Flexible Serialisation of Model
Instances: A Cascading Mapping

Mechanism

Alexander Paulsen

DTU

I

Kongens Lyngby 2015

Technical University of Denmark

Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3351

compute@compute.dtu.dk

www.compute.dtu.dk

Summary

Major parts of the code for a software system can be generated from models.
These models come with functionality for editing and storing model instances
in the XMI format. Not all developers might want to store instances in exactly
this format, and the current alternatives for modifications are insufficient.

The goal of the thesis is to create a flexible serialiser for model instances. The
serialiser relies on mappings to define the relations from the model to a XML
representation.

The mapping mechanism developed is designed and implemented as an extension
to the Eclipse Modeling Framework (EMF). The serialiser provides some of the
functionality defined in the ISO standard for Petri nets. The serialiser is also
able to serialise other formats than Petri nets.

Among other functionality, mappings can be defined cascading and the best
fitting mapping is chosen. New mappings can be added to the serialiser using
known methods in Eclipse and requires no programming. If no mappings are
defined the serialiser relies on the standard, basic serialiser provided with EMF.

Resumé (Danish)

Store dele af koden til et softwaresystem kan genereres fra modeller. Disse modeller
leveres med funktionalitet til redigering og lagring af modelinstanser i XMI-
formatet. Nodvendigvis gnsker ikke alle udviklere at gemme instanser i ngjagtig
dette format, og de nuveerende alternativer til sendringer er utilstraekkelige.

Malet med dette speciale er at skabe en fleksibel serialiseringsmekanisme til
modelinstanser. Mekanismen ggr brug af mappings til at definere relationerne
fra model til en XML-repraesentation.

Mekanismen er designet og implementeret som en udvidelse til Eclipse Modeling
Framework (EMF). Mekanismen giver mulighed for at repraesentere nogle af
de strukturerer defineret i ISO-standarden for Petri net. Det er ogséd muligt at
serialisere andre formater og modeller end Petri net.

Blandt anden funktionalitet kan mappings defineres kaskaderende og den mest
praecise mapping veelges. Nye mappings kan tilfgjes via normale arbejdsgange i
Eclipse og kraever ingen programmering. Hvis ingen mappings passer, ggres brug
af standard serialiseringsmekanismen i Eclipse.

Preface

This thesis was prepared from the 1st of September to the 1st of February at
the Department of Applied Mathematics and Computer Science at the Technical
University of Denmark in fulfilment of the requirements for acquiring an MSc
in Computer Science and Engineering. The thesis was prepared with Ekkart
Kindler as supervisor

I would like to thank Ekkart Kindler for being the supervisor for this thesis,
providing answers to many questions and knowledge on Petri nets and EMF.
I would also like to thank my family and friends for support through the
development of the thesis. A special thank to Thea Paulsen and Benedikte
Larsen for corrections and feedback.

Lyngby, 01-February-2015

g\em\v\é\a ?Ciu\Sﬁ

Alexander Paulsen

Contents

Summar,

|[Resumé (Danish)|

[Prefacel

[1__Introductionl

1

Wished Functionality]

1.2 Evaluationl

3

Report Structure]

2.3 Serialisation

B5

Serialisation with Mappings|

3.1 Features of the Serialiser|

13.1.1 Context Dependent Mappings|

13.1.2 Multiple Model Versions|

8-1.3 Objects into Attributes|

3.1.4 Objects on Multiple Levels|

13.1.5 References to Other Objects|

13.1.6 Minimising Effort of Defining Mappings|
8.1.7 Dynamic Mappings|

B2

State of the Art of Serialising]

13.2.1 Serialising With Simple]

viii CONTENTS
[3.2.2 Serialising With XStream| 22

[3.2.3 Serialising With Java Architecture for XML Binding| 23

[3.2.4 Serialising With EME XMI serialiser| 24

[3.2.5 Comparison of Serialisers| 26

4 Technological Background] 27
4.1 Serialisation in Eclipse Modeling Framework] 27
[4.1.1 Saving an Instance ot a Model| 30

[4.1.2 Loading an Instance of a Model 32

4.1.3 Low Level Serialisationl 35

4.2 Extending Functionality in Eclipse 36
4.3 Domain Specific Languages| 37
[6Software Design| 39
2.1 Overall Structurel 39
9.2 Features of the Mapping Mechanism| 40
[5.2.1 Context Dependent Mappings| 41

[5.2.2 Multiple Versions| 41

[5.2.3 Standard Mappings| 42

[0.2.4 Adding Tables| 42

[5.2.5 Cascading Mappings| 42

43
[p.3.1 Defining and Using Mappings| 43

[0.3.2 References to Other Objects| 44

[6.3.3 Defining Packages| 44

5.4 Domain Specific Language for Mappings| 45
[5.4.1 Features of the New Serialiser (Options)| 47

|6 Handbook for Developers| 49
6.1 Installing Eclipse with EMFE and Ecore| 49
6.2 Installing the Serialiser and Mapping Mechanism| 50
6.3 Adding Mappings for an Ecore Modell 51

17 Implementation| 53
[7.1 Overriding the Standard Serialiser| 54
7.2 Mappings for the Serialiser| 55
[7.2.1 Plugging in Mappings| 56

[7.2.2 The Editor for Mappings and Packages | 58

7.3 Realising the Serialiser| 59
[7.3.1 Saving Instance — MySave| 61

[7.3.2 Load Functionality — MyLoad and MySAXHandler| 62

[7.3.3 Table for mappings — MappingTable| 65

CONTENTS

B—Evaluation

8.1 Test of Mapping Mechanism|

8.1.1 Relying on the Default Serialiser|

8.1.2 Adding Mappings — Object from Attribute|
8.1.3 Saving Object as a Number|

18.1.4 Most Specific Mapping]
81.50 Add Tables|

18.1.6 Precedence of Added Tables|

8.1.7 Using References|

8.1.8 Adding Extra Levels|

18.1.9 Multiple mappings|

18.5.1 Fully Supporting the ISO Standard for Petri nets|
8.0.2 References in Instances|

8.5.3 Error Handling in Mapping Editor]

[8.5.4 'The mapping Editor]|

8.5.5 eveloped Serialiser as Default]

IB Developed Software]

69
69
70
72
73
73
(6]
(0]
76
7
79
82
82
83
83
83
84
84
84
85

87

90

91

99

CONTENTS

CHAPTER 1

Introduction

By using models, major parts of the code for software systems can be generated.
The generated model code will be created with functionality for creating and
modifying instances of models as well as all kinds of mechanisms for notifications
when changed. The model code will also come with some mechanism for serialising
the model instances e.g. the model instance is serialised into the XMI-format.
All this gives the developer the ability to focus on developing the model, making
the development more hassle-free.

Sometimes the developer do not want the standard serialisation of model instances.
This could be a developer wanting to represent data in a format not specified by
a certain technology i.e. XMI. It could also be a developer wanting to represent
data in a very specific format. Serialisation technology available today often
have options or other ways to configure the serialisation — but these do not allow
for major changes in the structure of the serialisationﬂ

Throughout this report, the PNML format, used for storing Petri nets will be
used as an example. Even though the format is formally defined as a standard
as of ISO/IEC 15909-2, and is defined by simple rules and tables; XMI cannot
be configured into serialising model instances as defined in the format. To do
that, something more configurable than XMI is needed.

LA discussion of the current state of serialisers and why the options are insufficient can be

found in Sect. @

2 Introduction

It would be a great help for developers, having a technology which could do
that; A technology where the developer could define the relationship between a
model and the representation in XML, so called mappings. And then provide
the technology to load and save according to these mappings.

The aim of this thesis is to develop such a technology. The technology will be
able to define how to represent instances of UML models in XML. The technology
will be developed as an extension to the Eclipse Modeling Framework (EMF).
Developers will then be able to define their own mappings, which by using the
developed technology, will map according to these. But defining all mappings
for even small projects might become too much work, so the technology should
make it possible to only define the mappings which differs from XMI, and rely
on XMI for the rest. Various features might be wanted by a developer, such
features will be developed.

Serialising data is not a new concept, multiple solutions already exists. These
will be discussed in the analysis, in Chap. [3} In the next section, Sect. the
wished functionality for the developed serialiser will be discussed.

1.1 Wished Functionality

The development of the technology will focus especially on the following points:

e New mappings should be possible to add by using plug-in extensions in
Eclipse, without having to do any programming.

e To ease the developers work, it should only be necessary to define the
relevant mappings. The technology should then rely on already defined
standard mappings (XMI) when no mappings are available.

e Sometimes models are extended dynamically, and in regarding to that, the
mappings should also be extended dynamically.

e Formats can have different versions, these different versions should all be
possible to support. This could be supported by letting the user choose
the version to be saved in, when saving. And having the table dynamically
extend depending on which version is defined in the document, when
loading.

e The same object might be used multiple times throughout a document, but
is in need of being serialised differently. The technology should support
these context dependent mappings.

1.2 Evaluation 3

e Sometimes the contents of an object is a subset of the content of another
object. The technology should support linking in the model.

e The technology developed throughout this project should be configurable
enough to be able to serialise parts of the PNML format defined in the
ISO standard.

1.2 Evaluation

The technology is interesting for developers using model based software engineer-
ing and should thus be possible to use for all sorts of different formats. When a
developer creates a new model, he might want a certain representation in XML.

The serialisation of Petri nets using Petri Net Markup Language (PNML) defined
in ISO/IEC 15909-2:2009 and 15909-2:2011, will be used as an example, and
some of the features of the standard should be supported.

The technology should be evaluated by serialising the different parts of some
model instance and comparing the results with the expected results defined in
the standard. Additionally it should be proven that the mappings affect the
loading and saving in the same ways. It should also be proven that a loaded and
saved instance of a model remains the same.

1.3 Report Structure

The structure of this report is as follows:

Chapter [I| — Introduction is a general introduction to this thesis on serialisa-
tion of model instances.

Chapter [2 — Problem defines the problem and covers concepts needed to
understand the problem.

Chapter [3| — Analysis analyses the problem and already existing solutions.

Chapter [4 — Technological Background covers the technologies used in this
project, and how to use them.

Chapter 5] — Software Design describes the design of the software for solving
the problem.

4 Introduction

Chapter [f] — Handbook for Developers is a detailed guide on installing and
using the developed software.

Chapter []] — Implementation describes how the software; the mapping
mechanism and the serialiser is implemented.

Chapter [§— Evaluation assesses by test and discussion the developed software.

Chapter [J)] — Conclusion concludes the work done throughout this project.

CHAPTER 2

Problem

The following chapter defines the problem which will be solved in this report,
but to define the problem, some concepts must be defined. Serialising model
instances is a very general problem, so as an example Petri nets will be used
throughout this report. The first section of this chapter, Sect. will cover
what Petri nets are. In Sect. a model for Petri nets and an instance of a
Petri net will then be covered. These instances of this model will need to be
serialised so it can be loaded and saved later, which will be covered in Sect. 2.3

24 and 25

2.1 Petri Nets

A Petri net is a modeling language for behaviour. It is a directed bipartite graph
containing places, transitions, arcs and tokens. A place is denoted by a circle
and contains a condition for in which the place can fire. Transitions are denoted
by a square and contains events which will occur. Places and transitions are
linked together with arcs, which are directed arrows. This denotes where a token
would flow when fired for a place. A token is denoted by a filled circle, a place
can hold one or more tokens which can then be fired. In Fig. the elements
contained in a Petri net are shown. In the next section a model for defining the

6 Problem

relations between the elements in a Petri net is described, along with a model of

a such instance.
Q .

Place Transition Token Arc

Figure 2.1: A Petri net contains the four elements; places, transitions, tokens
and arcs.

An instance of a Petri net could be the simple Petri net shown in Fig. In this
example the top left place holds a token. If the condition for the place is met,
the transition is ready to fire. That means it will execute the event contained
and consume the token. The transition will then create tokens in all output
places. In this case that means the lower right place will now have the token.
This gives the transition to the left of it, the ability to fire.

Figure 2.2: A simple instance of a Petri net

2.2 Models and Model Instances

In Fig. the model for a Petri net is shown. The model represents the different
concepts needed for a Petri net and the relationship between these.

A PetriNet consists of multiple Nodes and Arcs. A Node can either be a Place
or a Transition. An Arc contains both a reference to a source and a target,
which both is Nodes. A Place can contain one or more tokens.

2.2 Models and Model Instances 7

Petrinet
'—‘ o—
nodes arcs
Node ' <ource —* Arc
name : String | 1 . | name : String
— target
Place Transition

Figure 2.3: A model for Petri nets, showing the relationships between the
different concepts needed to define a Petri net.

An instance of a such model could be the simple Petri net in Fig. An instance
of a model is the realisation of a model, and contains actual data, such as places,
transitions and tokens. The model instance is a very simple Petri net containing
two places and two transitions, with arcs in between.

Figure 2.4: A simple instance of the Petri net model.

8 Problem

2.3 Serialisation

Serialisation, also known as marshalling, is the concept of representing objects in
memory into a format that can later be stored. These translated objects should
then later be able to be restored into their previous state. In Fig. [2.5|an example
of the expected result when serialising the Petri net is shown.

<?xml version.. 7>
<pnml xmlns=".">
<net type="..">
<place id="p1">
<token>
</place>
. . < =" "/>
—> Serialiser —» i yeton =Ty
<transition/>
<arc source="pl"
target="t1">

</net>
</pnml>

Figure 2.5: An instance Petri net model is serialised into XML format using a
serialiser.

When deserialising, also known as unmarshalling, the process shown in Figure [2.5]
is reversed. The stored file, in XML format, is passed to a serialiser, using
(preferably the same) mappings. The file can now be translated into the same
data which were serialised.

2.4 Serialisation with XMI

Using the standard built-in Eclipse XMI serialiser, the flow is as seen in Fig[2.6]
The serialisation is almost what a developer wants, if ignoring all the namespaces.
But; since all objects are related to the net in a variable called objects, the
objects will be serialised into a tag called “object”. Depending on which object
it is, the object will then get a type corresponding to which object it is.

To change this, the structure of the representation must be changed. This is a
major change and cannot be done in XMI.

2.5 Serialisation with Mappings 9

<?xml >
<APetriNetEditorInlSMinutes:PetriNet xmi:version="2.0" XMLNS..>
<object xsi:type="APetriNetEditorInlSMinutes:Place">
<token/>

XM | </object>
> > <object xsi:type="APetriNetEditorIniSMinutes:Transition"/>
Serial iSGI’ <object xsi:type="APetriNetEditorInlSMinutes:Place"/>

<object xsi:type="APetriNetEditorInlSMinutes:Transition"/>
<object xsi:type="APetriNetEditorIn1SMinutes:Arc"/>

</APetriNetEditorInlSMinutes:PetriNet>

Figure 2.6: An instance of a model, a Petri net, is serialised into XMI format
using a serialiser.

2.5 Serialisation with Mappings

Using XMI to serialise is not sufficient, it must be possible to modify the
representation even more than the built in serialiser can do. But first a way to
define how a model should be represented must be defined.

Using mappings it is possible to define the relationship between a model and
a corresponding representation. This could for example be a model defining a
Petri net, and a representation of such in an XML format which a developer
want to use. The developer can then map the model for Petri nets into the
XML representation. Then using some software supporting the mappings, the
developer can serialise instances of models defined by a model, into his storage
format, which in this example is XML.

Mappings

<?xml versiol

<net type=
<place id="p1">
<token>
</place>

T > Serialiser > <transition id="t1"/>

<place/>

<transition/>

<arc source="p1"
target="t1">

</net>
</pnml>

Figure 2.7: An instance of a model, a Petri net, is serialised into XML format
using a serialiser. The serialiser depends on mappings defining how
the model instance is mapped into the storage format.

10 Problem

From the model defined in Fig. 2:3] and a model for the XML format in the
example in Fig. 2.5] the mappings shown in Tabl 2.1] could be defined.This would
support the translation of the Petri net model into the model for the XML format

shown in Fig.

Java object | XML tag | Attributes

Place place
Transition transition
Arc arc source, ...

Table 2.1: An example of possible mappings for the model defined in Fig|2.3
to map into an XML format.

The mappings are very simple. The Java objects are translated into elements
in XML with the same name. If a Java object contains attributes, these are
serialised along with the object. A such mapping table could be created by
reading the model. In this project more interesting mappings will be considered,
where a developer might want to change this default behaviour.

CHAPTER 3

Analysis

The following chapter contains an analysis of what is needed to create a serialiser
suiting the needs for this project. The chapter covers which necessary features
and concepts the solution must support and what features are supported by
already existing applications.

To evaluate that the serialiser is usable, the serialiser must be able to serialise
parts of PNML. That means the needed features to serialise PNML is also the
needed features for this project. The PNML is chosen as it contains simple
elements to serialise, but also contains multiple more advanced features needed
to be serialised in a special way.

The following sections covers the features needed for the serialiser, these are:

Context Dependent Mappings where mappings of objects are dependent on
in which context the object is in.

Multiple Versions where multiple models can be defined and changed in
between.

Objects into Attributes where objects can be serialised into attributes on
the containing element instead of new objects.

12 Analysis

Objects on Multiple Levels where objects when serialised gets an extra level
of elements to be contained in.

References in Data where objects can contain references to other objects

Defining Mappings where various concepts for defining mappings are analysed.
Containing standard mappings, choosing the correct, most specific mapping
and how mappings is to be defined

Dynamic Mappings how mappings dynamically is to be plugged in.

The chapter also covers the state of the art of four widely used serialisers. To
give a broad image of the ways of serialise.

e Simple e JAXB

o XStream e the EMF serialiser

3.1 Features of the Serialiser

The next sections will cover the features needed to realise the serialiser.

3.1.1 Context Dependent Mappings

Sometimes the same kind of object is used different places in a model. But the
way the object is to be serialised depends on the context the object is used in.
As an example, in Fig. a serialisation of a Petri net can be seen.

3.1 Features of the Serialiser

13

<net>

<place>
<token/>
</place>
<transition>
<token/>
</transition>
<place/>
<transition/>

<arc source...

</net>

Figure 3.1: The representation of a regular Petri net, with one token on the

place.

A developer might for various reasons want to represent the token object differ-
ently depending on which object it is on. As an example, the developer want
the token object to be a star on transitions. This is shown in Fig. where
the model is updated, in Fig. [3.3] an instance of the model is shown along with
an XML representation. In this example, the token object must be represented
differently, due to the context it is placed in.

