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Abstract
This thesis focuses on combining the Unit Commitment (UC) optimization problem
and the economic Model Predictive Control (MPC) problem for optimal operation of
power systems. The growing uncertainty associated with the increasing share of inter-
mittent renewable energy sources in the power supply has presented new challenges
for optimal operation of power systems. Motivated by these challenges, we present a
novel control strategy that shows capability of managing uncertainty with flexibility.

The proposed hierarchy control structure consists of two-levels:

• Apply UC to determine which power plants are running as well as the main
distribution of power production.

• Apply economic MPC to repeatedly reoptimize the production in a receding
horizon manner while considering updated and more reliable forecasts of power
supply from renewable energy sources.

We mathematically formalize the UC as a mixed integer linear programming problem
and the control problem as a soft constrained linear economic MPC optimization prob-
lem. Deterministic and stochastic formulations are provided, as well as disturbance
modeling for offset free MPC.

The developed control strategy is tested on a power system consisting of a portfolio of
controllable power plants and non-controllable farms of wind turbines. The results of
the simulations successfully show that the novel control strategy appears to provide
a feasible and a promising solution to overcome some of the important challenges.
Furthermore, it show that the economic MPC method play an important role in the
control of optimal power system operations. We demonstrate significant savings in
imbalance cost and potential reduction in the need of the expensive spinning reserve.

Additionally, results indicate that the coarse discretization and the input param-
eterization for the UC have a cost impact on the solution. Solving the UC problem
with high resolution yields the optimal production plan. Comparing to the optimal
production plan, the UC solution with coarse discretization obtain 2.63% imbalance
power while the economic MPC solution coincide with the optimal production plan.
Simultaneous, the runtime for the economic MPC is 65x faster than solving the UC
with high resolution.
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Resumé
Denne afhandling fokuserer på at sammenkoble Unit Commitment (UC) optimer-
ingsproblem og økonomisk model prædiktiv regulering (MPC) for optimal styring af
energisystemer. Energiforsyning fra vedvarende energikilder er varierende. Dermed
opstår der nye udfordringer for at opretholde optimal drift og styring af energisyste-
mer, nå disse energikilder udgør en større andel i det samlede forsyningsnet. Motiveret
af disse udfordringer, præsenterer vi en innovativ kontrolstrategi.

Den forslåede kontrolstrategi består af to niveauer:

• Anvende UC til at bestemme, hvilke kraftværker der skal være tændt samt
fordeling af energiproduktionen på disse.

• Anvende økonomisk MPC for gentagne gange at optimere produktionen, re-
altidsoptimering, med rullende horisont. Her tages opdateret og mere pålidelige
prognoser for strømforsyning fra vedvarende energikilder i betragtning.

Vi formulerer matematisk UC som et blandet heltal lineært programmeringsproblem
og reguleringsproblemet som et som et blødt begrænsede lineært økonomisk MPC op-
timeringsproblem. Vi præsenterer deterministiske og stokastiske formuleringer, samt
modellere forstyrrelser for at opnå offset-free MPC.

Den udviklede kontrolstrategien testes på et energisystem bestående af en portefølje af
styrbare kraftværker og ikke-styrbare vindmølle farm. Resultaterne af simuleringerne
indikere at kontrolstrategien er en yderst lovende løsning til nogle af de vigtige udfor-
dringer. Vi ser endvidere, at økonomisk MPC spiller en vigtig rolle i planlægning og
realtidsoptimering til styring af energisystemer. Vi demonstrerer væsentlige bespar-
elser i ubalanceomkostninger og potentiel reduktion i behovet for dyre reserver.

Derudover viser resultaterne, at den grove diskretisering og input parametrisering
for UC har en omkostning på den opnåelige løsning. Den optimale produktionsplan
opnås ved løsning af UC på fin tidsskala. Sammenlignet med den optimale produktion-
splan, resultere UC løsningen på grov tidsskala 2,63% ubalance imens den økonomiske
MPC løsning følger den optimale produktionsplan. Samtidigt finder økonomisk MPC
løsningen 65 gange hurtigere end at løse UC på fin tidsskala.
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CHAPTER 1
Introduction

In this chapter, we bring the project into a context by outlining the challenges and
directions from the global energy systems that motivate our work. We address the
need for a new control strategy when introducing large amounts of intermittent re-
newable energy sources into the power grid. The used methods are briefly described.
Additionally, we describe the thesis statement, the contributions of our work, and
previous work. Lastly, an outline for the remainder of this thesis is given.

1.1 Global energy challenges

Energy is of paramount importance for a modern society. It has a great impact on ev-
erything we do like water delivery, food, internet, computer systems, communication
systems, etc. Major breakdowns in power systems are a fundamental concern, since it
would lead to an almost complete chaos in the Western countries. Simultaneously, we
are in a global race for energy sources. Fossil fuels continue to dominate the world’s
energy supplies, counting for more than 80% of energy demand [EIAa; Eur13; Off13].
As we know, this energy supply is unsustainable and causing potentially catastrophic
climate change, and horrendous pollution. The world is facing global energy challenge
of

• satisfy the increasing energy demands,

• ensure adequate energy sources, and

• reduce climate changes and pollution.

In the global race for energy sources and for meeting the global energy challenges,
renewable energy sources has come to occupy a dominant place on the agenda of gov-
ernments in most industrialized countries. Renewable energy sources such as solar
energy, hydro energy, and wind energy promise to be a feasible solution to the global
energy challenge. However, large penetration of renewable energy sources involves
gigantic challenges in managing the fluctuating and stochastic power supply that is
inherent in its nature for most renewable energy sources. The power generation fluc-
tuates independently from demand and is simply non-controllable as opposed to the
traditional highly controllable fossil fueled power plants. Furthermore, forecasts of
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power supply from intermittent renewable energy sources are embedded with uncer-
tainties, as the weather may change during the day. Along with the high requirement
for power system reliability, it has become of increasing importance to be able to
effectively control and manage the energy production in a flexible and proactive way.
Thus, we require much more of our optimization and control methods, and the soft-
ware we apply. We elaborate more on this in Chapter 2.

1.2 Power production planning

Planning the power production to match the demand load is an important optimizing
task in daily operational planning of power systems for energy producing companies
like DONG Energy. Unfortunately, determining the optimal production plan with a
financial and environmental perspective is nontrivial. Consider a portfolio of control-
lable power plants. Then, a planning problem is basically twofold:

1. determine which power plants are running at each time step and

2. determine the production level for the running plants in a cost effective way.

This optimization problem may be solved by the Unit Commitment (UC) problem.
Mathematically, UC is an NP-complete problem. For system with practical size (large-
scale power systems), the UC problem quickly becomes very complex and extremely
difficult solve within a limited time.

Introducing intermittent renewable energy sources into the power grid, reinforce
the need to reoptimize the production during the day of operation in order to avoid
shortage or surplus of power. It is impossible to solve the UC problem with a high
frequency, e.g., every 2-4 minutes. Therefore, at this stage, spinning reserve capacity
is used to balance the production. Spinning reserves is unutilized production capabil-
ity that can be used when needed. Unfortunately, spinning reserve is very expensive
to have and to utilize. Thus, to account for the variations in power supply from the
renewable energy sources and to reduce the undesirable power imbalance, we intro-
duce the economic Model Predictive Control (MPC) method. Based on updated and
more reliable forecasts of power supply from renewable energy sources, the economic
MPC reoptimize in real-time the optimal production in a receding horizon manner.

Consider the hierarchical control structure depicted in Figure 1.1. We solve the
UC problem at the high-level. Here, we decide which power plants are running and
the main distribution of power production on the running plants. To account for
fluctuations, a low-level controller, economic MPC, is applied. Here, we reoptimizes
the production plan and perform corrections.
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Figure 1.1: Control strategy of combining the UC and the economic MPC.

1.3 Unit commitment

The purpose of Unit Commitment (UC) is to schedule on a daily and hourly basis,
the most cost effective dispatch subject to various requirements like power demand
load, spinning reserves, physical limits of equipment, power system operating limits,
etc. In this thesis, the UC problem is formulated with affine objective function and
constrains. The problem involves both discrete and continuous variables, thus, we
obtain a binary Mixed Integer Linear Programming (MILP) problem. Following is
an example of a mathematical formulation of the UC problem with an objective
cost function including fixed and variable operating cost, startup, and shutdown cost
subject to satisfying the demand load for each timer period:

minimize Cost =
∑
i∈I

∑
t∈T

[aiui,t + bipi,t + SUiyi,t + SDizi,t]

subject to
∑
i∈I

pi,t ≥ Dt, t ∈ T .

with I := {1,2, . . . ,I} defining the set of power plants and a specified time-varying
demand over T := {1,2, . . . ,T} time periods defining the planning time horizon. The
decision variables are pi,t ∈ R≥0 and ui,t, yi,t, zi,t ∈ Z2. We elaborate more on this
in Chapter 4. Further literature and related research in UC problems includes, e.g.,
[WW12; OAV12; Cas+11; Pad04; NKF09; ZGH10; RG91; MNG14].
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1.4 Model predictive control

Model Predictive Control (MPC) is a control methodology for optimal operation and
control of dynamic systems and processes. This control methodology has been very
successful in the process industries like chemical plants and oil refineries. MPC com-
putes an optimal action based on a mathematical model of a dynamical system and
its predicted future evolution. An advantage of MPC is the fact that it is mathemat-
ically formulated as a real-time optimization problem that repeatedly computes the
control actions.

Traditionally, MPC is designed to follow a predefined set-point or trajectory sub-
ject to constraints. Our main goal is to minimize the operating costs. MPC based on
economic performance function is known as economic MPC. Economic MPC provides
the property of controlling a system over a time horizon subject to constraints while
minimizing the cost of operations. We formulate the economic MPC as a discrete-
time, constrained linear system of the form

xk+1 = f(xk,uk)

yk = g(xk,dk)

zk = h(xk,dk),

with k ∈ {0,1, . . . ,N}. x is the dynamical states of the system, u is the manipulated
variables, and d is a predictable disturbances. The system dynamics and constraints
are considered linear. Consequently, the constrained optimal control problem may be
formulated as the linear programming problem

minimize
x

ϕ = gTx (1.1a)

subject to Ax ≥ b, (1.1b)

where g ∈ Rn, A ∈ Rm×n, b ∈ Rm, and x ∈ Rn. We elaborate more on this in
Chapter 5 present and Chapter 6. Further literature in MPC includes, e.g., [Jør05;
Mac02; PJ08; QB03; CM87; Hal+14; Hov13].
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1.5 Thesis statement

This thesis has the purpose to develop and investigate the novel coupling of UC and
economic MPC for optimal operation of power systems. The aim is to develop a
control strategy that intelligently can manage uncertainty with flexibility. The focus
will be to minimize operational cost and reduce power imbalance subject to obey
the overall demand load and various system requirements. Thus, optimal operations
of power system is maintained and opens the possibility to reduce the need for the
expensive reserve capacity.

The thesis primary objective is formulated into following hypothesis:

By combining the unit commitment optimization problem and the economic
model predictive control problem, it is possible to obtain an intelligent control
strategy that can overcome some of the important challenges associated with the
increasing share of intermittent renewable energy sources in the power supply.
This novel coupling will operate the power systems in a cost efficient manner
while satisfying the overall demand load and various system requirements.

In order to develop and investigate the control strategy, we

• examine and comprehend the theory for the UC problem and the economic
MPC problem,

• demonstrate the two methods on a conceptual power systems to gain experiences
and investigates their behavior, and

• combine the two methods and perform simulations and analyzes the results.

We apply the state-of-the-art algorithms and software to solve the numerical opti-
mization problems and the optimal control problems; see Chapter 3 for description
of the applied software.

1.6 Thesis contributions

The thesis is accomplished in close collaboration with DONG Energy and the Tech-
nical University of Denmark. Our contributions, value creation, and experiences are
relevant to both industry and academia.

The contributions to DONG Energy are mainly the learning from the chosen
control strategy. The strategy of combining the UC problem and economic MPC
problem is particular interesting for DONG Energy’s ongoing joint venture on the
Faroe Islands through the program GRANI. This indeed shows the topicality of this
thesis. In Appendix C, we describe the GRANI program further.

The contributions to the university are mainly the learning which can be applied
to the research program in Smart Energy Systems at Department of Applied Mathe-
matics and Computer Sciences, Technical University of Denmark [Jør]. The achieved
results may bring ideas and further research to this topic.
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1.7 Previous work

A deep literature review has been conducted to form the basis for this thesis. We
have chosen to refer to relevant literature and previous work throughout the thesis;
therefore, consult the appropriate chapters for literature review.

Energy and global energy challenges are of great interest worldwide, thus, a com-
prehensive literature exists on this topic. To the best of our knowledge, this is the
initial research and proposal of combing the UC optimization problem and the eco-
nomic MPC to account for fluctuations inherent in the increasing penetration of
intermittent renewable energy sources into the power grid. [Con+11] present a com-
putational framework for integrating weather prediction in a UC setting. However,
the framework does not consider more detailed issue such as intraday rescheduling
and effects of updating wind power forecast at higher frequency and higher resolu-
tions. [XI09] present potential benefits of applying MPC to solving economic and
environmental dispatch problem in electric power systems with many intermittent
resources based on a short look-ahead approach (e.g., 5 minutes). In this thesis, we
consider a bi-level framework for which both the day-ahead 24 hours power scheduling
as well as rescheduling the day of operations.

1.8 Thesis structure

The thesis is divided into five parts. The first part provides an introduction and
background of the thesis. The second part describes and formalizes needed theory.
The third presents simulations and results of the developed control strategy. The four
collects key findings and discuss perspectives. The five presents the appendices. The
contents of each chapter are outlined in the following:

Chapter 2 outlines the global energy challenge for the current power grid, explain
the advantages and disadvantages with renewable energy sources, and briefly
describe the control hierarchy for power systems and the electricity markets.

Chapter 3 presents informally the software applied in this thesis.

Chapter 4 describes and formalizes mathematically the UC optimization problem.
The complexity of solving the UC problem is outlined. Syntax comparison
is showed between implementing in IBM ILOG CPLEX Optimization Studio
and Matlab and a demonstration of the formulated UC problem is applied on
conceptual power system setups.

Chapter 5 outlines the basic of modeling dynamical systems for predictive control.
The mathematical model applied for modeling the dynamics of power systems
in our simulations is conducted. In addition, the model is extended to achieve
offset free MPC. Lastly, finite impulse response model and stationary Kalman
filtering and prediction is presented.
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Chapter 6 describes and formalizes mathematically the soft constrained linear eco-
nomic MPC problem. It is presented how the optimization problem is solved as
well as the developed control framework implementation. Lastly, a demonstra-
tion of the formulated economic MPC problem is applied on conceptual power
system setups.

Chapter 7 provides an overview of the simulations that follows and a description
of the developed control strategy. Furthermore, presents the considered power
system, operational parameters, and other background information for the sim-
ulations that follows.

Chapter 8 provides a study on the impact the discretization and input parameteri-
zation of the UC problem in terms of imbalance and costs.

Chapter 9 presents simulations of combining the UC problem and the economic
MPC problem without power supply from renewable energy sources in the power
system.

Chapter 10 presents simulations of combining the UC problem and the economic
MPC problem with power supply from renewable energy sources in the power
system.

Chapter 11 summarize key finding and provide concluding remarks of the work
and results. Lastly, possible extensions and directions for further research are
addressed.

Appendices. Appendix A presents the basic concepts of how a linear time-invariant
continuous-time model may be linearized and discretized to obtain a linear
time-invariant discrete-time state-space model, as well as list of used theorems.
Appendix B presents data used in the thesis. Appendix C describes the GRANI
program. Lastly, the nomenclature used in the thesis is presented
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CHAPTER 2
Power Systems

This chapter outlines the global energy challenge for the current power grid and ex-
plains the advantages and disadvantages with penetration of renewable energy sources.
Additionally, we briefly describe the control hierarchy for power systems and the elec-
tricity markets.

2.1 Power grid

Energy is of paramount importance for a modern society. Today’s power grid is a
very stable and reliable system in most western countries. However, the global energy
challenge for the current power grid is at least threefold:

• satisfy the increasing energy demands,

• ensure adequate energy sources, and

• reduce climate changes and pollution.

The world energy consumption has increased nearly 180% from 1980 to 2010 and
is expected to increase at a rate of about 2% per year [EIAa; EIAb]. In Europe,
the energy production is far from covering our own demand. Consequently, energy
sources are imported from third countries. Europe’s energy import dependence has
increased over the years and will continue to increase. Import of the utmost energy
sources, fossil fuel, is set to increase more than 80% by 2035 [Eur13]. This expose
Europe to the bargaining power of the few suppliers, exposed to the market power,
and the risk for excessively high prices. The spot price movement on crude oil over the
years, depicted in Figure 2.1, indicates that crude oil has more than tripled the last
10 years. The trend may continue as fossil fuel supplies diminish. In the meantime, it
is commonly known that using fossil fuel to energy production has a negative impact
on the carbon footprint and the environment.

The supply chain for electricity differs compared to most other products in terms
of inventory and storage. The possibilities of effective storage of electricity are lim-
ited and imply relative high costs. Therefore, balancing the equation of producing
accurately enough electricity to meet the consumption is of great importance. With
the majority of conventional fossil fueled power generators on the grid, the task of
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Figure 2.1: Europe Brent Crude Oil Spot Price FOB in Dollars per Barrel; source U.S.
Energy Information Administration (EIA) [EIA14].

balancing the production is manageable since these power generators are rather con-
trollable. To obey the global energy challenge, an increasing penetration of renewable
energy sources is introduced into the power grid. This involves challenges in man-
aging the balancing with production and consumption due to the fluctuating power
supply that is inherent in its nature for most renewable energy sources. We lose a
lot of the traditional flexibility and controllability, in which the current power grid
are relying on. Therefore, the energy system as we know it today is changing from a
highly predictable system in which production matches consumption at all times to a
fluctuating energy system in which intermittent renewable energy sources contribute
to unwanted imbalances in the power system.

In general, power imbalance in power systems is unwanted and have an adversely
impact. The consequences of imbalance may differ dependent on the power system,
but include inefficient production, additional costs, stability issues, etc. Following
example illustrates the concept for Danish power producer. Consider two player of
power producer at hour 1. Player 1 has shortages of 100 MW cf. the plan. Player
2 has 100 MW in surplus cf. the plan. Player 1 buy the 100 MW by Energinet.dk1.
Player 2 sells the 100 MW to Energinet.dk. Depending on the particular day, the

1Energinet.dk are a non-profit enterprise owned by the Danish Climate and Energy Ministry.
Energinet.dk is responsible for supplying Denmark with electricity and natural gas, ensuring fair
competition and promoting green energy solutions.
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buy price and sell price vary. In general, the price for buying (player 1 situation) is
higher that the spot price, while the price for selling (player 2 situation) is lower than
spot price. Thus, power producer loss money in both cases. In fact, Energinet.dk
gain on an annual basis approximately DKK 20 M for the balance transaction (source
Energinet.dk, Henning Parbo). As a consequence, we need to investigate solutions
such that we efficiently can control and manage the energy production in a flexible
and proactive manner.

