
Visualization and comparison of
randomized search heuristics on

random traveling salesman
problems

Thorkil Burup

s122506

Kongens Lyngby 2015

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Richard Petersens Plads, building 324,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

Abstract

The traveling salesman problem is in a class of problems, that are assumed
to not be computable e�ciently. Using randomized search heuristics is a way
of handling problems such as the traveling salesman problem. In this report,
randomized local search, simulated annealing, (1+1) evolutionary algorithm and
MAX�MIN ant system are observed to determine their strengths and weak-
nesses in relation to each other, and to provide a benchmark on di�erent random
problem instances. Experiments conducted in this study show that randomized
local search and (1+1) evolutionary algorithm are the most adaptable and gener-
ally applicable, but simulated annealing can perform exceptionally well if given
optimal conditions. MAX�MIN ant system �nd reasonable solutions fast, but
cannot improve on them at a high rate compared to the other three. An experi-
ment using random problem instances with vertices placed in clusters indicated
that the graph structure does not a�ect the performance of the algorithms.

Based on data provided by the experiments, recommendations on the algorithms
can be made: Randomized local search and (1+1) evolutionary algorithm are
based on continuously improving their tours. If given a good initial tour (e.g. us-
ing an approximation algorithm), they are not only able to reach good solutions
fast, but more surprisingly (especially for randomized local search), they are able
to consistently reach better solutions. Simulated annealing works mediocre, un-
less it can be provided with very problem-speci�c parameters. In this case, it
excels and is shown to consistently improve its tour cost for a problem. MAX�
MIN ant system is shown to rely heavily on its distance heuristic in the tested
environments, making its pheromone heuristic insigni�cant.

The randomized search heuristics are compared to Concorde on three di�erent
problem instances. This comparison shows that the randomized search heuristics

ii

are capable of calculating solution with costs approximately 115% of optimal
solutions, but can do so in half the time the state-of-the-art solver Concorde
uses. The data presented in this study show that randomized search heuristic
are convenient when an exact solution is not needed and when exact solvers are
not practical; for instance when time or computation resources are limited.

Preface

The project was done as a Master's thesis in Computer Science at the Depart-
ment of Applied Mathematics and Computer Science of the Technical University
of Denmark. The project ran from September 1st 2014 to February 1st 2015,
and was supervised by Associate Professor Carsten Witt.

The study is intended for computer scientists. The report consists of a litera-
ture review and an experimental part. The literature review covers the travel-
ing salesman problem, di�erent types of problem instances (including random
instances) and four di�erent randomized search heuristic algorithms. The ex-
perimental part compares the four algorithms on a variety of scenarios, using
a program that was developed for this purpose. The study provides guidelines
and results for four di�erent randomized search heuristics.

I wish to thank Carsten Witt for his supervision and guidance during the project
period, and for piquing interest in this area of computer science through his
course Computationally Hard Problems taught at the Technical University of
Denmark.

iv

Contents

Abstract i

Preface iii

1 Introduction 1

2 Traveling salesman problem 3

2.1 Variations of TSP . 4

2.2 Solving TSP . 5

2.2.1 Approximation . 5

2.2.2 Heuristics . 6

2.3 Graphs . 7

2.3.1 Uniform distribution of vertices 7

2.3.2 Vertices in clusters . 9

2.3.3 Introducing randomness in existing graphs 10

2.3.4 TSPLIB . 10

2.4 Representing a TSP tour . 11

3 Randomized search heuristics 13

3.1 2-opt . 14

3.2 Neighborhoods and local optima 15

3.3 Algorithms . 16

3.3.1 Randomized local search 16

3.3.2 Simulated annealing . 17

3.3.3 (1 + 1) evolutionary algorithm 19

3.3.4 MAX�MIN ant system 20

3.4 Concorde . 23

vi CONTENTS

4 Program implementation 25
4.1 Program description . 26
4.2 Implementation details . 27

4.2.1 Calculating costs of TSP tours 27
4.2.2 Implementing the 2-opt swap 28
4.2.3 Algorithm architecture . 29
4.2.4 Executing algorithms asynchronously 31
4.2.5 Tour construction inMAX�MIN ant system 33

4.3 Limitation and future features . 34

5 Experiments and results 37
5.1 Test environment . 38
5.2 Graphs used for experiments . 38
5.3 Experiments with algorithm parameters 39

5.3.1 Simulated annealing . 39
5.3.2 (1+1) evolutionary algorithm 43
5.3.3 MAX�MIN ant system 45

5.4 Experiments with problem setups 48
5.4.1 Execution time and graph size 48
5.4.2 Improving the initial guess 50
5.4.3 Gradual modi�cation of graph structure 53
5.4.4 Comparisons with Concorde on TSPLIB instances 55

6 Discussion 59

7 Conclusion 63

Bibliography 66

A Parameters for MAX�MIN ant system 71

Chapter 1

Introduction

The essence of the traveling salesman problem is to �nd the shortest tour which
visits a given set of cities, and returns to the starting point. The problem is very
well-studied, in part because it is an NP-hard problem and in part because its
solutions can be applied to a wide range of problems related to logistics, but also
other areas, such as genome sequencing, can be expressed as traveling salesman
problems.

The traveling salesman problem cannot be e�ciently solved to optimality, thus
measures in which we �nd suboptimal, but still reasonable solutions in less time
are practical. Randomized search heuristics such as evolutionary algorithms,
simulated annealing and ant colony optimization are frequently used to pro-
vide such solutions to di�cult combinatorial optimization problems, including
the traveling salesman problem. The purpose of this project is to implement,
visualize and experimentally compare simple randomized search heuristics on
di�erent random problem instances, both in relation to each other but also with
an advanced exact solver.

In addition to this introduction, the report contains into six chapters. Chapter 2
de�nes the traveling salesman problem formally, and discuss variations thereof,
including problem instances. The chapter also includes a section describing the
problem instances used in this study, and how they are created. Chapter 3 de-
scribes a selection of randomized search heuristics. The di�erent algorithms are

2 Introduction

accompanied by pseudocode that sketches their implementations. In chapter 4,
a program developed in the project to implement the algorithms and visualize
their solutions is described. Several interesting implementation details are pre-
sented in this chapter, as well as the limitations and ideas for future features.
The experiments conducted in this study are presented in chapter 5. Each type
of experiment is explained separately, and results of the experiments are ex-
plained in this context. In chapter 6, a discussion of the used methods and a
recommendations for future work in the area are found. Chapter 7 contains the
conclusions of the experiments.

Chapter 2

Traveling salesman problem

The traveling salesman problem (TSP) is one of the best-known combinatorial
problems in computer science. For a salesman who has to visit certain locations
during his day to sell his goods, and return home at the end of the day, the
problem is to �nd the optimal route to do so. The following formal de�nitions
are used for the problem:

Definition 2.1 (Hamiltonian cycle) Given a graph G = (V,E), a
Hamiltonian cycle is a closed loop through edges in E visiting every vertex
in V exactly once.

Definition 2.2 (Traveling salesman problem) Given an complete,
undirected graph G = (V,E) and a cost function c : E → R, compute the Hamil-
tonian cycle of minimal cost according to c.

The problem is interesting for several reasons. First, the problem has a wide
range of practical applications; spanning from logistics to genome sequencing
[2]. Second, the problem belongs to the set of NP-hard problems, meaning
that, unless P = NP, it cannot be solved e�ciently (i.e. in polynomial time).
Many have tried (and failed) to come up with e�cient algorithms for TSP in
order to solve the P versus NP problem which is one of the seven Millenium
Prize Problems, whose solutions award a million dollars each [5]. Developing

4 Traveling salesman problem

an algorithm with polynomial time-complexity for TSP would prove that P
= NP. The most common opinion amongst experts is that P 6= NP. This
popular claim is re�ected in The Second P=?NP Poll by Gasarch [9], which
presents expert opinions from 2002 and 2012 on the matter.

2.1 Variations of TSP

The problem described in de�nition 2.2 is a very common version of TSP. In
this report the term TSP will use exactly that de�nition. Other variations of
problem do exist though, and they can be formed by changing di�erent aspects
of the problem.

In de�nition 2.2, G is assumed to be complete, meaning that each vertex is
incident on all other vertices. This assumption is not strictly necessary. As long
as just one single Hamiltonian cycle exists in G, a solution meeting the criteras
of TSP as de�ned can be found. However, determining if such a cycle exists is
itself an NP-complete problem called the Hamiltonian cycle problem.

The restriction that G is undirected can also be relaxed. If some edges are
only traversable in one direction (e.g. one-way streets), the graph is directed.
Furthermore, the problem known as asymmetric TSP (ATSP) allows the cost
function to assign di�erent distances between two vertices depending on the
direction you travel; c(i, j) 6= c(j, i) for some pair of vertices (i, j). ATSP can
be transformed into TSP in order use techniques that require the graph to be
symmetric. Such a transformation is proposed by Jonker and Volgenant [15], in
which dummy vertices and in�nite-weight edges are added to create the undi-
rected graph that simulates the symmetry of the original graph. The resulting
undirected graph contains twice as many vertices as the original asymmetric
instance1, which is a very considerable overhead for an NP-hard problem. The
transformation is mentioned because many advanced TSP solvers cannot solve
ATSP [12].

Finally, the cost function c can follow di�erent rules. Perhaps the most obvious
one is metric TSP (MTSP), in which the edge weights map to distances and the
cost function follow the triangle inequality theorem. The theorem states that
it will always be at least as costly to go from a to b and then to c, as it is just
going straight from a to c. More formally:

c(a, b) + c(b, c) ≥ c(a, c) (2.1)

1This number can be reduced if connections between vertices have the same weight in either
direction, as we do not need to insert dummy vertices in these cases.

2.2 Solving TSP 5

If you consider distances between points, the theorem makes sense, but if you
weigh your graph by other means, it may not apply. If the costs associated with
the edges of the graph denote travel time for instance, it may be more optimal
to take a detour (in terms of distance) in order to reach your destination faster.
The problem in which there are no restrictions on the cost function is called
general TSP (GTSP).

Further reading on the topic of TSP variations can be found in The Traveling
Salesman Problem: A Computational Study by Applegate et al. [2].

2.2 Solving TSP

The naive way to solve TSP is to compute every single tour and determining

the best one. There are (n−1)!
2 such tours where n ≥ 3 is the number of vertices.

Unless n is very small, the amount of tours becomes such a large number that
we cannot compute them all in reasonable time. The Held-Karp algorithm
is an improved algorithm to �nd the exact solution to TSP using a dynamic
programming approach. It has a time-complexity of O(n22n) which is better
than factorial time, but still very much unfeasible for large problems [13].

Instead of trying to solve TSP, one can instead try to approximate a solution
or use heuristics, addressed in the following subsections. First, however, it
should be noted that the terms TSP tour and solution are used to describe
a Hamiltonian cycle, which may be misleading as a Hamiltonian cycle is not
necessarily

even though the terms are not technically describing solutions to TSP (i.e. not
necessarily minimized in cost). The terms are used merely for simpli�cation,
convenience and the lack of better terms.

2.2.1 Approximation

To approximate a solution to TSP is to �nd a Hamiltonian cycle, whose cost
is not necessarily optimal. By removing the requirement optimality, it is very
simple to come up with algorithms that run in polynomial time, but the prob-
lem then also becomes irrelevant � any tour through all the vertices will su�ce.
The essential idea behind approximation algorithms is to be able to prove just
how much worse the solutions produced by the algorithms can be, compared
to the optimal solution. The currently best known approximation algorithm

6 Traveling salesman problem

for metric TSP is Christo�des' algorithm, which was published in 1976. It is a
3/2-approximation2 with a reasonable time-complexity of O(n3). The algorithm
works by generating a minimum spanning tree over the graph, and then trans-
forming it into a TSP tour in several steps. The transformation is performed in
a way to retain a guarantee of the approximation solution size relative to the
optimal solution size [4].

Since the best known approximation algorithm for MTSP can result in solutions
up to 50% worse than the optimal, they might not su�ce for some applications.
Furthermore, GTSP cannot be approximated within polynomial time [25]. Re-
search has shown that MTSP cannot be approximated to a ratio lower than
123/122 in polynomial time, under the assumption that P 6= NP[16]. Being
the strictest lower bound found yet, this result means that optimistic computer
scientists can still hope to see an improvement over Christo�des' algorithm in
the future.

2.2.2 Heuristics

Heuristics are alternative ways of approaching a problem in order to calculate
close-to-optimal solutions in short time. A good example of a heuristic for TSP
is the nearest neighbor heuristic; a vertex is picked as the starting point and then
the tour is constructed by moving to the nearest yet-unvisited vertex. The hope
is that the approach will produce a reasonable tour in the end. The heuristic
most certainly is able to produce good solutions, but it may in fact produce
the worst possible solution if the graph is constructed in a certain way [10].
As such, heuristics sound to be similar to approximation algorithms, without
the bonus of guaranteeing an approximation factor, but heuristics should be
perceived more as the idea or guidance behind such an algorithm.

To get beyond approximation algorithms, heuristics can be combined with ran-
domization. The idea is to let a random element decide on moves in the search
space, guided by the used heuristic. This is called randomized search heuris-
tics. For instance, we might apply randomness to the nearest neighbor heuristic
and instead of always selecting the nearest vertex, when constructing the tour,
we select the next vertex at random but giving the nearest vertices a higher
probability of selection than those far away. This speci�c idea is employed by
theMAX�MIN ant system, which will be described in chapter 3 along with
randomized local search, simulated annealing and (1+1) evolutionary algorithm.

2For an α-approximation, α denotes the approximation factor, which is the worst-case
upper or lower bound for the approximation relative to the optimal solution. For TSP specif-
ically, the factor tells us how much greater the cost of the TSP tour will be in the worst case
compared to the exact solution.

2.3 Graphs 7

Randomized search heuristics are the focus of this study, and the topic will be
presented in detail in chapter 3. However, approximation algorithms remain
relevant for two reasons; (1) they can be used as initial guidance for the search
heuristics and (2) they can serve as a benchmark standard for the search heuris-
tics. Experiments using Christo�des' algorithm are found in section 5.4.2 on
page 50.