Petrinet
'—‘ .—|
nodes arcs
0.1 Node |1 source Arc_
| name : String 1 name : String
— target
token
Place Transition
N Token
=]

Figure 3.2: A model for Petri nets, extended from the original version in

Fig. on Page 7] to also include tokens on transitions.

14 Analysis

<net>
<place>
<token/>
* </place>
T <transition>

— <star/>
</transition>
<place/>
<transition/>
<arc source... >

</net>

Figure 3.3: The representation of a Petri net, with the token on the transition
displayed as a star.

Now the transition also contains a token. The model does not differentiate
between a token on a place or transition. But in the XML representation we
want to do exactly that. If the token is contained in a place, it is to be serialised
into a token-element. But if the token is contained in a transition it needs to be
serialised into a star-element. To support this, it must be taken into account in
what context a token is in.

3.1.2 Multiple Model Versions

Models might be evolving for long periods of time, or models might be in need of
updates for various reasons. This means that multiple versions of a model might
exist. Imagine a developer having developed the model and the representation
shown in Fig But later the developer revises his model and realises that
he needs to be able to define a colour on the token. The developer, for legacy
reasons, still wants to be able to use the old version. The developer could then
revise the model and create a second version. See the model in Fig. In
Fig. [3:5 an instance of a such model is shown along with an XML representation.

3.1 Features of the Serialiser

15

Petrinet
,—‘ ‘—|
nodes arcs
Node l— source Arc
name : String | 1 name : String
— target
Place Transition

to.1

token

\11*

Token

colour : String

Figure 3.4: A second revised model for Petri nets, extended from the original

version to also include colour on the token object.

—O

Figure 3.5: An instance of the model shown in Fig.

<net version="2">

<place>
<token colour="red"/>
</place>
<transition/>
<place/>
<transition/>
<arc source... >

</net>

To be able to distinguish between the different versions a version attribute could
be introduced in the net. Now the developer is able to serialise nets using the
two different versions by defining which model should be used depending on the
version defined in the representation.

That means the developer is able to have, one model; but two representations.
But the other way is also possible!

16 Analysis

3.1.2.1 Multiple Representations

The developer might want to keep, and use both versions; but only have on
representation. The developer should then be able to create mappings, so both
versions would result in the same representation.

3.1.3 Objects into Attributes

For some representations a developer might want to change how some objects are
serialised. In this case the developer wants the token objects to be serialised into
an attribute describing how many tokens there are. In Fig. a such instance
of a model is shown.

<net>
<place tokens="3"/>
<transition/>
<place/>

l <transition/>

— <arc source... >

<%____<::::> </6éé>
Figure 3.6: An instance of the original model shown in Fig. Notice how
the tokens are represented as an attribute instead of as objects.

Without changing the model to contain the number of tokens on the place, the
mechanism must support this representation.

3.1.4 Objects on Multiple Levels

A developer might wants to group multiple objects in an element. In this
example the developer want to group all places into an element called places.
In that element he then want all places to be serialised. An example of a such
representation is shown in Fig. A such representation should be supported.

3.1 Features of the Serialiser 17

<net>
<places>
<place>
<token/>
</place>
— <place/>
</places>
<transition/>
<transition/>
<arc source... >

</net>

Figure 3.7: An instance of the original model shown in Fig. Notice how
places now is in an extra element level.

3.1.5 References to Other Objects

In some cases the content of one object, is a reference to another object. For
instance when defining arcs in Petri nets. See Fig. [3.8] Giving the nodes
identifiers, it is now possible to refer to a specific place when creating an arc.

<net>
<place id="0">
<token/>
</place>
<transition id="1"/>
J/ — <arc source="0Q" target="1" >

% </r.u.ei.:>
Figure 3.8: An instance of the original model shown in Fig. Notice that arcs
now refer to the identifier now contained in places and transitions.

Another solution which does not require changes to the model, is to use XPath
to define which nodes the arc is connecting. In Fig[3.9) a solution using XPath is
shown.

18 Analysis

<net>
<place>
<token/>
</place>
l <transition>

— <arc source="//@places.Q"

target="//@transitions.@">
(> </net>

Figure 3.9: An instance of the original model shown in Fig. Now using
references using XPath.

Both references using XPath (no identifiers), and references using identifiers
must be supported in the implemented solution.

3.1.6 Minimising Effort of Defining Mappings

It would be easy for a serialiser to serialise if every object has a corresponding
mapping. That would mean that for each object the serialiser just have to find
the mapping and map the object. From a developers point of view that might
not be the best solution. If a developer was to design a model, he would not
want to define a mapping for each object he already have defined.

A solution to that, could be to use general mappings. The more general the
mappings could be, the less mappings would be needed. But this raises other
issues. Some objects are special and need to be treated specially, to allow for
general mappings, mappings that overlap must also be allowed. Overlapping
mappings in the sense of some objects having multiple mappings. Allowing
multiple mappings for objects raises the question of which mapping should be
usecEL the most logical solution is to use the most specific mapping. Which
means; it must be defined what is the most specific mapping. This will be
covered with an example in Sec.

3.1.6.1 Standard Mappings

Another important point is that when letting a developer define more and more
general mappings, some mappings might be so general that they could be used

1Using both mappings when overlapping would lead to duplicates of data in the new
representation.

3.1 Features of the Serialiser 19

for any project. Such mappings could already exist in the application, so the
developer only needs to map the special cases.

Standard mappings are the least specific mappings, and should only be relied on
if no other mappings can be used.

3.1.6.2 Most Specific Mapping

Which mapping is the most specific depends on various things:

e When defining context dependent mappings, it should be possible to define
mappings with and without context. Context dependent mappings should
take precedence over non-context dependent mappings.

e When defining multiple versions for a model, mappings for the used version
must take precedence over mappings not related to any version. If no
versions are specified in the mappings, or no versions fit the current version,
mappings without version could be used.

| Feature | Container | Element-name

1 token — token

2 token place token2

Table 3.1: An example of a mapping table for the standard model in Fig.

In Tabl. a mapping table can be seen. It contains two mappings for the same
feature. The first mapping contains no information about the containing object,
and the second mapping contains information on which context it applies. This
means, in the case of another context i.e. parent object, is not a place, the first
rule should apply. But if it is in the context of a place, the second mapping is
more specific, and should apply.

3.1.6.3 No Programming

The serialiser could make a interface available for developers, developers could
then implement their own additions to the serialiser. But this means that
developers would be forced to understand all of the inner workings of the serialiser.

20 Analysis

Instead a no-programming interface for the developer to define mappings in
would be beneficial.

A good user interface should have a printable and useful representation of
mappings as long as functionality to aid the developer in making the right
mappings.

3.1.7 Dynamic Mappings

When developing a model, a set of mappings to define how the model is to be
serialised must also be defined. These mappings could be defined and stored in
different ways.

One way is to let these mappings be part of the serialiser, and thus needed at
compile time.

But that is not very usable for a developer. Instead the mappings should be able
to be plugged-in at any time. So the user do not have to acquire the source code
in order to use the serialiser.

3.2 State of the Art of Serialising

This section covers the state of the art of a selection of the serialisers currently
available. The four serialisers are chosen to give a broad image of how serialisers
can be implemented. But also to show some of the most used serialisers. The
chosen serialisers span from Simple and XStream, which are the most simple
serialisers, to more configurable serialisers such as JAXB and the EMF Serialiser.

Simple is a very simple serialiser, supporting XML. The serialiser uses annota-
tions directly in the Java classes to define which classes should be serialised
into which elements.

XStream is a Java library for serialising into XML. XStream does not require
any modifications to objects and is thus easy to setup.

Java Architecture for XML Binding (JAXB) is part of the Java SE plat-
form and allows for serialising Java objects into XML representations.
JAXB is widely used and configurable.

3.2 State of the Art of Serialising 21

EMF XMI Serialiser XML Metadata Interchange (XMI) is the standard de-
veloped by Object Management Group and used in Eclipse Modeling
Framework to exchange information in XML. The serialiser provided with
EMF for XMI serialising is very configurable.

The next four sections will discuss the usage of each of the four different
serialisers. Section [3.2.5 will contain a comparison of the serialisers.

3.2.1 Serialising With Simple

Simple is as the name suggest a simple XML serialiser. Part of the simplicity is
that Simple requires no additional files with mappings or configuration to work.
Simple relies on annotations in the Java code to define how objects are to be
serialised. [1]

In List. [3:I] a Java class annotated and ready for simple to serialise is shown.

@QRoot
public class Example {

@Element
private String text;

@Attribute
private int index;

public Example() {
super () ;

public Example(String text, int index) {
this.text = text;
this.index = index;

}

public String getText () {
return text;
}

public int getIndex () {
return index;
}

}

Listing 3.1: A Java class annotated so Simple is able to serialise[1].

To serialise an instance of the above object, a Persister is required. A persister
is given a model instance and can then output XML. An example of how this is
done is shown in List. 3.2

22 Analysis

Serializer serializer = new Persister();
Example example = new Example("Example message", 123);
File file = new File("example.xml");

serializer .write(example, file);

Listing 3.2: A persister is used to serialise an instance of the Java class.[I]

The model is populated with data, the index is set to 123 and the text is
set to Example message. The model is then serialised. The resulting XML
representation is shown in List. [3.3]

<root index="123">
<text>Example message</text>
</root>
Listing 3.3: The resulting XML representation after serialising a model instance
with some data.[I]

3.2.2 Serialising With XStream

Using XStream the elements created when serialising is by default the same as
the object names. Though it is possible to add annotations, this is done in a
very similar way to Simple. See List. All snippets are from the tutorial. [2]

XStreamAlias (" message")

class RendezvousMessage {
@XStreamAlias ("type")
private int messageType;

public RendezvousMessage(int messageType) {
this.messageType = messageType;
}

Listing 3.4: Annotating a class for serialisation with XStream. [2]

The serialiser must then be informed to use these annotations, an example of a
main method serialising the class can be seen in List.

public static void main(String|[] args) {
XStream stream = new XStream () ;
xstream . processAnnotations (RendezvousMessage. class);
RendezvousMessage msg = new RendezvousMessage(15);
System.out. println (stream .toXML(msg)) ;

10

15

20

3.2 State of the Art of Serialising 23

Listing 3.5: Main class for serialisation with XStream. [2]

And the resulting XML is as in List

<message>
<type>15</type>
</message>

Listing 3.6: Result of serialisation of the class in List with XStream. [2]

The methods used are very similar to what is seen in Simple. Using annotations
directly in the code, and informing the code of these, lets a developer customise
the serialisation.

3.2.3 Serialising With Java Architecture for XML Binding

Java Architecture for XML Binding (JAXB) is a much more feature rich serialiser.
The setup is a bit more dificult, but it also gives room for many more modifications.
In List an example of how JAXB can be used to serialise an object can be
seen. Example from the documentation. [3]

//The class declares importing of three standard Java classes, five
JAXB binding framework classes and the primer.po package:

import java.io.FileInputStream:;

import java.io.IOException;

import java.math.BigDecimal;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;

import primer.po.x;

//A JAXBContext instance is created for handling classes generated
in the primer.po.
JAXBContext jc¢ = JAXBContext.newlInstance("primer.po");

//An Unmarshaller instance is created, and the po.xml file is
unmarshalled .

Unmarshaller u = jc.createUnmarshaller () ;

PurchaseOrder po = (PurchaseOrder)
u.unmarshal (new FileInputStream ("po.xml"));

set methods are 1sed to]llOdify information ir the address branch
of the content tree.

25

30

35

10

15

24 Analysis

USAddress address = po.getBillTo () ;
address .setName (" John Bob");
address.setStreet ("242 Main Street");
address.setCity ("Beverly Hills");
address.setState ("CA");
address.setZip (new BigDecimal
address.setName (" John Bob");
address.setStreet ("242 Main Street");
address.setCity (" Beverly Hills");
address.setState ("CA");
address.setZip (new BigDecimal ("90210"));

// A Marshaller instance is created, and the updated XML content is
marshalled to system.out. The setProperty API is used to
specify output encoding; in this case it is formatted (human
readable) XML.

Marshaller m = jc.createMarshaller () ;

m. setProperty (Marshaller .JAXB FORMATTED OUTPUT, Boolean.TRUE);

m. marshal (po, System.out);

Listing 3.7: Serialising using JAXB.[3]

The serialiser comes with multiple features to customise. Among other features
it is possible to provide better names, specify meaningful package names derived
from an URI and change namespaces. It is possible to provide both inline
annotations in a schema or provide declarations in an external file. [3]

3.2.4 Serialising With EMF XMI serialiser

The default serialiser for new models created with EMF, is the EMF XMI
serialiser. This serialiser, is as, JAXB highly customisable. An example of how
it is used is seen in List [4]

import java.io.IOException;
import java.util.Collections;
import java.util.Map;

import org.eclipse.emf.common. util.URI;

import org.eclipse.emf.ecore.resource.Resource;

import org.eclipse.emf.ecore.resource.ResourceSet;

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl;
import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactorylmpl;

import datamodel.website .MyWeb;

import datamodel.website.Webpage;

import datamodel.website.WebsiteFactory ;

import datamodel.website. WebsitePackage;

import datamodel.website.impl. WebsitePackagelmpl;

public class CreateSaveTester {

20

25

30

35

40

45

50

55

60

65

3.2 State of the Art of Serialising 25

/%%

}

% @param args

*/

public static void main(String|[| args) {

}

// Initialize the model

WebsitePackage .eINSTANCE. eClass () ;

// Retrieve the default factory singleton
WebsiteFactory factory = WebsiteFactory .eINSTANCE;

// create the content of the model via this program
MyWeb myWeb = factory .createMyWeb () ;

Webpage page = factory.createWebpage () ;

page .setName ("index ") ;

page.setDescription ("Main webpage");

page .setKeywords (" Eclipse , EMF") ;

page.setTitle ("Eclipse EMF");

myWeb. getPages () .add (page) ;

// As of here we preparing to save the model content
// Register the XMI resource factory for the .website extension

Resource. Factory. Registry reg = Resource.Factory. Registry.
INSTANCE;

Map<String , Object> m = reg.getExtensionToFactoryMap () ;

m. put (" website", new XMIResourceFactoryImpl());

// Obtain a new resource set
ResourceSet resSet = new ResourceSetImpl();

// create a resource

Resource resource = resSet.createResource (URI
.createURI (" website /My2. website"));

// Get the first model element and cast it to the right type,
in my

// example everything is hierarchical included in this first
node

resource . getContents () .add (myWeb) ;

// now save the content.
try {
resource .save(Collections .EMPTY MAP) ;
} catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}

Listing 3.8: Serialising using the default EMF XMI serialiser. Example from

Vogella. [4]

26 Analysis

As the serialiser is part of the EMF project it is an obvious choice to use.

Mappings can be defined both as annotations in the model or directly in the

code, see List.

EAttribute someAttribute = ...

XMLMaplmpl map = new XMLMaplImpl() ;

XMLInfolmpl x = new XMLInfolmpl() ;

x.setXMLRepresentation (XMLInfolmpl .ELEMENT) ; //can be altered to
change presentation

map . add (someAttribute , x);
saveOptions.put (XMLResource .OPTION XML MAP, map) ;

Listing 3.9: Changing the representation using programming.|5]

3.2.5 Comparison of Serialisers

Using annotations in generated models mean that these must be set manually,
unless a method for generating annotations in these models were developed,
which could be possible. This adds an extra layer of development to a solution
such as Simple and XStream. Since it must be ensured each time the model
code is generated, the mappings are not removed or changed.

Both Simple and XStream do not require much work to get working, but both
suffer from not being very flexible. It is not possible to make changes to the
structure in XStream, and the possible changes in structure in Simple is not
enough for this project.

JAXB and the EMF Serialiser is much more configurable. The serialisers only
allow for minor changes in the structure, and cannot support all features used
to serialise Petri nets as the standard defines. Neither of the serialisers support
customisation of the serialisation without programming, unless annotations are
used.

The EMF serialiser is highly connected with EMF and contains some good
features, this serialiser has a good base to extend on.

The serialiser JAXB also contains some great features, e.g. the functionality to
create shorthand names for namespaces. Ideas from this serialiser could be used
in a solution building on the EMF Serialiser.

CHAPTER 4

Technological Background

Throughout the development of this project various technologies has been used.
This chapter covers the technologies used, what they do, and how they are used.

The chapter covers the Eclipse Modeling Framework, and more specifically how
serialisation in the framework is to be used. As well as how to extend plug ins
in Eclipse and the key aspects of how to create domain specific languages.

The solution for this thesis is build upon Eclipse, which means the Eclipse
Modeling Framework has influenced both the design and implementation of the
project. The next section covers the, for this thesis, important aspects of EMF.

4.1 Serialisation in Eclipse Modeling Framework

Usually when developing software, the code is written line by line. This is error-
prone and tedious process. The concept of model based software engineering
(MBSE) is trying to improve the development of software. With MBSE the
developer can create a model of the needed software and then generate parts of
the software.

28 Technological Background

The Eclipse Modeling Framework is an official framework developed by the
Eclipse Foundation. The framework is used to generate code from models. The
code generated by EMF is only the structural parts, i.e. the code defining objects,
relations between objects and modifications of these objects. EMF then also
comes with various methods for modifying these objects.

EMF bases the generated code on Ecore models. Ecore is a meta model similar to
MOF, MOF is its own meta model and can be used to describe itself, but also to
describe UML. Ecore consists of classes, attributes and operations.[6] EMF comes
along with support for change notification; an reflective API for manipulating
the objects generally. By default EMF comes with an XMI serialiser, which can
serialise any model defined.

Given an Ecore model, EMF can generate code for the model, adapters and the
editors. The following is a description of each and what it contains.

Model creates the Java interfaces and implemented classes for each class in the
model; a factory for creating objects of each class, as well as a package
containing meta data about the implementation.

Adapters generate the implementation classes which are used to adapt the
model i.e. how the classes are edited and displayed. In EMF this can be
done using socalled ItemProviders.

Editor provides a customisable simple editor that can be used to modify the
data stored according to the model. The editor is a simple structural tree
editor, as opposed to a graphical editor.

That means it is possible to: create, edit, store and delete model instances, but
a method to change how these instances are saved is needed.

Content in EMF is stored in Resources and can then be plugged in, and used
in the editorEI A Resource can be a project, folder or file. An appropriate
factory creates the resource as a persistent document. This document contains
the content as well as diagnostics, possible errors and/or other problems.[7] More
interesting for this project; it also holds an URI for where to load and save the
contents.