Tomorrow’s green, flexible and intelligent power grid, which takes up these chal-
lenges, will change the current power grid with a consolidated collection of power
generation system to be an intelligent network of many independent power produc-
ers and consumers. This, we refer to as the Smart Grid [Ene14; Jen; Jør]. Smart
Grid change the power system, as we know it today, to a system that integrates the
behavior of producers and consumers.

2.2 Renewable energy sources

Intermittent renewable energy sources such as solar energy, hydro energy, and wind
energy promise to be a feasible solution to the global energy challenge. These energy
sources are clean compared to fossil fuel, sustainable, plentiful, and the resources
are available over widely geographical areas, in contrast to fossil fuel there are con-
centrated in few countries. Additionally, the energy payback is small meaning they
all ”produce” more energy than they ”consume” [Wei+13; San]. The government in
Denmark has established an ambitious and politically broad green energy agreement
to point towards the goal of full conversion to renewable energy in 2050. One initia-
tive is to increase the share of wind power to 50% of the electricity consumption by
2020 as depicted in Figure 2.2 [MD12]. In 2014, a major step towards meeting these
goals were taken, since 39% of the Danish energy consumption were supplied by wind
turbines [Eneb].

Intermittent renewable energy sources are stochastic in nature and fluctuates in-
dependently from demand. This introduce, e.g., undesirable power imbalance and
stability issues. To offset the unavoidable imbalance that will appear during real-
time operation of the power systems, different opportunities has been researched.
Currently, spinning reserve is allocated in advance as a buffer to cover unexpected
shortages of energy supply in real time. That is, determine the production plan such
that the power system operates at less than its full capacity. Unfortunately, spinning
reserve is very expensive to have. Power generators that quickly can cover shortages
are normally embedded with high startup cost and running cost. Furthermore, one
can dissemble that a better production plan may exist if available power plants were
permitted to operate at full capacity. Thus, reducing the need for reserve capacity
will imply a cost reduction. Another way to facilitate the imbalance is by large-scale
storage capabilities. However, [PSH09] indicates that this field needs further research
and development before it become a reality.

Besides the fluctuating energy supply, a large collection of renewable energy
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Figure 2.2: Distribution of electricity consumption by source of energy in 2010 and 2020
[MD12].

sources are required before it have an impact on the power grid. Since, so far, not
one renewable energy source is powerful enough to solve the energy challenges. Thus,
the already complex power grid becomes even bigger as more energy sources are con-
nected to the grid. This return into, e.g., challenge of how to control large collection
of power generators and interconnection issues when moving the electricity where
needed.

2.3 Control hierarchy

We briefly describe the control hierarchy for power systems; see Figure 2.3. We refer
to [SM71; Hol+09] for further details about the control hierarchy in power systems.

Due to economic, political, social constrains, and consideration of reliability some
of the hierarchical decomposition of the power system to achieve decentralized control
is almost mandatory [SM71]. There are many types of decomposition in hierarchical
theory, mostly, depending on the system and the problem of interest. Two types of
decomposition could be level and time decomposition, where the former usually is
geographically related and the latter naturally arises due to response time in a power
system.

At the high level, we find long-term planning, adequacy of grid and power, and
maintenance. Usually, control functions at a higher level imply slower time scale.

At the next level, energy management schedules the needed demand load on a
daily and hourly basis; the scheduling dispatch in the day-ahead market. This level
introduces day- or hour-ahead predictions of the future demand load and weather
forecasts. The prediction uncertainty increases significantly when large amount of
fluctuating renewable energy supply are introduced into the power grid. Addition-
ally, during the day of operations, the weather is likely to change from forecasts
conducted the day before. Hence, an intelligent control of spinning reserves to handle
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Figure 2.3: Control hierarchy.

the uncertainties are needed [Mor+14]. The UC model is usually used to find the
dispatch that satisfy a forecasted demand load at a minimum cost. As we know, these
models can result in high computational complexity due to be generally NP-complete.

At the next level, we apply economic MPC to handle the uncertainty and manage
the prediction errors of the renewable power supply at a high frequency level, which
cannot be addressed in the UC level because of the optimization solvers execution
time. The economic MPC is applied in a rolling horizon manner, thus, updated and
more reliable forecasts are used. Figure 2.4 illustrates the idea in the two above-
mentioned levels. Energy management plan the hourly power production based on
day-ahead forecasts of, e.g., wind power production; see Figure 2.4(a). However, the
weather is likely to change during the day of operations and the power supply from
renewable energy sources is unlikely constant within an hour. E.g., a closer look at
hour 3 may show a wind power production develop as Figure 2.4(b). This variation
may result in imbalance and inefficient power production.

Lastly, the power management levels relates to system stability like stabilizing
voltage and frequency before the electricity is distributed out to the power grid and
finally to the consumers.

2.4 Electricity market

Electricity is a commodity production there can be bought, sold, and traded. The
electricity market is a market where contracts are made between seller and buyer for
the delivery of power. Nord Pool Spot is the main arena for trading power in the
Northern Europe and Baltic region. Nord Pool Spot facilitate the day-ahead market
and the intraday marked [Enea; Nor; Mor+14]. These two trading categories are
interesting in context of this thesis.
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Figure 2.4: The considered wind power production forecasts on the tow levels: days-hours
level and minute level.

2.4.1 Day-ahead market
The day-ahead market takes place the day before energy delivery. A buyer estimates
needed volume of energy to meet demand the following day and the price willing to
pay for this volume, hour by hour. A seller decides the volume of energy which can
be delivered and at what price, hour by hour. Deadline for submitting bids is 12:00
CET. Elspot setting the price, hour by hour, using the supply and demand principles
and closing the deals taking into account the limitations of the power grid. The power
is physically delivered at 00:00 CET according to the contracts agreed. The majority
of the volume handled by Nord Pool Spot is traded on the day-ahead market.

2.4.2 Intraday market
The intraday market takes place during the day of operation when the day-ahead
market is closed. Elbas contributes to balance production and consumption in the
power market for Northern Europe. Elbas is a continuous market where trading
take place every day until one hour before delivery. Prices are set on a first-come,
first-served principle; the best prices come first.

This market is progressively relevant as more renewable energy sources such as
wind energy and solar energy are integrating into the power grid. These types of
energy sources are intermittent and stochastic in nature. Therefore, it is a difficult
task to provide accurate predictions of the amount produced prior to the closing of
the day-ahead market. Hence, imbalances between day-ahead contracts and produced
volume may need to be equalized.



CHAPTER 3
Software

In this chapter, we informally present the software used in this thesis.

3.1 IBM® ILOG® CPLEX® Optimization Studio

We model the mathematical UC optimization problems with IBM ILOG CPLEX
Optimization Studio V12.6 by IBMr [IBM14]. This software consolidates an Inte-
grated Development Environment (IDE) with the Optimization Programming Lan-
guage (OPL) and the state-of-the-art ILOG CPLEX and CP Optimizer solution en-
gines. The motivation for applying this optimization software product is primarily
due to following two reasons:

• The modeling language OPL provides built-in tools and a syntax that is very
close to the mathematical formulation. This makes an easier transition from a
mathematically written model to a model that is solvable by a computer.

• Permit a clearer separation between model and input data. So, with a little
effort, the same model can be solved with different input data. The software
facilities integration of external data sources like databases and spreadsheets
from Microsoft Excel by read and write references.

Figure 3.1 illustrates a simplified overview of IBM ILOG CPLEX Optimization Studio.
Comprehensive documentation and release notes for V12.6 are available in [IBM14;
IBM11].

3.2 Matlab® MathWorks®

The control framework is modeled and implemented in Matlab® release R2014a
by MathWorks® [Mat]. Matlab stands for MATrix LABoratory and is a high-level
language and interactive environment. Section 6.5 provide a description of the control
framework and a flowchart of the function calls.

For a better integration with the UC optimization problem and the economic MPC
problem, UC is also implemented in Matlab and solved using IBM ILOG CPLEX
Optimizer V12.6 Matlab interface. The control framework is implemented to sup-
ports three solvers, which easily can be selected by a flag. The solvers are CPLEX
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Figure 3.1: Simplified illustration of IBM ILOG CPLEX Optimization Studio.

Optimizer V12.6 developed by ILOG IBM Software [IBM14], MOSEK V7.0 devel-
oped by MOSEK ApS [MOS14], and Gurobi Optimizer V5.6 developed by Gurobi
Optimization, Inc [Gur14]. These are commercial solvers; however, for academic use
the solvers can be provided for free.
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CHAPTER 4
Unit Commitment

In this chapter, we give an introduction to the UC optimization problem. We describe
and formalize mathematically the components of the UC problem in Section 4.2. Sec-
tion 4.3 present the UC optimization problem as a MILP problem. Section 4.4 discuss
implementation and a syntax comparison between IBM ILOG CPLEX Optimization
Studio and Matlab, and Section 4.5 informally address the complexity of solving
the UC problem. In Section 4.6, we demonstrate and apply the formulated UC opti-
mization problems in the application of two conceptual power systems.

4.1 Introduction

Planning the power production to match demand load and reserve capacity with a
financial and environmental perspective is nontrivial. Conceptually, consider a port-
folio of controllable power generating plants. Then, a planning problem is basically
twofold:

1. determine which power plants are running each time step and

2. determine the production level for the running plants in a cost effective way.

We say that power plants are committed when turned on and decommitted when
turned off. Finding the optimal cost effective power production plan of the committed
plants while satisfying various requirements denotes economic dispatch. This planning
problem may be solved by formulating the Unit Commitment (UC) optimization
problem. As we see, the problem consist of discrete and continuous decisions, thus, the
general UC is a Mixed Integer Programming (MIP) problem. The presences of integer
variables yields into a computational complex problem there is not straightforward
to solve. In Section 4.5, we address this further.

In the following, we mathematical formulate the UC optimization problem used
in this thesis. It should be noted that other formulation exist, since the problem
is very system dependent. Therefore, for further literature and related research on
this topic includes, e.g., [WW12; OAV12; Cas+11; Pad04; NKF09; ZGH10; RG91;
MNG14]. Furthermore, we notice that the notation used in UC may be confused
with the notation used in economic MPC. It is decided to apply same notation as in
the literature in both fields for not to mislead the reader. However, in context, the
notation should not be misunderstood.
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4.2 Mathematical problem formulation

In this section, we present verbally and formulate mathematically the affine objective
function and the constraints for the UC optimization problem. The discrete part of
the problem will be formulated with three binary variables. Thus, we formulate a
binary mixed integer linear programming problem.

Consider a set I := {1,2, . . . ,I} of power generating plants and a specified time-
varying demand over T := {1,2, . . . ,T} time periods defining the planning time hori-
zon. The mathematical programming model involves I × T continuous nonnegative
real variables, pi,t ∈ R≥0; and three I × T binary variables: ui,t, yi,t, zi,t ∈ Z2.

4.2.1 Objective function
The objective cost function is formulated to minimize the total operating power pro-
duction cost. The operating cost consists of running cost, startup cost, and shutdown
cost.

The running cost is model by fixed and variable cost. The fixed cost is expressed
as

aiui,t, (4.1)

where ai is the fixed cost of plant i and ui,t is a binary variable that is equal to one
if plant i is committed during time period t and zero otherwise. The variable cost is
expressed as proportional to the plant power output:

bipi,t, (4.2)

where bi is the variable cost of plant i and pi,t is the nonnegative real variable that is
the power output of plant i during time period i.

The startup and shutdown cost is considered constant. Every time a plant is
started up, its startup cost is added. Similar, every time a plant is shut down, its
shutdown cost is added. Thus, we obtain

SUiyi,t + SDizi,t, (4.3)

where SUi and SDi are the startup and shutdown cost of plant i, respectively. yi,t is
a binary variable that is equal to one if plant i is started up at the beginning of time
period i and zero otherwise and zi,t is a binary variable that is equal to one if plant
i is shut down at the beginning of time period i and zero otherwise.

The function to be minimized is obtained by combining (4.1)–(4.3), thus, the
objective function of the UC problem is

ϕ =
∑
i∈I

∑
t∈T

[aiui,t + bipi,t + SUiyi,t + SDizi,t] . (4.4)
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4.2.2 Constraints
Several constraints may be placed to the UC problem, as many different requirements
can be given; e.g., individual requirements on power demand, reliability, physical
limits of equipment, power system operating limits, etc. The list presented here is by
no means exhaustive; these are the ones being considered and implement in this thesis.
To deduce some of the constraints, we use logical equivalences; see Appendix A.2.1.

4.2.2.1 Power demand load balance

The system power demand should be satisfied for each time period:∑
i∈I

pi,t ≥ Dt, t ∈ T , (4.5)

where Dt is the power demand in time period t. Power contribution from non-
controllable renewable power sources will change the need for producing power from
the conventional power plants. PWt represent forecasted power production from
renewable power sources at time period t. Thus, (4.5) i extended to∑

i∈I
pi,t ≥ Dt − PWt, t ∈ T . (4.6)

4.2.2.2 Spinning reserve

In order to ensure reliability in term of enough resources available during the real-
time operation of the power system, the system operator allocates reserve capacity
to cover unexpected shortages of energy supply in real-time.

The required spinning reserve should be guaranteed to be available by the com-
mitted plants: ∑

i∈I
PUiui,t ≥ Dt +Rt, t ∈ T . (4.7)

where PUi is the maximum power output generation of plant i and Rt is the required
spinning reserve at time period t. Like the demand load balance constraint above, we
introduce PWt in the event of contribution from renewable power sources, thus,∑

i∈I

PUiui,t ≥ Dt +Rt − PWt, t ∈ T . (4.8)

4.2.2.3 Power output limitations

The power plants are limited within an operating range, i.e., if a plant is committed,
the power output is to be within its minimum and maximum power output generation.
This may be expressed as

PLiui,t ≤ pi,t ≤ PUiui,t, i ∈ I, t ∈ T , (4.9)
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where PLi and PUi are the minimum and maximum power output generation of plant
i, respectively. We see, if plant i at time period t is committed, ui,t = 1, the power
output, pi,t, is to be within limits, whereas if plant i at time period t is decommitted,
ui,t = 0, the preceding constraint forces pi,t = 0.

4.2.2.4 Ramping rate limitations

The power plants ability to increase and decrease to higher and lower power output
from time period k to k+1 is limited. The so called ramp rate limits may be expressed
by

pi,t − pi,t−1 ≤ RUi, i ∈ I, t ∈ T , (4.10)
pi,t−1 − pi,t ≤ RDi, i ∈ I, t ∈ T . (4.11)

For the time period t = 1, pi,0 is given by the initial output power of plant i. RUi

and RDi are the maximum ramp-up and ramp-down limit of plant i, respectively.

4.2.2.5 Startup and shutdown

Any committed plants can be shut down but and not started up, and analogously,
any decommitted plants can be started up but not shut down. This can be expressed
by logic constraints with startup and shutdown cost term added, respectively:

ui,t − ui,t−1 ≤ yi,t, i ∈ I, t ∈ T , (4.12)
ui,t−1 − ui,t ≤ zi,t, i ∈ I, t ∈ T . (4.13)

For the time period t = 1, ui,0 is given by the plants status preceding the first period
of the planning horizon. By considering the possible scenarios, the logic constraints
(4.12) and (4.13) gives intuitively sense. E.g., consider the lefthand side of (4.12).
The only scenario this yields to one is when ui,t = 1 and ui,t−1 = 0, thus, startup
cost should be added to the objective function. The expressions, however, may be
derived from logic conditions [RG91]. Consider the startup scenario. Startup cost
should be added to the objective function if ui,t = 1 and ui,t−1 = 0. Let PA denote
a committed plant i at time t, ¬PB denote a decommitted plant i at time t− 1, and
PC = yi,t denote whether startup cost is add, yi,t = 1, or not, yi,t = 0. Then, we
have

PA ∧ ¬PB ⇒ PC

By (A.11), we can remove the implication, thus

¬(PA ∧ ¬PB) ∨ PC .

By applying (A.12) (De Morgan’s theorem), we have

¬PA ∨ PB ∨ PC .
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With the implication from above and that, e.g., ¬PA = 1−ui,t, the conjunction form
can be translated into its equivalent mathematical linear form:

1− ui,t + ui,t−1 + yi,t ≥ 1 ⇒
ui,t − ui,t−1 ≤ 1,

which is equivalent to (4.12). Likewise, (4.13) can be deduced by same approach.

4.2.2.6 Minimum up- and downtime

Due to physical characteristics, power plants may not immediately be able to startup
and shutdown and vice versa. Let TUi denote the minimum uptime for plant i, once
it has started up. If yi,t = 1, then ui,t+1 = 1, ui,t+2 = 1, . . . , ui,t+TUi ; thus, we write
the logic expression

yi,t ⇒
∧
j∈Ui

ui,t+j , (4.14)

where Ui := {1,2, . . . ,TUi}. By (A.11), (4.14) can be rewritten as

¬yi,t ∨ ui,t+j (4.15)

Translating (4.15) conjunction expression into its equivalent mathematical linear form
gives the minimum uptime constraint:

1− yi,t + ui,t+j ≥ 1 ⇒
ui,t+j ≥ yi,t, j ∈ Ui. (4.16)

Similar, we derive the minimum downtime. Let TDi denote the minimum downtime
for plant i, once it has been shutdown. If zi,t = 1, then ui,t+1 = 0, ui,t+2 = 0, . . . ,
ui,t+TDi , which leads to the logic expression

zi,t ⇒
∧

j∈Di

¬ui,t+j , (4.17)

where Di := {1,2, . . . ,TDi}. Hence, its equivalent mathematical linear form gives the
minimum downtime constraint:

1− zi,t + 1− ui,t+j ≥ 1 ⇒
zi,t + ui,t+j ≤ 1, j ∈ Di. (4.18)

4.2.2.7 Restricting carbon dioxide emission

There may be restricting on carbon dioxide emission when generating power. This
may be expressed as ∑

i∈I

∑
t∈T

ECipi,t ≤ EU, (4.19)

where ECi is the CO2 emission rate for plant i and EU denote the maximum CO2

emission allowed.
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4.3 The UC optimization problem

In Section 4.2.1, we present the objective cost function which is to be minimized
while satisfying the constraints provided in Section 4.2.2. Two formulations of the UC
optimization problem will be considered; see demonstration of the two in Section 4.6.
They differ in terms of whether or not including the minimum up- and downtime
constraints and the restricting carbon dioxide emission constraint. First, we formulate
the UC optimization problem as the following MILP:

minimize ϕ =
∑
i∈I

∑
t∈T

[aiui,t + bipi,t + SUiyi,t + SDizi,t] (4.20a)

subject to
∑
i∈I

pi,t ≥ Dt − PWt t ∈ T (4.20b)∑
i∈I

PUiui,t ≥ Dt +Rt − PWt t ∈ T (4.20c)

PLiui,t ≤ pi,t ≤ PUiui,t i ∈ I, t ∈ T (4.20d)
pi,t − pi,t−1 ≤ RUi i ∈ I, t ∈ T (4.20e)
pi,t−1 − pi,t ≤ RDi i ∈ I, t ∈ T (4.20f)
ui,t − ui,t−1 ≤ yi,t i ∈ I, t ∈ T (4.20g)
ui,t−1 − ui,t ≤ zi,t i ∈ I, t ∈ T (4.20h)
ui,t, yi,t, zi,t ∈ Z2 (4.20i)
pi,t ∈ R≥0 (4.20j)

with I := {1,2, . . . ,I} thermal generating plants and T := {1,2, . . . ,T} time periods
defining the planning time horizon.

