</device-id>

 </client-info>

 </authorize-payment>

</root>"

Code 12. Authorize XML

Utility methods
There are several utility methods that are use by both card emulation and

detection:

 byte[] ConcatArrays(byte[] first, byte[]... rest) - method to concatenate

two byte arrays. As processComandApdu() returns byte[] method that

concatenate byte[] containing message with byte[] containing “OK”

message (0x9000) is needed.

 byte[] BuildSelectApdu(String aid) - Build APDU for SELECT AID

command. This command indicates which service a reader is interested

in communicating with. This method converts String containing AID to

byte[] using HexStringToByteArray(String s).

 String ByteArrayToHexString(byte[] bytes) - method to convert a byte

array to a hexadecimal string

 byte[] HexStringToByteArray(String s) - method to convert a

hexadecimal string to a byte string

mPoint Server

Login
Login function performs numerous checks and authorizations to verify that

all received data are correct. It begins with authorization of the merchant. If

merchant was found in the database servers looks for user data for authorization.

Method then issues the security token and creates XML containing User Account

Details. Example of the XML containing User Account Details is shown below.

"<?xml version="1.0" encoding="UTF-8"?>

<root>

<account country-id="100" id="12345">

<first-name>NAME</first-name>

34

<last-name>SURNAME</last-name>

<mobile country-id="100" verified="false">40127318</mobile>
<email>random@random.dk</email>

<balance country-id="100" currency="DKK" format="{PRICE} {CURRENCY}"
symbol="">0</balance>

<points country-id="0" currency="points" format="{PRICE} {CURRENCY}"
symbol="points">0</points>

<clients>

<client id="12345" store-card="3">Merchant`s name</client>

</clients>

<created timestamp="1414662138">2014-10-30 09:42:18+00:00</created>

</account>

<stored-cards>

<card id="65105" preferred="true" psp-id="2" type-id="8">

<name>visa</name>

<card-number-mask>4711 10** **** 0000</card-number-mask>

<expiry>06/24</expiry>

</card>

</stored-cards>

</root>"

Code 13. Response from successful login

There are several status codes that can be returned. The complete list of

status codes can be found in Error Codes Paragraph.

Transfer
Transfer server method begins with authorizing the merchant account. If

account was found in database new transfer is initialized. It performs numerous

checks to verify existence of user and merchant information in the system. At the

end it compares the security token for validation. There are additional checks

performed to compare currency of the money being transferred and merchant

account currency settings for money conversion purposes. When every check

succeeds – successful response is sent. Example of such response is presented

below:

"<?xml version="1.0" encoding="UTF-8"?>
<root>

<status code="100">Success</status>
</root>"

Code 14. Successful response from transfer

There are several status codes that can be returned. The complete list of

status codes can be found in Error Codes Paragraph.

35

Initialize
This method is used to initialize transaction. After receiving XML data from

initialize() request it performs usual merchant and user validation against the

database and creates the transaction trace in transaction_log table. Method

returns XML formatted data to the delegate. Example of initialize return data can

be seen below.

"<?xml version="1.0" encoding="UTF-8"?>

<root>

<client-config id="12345" account="123456" store-card="3" auto-capture="false" mode="1">

<name>RetailShop</name>

<callback-url>callback url</callback-url>

<accept-url>accept url</accept-url>

</client-config>

<transaction id="1805851" type-id="12" language="da" auto-capture="false" mode="1">

<amount country-id="100" currency="DKK" symbol="" format="{PRICE}

{CURRENCY}">36000</amount>

<mobile country-id="200" operatorid="20000">5151515151</mobile>

<email>random@random.dk</email>

<callback-url>callback url</callback-url>

<accept-url>accept url</accept-url>

</transaction>

<stored-cards>

<card id="12345" type-id="9" psp-id="2" preferred="true">

<name>Test Card</name>

<card-number-mask>4175 00** **** 0000</card-number-mask>

<expiry>06/24</expiry>

</card>

</stored-cards>

</root>"

Code 15. Response from initialize

There are several status codes that can be returned. The complete list of

status codes can be found in Error Codes Paragraph.