In this thesis the format for serialisation is XML, so the interface XMLResource is
used, which builds upon Resource. In Fig[{.I]an overview of how XML resources
is used can be seen. An XMLResource has an object for loading and for saving.

1How this is done is covered in Sect.

4.1 Serialisation in Eclipse Modeling Framework 29

Both uses a helper for serialising into XML, the helper used in this project is
the default one; XMLHelper.

-
R
N7
Q
v
XMLResource
XMLLoad XMLSave

SAXXMLHandler

Figure 4.1: Resources are plugged in to Eclipse. A XMLResource needs an
object for saving and loading. And for loading it needs a handler
for the XML.

A Resource must implement public methods for saving and loading, this can
be used when tailoring serialisation of own objects. To change the way objects
are saved and loaded these methods can just be overridden to provide a custom
serialisation of objects. When loading, a special handler for reading the XML is
needed. It can either be a SAX or a DOM handler. A SAX handler is chosen as
handler and covered in Chapter [7]— the implementation.

The next sections cover the serialisation in more detail. The first section,
Sect covers the most simple part of serialising; the process of saving. The
next part, Sect[£.1.2] covers the opposite; the loading. The last section, Sect [£.1.3]
covers the low level part, the XMLHelper; which is used both in the process of
saving and loading.

30 Technological Background

4.1.1 Saving an Instance of a Model

When serialising, saving the model instance is the simplest. Saving a XMLRe-
source in EMF is covered by the class XMLSave. The class contains a document
object which is used to build up the serialised data.

In Fig[4:2)a very simple model is shown. In Fig[4.3]an instance of a such model is
shown. The model contains a container object (the root object) and the elements
A, B, C and D. An A contains a name and can contain a B or a D object. A B
object can contain one or more C objects. And lastly a D object has also an
attribute number.

E Container

a

A

= name : EString

Hes Ho

=1 number : Eint

Figure 4.2: A simple model a developer wants to save instances of.

Container

, <?xml version="1.0" encoding="UTF-8"7>
<techexp:Container xmlns:techexp="techexp">

A
name: "Alex" h—

— <c/>

<c/>

<d number="42"/>

</techexp:Container>

:D
number: 42

‘ :C ’ ’ :C ’

Figure 4.3: Saving of a simple instance, of the model shown in Fig.

4.1 Serialisation in Eclipse Modeling Framework 31

When serialising the model instance, the root object (Container) is handled by
its own since it might contain special features. This is done in the method save
after setting up the namespace and doctype. Each root object is traversed using
the method traverse, this ensures that all root objects are saved. Each element
is then saved using the method saveFeatures. Depending on the multiplicity of
the element, either the method saveContainedSingle or saveContainedMany
is called for single elements or higher multiplicity respectively. For each element
the method saveElement is then called.

When elements and attributes have been saved on all root elements, the method
endSave is called which handles the namespaces and cleans up the cache and
various used lists.

That means, in the case of Fig. when a save command is notified, the method
will notice that there is only one root element. This root element Container,
will be passed to the method traverse which will then send the element to
writeTopObject. This will write the meta data and the container element to
the document object.

The method save will then continue with the A object. The object will be
passed to the method saveFeatures to save the features on the object. In this
case it is the name attribute and the B and D objects. The name attribute will
be passed to the method saveContainedSingle whereas both objects B and D
will be send to the method saveContainedMany which both eventually will call
saveObject. Which will obtain the values using the XMLHelper. When saving
the object B, the method will realise it contains multiple objects which then will
be passed on to the method saveContainedMany. When saving the D object,
the method will realise it contains the number attributes which will be send to
the method saveContainedSingle.

32 Technological Background

4.1.1.1 Key Methods of XMLSave

Tabel is a description of some of the most important methods and the
functionality of these.

save is the key method of this class, it receives the resource and the handler
and calls the method traverse with the root elements.

traverse receives one or more root elements, the root elements are each saved
using writeTopObject.

writeTopObject receives the root elements and handles the meta data if
needed.

saveFeatures receives the object to save, loops over all the features on the
object, and saves each feature depending on which kind the attached feature
is.

saveContainedSingle works as above, but is only called if the attached fea-
ture is a contained single. The single element will then be saved using
saveElement.

)

saveContainedMany is called in case of the feature is a “contained many’
feature. This means that the feature is contained and has a multiplicity of
many. Each value will be iterated over and saved using saveElement.

saveElement receives the objects to be saved.

Table 4.1: The most important methods of the XMLSave class.

Do note that due to the method save calls traverse with all the root elements,
each root element is then looped over and each child object is received with
saveElement. That means each object will be iterated over for each root object,
resulting in every object being saved.

4.1.2 Loading an Instance of a Model

When loading, the data saved must be deserialised. When deserialising data the
serialised format must be read and translated into the original data structure.
The serialised format is XML so an XML file must be parsed and translated into
the original EMF-objects which were saved. The process is the reverse as when
saving, and can be seen in Fig. [{.4]

4.1 Serialisation in Eclipse Modeling Framework 33

Container

<?xml version="1.0" encoding="UTF-8"7?> |
<techexp:Container xmlns:techexp="techexp">

 A

 name: "Alex"

<c/>

<c/>
 ‘D
<d number="42"/> ‘B number: 42

</techexp:Container>

‘ :C ’ :C ’

Figure 4.4: Loading of a simple model instance.

The serialisation is usually handled in XMLLoad with the help from a handler.
The standard is a standard SAX parser; the SAXXMLHANDLER. SAXXMLHANDLER is,
as the name suggest, a SAX parser; which in contrast to a DOM parser, only
reports each parsing event as it is happening and then discards almost all of
the information on the event when it is reported. A DOM parser would load
the whole file into memory, having no events, and then it would be possible to
modify the parsed data. 8]

Serialisation of the whole document is done in the implementation of XMLLoad.
For the root element and recursively for the child elements to the root elements;
the method traverse is called. This ensures that all child elements to the root
element will be serialised; meaning all elements would be visited once. When
the elements are traversed the information obtained is send to the handler.

Before any elements are handled the encoding is extracted and various meta
data are set. The first element, the root element, is special in comparison
with its child elements, and must be handled such. createTopObject and
createDocumentRoot are methods created to handle the root of the document.

When an element is read, that being the document root or just any object, the
method startElement is called. The attributes for the element is then handled
in the method setAttributes. Then the element is processed in the method
processElement, which tries to create the object either based on the type of
feature or from a provided factory. At last in the handling of the start element
the method handleObjectAttribs is called to handle the attributes on the
object. For each attribute to the element, the method setAttribValue is called.

If the element has any child elements, these are now traversed by XMLLoad, any

34 Technological Background

child element is traversed as described above, that results in any child element
of the child element is traversed, resulting in traversing all the objects.

When all child elements have been traversed, the end element is reached and the
method endElement is called. A list of open elements is part of the handler, and
is handled by the handler. If no child elements exist, the end tag is reached, this
also applies if the end tag is inlined in the tag, endElement is called.

That means when serialising the example in Fig. [£.4] the method load will be
notified that changes should be saved. The load method will then traverse the
root object Container. The root object will be passed to createDocumentRoot
which creates the element and passes it onto processTopObject.

Then the traverse method will traverse the element in Container. The element
A will be send to createObject to be created, and processed by processObject.
The element is now created and processed, but attributes still needs to be set.
The object is sent to handleObjectAttribs which will for each attribute; set
the attribute using the method setAttribValue.

The rest of the elements will be created using createObject and then processed
by process0Object. If the element has any attributes, these will be handled by
setAttribValue.

4.1 Serialisation in Eclipse Modeling Framework 35

4.1.2.1 Key Methods of XMLLoad and XMLHandler

Tabel is a description of some of the most important features and the
functionality of these. This list covers methods in both XMLLoad and XMLHandler.
Load and traverse are located in XMLLoad, the remaining methods are located in
XMLHandler.

load is the most important method and is called when a save event is invoked.

traverse traverses any element. The element is traversed by creating and
processing the object as well as setting the attributes. If the element
contains other elements these are traversed as well.

createDocumentRoot Creates the root element, and hands it to pro-
cessTopObject for processing.

processTopObject maintains the data structure for which objects are seri-
alised.

createObject creates other objects based on the type of these. Hands the
created objects to process0Object.

processObject as processTopObject, maintains the data structure.

handleObject Attribs handles the attributes on the object, each attribute is
send to the method setAttribValue

setAttribValue sets the attribute value depending on which feature the at-
tribute is.

Table 4.2: The most important methods of the classes XMLLoad and XMLHan-
dler.

4.1.3 Low Level Serialisation

To be able to keep the serialisation at a high level of abstraction, and to be
able to reuse functionality, the low level functionality of loading and saving is
refactored into a helper. This helper is then used both in the stage of loading
and saving.

XMLHelper is a helper provided by EMF. The helper class helps with most of
the low level parts. It can retrieve the name of elements, attributes on elements,
name space and like when loading. When saving, the helper can be used to

36 Technological Background

create the XML elements.

One of the most frequent uses of the helper is to go from an object and a featunﬂ
to having an actual value to be saved for the feature. This is done in the implemen-
tation of XMLSave; the class XMLSaveImpl in the method saveContainedSingle
on line 2398, which can be seen in List. [£.1]

protected void saveContainedSingle (EObject o, EStructuralFeature f)

InternalEObject value = (InternalEObject)helper.getValue(o, f);
if (value != null) {
saveElement (value, f);

}
}

Listing 4.1: Addition to plugin.xml to plug in a custom serialiser.

4.2 Extending Functionality in Eclipse

In Eclipse it is possible to let other plug-ins be responsible for functionality. This
is done by letting plug-ins define extension points where other plug-ins then can
plug in own functionality.

Extension

. Plug n . Extension
with an extension point

Extension

Figure 4.5: By defining extension points in Eclipse it is possible to let other
plug-ins be responsible for functionality.

Various extension points are already available in EMF. For example the serialiser
for a plug-in be specified as an extension point, which will override the standard
serialiser. This will be used for plugging in the serialiser developed in this thesis.

Additionally, new extension points can be created. New extension points can
be defined in the file plugin.xml in Eclipse. An extension point can contain
strings, booleans or even Java classes. It can also contain a Resource. In

2Which is what is parsed by the handler.

4.3 Domain Specific Languages 37

Eclipse a Resource can be any file or folder, both local or non-local (e.g. from a
repository).[9][10]

4.3 Domain Specific Languages

In contrast to programming languages which are general purpose languages, a
Domain Specific Language (DSL) is specific to a certain domain. This means
the language is not generally usable, but usable in some special context.

DSLs comes with some great advantages, but it also have its drawbacks. The
largest advantage for this system is the level of abstraction. When abstracting
away most of the implementation details, the developer does not need the same
amount of knowledge about the serialiser to be able to use it.

Some of the drawbacks is that a developer now needs to understand an extra
language, which might not be as widely used as a general purpose language.
Additionally, editors and other programming tools might not be available.[I1][12]

38

Technological Background

CHAPTER 5

Software Design

This chapter covers the software design choices made in this thesis. Based on the
knowledge provided in the analysis, Chap. [3| and the technological background,
Chap. {4} various design choices have been made. In Sect. the overall structure
of the solution is described. This section also covers the design of the features
and concepts listed in the analysis:

e Context dependent mappings e Dynamic Mappings
e Multiple versions e References in Data
e Standard Mappings e Loading Packages

e Cascading Mappings

And at last, in Sect. a domain specific language to define mappings is defined.

5.1 Overall Structure

In Fig. the structure of the solution can be seen. Some of the structure
is already given by the chosen framework, EMF. Due to the way plug-ins are

40 Software Design

plugged in, in Eclipse; the product is split up into three stages.

Stage 1 Stage 2 Stage 3
Serialiser and model for Based on model for The user can now
mappings is plugged in. mappings the user can serialise created

now define and plug in models based on the
new mappings. table defined in stage 2.

Figure 5.1: The solution is contained in three parts. Each arrow illustrates a
new started runtime workbench or install of the previous stage.

When a developer wants to use the solution, the developer must follow the three
stages. In the first and second stage, various parts are plugged in. To be able
to use the plugged in parts the parts must be installed or run in a runtime
workbench. [13]

The First Stage is the development workbench. This stage will not be visible
for regular users of the serialiser, but is visible when developing the serialiser
and a model for mappings is visible in this thesis and power users wanting
to get to know how the serialiser and model is developed.

The Second Stage is the runtime workbench when running the first stage,
this will be called the mappings workbench. In this workbench the model
for mappings is plugged in along with an editor to create theseE] In this
workbench a user is able to create his mappings, and plug these in, into
Eclipse.

The Third Stage is the runtime workbench of the second stage. In this stage
both the serialiser and the mappings defined in the second stage is plugged
in. This means in this final stage the user is able to serialise his model
instances according to the mappings defined in the second stage.

5.2 Features of the Mapping Mechanism

The following sections cover the chosen design for the features in the serialiser,
the features are described in the analysis.

L Actually, the way the project is laid out, the serialiser is also plugged in at this stage,
though the mappings must be defined before we can serialise. To avoid running three versions
of Eclipse, the mappings can be created in the second stage and copied and plugged in, in the
first stage.

5.2 Features of the Mapping Mechanism 41

5.2.1 Context Dependent Mappings

Some objects might need to be serialised differently depending on which context
they are in.

This is done by letting the user specify which context the mapping should apply
in. A mapping contains a reference to a container object which defines which
parent object is needed for a mapping to apply. The container definition can be
left blank if the developer wants to specify this mapping for all contexts.

Working with the example from Sect. on page [12] where a developer wants
to serialise the token as an element star only when contained in a transition.
Given the same model, the following mapping table, Tabl. would solve the
developers problem.

| Feature | Container | Element-name

1 token transition star

2 token place token

Table 5.1: An example of a mapping table solving the problem in Sect.

5.2.2 Multiple Versions

Multiple versions of a model might exist in which the serialiser must be able to
account for. To be able to know what model is in use, the representation should
somehow reflect which model is used.

This could be done using an attribute e.g. in the root element. In PNML it is
seen as the attribute version which then refers to a value of which version it
could be, e.g. 2.

This will be supported by being able to extend mappings, with other mappings
when some attribute and value match.

42 Software Design

| Attribute | Value | Table to use
1 version 2008 | 2008.mappings

2 version 2014 | 2014.mappings

Table 5.2: An example of a mapping table solving the problem of multiple
versions of mapping tables.

As an example, we say that we have a representation created in 2008 and a
new representation created in 2014. The mappings for these representations
are saved in the files 2008.mappings and 2014.mappings respectively. If the
model then contain an attribute called version on the root element, we can
difrentiate between the two models. If the attribute version is 2008, we use the
file 2008.mappings. In case of the attribute is 2014, the file 2014 .mappings is
used instead.

5.2.3 Standard Mappings

To ease the work of the developers using this serialiser, it would be beneficial if
only the special kind of mappings needs to be defined.

The design is build upon the serialiser already existing in EMF. This serialiser
serialises into XMI and contains a good set of rules. If no other mapping is
usable, the object is send to the already existing serialiser to be serialised.

5.2.4 Adding Tables

Now that having multiple mappings for each element is allowed, additional ways
to add mappings could be useful. New tables could be added given their path,
and when the mapping applies, the defined mapping table is added.

5.2.5 Cascading Mappings

Allowing developers to rely on a set of already defined mappings and be able to
extend with their own mappings raises some issues. Now multiple mappings for
one object and element relation can exist. To keep a sensible representation the
serialiser should only create one element per object which means the serialiser

5.3 Concepts 43

will only rely on one mapping per object. Which mapping used should be chosen
carefully from the following set of rules.

Standard Mappings take the least precedence, and should only be relied on
if no other mappings apply.

Mappings Extending a Table should take precedence. Mapping tables can
be extended with new mappings. The deepest mappings should take
precedence.

More Precise Mappings should take precedence, that means e.g. mappings
with a matching container should take precedence over mappings without
a container defined.

5.3 Concepts

In the analysis multiple concepts were also described. In this section the concepts
of the serialiser are described.

5.3.1 Defining and Using Mappings

Non-dynamic mappings would mean that a developer just wanting to serialise a
model instance; would need to download the source code of the serialiser, compile
and run it. Define the mappings, copy these mappings into the workbench with
the source code, run it again. And then now would be able to serialise model
instances.

Instead, the mappings defined in the second stage (refer to Fig. on page
should be plugged in anywhere in Eclipse. As described in Sect. [5.1] to be
able to use plugged in resources, the developer must be running an instance of
Eclipse inside. This means that with dynamic mappings, the developer does
not need to do anything in the first stageE| And the developer can now plug
in mappings from any project, allowing the developer to have multiple projects
sharing mappings, and projects adding mappings upon other project’s mappings.

2If the developer want extra knowledge of the process of serialising, he should and will still
be able to download and study the source code of the serialiser.

44 Software Design

5.3.2 References to Other Objects

Model instances to be serialised might contain references to other objects. This
could be an element having a reference to another element, which must be
handled somewhere.

Before the serialisation, the object will have some sort of reference in memory
to where the object is located. When serialising, this reference needs to be
translated into a reference which is understandable in the given representation.

The design choice in Sect. will help us in this case. Using mappings from
XMI when there are no defined mappings, will solve this. XMI already handles
references made between objects, if it is ensured that this feature is not removed
(e.g. by overriding it) references will work.

5.3.3 Defining Packages

When defining mappings precisely, describing which object to be serialised is
important. Mappings can be defined on objects to any package, not just the
package the mapping is defined it. Due to the design of the Java language it
can be assumed that object names in a package is unique.[I4] Though it cannot,
and it would not make sense, to assume that object names spanning multiple
packages is unique.

Instead it should be possible to specify in which package a certain object is
located in. If packages are already specified, these could be loaded lazily to save
time. When describing in which package an object is located in, it would be
easier to only specify a shorthand (unique) name of the package. If all packages
are to be defined anyway, this could be combined into specifying a shorthand
name and a url for all packages used. These could then be used when referring
to objects. Shorthand names for packages should be available for the serialiser
at least at compile time, otherwise the serialiser cannot locate the packages.

| Prefix Package URL
1 se http://student.dtu.dk/s093259/serialExample
2 core http://org.pnml.tools/epnk/pnmlcoremodel

Table 5.3: An example of giving two packages a prefix.

http://student.dtu.dk/s093259/serialExample
http://org.pnml.tools/epnk/pnmlcoremodel

5.4 Domain Specific Language for Mappings 45

Table [5.3] shown two examples, where packages are given a prefix. The prefix
can be any string, but choosing a long prefix defeats the purpose. Now when
creating a mapping, e.g. the container object can be defined by the object name
and package (given by the prefix).