Including the minimum up- and downtime constraints and the carbon dioxide
emission restricting yields into the following:

minimize ϕ =
∑
i∈I

∑
t∈T

[aiui,t + bipi,t + SUiyi,t + SDizi,t] (4.21a)

subject to (4.20b) − (4.20h) (4.21b)
ui,t+j ≥ yi,t j ∈ Ui (4.21c)
zi,t + ui,t+j ≤ 1 j ∈ Di (4.21d)∑
i∈I

∑
t∈T

ECipi,t ≤ EU (4.21e)

ui,t, yi,t, zi,t ∈ Z2 (4.21f)
pi,t ∈ R≥0 (4.21g)

with I := {1,2, . . . ,I} thermal generating plants, T := {1,2, . . . ,T} time periods
defining the planning time horizon, Ui := {1,2, . . . ,TUi}, and Di := {1,2, . . . ,TDi}.
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The difficulties for solving the UC optimization problem (4.20) or (4.21) are due to
the presences of binary variables, since the objective function and all the constraints
are linear.

4.4 Implementation

In this section, we show how the UC problem may be implemented in IBMr ILOGr

CPLEXr Optimization Studio V12.6 and in Matlab by MathWorksr. A compar-
ison of the two languages is provided. The Matlab version is implemented such
that CPLEX Matlab interface is used. We present the code for implementing the
objective function (4.4) and power demand load balance constraint (4.6). The full
implementations are provided in Source Code Booklet Section 1.1 and Section 2.1,
respectively.

Listing 4.1: Syntax for IBM ILOG CPLEX Optimization Studio.
1 // Objective function
2 minimize
3 sum(t in T, i in I) (a[i]*u[i,t] + b[i]*p[i,t]
4 + SU[i]*y[i,t] + SD[i]*z[i,t]);
5 // Constraints
6 subject to {
7
8 // Demand load balance
9 forall(t in T) {

10 sum(i in I) p[i,t] >= D[t] - PW[t];
11 }
12 };

Listing 4.2: Syntax for Matlab.
1 % Objective function
2 coeffpvar = repmat(b,Horizon,1);
3 coeffuvar = repmat(a,Horizon,1);
4 coeffyvar = repmat(SU,Horizon,1);
5 coeffzvar = repmat(SD,Horizon,1);
6 cplex.Model.obj = [coeffpvar; coeffuvar; coeffyvar; coeffzvar];
7
8 % Demand load balance
9 cplex.Model.A = [kron(eye(Horizon),ones(1,Nunits)) zeros(Horizon,Nvar)];

10 cplex.Model.lhs = D - PW;
11 cplex.Model.rhs = Inf(Horizon,1);

Instantly, we see that the Matlab implementation Listing 4.2 is much more complex
and not as simple and intuitive as IBM ILOG CPLEX Optimization Studio Listing 4.1.
Some of the reasons for this are outlined in the following. We are considering four
two-dimensional decision variables. In Matlab, these decision variables are to be
stacked into one one-dimensional vector in the following manner

x =
[
p u y z

]T
.
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Each two-dimensional decision variable are again stacked like this

p =
[
p1,1 p2,1 . . . pN,1 p1,2 p2,2 . . . pN,2 . . . pN,M

]T
,

where N is the number of power plants and M the number of planning time periods.
Furthermore, each row in the system matrix A represent one constraint for one spe-
cific plant for one time period and each column in A represent one decision variable
for one specific plant for one time period. Consequently, a lot of bookkeeping are
needed in the Matlab implementation. Comparing this with the modeling language
OPL syntax in Listing 4.1 truly shows its benefits. The syntax is very close to the
mathematical formulation. It is light and one can literally just write out the equa-
tions. OPL syntax provide an easy way to write an optimization problem for which
is solvable by a computer.

4.5 Solution methods

The general UC problem is nontrivial to solve. The UC problem quickly becomes
very complex and extremely difficult to obtain the optimal solution for system with
practical size (large-scale power systems). In fact, the industry is in some situations
compelled to manually stop the optimization software and simply use the current
iterative obtained solution due to limited period of time. Mathematically, UC is an
NP-complete MIP problem, which make it impossible to develop an algorithm with
polynomial computation time; i.e., in worst case, the solution time grows exponen-
tially with the problem size [AH04; BMM99; GZP03].

To illustrate the complexity, we consider the brute force methods. Let N denote
the number of power plants and M denote the number of planning time periods. Then,
the number of combinations to be evaluated each time period is 2N −1. For the total
planning horizon, the maximum number of possible combinations is (2N −1)M , which
scales badly and quickly return into an enormous number. E.g., consider N = {10,20}
power plants each hour over a 24-hour planning horizon, this result in

N = 10, (210 − 1)24 = 1.73 · 1072

N = 20, (220 − 1)24 = 3.12 · 10144.

Thus, the number of combinations immediately becomes very big. Of course, not all
combinations are feasible solutions sets, nevertheless, all need to be checked.

There exist many optimization techniques for solving the UC problem, e.g.,

• Priority list schemes

• Dynamical programming

• Lagrangian relation

• Branch-and-bound method
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Solution methods for UC problems are an important topic; however, a study to cover
them is outside the scope of this thesis. Therefore, for further information of the
various methods available for solving the UC problem see, e.g., [SK98; WW12].

4.6 Case study

In this section, we establish two conceptual power systems to demonstrate the formu-
lated UC optimization problem. Firstly, we apply (4.20) to a 3-unit power system.
Secondly, we apply (4.21) to a complex 10-unit power system. Besides complexity,
they differ in terms of specific system requirements. Renewable power contribution
is fixed to zero: PWt = 0, ∀t.

The case studies are implemented in IBM ILOG CPLEX Optimization Studio
using CPLEX 12.6 and are provided in Source Code Booklet Chapter 1. [Cas+11;
ZGH10] inspired the two case studies.

4.6.1 3-unit power system
We consider three power plants over a three hour planning horizon. Table 4.1 lists the
demand load to be satisfied for each time period and Table 4.2 lists the operational
parameters of the power plants. Let all plants be decommitted at time period t = 0.

The UC optimization problem (4.20) presented mathematically in Section 4.3 is
solved for global optimality. The MILP problem for the 3-unit system contains 60
constraints and 37 variables, where 27 are binary variables. The obtained optimal
power production plan, reported in Table 4.3, result in a minimum cost of $191.

We see that the demand load, the spinning reserve, and the system requirements
are satisfied. Even though this case study is small a trend can be deduced. The
heavier generators are scheduled first (close to their maximum capacity), while the

Table 4.1: 3-hour demand load for the 3-unit power system [MW].

Hour Dt Rt

1 150 15
2 500 50
3 400 40

Table 4.2: Operational parameters for the 3-unit power system.

Unit ai bi SUi SDi PLi PUi RDi RUi

[$/h] [$/MWh] [$/h] [$/h] [MW] [MW] [MW/h] [MW/h]
1 5 .100 20 5 50 350 300 200
2 7 .125 18 3 80 200 150 100
3 6 .150 5 1 40 140 100 100
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Table 4.3: Optimal production plan for the 3-unit power system [MW].

Plant Hour
1 2 3

1 150 350 320
2 0 100 80
3 0 50 0
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Figure 4.4: 24-hour demand load for the 10-unit power system [MW].

smaller generators are used to deal with the fluctuations in the demand load. This
corresponds to a commonly used scheduling strategy called Priority List (PL) scheme
[SK98; WW12].

4.6.2 10-unit power system
We consider ten power plants over a 24-hour planning horizon. Figure 4.4 represents
the demand load to be satisfied for each time period; see Appendix B Table B.1(a) for
numerical representation. The spinning reserve is set as a 10% of the demand load for
each time period. The power plants operational parameters are listed in Appendix B
Table B.2. Let all plants be decommitted at time period t = 0 and let the maximum
CO2 emission be fixed to 15,500 g.

The UC optimization problem (4.21) presented mathematically in Section 4.3 is
solved for global optimality. The MILP problem contains 7,335 constraints and 961
variables, where 720 are binary variables. The obtained optimal power production
plan, reported in Figure 4.5, result in a minimum cost of $572,395. Figure 4.6 illus-
trates the optimal power production plan for plant 1.

In the following, we show that the obtained solution complies with the system re-
quirements. Figure 4.7 shows that the obtained production plan satisfy the demand
load (production exactly equals the demand load) and the spinning reserve require-
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Figure 4.5: The optimal power production plan for each plants (blue line) with each plants
minimum and maximum power output (red dashed line).

ment at each time period. Figure 4.5 and Figure 4.8 show that the plants minimum
and maximum power output and ramping limits are fulfilled at each time period, re-
spectively. Lastly, the CO2 emission is exactly below the maximum. Consequently,
the formulated constraints (4.21) are satisfied.

Figure 4.9 and Figure 4.10 illustrates the distribution of the four cost compo-
nents in the objective function. The total production cost dominates by the variable
cost accounting for ∼82% of the total production cost. Next is the fixed cost with
∼18%, while startup and shutdown only account for <1%. Consequently, the total
production cost follows more or less the demand load.
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Figure 4.6: The optimal power production plan for plant 1 with its minimum and maxi-
mum power output limits.
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coincide throughout planning horizon. The actual spinning reserve (dotted
cyan) obey the required spinning reserve (dotted red).
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Variable cost: 82%

Fixed cost: 18%

Startup and shutdown cost: < 1%

Figure 4.10: Distribution of the four cost components in the objective function.
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4.7 Summary

This chapter formulates mathematically the UC optimization problem as a MILP
problem. We show that the OPL syntax provided in IBM ILOG CPLEX Optimiza-
tion Studio is very close to the mathematical formulation compared to the Matlab
syntax and informally present optimization techniques for solving the UC problem.
Lastly, we apply the formulated UC optimization problems at two conceptual power
systems. The case studies demonstrate the UC and that the implementation behaves
as expected.
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CHAPTER 5
Models for Predictive

Control
This chapter present key parts in development of our economic MPC framework in
Chapter 6. We outline the basic idea of modeling dynamical systems for predictive
control. In Section 5.2, we formulate the mathematical model applied for modeling
the dynamics of a power system (portfolio of power generating plants). Section 5.3
define a finite impulse response model and Section 5.4 present a Kalman filtering and
prediction for the linear time-invariant discrete-time state-space models formulated
in Section 5.2. Additionally, in the presence of unmeasured nonzero disturbance,
Section 5.5 present how to achieve offset free tracking performance for MPC.

5.1 Modeling dynamical systems

A dynamical system describes the behavior of a physical system evolution over time.
The variables describing the state of the mathematical system, at any given time, are
characterized by its state variables. The state variables are stacked in a time-varying
state vector x(t), t ∈ R. The set of all the possible values of the state variables is the
state-space. As the process evolve in time, the state variables change from its initial
state x(t0) = x0 by the underlying dynamical processes. A dynamical system may,
e.g., be modeled by systems of ordinary differential equations in the form

d

dx
x(t) = ẋ(t) = f(x(t), u(t), d(t), w(t)), x(t0) = x0, (5.1)

where x(t) is the state vector, u(t) is the manipulated input variables, d(t) is the
disturbance, and w(t) is the stochastic process noise. The measured outputs, y(t),
and the controlled outputs, z(t), may be modeled by

y(t) = g(x(t), v(t)) (5.2a)
z(t) = h(x(t)), (5.2b)

where v(t) is the stochastic measurement noise. The deterministic formulation is
obtained without measurement and process noise. Let nx denote the number of
coupled nonlinear differential equations, which also is the number of variables in x.
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Figure 5.1: A generic stochastic input-output model.
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Figure 5.2: State-space model realization of linear time-invariant models.

Following that notation, we label x ∈ Rnx , u ∈ Rnu , y ∈ Rny , and z ∈ Rnz . In this
thesis, linear systems of finite dimension will be considered, thus, the functions f , g,
and h are linear.

The generic input-output model relations consist of a process model of the system
(5.1), the sensor function (5.2a), and the output function (5.2b). The block diagram
in Figure 5.1 illustrates the above stochastic formulation.

There exist several methods for achieving mathematical models in which describe
a dynamical system. Many time-invariant mathematical models can be formulated
as a discrete-time state-space model as depicted in Figure 5.2. This formulation is
beneficial in the control framework presented in Chapter 6. Each of the realization
models depicted in Figure 5.2 will not be addressed, since it would be outside the scope
of the thesis. Appendix A.1 provide background material of the basic concepts of how
a linear time-invariant continuous-time model may be linearized and discretized to
obtain a linear time-invariant discrete-time state-space model, for which is suitable
for control problems. For further literature to this subject, consult, e.g., [Jør11; Jør05;
Mac02; Hal+14; Dat04].
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5.2 Modeling power systems

In this section, we present the system models applied for modeling a power system. We
formulate both a MIMO system and a MISO system. We consider a linear distributed
system with independent power generators there must satisfy their own objective
while collaborate to satisfy a common objective, the overall demand load.

5.2.1 Power system dynamics
The power system consists of a portfolio of nu controllable power generators (e.g.
thermal power plants) and a portfolio of nd non-controllable predictable power gen-
erators representing the power production from the renewable energy sources. We
assume that the non-controllable power generators are farms of wind turbines.

Each individual power generators are independent systems and modeled separately,
as the activity in one generator does not directly affect the others. However, they
are coupled in order to collaborate to satisfy the overall power demand load. We
represent the controllable and non-controllable power generators by following linear
systems

Zu,i(s) = Gi(s)Ui(s), i= 1,2, . . . ,nu, (5.3a)
Zd,j(s) = Dj(s), j= 1,2, . . . ,nd. (5.3b)

Ui(s) is the manipulable variables describing the unit of fuel supplied to plant i, Dj(s)
is the known forecast from wind turbine j, Zu,i(s) is the power produced by plant i,
and Zd,j(s) is the power produced by wind turbine j. The transfer functions Gi(s)
describe system dynamics for plant i. The total power production is obtained by

ZT (s) =

nu∑
i=1

Zu,i(s) +

nd∑
j=1

Zd,j(s)

=

nu∑
i=1

Gi(s)Ui(s) +

nd∑
j=1

Dj(s).

(5.4)

We model the dynamics of the controllable power plants, Gi(s), with following third
order model

Gi(s) =
1

(τis+ 1)3
. (5.5)

This third order model has been provided and validated against experimental data at
DONG Energy, Denmark [EMB09]. Let the non-controllable power generators be a
wind turbine. The dynamics of a wind turbine may be model by following first order
model [EMB09; Hov13]

Hj(s) =
1

τjs+ 1
, (5.6)

with a time constant, τj , less than 5 seconds. Wind turbines have fast dynamics
and react very quickly to set-point changes. In fact, the dynamics will be drowned
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Figure 5.3: Deterministic step responses of the transfer functions (5.5) and (5.6) dis-
cretized using zero-order hold with sampling time of Ts = 20 seconds.

by the power plant dynamics and discretization, and thereby have no influence in
our simulations. Therefore, we disregard the first order transfer function and replace
Hj(s) = 1 ∀j. The forecasted power production from the renewable energy sources
are assumed to be in power [MW]. If the controller would get, e.g., the wind speed of
wind turbines one could incorporate this into the model.

5.2.1.1 Step response

We perform a deterministic step response of the two transfer functions (5.5) and (5.6)
in discrete-time with time constants τ = {20, 10} and τ = 5, respectively. Figure 5.3
illustrates the system reaction on a step.

For the power plant systems, we obtain an instantly positive response and a gain
K = 1. These observations are consistent with the given transfer functions (5.5). As
expected, the dynamic of the wind turbine is drowned, which verify our assumption
above. We see that sampling time of Ts = 20 seconds is adequate enough to capture
the system dynamics while not been too detailed. Hence, this sampling time or lower
will be used throughout the economic MPC simulations.
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5.2.2 Discrete-time state-space model formulation
The stochastic linear system in continuous-time used to describe the dynamics of the
power system (see Section 5.2.1) is represented as

Z(s) = G(s) (U(s) +W (s)) +H(s)D(s) (5.7a)
= G(s) (U(s) +W (s)) +D(s) (5.7b)

with the measurements
Y (s) = Z(s) + V (s). (5.8)

U(s) is the manipulable variables, D(s) is the known forecast, W (s) is stochastic
process noise, V (s) is stochastic measurement noise, Z(s) is the output, and Y (s) is
the measurements. The deterministic linear system in continuous-time is obtained
with W (s) = V (s) = 0, i.e.,

Z(s) = G(s)U(s) +D(s) (5.9a)
Y (s) = Z(s). (5.9b)

G(s) and H(s) are transfer function matrices of compatible size in order to obtain the
desired system. Cf. Section 5.2.1, H(s) = 1. Using a zero-order hold discretization
of the continuous-time variables, assumed to be piecewise constant, (5.7) and (5.8)
may be represented as the stochastic discrete-time state-space model

xk+1 = Axk +Buk +Gwk (5.10a)
yk = Cxk + dk + vk (5.10b)
zk = Czxk + dk, (5.10c)

where k ∈ N0 := {0,1, . . . ,N}, with N being the predictive horizon, and G = B.
Assume that the model and the true system are identical. Then, the uncertainties in
the state prediction arise from the stochastic process noise and measurement noise.
Hence, the optimal filter and predictor is the Kalman filter and predictor [Hal+14].
We presented the Kalman filtering and prediction in Section 5.4.

By similar approach, (5.9) may be represented as the deterministic discrete-time
state-space model

xk+1 = Axk +Buk +Gwk (5.11a)
yk = Cxk + dk (5.11b)
zk = Czxk + dk, (5.11c)

with k ∈ N0. In our simulations, we apply both (5.10) and (5.11).
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5.2.3 Distributed independent power system

We consider a distributed independent system. The dynamically independently power
generators must satisfy their own objective while collaborate to satisfy a common ob-
jective, the overall demand load. To obtain these properties, we formulate a Multiple-
Input and Multiple-Output (MIMO) system. A special case of the MIMO system,
the Multiple-Input and Single-Output (MISO) system, is also formulated for the pur-
pose of only satisfying the overall demand load. Both formulations are used in our
simulations. In the following, we present the MIMO system the MISO system in that
order.

