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Summary (English)

The goal of the thesis is to organize heterogeneous agents in a multi-agent system
across multiple languages by adding an organizational layer through the existing
system, AORTA. In order to make dependency communication possible across
multiple languages we will extend AORTA to use RMI to send organizational
messages between the agents, hence allowing for multi platform organizing.

We use the environment StarCraft:Brood War which is accessed through the
environment interface BWAPI Bridge. This environment interface have been
extended to support several multi-agent systems at once, in order to test the
possibility of organizing agents across several instances of multi-agent systems.

Through the implementation and the testing we have shown that multi plat-
form organization is possible, but the current state of the used systems is not
optimized enough for a continuous environment like StarCraft:Brood War.
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Summary (Danish)

Målet for denne afhandling er at organisere heterogene agenter i et multi-agent
system på tværs af flere sprog ved at tilføje et organiserende lag ved hjælp af det
existerende system, AORTA. For at gøre det muligt at have organisationsrela-
terede afhængigheder på tværs af sprog vil vi udvide AORTA til at bruge RMI
til at sende de organisationsrelaterede beskeder igennem, hvorved man muliggør
organisering over flere platforme.

Vi bruger spillet StarCraft:Brood War som miljø for vores agenter. Vi har ad-
gang til StarCraft igennem BWAPI Bridge som vi har udvidet til at understøtte
tilkobling af flere multi-agent systemer samtidig. Disse multi-agent systemer
kan være lavet i forskellige sprog, hvilket gør det muligt for agenter skrevet i
forskellige sprog at arbejde sammen i samme miljø.

Ved at implementere og teste vores system har vi vist at det er muligt at lave
organisationer på tværs af sprog og instanser af systemer, men også at den
nuværende tilstand af systemet ikke er optimeret tilstrækkeligt til at kunne
fungere i et miljø hvor tiden er en faktor.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfillment of the re-
quirements for acquiring a M.Sc. in Informatics.

The report deals with the project we have made for our master thesis. The
project is about multi-agent systems and in particularly the organization of
heterogeneous agents in such a system. The goal is to add an organizational
layer, to the agents, which spans across several multi-agent systems in the same
environment. To achieve this we have extended some existing systems, namely
the environment we used, BWAPI Bridge, and the organizational extension to
Jason, AORTA.

A big part of the project has been about acquainting ourself with new knowledge
about several new subjects.

APLs: We had to learn how Agent Programming Languages worked, both Ja-
son and GOAL, so that we could organize agents in those languages and
try to extend them with an organizational layer.

BWAPI Bridge: In order to understand APLs we needed to understand how
the environment worked, seeing as we tested the APLs in it. We had to
understand how to use it and how it worked as we extended it to accept
several multi-agent systems at the same time.

AORTA: When we understood how the APLs worked in the system, we needed
to understand AORTA, both how to use it, and how to extend it.
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The thesis starts by describing the theory behind multi-agent systems, including
the logic we have used and the organizational extension we have used, AORTA.
Then we describe the implementation of our system, including how we have
made distributed multi-agent systems organized and how the organization work.
Lastly we test to see how the distribution and organization performed and con-
clude on the result.

Lyngby, 01-February-2014-2015

Andreas Frøsig – s093264
Kenneth Balsiger Andersen – s093252
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Chapter 1

Introduction

In this project we work with a system containing several intelligent heteroge-
neous agents (see definition 2.15) in an environment (see section 2.2) where
these agents can interact and perceive. Since the agents depend on each other
they need to cooperate in order to achieve common goals efficiently. Systems
like these are known as Multi-Agent Systems (MAS), and it is the organization
of such a system that is the main focus in this project.

The environment, we have chosen to use, is the computer game from 1998,
StarCraft: Brood War (SC:BW) [5]. It is a classic Real Time Strategy game
with three different races: each with many different units where many of them
have unique abilities.

The complexity of this environment is sufficient to demonstrate the benefits of
organization in a MAS since we have a lot of different units each corresponding
to a heterogeneous agent which depends on each other. By using a game as
environment, we automatically get a graphical representation of the system and
can easily demonstrate and monitor what the agents are doing.

Our goal for this project is to show how to organize a MAS across multiple
languages (or even platforms). To do this, we do not need a complete system
including all races and units, making it possible to use a prototype like the
BWAPI Bridge which only implements parts of the a single race, namely the
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Terran. It is an interface for the environment we are using, and it was created
by Christian Kaysø-Rørdam for his masters project. It is part of the bridge
between SC:BW and the agents; see section 3.1 for more information on how
the project works [8].

To illustrate how important organization can be, we will implement some agents
in an Agent Centered MAS (ACMAS). Here it will be necessary to implement
the organization directly in the agents behaviour, making the implementation
more complex than it needs to be. A description of these agents can be seen in
section 3.2.3. To accommodate the problem of organizing agents, we will imple-
ment an Organizational Centered MAS (OCMAS) using Adding Organizational
Reasoning To Agents (AORTA) to make an explicit organizational layer on our
agents [2]; since it is still in alpha state, we will be alpha testing it. This will also
make it possible to organize agents across multiple languages since the organi-
zation should be the same in the different languages making the organization
reusable.