5.4 Domain Specific Language for Mappings

To be able to contain all the features described in Sect. a DSL is created.
A DSL is chosen based on the knowledge of pros and cons from Sect. [I-3]
Advantages of a DSL are that a developer without much knowledge about the
implementation of the serialiser still can use the tool. And if the language is
intuitive, the cost of learning the DSL should not be too high. The drawback of
the lack of development tools and editors for a new DSL is solved by generating
these using EMF.

In the DSL the developer must be able to define both mappings and references
to packages. The DSL will then be plugged in into Eclipse. To avoid multiple
files, thus keeping it simple, only one DSL is specified. This DSL contains both
definitions of mappings and packages. References from packages do not need to
be specified in the same file as the mapping in which they are used in.

Having only one DSL still allows developers to define packages and mappings
separately in multiple files and plug all of them in.

An example of a definition of a prefix for a Package can be seen in Tabl. [5.3] on
Page The example shows how two long urls are related to a prefix. Now this
prefix can be referred instead of writing the long URL.

A developer can also define mappings. Mappings can map various functionality;
to support that, an enumeration defining what functionality should be mapped
is part of the mapping.

An example of a mapping defined can be seen in Tabl. 5.4 The mapping uses
the feature “Object from attribute” on the object Object contained in the object
Page. The feature requires values for the attribute name, value (to be matched
to create the element) and target (which element should be created).

46 Software Design

Option Feature | Container | Attribute | Value | Target

OBJECT_FROM_ATTRIBUTE | core:object | core:Page type place Place

Table 5.4: An example of a mapping.

In Fig. the meta model for mappings and packages can be seen.

H serialTable
mappings packages
0..* 0..%
E Mapping E Package
= option : Option = prefix : EString
= attribute : EString = url : EString
= target : EString

= value : EString
= addTable : EString

[}

container feature <<enumeration>>
‘E Option
1 = NONE
E cl D ! = AS_NUMBER_IN_PARENT
assDescr
biectN EStri E FeatureDescr = OBJECT_FROM_ATTRIBUTE
= objectName : EStrin
- paJckagePrefix . EStr?ng = featurename : EString = MULTI_LEVEL_SINGLE
- = packagePrefix : EString = MULTI_LEVEL_COMBINED
= ROOT_OBJECT

Figure 5.2: The Ecore diagram of the table defining mappings.

A mapping contains a field for which feature is to be mapped, features are an
essential part of EMF and are used to specify a specific functionality e.g. a
variable on an object. This is used to specify which object or part of object is to
be serialised into what.

The container object is the SerialTable and contains a list of zero or more
mappings and zero or more packages.

Packages are defined by a string defining the prefix, and a string giving the URL
for the package, the URL for a package is unique. Internally in the serialiser,
there exists a hashmap associating the prefix with the loaded models. The

5.4 Domain Specific Language for Mappings 47

models are lazy loaded when needed, this is done to only store the necessary
models. Storing any model defined in any mapping table plugged in could lead
to a large memory usage.

A mapping consists of the definition of seven elements:

Option defines which feature is wanted for the mapping, five different features
can be chosen, these are covered in the next section.

Feature defines which feature in the model the mapping is defining. The feature
is defined by the feature name but also in which package it is located in.
The package is described using a prefix defined in the mapping table.

Container defines the context the features are presented in. This can be left
empty or contain a parent feature. A Container is defined by the name of
the container but also in which package it is located in. This is defined by
the prefix of the package.

Attribute defines a name for an attribute which with the corresponding value
must match.

Value is the value needed to be matched.

Target is the target object for the mapping. E.g. which object to create in the
“object from attribute’-feature.

Add Table can be used to append an extra mapping table when the mapping
matches.

5.4.1 Features of the New Serialiser (Options)

The enumeration in the Ecore diagram shows the five different features which can
be chosen, a value of none can be chosen in case of no extra feature is wanted.
The choices can be seen in the following list.

None is chosen when no extra feature is needed. This could be when an object
is to be ignored e.g. when only an add table feature is wanted.

As number in parent is chosen when an object needs to be serialised as
attributes.

Object from attribute is used when an object is to be defined differently
depending on attributes on the object.

48 Software Design

Multi level single is used when the element need to be serialised on multiple
levels. In this case the elements are serialised into an extra level only
containing a single element.

Multi level combined is the same as the above feature. But instead of se-
rialising into separate elements, all objects are serialised into the same
element.

Root object is used when defining a special mapping for only the root object.
This is to be used if extra mapping tables are to be loaded dependent of
the root object. If the root object matches the mapping the corresponding
table is added.

CHAPTER 6

Handbook for Developers

To be able to use the software developed in this thesis for a new Ecore model
the following steps should be followed:

1. Installing the Eclipse with EMF and Ecore.
2. Installing the serialiser and mapping mechanism.

3. Adding mappings for the Ecore model.

The steps are described in the following three sections.

6.1 Installing Eclipse with EMF and Ecore

The following steps must be followed in order to install EMF and EMF (Ecore)
models. [15]

e If not already installed, install JRE 6.0 or newer from http://www.oracle,
com

http://www.oracle.com
http://www.oracle.com

50 Handbook for Developers

e Download Eclipse classic from http://www.eclipse.org

e Extract Eclipse in a proper location and start the executable.

Choose a proper path for the workspace when prompted.

Go to the “Help”™menu and choose “Install New Software...”

— Select the official software site for your installation of eclipse e.g.
Luna.

— Search for and install EMF Eclipse Modeling Framework SDK.
— Search for and install Ecore Tools SDK.

e Again go to the “Help”-menu and choose “Install New Software...”

— Enter the url for the ePNK update site http://www2.imm.dtu.dk/
“ekki/projects/ePNK/indigo/update/

— Search for and install all ePNK packages except experimental packages.

6.2 Installing the Serialiser and Mapping Mecha-
nism

You should have received a package with the software developed in this project
along with this report. A CD is part of the appendix of the printed version. The
software can be requested by e-mail on s093259@student .dtu.dk

The software developed in this project is added to Eclipse by following the wizard
from Import... in the File menu.

When creating new models, the standard XMI serialiser is still chosen as default.
For projects where the serialiser developed in this project, along with the mapping
mechanism is wanted it should be plugged in.

This is plugged in, by editing the plugin.xml file in the project directory. The
serialiser is plugged in by adding the lines in List

<extension point="org.eclipse.emf.ecore.extension parser">

<parser type="serialExample"
class="serializer . MyResourceFactory" />
</extension>

Listing 6.1: Addition to plugin.xml to plug in the developed serialiser.

http://www.eclipse.org
http://www2.imm.dtu.dk/~ekki/projects/ePNK/indigo/update/
http://www2.imm.dtu.dk/~ekki/projects/ePNK/indigo/update/
s093259@student.dtu.dk

10

6.3 Adding Mappings for an Ecore Model 51

6.3 Adding Mappings for an Ecore Model

When a model is created you kan now add mappings to the model. This is done
by running the provided software to access the developed editor for mappings.

You can now create mappings for your Ecore model.

Now either another workbench can be started, or the mappings can be copied over
to the development workbench (the workbench with the code for the serialiser).

To be able to use the mappings, these needs to be plugged in, this is again done
in plugin.txt and can be done by adding the contents of List

<extension
id="1st"
name="The first table"
point="dk.dtu.se. SerialDefinition.TableExtension">
<table
auto load on extension="serialexample"
description="A table defining the mapping rules for
resource="mappings/1.serialdefinition">
</table>
</extension>

Listing 6.2: Addition to plugin.xml to plug in a new mapping table.

Or alternatively by the graphical editor for plugin.xml, the Plug-In Manifest
Editor, which is the standard editor for the file. Go to the tab extensions and
press add. Now search for the extension point dk.dtu.se.SerialDefinition.
TableExtension and fill out the required fields.

52

Handbook for Developers

CHAPTER 7

Implementation

This section covers the implementation of the mapping mechanism and the
serialiser.

As seen in Fig. to be able to use the serialiser, the serialiser must be
plugged in, and associated with the proper file extension. EMF Ecore provides
an extension point for this. This is covered in Sect. And as described in
the design chapter, mappings needs to know what needs to be serialised and
how. This is covered in Sect. which also covers the editor for creating
the mappings. The mappings can define various functionalies, these individual
features are covered in the realisation of the serialiser section, Sect.

54 Implementation

EMF Ecore

Serializer

Mapping tables

Figure 7.1: The implementation consists of a serialiser which is plugged in
into EMF Ecore. The serialiser relies on mappings, a model for
mappings is created, as well as a extension point so that the
serialiser can be extended with mappings.

7.1 Overriding the Standard Serialiser

As described in Sect. extension points are used to plug in own projects in
to existing projects. EMF provides an extension point where it is possible to
extend the resource with a custom parser, depending on the extension of the file.
That means to be able to plug in a custom serialiser, it must be added to the
extension point provided by EMF. This can be done by adding the contents of
List [7.1] to the file plugin.xml.

<extension point="org.eclipse.emf.ecore.extension parser">

<parser type="serialExample"
class="serializer . MyResourceFactory" />
</extension >

Listing 7.1: Addition to plugin.xml to plug in a custom serialiser.

This means that the developed serialiser, created by the factory serializer.
ABCResourceFactory, will be used for files ending with .serialexample. This is
done by the developer wanting to use the serialiser, as described in the handbook

in Chap. [6]

The serialiser needs mappings to know what and how to serialise objects, the
implementation of mappings is covered in the next section.

7.2 Mappings for the Serialiser 55

7.2 Mappings for the Serialiser

To know how to define mappings, it must first be defined what is needed to
define a mapping; a model for mappings is needed. A table is an obvious choice
to define mappings in, and is also the chosen format. Instead e.g. a linked list
could be chosen. But since the mapping tables can contain a mapping table,
creating a linked list. Mappings in a linked list is chosen for a more simple
understandable design. Additionally tables (realised as object in an ArrayList)
performs better than linked list (realised as LinkedList) if more lookups are
needed than inserts. [16]

Creating a model with EMF, which already is in use in this project, is an obvious
choice. The Ecore model defined can be seen in Fig. [7.2]

H serialTable
(]
mappings packages
0..* 0..%
E Mapping E Package

= option : Option
= attribute : EString

= prefix : EString
= url : EString

= target : EString
= value : EString
= addTable : EString

container feature <<enumeration>>
2" Option
1 = NONE
1 = AS_NUMBER_IN_PARENT
H ClassDescr

=1 objectName : EString
= packagePrefix : EString

= featurename : EString
= packagePrefix : EString

H FeatureDescr = OBJECT_FROM_ATTRIBUTE

MULTI_LEVEL_SINGLE
MULTI_LEVEL_COMBINED

= ROOT_OBJECT

Figure 7.2: The Ecore diagram of the table defining mappings.

The design of the model is covered in Sec. [5.4 In Eclipse, Ecore models can
be created using the Sample Ecore Model Editor, which is a simple tree editor.
For this project an Ecore Diagram is created and edited with the accompanying
Ecore Diagram Editor. The editor displays the model, as what is shown in

Fig.

56 Implementation

To be able to generate the model code and editor, a EMF Generator Model
is needed. When a such is created, various settings can be set, e.g. in which
project should the code be generated. When the model, edit and editor code is
generated, the editor can now be run in a run-time workbench.

Now a model and an editor for the mappings exist, but the mappings must be
used in the serialiser. To be able to do so, the mappings should be plugged in,
so these can be used by the serialiser.

7.2.1 Plugging in Mappings

In EMF, extension points are used to plug in own projects in to existing projects
as covered in Sect. 2] This is good for extending projects where the user do not
want to work with the source code of the project, or just easily want to plug in
extra features or data for another project. This is exactly what a developer want
to achieve. This makes using extension points to plugging in mapping tables the
right choice.

In Eclipse new extension points can easily be created, these are to be defined in
the file plugin.xml. An extension point is defined by just a name, identifier and
an XML schema. The extension point for mapping tables is shown in List [7.2]
<extension—point id="TableExtension" name="Table Extension" schema
="schema/TableExtension.exsd"/>
Listing 7.2: Addition to plugin.xml to create new extension points, other
developers can extend.

Now an extension point for mappings is created. But the XML schema must also
be defined, defining what is needed when adding a table. The schema consists of
an extension point, an identifier, a name and a sequence of mapping tables. In
order for other people to define mapping tables, these must be exported by the
project, this is default behaviour.

The extension point is used to define the kind of extension is expected, in this
case it is a mapping table. An identifier and a name are used to identify the
extension and refer to it. And the sequence of tables are the actual mapping
tables needed in the serialiser along with a description for the tables. A way
to know which tables should automatically be added to which models is also
needed. Generally, when plugging in a serialiser, the file extension of the model
instance is used to determine which serialiser is used. This can be reused to
make it possible to define for which file extensions which mapping tables should
be automatically added.

10

7.2 Mappings for the Serialiser 57

An example of a mapping table being plugged into the serialiser can be seen in

List. [.3]

<extension
id="1st"
name="The first table"
point="dk.dtu.se. SerialDefinition.TableExtension">
<table
auto load on_ extension="serialexample"
description="A table defining the mapping rules for
resource="mappings/1.serialdefinition">
</table>
</extension>

n

Listing 7.3: Addition to plugin.xml to plug in a new mapping table.

This is to be done for each new model, as described in the handbook in Chap. [f]

58 Implementation

7.2.2 The Editor for Mappings and Packages

As described in the section about EMF, Sect. when creating a model in
EMF, the model comes with adapters and an editor.

The editor is a simple editor with ability to create, edit and delete new mappings.
The mapping tables can then be saved in the standard XMI format, stored, and
then loaded againEI A screenshot of the editor can be seen in Fig. |7.3

v LQ platform: /resource/newproject/mapping.serialdefinition
¥ 4 Serial Table
4+ Package te -> http://student.dtu.dk/s093259/techexp
¥ <4 Mapping AS_NUMBER_IN_PARENT Target:C Attribute:amount Value:B Table:-
4 Class Descr te:B
<4 Feature Descr te:c
¥ < Mapping OBJECT_FROM_ATTRIBUTE Target:E Attribute:type Value:e Table:-
< Class Descr te:A
<4+ Feature Descr te:d
¥ < Mapping OBJECT_FROM_ATTRIBUTE Target:F Attribute:type Value:f Table:-
<4 Class Descr te:A
<4+ Feature Descr te:d
¥ 4 Mapping MULTI_LEVEL_SINGLE Target:K Attribute:ks Value: Table:/techexp/mapping.serialdefinition
<4+ Class Descr te:]
<+ Feature Descr telk
< Mapping ROOT_OBJECT Target:- Attribute:- Value:- Table: /techexp/extmapping.serialdefinition

Figure 7.3: The simple editor for editing mappings. The editor is part of what
is generated by EMF.

As described in Sect. the project also come with adapters which are used
when modifying and displaying the model. By standard in EMF only the first
attribute on an object is shown in the editor. This can be changed by changing
the generated method which defines the textual representation of an object. For
example the textual representation of a Package can be changed in the item
provider class PackageItemProvider as shown in List [7.4 Note the JavaDoc
annotation @generated NOT which ensures that EMF does not overwrite the
method when generating code.

/xx
* This returns the label text for the adapted class.
* <l—— begin—user—doc —>
* <!l—— end—user—doc —>
* @generated NOT
*
/

11t is even possible to create a mapping table for defining the serialisation of mapping
tables.

10

7.3 Realising the Serialiser 59

@Override
public String getText(Object object) {
String labelUrl = ((serialDefinition.Package)object).getUrl();
String labelPrefix = ((serialDefinition.Package)object).
getPrefix () ;

return (labelUrl = null || labelUrl.length() — |
labelPrefix = null || labelPrefix.length() = 0) ?
getString (" UI Package type")
getString (" UI Package type") + " " + labelPrefix + " — " +

labelUrl;
}
Listing 7.4: By changing the item provider for packages, the textual
representation of a package can be changed. By standard only the
URL was shown.

The editor is updated to show values for all attributes to give a better overview
and support printing from the editor without losing information.

7.3 Realising the Serialiser

As described earlier, all files, folders and projects is realised in Eclipse as
Resources. To plug in the developed serialiser, the save and load features can be
overwritten of a standard resource-class from Eclipse. Since this project will only
work with XML as format, the class XMLResource is an obvious choice. Since
the XMLResource comes with some nice to have features for saving XML. A class
diagram over the serialiser can be seen in Fig. [7.4] on Page [60}

In Eclipse, resources are to be created by a factory following the creational design
pattern for factories. A such factory is created by extending the ResourceFac-
tory already in EMF. The new factory is then extended with functionality to
create our own resource, containing our own save and load functionality.

To be able to use the serialiser, the factory created, is then plugged in and
associated with a proper file extension. As covered in Sect. The resource
contains the class MappingTable which is a class wrapping some functionality
around the class SerialTable, which contains the actual mappings and packages.

In the following sections the save, load and table functionality will be described.

60 Implementation

Q-7
ResourceFactorylmpl §9>Q’
q
!
i
V\)
MyResourceFactory
createResource(...) MappingTable
table : SerialTable
: extension : MappingTable
XMLResourcelmpl i addTable(...)
<<instantiate>> loadTable(...)
v\ : getTablePackages()
: 11 getTableMappings()
MyResource getPackageByURI(...)
helper : XMLHelper getEclass(...)
createXMLLoad() getEFeature(...)
create;(MLSaLe() getMapping(...)
\
// \\
XMLSavelmpl /// \\ XMLLoadlmpl
/ \
, </<USES>> <<US€S>; \
I// \\\
MySave MyLoad
doc : XMLString makeDefaultHandler()
saveElement(...) A
saveContainedMany(...) <<uses>> | SAXXMLHandler
|

MySAXHandler
createObject(...)
getFeature(...)
setAttribValue(...)

processTopObiject(...)

<<uses>>

>

MyStructuralFeature
name : String
feature : EStructuralFeature

Figure 7.4: Class diagram for the serialiser. Extended classes are from the
EMF Ecore package. This diagram contains all classes but only
highlights the important attributes and methods.

7.3 Realising the Serialiser 61

7.3.1 Saving Instance — MySave

When saving (and loading), when no mappings are present, the serialiser should
fall back to the standard XMI mappings. This means that when creating the
save functionality, all functionality from the class XMLSaveImpl can be used, and
only the special cases must be handled. The features needed for the serialiser
defined in Sec. [5.4.1] can be realised by overriding just two methods. The method
saveElement and saveContainedMany.