2.3 Graphs

In this report we will focus on undirected, complete graphs. The cost function
will follow a Euclidean metric, referred to as Euclidean TSP, which means that
the cost of the edge between any two vertices i and j is calculated as the distance
between the two points (x, y) on the plane:

c(i, j) =
√

(xi − xj)2 + (yi − yj)2 (2.2)

This is a special case of MTSP, as Euclidean geometry inherently abides by
equation (2.1) on page 4. The graph will be given by a set of vertices, each
represented by an x and y coordinate, with the edge-costs calculated according
to equation (2.2).

The graphs used will have more or less structure to them. It is interesting to
look at di�erent types of graphs in order to examine the performance of di�er-
ent algorithms under di�erent circumstances. Some algorithms might perform
better, when a certain structure exists on the graph, whereas others might ex-
cel when there is no particular structure. In the following subsections we look
at three di�erent ways of generating graphs randomly: Distributing vertices
uniformly on a graph, placing vertices in clusters and adding randomness to
existing graphs. Furthermore, a library of existing TSP instances is presented.

2.3.1 Uniform distribution of vertices

Creating a graph, where the coordinates of each vertex are selected at random,
causes the vertices to be somewhat equally distributed in the given area. A
consequence is that the optimal tour will be comprised of edges which are all
similar in length, a consequence that is emphasized as the problem size increases.
When creating a TSP tour on such a graph, no part of the graph is expected
to be more important to optimize than another part. A graph with random
uniformly distributed vertices can be seen in �gure 2.1a.

8 Traveling salesman problem

(a) Uniform distribution of vertices

(b) Vertices grouped in clusters

Figure 2.1: Sample graphs of di�erent types (n = 500).

2.3 Graphs 9

This type of graph is generated by �rst selecting upper and lower bounds on x
and y coordinates, de�ning the dimensions of the graph. Then, each vertex is
placed on the canvas by selecting the x and y coordinates randomly according
to a uniform distribution between the selected bounds. This is probably the
most intuitive way of generating a random graph.

Problems with uniformly distributed vertices are interesting because they are
surprisingly similar. Even if two random problem instances look somewhat
di�erent, they probably have a tour cost close to each other. This phenomenon is
explained by the Beardwood-Halton-Hammersley theorem [3], which states that
as the number of vertices n goes towards in�nity, the tour cost tends towards a
speci�c value dependent on n and a constant β. For the simplest case, where
the x and y coordinates of the vertices are uniformly distributed in the interval
[0; 1], the theorem states that with probability 1;

lim
n→∞

L√
n
→ β (2.3)

where L is the optimal tour length. If we know the constant β, we can estimate
tour costs of random instances � more precisely as the problem increases in
di�culty. An exact value for β has not been found, but emperical experiments
suggest that the value is approximately 0.714 [2].

2.3.2 Vertices in clusters

Clustered graphs are interesting to investigate because the placement of vertices
mimic how cities are naturally developed; large density of cities at the center lo-
cality and increasing space between them as we move further away. An example
of such a problem is shown in �gure 2.1b.

In this type of problem, navigation inside a single cluster is pretty similar to in-
stances with uniformly distributed vertices, though the vertices are more dense
in the center of the cluster. If clusters contain only few vertices each and the
clusters are far from each other, the connections between clusters will be respon-
sible for the majority of the cost of a TSP tour. Choosing suboptimal ways of
connecting the clusters have greater impact on the overall solution.

The clustered graph is created by selecting an amount of cluster centers, which
are then distributed randomly on the graph (i.e. exactly like the distribution of
vertices described in section 2.3.1). Then, each vertex is assigned to a cluster at
random. To decide where to place a vertex, a direction and a distance are chosen
at random, determining how far and in which direction the vertex is placed from
the center of its cluster. The random distances from the centers are selected

10 Traveling salesman problem

from a Gaussian distribution with mean value µ = 0, and variance σ being
user-speci�ed. That is, a placement of vertices close to cluster-centers are more
probable than far from them. To avoid negative distances, the absolute value
of the number chosen from the Gaussian distribution was chosen to be used.
Allowing negative values would not a�ect the resulting graphs much; it would
just mean that half the time, vertices were placed in the opposite direction of the
chosen direction. Disallowing negative distances was purely a design decision

2.3.3 Introducing randomness in existing graphs

To make new problem instances, we can take an established TSP instance and
move its vertices around randomly. This idea is related to smoothed analysis
[27], which is a way of analysing performance by adding small amounts of noise
to the worst-case scenario for the algorithm.

Obviously, the amount of noise added decides how much the graph will be
altered. For instance, given a problem instance where the x and y coordinates
are in the range 0 to 1000, moving every vertex 1 unit in a random direction
will not change the appearance of the graph by much. On the other hand, if the
vertices can instead be moved up to 200 units away, then the modi�ed graph
will most likely become completely unrecognizable. If the process is performed
on a graph with some form of structure, e.g. a clustered graph, the structure is
degraded in an increasing degree when the move distance is increased.

To apply randomness to an existing graph, a maximum shift distance, dm, is
selected. All vertices are then moved away from its original position in a random
direction. The randomly selected distance is uniformly selected from the interval
[0; dm[.

2.3.4 TSPLIB

Instead of creating new graphs, we can reuse already existing instances. TSPLIB,
a library of TSP instances, was introduced by Gerhard Reinelt in 1991 as a way
of providing the scienti�c community with a base of TSP instances � as well as
their solutions once acquired [22]. All symmetric TSP instances found in the
library at the time of writing have been solved to optimality [21], which makes
the library an excellent basis for benchmarking algorithms.

2.4 Representing a TSP tour 11

The TSPLIB speci�cation [23] de�nes the Euclidean distance function as:

c(i, j) =

⌊√
(xi − xj)2 + (yi − yj)2

⌉
(2.4)

where b e denotes the rounding to nearest integer on a real number. Note that
the rounding causes this alternative distance function to not comply with the
triangle inequality.

Even though TSPLIB uses this distance function, the regular Euclidean distance
in equation (2.2) on page 7 will be assumed in this study, unless explicitly stated
otherwise.

2.4 Representing a TSP tour

There are various ways of representing a TSP tour. The adjacency represen-
tation, matrix representation, ordinal representation and path representation
presented in [26] are all useful for di�erent possibilities in crossover-operations
in evolutionary optimization. In this study the latter representation was used
to represent a TSP tour. The tour is represented simply by the sequence of ver-
tices in the order they appear on the tour, beginning at an arbitrary vertex. The
sequence [v1, v2, . . . , vn] represents the tour v1 → v2,→ · · · → vn → v1. Note
that the vertices at the �rst and last position of the sequence are connected on
the tour. Of course, for the path to qualify as a TSP tour, every vertex in the
graph must appear exactly once. Also note that there are 2n ways of encoding
the same tour of length n; the sequence can be shifted and reversed without
a�ecting the tour. This is true because the graphs are undirected and complete.
Reversing path sequences for tours on directed or incomplete graphs may result
in an invalid tour or a tour with a di�erent cost. An example of the encoding
is shown in �gure 2.2.

12 Traveling salesman problem

v1 v2

v3 v4

v5

Figure 2.2: The TSP tour represented by the sequence [v4, v5, v3, v2, v1].

Chapter 3

Randomized search

heuristics

Randomized search heuristics use some method of calculating solutions, and
then re�ne them through many iterations. Essentially, they aim to produce new
solution candidates using knowledge from previous iterations.

Due to the iterative nature of the randomized search heuristic algorithms, they
can be terminated after any given number of iterations and yield the best found
solution. This allows us to specify a timespan for the algorithm to execute in,
which can be valuable in some scenarios, especially considering setups with lim-
ited resources. On the other hand, search heuristics do not give any guarantees
on the solutions they produce.

The search heuristics for TSP detailed in this chapter are: randomized local
search, simulated annealing, (1+1) evolutionary algorithm and MAX�MIN
ant system. The random search heuristics for TSP proceed by always having
a candidate solution and then try to improve on that solution. Of the four
algorithms, three need a starting point, the so-called initial guess. This can
be either (1) a random guess, or (2) a solution known to be good � possibly
calculated by an approximation algorithm.

The random guess can be formed by selecting a random permutation of the
vertices. The cost of such a tour is expected to be bad, because the expected

14 Randomized search heuristics

edge cost from a vertex to a randomly selected vertex is much higher than the
cost of the edge connecting the vertex in the optimal TSP tour. However, such
a guess is trivial to compute.

With the second approach we can for instance use Christo�des' approximation
algorithm (discussed in section 2.2.1). The algorithm is a 3/2-approximation, so
the initial tour will be at most 3/2 times bigger than the optimal tour. The cost
of this initial tour will, with a very high probability, be much lower than that
of the random permutation. With a time-complexity of O(n3), the algorithm
takes more time than selecting a random guess.

Then, how do we determine a starting point for the algorithms? The hypothesis
is that a good initial guess will let the algorithms form a good solution faster,
because it has already been helped along the way. If the guess is very bad, the
algorithms need to alter the solution tour through many iterations to reach the
same �tness of a good guess. In this report, we will mainly focus on the random
guess. However, an experiment conducted using a Christo�des' approximation
is presented in section section 5.4.2 on page 50.

3.1 2-opt

Before presenting the algorithms, we will introduce the 2-opt swap. Most of the
algorithms presented in the following section are merely general approaches to
iteratively improve solutions for a problem by introducing som random modi�-
cation. Being general algorithms, they do not specify exactly what this mod-
i�cation is or how it is applied. However, the modi�cation should be able to
produce any solution from any given starting point in a �nite number of steps,
otherwise the search space becomes disjoint.

For TSP, we obviously need a modi�cation that can change the tour. Since
we use the path representation (described in section 2.4), we need a way to
rearrange the path to create new permutations. The 2-opt modi�cation allows
us to do exactly that. The 2-opt swap is a technique �rst proposed by Croes in
[6]. The idea behind the operation is to resolve edge intersections. The swap
is executed by selecting two edges in the tour. These two edges are deleted,
which will turn the TSP tour into two seperate paths. By reconnecting the two
paths the only other possible way, the swap is completed. This entire process is
depicted in �gure 3.1. The 2-opt swap procedure can be implemented to run in
linear time to the size of the graph (see section 4.2.2 for details).

The number of 2-opt swaps required to transform a tour into any other tour is

3.2 Neighborhoods and local optima 15

(a) The tour before 2-opt (b) Deleting the edges (c) Reconnecting paths

Figure 3.1: A complete 2-opt swap on a sample TSP tour.

�nite. Let us denote the starting tour as the original and the goal as the target.
An approach to transforming the original tour into the target tour could be to
look at an arbitrary edge in the target tour. If that edge is not present in the
original, a single 2-opt swap can introduce it at the cost of some other edge
by making sure to select edges for the swap such that the two vertices we wish
to connect are in seperate paths and are both at either end of their respective
path when the selected edges are deleted (refer to �gure 3.1b). After the swap
we then move on to the next edge (in either direction) on the target tour and
repeat the process, making sure to never select edges for the 2-opt swap that
have previously been introduced. As a result, we can transform a solution into
any other solution in O(n) swaps, n being the number of vertices in the graph. It
may well be that there are even faster ways of performing this transformation,
but this paragraph exists merely to point out that it can be done in a �nite
number of steps. This fact is important because it allows us to escape any local
optimum given enough consecutive 2-opt swaps.

In this report, the term random 2-opt swap will be mentioned occasionally.
What is meant is simply to pick two edges from the tour at random and perform
a 2-opt swap on those edges.

3.2 Neighborhoods and local optima

In this study, a neighbor to a TSP tour is a solution that can be reached with
a single 2-opt swap. A local optimum is a solution that has no neighbors with
a lower cost, and hence cannot be improved by performing only a single 2-opt
swap.

16 Randomized search heuristics

1 input : initial guess
2 output : TSP tour
3 begin

4 best ← initial guess
5 while stop−cond i t i on not met
6 candidate ← 2−opt (best)
7

8 i f co s t (candidate) ≤ co s t (best)
9 best ← candidate

10 end

11 return best
12 end

Figure 3.2: Pseudocode for randomized local search algorithm.

3.3 Algorithms

In the following subsections, the randomized search heuristic algorithms used
in this study will be described. The descriptions will be accompanied by pseu-
docode, and in this code you will �nd that the algorithms loop until a �stop-
condition� is met. A stop-condition could constitute for instance reaching a
certain number of iterations, reaching a certain tour cost (possibly obtained
by using the Beardwood-Halton-Hammersley theorem described in section 2.3.1
on page 7) or exceeding a time limit. The latter is used in this study. When
using the term iteration for the algorithms, this outer loop is the subject. For
this chapter, the cost function presented in the pseudocode is assumed to have
a time-complexity of O(n) (this bound is explained with the implementation
details on 2-opt in section 4.2.2).

3.3.1 Randomized local search

Randomized local search (RLS) is the simplest of the considered algorithms. It
is an iterative approach, which takes the previous best found solution, performs
a random 2-opt operation on it, and consider the outcome. If the cost of the
resulting solution is better than or equal to that of the previous best, the new
solution is accepted. Otherwise it is rejected. The pseudocode for RLS is shown
in �gure 3.2.

The algorithm needs an initial solution guess to get started. This can be a
random guess or an approximation solution from Christo�des' algorithm.

RLS is a local search, which means that it cannot reach every possible solution
from its current solution, because it never accept a solution that is worse than

3.3 Algorithms 17

the current best. Because of this, RLS can enter local optima from which it
cannot escape. A situation can easily occur where the algorithm �nds a good
solution, but a better one could be found if multiple 2-opt operations could be
performed.

Every iteration of RLS has a time-complexity of O(n) because of the 2-opt
modi�cation and because of calculating the tour cost.