1.1 Required Systems

Multiple systems are used in this project; here we will describe what each of
them are used for:

EIS: This is an Environment Interface Standard that a lot of Agent Program-
ming Languages (APLs) use in order to connect an environment to the
agents. BWAPI Bridge and both APLs that we have been using, namely
GOAL and Jason, implements this.

BWAPI Bridge: The BWAPI bridge is a bridge from JNIBWAPI which trans-
lates knowledge for the agents from the API to percepts in the APL and
gives the APL a possibility to interact with the environment through ac-
tions on the agents.

AORTA: Adding Organizational Reasoning To Agents (AORTA) is an addon
that adds an organizational layer to agents making it possible to implement
an explicit organization. This is the system, we will be using to organize
our agents in this project. AORTA is in alpha state, so we will be using
it as alpha-testers. It is currently implemented for Jason, and our goal is
to implement it for the APL GOAL.

Jason: This is an APL where AORTA is currently working.
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GOAL: This is the APL that we plan to use together with Jason. AORTA
does not work with GOAL making the GOAL-AORTA bridge one of our
goals for this project.

In the project we use a lot of acronyms and a list can be seen in appendix C.2.3.

Figure 1.1: Screenshot of a small base created by our ACMAS GOAL agents.
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Chapter 2

Theory

In this chapter we will describe the theory used in this project. This includes
required knowledge about Intelligent Agents, MAS, and the existing systems we
want to use.

2.1 Intelligent agent

When implementing an Artificial Intelligence some sort of intelligent agent is
required. In this section we will describe what an Intelligent Agent is and what
it is capable of.

Definition 2.1 (Intelligent agent) An intelligent agent is defined as an au-
tonomous entity with its own mental state for information storage, e.g., knowl-
edge and beliefs. It is able to perceive and interact with its environment (see
section 2.2) and thus being able to pursue its goals. The agent will do this by
applying actions from its set of capabilities, see definition 2.2. �

How the agent chooses what to do can be implemented in a number of ways,
here we will describe three of the most commonly used since they are the ones
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we use in this project.

Simple Reflex Agent: An agent of this type will choose its actions based on
the current percepts, i.e., the state of the environment exactly as the agent
sees it with no history. Reflexive agents do not plan more than a single
step ahead.

Model-based Reflex Agents: Agents of this type will save important knowl-
edge from the environment in an internal state for later usage.

Goal-based agents: Agents might not be able to find an applicable action
solely based on knowledge of the environment. They have a set of tasks
that they want to pursue on which they base their choices. These are
commonly referred to as goals, and how the agent reaches a certain goal
is referred to as a plan for that goal.

Definition 2.2 (Capabilities) An Intelligent Agent has a set of actions that it
is able to do in order to interact with its environment or alter its own knowledge
base. These actions are called the capabilities of the agent.

2.1.1 Knowledge representation

Knowledge of an intelligent agent can take shape in various ways. In our system
we use modal logic to represent knowledge, more precisely the epistemic logic
for the knowledge and belief representation and temporal logic to describe the
time aspect of the system.

In this report we only use it to formally describe the knowledge of our agents
and not for calculating purposes. For calculation and further understanding of
modal logic we refer to [12].

2.1.1.1 Epistemic logic

We distinguish between what an agent believes, what it knows, and its knowl-
edge about the knowledge of other agents. Definitions of the different kinds of
knowledge that we use in this project can be seen in Definition 2.3 - 2.7. One
thing to note is that most of these definitions are a way to distinguish knowledge,
meaning that they are not necessarily represented like this directly in the code.
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Definition 2.3 (Knowledge) Knowledge of an agent is defined as something
the agent knows to be true. We denote this:

Kiϕ,

which means that agent i knows ϕ is true. �

Definition 2.4 (Belief) Belief of an agent is almost the same as knowledge
except for the very important distinction that even though an agent believes
something to be true, it might not be the case. We denote this:

Biϕ,

which means that agent i believes that ϕ is true.

Definition 2.5 (Group Knowledge) Group Knowledge means that everybody
in a group knows something to be true but have no idea if anybody else in the
group knows it as well. We denote this:

EGϕ,

which means that everybody in group G knows that ϕ is true, but are not aware
if anybody else knows it. �

Definition 2.6 (Common Knowledge) Knowledge, that everybody in a given
group knows, that everybody knows, that everybody knows recursively ’ad infini-
tum’.