7.3.1.1 Saving an Element — saveElement

The method saveElement which takes an object (InternalEObject) and a
feature (EStructuralFeature) is, as expected, responsible for saving the element.
The object is the object being saved, and the feature is the feature from the
model on where to save it, e.g. as an attribute on another object (and which).

The functionality added in saveElement is, if the object should not be saved (the
none option) or the object is defined by an attribute (the object from attribute
option) it is handled in MySave. Otherwise the object and feature is passed to its
super-class, to determine what functionality is needed for the object and feature
is handled by the mapping table, and covered in Sect. [7.3.3]

If the mapping for the object and feature fits with the none-feature, the element
is just skipped and thus never saved. The serialising then continues with the
next object.

If the mapping requests the object from attribute feature, the element name
as defined in the mapping is created instead. This is done by adding the start
tag to the document as well as the attribute as defined in the feature. The
method saveFeatures is then called to save the rest of the features i.e. other
attributes associated with the object. Do note, that the method endElement
on the document should not be called as expected. That method is called in
endSaveFeatures which is as the last thing in saveFeatures.

7.3.1.2 Saving Multiple Elements — saveContainedMany

The method is responsible for saving features on objects with more than one
element associated with the feature. Such as the features multi level (single and
combined) and the “as number in parent”™feature. The feature also takes an
object and a feature as arguments, like the method saveElement.

62 Implementation

If the mapping for the object and feature pair is the “as number in parent”-feature,
the amount of elements is counted by receiving the list of elements associated
with the feature from the helper and calculating the size. The objects must be
casted correctly, the class of the object is unknown — but it is known that the
objects at least extend the class InternalEObject. This is done by the following
code in List.

List <? extends InternalEObject> values = ((InternalEList <? extends
InternalEObject >) helper.getValue(o, f)).basicList();
int size = values.size();

Listing 7.5: Reciving elements assosiated with a feature.

If the feature for multiple levels is needed, this is handled in almost the same
way. The mapping can either be for multiple levels in each own element, or all
elements in an extra level combined. Both is covered. The same functionality as
when the number of elements is saved in the parent.

That means that, the elements associated with the feature is retrieved using
XMLHelper as in List. But instead of saving the number of elements in
an attribute, the extra level of elements is created using the document object.
Depending on whether the combined or single variant of extra level is needed,
elements is created and ended using startElement, and endElement. The
element is then saved using the method saveElement.

7.3.2 Load Functionality — MyLoad and MySAXHandler

When loading the method load is called from the class MyLoad. The class
extends the class XMLLoadImpl which contains the methods for reading the XML
and traversing the objects. For this project only the default handler must be
overwritten. This is done by overwriting the class makeDefaultHandler, and
instead providing my own handler, the class MySAXHandler.

MySAXHandler extends the regular SAX handler from EMF, the class SAXXML-
Handler. The handler is responsible for getting content and handling objects
and their attributes.

As with the save functionality, if there is no applicable mapping, it should use
the standard functionality. That means only four methods is overwritten to

support the new features.

The following list contains the four methods, and are covered in the next sections.

10

7.3 Realising the Serialiser 63

createObject responsible for creating objects. Used for the “object from at-
tribute”, “multi level” and none-feature.

getFeature responsible for receiving the feature for the methods handleFea-
ture and setAttribValue. Is used for the “multi level’-feature.

setAttribValue responsible for creating the values on objects. Used for the
“as number in parent” and “object from attribute” feature.

processTopObject is responsible for processing the root object(s). Is used to
add tables if a mapping is of the feature “root object”.

7.3.2.1 Creating Objects — createObject

This method is responsible for creating objects. It receives, a peekobject (the
parent object) and the feature to create. The method usually creates a new
object and passes it along to the method processObject which finally adds the
object.

For this project in some cases it is needed to handle it differently. A none-feature
is added, that means if that mapping apply, nothing should be done. This is
implemented as a simple check to see if the mapping applies, and the method
then returns without having created any object.

The method also supports the “object from attribute’-feature. If a such mapping
applies, another object than what EMF would create should be created. From
the mapping it is known what object in which package should be created. The
proper factory instance is found. When the new object is created it is added to
the parent object. Now the newly created object might have additional attributes
which must be handled. The normal chain of called methods are called. The
method handleObjectAttribs to handle the attributes on the object, and the
method processObject which maintains the created lists of objects. Listing [7.0]
shows the method calls.

EPackage ePackage = table.getPackageByName (m. getContainer () .
getPackagePrefix ());

EClassifier eClassifier = ePackage.getEClassifier (m. getTarget());

EClass eClass = (EClass) eClassifier;

EObject newObject = ePackage.getEFactoryInstance().create(eClass);

List <EObject> objs = (List<EObject>) peekObject.eGet(feature);

objs.add (newObject) ;

64 Implementation

handleObjectAttribs (newObject) ;

processObject (newObject) ;

Listing 7.6: Recieving the proper factory, creating a new object and adding it
to the parent object. And lastly handling the newly created object
as usual.

To be able to create the multi level feature, a temporary connection must be
created when loading the first element, since the extra level must be ignored. To
do this the class AssocClass from ePNK is used. The new object is given the
feature, and the source for the first object. We do not know the inner object yet,
which is why the class must be used. Then, when serialising later and provided
with an object of the type AssocClass, the correct object can be created. The
AssocClass object contains the source and feature, and now the connection can
be created and the object can be processed.

7.3.2.2 Retrieving Features — getFeature

To be able to handle the newly added class AssocClass, a wrapper class around
the feature EStructuralFeature to also contain the name of which object it must
be associated with, must be added. The wrapper class MyStructuralFeature
is created to contain the feature and the name, when a such class is met in the
method getFeature the new class is used instead.

7.3.2.3 Setting Values on Objects — set AttribValue

If earlier in the method for creating objects the feature “object from attribute”
was used, the object to be created was represented in XML as an attribute
on the object. That means that in this method, an attribute we have already
handled in an earlier method (by creating the proper object) will be received.
This attribute must be ignored, because the regular EMF serialiser does not
understand this feature since it is not part of the model.

The “as number in parent” feature is also implemented in this method. When the
method reaches an attribute matching a mapping with that feature the objects
are created. As in the “object from attribute” feature, the proper factory is found
which creates the appropriate number of objects. The amount of objects created
is found by the method getValue on the attributes object, containing all the
attributes.

7.3 Realising the Serialiser 65

7.3.2.4 Proccessing Root Objects — processTopObject

In some cases the developer might want to add new tables depending on values
on the top element. This is done by adding a mapping with the feature chosen
as root element. If the attribute and value matches the values in the mapping
a table is added.

This feature only adds a table and does not handle the root object, that means the
root object is just passed along to its super and handled as usual independently
of a new table is added or not.

7.3.3 Table for mappings — MappingTable

The class MappingTable is responsible for the table of mappings and packages
as well as features for retrieving information from these.

The following list is the key methods of the class, the methods are covered in
more details in the following sections.

addTable responsible for adding tables to the internal structure. Uses load-
Table if given a path to a table.

loadTable returns a loaded table when given a path.

getMapping responsible for returning a list of mappings. Multiple methods
exists to only return relevant features given different type of variables.

getPackageByName responsible for returning the proper model-package by
searching the list of defined prefixes in the mapping table.

7.3.3.1 Loading Mapping Tables — loadTable

The method for loading tables is only used by the method addTable if a path is
given. The path is given as a string, so a URI used internally in Eclipse to locate
the table is created. A new XMIResource is created to contain the table, the
resource is set up and the path is set. The model is then loaded and casted to
the proper object for the tables used within the project. Note that the resource
contains a list of models, only the first element exist and returned, which is the
one loaded. For Java code, refer to List.

10

15

20

66 Implementation

URI uri = URI.createPlatformPluginURI (path, false);

Resource resource = new XMIResourcelmpl();
serialDefinition . SerialTable model = null;

resource . unload () ;
resource.setURI(uri);

try {
resource.load (null);

// XMIModel : Create a class for XMI Model
model = (serialDefinition.SerialTable) resource.getContents ()

.get (0);

} catch (Exception e) {
/7.

return model;

Listing 7.7: Loading and returning a table given a path.

7.3.3.2 Adding Mapping Tables — addTable

As described in the Design chapter, Chap. [5] the mapping tables can be extended
with new mapping tables in a linked list. When a mapping table is created it
contains no mappings. When the method retrieves mappings to be added it
checks if the list of mappings is created. If the list is null the mappings are
added, otherwise the table is extended with a new table for the mappings. The
new table is created and the same method, addTable is called. See List

if (table = null) {
table = newTable;
} else {

extension = new MappingTable() ;
extension .addTable (newTable) ;

Listing 7.8: Adding tables.

7.3.3.3 Searching for Mappings — getMapping

Both when saving and loading, the relevant mappings will be searched to find a
match. The method is overloaded with multiple different parameters for only

7.3 Realising the Serialiser 67

returning the relevant set of mappings. E.g. matching a feature or matching the
name of an attribute.

The methods uses the method getTableMappings to receive all the mappings
on the table and recursively on all tables extending. This can be seen in List [7.9]
Before returning the list of mappings, the mappings are sorted, see Line 7. This
ensure that the mappings are sorted for each level of tables. The sorting is simple,
it moves mappings with a context to the front of the list to obey the rule that
these take precedence. This is done by creating two lists, one list with mappings
with context, the other for mappings without. The mappings without context
are then appended the list of mappings with context. This ensures mappings
with context to take precedence, but does not interfere with any other order of
the mappings.

List <Mapping> mappings = new ArrayList<Mapping>();

if (extension != null) {
mappings.addAll (extension . getTableMappings ());

if (table != null) {
mappings.addAll (sortMappings (table.getMappings()));

}

return mappings;

Listing 7.9: Recursively retrieving all mappings.

These mappings are then searched to match e.g. the proper attribute.

7.3.3.4 Get Package from Name — getPackageByName

Uses the method getTablePackages to receive all packages on the mapping
table, and recursively the packages on all extended mapping tables. The method
then searches through the mapping tables until a matching prefix is found, and if
found it is returned. Otherwise the serialisation is stopped since this introduces
the serialiser to a problem it cannot continue from.

68

Implementation

CHAPTER 8

Evaluation

The following sections contain the evaluation of the project. The first section is
test; This covers a test of each of the features implemented, and their relation
to Petri nets. When testing a feature the serialiser must be able to save in the
correct representation but also be able to read the serialised file — while keeping
the same content.

This chapter also covers the correctness of the serialisation, describing why the
implemented features are enough, and correct.

The last section of this chapter gives a look on the future for this project.

8.1 Test of Mapping Mechanism

This section will cover the test of the serialiser. Throughout this project numerous
features are developed, the test of the functionality of these features will be
documented in this section. Additionally, this section will cover if these features
cover the features needed to be able to serialise Petri nets according to the iso
standard for Petri nets; PNML.

The testing is performed on an Eclipse installation installed as described in the

70 Evaluation

developer handbook in Chap. [6] This section will test the core model of PNML,
which is defined in the Ecore model located in org.pnml.tools.epnk.model.
PNMLCoreModel.ecore. The model can be seen in Fig. 8.1 on Page

For testing purposes this model is created in its own project, and the serialiser
developed is associated with the file extensionﬂ This means that the usual editor
for Petri nets cannot be used and the simple tree editor will be used instead.
This is also how the model instances will be displayed in this section.

8.1.1 Relying on the Default Serialiser

A simple model instance of a such model can be seen in Fig.[8:2] List. [8:I] shows
the XML file when saving.

v @ platform:/resource/newproject/My.coremodel

=y

¥ <4+ Petri Net Doc
¥ 4 Petri Net
<+ Empty Type
¥ < Page
¥ <+ Place
4 Marking
< Transition

Figure 8.2: A simple instance of the model in Fig. A Petri net with no
type, a place with a marking and a transition.

The purpose of this test is to see if a model is serialised without any mappings,
the resulting representation is the same as using the default EMF serialiser.

<?xml version="1.0" encoding="UTF-8"7>
<coremodel: PetriNetDoc xmlns: xsi="http://www.w3.org/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">
<net>
<type xsi:type="coremodel: EmptyType"/>
<page>
<object xsi:type="coremodel:Place">
<labels/>

IThe file extension for this test is .coremodel

71

8.1 Test of Mapping Mechanism

type

[PetriNetType

-

E EmptyType

A detailed definition
of the graphical
features (Graphics) is
shown in a separate
diagram:
PNMLCoreModelGraphi
cs

There are some additions for
the GMF editor, which access
labels via proxies.

These are shown in
PNMCoreModelProxies.

H ToollnfoText

= info : EString

[TR0)
m PetriNetDoc = id: 1D This, basically, is the PNML Core Model of ISO/IEC 15909-2,
T d: Nov. 2009
toolspecific 0" Toollnfo
T tool : EString
toolspecific 0. | &= version : EString
net
1.% 0.*
[PetriNet toolspecific
object Object
0.%
NV graphics
0.1
B Graphics labels
0.%
name name -
0..1 0.1
0.1
E Name graphics —/|. [Label
I text : EString 1>
page
1%
1 source out 0.* -
[Page [Node B Arc B Attribute
1 target in 0.*
[PlaceNode ref ref | [TransitionNode
1 1
H Place E RefPlace [RefTransition H Transition

Note that there is a special class
AnyType, to which a
containement "unknown" exists
from PetriNet, Object and Label.
This is used for representing tool-
specific information from
unknown tools. Since thi
refers to the Java class,
not visible in this diagram.

ectly
is

m

The Ecore diagram for the core model of PNML as modeled

org.pnml.tools.epnk.model.PNMLCoreModel.ecore.

Figure 8.1

72 Evaluation

<labels/>
</object >
10 <object xsi:type="coremodel: Transition"/>
</page>
</net>
</coremodel: PetriNetDoc>

Listing 8.1: Output when saving the model instance shown in Fig.

The instance is saved, with no loss of data and can be loaded again to reflect the
instance shown in Fig. 82} The instance is saved as the standard XMI serialiser
shipping with EMF. This means, with no mappings — the serialiser relies on the
standard XMI serialiser as intended. When saving the above model instance
with the standard EMF serialiser the result i the same as in List. Bl

Now mappings can be added.

8.1.2 Adding Mappings — Object from Attribute

A mapping table is created and added. The mapping table is then plugged in
and associated with the file extension .coremodel. The mapping table is as
shown in Tabl. the Petri net remains the same and the output can be seen
in List.

Option Feature | Container | Attribute | Value | Target

OBJECT_FROM_ATTRIBUTE | core:object | core:Page type place Place

Table 8.1: The mapping table to map into List.

1 <?xml version="1.0" encoding="UTF-8"7>
<coremodel : PetriNetDoc xmlns: xsi="http://www.w3.org/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">
<net>
<type xsi:type="coremodel:EmptyType"/>
5 <page>
<object type="place">
<labels/>
<labels/>
</object >
10 <object xsi:type="coremodel: Transition"/>
</page>
</net>
</coremodel: PetriNetDoc>

Listing 8.2: Output when saving the model instance shown in Fig. with
the mapping table shown in Tabl.

8.1 Test of Mapping Mechanism 73

8.1.3 Saving Object as a Number

Using Tabl. instead of having labels as individual object, the amount of
labels can be saved as an attribute.

Option Feature Container | Attribute | Value | Target

AS_NUMBER_IN_PARENT | core:Object | core:labels amount Object | Label

10

Table 8.2: The mapping table to map into List.

The resulting XML file is shown in Lst. [823] Note the attribute amount on line 6.

<?xml version="1.0" encoding="UTF-8"7>
<coremodel : PetriNetDoc xmlns: xsi="http://www.w3.org/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">
<net>
<type xsi:type="coremodel: EmptyType"/>
<page>
<object xsi:type="coremodel:Place" amount="2"/>
<object xsi:type="coremodel: Transition"/>
</page>
</net>
</coremodel: PetriNetDoc>

Listing 8.3: Output when saving the model instance shown in Fig. with
the mapping table shown in Tabl. @

The instance can be saved and loaded with the new feature without dataloss.

8.1.4 Most Specific Mapping

General for mappings the serialiser should select the most precise mapping. This
is defined in Sect. With the test in Sec. it was shown that plugged in
mappings takes precedence over standard mappings. In this test it will be shown
that more precise mappings (i.e. mappings with a context) takes precedence
over mappings without.

The order of mappings is the last thing to decide which mapping is used. Ex-
tending Tabl. to the table Tabl. shows this in List.

74 Evaluation

Option Feature Container | Attribute | Value | Target
AS_NUMBER_IN_PARENT | core:Object | core:labels | amountFirst | Object | Label
AS_NUMBER_IN_PARENT | core:Object | core:labels amount Object | Label

Table 8.3: Tabl. extended with a new mapping with a new value for the element name.

1 <?xml version="1.0" encoding="UTF-8"7?>
<coremodel: PetriNetDoc xmlns: xsi="http://www.w3.org/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">
<net>
<type xsi:type="coremodel:EmptyType"/>
5 <page>
<object xsi:type="coremodel:Place" amountFirst="2"/>
<object xsi:type="coremodel: Transition"/>
</page>
</net>
10 </coremodel:PetriNetDoc>

Listing 8.4: Output when saving the model instance shown in Fig. m with
the mapping table shown in Tabl. @

When the container is removed from the table, as shown in Tab. [8:4] the attribute
name is chosen from the second mapping, which shows the mapping with context
takes precedence. Which is seen in List.

Option Feature Container | Attribute | Value | Target
AS_NUMBER_IN_PARENT — core:labels | amountFirst | Object | Label
AS_NUMBER_IN_PARENT | core:Object | core:labels amount Object | Label

Table 8.4: Tabl. without container defined on the first mapping.

1 <?xml version="1.0" encoding="UTF-8"7>
<coremodel : PetriNetDoc xmlns: xsi="http://www.w3.org/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">
<net>
<type xsi:type="coremodel: EmptyType"/>
5 <page>
<object xsi:type="coremodel:Place" amount="2"/>
<object xsi:type="coremodel: Transition"/>
</page>
</net>
10 </coremodel:PetriNetDoc>

Listing 8.5: Output when saving the model instance shown in Fig. m with
the mapping table shown in Tabl.