Applying (5.3) and (5.4). Then, this representation may be related to (5.9) by

Z(s) =
[
Zu,1(s) Zu,2(s) · · · Zu,nu(s) ZT (s)

]T
U(s) =

[
U1(s) U2(s) · · · Unu(s)

]T
D(s) = Zd,1(s) + Zd,2(s) + · · ·+ Zd,nd

(s).

The transfer function G(s) is represented as


G1(s)

G2(s)
. . .

Gnu(s)

G1(s) G2(s) · · · Gnu(s)

 .

Let xi,k denote the states variables for plant i, ui,k denote the manipulable variable
for plant i, dj,k denote the know forecast for wind turbine j, zi,k denote power output
for plant i, and zT,k denote the total power output. Then, (5.11) may be stated by
the block-angular structure


x1,k+1

x2,k+1

...
xnu,k+1

 =


A1

A2

. . .
Anu




x1,k

x2,k

...
xnu,k



+


B1

B2

. . .
Bnu




u1,k

u2,k

...
unu,k
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z1,k
z2,k

...
znu,k

zT,k

 =


C1

C2

. . .
Cnu

C1 C2 · · · Cnu




x1,k

x2,k

...
xnu,k

+


0
...
0

d1,k + d2,k + · · ·+ dnd,k

 .

The known forecast, D(s), only have effect on the total power output.
We present the MISO system by consider a power system with two power plants,

nu = 2, and a wind farm, nd = 1; see Figure 5.4. Above assumptions are still valid.
The total power production is given by

ZT (s) = G1(s)U1(s) +G2(s)U2(s) +D1(s). (5.12)

The first two terms are the output from plant 1, Z1(s), and plant 2, Z2(s), while the
last term is the output from wind farm, Z3(s). We represent Z1(s) and Z2(s) as the
discrete-time state-space model

Zi(s) = Gi(s)Ui(s) ⇒

xi,k+1 = Aixi,k +Biui,k

zi,k = Cixi,k,
i = 1,2. (5.13)

The discrete-time state-space model for Z3(s):

Z3(s) = D1(s) ⇒
{
z3,k = dk. (5.14)

Rewriting into matrix form yields[
x1,k+1

x2,k+1

]
=

[
A1 0

0 A2

][
x1,k

x2,k

]
+

[
B1 0

0 B2

][
u1,k

u2,k

]
(5.15a)

zk = z1,k + z2,k + z3,k =
[
C1 C2

] [
x1,k

x2,k

]
+ dk. (5.15b)

5.3 Finite impulse response

We introduce a Finite Impulse Response (FIR) model for representation of dynamics
for the discrete-time state-space model (5.11) [PJ08; ESJ09]. This is possible for
stable processes. Given the current state, we can predict the expected future state
evolution by combining (5.11a)–(5.11c). The state, xk, may be represented in terms
of the initial state, x0, and the past inputs, {ui}k−1

i=0 ,

xk = Akx0 +

k−1∑
i=0

Ak−1−iBui. (5.16)
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Plant 1
Z1(s) = G1(s)U1(s)

Plant 2
Z2(s) = G2(s)U2(s)

Wind Farm
Z3(s) = D1(s)

Load (MW)

z1 z2 z3

z

u1 u2 d

MPC

Figure 5.4: Power grid with two controllable conventional power plants and one non-
controllable predictable power generator, farms of wind turbines.

This expression for the states, the measured output, yk, and the control output zk,
may be related to the initial state, x0, and the past inputs, {ui}k−1

i=0 , by

yk = Cxk + dk

= C

(
Akx0 +

k−1∑
i=0

Ak−1−iBui

)
+ dk

= CAkx0 +
k−1∑
i=0

CAk−1−iBui + dk

= CAkx0 +

k−1∑
i=0

Hy
u,k−iui + dk, (5.17)

zk = Czxk + dk

= CzA
kx0 +

k−1∑
i=0

Hz
u,k−iui + dk, (5.18)
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with k = 1,2, . . . ,N and the impulse response coefficient (Markov parameters) defined
by

Hy
u,i = CAi−1B, i = 1,2, . . . ,N, (5.19a)

Hz
u,i = CzA

i−1B, i = 1,2, . . . ,N. (5.19b)

N is the number of approximate time steps needed to represent the impulse response.
The impulse response coefficients may be obtained by observing the output after
applying a pulse input vector; i.e., let u0 ̸= 0 and uk = 0 ∀k > 0.

The dynamics in (5.17) and (5.18) can be represented by the linear relation
[ESJ09],

Y = Φyx0 + ΓyuU +D

Z = Φzx0 + ΓzuU +D,

where we define the vectors,

Y =


y1

y2
...
yN

 , Z =


z1

z2
...
zN

 , U =


u0

u1

...
uN−1

 , D =


d1

d2
...

dN

 ,

and the matrices

Φy =


CA

CA2

...
CAN−1

 , Φz =


CzA

CzA
2

...
CzA

N−1

 , Γu =


Hβ

u,1 0 . . . 0

Hβ
u,2 Hβ

u,1 . . . 0
...

... . . . ...
Hβ

u,N Hβ
u,N−1 . . . Hβ

u,1

 ,

with β ∈ {y,z}.

5.4 Kalman filtering and prediction

We develop the filter and predictor for the stochastic linear time-invariant discrete-
time system (5.10) with process noise, wk, and measurements noise, vk, assumed to
be identically independently normally distributed (iid) as[

wk

vk

]
∼ Niid

( [
0

0

]
,

[
Rww Rwv

Rvw Rvv

] )
. (5.20)

Let the process noise, wk, and the measurement noise, vk, be correlated, i.e., Rwv =
RT

vw ̸= 0. Let the initial state, x0 ∼ N(x̂0|−1,P0|−1), be independent of {wk} and {vk}.
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We assume that the system is stochastic stationary, i.e., P0|−1 = P . P is computed
by the solution of the discrete algebraic Riccati equation (DARE) [JHR11]:

P = APAT +GRwwG
T

− (APCT +GRwv)(Rvv + CPCT )−1(APCT +GRwv)
T .

In case of above assumption is not valid, one can easily obtain the recursive Kalman
filter by letting the Kalman filter gain and covariance matrix, P , be time depen-
dent. Consequently, be calculated in each time step. Our implementation offers this
opportunity too.

According to the theory of linear estimation [KSH00; JHR11; Sta+12], the optimal
predictor of a system governed by (5.10) is based on the past measurements, {yj}kj=0,
and past control inputs, {uj}k−1

j=0 . The filter estimator for the measurement update is
slightly different than the standard Kalman filter due to the introduction of dk. Given
a new measurement, yk, and the conditional prediction of the disturbance, d̂k|k−1, the
optimal filtered state estimate, x̂k|k, is obtained by first computing the innovation

ŷk|k−1 = Cx̂k|k−1 + d̂k|k−1 (5.21a)
ek = yk − ŷk|k−1 (5.21b)

and subsequently compute the innovation covariance and the Kalman filter gain ma-
trices used by the filter and the one-step-ahead predictor by

Rfe = CPCT +Rvv (5.22a)
Kfx = PCTR−1

fe (5.22b)
Kfw = RwvR

−1
fe . (5.22c)

The current filtered state estimate, x̂k|k, and process noise estimate, ŵk|k, are obtained
by

x̂k|k = x̂k|k−1 +Kfxek (5.23a)
ŵk|k = Kfwek. (5.23b)

The one-step-ahead prediction of the states, x̂k+1|k, the (j+1)-step-ahead predictions
of the states, x̂k+1+j|k, as well as the output are obtained by

x̂k+1|k = Ax̂k|k +Bûk|k +Gŵk|k (5.24a)
x̂k+1+j|k = Ax̂k+j|k +Bûk+j|k, j = 1,2, . . . ,N − 1 (5.24b)
ẑk+j+1|k = Czx̂k+1+j|k + d̂k+j|k, j = 0,1, . . . ,N − 1 (5.24c)

where N is the predictive horizon and ∀k ≥ 0. In case of uncorrelated process and
measurement noise, Rwv = RT

vw = 0. Then, Kfw = 0 implying ŵk|k = 0, thus, the
term Kŵk|k is zero and drops out.
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5.5 Disturbance modeling for offset-free MPC

In closed-loop systems, the controller using the linear process model (5.10) described
in Section 5.2.2 may never reach the desire control trajectory if unmeasured nonzero
disturbances enters the system or if model error is present. To achieve offset free
tracking performance for MPC, in the presence of unmeasured nonzero disturbance,
the traditional approach is to incorporating disturbance states into the process model.
Thus, designs a control system for which can remove asymptotically constant, nonzero
disturbances [Huu+10; MB02].

Let pk ∈ Rnp denote the unmeasured disturbance, np is the number of augmented
output disturbance states. Introduce pk into (5.10) yields

xk+1 = Axk +Buk +Bppk +Gwk

yk = Cxk + Cppk + dk + vk.

Assume that the disturbance evolves as
pk+1 = pk + ξk

and that the noise in the system is distributed as wk

ξk

vk

 ∼ Niid


 0

0

0

 ,

 Rww 0 Rwv

0 Rξ 0

Rvw 0 Rvv


 .

Then, we construct an output disturbance model using the following augmented state-
space model[

xk+1

pk+1

]
=

[
A Bp

0 I

][
xk

pk

]
+

[
B

0

]
uk +

[
G 0

0 I

][
wk

ξk

]
(5.25a)

yk =
[
C Cp

] [
xk

pk

]
+ dk + vk. (5.25b)

Let Bd = 0 and Cd = I and we obtain the output disturbance model.
We present the modification for the Kalman filtering and prediction when applying

the disturbance model. The output disturbance is estimated using the augmented
state-space model (5.25). Now, the one-step-ahead prediction equations are defined
as

x̂k+1|k = Ax̂k|k +Bûk|k +Gŵk|k

p̂k+1|k = p̂k|k.

The innovation is computed as

ŷk|k−1 =
[
C Cp

] [ x̂k|k−1

p̂k|k−1

]
+ d̂k|k−1 (5.26a)

ek = yk − ŷk|k−1. (5.26b)
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The optimal filtered state estimates and process noise estimates are obtained by[
x̂k|k

p̂k|k

]
=

[
x̂k|k−1

p̂k|k−1

]
+

[
Kfx

Kfp

]
ek (5.27a)

ŵk|k = Kfwek. (5.27b)

By an appropriate design of the Kalman filter gain matrices Kfx, Kfp, and Kfx.
Consequently, the stationary Kalman filter are represented by (5.26) and (5.27). The
state estimator can estimate the unmeasured nonzero disturbance and render the
controller capable of offset free MPC.

5.6 Summary

This chapter present key parts in models for predictive control. We formulate the
mathematical model applied for modeling the dynamics of a power system (portfo-
lio of power generating plants). We define finite impulse response model present a
Kalman filtering and prediction for the linear time-invariant discrete-time state-space
model. In addition, we extend the model to achieve offset free MPC in the presence
of unmeasured nonzero disturbance.



CHAPTER 6
Economic Model

Predictive Control
This chapter motivates the choice of economic MPC. We formulate a soft constrained
linear economic MPC problem and show how it can be formulated as a LP problem.
The finite impulse response model and the Kalman filtering and prediction defined in
Chapter 5 will be used. Section 6.3 provides the controller algorithm and Section 6.5
present the developed Matlab implementation. In Section 6.6, we demonstrate and
apply the formulated and implemented control framework to a power system.

6.1 Introduction

Model Predictive Control (MPC) is a control methodology for optimal operation
and control of dynamical systems and processes [Jør05; Mac02; PJ08; QB03; CM87;
Hal+14; Hov13]. In the process industries like chemical plants and oil refineries,
MPC has been very popular due to its natural and explicit handling of multivariable
constrained optimal control problems. Besides the feature of incorporating constraints
in the controller, MPC has the capability to integrate predictions and forecasts of the
considered system. I.e., MPC can anticipate future events and can take control actions
accordingly, which, e.g., PID controller do not support.

MPC computes an optimal action based on a dynamical system, which may be a
empirical model obtained by system identification, and its predicted future evolution.
The objective may be related to forcing the system to follow a predefined trajectory or
related to a cost function, e.g., maximizing profit or minimizing costs. An advantage
of MPC is the fact that it is mathematically formulated as a real-time optimization
problem that repeatedly computes the control actions. That is, for each time step a
finite time horizon optimization problem is solved. The optimization yields an optimal
input sequence for the entire horizon, in which only the inputs associated with that
time step are implemented in the physical plant [Mac02]. New measurements are
obtained from the physical plant and the real-time optimization approach repeats.
This principle is referred to as receding horizon control and is depicted in Figure 6.1.
By repeating this optimization scheme, we obtain closed-loop feedback. This allow
the possibly to react to model uncertainties and external disturbances.
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...

Figure 6.1: Control principle of MPC scheme - moving horizon estimation [Wik].

Regulator

Estimator

Plant

Sensor

x̂

r
u z

y

MPC

Figure 6.2: A MPC system [PJ08].

Figure 6.2 illustrates a general control system. A MPC system consists of an
estimator and a regulator. Inputs to the MPC is the target trajectory, r, and the esti-
mated state, x̂, that may be obtained by a Kalman filter using historical data. Then,
MPC return manipulated inputs, u, to the physical plant, such that the predicted
output, z, obey the target as well as possible. The aim in our work is to minimize
the operating costs associated with operation of power systems rather than tracking a
predefined trajectory as in the traditional MPC framework. Economic MPC provides
a MPC framework that minimizes the cost of operations subject to constraints.

We notice that the notation used in UC may be confused with the notation used
in economic MPC. It is decided to apply same notation as in the literature in both
fields for not to mislead the reader. However, in context, the notation should not be
misunderstood.
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6.2 Mathematical problem formulation

We formulate a soft constrained economic MPC optimization problem. The objective
of the economic MPC is to implement a feedback strategy, such that the system
remains feasible while the production cost

ϕ =
N−1∑
k=0

(
cTk uk + ρTk+1sk+1

)
+ ∥∆uk∥1,αk

, (6.1)

over the control and prediction horizon, N , is minimized. The objective cost function
(6.1) is linear in uk and sk+1. In the following, an interpretation of (6.1) is given in
the setting of considering one power plant.

The term, cTk uk, define the cost of producing power, i.e., the cost of fuel, taxes,
emission, etc. ck is the cost vector there may be time-varying and uk is the computed
control inputs. The manipulable inputs are subject to input constraints; the allowable
operating range and the rate of movement, respectively,

uk ≤ uk ≤ uk (6.2a)
∆uk ≤ ∆uk ≤ ∆uk, (6.2b)

where uk and uk is the minimum and maximum value of the manipulable input
variable, respectively. ∆uk and ∆uk is the maximum rate of movement (ramp-down
and ramp-up), respectively, with ∆uk = uk − uk−1.

The system output, zk, are limited to be within the interval

zk ≤ zk ≤ zk,

where zk and zk is the minimum and maximum power output. The interval may
represent the overall demand load or the production plan for the individual power
plant provided by solving the UC problem. For some scenarios, it may be impossible or
very expensive to meet the output constraints, which leads to infeasible optimization
problems with no solution. Therefore, to ensure feasible production plan {uk}Nk=0,
we soften the hard output constraints by introducing the slack variable sk, sk ≥ 0,
[ZJM10]. Thus,

zk − sk ≤ zk ≤ zk + sk.

The slack variable is minimized and penalized with the weight ρk+1, hence, the term,
ρTk+1sk+1. This penalty can be interpreted as, e.g., the price for selling to others
or buying elsewhere to meet the demand load. The penalty is modeled such that
one can penalize individually on the power plants as well as the total production.
Furthermore, the penalty is selected sufficiently large such that demand load is met
whenever possible; i.e., s is only nonzero if the output is not within the interval.

The last term, ∥∆uk∥1,αk
, discourages disproportionate movement of the manip-

ulable variables by penalizes excessive movement of the input with weight αk. This
regularization term is important to obtain a realistic well behaved control action and
helps reduce wear and tear of the systems.
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6.3 The economic MPC formulation

In Section 5.2, we defined a stochastic linear time-invariant discrete-time state-space
model (5.10) and in Section 5.4 established the optimal filtering and prediction for this
system. We formulate the finite horizon soft constrained linear regulation problem
and describe the economic MPC controller algorithm for computing the manipulated
variables, uk, for this system [Sta+12; Hal+14]. Algorithm 1 lists the economic MPC
controller algorithm.

At any time step k, we solve a finite horizon open-loop optimal control problem by
looking N prediction steps ahead and using the current state as the initial state. The
first control input from the optimal control sequence, obtained by the optimization,
is applied to the plant. We define the power production range, Rk, and the forecast
of power supply from renewable energy sources, Dk, as

Rk =
{
zk+j+1|k, zk+j+1|k

}N−1

j=0
, (6.3a)

Dk =
{
d̂k+j|k

}N−1

j=0
. (6.3b)

We define the objective cost function

ϕ =
∑
j∈N0

(
cTk+j|kûk+j|k + ρTk+j+1|kŝk+j+1|k

)
+
∥∥∆uk+j|k

∥∥
1,αk+j|k

.

The optimal trajectory of the predicted manipulated variables and slack variables,{
ûk+j|k, ŝk+j+1|k

}N−1

j=0
, are obtained by the solution to the soft constrained linear

economic MPC optimization problem

minimize
{û,ŝ}

ϕ(
{
ûk+j|k,ŝk+j+1|k

}N−1

j=0
) (6.4a)

subject to x̂k+1|k = Ax̂k|k +Bûk|k +Gŵk|k (6.4b)
x̂k+1+j|k = Ax̂k+j|k +Bûk+j|k j ∈ N1 (6.4c)
ŷk+j+1|k = Cx̂k+1+j|k + d̂k+j|k j ∈ N0 (6.4d)
ẑk+j+1|k = Czx̂k+1+j|k + d̂k+j|k j ∈ N0 (6.4e)
uk+j+1|k ≤ ûk+j|k ≤ uk+j+1|k j ∈ N0 (6.4f)
∆uk+j+1|k ≤ ∆ûk+j|k ≤ ∆uk+j+1|k j ∈ N0 (6.4g)
ẑk+j+1|k + ŝk+j+1|k ≥ zk+j+1|k j ∈ N0 (6.4h)
ẑk+j+1|k − ŝk+j+1|k ≤ zk+j+1|k j ∈ N0 (6.4i)
ŝk+j+1|k ≥ 0 j ∈ N0 (6.4j)

where j ∈ Ni := {0 + i,1 + i, . . . ,N − 1}, with N being the predictive horizon. By
including the possible non-zero filtered process noise, ŵk|k, in (6.4b), the regulator
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allows for possible cross-couple process and measurement noise in the stochastic linear
state-space model describing the system.