3.3.2 Simulated annealing

Annealing is the process of heating up metal and then slowly cooling it down to
let it steadily �nd a new microstucture with better properties. When the metal is
hot it will have a more �uent structure, and during the cooling it will slowly form
its preferred structure. Simulated annealing (SA) is an optimization algorithm
for TSP that employs the ideas behind annealing [17]. In the beginning of
the execution of the algorithm, when temperatures are high, restructuring of
the solution will be accepted with high probability, even if the TSP cost is
increasing. As the temperature decreases, so does the probability of accepting
bad state changes. The intention is that a rough structure is found while the
temperature is high, and as the temperature decreases, the algorithm enters a
re�nement phase in which it �nds the �ner details of the solution.

Pseudocode for the algorithm can be found in �gure 3.3. The algorithm main-
tains a temperature T , the evolving solution and the yet best found solution.
In each iteration, �rst a random modi�cation will occur, then the modi�cation
may or may not be accepted, and �nally the temperature is decreased according
to a cooling scheme. When a modi�cation is made, it is always accepted if it
improves the solution. If the modi�cation worsened to solution, its acceptance
will follow the Boltzmann selection, meaning that the modi�cation will still be
accepted with probability

pB(∆C, T) = e−∆C/(kBT) (3.1)

where ∆C is the di�erence in cost between the new and old solution, kB is a
constant and T is the current temperature. If a change is rejected, the previous
solution is simply used as basis for the next iteration. The Boltzmann selec-
tion will have a higher probability of accepting modi�cation with only a small
di�erence in cost and especially when the temperature is high.

In addition to be initialized with a starting guess, SA is also provided with a
cooling scheme. The cooling scheme de�nes what temperature T the procedure
starts with, and how it is cooled down in each iteration. In this study, a cooling

18 Randomized search heuristics

1 input : initial guess , cooling scheme
2 output : TSP tour
3 begin

4 best ← initial guess
5 cur rent ← best
6 T ← i n i t i a l temperature accord ing to cooling scheme
7

8 while stop−cond i t i on not met
9 candidate ← 2−opt (cur rent)

10 ∆C ← co s t (candidate) − co s t (cur rent)
11

12 i f ∆C ≤ 0
13 cur rent ← candidate
14 i f co s t (candidate) ≤ co s t (best)
15 best ← candidate
16

17 e lse

18 r ← random number in i n t e r v a l [0 ; 1 [
19 i f r < pB(∆C, T)
20 cur rent ← candidate
21

22 T ← next temperature accord ing to cooling scheme
23 end

24 return best
25 end

Figure 3.3: Pseudocode for simulated annealing algorithm.

scheme due to Klaus Meer [19] will be used. It has the recursive de�nition:

T0 = m3

Ti = Ti−1 ·
(

1− 1

cm2

)
(3.2)

where c > 0, m > 0 are parameters and i is the iteration count. This cooling
scheme assumes kB = 1, so that value will be used in this project as well. A
suggested value for m is 20n where n is the number of vertices in the graph.
The parameter c should be a small constant [19]. The temperature Ti is given
as a result of slicing a small percentile from the previous temperature Ti−1.
The absolute decrease in temperature will therefore slow down as i increases,
and it will never reach zero. In theory, always be able to escape local optima
because acceptance of cost-increasing moves always have a non-zero probability,
but practically the probability of doing so will become very low with a low
temperature. In other words, the algorithm with be more likely to accept bad
moves in the beginning of the execution, and will then slowly, as the temperature
decreases, tend towards RLS.

Like RLS, each iteration of SA requires O(n) time to complete due to the 2-opt
swap and calculation of tour-cost.

3.3 Algorithms 19

3.3.3 (1 + 1) evolutionary algorithm

Evolutionary algorithm (EA) is, as the name suggests, based on evolution. The
algorithm lets a population (of solutions) mutate to produce a new generation.
Its general form, (µ+ λ) EA, has a population of µ individuals (solutions), and
to produce the next generation, a set of λ mutated individuals is generated.
The best µ individuals from the parent set and the o�spring set are selected
to be the new population. EA is in the family of genetic algorithms, which
usually deals in the mutation of bit strings because they correspond well to
genes (see the Handbook of Natural Computing by Rozenberg et al. [24] for
further reading on genetic algorithms, evolutionary algorithms and other nature-
inspirired approaches).

(1+1) EA is the simplest form of the (µ + λ) EA, with only a single solution
in the population and a single o�spring solution. Only if the o�spring solution
is better than the parent solution will it serve as a replacement. So far, the
algorithm resembles RLS, but in evolutionary algorithms any solution should
be able to mutate into any other solution. When dealing with bit strings, a
mutation could involve iterating the bits and �ip them with probability pm.
The probability pm should be 1/s where s is the length of the string, meaning
that an average of 1 bit is �ipped in each iteration [8]. This mutation can turn
any solution into any other solution with a non-zero probability, allowing the
heuristic to break out of local optima. Unlike bit strings, we cannot just ��ip�
the edges in a TSP tour, so the procedure cannot be directly translated. Instead,
as suggested Sutton & Neumann [29], we can in each iteration do k number of
2-opt operations, where k follows a Poisson distribution.

A Poisson distribution has a parameter3 λ > 0 which de�nes the mean value and
variance of the distribution. The distribution supports numbers k ∈ {0, 1, 2, ...}.
If we choose λ = 1 for instance, the mean value of the distribution is 1 which
in turn means that we will experience an immense number of zeros every time
a large number (e.g. 100) is picked. When modifying a TSP solution, it does
not make sense to do zero 2-opt operations � we will end up with the same
solution. To overcome this small inconvenience, Sutton & Neumann decided
on using k + 1 modi�cations, where k follows a Poisson distribution [29]. This
e�ectively turns every zero from the distribution into a one, every one into a
two and so forth. The disadvantage of doing this is, that the distribution is now
centered around λ + 1 instead of λ as it a�ects every number picked from the
distribution. Another approach is to simply replace any encountered zero with a
one. In this case, the distribution is only changed in regards to the occurrences
of zeros and ones, not the numbers above that point. Both of these procedures
to pick the number of 2-opt operations per iteration will be experimented with.

3Not to be confused with the number of o�spring in (µ+ λ) EA.

20 Randomized search heuristics

1 input : initial guess , λ
2 output : TSP tour
3 begin

4 best ← initial guess
5

6 while stop−cond i t i on not met
7 k ← pick from Poisson d i s t r i b u t i o n with parameter λ
8 candidate ← cur rent
9

10 i ← 0
11 while i < k
12 candidate ← 2−opt (candidate)
13 i ← i + 1
14 end

15

16 i f co s t (candidate) ≤ co s t (best)
17 best ← candidate
18 end

19 return best
20 end

Figure 3.4: Pseudocode for (1+1) evolutionary algorithm.

The former approach will be called (1+1) EA (k+1) and the latter (1+1) EA
(substitution).

The algorithm for (1+1) EA can be found in �gure 3.4. It is initialized with
two parameters. Like RLS and SA, it needs an initial solution, and the addi-
tional parameter λ is used for the Poisson distribution. The algorithm has a
time-complexity of O(kn) for each iteration, because it has to perform k 2-opt
swaps, each requiring O(n) time. However, because the mean value of the Pois-
son distribution, which k is selected from, is constant, the algorithm has O(n)
amortized time-complexity per iteration.

3.3.4 MAX�MIN ant system

When real-world ants move towards their food source, and are presented with
an obstacle, they have a choice to make: go left or go right. The ants may pick
either of these options at random, thus it is expected that half the ants will go
left and the other half right. Whenever the ants move, they leave behind a trail
of pheromone, which is a substance the ants are attracted to. When given a
choice between a route with a low amount of pheromone and one with a high
amount, they are more inclined to take the route with the high amount. The
ants will move back and forth past the obstacle faster on the shortest route
around the obstacle, resulting in the trail of pheromone accumulating faster on
that side. Because the pheromone trail is stronger on the short route, more ants

3.3 Algorithms 21

will choose that route, thus further adding to the pheromone trail. This positive
feedback will eventually result in all the ants going the shorter route around the
obstacle. Ant colony optimization algorithms try to apply the behavior of real-
world ants to solve combinatorial problems.

The ant colony system was developed to �nd good TSP tours by letting arti�cial
ants construct tours on the graph [7]. To this end, the graph is extended with
a representation of the pheromone levels τij for the edge between every pair
of vertices i and j, with the additional constraint that τij = τji for symmetric
TSP. The algorithm works by sending out arti�cal ants to traverse the graph.
This is done by placing m ants on di�erent start vertices, and then one by one
letting them construct a tour. The ant constructs the tour by employing the
so-called state transition rule to select the next vertex in the tour. The state
transition rule gives the probability of the ant moving from its current vertex i
to another vertex j by

pij =

ταij · η

β
ij∑

u∈J τ
α
iu · η

β
iu

if j ∈ J

0 otherwise

(3.3)

with ηij = 1/c(i, j) being the heuristic function, J being the set of vertices
not yet visited by the ant and the exponents α and β being parameters to the
algorithm stating the relative importance of pheromone and distance, respec-
tively. The state transition rule favors selection of edges with low costs and high
pheromone levels.

When all the ants have constructed their TSP tours, the algorithm emulates the
accumulation of pheromone by updating the τ values across the graph according
to the global update rule4

τij = (1− ρ) · τijold + ρ ·∆τij (3.4)

where 0 ≤ ρ ≤ 1 is the evaporation factor of the pheromone and

∆τijk =

{
1 if edge (i, j) ∈ B
0 otherwise

(3.5)

with B being either the best-so-far (also called the global-best, globally-best or
best-yet) or the iteration-best tour.

It is clear to see that edges that are part of B will collect more pheromone
whereas those not in B will slowly have their pheromone decay. The global
update rule causes the positive feedback e�ect known from the real ants.

4Several di�erent global update rules exist. The chosen rule de�ned by equations (3.4) and
(3.5) is a simpli�cation of that found in [28]. A comprehensive collection and discussion of
global update rules can be found in [11].

22 Randomized search heuristics

1 input : α , β , ρ , m , τmax , τmin , update type
2 output : TSP tour
3 begin

4 best ← random tour
5 i t e r a t i o n b e s t ← best
6

7 while stop−cond i t i on not met
8 foreach m ants
9 v ← random vertex

10 J ← empty s e t
11 tour ← [v]
12 add v to J
13

14 while tour i s incomplete
15 v ← s e l e c t ver tex accord ing to s t a t e t r a n s i t i o n ru l e (3.3)
16 add v to J
17 end

18

19 i f co s t (tour) ≤ co s t (i t e r a t i o n b e s t)
20 i t e r a t i o n b e s t ← tour
21 end

22 end

23

24 i f co s t (i t e r a t i o n b e s t) ≤ co s t (best)
25 best ← i t e r a t i o n b e s t
26 end

27

28 foreach edge in graph
29 update τedge accord ing to g l oba l update ru l e (3.4) us ing update type
30 end

31 end

32

33 return best
34 end

Figure 3.5: Pseudocode forMAX�MIN ant system algorithm.

There is a risk that the ant colony system will stagnate into a small set of
solutions, because the pheromone trail diminishes on the edges that are not
used, and keeps increasing on those who are. To solve this problem, Stützle &
Hoos [28] developed theMAX�MIN ant system (MMAS), which is based on
the ant colony system.

MMAS introduces a new feature to overcome the stagnation issue. Two new pa-
rameters, τmax and τmin, set an upper respectively lower bound on the amount of
pheromone that can be stored on each edge at any given time. If the pheromone
quantity calculated on an edge in equation (3.4) is lower than τmin or higher
than τmax, the pheromone will instead be set to τmin or τmax, respectively. This
mechanism helps preventing the positive feedback e�ect causing stagnation, be-
cause the probability of picking an edge can only diminish to a certain point. In
[28], local search and a so-called proportional update rule are also utilized after
each iteration, but these features are omitted in this study to keep the algorithm
simple and comparable to the other presented heuristics.

3.4 Concorde 23

Pseudocode for MMAS can be found in �gure 3.5. The time-complexity for
a single iteration is O(mn2): Each of the m ants need to construct a tour.
The tour requires n vertices to be added, and each time we add a vertex, the
state transition rule is used. This rule requires us to calculate a sum based on
O(n) vertices. It is therefore quite apparent that a single iteration of MMAS has
much more computational work than RLS, SA and (1+1) EA, especially for high
values of m. It is expected that MMAS is unable to undergo as many iteration
as the other heuristics. Of course, the strong guidance that MMAS has when
constructing tours, in the form of the state transition rule, is a compensation
for this fact.

3.4 Concorde

Concorde is a software suite developed by David Applegate, Robert E. Bixby,
Va²ek Chvátal and William J. Cook in the 1990s to �nd optimal solutions for
TSP [1]. Concorde is considered to be a state-of-the-art TSP solver [12]. The
program has solved every instance present in TSPLIB. The largest of these
problems contains 85 900 vertices, and it is the largest instance yet to be solved
[1].

With such a great program for obtaining exact solutions, what do we need
search heuristics for? There are problems that even Concorde cannot handle,
amongst others the 1 904 711-city world problem. On this problem, however, a
heuristic algorithm due to [14] based on the Lin-Kernighan heuristic [18] has
found a tour with a cost at most 0.0474% higher than the optimal solution
(lower bound determined by Concorde), which goes to show that heuristics do
indeed have their merits.

Experimenting with the algorithms used by the Concorde software is beyond
the scope of this study. Still, Concorde will be used to serve as a baseline for
the randomized search heuristics to compete with.

24 Randomized search heuristics

Chapter 4

Program implementation

In order to experiment with the search heuristics discussed in chapter 3, a pro-
gram was created. It was determined following features needed to be supported:

• Creating, loading and modifying graphs and saving them to the hard drive
in TSPLIB format.

• Setting up algorithms and running them in batches.

• Storing results and statistics on algorithm execution on the hard drive.

• Showing solutions as they evolve during execution.

The user interface of the resulting program is shown in �gure 4.1. The program
was written in C# 5.0, which ships with the .NET 4.5 framework.

This chapter will describe the program and discuss some implementation details
as well as limitiations of the program and ideas for future features.

26 Program implementation

Figure 4.1: The graphical user interface of the program.