8.1 Test of Mapping Mechanism 75

8.1.5 Add Tables

Using the option for adding tables on root objects, new tables can be added. For
this test a mapping table is added based on the root object. This is shown in
Tabl B.5

Do note that the column add table is available on all mappings but kept out of
the tables due to space issues in this paper. Refer to the DSL defining mappings

in Sect. 5.4
Option Add Table
ROOT_OBJECT | ... | dk.dtu.se.coremodel/mappings/2.serialdefinition

Table 8.5: To add a new table on root object. The shown columns of this table
is reduced to fit in this paper. All not shown fields are empty.

The table is added based on the URI in Eclipse for the table. The table is added
when loading and the mappings are used as expected. The referred URI is the
URI for the mappings in Tabl. The resulting representation is the same as
the listing in List. and shows the mappings work.

8.1.6 Precedence of Added Tables

As defined in Sect. the latest added mappings must take precedence over
others. Using the tables in the previous sections this can be shown working.
Table is combined with the table mapping the attribute for “as number in

parent” in Tabl.

Option Feature Container | Attribute | Value | Target | Add Table
AS_NUMBER_IN_PARENT | core:Object | core:labels | amountFirst | Object | Label —
ROOT_OBJECT — — — — — dk.dtu.se...*

Table 8.6: Table is combined with the table mapping the attribute for “as number in parent”.

The URI in Tabl. [8.6] refers to the table in Tabl. [R.71

76 Evaluation
Option Feature Container | Attribute | Value | Target | Add Table
AS_NUMBER_IN_PARENT | core:Object | core:labels amount Object | Label —

Table 8.7: Extension of Tabl. Notice the differences in the column Attribute.

The resulting representation is the same as in List. that means with the
correct selected mapping with the attribute amount. Which shows the precedence
of mappings is correct.

8.1.7 Using References

And now to something completely different. Before using the new serialiser, it
was possible to reference objects in the instance. This should still be possible and
work as expected with the new serialiser. An Arc is introduced to the instance
from the place to the transition. The resulting XML file can be seen in List.

1 <?xml version="1.0" encoding="UTF-8"7?>
<coremodel: PetriNetDoc xmlns: xsi="http://www.w3.org/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">
<net>
<type xsi:type="coremodel:EmptyType"/>
5 <page>
<object xsi:type="coremodel:Place" amount="2"/>
<object xsi:type="coremodel: Transition"/>
<object xsi:type="coremodel:Arc" source="//@Qnet.0/@Qpage.0/
@object.0" target="//@net.0/@page.0/ @Qobject.1"/>
</page>
10 </net>
</coremodel : PetriNetDoc>
Listing 8.6: Output when saving the model instance shown in Fig. [8.2] with
the new table in
The arc references to the correct place and transition as expected, refer to Line 8
in List. [8.6] This is tested by creating multiple places and transitions. And then
only deleting the referenced one — the editor will then remove this reference since
the object does not exist any more.
The editor relies on XPath when there is no identifiers on the objects. If
identifiers are added to the object, the identifier is used instead. This can be
seen in List.
1 <?xml version="1.0" encoding="UTF-8"7>

<coremodel: PetriNetDoc xmlns: xsi="http://www.w3.org/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">

10

8.1 Test of Mapping Mechanism 77

<net>
<type xsi:type="coremodel:EmptyType"/>
<page>
<object xsi:type="coremodel:Place" id="pl" amount="2"/>
<object xsi:type="coremodel: Transition" id="t1"/>
<object xsi:type="coremodel:Arc" source="pl" target="t1"/>
</page>
</net>
</coremodel: PetriNetDoc>
Listing 8.7: Output when saving the model instance shown in Fig. m with

identifiers on place and transition.

The transition is given the identifier t1 and the place the identifier p1. The
arc is now using these new identifiers and it is now easier to verify that the
editor relates to the correct objects by creating more with new identifiers. When
deleting the object with the referenced identifier, the reference is removed and it
can be verified to be the correct object referenced.

8.1.8 Adding Extra Levels

The features “multi level single” and “multi level combined” can also be used by
a developer. The features are used for adding an extra level of elements in the
XML representation. As an example the developer want all labels to be enclosed
in the element extraelement. This can be done with the defined mappings in
tabl.

Option Feature | Container | Attribute | Value | Target

MULTI_LEVEL_COMBINED | core:labels | core:Object | extralevel — Label

5

Table 8.8: Table adding an extra level to the representation of labels.

Serialising an instance with three labels on the object results in the representation

in List. 8.8

<?xml version="1.0" encoding="UTF-8"?7>
<coremodel: PetriNetDoc xmlns: xsi="http://www.w3.o0rg/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">
<net>
<type xsi:type="coremodel: EmptyType"/>
<page>
<object xsi:type="coremodel:Place" id="pl">
<extralevel >
<labels />

78 Evaluation

<labels/>
10 <labels/>
</extralevel >

</object >

<object xsi:type="coremodel: Transition" id="t1"/>

<object xsi:type="coremodel:Arc" source="pl" target="t1"/>
15 </page>

</net>
</coremodel : PetriNetDoc>

Listing 8.8: Output when saving the model instance shown in Fig. with
identifiers on place and transition.

The previous mapping used the feature “multi level combined” to combine the
extra level into one. Instead each object could be in each own extra element.
The feature used is changed as seen in Tabl. [8.9)and results in the representation
seen in List.

Option Feature | Container | Attribute | Value | Target
MULTI_LEVEL_SINGLE | core:labels | core:Object | extralevel — Label

Table 8.9: Table adding an extra level to the representation of labels in each own element.

1 <?xml version="1.0" encoding="UTF-8"7>
<coremodel: PetriNetDoc xmlns: xsi="http://www.w3.o0rg/2001/XMLSchema—
instance" xmlns:coremodel="http://dk.dtu.se.coremodel">
<net>
<type xsi:type="coremodel:EmptyType"/>
5 <page>
<object xsi:type="coremodel:Place" id="pl">
<extralevel >
<labels/>
</extralevel >
10 <extralevel >
<labels/>
</extralevel >
<extralevel >
<labels/>
15 </extralevel >
</object >
<object xsi:type="coremodel: Transition" id="t1"/>
<object xsi:type="coremodel:Arc" source="pl" target="t1"/>
</page>
20 </net>
</coremodel : PetriNetDoc>

Listing 8.9: Output when saving the model instance shown in Fig. [8.2] with
three labels using the mapping table in Tabl.

8.1 Test of Mapping Mechanism 79

8.1.9 Multiple mappings

The previous tests have shown the features individually in a context of Petri
nets. This test will show another model than Petri nets, and will make use of
almost all the features at once.

Bc S

= someAttribute : EString

« 0..%

Bs H ElE
O3 test : EString = attributeon) : EString = test : EString
= number : Elnt
j d A
0.* 0..*
S He
= name : EString = number : EInt
0..*
as
E Container E F

= color : EString

Figure 8.3: The model for the test of all features.

The model can be seen in Fig. and contains an object A in the container
object. The A object contains

e A list of B objects that contains a list of C objects.
e A list of P objects also containing a list of C objects.
e A list of J objects containing a list of K objects

e A list of D objects (which are abstract) and can either be a E or F object.

The mappings defined can be seen in Fig. The mappings extend into the file
2.serialdefinition, which can be seen in Fig. |8.9

The mappings are the following

80 Evaluation

v LQ platform: /resource/newproject/ 1.serialdefinition
¥ <= Serial Table
% Package te -= http://student.dtu.dk/s093259/serialExample
¥ <4 Mapping AS_NUMBER_IN_PARENT Target:C Attribute:amount Value:B Table:-
< Class Descr te:B
<4+ Feature Descr te:c
¥ < Mapping MULTI_LEVEL_SINGCLE Target:K Attribute:ks Value: Table:-
<4 Class Descr te]
<+ Feature Descr te:k
< Mapping ROOT_OBJECT Target:- Attribute:- Walue:- Table: /dk.dtu.se.serialExample/mappings/2.serialdefinition

Figure 8.4: The mappings for the model in Fig. 1.serialdefinition, as
seen in the mapping editor.

v LQ platform: /resource/newproject/2.serialdefinition
¥ <= Serial Table

¥ < Mapping OBJECT_FROM_ATTRIBUTE Target:E Attribute:type Value:e Table:-
< Class Descr te:A
<4 Feature Descr te:d

¥ < Mapping OBJECT_FROM_ATTRIBUTE Target:F Attribute:type Value:f Table:-
< Class Descr te:A
<4 Feature Descr te:d

Figure 8.5: The mappings for the model in Fig. 2.serialdefinition, as
seen in the mapping editor.

e The url for the package serial example is added. [

e C objects on B objects must be serialised as a number in parent with the
attribute amount.

e K objects on the J object must be serialised with an extra level called ks
in between.

e When loading the root object, the contents of 2.serialdefinition must
be added.

e When the attribute type on the object D is e the created element should
be of the type E.

e When the attribute type on the object D is £ the created element should
be of the type F.

Now an instance of the model shown is serialised. The model instance is shown in
Fig. and the result of serialisation is as expected and is shown in List.

2Note that this package definition is also usable in the added mapping table.

8.1 Test of Mapping Mechanism 81

v @ platform:/resource/newproject/My.serialexample
¥ < Container
¥ & A default
¥ B
4 C
4 C
4 C
4 C
4 F
4 E
&P
Y4
4 K

Figure 8.6: An instance of the model in Fig. [8.3] Not shown in the editor is
the reference in P to the 2nd C object.

1 <?xml version="1.0" encoding="UTF-8"7>
<serialExample: Container xmlns:serialExample="http://student.dtu.dk
/s093259 /serialExample">

<as>
<b amount="4"/>
5 <d type="f"/>

<d type="e"/>

<p c="//Qas.0/@b.0/@c.1"/>

<j>
<ks>

10 <k/>

</ks>

</j>

</as>
</serialExample: Container>

Listing 8.10: The result of the serialisation.

The file can be loaded and saved without dataloss. Notice that:

e The amount of Cs is saved in b as an attribute.

e The objects E and F is saved as D with the attribute type defining which
object to create.

e Since the mapping defining the above is used, that means the addition of
new tables are working.

e The reference in P to the 2nd C object is working. E|

e The K object is serialised into J with an extra element ks in between.

3Can only be tested in the editor, the reference works correctly, when the second C object
on B is deleted, it is also deleted from the P object, proving it is a reference to the same object.

82 Evaluation

8.2 Correctness of Serialisation

This section is an evaluation of the correctness of the serialisation. For the
serialisation mechanism to be useful it must be correct. To ensure this the
loading and saving of features are kept as identical as possible. The mappings
for saving and loading is the same. The code is kept as defensive as possible,
meaning only when a mapping applies the functionality is overridden.

Throughout the test section, Sect. numerous model instances has been loaded
and saved. Without dataloss.

Though, allowing multiple mappings for the same elements raises some issues.
When saving and loading an attribute on an element it cannot be insured the
same mapping applies, when multiple exist. The order; and which mapping is
the best fit, of course is the same — due to the same sorting of mappings for
both saving and loading. But if multiple mappings exist for creating attributes
for the “as number in parent” exist, as an example the table of mappings from
Tabl. when testing the precedence of mappings.

Option Feature Container | Attribute | Value | Target
AS_NUMBER_IN_PARENT — core:labels | amountFirst | Object | Label
AS_NUMBER_IN_PARENT | core:Object | core:labels amount Object | Label

Table 8.10: Reappearance of Tabl.

When serialising, the second mapping will be chosen, and the attribute name
will be amount. When saving, with this table, the attribute will never be
amountFirst.

Though if a mapping with the attribute amountFirst is loaded, this will actually
be supported! This could be exploited by a developer to support reading of
older formats, but still saving in a new. But it also means the serialiser can
use a mapping while loading which is not used while saving. It will not lead to
dataloss but it can lead to adding additional data.

8.3 Relation to Standard for Petri Nets

Multiple features from the PNML standard is implemented and tested.

8.4 Conclusion on Test 83

e To support multiple versions of the Petri net standard, support for multiple
tables is implemented and tested.

e To support high level Petri nets with additional added levels. (e.g. Terms
which gets an extra element structure when serialised. See Page 90 of
the iso standard for an XML representation and Page 14 for a meta model.

e To better support attributes defining which object to be created the feature
“Object from attribute” is added. This is used when defining the identifier
on the net type. See page 89 in the iso standard for an example.

e The feature “as number in parent” is not part of the standard, but could
be used in new standards.

8.4 Conclusion on Test

Multiple features of the Petri net format are supported. The serialiser can save
the new features and is able to load them without errors or loss of data. The
serialiser is also able to serialiser other formats than PNML.

The serialiser relies on the plugged in mappings and chooses the correct mapping
based on the rules defined.

8.5 The Future of the Serialiser

The serialiser has some functionality and features, but some features and ideas
was deemed out of scope of the project due to the limited time frame of the
project. The serialiser and mapping functionality could be extended with the
functionality from the following sections.

8.5.1 Fully Supporting the ISO Standard for Petri nets

The serialiser has some base functionality and supports multiple features of the
ISO standard for Petri nets. The base functionality developed for this serialiser
could be extended to fully support the PNML standard and also the much larger
HLPNG standard and can be described in abstract syntax.

84 Evaluation

8.5.2 References in Instances

By standard the EMF XMI Serialiser uses XPath for references, since this
serialiser relies on this implementation the same support for XPath is used. The
implementation is rather unconventional by using XPath with indexing from
zero, instead of the usual index starting from one.

This could be solved by adding a custom implementation for XPath references.

Additionally some developers might want another way to define references, which
also could be added. Functionality for developers to extend the serialiser with
their own functionality for defining references could also be added.

8.5.3 Error Handling in Mapping Editor

When defining mappings various things can go wrong. E.g. if a developer refers
to a feature which creates an object which might not exist. This yields an error.
These mistakes could be avoided by introducing features in the mapping editor
as suggested in the next section.

When an error occurs, it could be interesting to both prompt the user, but also
show a marking in the mapping table on which mapping rule yielded an error.

8.5.4 The mapping Editor

The simple tree editor for editing mappings is not a very useful tool. The editor
can be used to define mappings, but additional features to ease the definition of
mappings could be very useful.

8.5 The Future of the Serialiser 85

v LQ platform: fresourcef newproject/mapping.serialdefinition
¥ <= Serial Table
<+ Package te -> http://student.dtu.dk/s093259 ftechexp
¥ < Mapping AS_NUMBER_IN_PARENT Target:C Attribute:amount Value:B Table:-
< Class Descr te:B
< Feature Descr te:c
¥ < Mapping OBJECT_FROM_ATTRIBUTE Target:E Attribute:type Value:e Table:-
4 Class Descr te:A
<4 Feature Descr te:d
¥ < Mapping OBIECT_FROM_ATTRIBUTE Target:F Attribute:type Value:f Table:-
4 Class Descr te:A
<4 Feature Descr te:d
¥ < Mapping MULTI_LEVEL_SINGLE Target:K Attribute:ks Value: Table:/techexp/mapping.serialdefinition
< Class Descr te:)
<4 Feature Descr te:k
4 Mapping ROOT_OBJECT Target:- Attribute:— Walue:- Table:/techexp/fextmapping.serialdefinition

Figure 8.7: The simple editor for editing mappings.

e When defining packages, the url must be manually typed, instead the url
could be chosen from a list of relevant urls already plugged in.

e When defining a mapping and choosing the feature, the feature must be
manually typed. It would be easier to define mappings if this feature could
be selected in the specified model.

e When defining a container element, it would be easier if this was not
manually typed but instead was chosen from a list of possible container
elements. This could somehow be determined from the model.

e As suggested above, adding labels in the mapping table if an error is met.

8.5.5 Developed Serialiser as Default

The developed serialiser must be plugged in for each developed project. The
user experience could be greatly improved if the serialiser was plugged in as
default. Which is possible in EMF by adding the serialiser for all extensions.
The serialiser is developed to rely on the default serialiser if no mappings are
present so it should not interfere with other projects if no mappings are defined.

86

Evaluation

CHAPTER 9

Conclusion

The goal of this project was to develop a flexible serialiser for model instances. A
such has been developed, documented and tested. The technology is developed
as an extension to EMF.

The serialiser uses mappings to define the relationship between model and
representation, these mappings are defined without programming. Mappings can
be cascading and tables of mappings can be extended with other tables. The
serialiser chooses the most precise mapping defined by a set of rules.

Using the serialiser and the mapping mechanism multiple features of the standard
for Petri nets are supported. Though, the serialiser supports customisation of
the serialisation of any UML model instance. Both instances of Petri nets and
instances of other models are tested to work with the serialiser.

Ideas to further support serialisation of model instances and to ease the definition
of mappings is proposed.

88

Conclusion

Bibliography

(1]

2]

3]

[4]

[5]

[6]

7]

18]

19]

Simple. XML Serialization, http://simple.sourceforge.net/download/
stream/doc/tutorial/tutorial.php.

Codehaus. XStream Tutorials, http://xstream.codehaus.org/tutorial |
htmll

Oracle Corporation. Java Architecture for XML Binding (JAXB), http:
//docs.oracle.com/javase/tutorial/jaxb/.

Lars Vogel. Eclipse Modeling Framework — Persisting models via
XMI, http://www.vogella.com/tutorials/EclipseEMFPersistence/
article.htmll

IBM Redbooks. Eclipse Development using the Graphical Editing Frame-
work and the Eclipse Modeling Framework, http://www.redbooks.ibm,
com/abstracts/sg246302.html.

Eclipse Foundation. Eclipse Modeling Framework (EMF), http://eclipse
org/modeling/emf/.

Eclipse Foundation. EMF Javadoc — Interface Resource,
http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/
org/eclipse/emf/ecore/resource/Resource.html.

Oracle Corporation. Java Documentation — Reading XML Data
into a DOM, http://docs.oracle.com/javase/tutorial/jaxp/dom/
readingXML.htmll

Lars Vogel. Eclipse Extension Points and Extensions, http://www.vogella,
com/tutorials/EclipseExtensionPoint/article.htmll

http://simple.sourceforge.net/download/stream/doc/tutorial/tutorial.php
http://simple.sourceforge.net/download/stream/doc/tutorial/tutorial.php
http://xstream.codehaus.org/tutorial.html
http://xstream.codehaus.org/tutorial.html
http://docs.oracle.com/javase/tutorial/jaxb/
http://docs.oracle.com/javase/tutorial/jaxb/
http://www.vogella.com/tutorials/EclipseEMFPersistence/article.html
http://www.vogella.com/tutorials/EclipseEMFPersistence/article.html
http://www.redbooks.ibm.com/abstracts/sg246302.html
http://www.redbooks.ibm.com/abstracts/sg246302.html
http://eclipse.org/modeling/emf/
http://eclipse.org/modeling/emf/
http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/ecore/resource/Resource.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/ecore/resource/Resource.html
http://docs.oracle.com/javase/tutorial/jaxp/dom/readingXML.html
http://docs.oracle.com/javase/tutorial/jaxp/dom/readingXML.html
http://www.vogella.com/tutorials/EclipseExtensionPoint/article.html
http://www.vogella.com/tutorials/EclipseExtensionPoint/article.html

90

Bibliography

[10]

1]

[12]

[13]

[14]

[15]

[16]

Eclipse Foundation. Eclipse Documentation — Package org.eclipse.core.
resources, http://help.eclipse.org/.