The function that solves (6.4) and select ûk|k is denoted as

uk|k = ûk|k = µ(x̂k|k, uk−1,Rk,Dk). (6.5)

Hence, at time step k we compute, based on looking N time step ahead, the optimal
sequences

{
uk|k

}N−1

k=0
in which the predicted output trajectory, {zk}N−1

k=0 , obey the
allowable power production range. Then, the first input, ûk|k, from

{
uk|k

}N−1

k=0
is ap-

plied. This recur in a receding horizon manner as new information becomes available
[JHR11].

6.3.1 Stability
Stability of economic MPC framework is a very important theme, which certainty has
its attention in the literature [AAR12; Raw+08; May+00]. In this thesis, however,
we do not focus on stability issue. Instead we are aware of choosing sufficient long
prediction and control horizon compared to system dynamics, and to apply linear
stable systems to obtain stability properties according to [May+00].
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Algorithm 1 Economic MPC with external forecasts
Require yk, uk−1, x̂k−1|k−1, the external forecasts

Rk =
{
zk+j+1|k, zk+j+1|k

}N−1

j=0

Dk =
{
d̂k+j|k

}N−1

j=0
,

and the Kalman filter gain matrices

Rfe = CPCT +Rvv

Kfx = PCTR−1
fe

Kfw = RwvR
−1
fe

Compute one-step-ahead predictor
Compute the one-step-ahead predictor

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 +Gŵk−1|k−1

ŷk|k−1 = Cx̂k|k−1 + d̂k|k−1

Compute innovation

ek = yk − ŷk|k−1

Compute the filtered state

x̂k|k = x̂k|k−1 +Kfxek

ŵk|k = Kfwek

Regulator
Compute uk|k = µ(x̂k|k, uk−1,Rk,Dk) by solution of LP (6.4)
Return uk, x̂k|k
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6.4 Solving the economic MPC problem

In this section, we show that the formulated soft constraint linear economic MPC (6.4)
can be expressed as a Linear Programming (LP) optimization problem. Furthermore,
we outline available solvers and the optimality conditions for this type of problem.

6.4.1 Economic MPC formulated as LP problem

The soft constrained linear economic MPC (6.4) can be formulated as the LP

minimize
x

ϕ = gTx (6.6a)

subject to Ax ≥ b, (6.6b)

for which efficient algorithms exist for solving LP problems. Using the finite impulse
response model of the state-space parameterizations [PJ08; ESJ09]; see Section 5.3.
The stacked output relation is

Z = Φx0 + ΓuU +D.

Then, (6.4) may be expressed as

minimize
U,S,V

ϕ = cTU + ρTS + αTV (6.7a)

subject to Z = Φx0 + ΓuU +D (6.7b)
U ≤ U ≤ U (6.7c)
∆U ≤ ∆U ≤ ∆U (6.7d)
Z + S ≥ Z (6.7e)
Z − S ≤ Z (6.7f)
S ≥ 0 (6.7g)

where, additional to those defined in Section 5.3, we define

S =


s1
s2
...
sN

 , V =


v1
v2
...
vN

 , Z =


z1
z2
...
zN

 , Z =


z1
z2
...
zN

 .

U and U are simply u and u stacked N times, respectively. The rate of movement
constraint (6.7d) is as usually ∆uk = uk − uk−1. Thus, by introducing the matrices
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(for the case N = 5)

I0 =


I

0

0

0

0

 , Ψ =


I 0 0 0 0

−I I 0 0 0

0 −I I 0 0

0 0 −I I 0

0 0 0 −I I


we obtain the following expression

∆U = ΨU − I0u−1.

Using matrix notation, we build (6.7) as the LP optimization problem (6.6) by

x =

 U

S

V

 , g =

 c

ρ

α

 , A =



I 0 0

−I 0 0

0 I 0

0 0 I

Ψ 0 0

−Ψ 0 0

Ψ 0 I

−Ψ 0 I

Γu I 0

−Γu I 0



, b =



U

−U

0

0

bl
−bu

I0u−1

−I0u−1

Zl

−Zu



, (6.8)

with the parameters

bl = ∆U + I0u−1 Zl = Z − Φx0 −D (6.9a)
bu = ∆U + I0u−1 Zu = Z − Φx0 −D. (6.9b)

Consequently, the solution to (6.4) is obtained by solving (6.6) expressed by (6.8) and
(6.9).

The coefficient matrix A is sparse and highly structured. It is composed of Ψ
and Γ (which itself are structured), and the identity matrix, I. The structure is to
be utilized for efficiently solving the constrained optimal control problem. Thus, the
coefficient matrix A is implemented as a sparse matrix.
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6.4.2 Solvers
See Chapter 3 for applied solvers in our control framework. Even though it is sig-
nificant, a study on solver performances is outside the scope of this thesis. There
exist many efficient methods for solving linear programs obtained from MPC prob-
lems. Also methods utilizing the specific structure, e.g., decomposition methods like
Dantzig-Wolfe decomposition returning the master problem into independently sub-
problems, which may be solved in parallel [ESJ09; Sok+12; Sok+13]. On a small note,
Graphics Processing Unit (GPU) on graphics cards provides exceptional qualities in
scientific computations and high-performance computing [DA12].

6.4.3 Optimality conditions
The optimality conditions for (6.6) will informally be introduced. The Lagrangian of
(6.6) is

L(x,λ) = gTx− λT (Ax− b).

Hence, the first order necessary and sufficient optimality conditions may be stated as
[NW06]

∇xL(x,λ) = g −ATλ = 0 (6.10a)
s−Ax+ b = 0 (6.10b)

SΛ1 = 0 (6.10c)
(s,λ) ≥ 0, (6.10d)

where S being the matrix with slack variable s := Ax− b in the diagonal, similarly Λ
being the matrix with Lagrange multiplier in the diagonal, and 1 is a vector will all
components one. (6.10c) is the complementarity conditions. The conditions (6.10)
are known as the Karush–Kuhn–Tucker conditions.

6.5 Implementation

We outline the developed Matlab implementations of the economic MPC in (6.4).
The full implementations are provided in Source Code Booklet Chapter 2. A flowchart
of the implementation is illustrated in Figure 6.3. Our implementation is developed
as adaptive and generic as possible. Thus, it can be utilized on different simulation
scenarios, different system setup (MISO, MIMO), different state-space realizations,
etc. This is done to obtain better code quality and a better starting point for further
research and development in this area.

The main script, main_closedloop, contain definition of simulation parameters
(e.g., model sampling time steps, number of simulation hours, simulation horizon,
and prediction horizon), initialization as well as function calls to developed MPC
functions. All parameters can easily be modified to achieve the desired simulation. In
the following, we describe the framework and the purpose of the developed functions.
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• setupSystem set up system model parameters and operational parameters. In
addition, the system model (e.g., a MIMO system) is defined by applying
continuous-time transfer function.

• setupModel realize the model into a discrete-time state-space model.

• setupScenario generate the simulation scenario. Firstly, forecast of power
supply from renewable energy sources (disturbance) is defined. Secondly, the
individual power production as well as the total power production range (tra-
jectory for the economic MPC) is determined. Based on the power system,
the production plan for each power plant is derived by solving the UC opti-
mization problem. The UC optimization problem presented mathematically
in Section 4.3 by (4.20) is implemented in the function ucSolver and solved
for global optimality using CPLEX. Lastly, variables for the Kalman filter are
initialized.

• mpcDesign compute and build following: the impulse response matrices by call-
ing the function impulseResponse; the input and input rate constraints; A and
g of (6.8); the discrete algebraic Riccati equation; and the Kalman filter gains.

These four functions set up the power system and simulation parameters; the offline
MPC. Following represent the online MPC.

• mpcClosedloop perform the closed-loop simulation. The function do following:
simulate the system (output measurements from sensor and state simulation);
execute the MPC controller algorithm; and store applicable values from the
closed-loop simulation, which are returned. To execute the MPC controller
algorithm, the function call two functions mpcUpdate and mpcCompute:

– mpcUpdate update the current open-loop MPC matrices. Following are up-
dated: current power production range (trajectory) for each power plant;
current forecasted power production from renewable energy sources (dis-
turbance); input and input rate constraints; and estimates by performing
one-step predictor and Kalman filtering by calling the function
updateStateEstimate.

– mpcCompute, is the regulator, i.e., solve the open-loop MPC. It build the
non-constant vectors and solve the soft constraint economic MPC prob-
lem as an linear programming problem by calling the lpSolver. The ob-
tained solution is return and feed into the system for each simulation step.
lpSolver is a interface for solving linear optimization problems. Three
solvers are supported: CPLEX, MOSEK, and Gurobi; see Chapter 3, there
is to be selected in the main script, main_closedloop.

The results, the historical values returned by mpcClosedloop, is then illustrated using
various developed MPC plot functions.



6.5 Implementation 59

BEGIN

setupSystem

setupModel

setupScenario

mpcDesign

mpcClosedloop mpcUpdate

mpcCompute

Feed System

Sim. step
reached?

Return history

ucSolver

Plotting results

END

yes

no

Setup power system and simulation parameters;
the offline MPC

Closed-loop simulation;
online MPC

Figure 6.3: Flowchart of developed Matlab implementation.
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6.6 Case study

In this section, we establish a power system to demonstrate the formulated soft con-
strained economic MPC (6.4) with dynamics of a power plant modeled as presented
in Section 5.2. Firstly, we present the case study and operational parameter of power
plants. Secondly, open-loop and closed-loop simulations are performed. Source code
is listed in Source Code Booklet Section 2.2 and Section 2.3. [HEJ10] inspired to the
case study.

6.6.1 2-unit power system
Two power plants with different operational features are controlled. Table 6.4 lists
the controller parameters. The parameters are chosen such that power plant 1 is
cheap and slow, whereas power plant 2 is expensive and fast. We consider the MISO
formulation of the power plants presented in Section 5.2. For convenience the model
is given below

Zi(s) =
1

(τis+ 1)3
Ui(s), i = 1,2. (6.11)

The total production is
Z(s) = Z1(s) + Z2(s). (6.12)

We perform simulations with and without the regularization term to show its impact
to the solution. We apply the economic optimizing MPC (6.4), where the system is
realized in a discrete-time state-space form with a sampling time of Ts = 1 seconds;
thus, system dynamics are captured. The objective is to minimize operation cost
subject to obey demand load and various operational requirements.

6.6.1.1 Open-loop and closed-loop simulations

The results of an open-loop simulation without regularization term is illustrated in
Figure 6.5. Figure 6.5(a) shows that the total power production satisfy the prede-
fined demand load. The cheapest power plant, plant 1, produces the majority of the
load, whereas the more expensive and fast power plant, plant 2, operates whenever
faster dynamics are required. This behavior is expected considering the operational
parameter of the power system. Figure 6.5(b) and Figure 6.5(c) show that the input
constraints are satisfied and active at some time periods. We see excessive movement
of input for particular plant 2, which may not be desirable due to wear and tear of

Table 6.4: Operational parameters.

Unit τ c ρ α uk uk ∆uk ∆uk

1 20 1 1.0 · 102 0.5 0 10 -1 1
2 10 2 1.0 · 102 1.0 0 10 -3 3
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the systems. In order to manage these movements, the regularization term may be
added to the objective function.

Figure 6.6 shows the results of an open-loop simulation with the same setup as
before, but with the regularization term for excessive movement of the input added
to the objective function. There are no significantly changes in the production plan;
however, Figure 6.6(c) and Figure 6.6(c) show significant changes in inputs and rate
of movement for plant 2. As desirable, we obtain nearly same solution but with less
change in inputs. Henceforth, the regularization term is included.

At the same setup as before, we execute a closed-loop simulation with prediction
horizon N = 50 time step. The results of the simulation, reported in Figure 6.7, shows
nearly same solution as obtained in the open-loop simulation Figure 6.6. However,
Figure 6.7(b) and Figure 6.7(c) show that the inputs are not as smooth as in the
open-loop. Increasing the prediction horizon will smooth this and in fact lead the
solution closer to the open-loop simulation. This is expected as we do not utilize the
quality of closed-loop simulation, since no valuable feedback information is obtained.

6.7 Summary

This chapter motivates the choice of economic MPC as control framework and gives
an introduction to MPC. We formulate a soft constraint linear economic MPC. We
outline the controller algorithm for an economic MPC with external forecasts and
filtered state estimators computed by a Kalman filter. It is showed how to convert and
solve the optimization problem as a LP optimization problem. We informally present
literature on stability of economic MPC problems and solvers as well as stating the
optimality conditions for a LP problem. The developed Matlab implementation
for our economic MPC control framework is presented. Lastly, we demonstrate the
formulation to a power system. The case studies demonstrated open-loop and closed-
loop simulations and that the implementation behaves as expected.
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(a) Power productions from the two power plants and total production satisfying demand load range.
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(c) Rate of movement for inputs with its limits.

Figure 6.5: Open-loop simulation of a power system without regularization term for ex-
cessive movement of the input. Ts = 1.
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(a) Power productions from the two power plants and total production satisfying demand load range.
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(c) Rate of movement with its limits.

Figure 6.6: Open-loop simulation of a power system with regularization term for excessive
movement of the input. Ts = 1.
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Figure 6.7: Closed-loop economic MPC simulation of a power system. Prediction horizon
is N = 50 time step with regularization term. Ts = 1.
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CHAPTER 7
Introduction

This part present simulation of combining the UC optimization problem and the
economic MPC problem in the application of optimal operation of power systems.

In this chapter, we provide an overview of the chapters that follows. In Section 7.1
and Section 7.2, we describe the developed control strategy and informally discuss re-
flection of combining the two methods. Section 7.3 provides the background material
for the simulations that follows.

An outline of the individual chapters is as following:

Chapter 8 provides a simulation of the impact discretization and input parameter-
ization have on the achievable outcome in terms of power imbalance and costs.

Chapter 9 provides simulations of combining the UC problem and the economic
MPC problem without power supply from renewable energy sources in the power
system.

Chapter 10 provides simulations of combining the UC problem and the economic
MPC problem with power supply from renewable energy sources in the power
system.

Chapter 9 and Chapter 10 starts with an overview of the perform simulations and
ends with a summary of key findings from the simulations.

7.1 Developed control strategy

The aim for the novel coupling of the UC problem and economic MPC problem is
to develop a control strategy that intelligently can overcome some of the challenges
for managing the growing uncertainty associated with increasing penetration of non-
controllable renewable energy sources into the power grid. Chapter 1 and Chapter 2
motivates and discuss some of the challenges with renewable energy sources.

In the following, we present key features of the UC problem and economic MPC
problem underpinning for the developed control strategy outlined subsequent.



68 7 Introduction

UC problem. The UC problem is an intuitive and effective model for optimal
power production planning. In order to intercept the variations in power supply from
the renewable energy sources and thereby plan the power production accordingly, we
want to solve the UC problem with a high frequency. However, for power systems
with practical size (large-scale power systems), the high computational complexity
makes it impossible to solve the UC problem with a high frequency.

Economic MPC. The economic MPC advantage is the real-time optimization,
which can be solved with a high frequency. In addition, economic MPC can anticipate
future events and take action accordingly. Consequently, the variations in power
supply from renewable energy sources can be taking into account by reoptimizing the
production plan.

Combining UC and economic MPC. With that in mind, the developed control
strategy considers the two methods at two distinct levels, as depicted in Figure 7.1.
The hierarchy structure is following:

• Day-ahead planning: Firstly, day-ahead planning is performed on a coarse time
grid. Based on available forecasts of tomorrow demand load and power supply
from renewable energy sources, the UC problem derive the production plan for
the next 24 hours. The UC solution determine which power plants there are
committed and decommitted (binary decisions) and the production level at the
committed plants in an economic effective way (economic dispatch).

• Minutes-ahead planning: Secondly, online minutes-head planning is performed
during the day of operations on a high resolution time grid. Based on updated
and more reliable forecasts of power supply from renewable energy sources, the
economic MPC reoptimize the production plan in an economic effective way.
Thus, we obtain a balance controller there adjust to fluctuations and avoid the
undesirable imbalance.

This strategy utilizes the benefits from each of the two methods. We have chosen to
solve the UC problem once every 24 hour. The frequency of solving the UC problem,
e.g., periodically every six hours, is a very interesting discussion, however, this will
only be briefly touched upon in this thesis.

7.2 Considerations for combining UC and economic MPC

The UC problem and the economic MPC are not completely the same problem. There-
fore, some considerations and decisions need to be made. In the following, we list
some of the differences.

• System dynamics are considered and modeled in the economic MPC, not in the
UC problem.
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• The discretization is different for the two methods. In the literature, the UC
problem is modeled and solved with a very coarse discretization, usually hour by
hour. Whereas the economic MPC is modeled and solved with a high resolution
discretization, sampling time Ts. Usually, the sampling time is chosen small in
order to capture system dynamics.

• The input parameterization is different for the two methods. This opens a
question of how we apply the plants operational parameters in the UC and
economic MPC. In our simulations, we want the operational features to be
identical for both methods. Therefore, we perform a direct conversion with the
discretization in account.

• The decision of which power plants there are committed and decommitted for
each time step is solely determined by the UC problem. The described eco-
nomic MPC in Chapter 6 does not include binary decisions. Consequently, the
controller only reoptimizes the production plan and do not decide whether a
plant shall startup or shutdown in a time period.

The considerations and challenges evokes interesting discussion and questions, for
which will be addressed in the following simulations.

Day-ahead Planning Unit
Commitment

Economic MPCMinutes-ahead Planning
(Online Control)

Power Plant

Figure 7.1: Control strategy of combining the UC and the economic MPC.
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Plant 1 Plant 2 Wind Farm

Load (MW)

Figure 7.2: Power system with two controllable conventional power plants and a non-
controllable predictable power generator, farms of wind turbines.

7.3 Background for the simulations

In this section, we present the considered power system, the considered demand loads,
the operational parameters used in the UC problem and economic MPC, as well as
the initialization.

The power system is inspired from the UC and economic MPC case studies in
Section 4.6 and Section 6.6, respectively. We consider the power grid illustrated
in Figure 7.2; in details see Figure 5.4. The power grid includes two controllable
conventional power plants and a non-controllable predictable power generator, farms
of wind turbines. The wind farm represents the penetration of intermittent renewable
energy sources into the power grid for which we cannot control.

As a remark, we will not consider capacity and distribution challenges in the
power grid. Thus, we assume sufficient capacity and distribution possibility in terms
of power plants and renewable energy sources.

7.3.1 Demand load
We will consider two distinct demand loads in Chapter 9 and Chapter 10. Fig-
ure 7.3(a) represents a demand load requiring both power plants to be committed
over the 24-hour planning horizon; we refer to busy demand load. Figure 7.3(b) repre-
sent a demand load where one power plant is decommitted in a time period; we refer
to idle demand load. The idle demand load show how our implementation manage
the situation when plants shutdown and startup within the 24-hour planning horizon.
In Appendix B Table B.1(a) present both demand loads numerically. The spinning
reserve is set as a 10% of the demand load for each time period.