4.1 Program description

The graphical user interface has �ve sections. The �rst is the Algorithm settings
area, which allows you to set up algorithms with speci�c parameters and to add
them to the execution batch. The batch is merely a collection of algorithms to
be run consecutively, such that the user can start a set of algorithms to run over
night, for instance.

The second area is the Graph settings in which a few statistics on the currently
shown graph can be seen. There are two buttons here as well; the Create graph
button and the Export button. Both of these buttons open dialogs to create
graphs or export the current graph, respectively. Creation of graphs can be
done as described in sections 2.3.1, 2.3.2 and 2.3.3 on pages 7�10. Graphs can
also be loaded from a TSPLIB �le without adding randomness.

The third area handles Runtime settings. This includes setting the execution
time for each of the algorithms in the batch (i.e. 1 800 000 ms for half an hour),
how often the solution shown in the graph area is updated (a zero here means the
solution is only updated by a click on the Manual GUI update button) and set-
tings on where to store execution statistics for the algorithms. Each completed
execution creates an individual statistic �le. This way, an execution can be
aborted without losing the experiments that have been successfully conducted.

4.2 Implementation details 27

Finally, buttons to start and end executions are found in the bottom of the area.

The fourth area, the Statistics area, shows some statistics on the current exe-
cuting batch. It shows which algorithm is currently running and how well it is
faring. It also presents information for the entire batch; when it was started,
when it will end and how many algorithms are left to execute.

The �fth and �nal area is the middle section showing the graph and the current
evolving solution. The vertices of the graph are presented as red dots, and the
current solution is drawn by grey lines.

4.2 Implementation details

In this section, speci�c interesting implementation details behind the program
are presented. Speci�cally, the implementation of tour cost calculations, 2-opt
swaps and MMAS tour construction will be discussed, and the structure of the
program will be described.

4.2.1 Calculating costs of TSP tours

In order to avoid computational overhead, when calculating the cost of TSP
tours, it was decided to precompute the edge costs (following equation (2.2) in
section 2.3 on page 7) and to use an adjacency matrix representation to store
them in. The adjacency matrix uses n2 cells to store data for a graph with n
vertices. Since all the graphs used in this project are undirected, the matrices
will be symmetric across the diagonal, allowing us to settle with storing and
precomputing only half as much. The cost of a TSP tour of length n can be
computed as

n−1∑
i=1

(
c(si, si+1)

)
+ c(sn, s1) (4.1)

where si is the ith element in the path sequence and c is the cost function.
Because c(i, j) can be looked up in the adjacency matrix in constant time, the
cost of the entire tour takes O(n) time to calculate with O(n2) space usage.

28 Program implementation

v1 v2

v3 v4

v5

(a)

v1 v2

v3 v4

v5

(b)

Figure 4.2: The TSP tour before (a) and after (b) a 2-opt swap.

4.2.2 Implementing the 2-opt swap

As described in chapter 3, RLS, SA and (1+1) EA all the 2-opt swap algorithm
to introduce random alterations to their TSP tours. The e�ect of a 2-opt swap
is described in section 3.1 on 14, but how exactly does one introduce such a
swap?

In �gure 4.2 a 2-opt swap is shown. The edges colored red are involved in the
swap. Let us assume that the sequence representing the tour in �gure 4.2a is
[v4, v5, v3, v2, v1]. To apply the 2-opt swap, two steps are performed; (1) delete
the selected edges and (2) reconnect the resulting paths the other possible way.
How this is actually done is to take the �rst and the last vertex between the
chosen edges. These two vertices mark the start and the end of one of the two
paths appearing if deleting the selected edges. To connect the two paths, this
selected path is simply reversed. In the example, we could select v2 as the �rst
vertex and v1 as the last or v4 as the �rst and v3 as the last. Following the
procedure, it would result in the sequence [v4, v5, v3, v1, v2] or [v3, v5, v4, v2, v1],
respectively. Both of these sequences are representations of the tour shown in
�gure 4.2b.

Note that the selection of vertices must be able to wrap around the end of
the sequence. For instance, in the tour [v4, v5, v3, v2, v1] if we select v2 as the
�rst vertex of the subsequence and v4 as the last, the resulting tour should be
[v2, v5, v3, v4, v1] (i.e. reversing the order of v2, v1 and v4) and not [v2, v3, v5, v4, v1]
(i.e. reversing the order of v4, v5, v3 and v2) which encodes a completely di�er-
ent tour. In other words; just selecting two vertices is not enough � it matters
which of the vertices is selected as the start and which is selected as the end of

4.2 Implementation details 29

the subsequence.

The time-complexity for a 2-opt swap is linear to the number of vertices. In
the worst case, the implementation of the 2-opt swap requires us to reverse the
entire sequence.

4.2.3 Algorithm architecture

A diagram of the algorithm classes is found in �gure 4.3.

The algorithms derive from the Algorithm class, which contains basic informa-
tion and methods needed; recording improvements for statistics, comparing a
new-found solution with the best-yet solution and a method for running the al-
gorithm for a given timespan. The pseudocode for the algorithms in chapter 3 all
have their code inside a while-loop that runs until a stop condition is met. This
while-loop is implemented in the Algorithm class, and in each iteration it in-
vokes the Iterate() method implemented in each of its subclasses; RLS, (1+1)
EA, SA and MMAS. This construction was chosen in order to let a common
base class implement the logic that is universally needed by the algorithms.

The algorithms are implemented in a fashion to very easily extend them or
change their behavior. Elements of the algorithms that are considered to be
subject to change are modeled as objects. An example of this is the modi�ca-
tion operation: The 2-opt operation is a class in itself, and when constructing
the algorithm objects, such an operation is supplied in the form of an object
implementing the IModificationOperation interface. In this study, 2-opt is
used exclusively, but if one would want to use for instance 3-opt (deleting three
edges and reconnect) instead, it is simple to implement it as a class and supply
that object when constructing the algorithms instead. Similarly, if we wish to
implement a new cooling scheme for SA which provides a constant (instead of
relative) cooldown each iteration and stops cooling at T = 0, we can introduce
a new class ConstantCooling which derives from the abstract CoolingScheme
class, and implement the desired behavior in its NextTemperature() method.

The observant reader notices that RandomizedLocalSearch derives from One-

PlusOneEvolutionaryAlgorithm; the reason being that the only di�erence be-
tween (1+1) EA and RLS is the amount of modi�cations in each iteration
� a variable amount for (1+1) EA and always 1 for RLS. Implementation-
wise, RLS is a special case of (1+1) EA where the IModificationCount's
NumberOfModifications() method always returns 1. This functionality is im-
plemented in the FixedCount implementation, which RandomizedLocalSearch

is forced to use.

30 Program implementation

F
ig
u
re

4
.3
:
U
M
L
o
b
ject

d
ia
g
ra
m

ov
er

cla
sses

rela
ted

to
th
e
a
lg
o
rith

m
s.

4.2 Implementation details 31

In addition to being easily extendible, a bene�t of implementing functionality
through interfaces is that logic is separated from the algorithms, allowing us
to apply the same code in di�erent algorithm (if applicable), thus avoiding
repeating ourselves.

4.2.4 Executing algorithms asynchronously

In order to interact with the program while the algorithms execute, the algo-
rithms need to execute asynchronously. To this end, a class called AlgorithmRunner
was implemented. Its job is to run a batch of algorithms on the problem, provide
information on its progress and save the algorithm statistics to �les.

The AlgorithmRunner and the code that invokes it (i.e. the code handling the
start button click event) use the Task parallel library of .NET, in which the
async and await keywords are used to respectively declare and invoke asyn-
chronous methods. When a method awaits a call to an asynchronous method,
it returns control to its caller. The process is depicted in the form of a sequence
diagram shown in �gure 4.4.

When clicking the start button, an event-handling method is invoked, which
initializes the AlgorithmRunner. When the method is ready, it makes a call to
the runner to execute the algorithms. It does so by using the await keyword,
meaning that it will stop blocking the main thread. The algorithms execute in
a separate thread, which means that they can occupy their own CPU core in
multi-core environments.

When the GUI needs to update the solution, i.e. when the user clicks the update
button or the update time has elapsed, it probes the AlgorithmRunner for the
current best solution. Additional thought went into this process, as it is always
dangerous to share data between threads. Fortunately, in this program, data
is only read from the other thread � not modi�ed, so we just need to ensure
that the data is in a valid form. If the AlgorithmRunner updated the best
solution by modifying the existing solution and changing the positions of vertices
therein, then, at the probe time, the solution might be incorrectly represented.
Instead, every time the AlgorithmRunner updates the best solution, it changes
the reference of the solution to a new array containing the new solution. When
the GUI probes for the best solution, the runner either has one reference or
another, but in either case the reference points to a valid solution.

32 Program implementation

Figure 4.4: Sequence diagram showing the algorithms running in parallel with
the main application thread.

4.2 Implementation details 33

v1

0

v2

0.2

v3

1 3

r = 0.8

Figure 4.5: Selection of next vertex in MMAS tour construction.

4.2.5 Tour construction in MAX�MIN ant system

In RLS, SA and (1+1) EA, the main random element was the random 2-opt
modi�cation, which is trivial to determine because it just requires us to pick
two random discrete values (i.e. indices in the solution array). In SA, a cost-
increasting modi�cation could be applied with some probability, but this is also
easy to determine by simply picking a random value between zero and one, and
comparing it with the probability of acceptance.

In MMAS, however, a more di�cult situation arises. When MMAS constructs
the tours, it needs to pick the next vertex among the set J of valid vertices. This
is done according to the probabilities given by the state transition rule shown
in equation (3.3) on 21. It is not trivial to select a vertex as before, by simply
choosing a random variable. Instead, we need to determine which vertex the
randomly selected value maps to. The relevant part of the state transition rule
from a vertex i to a vertex j ∈ J is:

p =
ταij · η

β
ij∑

u∈J τ
α
iu · η

β
iu

(4.2)

The denominator in equation (4.2) is the probability weight, denoted w, of each
vertex in relation to each other. Consider the scenario depicted in �gure 4.5,
where J = {v1, v2, v3} and w(v1) = 0.2, w(v2) = 0.8 and w(v3) = 2. Here, v3 is
ten times more likely to be picked by than v1. In order to select a vertex based
on these weights, we select a uniformly distributed number in the interval from
zero to the sum of weights, i.e. the numerator from equation (4.2), which is 3 in
the example. We then choose vertices in any order and start subtracting their
respective weights from r. The vertex whose weight force r below 0 is selected
as the next step on the tour. In �gure 4.5, r = 0.8 is selected. We subtract
w(v1) from r, resulting in r = 0.6. Then, w(v2) is subtracted from r, resulting
in r = −0.2. Thus, in this case, v2 is selected.

Essentially, the random number r indicates where on the spectrum we stop,
and the vertex occupying that interval in the spectrum is selected. The order
in which the vertices appear is of no concern. The random number will not

34 Program implementation

be biased toward any point in the spectrum, and the increase in probability of
selecting a vertex with a high weight stems from the fact that said vertex will
occupy a larger interval on the spectrum (e.g. v3 occupying 2/3 of the interval
in �gure 4.5).

Unfortunately, this method has the disadvantage that it can it take O(|J |) op-
erations to �nish: The method may need to subtract the weight of every single
vertex before concluding its choice. Precomputing the state transition values is
not feasible, seeing that the values change every iteration and the state tran-
sition rule relies on which vertices are contained in J at the given time. A
practical optimization could be to sort the vertices in the spectrum by their
probabilities such that the vertex with the highest probability of being selected
is �rst. This would result in the expected number subtraction made to r being
reduced. However, because a sorting step is required, the approach will prob-
ably not have any positive impact � let alone a large one, so this attempt at
optimization was not tried in this study.

4.3 Limitation and future features

The program was created with the mindset that algorithms with di�erent pa-
rameters should be created and run in batches. The program was not build
around letting di�erent graphs or execution times be variables in the batch, so
when a batch is run, the graph and execution time for each algorithm are �xed.
If one wish to test a speci�c algorithm on a series of di�erent graphs, one would
have to manually switch graphs after each execution. A feature allowing the
graphs and execution times to be a variable part of the batch would enable us
to do this without di�culty. Furthermore, the program in its current state only
allows adding algorithms one by one and deleting all algorithms in the batch.
It would be bene�cial to get more control over the batch, allowing us to delete
individual algorithms or rearrange the ordering they are executed in.

The statistic �les generated by executing algorithms in the program all contain
the best found tour in the path representation. The idea was to allow the
program to load statistic �les and recreate the solution presented in them, but
due to time limitations, this feature was never implemented.

Finally, the program is only able to read Euclidean graphs in a given TSPLIB
�le format. The program can only load symmetric TSP instances de�ned with
a NODE_COORD_SECTION and a correct setup according to the descriptions in
section 2.3 on page 7. If the program is to be used for di�erent graph types,
these should be implemented and the program should support all di�erent graph

4.3 Limitation and future features 35

types supported by the TSPLIB format.

36 Program implementation

Chapter 5

Experiments and results

In this chapter, results from various di�erent experiments are presented. The
goal is to provide basis for a comparison of the randomized search heuristics
presented in chapter 3. Experiments were planned for four problem settings.

The �rst � and perhaps the most obvious � setting to test, is the size of the
graph. This setting is a great way of measuring the search heuristics because
big problem instances limit the use of exact algorithms. Using randomization
in big instances may result in too many subpar modi�cations, leading to the
solution evolving at too slow a pace.

The second setting to look at is the allowed execution time. Allowing more or
less execution time may a�ect the algorithms di�erently. Restricting time is
also directly related to the graph size, in the sense that a large problem instance
will take longer to compute than a small one. Obviously, restricting the time
enough will cause the algorithms to produce worse solutions than otherwise �
but how much worse?

The third setting is graph structure. To experiment with this, comparisons are
made between graphs where vertices are uniformly distributed and graphs with
vertices placed in clusters.

It is also interesting to see what happens if we slowly dissolve the structure of

38 Experiments and results

a clustered graph through many steps, to �nally mimic the random graph. To
do this, randomness is introduced into the structured graphs until they appear
as random as the graph with uniformly distributed vertices.