Eric Steven Raymond. The Art of Unix Programming — Minilanguages,
http://www.faqgs.org/docs/artu/minilanguageschapter.html.

Martin Fowler. DSL Q&A, http://martinfowler.com/bliki/DslQandA.
htmll

Eclipse Foundation. Eclipse Documentation — Running the plug-in, http:
//help.eclipse.org/.

Oracle Corporation. Naming a Package, http://docs.oracle.com/
javase/tutorial/java/package/namingpkgs.html.

Ekkart Kindler. ECNO: Installing Eclipse, http://www2.imm.dtu.dk/
~ekki/projects/ECNO/version-0.2.0/eclipse-installation.html.

Joshua Bloch. Effective Java (2Nd Edition) (The Java Series). Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2 edition, 2008.

http://help.eclipse.org/
http://www.faqs.org/docs/artu/minilanguageschapter.html
http://martinfowler.com/bliki/DslQandA.html
http://martinfowler.com/bliki/DslQandA.html
http://help.eclipse.org/
http://help.eclipse.org/
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://www2.imm.dtu.dk/~ekki/projects/ECNO/version-0.2.0/eclipse-installation.html
http://www2.imm.dtu.dk/~ekki/projects/ECNO/version-0.2.0/eclipse-installation.html

APPENDIX A

Call Structure for Methods
in EMF

This appendix contains the results of debugging the method calling structure of
the standard EMF serialiser.

For this example a model is created. An instance of a such model can be seen in
Fig. and the model can be seen in Fig.

The calling structure for saving can be found in Fig. and Fig. [A.4'l Loading
can be found in Fig. Fig. and Fig.

I The images are split vertically and horizontally respectively and can be hard to read. Refer
to App. E] which contains a digital copy of both images

92

Call Structure for Methods in EMF

<?xml version="1.0" encoding="UTF-8"7>
<techexp:Container

xmlns:techexp="http://www.example.org/techexp">

<as name="gpaulsen"> ¥ < Container
<b test="apaulsen2" number="2"> ¥ < A apaulsen
<C;> ¥ 4 Bapaulsen2
<c/>
C
<c/> +

 M 4+ C

<b test="apaulsen3">

4 C
<c/> ¥ <= B apaulsen3
 4+ C
<d test="apaulsen4"/> < D apaulsend
</as>

</techexp:Container>

Figure A.1: An instance of the test model.

Bc H«

= someAttribute : EString

c 0.

ge Be

J
= attributeon) : EString

= test : EString
= number : Eint

v @ platform:/resource/newproject /%2 0newsyso.techexp

Ho

= test : EString

HA

= name : EString

= number : Eint

as

H Container

Figure A.2: The test model.

JAN

F

= color : EString

93

¥ 4 platform:/resource/
¥ < Container
¥ < A apaulsen

Figure A.3: The calling structure for saving. Left side.

Call Structure for Methods in EMF

Traverse traverses all elements in topelement using a loop

|‘1tr0 e

traverse
writeTopObject
saveElementID(techexp. impl . ContainerImpl@25bd68ea)
saveFeatures(techexp. impr. ContainerImpla25bdé8ea)

saveFeatures((echexp impl . ContainerInpl@25bdégea, false)

writeTopAttribute:
shculdsaveFea(ure((echexp ImpL . ConcainezInpla25bdsBea org.eclipse. ent. ecore. impl . EReterencelmply
ns(techexp. impl.C)

processAt
writeTopElements
saveContainedMany(techexp. impl.ContainerImplg25bd68ea,org. eclipse. emf .ecore. impl . EReferenceImpl(
saveElement (techexp. impl .AImplg19993ed (name: apaulsen),org.eclipse.emf.ecore.impl.EReferenceIm
saveELement(techexp. impl.AImpl@19993ed (name: apaulsen),org.eclipse.emf.ecore.impl.EReferenceIm
saveELementID(techexp.impl.AImpl@i9993ed (name: apaulsen))

saveFeatures(techexp. impl.AInpl@19993ed (name: apaulsen))
apaulsen), false)

saveFeatures(techexp. impl .AImpla19993ed (name:
shouldSaveFeature(techexp.impl.AImpl@19993ed (name: apaulsen),org.eclipse.emf.ecore.impl.ERefer:
shouldSaveFeature(techexp. impl .AInpl@19993ed (name: apaulsen),org.eclipse.enf .ecore.impl.ERefer:

: apaulsen),org.eclipse.emf.ecore.impl.ERefer:

shouldSaveFeature(techexp. impl .AImpl@19993ed (name
shouldSaveFeature(techexp.impl.AImpl@19993ed (name: apaulsen),org.eclipse.emf.ecore.impl.EAttril
saveDataTypeSingle

getDatatypeValue

processAttributeExtensions(techexp. impl.AImpl@19993ed (name: apaulsen))
saveContainedMany(techexp. impl .AImpl@19993ed (name: apaulsen),org.eclipse.emf

.ecore. impl.ERefer:

saveElement (techexp. impl .BImplg488708al (test: apaulsen2, number: 2),org.eclipse.emf.ecore.impl
saveElement(techexp. impl.BImpl@408768al (test: apaulsen2, number: 2),o0rg.eclipse.emf.ecore.impl
saveElementID(techexp. impl.BImpl@408708al (test: apaulsen2, number: 2))

saveFeatures(techexp. impl.BInpl@408708al (test: apaulsen2, number: 2))

saveFeatures(techexp. impl.BInplg408708al (test: apaulsen2, number: 2),false)
shouldSaveFeature(techexp. impl.BImpl@408768al (test: apaulsen2, number: 2),0rg.eclipse.emf.ecor:
shouldSaveFeature(techexp.impl.BImpl@408708al (test: apaulsen2, number: 2),org.eclipse.emf.ecor:

saveDataTypeSingle
1 getDatatypeValue
shouldSaveFeature(techexp.impl.BImpl@4@8708al (test: apaulsen2, number: 2),org.eclipse.emf.ecor:
saveDataTypeSingle
getDatatypeValue
processAttributeExtensions(techexp.impl.BImpl@4@8708al (test: apaulsen2, number: 2))

saveContainedMany(techexp. impl . BImpl@4@8768al (test: apaulsen2, number: 2),org.eclipse.enf.ecor

saveELement(techexp. impl.CImpl@3£4bS9fd,org.eclipse.emf .ecore. impl.EReferenceImpladddcd9l (name
saveELement (techexp. impl .CImplg3f4b59£d, org. eclipse. emf . ecore. impl . EReferenceImpleddded9l (name

saveELementID(techexp. impl.CImpl@3£4b59£d)
saveFeatures(techexp. impl.CInpl@3£4b59£d)

mafp- saveFeatures(techexp.impl.CImpl@3£4b59td, false)
processAttril ions(techexp. impl.CInpl@3£4b59£d)
getContent(techexp. impl .CImplg3f4b59£d, [Lorg. eclipse. emf . ecore .EStructural Feature;glc48efa3)
endSaveFeatures(techexp. impl.CInpl@3£4b59£d,1,null)
processELementExtensions(techexp. impl.CImpl@3£4b59td)

saveELement (techexp. impl.CImpl@27e25¢2f ,org.eclipse. emf .ecore. impl . EReferenceImpledddcddl (name
saveELement (techexp. impl.CImpl@27e25c2f ,0rg. eclipse . emf . ecore . impl . EReferenceImpleddded91 (name
saveELementID(techexp. impl.CImpl@27e25¢2f)
saveFeatures(techexp. impl.CImpl@27e25c2f)
> saveFea(ures(techexp impl.CImpl@27e25c2f, false:
ions(techexp. impl.CImpl@27e25c2f)
GetContent(techexp. inpL.CInpla27eo5c2t, [Long. ecl ipse ent . ecore EStructuralFeature;@lc4Sefas)
endSaveFeatures(techexp. impl .CImpl@27e25c2f,1,null)
processElementExtensions(techexp. impl.CImplg27e25c2£)

saveElement (techexp. impl.CImplg71b@1319, 0rg. eclipse . emf . ecore . impl . EReferenceImpleddded9l (name

saveElement(techexp. impl.CImpl@71b01319,0rg.eclipse.emf . ecore. impl.EReferenceImpladddcd9l (name

saveE lementID(techexp. impl.CImple71001319

saveFeatures(techexp. impl.CImpla71b@1319)

saveFeatures(techexp. impl .CImplg71b81319, false)

— processAttributeExtensions(techexp. impl.CImpla71b@1319)

getContent (techexp. impl.CImpl@71b@1319, [Lorg. eclipse.emf.ecore

endSaveFeatures(techexp. impl. CImpl@71b01319,1,null)

processElementExtensions(techexp. impl.CImpl@71b@1319)

apaulsen2, number: 2),0,null)
apaulsen2, number: 2))

\Feature;@lc48efa3)

endSaveFeatures(techexp. impl .BInpl@408708al (test:
processELementExtensions(techexp. impl.BImplg408708al (test

saveELement (techexp. impl.BImpl@adf7cf8 (test: apaulsen3, number: ©),org.eclipse.emf.ecore.impl.|
saveElement (techexp. impl .BImplga9f7cf8 (test: apaulsen3, number: 8),org.eclipse.emf.ecore.impl.|
saveElementID(techexp. impl.BImpl@a9f7c£8 (test: apaulsen3, number: @))

saveFeatures(techexp. impl.BImpl@adf7cf8 (test: apaulsen3, number: ©))

saveFeatures(techexp. impl.BImpl@adf7cf8 (test: apaulsen3, number: ©),false)
shouldSaveFeature(techexp. impl.BInpl@adf7cf8 (test: apaulsen3, number: @),0rg.eclipse.emf.ecore
shouldSaveFeature(techexp. impl.BImpl@a9f7cf8 (test: apaulsen3, number: @),org.eclipse.emf.ecore

saveDataTypeSingle
getDatatypeValue
shouldSavefeature(techexp. inpl BInpl@adf7ct8 (tost: apaulsens, mumber:).0rg.cclipse. ent ccore
processAttributeExtensions(techexp.impl.BImpl@adf7cf8 (test: apaulsen3, numbe:
saveContainedMany(techexp. impl.BInpl@a9f7cf8 (test: apaulsen3, number: 0),0rg. e:lmse.emf.ecore

saveELement (techexp. impl.CImpl@35£79e6d,org. eclipse. emf .ecore. impl.EReferenceImpledddcd9l (name
saveElement(techexp. impl.CImpl@35£79e6d,0rg. eclipse. emf . ecore. impl . EReferenceImpledddcddl (name
saveElementID(techexp. impl.CImplg35£79e6d)
saveFeatures(techexp.impl.CImplg35£79e6d)
saveFeatures(techexp. impl.CImpl@35f79e6d, false:
processAttributeExtensions(techexp. impl.CImpla35£79e6d)
getContent(techexp. impl .CImplg35£79e6d, [Lorg. eclipse. emf . ecore . EStructural Feature;glc48efa3)
endSaveFeatures(techexp. impl.CInpl@35£79e6d,1,null)
processELementExtensions(techexp. impl.CImple35£79e6d)
apaulsen3, number: @),0,null)
@)

endSaveFeatures(techexp. impl.BImpl@a9f7c£8 (test:
processELementExtensions(techexp. impl.BImplga9f7c8 (test: apaulsen3, number:

saveContainedMany(techexp. impl.AImpl@19993ed (name: apaulsen),org.eclipse.emf.ecore.impl.ERefer:

: apaulsen4),org.eclipse.emf.ecore.impl .EReference:

saveELement(techexp. impl.DImple4c43c37d (test
saveElement (techexp. impl.DImpl4c43c37d (test: apaulsend),org.eclipse.emf.ecore.impl.EReference:
em—]pp- 52veE Lement ID(techexp. impl .DImplgdc43c37d (tes\:: apaulsen4))
pat

saveFeatures(techexp.impl.DImpledcd3c37d (te ulsend))
saveFeatures(techexp. impl. nImpL@4c43c37d (teat: apaulsend) , false)
pl.DImpledc43c37d (test: apauisend),org.eclipse.emf.ecore.impl.EAtt:

shouldSaveFeature(techexp
saveDataTypeSingle

getDatatypeValue
processAttributeExtensions(techexp. impl.DImpla4c43c37d (test: apaulsend))

getContent (techexp. impl.DImple4c43c37d (test:
endSaveFeatures(techexp.impl .DInpledc43c37d (test:
processElementExtensions(techexp. impl.DImpladc43c37d (test

endSaveFeatures(techexp. impl.AImpl@19993ed (name: apaulsen),@,null)

——— r0cesSE LementExtensions(techexp, dupL. ATmpla19993ed. (name: apaulsen))

— (techexp. impL. ContainerInplg25bdstea, 0, null)
ns(techexp. impl.)

apauisend),1,null)
: apaulsend))

ur

processEL
addNamespaceDeclarations

OUTIrO iowticiam
addDoctypeInformation
WEAt comm—

endSave

apaulsend), [Lorg.eclipse.enf .ecore . EStructuralFear

Contained in doc:XMLString

<2xmi version="1.0" encoding="UTF-8"?>
<techexp:Container

<2xmi version="1.0" encoding="UTF-8"?>
<techexp:Container>
<as name="apaulsen"

<7xmi version="1.0" encoding="UTF-8"?>
<techexp:Container>

<as name="apaulsen‘>

<b test="apaulsen2" numbe

o

<7xml version="1.0" encoding="UTF-§"7>
<techexp:Container>

<as name="apaulsen’

<b test="apaulsen2" numb
<i>

2>

i verson=1.0" encading="UTF:7>

Soe name—rapaviart

<b test="apaulsen?" number="2">
<>

<7xml version="1.0" encoding="UTF-8"7>
<techexp:Container>
<as name="a >
< test="apanisen2” ——.

<u>
<ci>
<ib>

<7xml version="1.0" encoding="UTF-§"7>
<techexp:Container>
<as name:
<b test="apaulsen2" numb
<ci>

2'>
<>
<cl>

<>
<b test="apaulsena"

<7xml version="1.0" encoding="UTF-8"7>
<techexp:Container>
<as name="apaulsen’
<b test="apaulsen?" number="2">
<>

<ci>
<cl>

<b test="apaulsend">
<ci>

<ib>

UTF-8"2>
hittp://www. exanple. org/techexp”>

<2xml version="1.0" e
<techexp: Container xmlns: techex;

Lsen'
opaulsen2” number="2">

<b test="apoulsen3">
<c/>

<d test="apaulsend"/>

<7xml version="1.0" encoding="UTF-!
<techexp: Container xnlns: techexp= hnp /v exanple..org/ techexp”>
m

<b test="apaulsen3">
<c/>

<d test="apaulsend"/>

</as>
</techexp: Container>

Figure A.4: The calling structure for saving. Right side,

95

Traverse XMLLoadlmpl:606 traverses using a loop

<?xml version="1.0" encoding="UTF-8"7»»

<techexp:Container
xmlns:techexp= —_—
"http://www.example.org/techexp">

<as name="gpaulsen">

<b

test="apaylsen2" number="2"=__5

load
getEncoding

readBuffer

makeParser
setExtendedMetaDataOption
setDocumentLocator
setLocator

startDocument

startElement(, , techexp:Container, com. sun.org.apache . xerces . internal .parsers . AbstractSAXParsers,
setAttributes(com.sun.org.apache.xerces. internal.parsers. AbstractSAXParserSAttributesProxy@6ed
startElement(, , techexp: Container)

handleNamespaceAttribs DEPRECATED

handleXMLNSAttribute

processELement(techexp: Container, techexp, Container)

recordHeaderInformation

isError()

createTopObject

createObjectByType

handleTopLocations

processSchenalocations

getFactoryForPrefix

getPackageForURT

createDocumentRoot

createObjectFromFactory(techexp. impl . TechexpFactoryImple4fedadfb, Container) DEPRECATED
handleObjectAttribs
validateCreateObjectFronFactory(techexp. impl. TechexpFactoryImpledfedadfb, Container, techexp. imp
validateCreateObjectFronFactory(techexp. impl. TechexpFactoryImple4fedadfb, Container, techexp. imp
processTopObject(techexp. impl.ContainerInplefgfesie)

v L platform:/resource/newproject/%20newsyso.techexp
v 4 Comainer

¥ L platform:/resource/newproject/%20newsyso.techexp
v 4 Comainer

v 4 Aapaulsen

¥ [} platform:/resource/newproject/%20newsyso.techexp
¥ 4 Container

¥ 4 Aapaulsen

processObject >
getContentFeature

characters([C@6ad0cd43,75,3)

startElement(, ,as,com. sun.org.apache. xerces . internal .parsers . AbstractSAXParser$AttributesProxyl
setAttributes(com. sun.org.apache. xerces. internal .parsers. AbstractSAXParserSAttributesProxy@6ed
startElement(, ,as)

handleNamespaceAttribs DEPRECATED

processElenent(as,, ,as)

isError()

handleFeature(,as)

getFeature(techexp.impl.ContainerImpl@f8fesle, ,as,true)

createObject(techexp. impl.ContainerInpl@fsfesle,org.eclipse.enf. ecore. impl.EReferenceInple303d
isNull()

getXSIType

createObjectFromFeatureType(techexp. impl.ContainerInpl@fafesle,org.eclipse. emf. ecore. impl.ERef
createObjectFromFactory(techexp. impl. TechexpFactoryImple4fedadfb,A) DEPRECATED
handleObjectAttribs

setAttribValue(techexp.impl.AInpl@3e24bab6 (name: default),name, apaulsen)

getFeature(techexp. impl.AInple7de43652 (name: default),null,name,false)
setFeatureValue(techexp.impl.AInpl67de43652 (name: default),org.eclipse.emf.ecore. impl.EAttrib
validateCreateObjectFronFactory(techexp. impl . TechexpFactoryInpl@4fedadfb, A, techexp. impl . AImple
validateCreateObjectFromFactory(techexp. impl . TechexpFactoryImpl@4fedadfb,A, techexp. impl . ATmpl@
setFeatureValue(techexp.impl.ContainerInpl@fgfesie,org.eclipse.enf.ecore.impl . EReferenceInple3
setFeatureValue(techexp.impl .ContainerInpl@fgfesle,org.eclipse.enf.ecore.impl .EReferenceInple3
processObject .
getContentFeature gl
characters([C@6ad0cd43,98,5)

startElement(, ,b,com. sun.org.apache.xerces. internal .parsers. AbstractSAXParserSAttributesProxye
setAttributes(com.sun.org.apache. xerces. internal .parsers. AbstractSAXParserSAttributesProxy@6ed
startElement(, ,b)

handleNamespaceAttribs DEPRECATED

processElement(b, ,b)

isError()

handleFeature(,b)

getFeature(techexp.impl.AImpl@7de43652 (name: apaulsen),,b,true)

createObject(techexp. impl.AImpl87de43652 (name: apaulsen),org.eclipse.enf.ecore.impl.EReferenc
isNullO)

getXSIType

createObjectFromFeatureType(techexp. impl.AImpl67de43652 (name: apaulsen),org.eclipse.enf.ecore
createObjectFromFactory(techexp. impl. TechexpFactoryImple4fedadfb,8) DEPRECATED
handleObjectAttribs

setAttribValue(techexp. impl.BInple2baded19 (test: null, number: 0), test, apaulsen2)
getFeature(techexp. impl.BImple7fedca60 (test: null, number: @),null,test,false)
setFeatureValue(techexp.impl .BInpl@7fedca6d (test: null, number: @),org.eclipse.enf.ecore.impl
setAttribValue(techexp.impl.BImpl@2baded19 (test: apaulsenz, number: @), number, 2)
getFeature(techexp. impl.BInmple7fedca60 (test: apaulsen2, number: @),null,number,false)
setFeatureValue(techexp.impl .BInpl@7fedca6d (test: apaulsen2, number: 0),org.eclipse.enf.ecore
validateCreateObjectFronFactory(techexp. impl . TechexpFactoryInpl@4fedadfb,B, techexp. impl.BImple
validateCreateObjectFromFactory(techexp. impl. TechexpFactoryImpl@4fedadfb,B, techexp. impl .BImple
setFeatureValue(techexp.impl.AInpl67ded3652 (name: apaulsen),org.eclipse.enf.ecore.impl.ERefer
setFeatureValue(techexp.impl.AInp187de43652 (name: apaulsen),org.eclipse.enf.ecore.impl.ERefer
processObject »
getContentFeature -

characters([C86ad0cd43,134,7)

¥ 4 Bapaulsen2

t page.