Demand load is naturally continuous in time. As Figure 7.3 indicates, the demand
load is discretized hour by hour. In Chapter 8, we discover that the discretization have
an impact on the solution. We want to investigate various setups impact on performs.
Therefore, in order to not account for discretization loss in all the simulations, the
economic MPC receive the coarse demand load as the UC problem. In a practical
setting, one should not apply a coarse discretized demand load to the controller,
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Figure 7.3: 24-hour demand load [MW]; see Table B.1(a) in Appendix B for the numerical
representation. Spinning reserve is 10% of demand load for each time period.

since it will imply unnecessary information loss. Furthermore, it is assumed that the
demand load do not develop over time, i.e., the demand load is the same for the
day-ahead planning as well as the day of operation. These choices eventually only
have a negative effect on the economic MPC performances. Thus, if removed, the
controller will offhand obtain a better solution, and hence a stronger argument for
this strategy to be compelling.

If not otherwise stated, the controller is set to at least satisfy the demand load
given to the UC optimization problem; let zk denote the demand load at time step
k, then

zk ≤ zT,k ≤ ∞,

where zk is the total power output at time step k. ∞ denote an upper limit which
is not reached. The reason for this decision is to achieve a fair basis of comparison
when comparing the results obtained by the two methods, UC optimization problem
and the economic MPC.
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Table 7.4: Operational parameters to the UC problem.

Unit ai bi SUi SDi PLi PUi RDi RUi

[$/h] [$/MWh] [$/h] [$/h] [MW] [MW] [MW/h] [MW/h]
1 1000 15 10 10 150 850 200 200
2 500 30 8 8 150 850 600 600

7.3.2 Operational parameters
The two conventional power plants are modeled to have different operational features.
The parameters are chosen such that power plant 1 is cheap and slow, whereas power
plant 2 is expensive and fast. We want the used operational features to be identical
for both methods. We have chosen to perform a direct conversion of the units. E.g.,
the UC variable cost is given in [$/MWh], then, the economic MPC variable cost is
determined by converting the data into [$/(MW·Ts)].

7.3.2.1 UC parameters

The UC optimization problem presented mathematically in Section 4.3 by (4.20) is
solved for global optimality in a open-loop manner. We use IBM ILOG CPLEX Op-
timizer V12.6 Matlab interface for solving the UC optimization problem. Table 7.4
lists the operational parameters for the UC problem. The spinning reserve is set as a
10% of the demand load for each time period.

7.3.2.2 Economic MPC parameters

The economic optimizing MPC presented mathematically in Section 6.3 by (6.4) is
solved for global optimality in a closed-loop manner. We use Gurobi Optimizer V5.6
Matlab interface for solving the LP optimization problem. The other implemented
solvers have been tested to find the same solution. The controller considers the linear
system presented in Section 5.2. Thus, the power plants dynamics are modeled by a
third order model and the dynamics for the wind farms are neglected due to the quick
dynamics of wind turbines. The system is realized in a discrete-time state-space form
with a sampling time of Ts = 20 seconds. The sampling time is chosen such that
system dynamics are captured. In closed-loop simulations are the prediction horizon
N = 100 time step. Table 7.5 lists the operational parameters for the economic MPC.

We find it more important to satisfy the overall demand load than satisfying the
individual plants production plan given by the UC, thus, we penalize more heavily
on this parameter:

ρi,k = [ρ1,k,ρ2,k,ρT,k] = [10,10,100], (7.1)

where i = 1,2, . . . ,nu and ρT,k is the penalty associated to the overall demand load.
The listed penalties, ρ and α, are subject to change during the simulations; in that
case, it will be explicitly given.
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Table 7.5: Operational parameters to the economic MPC. Penalty ρi,k = [ρ1,k,ρ2,k,ρT,k] =
[10,10,100], where i = 1,2, . . . ,nu and ρT,k is the penalty associated to the
overall demand load.

Unit τ c α uk uk ∆uk ∆uk

[$/(MW·Ts)] [$/Ts] [MW] [MW] [MW/Ts] [MW/Ts]
1 20 0.0833 0.0417 150 850 -1.1111 1.1111
2 10 0.1667 0.0833 150 850 -3.3333 3.3333

7.3.2.3 Initialization

The performed simulations are initialized in following manner. The day-ahead plan-
ning is determined by solving the UC problem. We assume no prior knowledge;
consequently, the problem is initialized such that power output at time period t = 0
is zero,

pi,0 = 0 ∀i,

and the plants status preceding the first period is switch off,

ui,0 = 0 ∀i.

The controller is initialized by applying the obtained solution from the UC problem at
time period t = 0. Thus, the UC problem determine which plants there are committed
and decommitted.
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CHAPTER 8
Discretization and
Parameterization

In the literature, the UC optimization problem is modeled and solved with a very
coarse time discretization and without system dynamics. This evokes some questions
as, e.g., has the discretization and parameterization an impact on the achievable
outcome in terms of power imbalance and costs. In the following, we set up a test
case to show the interesting aspects.

We consider a 2-unit power system with the operational parameters given in Sec-
tion 7.3.2. Since this is a very computationally expensive task and due to limited
memory, we perform a 12-hour simulations.

8.1 Discretization

We define following two demand loads:

• Dth with a high resolution grid, one value for each minutes.

• Dtc with a coarse grid, one value for each hour.

Let Dth be the true demand load and Dtc be the discretized version of Dth. Assume
the production to be piecewise constant (ZOH approximation). We investigate the
impact of discretization and input parameterization in the UC optimization problem
by following approach:

1. Solve UC using Dth. Let UCth denote the solution. Simulate the solution UCth
and derive the associated total amount of production.

2. Solve UC using Dtc. Let UCtc denote the solution. Simulate the solution UCtc
on the high resolution grid and derive the associated total amount of production.

3. Solve economic MPC problem with rolling horizon on the high resolution grid
using Dth as trajectory. Let EMPCth denote the solution. Derive the associated
total amount of production.

Figure 8.1 illustrates UCtc, UCth, and EMPCth. We present some initial key findings
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Figure 8.1: Power production obtained from UCth, UCtc, and EMPCth.

• The two UC solutions, UCth and UCtc, are exactly the demand loads, Dth and
Dtc, respectively.

• In Figure 8.1(b), we see that the cheapest power plant, plant 1, produces the
majority of the load, whereas the more expensive and fast power plant, plant
2, operates whenever faster dynamics are required. This behavior is expected
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considering operational parameter of the power system.

• UCth and EMPCth obtain nearly identical solution, the two solutions coincide.

• The UCtc solution yields shortages of power production from hour 0-7 and
surplus of power production from hour 8-11, thus, UCtc imply imbalance in the
power grid.

As we know, power imbalance is undesirable. We derive the absolute imbalance
with the true demand load, Dth, as reference. We choose to consider the amount of
power produced by the three methods instead of production cost to avoid introducing
uncertainties and assumptions regarding properly choice of cost prices, imbalance cost,
profit margin, etc. However, the results are presented in a way such that reader easily
can calculate the cost with own figures.

Table 8.2 lists the simulation results numeric. UCtc solution yields to an absolute
imbalance of 325 MWh while being 175 MWh short of the true demand load. 2.63%
of the power production is imbalance. EMPCth coincide with the optimal production
plan, only creating 0.0187 MWh imbalance. These observations indicate that there
indeed is a discretization loss in setting up the UC problem on a coarse grid. The
discretization loss has a significantly impact on the imbalance, which may imply
additional cost or unstable power systems. On the other hand, the result indicates
that applying economic MPC may offset this discretization loss and thereby reduce
cost or help stabilizing the power system. As a result of less imbalance, the need of
spinning reserve will be reduced. This is desirable, as the spinning reserve is costly
and implies unutilized production capability.

Table 8.2 also provides the runtime for solving the three methods. In order to
present useful data, the runtime is determined by averaging 10 runs. EMPCth runtime
is the execution time for one open-loop simulation. We see that the runtime for UCth
is significantly higher than the other two methods. UCtc give a 22x speedup compared
to UCth; however, this also lead to a discretization loss and power imbalance. In
contrast, EMPCth give a 65x speedup compared to UCth while obtaining the same
solution. Consequently, economic MPC can indeed be solved with a higher frequency
while obtaining a solution as good as solving the UC problem on a high resolution
time grid.

Table 8.2: Results of 12-hour closed-loop simulation. Total power production [MWh] by
the tree methods. Imbalance [MWh] is the absolute imbalance between UCth
and the obtained production plan.

Methods Total Power Imb. %-deviation Runtime [s] Speedup
UCth 12,375 - - 2.60 -
UCtc 12,200 325 2.63% 0.12 22x

EMPCth 12,375 0.0187 0.00% 0.04 65x
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8.2 Parameterization

Now, let us dwell on the operational parameters and the input parameterization
of UC problem. Consider Figure 8.1(b). We see that the system increase power
production at plant 1 as much as possible as fast as possible and the reverse at plant
2. Consequently, plant 1 ramp-up constraint are active until maximum power output,
PU1 = 850 MW, is attained. UCtc power production is constant between hours
and when the power level change is it accomplished within 0 second. E.g., plant
1 increase the power level with RU1 = 200 MW within 0 seconds at hour 1, 2, 3,
and 4. In between, the production is constant. This evolution occurs because of the
representation of the UC problem; however, how should it be interpreted? Consider
following two cases:

1. the power level can increase reality fast (0-10 minutes); or

2. the power level cannot increase that fast and use nearly an hour to attain
maximum ramp-up.

Case 1 indicates nonoptimal utilization of the power plants capabilities. If the ramp-
up is fast, the power level may as well increase again within 1 hour instead of waiting
until next hour. Case 2 indicates that the used parameterization in the UC problem
is not appropriate compared to the physical plant. If the ramp-up is not instantly
but rather as a slope, then, the parameterization should be so.

8.3 Key findings

The findings in this section show that the discretization and input parameterization
have a cost impact on the solution. EMPCth solution coincide with the optimal
production plan while UCtc solution yields 2.63% imbalance power of the total power
production. Furthermore, EMPCth give a 65x speedup compared to UCth while
obtaining the same solution. A deeper analysis and research may find hidden cost
savings and unutilized resources. Maybe traditions have surpassed research.

An interesting perspective: the total production cost by UCtc solution is 2.63%
subject to additional cost by imbalance cost. In Section 4.6.2, we considered a 10-unit
power system. In this case study, the startup and shutdown cost where less than 1%
of the total production cost. Consequently, if it is important to include startup and
shutdown cost in the objective function when solving the UC optimization problem,
then, it must likewise be interesting to look closely on discretization loss.



CHAPTER 9
Deterministic

Simulations
In this chapter, we present simulations of combining the UC problem and the economic
MPC problem without power supply from renewable energy sources in the power
system. We perform following simulations:

• Apply MISO formulation in the controller

• Apply MIMO formulation in the controller

– Use system power output limits as trajectory
– Use the UC solution as trajectory

Section 5.2 provides the MISO and MIMO formulation. In all cases, 24-hour closed-
loop simulations are performed considering the two demand load provided in Sec-
tion 7.3.1. The obtained production plan from solving the UC problem is included in
the illustrations. Lastly, we present key findings from the performed simulations.

9.1 MISO simulations

In this section, the MISO system formulation is applied. The economic MPC objective
is to minimize operation cost while satisfying the predefined demand load subject to
system limits.

The results of the simulation with the busy demand load are reported in Figure 9.1.
The production plan found by the economic MPC follow the UC solution with the
exception of system dynamics included in the MPC framework.

Figure 9.1(b) shows that the cheapest power plant, plant 1, produces the majority
of the load, whereas the more expensive and fast power plant, plant 2, operates when-
ever faster dynamics are required. This behavior is expected considering operational
parameter of the power system. An interesting observation is that the economic MPC
constantly increase power production on plant 1 until maximum power output on 850
MW is reached. This illustrate the discussion about used input parameterization in
the UC problem; see Chapter 8. The small drops in EMPC production for plant 1 is
due to the dynamics of the system when power level changes. If this is not desirable
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in practice, one can adjust control parameters accordingly to reduce them, e.g., by
increase penalty of excessive movement of the input.

The performed inputs to the system and the rate of movement, reported in Fig-
ure 9.2, shows that the constraints are satisfied and are active at some time periods.
Particularly, the power plants ability to ramp-up and ramp-down is a limit in the
simulation.

The results of the simulation with the idle demand load are reported in Figure 9.3.
Our implementation can handle the case when power plants change from committed
to decommitted and vice versa. We set u = 0 and PL = 0 at decommitted hours
whereas u = 0 and PU = 0 one hour after and before shutdown and startup such that
the system is not penalties due to system dynamics. Around shutdown and startup
the economic MPC solution differ from the UC solution; e.g., Figure 9.3(b) at hour
4 to 5. The UC increase power production on the expensive plant 2 since otherwise
it will be impossible to decrease the power level to 600 MW at hour 6. In contrast,
the EMPC increase the power production on the cheap plant 1. This is possible due
to the system dynamics and parameterization of the economic MPC

The performed inputs to the system and the rate of movement, reported in Fig-
ure 9.4, shows that the constraints are satisfied and are active at some time periods.
Again, the power plants ability to ramp-up and ramp-down is a limit in the simulation.
Additionally, we see that there is no input to plant 2 when it is decommitted.
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Figure 9.1: 24-hour MISO closed-loop simulation applying the busy demand load as tra-
jectory. UC production profile for power plants are unknown while committed
plants are known for the economic MPC.
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Figure 9.2: 24-hour MISO closed-loop simulation applying the busy demand load. Per-
formed inputs to the system and the rate of movement together with their
limits.



9.1 MISO simulations 83

0 4 8 12 16 20 24

600

700

800

900

1000

T
ot

al
 P

ow
er

 [M
W

]

Time [h]

 

 
EMPC UC Demand load

(a) Total power production.

0 4 8 12 16 20 24

200

400

600

800

P
la

nt
 #

1 
[M

W
]

 

 

0 4 8 12 16 20 24

0

200

400

600

800

P
la

nt
 #

2 
[M

W
]

Time [h]

EMPC UC PL/PU
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Figure 9.3: 24-hour MISO closed-loop simulation applying the idle demand load as trajec-
tory. UC production profile for power plants are unknown while committed
plants are known for the economic MPC.
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Figure 9.4: 24-hour MISO closed-loop simulation applying the idle demand load. Per-
formed inputs to the system and the rate of movement together with their
limits.
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9.2 MIMO simulations

In this section, the MIMO system formulation is applied. The economic MPC objec-
tive is to minimize operation cost while satisfying the predefined demand load and
power plants trajectory subject to system limits. Two different ways of modeling the
trajectories are presented. In Section 9.2.1, we let the UC problem determine the
committed and decommitted plants while the production plan (economic dispatch) is
entirely controlled by the economic MPC. In Section 9.2.2, we let the UC problem
determine the committed and decommitted plants as well as the production plan for
the individual power plants, which the controller is set to obey.

9.2.1 System power output limits as trajectory
This simulation uses the UC problem to determine the committed and decommitted
plants. The production plan is entirely controlled by the economic MPC to be within
system power output range, PL = 150 MW and PU = 850 MW. Thus, the optimal
production plan obtained by the UC is unknown for the economic MPC; however, for
comparing purpose are the solutions shown.

Firstly, we consider the busy demand load. Figure 9.5 illustrates the total power
production and the power production on each power plant. The obtained results
are comparable to previous simulations in Section 9.1. Thus, same observations are
applicable.

Secondly, we consider the idle demand load. This simulation differs from the
one in Section 9.1 in terms of setup. The MIMO formulation provide the ability
to control the power plants independently, which underlies the reason for applying
this formulation, as described in Section 5.2. In the case of decommitted plants, the
manipulable input range is zero as well as the plants individual trajectory. We set
u = 0 at decommitted hours whereas u = 0 one hour after and before shutdown and
startup. The plants trajectory is set to zero, i.e., PL = PU = 0, in all decommitted
hours. Thus, penalty is added if power is produced in decommitted hours. The
results of the simulation, reported in Figure 9.6, show faster response when plant 2
startup at hour 21. This leads to following: shorter production time on the expensive
plant 2; longer production time on the cheap plant 1; a higher overshoot in the total
power production; and less rate of input movement for plant 2 (see Figure 9.4(b)).
All findings are due to the economic MPC ability to set the trajectories and penalties
to push the solution towards the desired behavior.
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Figure 9.5: 24-hour MIMO closed-loop simulation applying the busy demand load and
system power output limits as trajectories. UC production profile for power
plants are unknown while committed plants are known for the economic MPC.
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Figure 9.6: 24-hour MIMO closed-loop simulation applying the idle demand load and
system power output limits as trajectories. UC production profile for power
plants are unknown while committed plants are known for the economic MPC.
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9.2.2 Individual production plans as trajectory
This simulation uses the UC problem to determine the committed and decommitted
plants as well as the individual production plan for the power plants. The economic
MPC is set to obey these production plans. This introduces a new way of controlling
the power production. Now, the controller can be forced to be close to the demand
load, close to the individual production plans for the power plants, or a combination
of the two. Thus, many combinations are possible. We set a range around the plans
by shifting the power level for each time periods either by a fixed amount [MW] or
by a percents of the power level. The range for the power plants is set to ±60 MW
and the demand load range is set to ±100 MW for each time period.

The results of the simulation with the busy demand load and the idle demand load
are reported in Figure 9.7 and Figure 9.8, respectively. The economic MPC produce
the minimum allowed power during the 24 hours. It still produced maximum power
at plant 1 while the production is decreased at plant 2. This result is as expected.

Besides the lower power production, the result differs from Section 9.2.1 when the
range is reached. E.g., consider the first few hours. Figure 9.7(b) shows that plant
1 and 2 have small plateau compared to Figure 9.5(b) where plant 1 have a steady
power increase until maximum power output is attained and plant 2 have a more
steep power decrease. This demonstrates that introducing individual ranges enables
the possibility to manage the power production on each power plants as desired and
thereby secondarily satisfy the overall demand load. Meanwhile, the controller ensures
to find the minimum production cost subject to system limits.
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Figure 9.7: 24-hour MIMO closed-loop simulation applying the busy demand load. The
economic MPC is to obey obtained production plan from solving the UC
problem within a defined range (trajectories).
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Figure 9.8: 24-hour MIMO closed-loop simulation applying the idle demand load. The
economic MPC is to obey obtained production plan from solving the UC
problem within a defined range (trajectories).
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9.3 Key findings

We perform simulations of combining the UC problem and the economic MPC prob-
lem without power supply from renewable energy sources in the power system. Both
the MISO and MIMO formulation of the power system were applied in the controller.
We demonstrate that our economic MPC implementation can follow the solution from
the UC problem.