CG =
∞∧

n=0
En

Gϕ,

where E2
Gϕ is EGEGϕ. The importance of common knowledge is shown in

example 2.1. �

Definition 2.7 (Distributed Knowledge) Knowledge that can be derived from
the knowledge of all agents in a given group. We denote this:

DGϕ,

meaning that ϕ can be derived from the knowledge of all agents in group G. �
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Example 2.1 (The Coordinated Attack Problem) The Coordinated Attack
Problem is about two generals that need to coordinate an attack. Unfortunately
the communication is unreliable as the only way of communication is by mes-
sengers sent through a dangerous valley. The problem arises as general A writes
to general B that he want to attack at dawn, but they have to attack at the same
time. If A does not know that B has received the message he will not attack, the
same goes for B. As B send the acknowledgment of the attack, he needs to know
if A has received his acknowledgment as he knows that A will not attack unless
he does; hence B will not attack before he knows that A has received the acknowl-
edgment. This depth of knowledge about the acknowledgments of the attacks are
infinite, meaning that they can never be sure that the other general will attack.
This is why common knowledge can be crucial in coordination and is required in
a nondeterministic environment [17].

2.1.1.2 Temporal logic

Temporal logic is used to logically define the aspect of time. We only use Linear
Temporal Logic and in the following definitions we use M, s |= to denote that
we are currently in the world M at the state s, where the state s which is the
state of the environment at a given time step. Furthermore we use ϕ and ω as
logical formula.

The parts of the temporal logic we use in our system is taken from [18, 11] and
can be seen here:

Definition 2.8 (Always operator) The always operator of the temporal logic
means that what comes next will be true in all future states. We denote this:

M, s |= Aϕ

�

Definition 2.9 (Future operator) The future operator of temporal logic means
that what comes next will at some point in the future become true, i.e., it will
happen at a later state than the state this operator was concluded. We denote
this:

M, s |= Fϕ

The relation between the strong operator A and the weaker F are:

Aϕ ≡ ¬F¬ϕ
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�

Definition 2.10 (History operator) The history operator of the temporal logic
means that what comes next has always been true. We denote this:

M, s |= Hϕ

�

Definition 2.11 (Past operator) The past operator of the temporal logic means
that what comes next has at some point in the past been true. We denote this:

M, s |= Pϕ

The relation between the strong operator H and the weaker P are:

Hϕ ≡ ¬P¬ϕ

�

Definition 2.12 (Until operator) The until operator of the temporal logic is
used to describe states that mark the interval in which a certain knowledge hold.
The knowledge that ϕ is consistent from s until ω is the case, given the world
M is denoted:

M, s |= ϕU ω

Until can be defined as:

M, sx |= ϕU ω ≡ (M, sy |= ω) ∧ ∀i (x ≤ i < y ⇒M, si |= ϕ) ,

where i is the time in a linear time line, and si denotes the state at time i. �

2.1.2 Reasoning

An agent needs to have some sort of reasoning in order to be an intelligent
agent. In this project we use logical reasoning based on the BDI model (see
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section 2.1.3), seeing as this is the reasoning of the languages we have chosen to
use.

The subgroup of logical reasoning we use, is the deductive reasoning, in which we
make logical conclusions based on beliefs and knowledge according to standard
logical rules [21]. An example of deductive reasoning can be seen in the following
example 2.2.

Example 2.2 (Deductive reasoning) An example of deductive reasoning, from
StarCraft (see section 2.2.2), would be: if we know that units of type Terran
Command Center is a building, and we know that unit A1 is a Terran Com-
mand Center; then we can conclude that A1 is a building. Formally written:

|= isBuilding(”TerranCommandCenter”)
|= enemy(A1, ”TerranCommandCenter”,_,_,_,_)

|= enemy(Name, Type,_,_,_,_) ∧ isBuilding(Type)→ isBuilding(Name)
|= isBuilding(A1)

2.1.3 Agent control loop

When designing autonomous agents a common paradigm is the Belief Desire
Intention (BDI) software model, where Beliefs represent both knowledge and
beliefs, Desire represent goals, and Intentions are simply the actions that the
agent intend to do.

Plans and goals are not part of this model, and how they are represented are
up to the programmer. The same goes for the distinction between Beliefs and
Knowledge, as defined in Definition 2.4 and 2.3, if the programmer wants to
distinguish at all. Distinguishing between Beliefs and Knowledge can even vary
for different forms of beliefs and hence it is often reflected in the plan on the
agent.

The main idea of the BDI software model is to separate the mental state of
the agent into beliefs, desires and intentions in order to have more maintain-
able code as well simulating human reasoning. This happens in cycles where
the functionality can be split into three parts, namely the Belief Revision
Function the Option Generation and the Filtering Function.

After these three phases we get to the planning part where the agent can choose
to interact with the environment. What to do depends on the goal, and how
the agent determines which goal to pursue can be implemented in many ways.
Here we will treat it as a black box that, given the intentions and the Beliefs,
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finds a plan for the current cycle, we call it the Plan Generation. The last
phase is called the Action Execution and it allows the agent execute an action
by taking the first action from the generated plan. Planning this way lets the
agent take new knowledge into consideration each cycle, making it possible for
the agent to alter plans during runtime. Each step can be seen described more
formally below, and an overview can be seen in figure 2.1.