Authorize
Authorize method is called on successful initialize response received. This

method receives request for credit card payment authorization. It uses

transaction identification number (transaction id) from initialize response to verify

which transaction should be performed. It verifies that transaction status is

pending and changes it to complete after payment authorization is received from

external system. Example of XML data returned by this method is displayed

below.

"<?xml version="1.0" encoding="UTF-8"?>
<root>

<status code="100">Payment Authorized using Stored Card</status>
</root>"

Code 16. Succesful Authorize Status Response

There are several status codes that can be returned. The complete list of

status codes can be found in Error Codes Paragraph.

36

Integration
This paragraph describes methods that developer need to implement to

add HCE payments using mPointSDK.

processCommandApdu()
This method has to be implemented in the user application to send data of

the emulated credit card. processCommandApdu() is called when user device is

placed in proximity of reader device. This method should make a call to newly

implemented contaclessPayment() method to handle card emulation.

OnTagDiscovered()
This method is implemented in merchant application and is called by the OS

whenever appropriate NFC Tag is discovered. It is used to create a connection

between two NFC enabled devices with isoDep.connect() method. On successful

connection isoDep().transceive(command) method is called and byte[] return from

the user`s device is used to perform mpoint.login(byte[] result).

handleSuccessfulLogin()
Method called when successful login request was performed. User specific

information are returned from the server. Data from Login Response are used to

determine if user has sufficient Stored Funds to perform a transfer or should

Credit Card be used. Two different calls can be performed form this method:

 transfer() – payment with Stored Funds

 initialize() – payment with Credit Card

Stored Funds amount is taken out from Login Response and compared to

amount to be paid. If there are enough Stored Funds – transfer() method is called

immediately, else initialize() method is called to perform credit card payment.

handleInitialization()
Method called on successful payment initialization. As soon as this method

is called developer should perform authorize() request to perform a payment.

displayPaymentConfirmation()
Method called on successful payment authorization. Merchant application

has to implement this method and display confirmation screen with receipt.

handleStatus()
Method has to be implemented in merchant application whenever any of

the methods responds with a status message only. Following code snippet shows

how to differentiate between different operations.

37

public void handleStatus(ArrayList<LinkedHashMap<String, Object> > statuses, Client client, mPoint mpoint)
{
 if (client.getURL().getPath().equalsIgnoreCase(mPoint.INITIALIZE_PATH) == true)
{

Code 17. Code snippet to differentiate between operations

handleError()
This method has to be implemented by merchant application to handle

error messages, that can occur throughout the payment flow. This method has

display appropriate information depending on error code received. List of Error

codes can be found in Error Codes paragraph.

Performance

One of the issues encountered during project was the NFC chip placement.

During project Samsung Galaxy S4 and HTC One devices were used and at the

beginning they did not want to send data between each other. It turned out that

one of the phones has NFC chip at the top of the device, while the other one has it

at the bottom of the device. That problem should not occur while using the

system with POS terminals.

Performance of the system is very promising. The average times for

receiving response for specific requests are listed below.

 Login response – 0.2 sec

 Transfer – 0.15 sec

 Initialize – 1 sec

 Authorize – 2.4 sec

From above data one can observe that total time of performing a transfer

of Stored Funds averages around 0.35 sec, while performing a payment with

stored card takes more time and averages around 3.6 sec. That is caused by the

need to request the authorization in the third-party company.

38

User Application
The goal of user application is to replace the credit/debit cards and loyalty

cards from the wallet. It will be able to store multiple credit cards and loyalty

cards from stores associated with the program. That will allow to decrease the

overall number of plastic cards kept in the wallet and automatically associate the

loyalty cards with the customer without the need to display extra card during

payment process, but what`s most important it will increase the speed of

transaction and users comfort.