The MIMO formulation provides benefits in terms of the possibility for individual
control of the power plants while collaborate to satisfy a common objective, the overall
demand load. Section 9.2 present two different setups, which are useful depending
on the situations and purpose. Introducing individual ranges around the UC solution
enables endless possibilities to manage the power production. Consequently, the exact
way of coupling the UC problem and economic MPC should be situation and purpose
dependent.
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CHAPTER 10
Stochastic Simulations

In this chapter, we perform simulations of combining the UC problem and the eco-
nomic MPC problem with power supply from renewable energy sources in the power
system. The controller consider the MIMO system; see Section 5.2. The power supply
from renewable energy sources are modeled as following:

• Wind power modeled as a step

• Wind power modeled as a fluctuating function, a sine wave

In our simulations, we let the UC determine the committed and decommitted plants
while the production plan is entirely controlled by the economic MPC to be within
system power output limits. Lastly, we present key findings from the performed
simulations.

10.1 Modeling forecasts of wind power supply

We model the power production from the wind turbines as a composition of three
values each representing the layer of knowledge and reliability of the forecasts. Let

• dst1 denote the day-ahead forecasts of wind power production;

• dst2 denote the adjusted forecasts of wind power production obtainable during
the day of operations; and

• dst3 denote the necessary adjustments to obtain the true power wind power
production the day of operations.

Then, we model

dstUC = dst1 (10.1a)
dstEMPC = dstUC + dst2 (10.1b)

dstSim = dstEMPC + dst3. (10.1c)

dstUC is the forecast applied to the UC problem. dstEMPC is the forecast for the
economic MPC in a receding horizon manner, and dstSim is the disturbance measured
by sensor. dstSim is the true wind power production. This approach of modeling the
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wind production offers the opportunity to simulate the real-world forecasts. Since, as
time goes, more information is available and forecasts will be more reliable. However,
forecasts are embedded with some uncertainties, which means that some fluctuations
will occur between the best wind power production forecast and the true wind power
production, which is modeled by the unknown disturbances, dst3.

10.2 Step wind power

We investigate the system response when power supply from renewable energy sources
instantly change from initial forecasted. We consider following two cases:

1. Wind contribution is known for the economic MPC though d̂k+j|k in (6.4). This
simulates the situation where updated and more reliable wind forecasts are
provided to the economic MPC.

2. Wind contribution is unknown and modeled as a disturbance. Thus, the eco-
nomic MPC identify the disturbance from the measurements. This simulates
the situation of unexpected wind power production.

For both cases, the wind production is unknown at the time the UC is solved. 6-hour
closed-loop simulations are performed considering the busy demand load. At hour 3,
150 MW wind power enter the system. As new information is available, the required
production for the plants will be changed. Hopefully, the set-point change will be
detected by the economic MPC due to the rolling horizon and feedback, and hence
change the power production accordingly. In the opposite case where less wind power
is received than initially forecasted, the system response will just be the reversed.

10.2.1 Case 1
The results of the 6-hour simulation, reported in Figure 10.1, show that the controller
react to the set-point change at hour 3, whereas the production plan derived from the
UC yields into unnecessary power production. The actual required power generated
by the plants is represented by the solid cyan line. Figure 10.1(b) shows that the
economic MPC reduce the power production at plant 1 when the wind power entering
the system. This is to be expected, since the production at the expensive plant 2
cannot be reduced further due to the minimum power output limit.

We see the controllers ability to react to changes when new and more reliable
information is available. In addition, we also see a challenge with the controller.
The economic MPC do not include binary decisions, as the planning regarding which
plants there are committed and decommitted is determined by the UC. Consequently,
surplus of power may occur if following is true: 1) power supply from renewable
energy sources change a lot compared to initial forecasts, and 2) the system cannot
decrease the production further due to minimum power output limits. In that case,
a shutdown of a power plant may be a good decision. This indicates that solving the
UC problem ones the day-ahead may not be the optimal solution.
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(a) Top: Total power production from the UC and the economic MPC. Required power generated
by plants (solid cyan). Bottom: Wind power production.
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Figure 10.1: 6-hour closed-loop simulation when 150 MW wind power entering the system
at hour 3.
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10.2.2 Case 2
The results of 6-hour simulation, reported in Figure 10.2(a), show that the controller
do not react in the same manner as before. The production is reduced but nowhere
near enough. We obtain this phenomenon, since the disturbance is not modeled in
our control framework. In order to remove offset and hence obtain offset free control,
we model an unmeasured disturbance model by incorporating an output disturbance
into the process model; see Section 5.5.

Figure 10.2(b) illustrates the same setup as before, but with offset free MPC.
Now, a much better solution is obtained, as the controller reacts on the unexpected
set-point change and decrease power production accordingly. We see interesting MPC
characteristics around hour 3. As we know, the control framework is solved in a rolling
horizon manner and in each time step look N prediction steps ahead. Therefore,
increases the power production towards hour 3 to prepare for the increasing demand
load at hour 3. After hour 3, the required power production to satisfy the demand
load deceases because of the sudden wind power supply. By measurements from the
physical plant, the controller gets new information and adapt to the changed situation.
Consequently, we obtain a peak at hour 3. Figure 10.1(a) show no peak at hour 3,
because the controller gets the new update information prior the set-point change.

In this simulation, we identified MPC ability to anticipate future events and to
take actions accordingly when disturbance entering the system by the closed-loop
feedback. In the rest of our simulations, we apply offset free MPC.
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(a) Top: Total power production from the UC and the economic MPC. Required power generated
by plants (solid cyan). Bottom: Wind power production model as disturbance to the system.
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Figure 10.2: 6-hour closed-loop simulation with the busy demand load. Figure 10.2(a)
shows the result of offset MPC simulation and Figure 10.2(b) shows the
result of offset free MPC. Both with same simulation setup.
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10.3 Fluctuating wind power

We investigate the system response when power supply from renewable energy sources
is modeled to be fluctuating. Based on our acquired experience from above, we apply
the offset free MPC presented in Section 5.5. We consider following four cases:

1. First example of introducing fluctuating non-controllable predictable wind power
production.

2. Examine the impact wind power have on power system imbalance by fixing
the frequency, the fluctuations of the wind power, and vary the amplitude, the
amount of wind power production.

3. The opposite as above: fixing the amplitude, the amount of wind power pro-
duction, and vary the frequency, the fluctuations of the wind power.

4. Introduce stochastic process noise and measurements noise.

In following simulations, we apply the busy demand load from Figure 7.3(a). However,
the discretization setup is changed for the economic MPC. Now, the controller receives
the demand load represented on the high resolution time grid. Figure 10.3 depicted
the demand load on the coarse grid and high resolution grid.

In order to test our implementations ability to adapt to a fluctuating trajectory
is the forecast generated by the sine wave function (10.2). The sine wave function
is chosen since this function gives a smooth repetitive oscillation. The sine wave is
defined as a function of time, t, in the form:

f(t) = α sin
(

2πωt

24 · 60

)
, (10.2)
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Figure 10.3: 24-hour demand load [MW]. Coarse grid demand load (tc) applied in the
UC problem (solid blue) and high resolution demand load (th) applied in
the economic MPC (solid cyan). Spinning reserve is 10% of demand loadtc
for each time period.



10.3 Fluctuating wind power 99

0 4 8 12 16 20 24
−2

0

2

 

 

dst
UC

dst
EMPC

dst
Sim

0 4 8 12 16 20 24
−1

0

1

 

 

dst
1

0 4 8 12 16 20 24
−1

0

1

 

 

dst
2

0 4 8 12 16 20 24
−1

0

1

Time [h]

 

 

dst
3

Figure 10.4: Example illustration of (10.1) applying (10.2).

where α is the amplitude and ω is the frequency. Figure 10.4 illustrates an example
of the computed (10.1) applying (10.2). We chose to fix the ratio between dst1, dst2,
and dst3. It is preliminary clear that if the day-ahead wind power production forecast,
dst1, is embedded with more uncertainty, the performance difference between the UC
problem and the economic MPC will be to the controllers advantage.

As we know, the discretization is different for the two methods. The applied wind
power forecasts, dstUC, dstEMPC, and dstSim, are derived on high resolution time
grid. Then, dstUC is discretized, hour by hour, to fit the discretization in the UC
optimization problem. We calculate the discretization as the mean value for each
hour; thus, at each hour the production level is shift up or down.

10.3.1 Case 1
The wind power supply is modeled by (10.2) using the parameters listed in Table 10.5.

The results of 6-hour simulation, reported in Figure 10.6, show many interesting
aspects. As expected, the UC solution return into imbalance situation due to the
discretization and the change in wind power production during the day of operations.
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Table 10.5: Applied parameters in Figure 10.6 to (10.2).

Forecasts α ω

dst1 50 0.1
dst2 25 0.4
dst3 12.5 0.8
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Figure 10.6: 6-hour closed-loop simulation. Top: Total power production from the UC
and the economic MPC. Required power generated by plants (solid red).
Bottom: Wind power production defined as (10.1).

Meanwhile, the economic MPC nicely follow the required power production by the
two plants to satisfy the demand load. In some situations, the economic MPC cannot
follow the fast changes; e.g., between hour 2 and 3. The imbalance as function of time,
reported in Figure 10.7, show how good the economic MPC solution is compared to
the UC solution.
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Figure 10.7: Imbalance as function of time for simulation Figure 10.6. Calculated as the
differences between the optimal required power production by plants and
the two derived solutions: UC solution and economic MPC solution.

10.3.2 Case 2

We fix the frequency, the fluctuations of the wind power, and vary the amplitude, the
amount of wind power production. We want to consider the impact of wind power
have on power system imbalance. We calculate the absolute imbalance between the
optimal production and the derived. We choose to consider the amount of power pro-
duced instead of production cost to avoid introducing uncertainties and assumptions
regarding properly choice of cost prices, imbalance cost, profit margin, etc. However,
results will be presented in a way such that reader easily can calculate the cost with
own figures.

Table 10.8: Results of 24-hour closed-loop with four different amplitudes. Imbalance is
the absolute imbalance between the optimal production and the obtained
production plan.

α Methods Total Power [MWh] Imb. [MWh] %-deviation
- Optimal 27,150 - -

0 UC 27,100 1,150 4.24%
EMPC 27,150 0.07 0.00%

14 UC 27,100 1,169 4.31%
EMPC 27,155 10 0.04%

35 UC 27,100 1,219 4.49%
EMPC 27,175 37 0.14%

70 UC 27,100 1,356 5.00%
EMPC 27,267 152 0.56%
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24-hour closed-loop simulations are performed with four different amplitudes,

α = {0,14,35,70}

and the frequency,
ω = {dst1,dst2,dst3} = {0.1,0.4,0.8} .

Because of the way we model wind power production, the total power production
obtained by the optimal power production will numerical be the same in all four sim-
ulations. The same is true of the UC optimization problem. This does not necessarily
apply for the absolute imbalance.

Table 10.8 lists the obtained results of the simulations. In all cases, the economic
MPC obtain a better solution than the UC problem, nearly identical to the optimal.
Without wind power production, α = 0, the UC solution yields to 4.24% of the power
production is imbalance while the comparable economic MPC solution coincide with
the optimal. The only differences between the two methods are the discretization.
Thus, in this example, the discretization loss is significant. As α increases, the imbal-
ance increases for the two methods. In particular, we see that the controller begins
to have difficulties to follow the very fluctuating wind power production. Further
research of control parameters may optimize the results. In the hardest case, α = 70,
the amount of imbalance the controller produce only stands for 0.56% of the total
optimal power production, whereas the solution from the UC optimization problem
yields 5%.

The obtained solution with α = 14 and α = 70 are depicted in Figure 10.9. The
illustrations confirm the data analyzed before. In Figure 10.9(b), we see that the
controller has difficulties to follow in some cases when fluctuations are too large. We
note that penalty is added if the controller produce less than demand load
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(a) α = 14.
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(b) α = 70.

Figure 10.9: 24-hour closed-loop simulation with two different amplitude values. Top:
Total power production from the UC and the economic MPC. Required
power generated by plants (solid red). Bottom: Wind power production
defined as (10.1).
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10.3.3 Case 3

We fix the amplitude, the amount of wind power production, and vary the frequency,
the fluctuations of the wind power. Two 6-hour simulations are performed where the
frequency is doubled. The wind power production is modeled by (10.2) using the
parameters listed in Table 10.10.

The results of the simulations are reported in Figure 10.11. The economic MPC
obtain a decent result. As the frequency increases, the controller has difficulties in
some time periods to follow the optimal power production completely due to the
integrated system dynamics and limits. The economic MPC solution follows the
upper peaks, because penalty is added if production is below the demand load.

In the following, we set the power output range to be ±0.03% of the demand load.
Figure 10.12 shows the result with ω2 (the same simulation as in Figure 10.11(b)).
Now, the production plan is more in the middle and do not necessarily follow the
upper (nor the lower) peaks. Consequently, control parameters may be adjusted in
order to obtain the desired behavior.

10.3.4 Case 4

Now, we take a step back. We want to show an interesting challenge with uncer-
tainties. The utilized data and forecasts are not incontestable and thus embedded
with some uncertainties. E.g., forecasts of demand load, forecasts of renewable en-
ergy supply, forecasts of prices, etc. Additionally, in scientific computing where we
try to simulate the real-world, model uncertainties are also present. If uncertainties
become a significant part of provided data, time should be spent on investigating the
emerging challenges.

As we know, one of the reasons to apply MPC for optimal control of systems is its
great feature of getting close to system limits without exceeding. However, this may
become a challenge if uncertainties are significant. We note that it is very expensive
to exceeding system limits, as it may result in stability issue and possible breakdowns
in the power grid. In present simulations, we have seen that the controller increase
the power production at plant 1 to its maximum power output. In the following,
we apply significant process and measurement noise into the system to show that
this may be an issue. Let the noise in the system be uncorrelated and identically

Table 10.10: Applied parameters in Figure 10.11(a) and Figure 10.11(b) to (10.2).

Forecasts α ω1 ω2

dst1 50 0.2 0.4
dst2 25 0.8 1.6
dst3 12.5 1.6 3.2
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independently normally distributed as wk
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 . (10.3)

6-hour closed-loop simulation, reported in Figure 10.13, show that the demand load
is not satisfied in all time steps. The economic MPC find a feasible solution, since
the output constraints are soften, thus, penalty is added. Furthermore, we see that
plant 1 exceed its maximum power output in the last hours.

The purpose of this simulation is to show that uncertainties may be an issue
in practices. An investigation on these challenges is outside the scope of this the-
sis. However, we would like to mention a possible way to address this issue. The
stochastic uncertainties may be modeled into the economic MPC model. The Mean-
Variance economic MPC include the mean and variance of the data [Sok+14; Cap+15;
Mor+14]. E.g., consider the production cost cTu, where c is the prices of producing
power. Then, we may formulate the objective as

minimize
{u}

ϕ = λE[cTu] + (1− λ)Var[cTu], λ ∈ [0,1]. (10.4)

E[cTu] is the expected value of the cost and Var[cTu] is the variance of the cost. λ
is a risk aversion parameter that determines the trade-off between the expected cost
and the cost variance.

10.4 Key findings

We perform simulations of combining the UC problem and the economic MPC prob-
lem with power supply from renewable energy sources in the power system. We iden-
tify MPC ability to anticipate future events and to take actions accordingly when
disturbance entering the system by the closed-loop feedback. Thus, as new and more
reliable information is available, the controller reoptimizes the production plan. We
observe that modeling the unmeasured disturbance, by incorporating an output dis-
turbance into the process model, yields nicely behavior and we obtain offset free
MPC.

Simulations indicate that the solutions obtained by the economic MPC are better
than the solution obtained by the UC optimization problem. Less power imbalance is
created using economic MPC. As the fluctuations can be managed by the controller in
a predictive manner, the need for reserve capacity is reduced. This implies potential
cost reduction with a good impact on the environment.

Furthermore, we address some challenges with the controller when the renewable
power supply is fluctuating too much too fast and when introducing uncertainties in
data or model. These challenges are interesting, because too fluctuating power supply
may result into undesirable imbalance and unstable power systems.
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(a) Simulation with ω1 presented in Table 10.10.
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(b) Simulation with ω2 presented in Table 10.10.

Figure 10.11: 6-hour closed-loop simulation. Fixed amplitude and vary frequency. Wind
power modeled by (10.2) using parameters listed in Table 10.10.
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Figure 10.12: Same simulation as Figure 10.11(b) with the change of power output range
to be ±0.03% of the demand load.
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Figure 10.13: 6-hour closed-loop simulation. Consider the stochastic model with stochas-
tic process noise and measurements noise distributed as (10.3).
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CHAPTER 11
Conclusions and

Perspectives
In this thesis, we have investigated the design and implementation of combing the
Unit Commitment (UC) optimization problem and the economic Model Predictive
Control (MPC) problem for optimal operation of power systems. This chapter will
collect the key findings presented in the thesis and provide concluding remarks, as
well as address possible extensions and directions for future research.

The thesis primary objective is repeated: By combining the unit commitment opti-
mization problem and the economic model predictive control problem, it is possible to
obtain an intelligent control strategy that can overcome some of the important chal-
lenges associated with the increasing share of intermittent renewable energy sources in
the power supply. This novel coupling will operate the power systems in a cost efficient
manner while satisfying the overall demand load and various system requirements.

We have shown that the developed novel control strategy appears to provide a
feasible and a promising solution to overcome some of the important challenges. We
provide an intelligent control strategy that shows properties of managing uncertainty
with flexibility. We demonstrate a potential for significant savings in imbalance cost.

Reliable forecasts of power supply from renewable energy sources are of great
importance, since the uncertainties in these forecasts have a significantly impact on
the imbalance cost and stability issues. We demonstrate the importance of reoptimize
the production plan during the day of operation in order to account for fluctuations
and reducing the dependence on the correctness of forecasts. We show that economic
MPC is indeed an appealing method to enable for this functionality. By real-time
optimization with feedback, economic MPC successfully adapt, predict, and change
the production plan according to the fluctuations inherent in renewable power supply.
A reduction in imbalance will also lead to less need of the expensive spinning reserve,
which again yields cost savings and have a good impact on the environment.

Conclusively, the provided valuable learning will without a doubt be interesting
to the academia and industry like DONG Energy.
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11.1 UC

In Chapter 4, we describe and formalize mathematically the UC optimization prob-
lem as a mixed integer linear programming problem. UC is an intuitive method
to determine the optimal production plan for a giving portfolio of power generating
plants. Scheduling with a financial and environmental perspective is nontrivial. The
complexity is a key challenge for this type of problem. Generally, UC is NP-complete.
Consequently, for power systems with practical size (large-scale power systems), the
high computational complexity makes it impossible to solve the UC problem with a
high frequency, in order to intercept the variations inherent in the nature of renewable
energy sources.

11.2 Economic MPC

Chapter 5 introduce the principles of models for predictive control including realistic
linear dynamical model of power plants in a power system. Furthermore, we introduce
model for achieving offset free tracking performance in the presences of unmeasured
nonzero disturbances; representation of dynamics by the Finite Impulse Response
(FIR) model; as well as Kalman state estimation, filtering, and prediction subject to
stochastic noise.