Belief Revision Function: This function will update the beliefs with the new
knowledge perceived from the environment. We denote this:

℘(Beliefs)× Percept → ℘(Beliefs)

Option Generation: This phase will generate a set of all possible options from
the beliefs which then becomes the desires of the agent. We denote this:

℘(Beliefs)→ ℘(Desires)

Filter Function: This function will, from the set of all beliefs and desires, find
the intentions of the agent. We denote this:

℘(Beliefs)× ℘(Desires)→ ℘(Intentions)

Plan Generation: This phase will, given the beliefs and the intentions of the
agent, generate a plan of actions. Note that the plan can even be to do
nothing if the agent chooses to. We denote this:

℘(Beliefs)× ℘(Intentions)→ ℘(Plan),

Note that the Plan Generation can be extended taking other aspects
into consideration like, e.g., AORTA which adds organizational goals (in-
tentions) to the agent. See more on this in section 2.4.

Action Execution: Given a plan the agent can then interact with the envi-
ronment by executing the first action in the plan. We denote this:

℘(Plan)→ ℘(Action)

2.1.3.1 Agent Programming Languages

When programming intelligent agents following the BDI model a specific pro-
gramming paradigm is often used, namely Agent-Oriented Programming (AOP).
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Beliefs

Desires

Intentions

Plan

Environment

Option Generation

Filter Function

Plan Generation

Action Execution

Belief Revision Function

Figure 2.1: BDI control flow.



2.1 Intelligent agent 13

This paradigm is a subset of the Object-Oriented Paradigm (OOP), where ob-
jects freely interact with each other. The differences are that AOP have limited
and clearly separated mental components (variables), such as beliefs, capabili-
ties and decisions each of which follows a precise syntax[19], as well as strictly
defined interaction options. These mental components are stored in a single
set which is the mental state of the agent, and the separation and restriction is
added to simulate human intelligence.

Programming languages following this paradigm are called Agent Programming
Languages (APLs), and in these languages the agents are in focus and each
agent is connected to the others through some sort of messaging capabilities.

2.1.4 Plan

When deciding what needs to be done, the agent needs to figure out which goals
to pursue and in which order. Plans can be illustrated using a plan tree where
the root is the final goal, for the specific plan, and all other nodes are sub-goals,
possibly required for the final goal to be accomplished. To illustrate plans we
use the plan tree structure from [16] which applies three different nodes to show
if all or just some of the sub-goals should be done, or if there should be a specific
order in which they should be solved:

Either: This means that at least one of the children of a goal has to be done
before the goal itself can be considered, shown in figure 2.2a.

All: This means that all the children need to be accomplished before the goal
can be considered, as shown in figure 2.2b.

Sequence: This means that the children of a goal need to be accomplished in
the order left to right; i.e., a child is not considered before all the other
children to the left of it are accomplished. This is not strictly necessary
as making the nodes to the left children of those to the right would have
the same effect, but for large plan trees this can make the tasks easier to
organize. Shown in figure 2.2c.

For an example of a plan tree see example 2.4.

Which goal to pursue is then usually based on the gain of accomplishing the
goal, which is calculated by subtracting the cost of accomplishing the goal from
the value of the goal.

Gain(g) = Value(g)− Cost(g, a) (2.1)
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Either

(a) Either

All

(b) All

Sequence

(c) Sequence

Figure 2.2: Representation of different nodes in the plan tree.

where g is a specific goal and a is an agent. Note that in a system with only
one agent, the a is redundant.

Value of a goal: The value of a goal is assessed by the agent and is often based
on its distance to the root in the plan tree, as well as the raw value of the
goal if one is given by the environment. E.g., in a taxi driver environment
(see example 2.3) a goal could be to acquire a car. In figure 2.3 we can see
that the distance to the root of the plan tree for "deliver customer" would
be three or four depending on whether the car has a GPS or not, as this
would automatically solve the goal of "Bring map". As an added value the
car could have better fuel economy making that car more valuable for the
system since the long term profit would be larger due to cost reductions
of some future goals.

Cost of a goal: The cost of achieving a goal for an agent is usually calculated
based on the amount of time and resources used to achieve it. In the taxi
example, (see example 2.3) the cost of acquiring a car would be the time
and/or money spend for obtaining it.

Knowing the gain of all goals, the agent can determine which goal to pursue by
taking the one with the largest gain. This method could correspond to the Plan
Generation and Action Execution that we dealt with as a black box algo-
rithm when describing the control flow using the BDI model, see section 2.1.3.