The fourth and last setting, which will be experimented with, is to see how
the algorithms respond to being given a good initial guess. Imagine that you
already know a pretty good solution to the problem � why not let the search
heuristics take advantage of that? Changing the starting point of the search
from a random initial guess to a more reasonable solution is achieved by using
an approximation algorithm (see section 2.2.1) prior to executing the search
algorithm.

Furthermore, the randomized search heuristics will be compared to the Concorde
TSP solver on TSP instances from TSPLIB, to determine how good the solutions
provided by the algorithms are relative to the optimal solutions.

In every experiment, the results are presented as averages over several execu-
tions. When dealing with randomized algorithms, �uctuation in results are
expected. By performing several repetitions and comparing averages, we try to
balance out this occuring variance.

5.1 Test environment

All benchmarks presented in this chapter were performed on a Windows 8.1 Pro
64-bit computer with an Intel R© CoreTM i5-3210M CPU running with clock-
speeds of 2.5 GHz. The program was compiled in release mode with full code-
optimization and run as a standalone executable.

5.2 Graphs used for experiments

For the experiments, graphs newly created by the techniques discussed in sec-
tions 2.3.1 and 2.3.2 on pages 7 � 9 are used. Table 5.1 gives an overview of
created graphs used in the experiments. The names column speci�es the name
of each graph, which will be used in this chapter to identify the graphs. Cre-
ation method says how the graph was created in the program, including relevant
parameters (e.g. cluster sizes for a clustered graph) such that the graphs can be
reproduced in the program. Here, Uniform denotes the uniform distribution of
vertices while Clustered denotes a clustered graph.

5.3 Experiments with algorithm parameters 39

Table 5.1: Overview of created graphs.

Name Size Creation method
r100 100 Uniform, x, y ∈ [0; 20[, random seed 42
r250 250 Uniform, x, y ∈ [0; 20[, random seed 1
r500 500 Uniform, x, y ∈ [0; 20[, random seed 43
r750 750 Uniform, x, y ∈ [0; 20[, random seed 35
r1000 1 000 Uniform, x, y ∈ [0; 20[, random seed 44
c100 100 Clustered, x, y ∈ [0; 20[, random seed 42, 4 clusters, σ = 0.8
c500 500 Clustered, x, y ∈ [0; 20[, random seed 43, 7 clusters, σ = 0.8
c1000 1 000 Clustered, x, y ∈ [0; 20[, random seed 45, 15 clusters, σ =

0.5

5.3 Experiments with algorithm parameters

In order to �nd overall good parameters for the separate search heuristics, ex-
periments were run on a wide range of parameter combinations on the graphs
r500 and r1000, both with an execution time of 5 minutes and 1 minute.

The initial guess parameter for the relevant algorithms will be a random per-
mutation, except of course in the experiment using approximation initialization
(see section 5.4.2).

The tested values and the results of these initial tests are found in the following
subsections, each algorithm separately. Since RLS does not have any relevant
parameters, it will not have such a subsection. Its behavior is very identical to
that of (1+1) EA, except that it is unable to escape local optima.

5.3.1 Simulated annealing

In SA, the two parameters are c and m, both of which relates to Meer's cool-
ing scheme described by equation (3.2) on page 18. In, [19] it is suggested
to use a low value for c and to use m = 20n where n is the number of ver-
tices in the graph. It was decided to test the values c ∈ {0.01, 0.1, 0.5, 1, 2},
m ∈ {n, 10n, 20n, 10, 100, 1 000}. The results of these tests can be found in
table 5.2.

Looking at the tests we immediately notice that in some cases, we get results
that exceed the norm. For instance, the executions on r500 given 30 minutes
to execute usually yield solution with costs in the range 360 � 390, but for

40 Experiments and results

Table 5.2: Benchmarks of parameters c and m for simulated annealing on two
di�erent graphs (r500 and r1000 of size n = 500 and n = 1000, re-
spectively) using two di�erent time limits. Results are average costs
over 5 executions. The average column presents the total combined
average of all executions. The best average for each problem is
marked with bold font.

c m r500 5 min r500 1 min r1000 5 min r1000 1 min Average

0.01 n 382.15 379.88 526.44 527.48 453.99
0.01 10n 368.20 510.12 9 684.91 9 767.63 5 082.71
0.01 20n 357.41 4 667.33 9 704.34 9 732.46 6 115.39
0.01 10 381.35 381.27 526.18 526.07 453.72
0.01 100 379.42 380.17 527.58 532.11 454.82
0.01 500 383.16 386.29 520.96 530.03 455.11
0.01 1 000 380.89 385.39 523.94 528.37 454.65
0.10 n 378.17 388.65 523.09 682.36 493.07
0.10 10n 4 622.74 4 649.65 9 711.99 9 723.68 7 177.02
0.10 20n 4 644.98 4 671.04 9 732.21 9 771.14 7 204.84
0.10 10 382.56 383.74 525.19 524.93 454.11
0.10 100 380.96 382.63 528.22 529.48 455.33
0.10 500 384.48 386.47 523.69 535.17 457.45
0.10 1 000 375.41 377.50 525.04 687.28 491.31
0.50 n 371.89 372.62 524.71 9 782.51 2 762.93
0.50 10n 4 651.61 4 658.00 9 717.98 9 706.56 7 183.54
0.50 20n 4 648.03 4 668.92 9 670.59 9 712.53 7 175.01
0.50 10 379.41 382.50 526.35 530.69 454.74
0.50 100 384.41 387.04 524.98 537.52 458.49
0.50 500 375.43 374.73 525.87 896.35 543.10
0.50 1 000 363.26 4 700.99 520.32 9 717.06 3 825.41
1.00 n 369.30 369.48 9 646.32 9 765.93 5 037.76
1.00 10n 4 659.24 4 695.40 9 703.14 9 743.95 7 200.43
1.00 20n 4 638.49 4 673.08 9 710.13 9 734.09 7 188.95
1.00 10 381.90 384.60 523.74 527.91 454.54
1.00 100 381.26 378.17 522.35 532.99 453.69
1.00 500 370.08 373.04 522.94 9 683.60 2 737.41
1.00 1 000 356.16 4 679.98 9 672.22 9 763.84 6 118.05
2.00 n 363.38 4 670.45 9 705.63 9 746.16 6 121.40
2.00 10n 4 626.51 4 663.33 9 704.70 9 757.64 7 188.05
2.00 20n 4 644.14 4 697.67 9 747.13 9 768.57 7 214.38
2.00 10 379.96 377.87 529.83 530.42 454.52
2.00 100 381.93 383.72 524.06 540.22 457.48
2.00 500 362.14 4 662.44 517.45 9 778.83 3 830.21
2.00 1 000 4 116.40 4 695.51 9 694.72 9 723.99 7 057.65

5.3 Experiments with algorithm parameters 41

0 1 2 3 4

·107

0

1,000

2,000

3,000

4,000

5,000

Iterations

T
o
u
r
co
st

SA with c = 2, m = 500 on r500.tsp given 5 minutes.

Figure 5.1: The typical development of a solution by simulated annealing.

some of the settings, the cost reaches more than 4 000. The reason for these bad
performances is, the temperature never decreases enough for the the algorithms
to reach the re�nement phase. It is stuck in its initial phase, allowing too many
bad decisions to actually get anywhere. If m is too big the starting temperature
is too high. If c is too big, the temperature decreases too slowly. What values are
classi�ed as �too high� will of course depend on the execution time, because more
time means more iterations, which in turn means more occasions for temperature
decrease.

In �gure 5.1, a plot of how SA typically develops its solution is shown. In
the beginning, where bad decisions are prone to be made, SA improves the
solution for a little while by chance. After approximately 500 000 iterations it
completely stops evolving because it now chooses more bad decisions than good
ones. After 7 million iterations, the temperature has decreases enough that
the solutions develops rather quickly. Over the next 3 000 000 iterations, the
solution improves from having a cost of 4 500 to a cost of about 400. After that,
the process is slowed down as the number of good 2-opt swaps diminishes. After
12 million iterations, no more improvements are found.

The execution depicted by �gure 5.1 has a lot of wasted time. The �rst 7
million iterations do much; in these iterations the algorithm is just decreasing
its temperature in the hopes of eventually getting somewhere. The last 3/4 of the

42 Experiments and results

0 2 4 6

·106

0

1,000

2,000

3,000

4,000

5,000

Iterations

T
o
u
r
co
st

SA with c = 50 000, m = 3.9 on r500.tsp given 1 minute.

Figure 5.2: A more time-e�cient use of simulated annealing.

entire execution are completely wasted as the algorithm yields no improvements
there. In this phase, the temperature has decreased to such an degree that
escaping local optima is improbable.

To fully take advantage of SA, c and m should be given values such that there
is no wasted time on either side of �the big drop�. In the example shown in
the �gure, a decrease in starting temperature (i.e. lowering m) would move
the bene�cial part of the plot to the beginning of the execution, and a slower
cooling (i.e. higher values of c and/or m) would stretch the bene�cial part
over the entire execution, hopefully avoiding entering a local optimum too soon.
The requirement of doing this is of course to have a �xed execution time. One
can imagine a company doing planning with simulated annealing, giving each
execution exactly 1 minutes to compute. In this case, very speci�c parameters
can be found to ensure the 1 minutes are utilized completely by the algorithm.
In �gure 5.2 the above idea has been used to �nd some more ideal parameters5

(c = 50 000 and m = 3.9) for the same graph as in �gure 5.1 but given only
1 minute. The solution produced is in this case better than the one shown in
�gure 5.1; it has less time to execute but uses that time much more e�ciently. In
average over 5 executions, for r500 given 1 minute, the solution produced with
this set of parameters has a cost of 358.97, beating all the other tested setups of

5The parameters were found empirically, as is proposed in [17]. The parameters are far
from the suggested values in [19].

5.3 Experiments with algorithm parameters 43

SA by at least 10.5. The drawback is that it cannot handle less execution time
or a signi�cantly larger graph.

The claim that stretching the cooling process over the entire duration is ben-
e�cial is also re�ected by table 5.2, where we can see that high values of m
(i.e. higher starting temperatures and slower cooling) generally yields better re-
sults. The exception is when the algorithm never reaches the re�nement phase,
in which case it yields horrible results with no noteworthy progress from the
initial guess.

A systematic approach to determining good parameters for SA is presented in
[20], but this approach is not further investigated. In this study, we choose
to select a setup to do a wide variety of experiments on, thus very speci�c
settings which only works well in certain scenarios are not considered. The tests
mentioned earlier revealed that many combinations of values worked out almost
equally well. It was decided to use c = 1 and m = 100 because it was ever so
slightly better than the competition.

5.3.2 (1+1) evolutionary algorithm

The only concern with (1+1) EA is how many 2-opt swaps are applied within
each iteration. As mentioned in section 3.3.3 on page 19, two approaches for
�nding the number of modi�cations in an iteration are used: Poisson distribution
+ 1 and Poisson distribution with 0 substituted by 1. For both of these methods,
the parameters λ ∈ {0.01, 0.1, 0.5, 1, 2} were tested for performance. The value
0.01 represents a �value close to zero�, which will promote more ones with either
type distribution. The larger values for λ will provide more iterations with
multiple 2-opt swaps. The benchmarks are presented in table 5.3.

In �gure 5.3, solution cost as typically developed by (1+1) EA is shown. In
the beginning, many modi�cations lead to improvements causing the solution
to rapidly improve. As the solution improves, it becomes increasingly di�cult
to �nd the 2-opt swaps that improve the overall solution. When the algorithm
reaches a local optimum, it can occasionally break free by performing the right
combination of multiple 2-opt swaps.

In the �rst phase, reaching a local optimum, low values of λ work best because
there is a higher chance of selecting few rather than many 2-opt modi�cations
that combined improves the tour. In the second phase, when a local optimum
is reached and the algorithm needs to perform multiple 2-opt swaps to break
out, a higher λ-value is bene�cial, because it results in more iterations with a
chance to escape the local optimum. Since the last phase is reached only when

44 Experiments and results

Table 5.3: Benchmarks of parameter λ for (1+1) evolutionary algorithm on
two di�erent graphs (r500 and r1000 of size n = 500 and n = 1000,
respectively) using two di�erent time limits. Results are average
costs over 5 executions. The average column presents the total
combined average of all executions.

(1+1) evolutionary algorithm (k+1)

λ r500 5 min r500 1 min r1000 5 min r1000 1 min Average

0.01 383.77 385.19 529.13 531.42 457.38
0.50 382.34 387.15 525.97 560.89 464.09
1.00 381.42 378.73 527.36 614.76 475.57
1.50 382.87 390.65 535.91 730.05 509.87
2.00 382.11 385.28 558.31 889.06 553.69

(1+1) evolutionary algorithm (substitution)

λ r500 5 min r500 1 min r1000 5 min r1000 1 min Average

0.01 384.93 377.39 527.96 533.68 455.99
0.50 382.83 386.65 519.69 538.65 456.95
1.00 380.92 382.72 521.59 542.12 456.84
1.50 378.13 383.07 527.05 582.23 467.62
2.00 376.68 380.12 523.31 620.13 475.06

0 0.5 1 1.5 2 2.5

·106

0

0.2

0.4

0.6

0.8

1

·104

Iterations

T
o
u
r
co
st

(1+1) EA (substitution) with λ = 0.5 on r1000.tsp given 1 minute.

Figure 5.3: Typical solution development for (1+1) EA.

5.3 Experiments with algorithm parameters 45

given enough time, executions that are given a long time to run favor a larger
λ.

During the execution, a low value for λ lets the algorithm reach low-cost solu-
tions faster than in case of high λ-values. However, once reached, a local opti-
mum is easier to break free from with a higher λ. Interestingly, the algorithm
seems able to reach local optima pretty fast. Given enough time, executions
using a larger λ-value eventually reach the same solutions, but are then more
likely to further improve on them due to their increased number of iterations
with multiple 2-opt swaps.