Wallet app is really simple from the user perspective. After one time setup

process user does not even have to open the app to proceed with the payment,

the only requirement will be to unlock the mobile phone screen, so the system

knows that it`s a legitimate payment attempt not a skimming attempt. Payment

information will always be accessible, while the screen is unlocked, even during

usage of different app or phone call.

User is able to conduct fast, contactless payments and check the history of

transactions on the spot. User is also able to define the default card that he wants

to use for contactless transactions

This paragraph will present the steps needed to set up user application to

be able to conduct contactless payments.

39

During the first opening of the application customer is presented with the

welcome screen (PICTURE NUMBER) displaying some key information about the

security and key features of the app.

Here user can choose to login with existing account or create a new account

if it is his first usage of the application. To create a new account user will need to

enter key information on the following screens.

Figure 10. Welcome Screen

40

Pressing “Create Account” button takes user to the mobile details screen

(PICTURE NUMBER). User is required to enter his phone number and e-mail

address for verification.

Figure 11. Phone Number/ Email input screen

41

On the next screen user is asked to fill the registration form (PICTURE

NUMBER). It consist of two sections. First section contains the credit card

information used to conduct payments. Second section contains personal

information.

Figure 12. Account Information Registration Screen

42

After entering the required information (PICTURE NUMBER) the card is

identified displaying correct (SMART WORD FOR VISA,DANKORT,MASTERCARD).

User have to accept the trade conditions and “Next Step” button unlocks.

Figure 13.Example of filled Registration Screen

43

Third screen requires user to set up password that will be user to access the

application and add the name for credit card.

Figure 14. Password / Card Name Screen

44

Last screen requires user to verify validity of entered phone number. One

Time Password is sent to the phone number specified by the user and is used to

authenticate user`s phone number.

Figure 15. SMS Verification Screen

45

After successful registration process, user is displayed with virtual account

balance and transaction history.

Figure 16. Balance Screen

46

Merchant Application
Merchant Application looks similar to the user application. After initial set

up merchant application has one main display screen, showing input fields for

transfer amount and transfer description.

Figure 17. Transfer Screen

47

After successful transfer payment confirmation is displayed.

Figure 18. Payment Confirmation Screen

48

Discussion and Conclusions

In the thesis usage of mPoint payment gateway in NFC payments was

discussed. It was used together with mPoint SDK to develop a virtual credit card

payment system that could be implemented into any application. Wallet

application was modified to work as a customer application (emulate the credit

card usage) on one device and as merchant POS terminal on second device. This

approach was chosen to showcase that mPoint can be integrated into any existing

application on the market and work as a personalized retailer wallet ex. IRMA

wallet, Coop wallet.

Android was chosen for an operating system of the devices for several

reasons. Android is the most common mobile operating system in the world,

working on more than 1 billion devices. Google support HCE technology from

Android 4.4 (API 19) release, that allowed for performing this project. mPoint

system comes with mPoint SDK for Android that helps with integration.

Problem approach was changed during the development, motivated by

creating a complex system without increasing safety significantly. The additional

safety – One Time Password – was abandoned, because it was proven not to offer

enough security. Device security together with possibility of making payments

only to registered merchants and transaction tracing offers enough surveillance

over the data.

The main result of this thesis is that mPoint system can serve the purpose

of NFC payments with modifications to handle NFC transferred data seamlessly. It

proved to be fast during performing a payment and offer additional advantages

for both potential users (merchant customers) as well as clients (merchants). It

also allows for complete replacement of the physical credit card.