Example 2.3 (Taxi environment) The taxi environment is situated in a city,
where a robotic taxi driver is tasked to get a taxi and transport customers from
one point in the city to another. �

Example 2.4 (Plan for taxi) If we want to deliver a customer in the taxi
environment we need to drive a car and pick up the customer. But in order to
drive a car we need to get one if we are not already in one. Furthermore we
need to make sure we have change for the customer and some kind of map. In
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some cars this goal would be solved implicitly if it had a GPS. The plan tree for
this can be seen in figure 2.3. �

Pick up customer

Deliver customer

Enter Car

Acquire car 1 Acquire car 2 Bring change Bring map

Figure 2.3: An example of a plan tree for delivering a customer in the taxi
environment.

2.2 Environment

As described in section 2.1 an agent needs an environment to perceive and
interact with. In this section we will describe what an environment is and
introduce some definitions needed in order to describe how the environment
works.

When speaking about AI and especially MASs, one very important element is
the environment. This is basically the world in which the agent(s) are going to
try to achieve their goals. An environment can be anything from a very simple
environment including one button which can be on or off to a large game like
SC:BW or even a real life situation given a robot interacting with the world.

Since an agent is defined to be able to interact and perceive with the environment
(see definition 2.1) the environment is required to provide the following:

1. Percepts that can be sent to the agents as a way to make them perceive
things about the environment. These can be the state of a button or the
amount of minerals in a mineral field in SC:BW.

2. Actions that agents can send to the environment in order to interact with
it. These can be press a button or build a building in SC:BW.
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The entire required interface between the agents and the environment, namely
the percepts and available actions, are defined by the environment.

2.2.1 Properties of an environment

When classifying an environment, there are some properties that needs to be
clarified:

Observability: It is important to determine whether the environment is par-
tially or fully observable. This refers to knowledge about the environment,
and whether the agents get every relevant information or just some of it. If
the agents can access all information about the current state of the system
it is fully observable otherwise it is only partially observable.

Determinism: Whether an environment is deterministic refers to the conse-
quence of an action. If the expected result of an action always is the result
then the environment is deterministic otherwise it is non-deterministic. If
different outcomes of an action is given by a probability the environment
is said to be stochastic.

Dynamics: We need to consider whether the environment is static or dynamic.
A static environment only changes as a response to the interaction of an
agent. Dynamic environments changes even when the agents does nothing.
Systems which includes entities beyond the control of the agents can be
considered dynamic, as these other entities might change the state of the
environment hence the agents must perceive the environment again for
every decision, not taking previously observed information for granted.

Discreteness: Whether an environment is discrete or continuous refers to the
amount of possible actions. Per definition if this number is finite the
system is discrete otherwise it is continuous. However systems might be
treated as continuous if it is simulating a real time scenario, as everything
in a computer strictly speaking is discrete.

Episodic: If a system is running for a long time it is important to realize
whether the environment is episodic or sequential. These terms refer to
the dependency on previous states. If a system is independent on previous
states or all dependencies are removed regularly, the environment is said
to be episodic. An example of this could be a factory machine which after
every item erases its knowledge as the state of the previous item does
not effect the next one. In a sequential environment the agents need to
consider all previous states as they might influence the future; e.g., a taxi



2.2 Environment 17

driver spotting some ice on the road which should be remembered so that
path is not chosen again [20].

2.2.2 StarCraft: Brood War

In order to understand the environment we first want to explain how it works
as a game, and then how it affects its properties as an environment.

The environment we use is the Real Time Strategy (RTS) game from 1998 by
Blizzard, StarCraft: Brood War. The basics about SC:BW and how it works as
an environment will be described in this sub-section.

2.2.2.1 Game properties

The game is set in a far future where three races fight each other on different
planets for ground and resources. It has three very different races where various
strategies are required, each race includes several units each with its own special
powers. The three races are:

Terran: This is the human race in the game, a technologically advanced version
of the human species. They use fire, bullets and explosions to kill their
enemy exactly like current war fare. Their war tactics and appearance are
much like an advanced version of current military, with earth bound tanks,
power suited infantry and airplanes all together for combined assault.

Zerg: This is a hive minded alien race which seeks genetic perfection instead of
technological advancements. This race uses different sub races of the Zerg
race to do the different tasks, and even their "buildings" are transformed
workers. Their appearance varies a lot as each unit is a different creature,
and their war tactic is based on cheap and easily produced units which
results in quantity over quality.

Protoss: Protoss is a large and physically strong humanoid race, much better
connected to the psychic powers than the Terran. They are extremely
technologically advanced and are in many ways the diametrical opposites
of the Zerg. In the game they are expensive and slowly produced, but
strong which makes them prefer quality over quantity. Additionally all
buildings and units are protected by an energy shield.
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The game is played as a classical RTS game where each player has a base and is
required to gather resources in order to expand the base, research new upgrades,
and train military units. These units will allow the player to attack and in turn
annihilate the opponents units which is how the game is won. As it is a RTS
the player can at any point in time order the units to perform any action within
the units capabilities.