The benchmarks in table 5.3 show that (1+1) EA (substitution) is superior to
(1+1) EA (k+1). It also shows that λ = 0.01 performed best overall, but it
has extensive variance in its performance, always being a top contender when
given 1 minute, while being worst candidate when given 5. Instead, the choice
landed on λ = 1 because it was nearly as good as 0.01, but it presented a decent
performance in all the tested situations.

5.3.3 MAX�MIN ant system

MMAS initializes with a lot of parameters. Recalling from section 3.3.4 on
page 20, we have: α, β, ρ, m, τmin, τmax and the update-type (i.e. whether the
update is based on the global-best or iteration-best solution). The parameters
τmin and τmax are suggested by [11] to be set to 1/n and 1− τmin, respectively.
Wanting a constant value for both parameters, τmin = 0.01 and τmax = 0.99
were selected. The other parameters will be benchmarked with α = 1, β ∈
{1, 3, 7, 10, 13, 17, 20, 23}, ρ ∈ {0.01, 0.1, 0.25, 0.5} and m ∈ {1, 5}. Because so
many parameters were involved, the benchmark was only run on r500 given 5
minutes execution time.

An excerpt of the benchmark is shown in table 5.4. The entire benchmark
can be seen in appendix A.The results show that a high value for β is imper-
ative for the success of the algorithm. With a high β, the other parameters
seem to have little to no e�ect on the developed tours, which makes sense as
the pheromone heuristic is downgraded, and the other parameters all relate to
pheromone buildup on the graph. Picking a low β has a negative impact on the
algorithm; it simply becomes too �random� when constructing its tours. In the
end, the values α = 1, β = 20, ρ = 0.5, m = 5 were chosen, and the global
update rule uses the best-so-far tour to modify pheromone levels.

With a high β, MMAS starts mimicing the nearest neighbor heuristic. Looking
at the solution created by MMAS, it seems that the distance heuristic forces the

46 Experiments and results

Table 5.4: Excerpt of the benchmarks ofMAX�MIN ant system's parame-
ters. Here, α = 1, τmin = 0.01, τmax = 0, 99. The other parameters
are presented in the table. Execution was performed on r500 given
5 minutes execution time. The displayed costs are averages over 5
executions.

β ρ m update-type r500 5min

1 0.5 5 global-best 3 094.53
3 0.5 5 global-best 719.25
7 0.5 5 global-best 417.42
10 0.5 5 global-best 402.50
13 0.5 5 global-best 389.11
17 0.5 5 global-best 388.39
20 0.5 5 global-best 384.26
23 0.5 5 global-best 386.50

?

?

Figure 5.4: An example of bad decisions caused by the distance heuristic of
MMAS.

algorithm into taking suboptimal choices during tour construction. The sitation
is explained in �gure 5.4 where the nearest neighbor is chosen at every turn (as
is most probable); once the tour reaches a corner or a sitation where all nearby
vertices have already been visited, it has to take a bad move in order to progress.

It is speculated that the pheromone heuristic has more success in non-metric
problem instances. Also, in the original ant system by Dorigo et al. [7], all ants
were used to update the pheromone trails, which may have given the pheromone
a higher impact on the entire algorithm. In [28], where MMAS was introduced,
local search was performed, which would be another way to ensure that the
edges getting a bene�t form the global update rule were in fact part of a good
tour. However, using Euclidean TSP, MMAS as described in this study is very
dependent on the distance heuristic, but to such a degree that it renders the
pheromone heuristic practically useless. The problem is, that for the pheromone
heuristic to be bene�cial, it has to be provided with reasonable tours to per-

5.3 Experiments with algorithm parameters 47

0 1,000 2,000 3,000 4,000

390

400

410

420

Iterations

T
o
u
r
co
st

MMAS

Figure 5.5: Typical solution development for MMAS.

form sensible pheromone updates; if β is too low, the pheromone levels become
random gibberish, but if β is too high, the pheromone levels will never truly
matter because the pheromone heuristic is overruled by the distance heuristic.

The usual solution development as seen in �gure 5.5 looks like that of (1+1)
EA, except that MMAS starts much lower and has fewer steps with actual im-
provement. The reason it starts out much better than the other algorithms is of
course its distance heuristic used for constructing the tours. In general, MMAS
only manage a small fraction of iterations compared to the other algorithms.
When an improvement is found by MMAS, it is usually a complete restructur-
ing of the solution, as every iteration builds its own solutions, which is in direct
constrast to the other algorithms, where the tours are created by introducing a
small change in a previous solution. As with (1+1) EA, the progress by MMAS
slows down dramatically as the solution improves.

A point should be made that in comparison with the other presented algorithms,
MMAS is rather complex. As such, the algorithm is rather rigid and �rmly
cemented in its approach: It cannot be easily modi�ed to behave di�erently. For
instance, RLS, SA and (1+1) EA can be modi�ed to use a di�erent modi�cation
instead of 2-opt, but such modi�cations seem to be hard to come by for MMAS.

48 Experiments and results

5.4 Experiments with problem setups

In this section, we will conduct experiments on graph size, execution time,
improvement of the initial guess and graph structure, as well as an experiement
which compares the search heuristics to Concorde. In the following subsections,
when referring to an algorithm, it is assumed to have the parameters chosen in
section 5.3: SA has c = 1 and m = 100. (1+1) EA uses λ = 1 and substitutes
zeros from the Poisson distribution with ones. MMAS has α = 1, β = 20,
ρ = 0.5, m = 5, τmin = 0.01, τmax = 0.99 and uses the global-best solution for
pheromone updates.

5.4.1 Execution time and graph size

A very relevant question regarding the randomized search heuristics is how well
they perform under time constraints and how increasing the graph size a�ects
their results. These two aspects are contained in the same test as they are
connected to each other: Increasing the graph size will of course increase the
di�culty of the problem, making the search heuristics require more time to
produce good results.

For the experiments we will use �ve graphs with increasing di�culties: r100,
r250, r500, r750 and r1000. We will operate with �ve di�erent execution times;
5 seconds, 30 seconds, 1 minute, 5 minutes and 30 minutes.

The results of the experiments are shown in table 5.5. In the table we see that
the overall trend is that the algorithms provide the best solutions when given
the most time. Time and problem size are also undoubtedly connected; the
bigger the problem, the more time is needed to provide a good answer.

In general, RLS and SA seem to settle in a local optima, and stop improving
once they are reached. If we look at the rows for RLS and SA on r100 and
r250, the results are actually similar to each other, regardless of the execu-
tion time. This is because the algorithms generate close-to-optimal solutions
within the �rst 5 seconds, and are unable to (noticeable) improve on them �
hinting that they reach local optima within that time. On larger graphs, this
behavior appears only later because the local optima are harder to reach. Take
for instance RLS on r1000; here we see improvements for the �rst 5 minutes
instead of the �rst 5 seconds. SA was described as being able to escape local
optima, but in practice it does not work out because the temperature reaches
too low values too fast. The algorithm avoids these local optima by selecting
a good overall structure during cooling as discussed in section 3.3.2 on page

5.4 Experiments with problem setups 49

Table 5.5: Randomized local search (RLS), simulated annealing (SA), (1+1)
evolutionary algorithm (EA) and MAX�MIN ant system
(MMAS) executed on �ve di�erent graphs; r100, r250, r500, r750
and r1000, with �ve di�erent execution times; 5 seconds, 30 sec-
onds, 1 minute, 5 minutes and 30 minutes. The displayed costs are
averages over �ve attempts.

r100

Algorithm 30 min 5 min 1 min 30 sec 5 sec
RLS 167.48 167.56 165.72 164.16 165.81
SA 162.32 161.68 163.39 164.62 159.23

(1+1) EA 152.87 152.44 158.15 162.59 161.88
MMAS 152.03 153.52 153.60 155.19 157.94

r250

Algorithm 30 min 5 min 1 min 30 sec 5 sec
RLS 272.34 274.07 273.97 272.99 271.95
SA 272.00 271.82 276.81 272.34 270.55

(1+1) EA 258.67 270.36 274.21 270.83 277.48
MMAS 272.10 274.27 277.20 276.94 282.20

r500

Algorithm 30 min 5 min 1 min 30 sec 5 sec
RLS 376.84 381.47 379.13 383.81 392.54
SA 385.51 381.26 383.00 384.09 399.70

(1+1) EA 381.61 381.92 381.62 382.70 406.12
MMAS 384.39 385.21 387.90 394.09 395.11

r750

Algorithm 30 min 5 min 1 min 30 sec 5 sec
RLS 455.52 456.03 452.32 459.33 603.65
SA 451.41 450.76 450.75 449.91 728.67

(1+1) EA 451.56 452.81 452.16 458.72 692.71
MMAS 467.68 468.93 473.18 475.89 477.84

r1000

Algorithm 30 min 5 min 1 min 30 sec 5 sec
RLS 524.83 524.50 532.18 566.84 990.03
SA 530.28 522.35 535.19 577.72 1 987.45

(1+1) EA 525.51 523.59 544.58 609.03 1 167.46
MMAS 546.15 547.42 551.12 554.12 563.51

50 Experiments and results

17; a restructure after the temperature has been signi�cantly decreased is very
improbable. Because RLS and SA get stuck in local optima, the experiments
in which they do can seem random (e.g. on r100 where SA is best when given
only 5 seconds). This is because the performance is largely dependent on which
local optimum the algorithm hit; whether it is close or far from the optimal
solution. The results indicate that such behavior is more signi�cant on small
problem instances.

(1+1) EA usually starts slower than RLS, but eventually catches up with it.
This is a clear indicator that (1+1) EA is absolutely able to escape local optima
where RLS is not. The behavior also suggests that (1+1) EA does not bene�t
from multiple 2-opt swaps at the same time in the beginning of the execution,
but rather bene�t from them in the later stages where they are needed to escape
local optima. This behavior is especially apparent in the experiments on r1000,
where (1+1) EA has not caught up with RLS and SA even after 1 minute of
execution, and it is expected that the trend will only be further highlighted as
problem sizes increase.

MMAS is very quick to generate good tours compared to the other algorithms,
especially on large problems. This is an obvious bene�t from its distance heuris-
tic. MMAS does improve its solution over time, but is usually outpaced by (1+1)
EA. It also seems that the larger the graph becomes, the harder it becomes for
MMAS to keep in front: On r100 it stays ahead the entire time, only getting
caught by (1+1) EA after 30 minutes, but on r1000 it is behind all other algo-
rithms after 1 minute, and only proceeds to fall further behind as more time is
spent.

Overall, for the parameters chosen for the di�erent algorithms, allowing 30 min-
utes of execution time seems to be too much, as the algorithms are mostly settled
on good solutions after only 5 minutes.

5.4.2 Improving the initial guess

RLS, SA and (1+1) EA all use an initial guess as a starting point for their
searches. If the initial guess is a good guess instead of a random guess with a high
expected cost, the algorithms might be able to achieve better results, especially
when their execution time is limited. In this experiment we see how the three
algorithms perform when Christo�des' 3/2-approximation algorithm is used to
provide the initial guess. MMAS has not been included in this experiment
because it does not use an initial guess. One could base the initial distribution
of pheromone on the result from the approximation algorithm and see how it
a�ects MMAS, but that experiment was chosen not to be conducted.

5.4 Experiments with problem setups 51

Table 5.6: Randomized local search (RLS), simulated annealing (SA) and
(1+1) evolutionary algorithm (EA) executed on three di�erent
graphs; r100, r500 and r1000, with three di�erent execution times;
5 seconds, 30 seconds and 1 minute, using an approximation by
Christo�des' algorithm as initial guess. The displayed costs are
averages over �ve attempts. The cost of the approximation by
Christo�des' algorithm is also presented in the table.

r100

Algorithm 5 sec 30 sec 1 min
Christo�des' 174.60

RLS 157.78 156.6 157.15
SA 162.03 160.61 162.46

(1+1) EA 156.83 156.7 154.19

r500

Algorithm 5 sec 30 sec 1 min
Christo�des' 398.21

RLS 358.59 358.44 357.2
SA 396.63 382.47 382.09

(1+1) EA 360.92 358.56 356.79

r1000

Algorithm 5 sec 30 sec 1 min
Christo�des' 550.16

RLS 526.31 500.04 498.23
SA 550.16 550.16 532.53

(1+1) EA 531.26 504.39 497.8

The experiments are conducted on the graphs: r100, r500 and r1000. The
time restrictions is relatively low at 5 seconds, 30 seconds and 1 minute. These
times constraints include only the search heuristics; the time it takes to cal-
culate the initial guess by Christo�des' algorithm is not counted towards this
limit. As mentioned earler, Christo�des' has a time-complexity of O(n3), which
makes it require more clock cycles than the random guess: On r1000, it took
approximately 1 second to compute the initial tour, which is not completely
insigni�cant. For r100, however, the computation time was too low to measure.

The results of the tests are shown in table 5.6. The tours generated by Christo�des'
approximation algorithm have costs of 174.60, 398.21 and 550.16 for r100, r500
and r1000 respectively. The numbers tells us that for r100 and r500, none of
the algorithms get a serious bene�t by executing for 1 minute compared to 5
seconds. For r1000, however, it is a di�erent matter. Here, RLS and (1+1)

52 Experiments and results

Figure 5.6: Tour calculated by Christo�des' algorithm on r100. The black
lines indicate suggested 2-opt swaps to improve the tour.

EA are able to improve their solutions quite a bit, because the development of
solutions are slower when graphs are larger.

It is very interesting to compare the results in table 5.6 with those found in
table 5.5. SA does not receive a signi�cant improvement by using Christo�des'
algorithm for the initial guess, but RLS and (1+1) EA do to an almost extreme
degree. In this experiment, both algorithm reach tour costs below 500 after
one minute on r1000, whereas they end up at approximately 525 on the same
graph after 30 minutes when using a random initial guess. To understand the
reason why, we look at a tour given by Christo�des' algorithm in �gure 5.6.
The algorithm makes use of a lot of sensible edges, but occasionally has to
settle with some very bad edges. The inclusion of these tend to introduce
intersections between edges, and these situations are easily resolved by 2-opt
swaps. By performing just the few marked 2-opt swaps in the �gure, we have
suddenly produced a very reasonable result.