49

Extras

List of Figures
Figure 1. Simplified Communication Schema ... 8

Figure 2. System Overview ... 10

Figure 3. Tag Dispatch System [2] .. 12

Figure 4. Provisioning using physical Secure Element 16

Figure 5. Provisioning using Secure Element stored in the cloud - HCE 16

Figure 6. mPoint system schema [1] ... 20

Figure 8. Payment Flow using Stored Funds ... 24

Figure 9. Payment Flow using stored Credit Card .. 25

Figure 10. Complete Payment Flow .. 27

Figure 11. Welcome Screen .. 39

Figure 12. Phone Number/ Email input screen .. 40

Figure 13. Account Information Registration Screen 41

Figure 14.Example of filled Registration Screen ... 42

Figure 15. Password / Card Name Screen .. 43

Figure 16. SMS Verification Screen ... 44

Figure 17. Balance Screen ... 45

Figure 18. Transfer Screen .. 46

Figure 19. Payment Confirmation Screen ... 47

List of Tables
Table 1. Supported tag technology ... 13

Table 2. Login Status Codes .. 52

Table 3. Transfer Status Codes ... 53

Table 4. Initialize Status Codes ... 54

Table 5. Authorize Status Codes ... 55

List of Codes
Code 1. NFC features declarations [2] ... 14

Code 2. XML file listing nfc.tech technologies [2] 14

Code 3. <meta-data> element declaration in Manifest.xml [2] 15

Code 4. HostAdpuService Example [3] ... 18

Code 5. HostApduService declaration in Manifest.xml file example [3] 18

Code 6. Resource file defining AID group [3] .. 19

Code 7. NFC & HCE permissions [3] ... 19

file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802674
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802675
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802679
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802683
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802684
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802685
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802686
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802687
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802688
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802689
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802690
file:///D:/MGR/Master%20Thesis%20v1.docx%23_Toc404802691

50

Code 8. String containing payload information .. 30

Code 9. Login XML .. 30

Code 10. XML created by transfer() method .. 31

Code 11. Initialize XML ... 32

Code 12. Authorize XML ... 33

Code 13. Response from successful login ... 34

Code 14. Successful response from transfer .. 34

Code 15. Response from initialize .. 35

Code 16. Succesful Authorize Status Response .. 35

Code 17. Code snippet to differentiate between operations....................... 37