2.2.2.2 Environment properties

As an environment for a MAS it is very complex, as we have three different
races composed of several heterogeneous units, and several implicit and explicit
dependencies. The dependencies are due to the order in which the units needs to
be created, i.e., some units can only be created if other units have been created.
E.g., we need to train Marines, but as the Barracks is the one training Marines
this is implicitly dependent, whereas Firebats also need the Academy which is
explicitly mentioned in the game.

Aside from the static size of the map, we only get percepts from the visible area
of the map making the environment partially observable.

It is non-deterministic as actions can fail if it is either: illegal, not possible in
the current state, or the agent is interrupted.

The environment is in itself static, but as we have opponents and neutral units
on the map that can change parts of the map, we have to consider it dynamic
and update percepts even for objects we have already perceived.

The environment is discrete as there are a limited number of possible actions.
However the number of possible actions is very large as an agent can use any
one of their abilities at any point in time at any point on the map. The smallest
map is 64× 64 build tiles and each of these are 32× 32 pixels. This means that
even though time in a computer is discrete and the number of possible actions
at every point in time is finite, we have to consider the environment continuous
as the possibilities are too numerous.

As we only run a single play through of the game, we can perceive the environ-
ment as sequential which means that we need to save certain information such
as last known location of the opponents base.
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2.2.2.3 Units

The environment contains a lot of units that we do not use in this project. In
Table 2.1 on page 20 a list of the units we have used is shown. The description
of the units is based on how they differ from the other units.

The reason we have not been using more units, is a combination of the fact that
they are not all implemented in the BWAPI Bridge, and that we do not need
all units in order to show how to organize heterogeneous agents using AORTA.

2.2.3 EIS

The Environment Interface Standard (EIS) is an interface making it easier to
connect agents to an environment. For normal environments the EIDefaultImpl
can be extended which includes a lot of the necessary handling of entities and
agents [9]. Both APLs that we use, Jason and GOAL, are made for EIS making
it very easy to use since BWAPI Bridge also follows EIS. The only problem
is that BWAPI Bridge is not a complete system so not all percepts have been
implemented, see section 3.1 for more information on this system.

In this project we have extended EIS two make the use RMI between environ-
ment and agents possible. The reason we did this is so we can connect multiple
clients to the same environment. More on this can be seen in section 3.3.

2.3 Multi-Agent Systems

In this section we will describe what a MAS is, what it can be used for, and
how it works. We will describe different kinds of MAS and some important
properties a MAS can have.

Definition 2.13 (Multi-Agent System) A MAS is a system including two
or more intelligent agents (see definition 2.1), which are able to interact with an
environment and each other in order to achieve individual, mutual, or common
goals. In order to do this the individual agents need to have some sort of logical
reasoning and communication abilities, as well as knowing what goals they want
to achieve and how to do so. �
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Unit name Description
Cost

Minerals Gas Supply

SCV

This is the standard
worker unit of the Ter-
ran race, capable of re-
pairing buildings and ma-
chines as well as building
buildings and gather re-
sources.

50 0 1

Marine
Standard infantry unit
capable of midrange at-
tacks.

50 0 1

Firebat
Heavy armored infantry
unit, capable of short
range attack.

50 25 1

Medic
Healer infantry unit ca-
pable of healing infantry
units.

50 25 1

Command Center

Main building of the Ter-
ran race capable of train-
ing Terran SCVs and
for receiving gathered re-
sources from the SCVs.
One is owned in the be-
ginning of a match.

400 0 0

Barracks

This is the main intantry
unit trainer, capable of
training Marines, Fire-
bats and Medics.

150 0 0

Supply Depot
Provides supply for the
army, allowing for the
creation of more units.

100 0 -8

Refinery

A building for refining
the gas from the Vespene
Geyser allowing the SCVs
to gather it.

100 0 0

Academy

This is a research build-
ing, capable of enhanc-
ing some of the in-
fantry through upgrades,
and allowing the Bar-
racks to train Firebats
and Medics.

150 0 0

Table 2.1: A list of the units used in our agents. All units are Terran and all
infantry units are capable of simple movement. Not all actions on
the buildings and units are implemented.
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2.3.1 Types of MAS

We distinguish between MAS consisting of a set of agents all with the same skills,
attributes, and reasoning capabilities; and one where the agents have different
sets of skills, actions, or reasoning capabilities. We call them homogeneous -
and heterogeneous MAS.

Definition 2.14 (Homogeneous MAS) A MAS (see definition 2.13) where
all the intelligent agents have exactly the same skills, attributes, and reasoning
skills; i.e., the agents use the exact same implementation code and they are
identical. �

Definition 2.15 (Heterogeneous MAS) A MAS (see definition 2.13) where
the intelligent agents can have different skills, attributes, or reasoning capabil-
ities; e.g., the agents have their individual implementations or differs in other
ways. This makes the system much more complex than the homogeneous one.
�

When the type of MAS is determined, we need to understand the structure. To
avoid collision between agents and minimize redundant actions, all MASs have
the possibility to implement an organization.