Taking a look at SA in table 5.6, we see that it is not able to take advantage
of the good initial guess to the same degree as RLS and (1+1) EA. In fact, it
produces results very similar to those in table 5.5. This is because SA is designed
to break down the structure of the solution before slowly patching it together
again, so in the beginning of the execution, when the temperature is low, it
accepts a lot of bad swaps and moves away from an otherwise good starting
point.

5.4 Experiments with problem setups 53

Table 5.7: Randomized local search (RLS), simulated annealing (SA), (1+1)
evolutionary algorithm (EA) and MAX�MIN ant system
(MMAS) executed on three di�erent graphs; c100, c500 and c1000,
with vertices moved up to dm away in a random direction from
their original position. The displayed costs are averages over �ve
attempts, each execution given 5 minutes.

c100

Algorithm dm = 0 dm = 2 dm = 4 dm = 6 dm = 8 dm = 10
RLS 64.54 80.38 90.63 103.62 102.66 107.67
SA 62.81 77.46 87.07 99.51 99.85 103.79

(1+1) EA 61.62 76.47 86.06 96.69 96.30 101.15
MMAS 64.35 78.03 90.75 101.45 98.42 101.72

c500

Algorithm dm = 0 dm = 2 dm = 4 dm = 6 dm = 8 dm = 10
RLS 162.63 218.44 278.77 314.97 325.84 330.48
SA 159.37 214.55 283.17 310.21 322.96 329.58

(1+1) EA 158.15 215.05 281.28 310.00 326.30 334.35
MMAS 168.34 227.30 285.76 321.21 332.25 342.75

c1000

Algorithm dm = 0 dm = 2 dm = 4 dm = 6 dm = 8 dm = 10
RLS 191.97 327.31 420.52 451.95 471.42 483.43
SA 194.01 323.31 423.28 457.39 477.29 483.37

(1+1) EA 193.50 324.75 423.61 450.91 468.26 479.46
MMAS 210.79 341.80 442.14 475.86 495.97 502.03

5.4.3 Gradual modi�cation of graph structure

In this experiment we wish to test how a strong structure in the graph a�ects
the di�erent algorithms, and whether they behave di�erently than on an un-
structured graph. To do this, we start out with graphs where the vertices are
placed in clusters, and then introduce more and more randomness to the graph.
The graphs c100, c500 and c1000 will be used, all of which have their vertices
in a 20× 20 area. Six di�erent maximum coordinate shifts (as described in sec-
tion 2.3.3 on page 10) will be examined for each graph: dm ∈ {0, 2, 4, 6, 8, 10},
and every execution will be given 5 minutes to execute. Figure 5.7 shows how
this introduced randomness a�ects a clustered graph.

The results, presented in table 5.7, shows that the tour lengths increase in cost as
the clusters are dissolved (i.e. higher shift). This is not surprising, as the vertices

54 Experiments and results

(a) dm = 0 (b) dm = 2

(c) dm = 4 (d) dm = 6

(e) dm = 8 (f) dm = 10

Figure 5.7: The graph c500 with every vertex moved up to dm from their
original position in a random direction.

5.4 Experiments with problem setups 55

become spread on a larger area that the tours will have to cover. The results
also indicate that there are no signi�cant correlation between how clustered a
graph is and how well the search heuristics perform. RLS, SA and (1+1) EA
perform at a comparable level in regards to each other, as was the case in the
experiments in section 5.4.1 (table 5.5), and MMAS is slightly behind. This is
the picture, regardless of the problem instance and regardless of the selected
maximum shift.

5.4.4 Comparisons with Concorde on TSPLIB instances

Hitherto, the experiments have focused on comparing the search heuristics with
each other, but have not provided data on how well their solutions compare to
optimal solutions. To make this comparison, the Concorde software is used.

To be able to compare the randomized search heuristics with Concorde, we
have to employ the same cost function. Therefore, in this experiment, the cost
function in equation (2.4) on page 11 is used by the search heuristics. The new
cost function introduces a problem: Because of the relatively low dimensions
on the created graphs (shown in table 5.1 on page 39), many edges have equal
costs due to the rounding. This causes Concorde to perform exceptionally well,
giving an incorrect impression of its power. To give a more fair comparison in
this experiment, it was decided to use the TSPLIB instances: pr439, u724 and
vm1084.

The experiments were performed by �rst allowing Concorde to solve the problem
instances, measuring the time t it took to do so. Then, the search heuristics
were executed on the problems, �rst given t time, then 1/2t and �nally only
1/10t. The idea is to see how close the search heuristics get to Concorde in
similar time, and how well they perform if their executions are limited to less
than what Concorde uses.

The results of the experiments can be seen in table 5.8. The randomized search
heuristic obviously cannot compete with Concorde when using as much time as it
needs to �nd the optimal solution, but we do notice that the solutions calculated
in time 1/2t lie at approximately 115% of the optimal solution, which is pretty
acceptable. This time-saving is more important on bigger graphs, where 1/2t
constitutes more time in absolute terms.

Again, search heuristics are useful in situations when an optimal solution is
not strictly necessary, and when computation resources (in the form of power
or time) are scarce. In the tested scenarios, half the computation time can
be saved if you are willing to accept solutions that are 15% higher than the

56 Experiments and results

Table 5.8: Randomized local search (RLS), simulated annealing (SA), (1+1)
evolutionary algorithm (EA) and MAX�MIN ant system
(MMAS) executed on three di�erent graphs; pr439, u724 and
vm1084. For each graph, C denotes the optimal solution and t
the time Concorde used to �nd this solution. The algorithms were
executed with di�erent time limits relative to t. The displayed costs
are relative to the optimal solution over �ve executions.

pr439

t = 65 seconds
C = 107 217
Algorithm 1/10t 1/2t t

RLS 114.19% 114.17% 114.17%
SA 113.24% 113.69% 112.22%

(1+1) EA 116.89% 112.28% 113.93%
MMAS 115.43% 115.16% 115.01%

u724

t = 85 seconds
C = 41 910
Algorithm 1/10t 1/2t t

RLS 132.82% 114.24% 113.40%
SA 146.36% 113.62% 113.60%

(1+1) EA 141.41% 114.11% 113.06%
MMAS 119.59% 118.88% 118.91%

vm1084

t = 275 seconds
C = 239 297
Algorithm 1/10t 1/2t t

RLS 140.64% 115.29% 114.35%
SA 147.28% 115.62% 113.70%

(1+1) EA 170.03% 116.11% 115.22%
MMAS 120.26% 119.26% 118.10%

5.4 Experiments with problem setups 57

optimal. Also, if a tour needs to be found within a given time frame, a TSP
solver such as Concorde will not su�ce, as it cannot guarantee �nishing in time,
and stopping it prematurely causes it to yield no solution.

58 Experiments and results

Chapter 6

Discussion

When experimenting with randomized algorithms, two isolated results cannot
be compared because the randomization can cause a �uctuation in behavior. In-
stead, multiple executions are performed, and the average results are compared.
This was how the experiments were carried out in this study. The sampling
size, i.e. the number of executions these averages were based on, was somewhat
low. The averages were calculated based on �ve repetitions, but this number
cannot be considered large enough if one wants to balance the random variation.
Symptoms of this can be seen in several of result tables, for instance table 5.5
and page 49, where RLS seem to perform worse when given 30 or 5 minutes,
compared to 60, 30 and 5 seconds.

The low number of repetitions is a consequence of time constraints. As a result of
these uncertainties, small variations in the results were ignored. The analyses of
the experiments only consider those results that are very clear. A consequence
of this carefulness is, that it might have caused one to miss results that are
valid, but too insigni�cant to be considered as such. Another consequence of
the uncertainty is, that results that �t well with the author views are more likely
to be taken up, and if results contradict those views they might be more likely
to be rejected as �random variation�, e.g. when RLS performed worse given long
time. Such tendencies should be avoided as it puts a bias on the analyses, which
is yet another reason for increasing the number of repetitions.

60 Discussion

In addition to increasing the number of repetitions, more �uent experiments
could be favorable. For instance, when experimenting with problem sizes, graphs
with 100, 250, 500, 750 and 1000 vertices were used. If the increments between
these experiments were reduced, it would be easier to more precisely pinpoint
where the di�erences in behavior between algorithms manifest themselves. Dou-
bly so for execution times; if an experiment shows that (1+1) EA overtakes RLS
between the 5 and 30 minutes marks, it would be nice to know more precisely
when it happens.

The results from this study can be extended further. The focus of this study
was narrowed down to a single problem type, the Euclidean TSP. It would be
interesting to explore how the search heuristics perform in other problems, for
instance those mentioned in section 2.1: Variations of TSP (on page 4. There
was experimented, to a limited degree, with a slightly modi�ed distance for-
mula, but especially general TSP, where the cost function does not comply with
the triangle inequality theorem and can even give negative values, and asym-
metric TSP where costs di�er depending on the direction, would be interesting
problems to examine.

It was found that SA could greatly bene�t from �ne-tuning its parameters to a
given problem setup. It would be interesting to examine if a reliable method to
determine these parameters, such as presented in [20], can provide competitive
parameters on a wide range of problems.

As the project evolved, it became clear that the di�erent search heuristics have
their strength in di�erent aspects of the searches. For instance, RLS reaches
good solutions faster than (1+1) EA, but (1+1) EA is able to improve its so-
lution where RLS would reach a local optimum. MMAS beats RLS and (1+1)
EA when the algorithms are given only very short time, or when they execute
on relatively small graphs. SA performed poorly compared to RLS and (1+1)
EA, but as mentioned it still has its merit because it can bene�t greatly from
problem-speci�c parameterization.

Because the algorithms have their individual strengths, it would be interesting to
see if one could take advantage of these di�erences by combining the algorithms.
For instance, it is speculated that it would be bene�cial to start by using RLS
and switch over to (1+1) EA when closing in on a local optimum. The same idea
could be applied to parameters within the same algorithm. A low λ could be
given to (1+1) EA in the beginning of an execution, and it could then slowly be
increased as the solution develops. In case of MMAS we saw that the distance
heuristic was probably too dominant. If the algorithm could start out with a
large β, and slowly decrease it as the pheromone levels reach sensible levels on
the edges, the pheromone heuristic might prove to be more useful. These ideas
would all depend on some form of meta-knowledge to be able to decide when

61

and/or how the parameters should change during execution.

62 Discussion

Chapter 7

Conclusion

In this study, four randomized search heuristic were implemented; randomized
local search (RLS), simulated annealing (SA), (1+1) evolutionary algorithm
(EA) andMAX�MIN ant system (MMAS). The search heuristics were com-
pared by running experiments on random Euclidean TSP instances. The exper-
iments covered the use di�erent problem sizes and time limits, clustered graphs
and uniform graphs as well as using an improved initial guess (not applicable
to MMAS). In addition to this, they were compared to the state-of-the-art TSP
solver called Concorde.

RLS found good solutions fast, compared to the other algorithms. However,
when given too much time, an obvious weakness presented itself; it reaches
local optima from which it is unable to progress. This downside is more severe
on small graphs or when given a long time to execute; randomized local search
simply cannot take advantage of the extra time because at some point, it simply
has no moves it can possibly make.

SA was shown to work exceptionally well when it was possible to �nd and use
parameters that match a given problem. If the size of the problem instance
and the amount of execution time are known, parameters could be found for
simulated annealing such that it performs exceptionally well. This is bene�cial if
you have a lot of similar problems that needs solving. However, such parameters
are very fragile; a change in execution time, computation power and/or graph

64 Conclusion

size will signi�cantly decrease the e�ciency of SA with such parameters. For this
reason, some more generally viable parameters were used in the experiments,
but these parameters caused the cooldown to happen to fast, and the simulated
annealing ended up comparable to randomized local search in most cases.

(1+1) EA proved to be the uncontested best of the tested algorithms when
given a long execution time. It proved to have a progression that was a little
slower than randomized local search, but where randomized local search reached
local optima, (1+1) evolutionary algorithm continued to improve, albeit at a
slow rate. The (1+1) evolutionary algorithm has a parameter which allows one
to balance the speed of initial progression versus the chance of breaking local
optima down the road. (1+1) EA draws its number of modi�cation for a given
iteration from a Poisson distribution. In [29] it is suggested to use the number
+ 1 to avoid iterations with zero modi�cations. In this study, it was suggested
to simply substitute zeros with ones, which proved to be an improvement in the
tested cases.

The MMAS was shown to be very good on the short run because of its distance
heuristic. On small problems it proved to be very competitive compared to
the other search heuristics, but when reaching the large graphs with 750 or
1 000 vertices, it would fall behind. The pheromone heuristic turned out to be
mostly insigni�cant. Changing the parameters related to this heuristic had no
noticeable di�erence on the performance of the algorithm.

Experiments involving changing the time limit and graph size helped to empha-
size the strengths and weaknesses of the algorithms. It clearly demonstrated
how RLS was unable to take advantage of increased time � and how (1+1)
evolutionary was. Unsurprisingly, a low amount of time combined with large
graphs resulted in the algoritms not being able to produce good solutions. On
a 1 000 vertex graph, the solutions provided after 5 seconds were approximately
2 � 4 times worse than those found after 30 seconds. The exception to this is
MMAS, which was able to produce good solutions immediately because of its
distance heuristic. For smaller graphs, however, solutions produced in 5 seconds
are much more optimal. For a 100 vertex graph, the maximum di�erence be-
tween 5 seconds and 30 minutes executions were shown by (1+1) EA, with the
5 second execution giving a solution approximately 6% higher than what was
produced after 30 minutes.

An experiment in which RLS, SA and (1+1) EA were given an initial guess
in the form an approximation from Christo�des' approximation algorithm, was
also conducted. Compared to the random initial guess, it turned out to improve
RLS and (1+1) EA to a surprisingly high degree. On the basis of the approx-
imation, they could on a 1 000 vertex problem in 1 minute produce solutions
that were approximately 5% below the solutions they could otherwise produce

65

in 30 minutes. It turned out that Christo�des' algorithm makes a great overall
structure, but occasionally has to choose some bad moves. RLS and (1+1) EA
using the 2-opt swap proved to be very potent at cleaning up these bad moves.
SA did not have this trait; it simply accepts too many bad moves in the begin-
ning of the execution, destroying the advantage the approximation supplied it
with. Thus, the performance of simulated annealing in this experiment was not
improved noticeably.