51

References

[1] CellPoint Mobile SDK Documentation mPoint

[2] NFC - https://developer.android.com/guide/topics/connectivity/

nfc/hce.html

[3] HCE - http://developer.android.com/guide/topics/connectivity/

nfc/hce.html

[4] Tag Technologies - http://developer.android.com/guide/topics/

connectivity/nfc/advanced-nfc.html

[5] http://www.smartcardalliance.org/publications-proximity-mobile-

payments/

[6] http://www.smartcardalliance.org/wp-content/uploads/HCE-101-WP-

FINAL-081114-clean.pdf

52

Appendixes

Error Codes
Login Status Codes

Code Description

1 Undefined Client ID

2 Invalid Client ID

3 Unknown Client ID

4 Client Disabled

11 Undefined Account

12 Invalid Account

13 Unknown Account

14 Account Disabled

21 Undefined Password

22 Password is too short, min length is 6 characters

23 Password is too long, max length is 50 characters

24 Password contains invalid characters: ‘ or “

31 Authentication failed

32 Authentication failed – Next invalid attempt will delete the account

33 Authentication failed – Account deleted

34 User account not found

37 Mobile number not verified

39 User Account disabled

100 Login successful

401 Authentication required
Table 2. Login Status Codes

Transfer Status Codes

Code Description

1 Undefined Client ID

2 Invalid Client ID

3 Unknown Client ID

4 Client Disabled

11 Undefined Account

12 Invalid Account

13 Unknown Account

14 Account Disabled

21 Undefined Password

22 Password is too short, min length is 6 characters

23 Password is too long, max length is 50 characters

53

24 Password contains invalid characters: ‘ or “

31 Authentication failed

32 Authentication failed – Next invalid attempt will delete the account

33 Authentication failed – Account deleted

34 User account not found

37 Mobile number not verified

38 Invalid Security Token, please login again

39 User Account disabled

41 Undefined country for sender

42 Invalid country for sender

43 Unknown country for sender

44 Sender’s country disabled

45 Undefined amount

46 Amount is too small

47 Insufficient funds on sender’s account

51 Undefined country for recipient

52 Invalid country for recipient

53 Unknown country for recipient

54 Recipient’s country disabled

55 Undefined mobile number for recipient

56 Recipient’s mobile number is too short for the country

57 Recipient’s mobile number is too long for the country

61 Undefined e-mail address for recipient

62 Recipient’s e-mail address is too short

63 Recipient’s e-mail address is too long

64 Recipient’s e-mail address may only contain the following
characters: 0 – 9 a – z A – Z æ ø å Æ Ø Å ä ö Ä Ö _ . @ and -

65 Recipient’s e-mail address has an invalid format

69 Unspecified recipient

91 Unable to fetch conversion rates from the European Central Bank

92 Unable to convert source currency into Euro

93 Unable to convert from Euro to target currency

95 Recipient’s balance will exceed the defined max

96 Unable to create new account for recipient

97 Account created but notification failed

98 Unable to debit sender’s account

99 Unable to credit recipient’s account

100 Transfer successfully completed

101 Account created successfully and notification sent via SMS

102 Account created successfully and notification sent via E-Mail

401 Authentication required
Table 3. Transfer Status Codes

54

Initialize Status Codes

Code Description

1 Undefined Client ID

2 Invalid Client ID

3 Unknown Client ID

4 Client Disabled

11 Undefined Account

12 Invalid Account

13 Unknown Account

14 Account Disabled

401 Authentication required

1001 Internal Database Error - Unable to generate new Transaction ID.
Please contact support@cellpointmobile.com

1002 Internal Database Error - Unable to create a new Transaction. Please
contact support@cellpointmobile.com

1003 Internal Database Error - Unable to insert new message for
Transaction. Please contact support@cellpointmobile.com

1004 Internal Database Error - Unable to update Transaction. Please
contact support@cellpointmobile.com

Table 4. Initialize Status Codes

Authorize Status Codes

Code Description

1 Undefined Client ID

2 Invalid Client ID

3 Unknown Client ID

4 Client Disabled

11 Undefined Account

12 Invalid Account

13 Unknown Account

14 Account Disabled

21 Undefined Card ID

22 Card ID is too small, min value is 1

23 Card not found

24 Card Disabled

26 Undefined Password

27 Password is too short, min length is 6 characters

28 Password is too long, max length is 50 characters

29 Password contains invalid characters: ‘ or “

31 Authentication failed

32 Authentication failed – Next invalid attempt will delete the account

33 Authentication failed – Account deleted

34 User account not found

37 Mobile number not verified

39 User Account disabled

55

41 Insufficient balance on e-money account

42 Insufficient balance on loyalty account

49 Authorization type not supported for Transaction

90 The connection timed out while authorizing the payment with the
Payment Service Provider

91 Internal Error: Unable to debit account

92 Authorization rejected by Payment Service Provider / Acquirer

99 Unknown Payment Service Provider / Acquirer

100 Payment Authorized using Stored Card

101 Payment Authorized using e-money account

102 Payment Authorized using loyalty account

103 Authorization already in progress

401 Authentication required

1001 Internal Database Error - Unable to generate new Transaction ID.
Please contact support@cellpointmobile.com

1002 Internal Database Error - Unable to create a new Transaction. Please
contact support@cellpointmobile.com

1003 Internal Database Error - Unable to insert new message for
Transaction. Please contact support@cellpointmobile.com

1004 Internal Database Error - Unable to update Transaction. Please
contact support@cellpointmobile.com

2000 Payment successfully Authorized by the Payment Service Provider /
Acquirer

2001 Payment successfully Captured by the Payment Service Provider /
Acquirer

2010 Payment declined by the Payment Service Provider / Acquirer
Table 5. Authorize Status Codes