Definition 2.16 (Organization in MAS) An organization in a MAS is a set
of rules determining who does what, and when to do so.

In the classic ACMAS the organization is implicitly defined by the agents in-
teraction with each other, for instance dependencies between agents could be
implemented by introducing communication protocols making sure actions are
taken in the right order.

One disadvantage of doing it this way is that the system will seem very complex
and hard to understand since the same code will describe what, when and how
to follow a plan.

By splitting the code into an organizational layer and an agent layer, it becomes
much easier to read and thereby makes it possible for the developer to design
even more complex solutions without loosing track.

There are a lot of different models used to describe the organizational layer [3],
but here we will describe the general principles of such systems.
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In Organization Centered MAS (OCMAS) the code is split up such that the
agent itself knows how to complete goals whereas the organization keeps track
of what and when goals should be done. In general there are three principles an
OCMAS should follow[14]:

Principle 1: The organizational layer provides specifications on the behavior
of the agents, e.g., what should be done by which roles. It should not
describe how an agent achieves this.

Principle 2: Both reflexive as well as goal-based agents can act in an organiza-
tion, which means that all mental issues such as beliefs, desires, intentions
etc. should be left out and only the expected behavior should be described.

Principle 3: It is possible for the agents in an organization to partition them-
selves in groups in which they can communicate with each other freely.
These groups also work as an extra layer of security since agents in one
group do not know anything about the structure of other groups (unless
they are also a member of that group).

In our project this organizational layer is implemented using AORTA. See sec-
tion 2.4 to read more about how AORTA handles the three principles above.

2.3.2 Decision making

When making any decisions in a MAS, it is split into three parts, namely what
we need to do at the current state, who needs to do it, and how it is done. How
to determine what needs to be done can be seen section 2.1.4. In section 2.3.2.1
we will describe how to use planning to determine who does what. How it is
done is up to the agent.

2.3.2.1 Coordination

When a MAS needs to figure out who does what it needs a way to ensure that
the right agents do each task. This can be done based on the gain, as the gain or
more specifically the cost is based on the current state of each agent, especially
any beliefs that differs from agent to agent such as position and remaining energy.
Then when all gains from all agents are correctly calculated, they need to be
gathered so they can be compared. This is often done by sending messages or
calculating on each agent.
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When all gains are gathered they need to be compared, and an optimal solution
would be the combination of sub-goals to pursue which accumulate to the largest
gain. This can be done efficiently with the Hungarian algorithm in O(A ·G2)[1]
where A is the number of agents and G is the number of goals available. How-
ever, since O(A ·G2) is still fairly heavy, some computational easier solution are
often used, even though they are not optimal. These solutions could be algo-
rithms to simulate real world like communication; e.g., an auctioning algorithm
where the agents can bid on different goals based on their gain [4].

2.3.3 Organizational layer

The organizational layer is basically an abstract layer specifying the structure
and dynamical features of an OCMAS. The purpose of this layer is to make
an organization detached from the reasoning of the agents themselves. It is
generally designed by introducing some new concepts to the system, e.g., agents,
roles and groups as in [14]. Below we have defined these three concepts as well
as an extra one for actions, because it is important in order to describe plans
from the organizational layer without describing how to accomplish the given
plan.

Definition 2.17 (Agent) An agent is the actual intelligent agent in the MAS.
It has a set of goals that it is able to pursue and it will, based on these, play
roles and form groups with other agents. �

Definition 2.18 (Role) A role is an abstract representation of responsibilities,
formed as objectives for the given role, meaning that it is basically a distinction
between job positions in the organization. The Roles are then responsible for
fulfilling the objectives and an agent can enact multiple roles if so desired. �

Definition 2.19 (Group) A group is a set of agents that in some way are
following the same goals. It is used to partition the organization to minimize
communication. Agents can only communicate with agents in the same group
but can be a member of several groups. �
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2.4 AORTA

Now that we understand MASs, this section will explain how we will add an
organizational layer making both the code and the plans more organized. We
will use AORTA to do this, e.g., by introducing dependencies between different
actions.

2.4.1 Concept

The concept of AORTA is to add organizational reasoning to already existing
intelligent agents by adding an organizational layer.

As the organizational layer should be clearly distinct from the agents own rea-
soning AORTA operates only by adding organizational beliefs and options to
the mental state, see definition 2.20.

The agents are only affected by the organization when objectives are added to
the agents mental state as goals based on the organization and the capabilities of
the agent, see section 2.4.3. This is equivalent to injecting additional intentions
right after the Filter Function in the BDI control flow seen in figure 2.1. By
adding it this way the agents do not need to change anything when AORTA is
added, but will simply get additional goals which they can choose to follow for
themselves.