Experiments where a clustered graph was step-wise transformed to a more uni-
form graph were also performed. At each step of this transformation, the algo-
rithms were executed to see if the structure of the graph had a signi�cance for
any of the algorithms. The restructuring of the graph showed no sign of a�ect-
ing any of the algorithms. In relation to each other they performed similar to
earlier experiments. This result indicated that there is no basis for a correlation
between clustered graphs and the performance of the algorithms.

Finally, an experiment was conducted to compare the randomized search heuris-
tics with the exact TSP solver Concorde, on graph with 439, 724 and 1084 ver-
tices, respectively. The results from this experiment show that the randomized
search heuristics were in their basic forms consistently able to produce solutions
with costs of approximately 115% compared to the optimal solution in half time
than Concorde needed. A point was made, that selection of search heuristic
against an exact solver can depend on available computational resources and/or
the need for establishing time limits. Concorde is clearly a powerful piece of
software, but the randomized search heuristics still have their place.

66 Bibliography

Bibliography

[1] D. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. Concorde TSP
solver. http://www.math.uwaterloo.ca/tsp/concorde/index.html. Ac-
cessed: 2015-01-24.

[2] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling
Salesman Problem: A Computational Study (Princeton Series in Applied
Mathematics). Princeton University Press, Princeton, NJ, USA, 2006.

[3] J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path
through many points. Mathematical Proceedings of the Cambridge Philo-
sophical Society, 55:299�327, 10 1959.

[4] N. Christo�des. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie Mellon University, 1976.

[5] S. Cook. The P versus NP problem. In Clay Mathematical Institute; The
Millennium Prize Problem, 2000.

[6] G. A. Croes. A method for solving traveling-salesman problems. Operations
Research, 6(6):791�812, 1958.

[7] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by
a colony of cooperating agents. IEEE TRANSACTIONS ON SYSTEMS,
MAN, AND CYBERNETICS-PART B, 26(1):29�41, 1996.

[8] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolu-
tionary algorithm. Theoretical Computer Science, 276(1�2):51 � 81, 2002.

http://www.math.uwaterloo.ca/tsp/concorde/index.html

68 BIBLIOGRAPHY

[9] W. I. Gasarch. Guest column: The second P=?NP poll. SIGACT News,
43(2):53�77, 2012.

[10] G. Gutin, A. Yeo, and A. Zverovich. Traveling salesman should not be
greedy: domination analysis of greedy-type heuristics for the tsp. Discrete
Applied Mathematics, 117(1-3):81�86, 2002.

[11] W. Gutjahr. Mathematical runtime analysis of ACO algorithms: survey on
an emerging issue. Swarm Intelligence, 1(1):59�79, 2007.

[12] M. Hahsler and K. Hornik. Tsp�infrastructure for the traveling salesperson
problem. Journal of Statistical Software, 23(2):1�21, 12 2007.

[13] M. Held and R. M. Karp. A dynamic programming approach to sequencing
problems. In Proceedings of the 1961 16th ACM National Meeting, ACM
'61, pages 71.201�71.204, New York, NY, USA, 1961. ACM.

[14] K. Helsgaun. An e�ective implementation of the lin-kernighan traveling
salesman heuristic. European Journal of Operational Research, 126:106�
130, 2000.

[15] R. Jonker and T. Volgenant. Transforming asymmetric into symmetric
traveling salesman problems. Operations Research Letters, 2(4):161 � 163,
1983.

[16] M. Karpinski, M. Lampis, and R. Schmied. New inapproximability bounds
for TSP. CoRR, abs/1303.6437, 2013.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. SCIENCE, 220(4598):671�680, 1983.

[18] S. Lin and B. W. Kernighan. An e�ective heuristic algorithm for the
travelling-salesman problem. Operations Research, 21:498�516, 1973.

[19] K. Meer. Simulated annealing versus metropolis for a TSP instance. Infor-
mation Processing Letters, 104(6):216 � 219, 2007.

[20] M.-W. Park and Y.-D. Kim. A systematic procedure for setting parameters
in simulated annealing algorithms. Computers and Operations Research,
25(3):207 � 217, 1998.

[21] G. Reinelt. TSPLIB. http://comopt.ifi.uni-heidelberg.de/

software/TSPLIB95/. Accessed: 2015-01-25.

[22] G. Reinelt. TSPLIB � a traveling salesman problem library. ORSA Journal
on Computing, 3(4):376�384, Nov. 1991.

[23] G. Reinelt. TSPLIB95, 1995.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

BIBLIOGRAPHY 69

[24] G. Rozenberg, T. Bäck, and J. N. Kok. Handbook of Natural Computing.
Springer Publishing Company, Incorporated, 1st edition, 2011.

[25] S. Sahni and T. Gonzalez. P-complete approximation problems. J. ACM,
23(3):555�565, July 1976.

[26] D. Simon. Evolutionary Optimization Algorithms. Wiley, 1st edition, Apr.
2013.

[27] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51(3):385�463,
May 2004.

[28] T. Stutzle and H. Hoos. MAX-MIN ant system and local search for the
traveling salesman problem. In Evolutionary Computation, 1997., IEEE
International Conference on, pages 309�314, Apr 1997.

[29] A. M. Sutton and F. Neumann. A parameterized runtime analysis of evolu-
tionary algorithms for the euclidean traveling salesperson problem. CoRR,
abs/1207.0578, 2012.

70 BIBLIOGRAPHY

Appendix A

Parameters for MAX�MIN
ant system

Table A.1: Benchmarks ofMAX�MIN ant system's parameters. Here, α =
1, τmin = 0.01, τmax = 0, 99. The other parameters are presented
in the table. Execution was performed on r500 given 5 minutes
execution time. The displayed costs are averages over 5 executions.

β ρ m update-type r500 5min

1 0.01 1 iteration-best 3171.45
3 0.01 1 iteration-best 722.54
7 0.01 1 iteration-best 430.04
10 0.01 1 iteration-best 403.01
13 0.01 1 iteration-best 396.12
17 0.01 1 iteration-best 391.52
20 0.01 1 iteration-best 390.92
23 0.01 1 iteration-best 386.88

1 0.1 1 iteration-best 3089.49
3 0.1 1 iteration-best 739.76
7 0.1 1 iteration-best 426.41
10 0.1 1 iteration-best 402.84
13 0.1 1 iteration-best 394.18
17 0.1 1 iteration-best 392.64
20 0.1 1 iteration-best 390.04
23 0.1 1 iteration-best 385.17

72 Parameters for MAX�MIN ant system

Table A.1: Benchmarks ofMAX�MIN ant system's parameters. Here, α =
1, τmin = 0.01, τmax = 0, 99. The other parameters are presented
in the table. Execution was performed on r500 given 5 minutes
execution time. The displayed costs are averages over 5 executions.

β ρ m update-type r500 5min

1 0.25 1 iteration-best 3168.23
3 0.25 1 iteration-best 732.15
7 0.25 1 iteration-best 425.68
10 0.25 1 iteration-best 403.00
13 0.25 1 iteration-best 397.49
17 0.25 1 iteration-best 389.68
20 0.25 1 iteration-best 387.68
23 0.25 1 iteration-best 385.26

1 0.5 1 iteration-best 3095.42
3 0.5 1 iteration-best 732.84
7 0.5 1 iteration-best 427.54
10 0.5 1 iteration-best 398.43
13 0.5 1 iteration-best 393.10
17 0.5 1 iteration-best 390.34
20 0.5 1 iteration-best 391.98
23 0.5 1 iteration-best 388.13

1 0.01 1 global-best 3122.99
3 0.01 1 global-best 738.85
7 0.01 1 global-best 431.74
10 0.01 1 global-best 398.56
13 0.01 1 global-best 395.31
17 0.01 1 global-best 392.64
20 0.01 1 global-best 386.30
23 0.01 1 global-best 388.80

1 0.1 1 global-best 3120.22
3 0.1 1 global-best 728.16
7 0.1 1 global-best 427.28
10 0.1 1 global-best 391.00
13 0.1 1 global-best 396.61
17 0.1 1 global-best 390.84
20 0.1 1 global-best 390.36
23 0.1 1 global-best 387.90

1 0.25 1 global-best 3128.87
3 0.25 1 global-best 727.69
7 0.25 1 global-best 425.28
10 0.25 1 global-best 405.72
13 0.25 1 global-best 397.69
17 0.25 1 global-best 391.60
20 0.25 1 global-best 392.07
23 0.25 1 global-best 390.56

1 0.5 1 global-best 3177.14

73

Table A.1: Benchmarks ofMAX�MIN ant system's parameters. Here, α =
1, τmin = 0.01, τmax = 0, 99. The other parameters are presented
in the table. Execution was performed on r500 given 5 minutes
execution time. The displayed costs are averages over 5 executions.

β ρ m update-type r500 5min

3 0.5 1 global-best 733.59
7 0.5 1 global-best 427.69
10 0.5 1 global-best 402.01
13 0.5 1 global-best 395.76
17 0.5 1 global-best 389.61
20 0.5 1 global-best 385.82
23 0.5 1 global-best 389.26

1 0.01 5 iteration-best 3066.15
3 0.01 5 iteration-best 707.49
7 0.01 5 iteration-best 421.93
10 0.01 5 iteration-best 402.41
13 0.01 5 iteration-best 387.61
17 0.01 5 iteration-best 388.68
20 0.01 5 iteration-best 387.67
23 0.01 5 iteration-best 384.47

1 0.1 5 iteration-best 3121.18
3 0.1 5 iteration-best 703.11
7 0.1 5 iteration-best 416.94
10 0.1 5 iteration-best 394.37
13 0.1 5 iteration-best 389.13
17 0.1 5 iteration-best 389.00
20 0.1 5 iteration-best 389.54
23 0.1 5 iteration-best 387.29

1 0.25 5 iteration-best 3125.57
3 0.25 5 iteration-best 705.21
7 0.25 5 iteration-best 419.42
10 0.25 5 iteration-best 401.11
13 0.25 5 iteration-best 393.57
17 0.25 5 iteration-best 385.05
20 0.25 5 iteration-best 386.01
23 0.25 5 iteration-best 399.38

1 0.5 5 iteration-best 3100.83
3 0.5 5 iteration-best 715.57
7 0.5 5 iteration-best 423.65
10 0.5 5 iteration-best 401.62
13 0.5 5 iteration-best 391.73
17 0.5 5 iteration-best 386.24
20 0.5 5 iteration-best 385.42
23 0.5 5 iteration-best 385.39

1 0.01 5 global-best 3142.04
3 0.01 5 global-best 701.87

74 Parameters for MAX�MIN ant system

Table A.1: Benchmarks ofMAX�MIN ant system's parameters. Here, α =
1, τmin = 0.01, τmax = 0, 99. The other parameters are presented
in the table. Execution was performed on r500 given 5 minutes
execution time. The displayed costs are averages over 5 executions.

β ρ m update-type r500 5min

7 0.01 5 global-best 423.82
10 0.01 5 global-best 400.86
13 0.01 5 global-best 394.49
17 0.01 5 global-best 388.54
20 0.01 5 global-best 388.41
23 0.01 5 global-best 385.23

1 0.1 5 global-best 3114.79
3 0.1 5 global-best 708.92
7 0.1 5 global-best 426.00
10 0.1 5 global-best 395.53
13 0.1 5 global-best 393.29
17 0.1 5 global-best 388.52
20 0.1 5 global-best 389.27
23 0.1 5 global-best 388.42

1 0.25 5 global-best 3107.21
3 0.25 5 global-best 710.00
7 0.25 5 global-best 417.45
10 0.25 5 global-best 399.98
13 0.25 5 global-best 389.03
17 0.25 5 global-best 390.28
20 0.25 5 global-best 388.15
23 0.25 5 global-best 387.39

1 0.5 5 global-best 3094.53
3 0.5 5 global-best 719.25
7 0.5 5 global-best 417.42
10 0.5 5 global-best 402.50
13 0.5 5 global-best 389.11
17 0.5 5 global-best 388.39
20 0.5 5 global-best 384.26
23 0.5 5 global-best 386.50

	Abstract
	Preface
	Contents
	1 Introduction
	2 Traveling salesman problem
	2.1 Variations of TSP
	2.2 Solving TSP
	2.2.1 Approximation
	2.2.2 Heuristics

	2.3 Graphs
	2.3.1 Uniform distribution of vertices
	2.3.2 Vertices in clusters
	2.3.3 Introducing randomness in existing graphs
	2.3.4 TSPLIB

	2.4 Representing a TSP tour

	3 Randomized search heuristics
	3.1 2-opt
	3.2 Neighborhoods and local optima
	3.3 Algorithms
	3.3.1 Randomized local search
	3.3.2 Simulated annealing
	3.3.3 (1+1) evolutionary algorithm
	3.3.4 MAX–MIN ant system

	3.4 Concorde

	4 Program implementation
	4.1 Program description
	4.2 Implementation details
	4.2.1 Calculating costs of TSP tours
	4.2.2 Implementing the 2-opt swap
	4.2.3 Algorithm architecture
	4.2.4 Executing algorithms asynchronously
	4.2.5 Tour construction in MAX–MIN ant system

	4.3 Limitation and future features

	5 Experiments and results
	5.1 Test environment
	5.2 Graphs used for experiments
	5.3 Experiments with algorithm parameters
	5.3.1 Simulated annealing
	5.3.2 (1+1) evolutionary algorithm
	5.3.3 MAX–MIN ant system

	5.4 Experiments with problem setups
	5.4.1 Execution time and graph size
	5.4.2 Improving the initial guess
	5.4.3 Gradual modification of graph structure
	5.4.4 Comparisons with Concorde on TSPLIB instances

	6 Discussion
	7 Conclusion
	Bibliography
	A Parameters for MAX–MIN ant system