In Chapter 6, we motivate the choice of economic MPC as our control framework,
as well as describe and formalize mathematically a soft constrained linear economic
MPC framework into a linear optimization programming problem. In our work, we
consider both a deterministic and a stochastic formulation.

MPC capability to integrate predictions and forecasts of dynamical systems, as
well as anticipate future events and take control actions accordingly are received
eagerly, since this is exactly the functionality we require. Compared to the UC
optimization problem, the economic MPC is designed to be solved in real-time at
a high frequency, with updated and more reliable forecast as input.

11.3 UC and economic MPC

We present a two-level control strategy: At the high-level, the day-ahead production
plan is performed on a coarse time grid (e.g., hourly) by solving the UC problem. At
the low-level, the minutes-ahead production plan, or the online control, is performed
on a high resolution time grid (e.g., 20 sec) by applying the economic MPC.

In Chapter 8, a case study indicates that the coarse discretization for the UC have
a cost impact on the solution. Compared to the optimal production plan, the UC
solution with coarse discretization yields 2.63% imbalance power while the economic
MPC solution coincide with the optimal production plan. Simultaneous, the economic
MPC have a runtime of 0.04 sec. Solving the UC problem on a high resolution time
grid yields a runtime of 2.60 sec. Thus, we obtain a 65x speedup. This supports the
choice of using economic MPC as the method for reoptimizing the production plan.
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In Chapter 9, we observe that our economic MPC implementation yields great track-
ing performance. The provided MIMO formulation enables the controller the oppor-
tunity to manage each power plant independently while tracking them to satisfy a
common goal, e.g., obey the overall demand load. This formulation enables endless
tuning and setup possibilities to manage the power production as desirable while
minimizing the operating cost subject to system limitations.

In Chapter 10, we examine the system reaction when intermittent renewable energy
sources enter the power system. The results show that the controller indeed have the
ability to anticipate future events and to take actions accordingly, when disturbance
enter the system. We identified the importance of formulating the economic MPC
to achieve offset free tracking performance, when unmeasured nonzero disturbance
entering the system.

We address some challenges for the controller when the renewable power supply
is fluctuating too much too fast and when introducing uncertainties in the data or
model. The latter is particular interesting. MPC great feature of operating the
system to its limits may introduce challenges if data or forecasts are embedded with
significant uncertainty. By simulations, we show that system limits may be exceeded
in the event of significant process noise and measurement noise. Therefore, we suggest
incorporating uncertainties into the control framework
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11.4 Perspectives and further research

The subject of this thesis is far more extensive than the scope of the thesis. There are
two paths to be followed after this project. One path is to test the control strategy
suitability in a practical setting by an industrial implementation maturing. The
other path is further academic development. In the following, we address possible
extensions and directions for future research.

• Further development, design prototypes, and real-life testing will definitely
prove the feasibility and verify the initial results of an economic and environ-
mental potential.

• In Chapter 8, results show that the UC discretization and parameterization have
a significant impact on the cost. Further investigation should be conducted to
determine whether there exists hidden cost savings and unutilized resources.

• We solve the UC once at the day-ahead planning. Maybe changing the cycles
yield a better performance, e.g., executing the UC problem in a closed-loop
manner with rolling-shrinking horizon approach. Then, apply the economic
MPC to balancing the production in between. Thus, the controller is reset by
a new and updated UC solution.

• Initial results show that the developed control framework may have some chal-
lenges if data or model uncertainties are significant. Therefore, for the control
strategy to be applicable one may look on how to handle these uncertainties
appropriately. It might also be interesting to examine the formulation of the
economic MPC objective. E.g., one could formulate

α ∥uk − ūk∥+ (1− α) ∥∆uk∥ ,

where uk is the manipulated variables, ūk is the trajectory from solving the
UC optimization problem, and α is a risk aversion parameter that determines
the trade-off between following the UC solution and the cost of discourages
disproportionate movement of the manipulable variables. In addition, we model
the cost function as a linear cost. If the costs more correctly follow a nonliner
trend, the change to nonlinear economic MPC may introduce new issues as
solution time, stability issues, and robustness [JYB14; Luc+14].

• The electricity market does not really match to the current and future way of
producing power. The market should maybe be modified to better fit the new
way of power production. We see that the intraday market has come increasingly
important as more renewable energy sources enter the power grid. Imbalance
between day-ahead contracts and actually produced often need to be offset.
By curious, the electricity is a commodity production there can be bought,
sold, and traded. Rather comparable to the financial market where financial
securities are traded. Thus, can we imagine a scenario where stocks and alike
only were traded once a day?
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APPENDIX A
Background Material

This appendix present mathematical background, results, and theorems applied in
this thesis.

A.1 Linearization and discretization

This section outlines the basic concepts of how a linear time-invariant continuous-time
model may be linearized and discretized to obtain a linear time-invariant discrete-
time state-space model. For simplification, an example of a deterministic nonlinear
dynamical system will be considered.

A.1.1 Continuous-time state-space model
The deterministic nonlinear dynamical system may be stated in terms of ordinary
differential equations

ẋ(t) = f(x(t), u(t), d(t)), x(t0) = x0 (A.1a)
y(t) = g(x(t)) (A.1b)
z(t) = h(x(t)). (A.1c)

Approximating (A.1) using Taylor expansion around the equilibrium point
(xs,us,ds,ys,zy) defined by

f(xs,us,ds) = 0

ys(t) = g(xs)

zs(t) = h(xs),

yields the corresponding linear time-invariant continuous-time state-space model

Ẋ(t) = AX(t) +BU(t) + ED(t), X(t0) = X0 (A.3a)
Y (t) = CX(t) (A.3b)
Z(t) = CzX(t), (A.3c)
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Figure A.1: Input-ouput relation describing the transfer functions.

where the linear system state matrices A, B, C, E, and Cz are computed by

A = ∇xf(xs,us,ds), B = ∇uf(xs,us,ds), E = ∇df(xs,us,ds),

C = ∇xg(xs), Cz = ∇xf(xs).

The deviation variables X(t), U(t), D(t), Y (t), and Z(t) are defined by

X(t) = x(t)− xs, U(t) = u(t)− us, D(t) = d(t)− ds,

Y (t) = y(t)− ys, Z(t) = z(t)− zs.

Notice that the system state matrices can be time-varying. The stochastic continuous-
time state-space representation of this is

Ẋ(t) = AX(t) +BU(t) + ED(t) +GW (t)

Y (t) = CX(t) + V (t)

Z(t) = CzX(t).

A.1.2 Continuous-time transfer function
The linear time-invariant continuous-time system (A.3) with the initial condition
X(0) = 0 and Y ≡ Z can be represented as the input-output function in the Laplace
domain

Y (s) = G(s)U(s) +Gd(s)D(s),

where U(s) is the input function, Y (s) the output function, D(s) the disturbance
function, and G(s) and Gd(s) are the transfer functions. Figure A.1 is a block diagram
of the input-output relation. The transfer functions G(s) and Gd(s) describe the
relation between input and output of the system, thus,

G(s) = C(sI −A)−1B

Gd(s) = C(sI −A)−1E,
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where I is the identity matrix. Various continuous-time transfer functions exists. Two
examples are given below:

G(s) =
K

(τs+ 1)n

G(s) =
K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
.

A system respond time to an input can be modeled by adding a time-delay term to
the transfer function. We obtain the transfer function

G(s) =
Y (s)

U(s)
e−τds.

Examples,

G(s) =
K

(τs+ 1)n
e−τds

G(s) =
K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
e−τds.

Systems with multiple input and multiple output may be described by set of transfer
functions. E.g., the transfer function for a system with two inputs and one output, a
MISO system, is

Y (s) =
[
G1(s) G2(s)

] [ U1(s)

U2(s)

]
.

A.1.3 Discrete-time state-space model
The model describing the dynamical systems, independent of realization, can be dis-
cretized into a discrete-time state-space model. Let the input, U(t), be piecewise
constant. This is the case when the input is determined by a computer. We assume
a zero-order hold (ZOH) discrete sampling. Let Ts be the sampling time, such that
the sampling instants, tk, are

tk = t0 + kTs, k = 0,1,2, . . . ,

the zero-order hold of the inputs be characterized by

U(t) = Uk, tk ≤ t < tk+1,

and the states at discrete times X(tk) = Xk. Then, the linear time-invariant continuous-
time system (A.3) is equivalent with the linear time-invariant discrete-time state-
space model

Xk+1 = AdXk +BdUk + EdDk, X(tk) = Xk (A.7a)
Yk = CdXk (A.7b)
Zk = Cz,dXk, (A.7c)
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with

Ad = eATs , Bd =

∫ Ts

0

eAτBdτ, Ed =

∫ Ts

0

eAτEdτ,

Cd = C, Cz,d = Cz.

Ad, Bd, and Ed are computed using the matrix exponential with sampling period Ts

by  Ad(Ts) Bd(Ts) Ed(Ts)

0 I 0

0 0 I

 = exp


 A B E

0 0 0

0 0 0

Ts

 .

The discrete-time linear time-invariant system (A.7) can be represented as the input-
output function in the Z-domain; see Appendix A.2.3.

The subscript d to explicit indicate discrete-time state-space matrices will be
skipped as we only consider discrete-time state-space systems. Consequently, we
formulate the deterministic linear time-invariant discrete-time state-space model by

xk+1 = Axk +Buk + Edk +Gwk (A.9a)
yk = Cxk (A.9b)
zk = Czxk. (A.9c)

and the stochastic linear time-invariant discrete-time state-space model by

xk+1 = Axk +Buk + Edk +Gwk (A.10a)
yk = Cxk + vk (A.10b)
zk = Czxk, (A.10c)

where xk denotes the states, uk the manipulated input variables, yk the measured
outputs, zk the controlled outputs, wk the stochastic process noise, and vk the mea-
surement noise. dk is the process disturbance that can be predicted by a prognosis and
are predicted independently of the measurements y. Consequently, dk shall be con-
sidered as the non-controllable power contribution from, e.g., wind power production,
which in some sense can be predicted by weather forecasts.

Additionally, models used by the predictive controller may be obtained by system
identification, e.g., from experimental analysis; that is, fitting a transfer function to
experimental observations obtained by performing a step or impulse response of the
system. Although, system identification is a very important theme, it is beyond this
thesis scope.
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A.2 List of used theorems

The following sections list used theorems.

A.2.1 Propositional logic
[RG91] present following propositional logic, which is applied in the thesis.

P ⇒ Q ⇔ ¬P ∧Q. (A.11)

De Morgan’s theorem

¬(P ∧Q) ⇔ ¬P ∨ ¬Q (A.12a)

and

¬(P ∨Q) ⇔ ¬P ∧ ¬Q. (A.12b)

A.2.2 Laplace transform
The Laplace transform is a linear operator that transform a function f(t), t ∈ R≥0,
to a function F (s), s ∈ C, given by the integral [Str08]

F (s) =

∫ ∞

0

f(t)e−stdt. (A.13)

A.2.3 Z-transform
Z-transform converts a discrete-time signal sequence x[n] into a complex frequency
domain representation X[z] by

X(z) =

∞∑
n=−∞

x[n]z−n, (A.14)

where z = Re(z) + jIm(z).
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APPENDIX B
System Data

This appendix present data used in the thesis.
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Table B.1: 24-hour demand load [MW] applied in simulations. Spinning reserve is 10%
of demand load for each time period.

(a) Refered as the busy demand load.

Hour Demand load
Busy

1 700
2 750
3 850
4 950
5 1000
6 1100
7 1150
8 1200
9 1300
10 1400
11 1450
12 1500
13 1400
14 1300
15 1200
16 1050
17 1000
18 1100
19 1200
20 1400
21 1300
22 1100
23 900
24 800

(b) Refered as the idle demand load.

Hour Demand load
Idle

1 700
2 750
3 850
4 950
5 1000
6 600
7 600
8 600
9 600
10 600
11 600
12 600
13 600
14 600
15 600
16 600
17 600
18 650
19 700
20 750
21 800
22 900
23 1000
24 1000
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Table B.2: Operational parameters for the 10-unit power system.

Plant ai bi SUi SDi PLi PUi RDi RUi TUi TDi EC

[$/h] [$/MWh] [$/h] [$/h] [MW] [MW] [MW/h] [MW/h] [h] [h] [g/kWh]
1 1000 16.19 10 10 150 455 200 200 8 8 780
2 970 17.26 10 10 150 455 200 200 8 8 500
3 700 16.6 8 8 20 130 100 100 5 5 500
4 680 16.5 8 8 20 130 100 100 5 5 500
5 450 19.7 8 8 25 162 100 100 6 6 500
6 370 22.26 10 10 20 80 50 50 3 3 500
7 480 27.74 10 10 25 85 50 50 3 3 500
8 660 25.92 8 8 10 55 50 50 1 1 500
9 665 27.27 8 8 10 55 50 50 1 1 500
10 670 27.79 8 8 10 55 50 50 1 1 500
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APPENDIX C
The GRANI Program

The GRANI program is a ground-breaking Smart Grid technology on the Faroe Is-
lands launched on November 2012. GRANI is a strategic joint venture mainly between
SEV1 and DONG Energy2 with a budget of approximately DKK 4 million. The pro-
gram is part of the European Union, Seventh Framework Programme (FP7), Twen-
ties Project, and DONG Energy Power Hub Technology. Following quote present the
background for the GRANI program:

”Develop and test new technologies for the integration of fluctuating re-
newable energy in the isolated electricity network located in the Faroe
Islands”.[ND09, §2.1].

The scale of the GRANI program is endless. The achieved experience and knowledge
will be applied in larger power systems such as Denmark for then to introduce into
even larger systems. The two central goals of the GRANI program are [ND09]:

1. Integration of more renewable energy into the energy system and to serve as
a large-scale test facility helping implementation of the EU 2020 vision, while
solving the world’s energy and climate problems.

2. Opportunity to demonstrate, tests, and develop new solutions for integrating
fluctuating renewable energy in an isolated power grid.

Faroe Island produce 14-45 MW power; 60% is produced by expensive heavy fuel oil,
35% by hydro power, and only 5% is produced by wind power [NB13]. According
to Figure 2.1, has the oil price more than triple the last 10 years. To reduce the
dependency on oil and to reduce the carbon footprint, Faroe Island goal is that 75%
of the power production in 2020 will come from renewable energy sources [NB13].

Faroe Island is unique as a demo-test case. It is unique in terms of size (50.000
inhabitants), location, and power production facilities. The size makes the island to
an isolated big city in Denmark. The isolated location in the Atlantic Ocean provides
the island some of the world’s best and worst wind resources; harsh weather conditions

1SEV is Faroe Islands power company owned by the municipalities.
2DONG Energy is one of the leading energy groups in Northern Europe there procuring, produc-

ing, distributing, and trading energy products.
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with frequent storms and very hard to forecast. Furthermore, due to a small power
system and no interconnections to other counties, the power system is exposed to a
high number of blackouts when comparing to continental Europe [BND12]. Despite
these challenges the goal is to increase penetration of fluctuating renewable energy,
which calls for developing a system that can provide stability, is of great importance.



Nomenclature
List of abbreviations

EIA U.S. Energy Information Administration
EMPC Economic Model Predictive Control
FIR Finite Impulse Response
FOB Free On Board; a legal trade term
KKT Karush–Kuhn–Tucker (conditions)
LTI Linear Time-Invariant
MILP Mixed Integer Linear Programming
MIMO Multiple Input Multiple Output
MIP Mixed Integer Programming
MISO Multiple Input Single Output
MPC Model Predictive Control
PL Priority List method
SIMO Single Input Multiple Output
SISO Single Input Single Output
UC Unit Commitment
ZOH Zero-Order Hold
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List of symbols

∀ Logical sign, meaning ”for all”
R The real numbers
C The complex numbers
Z2 The binary number: {0, 1}
R≥0 The nonnegative real numbers: {x ∈ R | x ≥ 0}
x The minimum/lower value of x
x The maximum/upper value of x
1 A vector with all components one
xT The transpose of a vector or matrix
∇ The nabla operator. In the Cartesian coordinate system

Rn with coordinates (x1,x2, . . . ,xn), the nabla operator is
defined in terms of partial derivative operators as ∇ =(

∂

∂x1
,

∂

∂x2
, · · · , ∂

∂xn

)
∥x∥1 ℓ1-norm of a vector x, i.e., ∥x∥1 =

∑n
k=1 |xk|, x =

(x1,x2, . . . ,xn)

Symbols used in UC

Indexes:
i Plant index
t Time period index

Constants:
I Total number of power generating plants
T Length of the planning horizon
Dt System power load demand for time period t

Rt Spinning reserve required at time period t

PWt Forecasted power production from renewable power sources
at time period t

ai, bi Coefficients of the production cost function of plant i

SUi Startup cost of plant i

SDi Shutdown cost of plant i

PLi Minimum power output generation of plant i

PUi Maximum power output generation of plant i
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RDi Maximum ramp-down of plant i

RUi Maximum ramp-up of plant i

ECi CO2 emission rate for plant i

EU Maximum CO2 emission allowed

Variables:
ui,t Binary variable; 1 if plant i is committed in time period t

and 0 otherwise
yi,t Binary variable; 1 if plant i is started up at the beginning

of time period t and 0 otherwise
zi,t Binary variable; 1 if plant i is shutdown at the beginning of

time period t and 0 otherwise
pi,t Nonnegative real variable; power output of plant i in time

period t

Symbols used in economic MPC

k Time period index
N Prediction horizon
Ts Time sample
K Variable gain for transfer function
xk State vector
uk Manipulable input variable
dk Disturbance
yk Measured output
zk Controlled outputs
pk Unmeasured disturbance
wk Stochastic process noise
vk Stochastic measurement noise
ξk Stochastic unmeasured disturbance noise
A, B, C, Cz, F ,
Fz, G

Linear system state matrices

Bp, Cp Linear system state matrices for modeling unmeasured dis-
turbance, Bp = 0 and Cp = I

Φy, Γyu, Φz, Γzu Linear representation of dynamics
ck Cost of producing power
sk Slack variable for penalizing term for satisfy demand load
ρk Weight for penalizing term for satisfy demand load
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α Weight for penalizing term for discourages disproportionate
movement of the manipulable variables

Rk Power output range
Dk Power production forecasts from renewable energy sources
µ Function solve the soft constrained linear economic MPC

optimization problem
zk Minimum value of power output
zk Maximum value of power output
uk Minimum value of manipulable input
uk Maximum value of manipulable input
∆uk Rate of movement for manipulable input
∆uk Maximum ramp-down rate of movement
∆uk Maximum ramp-up rate of movement

Kalman filter:
Niid The independent and identically normal distribution
Rww, Rwv, Rvw,
Rξ

Variances for process noise, measurement noise, and distur-
bance noise

P Discrete algebraic Riccati equation (DARE)
Rfe, Kfx, Kfw,
Kfp

Innovation covariance and Kalman filter gain and

ek Innovation
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