1Is

. F

ing

The calling structure for load

Figure A.5

Call Structure for Methods in EMF

96

<c/>

<c/>

<c/>

startElement(, ,c,com.sun.org.apache.xerces. internal .parsers. AbstractSAXParser$AttributesProxy®
setAttributes(com. sun.org.apache. xerces. internal.parsers.AbstractSAXParser$AttributesProxy@6ed
startElement(, ,c)

handleNamespaceAttribs DEPRECATED

processElement(c,)

isError()

handleFeature(,c)

getFeature(techexp.impl .BImple7fedca6d (test: apaulsen2, number: 2),,c,true)
createObject(techexp. impl.BInpl@7fedca6d (test: apaulsen2, number: 2),org.eclipse.emf.ecore.im
isNullQO)

getXSIType

createObjectFromFeatureType(techexp.impl .BImpl@7fedca60 (test: apaulsen2, number: 2),org.eclip
createObjectFromFactory(techexp. impl. TechexpFactoryImpl@4fedadfb,C) DEPRECATED
handleObjectAttribs

validateCreateObjectFromFactory(techexp. impl. TechexpFactoryImpl@4fedadfb,C, techexp. impl.CImple
validateCreateObjectFromFactory(techexp. impl. TechexpFactoryImpl@4fedadfb,C, techexp. impl.CImple
setFeatureValue(techexp. impl.BImple7fedca6d (test: apaulsen2, number: 2),org.eclipse.emf.ecore
setFeatureValue(techexp. impl .BImpl@7fedca6d (test: apaulsen2, number: 2),org.eclipse.emf.ecore

¥ & platform: fresource/newproject/%20newsyso.techexp

¥ 4 Container
> ¥ & Aapaulsen

processObject
getContentFeature
endElement(, ,)
characters([(86ad0cd43,145,7)

startElement(, ,c,com. sun.org.apache. xerces. internal . parsers . AbstractSAXParser$At tributesProxy®
setAttributes(com. sun.org.apache. xerces. internal .parsers. AbstractSAXParser$AttributesProxy@6ed
startElement(,,C)

handleNamespaceAttribs DEPRECATED

processElement(c, ,)

isError()

handleFeature(,)

getFeature(techexp. impl .BImpl@7fedca6d (test: apaulsenz, number: 2),,c,true)
createObject(techexp. impl .BInpl@7fe@ca6d (test: apaulsen, number: 2),org.eclipse.enf.ecore.im
isNullQ)

getXSIType

createObjectFromFeatureType(techexp. impl .BImpla7fedcabd (test: apaulsen?, number: 2),org.eclip
createObjectFromFactory(techexp. impl . TechexpFactoryInple4fedadfb,C) DEPRECATED
handleObjectAttribs

validateCreateObjectFromFactory(techexp. impl.TechexpFactoryImpl@4fedadfb, C, techexp. impl.CImple
validateCreateObjectFromFactory(techexp. impl.TechexpFactoryImpl@4fedadfb,C, techexp. impl.CInple
setFeatureValue(techexp. impl.BInple7fedca6d (test: apaulsen2, number: 2),org.eclipse.emf.ecore
setFeatureValue(techexp.impl.BInpl@7fedcabd (test: apaulsen?, number: 2),org.eclipse.emf.ecore

¥ 4 Bapaulsen2

+C

¥ [platform: /resource fnewproject/%20newsyso.techexp

¥ 4 Coainer
N

processObject
getContentFeature
endElement(, ,,c)
characters([(@6ad0cd43,156,7)

startElement(, ,c,com. sun.org.apache. xerces. internal . parsers. AbstractSAXParser$At tributesProxy®
setAttributes(com.sun.org.apache.xerces. internal .parsers.Abstract $Attribut
startElement(, ,c)

handleNamespaceAttribs DEPRECATED

processELement(c, ,)

isError()

handleFeature(,c)

getFeature(techexp. impl .BImpl@7fedca6d (test: apaulsenz, number: 2),,c,true)
createObject(techexp. impl.BInpl@7fe@ca6d (test: apaulsen, number: 2),org.eclipse.emf.ecore.im
isNullQ)

getXSIType

createObjectFromFeatureType(techexp. impl .BImpla7fedcabd (test: apaulsen?, number: 2),org.eclip
createObjectFromFactory(techexp.impl.TechexpFactoryImpl@4fe9adfb,C) DEPRECATED
handleObjectAttribs

validateCreateObjectFromFactory(techexp. impl.TechexpFactoryInpl@4fedadfb, C, techexp. impl.CImple
validateCreateObjectFromFactory(techexp. impl.TechexpFactoryInpl@4fedadfb, C, techexp. impl.CInple
setFeatureValue(techexp.impl.BInple7fedca6d (test: apaulsen2, number: 2),org.eclipse.emf.ecore
setFeatureValue(techexp.impl.BImpl@7fe@ca6d (test: apaulsen?, number: 2),org.eclipse.emf.ecore

¥ < Bapaulsenz
“c
$C

¥ [platform: /resource fnewproject/%20newsyso.techexp
¥ 4 Conainer

processObject
getContentFeature
endElement(, ,,<)
characters([C86ad0cd43,167,5)

endElement(,,,b)
characters([(@6ad@cd43,176,5)

¥ & Aapaulsen
¥ 4 Bapaulsen2
+C
+C
+c

. Second page.

ing

The calling structure for load

Figure A.6

97

<b test="apaulsen3'

<c/>

\

\

<d test="apaulsend4"/>

</as>

\

4

</techexp:Container>

startElement(, ,b, com. sun. org. apache. xerces. internal .parsers. AbstractSAXParser$AttributesProxy®
setAttributes(co. sun.org.apache. xerces. internal . parsers. Abstra SAttribute
startElement(, ,b)
handleNamespaceAttribs DEPRECATED
processElement(b, ,b)
isError()
__a;&mmmngamﬁ b)

‘techexp. impl.. (name: apaulsen), b, true)
CreateObject(techexp. inpl. ATnplLe7de43652 (name: apaulseny,org. eclipse. enf.ecore. inpl.EReferenc
isNullQ)
getXSIType
createObjectFromFeatureType(techexp. impl.AInpl67de43652 (name: apaulsen),org.eclipse.enf.ecore
createObjectFromFactory(techexp. impl. TechexpFactoryInpl@4fedadfb,B) DEPRECATED
handleObjectAttribs
setAttribValue(techexp.impl.BImple@64lceall (test: null, number: 0), test, apaulsen3)
getFeature(techexp. impl.BInple46cee28 (test: null, number: 0),null,test,false)
setFeatureValue(techexp. impl .BInpl@46c9ee28 (test: null, number: 0),org.eclipse.emf.ecore.impl
validateCreateObjectFromFactory(techexp. impl . TechexpFactoryInple4fedadfb,B, techexp. impl .BInple
validateCreateObjectFromFactory(techexp.impl.TechexpFactoryImpl@4fedadfb,B, techexp. impl .BInple
setFeatureValue(techexp. impl.AImpl87de43652 (name: apaulsen),org.eclipse.enf.ecore.impl.ERefer
setFeatureValue(techexp. impl.AImple7de43652 (name: apaulsen),org.eclipse.emf.ecore.impl.ERefer
processObject

v 4 platform;/resource/newproject/%20newsyso.techexp
¥ 4 Container

getContentFeature
characters([C86ad0cd43,201,7)

startELement(, ,c, com.sun.org.apache. xerces. internal .parsers. AbstractSAXParser$AttributesProxyé
setAttributes(com. sun.org.apache. xerces. internal .parsers. Abstract $Attribut
startElement(, <)

handleNamespaceAttribs DEPRECATED

processELenent(c,)

isErrorQ)

handleFeature(,c)

getFeature(techexp.inpl.BInpl@46c9ee28 (test: apaulsen3, number: 0),,c,true)
createObject(techexp. impl.BInple46cdee28 (test: apaulsen3, number: 0),org.eclipse.emf.ecore.im
isNllQ)

getXSIType

createObjectFronFeatureType(techexp. impl .BImpl@46coee28 (test: apaulsen3, number: @),0rg.eclip
createObjectFronFactory(techexp. impl. TechexpFactoryImple4fedadb,C) DEPRECATED
handleObjectAttribs
validateCreateObjectFromFactory(techexp. impl. TechexpFactoryInpl@4fedadfb,C, techexp. impl.CInple
validateCreateObjectFronFactory(techexp. impl. TechexpFactoryInpledfedadfb,C, techexp. impl . CImple
setFeatureValue(techexp. impl .BInpl@46c9ee28 (test: apaulsen3, number: 0),o0rg.eclipse.enf.ecore
setFeatureValue(techexp. impl .BImple46cdee28 (test: apaulsen3, number: 0),org.eclipse.emf.ecore
processObject

[
>

getContentFeature
endElement(, ,,C)
characters([(@6adcd43,212,5)

endElement(, ,,b)
characters([(86ad0cd43,221,5)

startElement(, ,d,com.sun.org.apache. xerces. internal .parsers. AbstractSAXParserSAttributesProxyé
setAttributes(co. sun.org.apache. xerces. internal . parsers. Abstra SAttribut
startElement(, ,d)
handleNamespaceAttribs DEPRECATED
processElement(d, ,d)
isError()
__a;&mmmn?;ﬁ @

‘techexp. impl.. (name: apaulsen), ,d, true)
CreateObject(techexp. inpl. AInple7de43652 (name: apaulsens,org. eclipse. enf.ecore. inpl.EReferenc
isNullQ)
getXSIType
createObjectFromFeatureType(techexp. impl.AInpl87de43652 (name: apaulsen),org.eclipse.enf.ecore
createObjectFromFactory(techexp. impl. TechexpFactoryInpl@4fedadfb,D) DEPRECATED
handleObjectAttribs
mﬁkc.;,\i:m:m%mxn impl.DInpledadd4dff (test: null), test, apaulsend)

‘techexp. impl. Ctest: null),null, test,false)
SetFeatureValueCtachexp. impl.DInple19b3d3ad Ctest: mull),org.eclipse. enf . ecore. inpl.EAttribute
validateCreateObjectFromFactory(techexp. impl.TechexpFactoryInple4fedadfb,D, techexp. impl .DInple
validateCreateObjectFromFactory(techexp. impl.TechexpFactoryInpl@4fedadfb,D, techexp. impl.DImple
setFeatureValue(techexp. impl .AImp187de43652 (name: apaulsen),org.eclipse.emf.ecore. impl.ERefer
setFeatureValue(techexp. impl.AImple7de43652 (name: apaulsen),org.eclipse.emf.ecore.impl.ERefer
processObject

getContentFeature
endElement(, , ,d)
characters([(86ad0cd43,247,3)

endElement(, , ,as)
characters([(86ad0cd43,255,1)

endElement(, , , techexp:Container)
endDocument()

handleForwardReferences(true)
handleErrors.

[
>

7 4 Aapaulsen
7 4 Bapaulsen2

+C
+cC
+cC

¥ 4 Bapaulsen3

v 14 platform:/resource/newproject/%20newsyso.techexp
¥ 4 Container
¥ & Aapaulsen
¥ 4 Bapaulsen2

¥ 4 Bapaulsen3

+c

v 4 platform;/resource/newproject/%20newsyso.techexp
¥ 4 Container

v
v

v

A apaulsen
4 Bapaulsen2

< Bapaulsen3
+cC

4 D apaulsens

ing. Third page.

The calling structure for load

Figure A.7

98

Call Structure for Methods in EMF

APPENDIX B

Developed Software

This appendix contains the developed software for this project, the tests and
vector images of App [A]

For the printed version a CD is provided on the following page. If this paper
was provided without software, the software can be requested by e-mail to
s0932590@student .dtu.dk

The contents of the CD or zip file is the following list:

appendix a.zip contains vector images of App[A]

plugin.zip contains the developed software, the file can be loaded into Eclipse,
refer to the handbook in Chap.[6} The file contain four projects: []
dk.dtu.se.serializer is the serialiser developed in the project.
dk.dtu.se.SerialDefinition is the mapping mechanism.
dk.dtu.se.coremodel is the coremodel tested in Sect. Bl
dk.dtu.se.serialExample is the additional model tested in Sect.

IThree of the projects relies on generated code, this generated code is also provided in the
projects *.edit, *.editor and *.tests

s093259@student.dtu.dk

100 Developed Software

runtime.zip contains files for testing the functionality in the runtime workbench.
Files can be imported or copied in, when in the runtime workbench.

	Summary
	Resumé (Danish)
	Preface
	Contents
	1 Introduction
	1.1 Wished Functionality
	1.2 Evaluation
	1.3 Report Structure

	2 Problem
	2.1 Petri Nets
	2.2 Models and Model Instances
	2.3 Serialisation
	2.4 Serialisation with XMI
	2.5 Serialisation with Mappings

	3 Analysis
	3.1 Features of the Serialiser
	3.1.1 Context Dependent Mappings
	3.1.2 Multiple Model Versions
	3.1.3 Objects into Attributes
	3.1.4 Objects on Multiple Levels
	3.1.5 References to Other Objects
	3.1.6 Minimising Effort of Defining Mappings
	3.1.7 Dynamic Mappings

	3.2 State of the Art of Serialising
	3.2.1 Serialising With Simple
	3.2.2 Serialising With XStream
	3.2.3 Serialising With Java Architecture for XML Binding
	3.2.4 Serialising With EMF XMI serialiser
	3.2.5 Comparison of Serialisers

	4 Technological Background
	4.1 Serialisation in Eclipse Modeling Framework
	4.1.1 Saving an Instance of a Model
	4.1.2 Loading an Instance of a Model
	4.1.3 Low Level Serialisation

	4.2 Extending Functionality in Eclipse
	4.3 Domain Specific Languages

	5 Software Design
	5.1 Overall Structure
	5.2 Features of the Mapping Mechanism
	5.2.1 Context Dependent Mappings
	5.2.2 Multiple Versions
	5.2.3 Standard Mappings
	5.2.4 Adding Tables
	5.2.5 Cascading Mappings

	5.3 Concepts
	5.3.1 Defining and Using Mappings
	5.3.2 References to Other Objects
	5.3.3 Defining Packages

	5.4 Domain Specific Language for Mappings
	5.4.1 Features of the New Serialiser (Options)

	6 Handbook for Developers
	6.1 Installing Eclipse with EMF and Ecore
	6.2 Installing the Serialiser and Mapping Mechanism
	6.3 Adding Mappings for an Ecore Model

	7 Implementation
	7.1 Overriding the Standard Serialiser
	7.2 Mappings for the Serialiser
	7.2.1 Plugging in Mappings
	7.2.2 The Editor for Mappings and Packages

	7.3 Realising the Serialiser
	7.3.1 Saving Instance – MySave
	7.3.2 Load Functionality – MyLoad and MySAXHandler
	7.3.3 Table for mappings – MappingTable

	8 Evaluation
	8.1 Test of Mapping Mechanism
	8.1.1 Relying on the Default Serialiser
	8.1.2 Adding Mappings – Object from Attribute
	8.1.3 Saving Object as a Number
	8.1.4 Most Specific Mapping
	8.1.5 Add Tables
	8.1.6 Precedence of Added Tables
	8.1.7 Using References
	8.1.8 Adding Extra Levels
	8.1.9 Multiple mappings

	8.2 Correctness of Serialisation
	8.3 Relation to Standard for Petri Nets
	8.4 Conclusion on Test
	8.5 The Future of the Serialiser
	8.5.1 Fully Supporting the ISO Standard for Petri nets
	8.5.2 References in Instances
	8.5.3 Error Handling in Mapping Editor
	8.5.4 The mapping Editor
	8.5.5 Developed Serialiser as Default

	9 Conclusion
	Bibliography
	A Call Structure for Methods in EMF
	B Developed Software