Definition 2.20 (Mental state) The mental state of an agent is the entire
set of beliefs, goals, organizational beliefs, capabilities and options that the agent
has. In AORTA the different parts of this state is distinguished by a predicate
wrapping the rule:

¬org(a ∨ d) ∧ bel(b ∧ c)→ ¬org(a),¬org(d), bel(b), bel(c), cap(e)

�

2.4.2 Meta Model

The organization of the agents will be simplified by the meta model. In this
model we are able to define the Roles, Objectives, Dependencies, Condi-
tional obligations and Rules.
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Roles: The roles in AORTA are following definition 2.18, meaning we are able
to assign a set of objectives that this role can be obligated to achieve. The
agent does not need capabilities for all the objectives assigned, however it
must have the capability of at least one of the objectives. If the agent does
not have the capability for an objective it is responsible for, it can assign it
to other agents through dependencies. These roles are an abstract way of
defining and classifying agents. By limiting the enactment of a role, the
organization can easily define different strategies by allowing or denying
different roles at different times. Roles are denoted:

Role : Objectives.,

where Objectives is a semicolon separated list of objectives. When parsed
to the mental state the role is denoted:

org(role(Role, [Objectives])).,

where Objectives are a comma separated list. The message that an agent
is enacting a role is denoted:

org(rea(Agent,Role)).

Objectives: Objectives are the meta goals which can be seen as desires from
the BDI model (see section 2.1.3). If an agent commits to an objective it
will become a goal on the agent. Plans are constructed here by making
plan trees by assigning sub-objectives to objectives. How the organization
interprets the plan tree is up to the reasoning in the AORTA file (see
section 2.4.4). Objectives are denoted:

Objective : SubObjectives.,

where SubObjectives are a semicolon separated list of sub-objectives. When
parsed to the mental state the objective is denoted:

org(obj(Objective, [SubObjectives])).,

where SubObjectives are a comma separated list.

Dependencies: If an agent has an objective that it does not have capability
to solve by itself it can assign another agent through dependencies. We
denote this:

Role1 > Role2 : Objective,
where Role1 is dependent on Role2 to do Objective. When parsed to the
mental state the dependency is denoted:

org(dep(Role1 ,Role2 ,Objective)).

These dependencies, together with sub-objectives, makes it possible to
build an advanced plan tree.
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Conditional obligations: Conditional obligations is a way to obligate an agent
to do something based on a certain condition. It works by adding an obli-
gation to the mental state of the agent if the conditions are met, and then
let the agent do with it what it wants.

Role : Objective < Deadline|Condition.,

where all agents with the Role have an obligation to do the Objective if
the Condition is met before the Deadline.
If a Role violates the Deadline a new option is generated of the form:

viol(Agent,Role,Objective).,

which means that the Agent with the Role has violated the obligation to
complete Objective before the Deadline.
If the condition is met the option will be added to the mental state as
follows:

opt(obj(Objective)).

Rules: Rules are a way to make prolog functions which can be used in the
meta model and AORTA program (see section 2.4.4). They are made for
convenience, and to make the meta model and .aorta file more readable.
They are written in TuProlog.

2.4.3 Reasoning cycle

On top of the agents normal reasoning cycle, AORTA has its own reasoning
cycle which is executed in the beginning of every cycle. This organizational
reasoning is divided into three parts:

Obligation Check (OC): In this phase the organization checks whether an
obligation is activated, satisfied, or violated. The mental state of the
agent is updated accordingly.

Option Generation (OG): This is the phase wherein options are generated
based on the mental state of the agent. The considered organizational
aspects are:

Role Enactment/Deactment: An option is generated for roles that are
possible to enact or deact according to the mental state of the agent.

Obligations: If a condition in an obligation is met, an option for the
objective is generated.
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Delegation: An option is generated to delegate objectives to other agents
if it is specified in the dependency relations from the meta model.

Information: Options are generated to share information with the other
agents, e.g., role enactment or knowledge obtained that other roles
are dependent on.

Action Execution (AE): Here the agent execute at most one applicable ac-
tion from the OG phase. The possible actions are to enact/deact a role,
commit or drop an objective, and send messages to the other agents.

The standard implementation of the reasoning cycle in AORTA is called Linear
Strategy and is defined in The AORTA Architecture [3].

2.4.4 AORTA program

This part of the model can be individual for each agent type. This is where
the reasoning is implemented and it is here the AE-phase of the organization
is placed. Options that the agent needs to react on can be added as an action
rule and the syntax is:

option : context => action,

where option is the generated option the agent should react on if the context is
true, and the action is the action the agent should do.

The order of the action rules defines the priority just like in logic programming
in prolog.

2.4.5 Multi-language

A great advantage by using an explicit organization like AORTA is that with an
extension the agents can use this plugin across multiple programming languages
like, e.g., GOAL and Jason. Our goal is to implement a bridge between GOAL
and AORTA and extend the communication in AORTA to use a messaging server
distributing messages across different AORTA clients. The bridge to Jason has
already been created and more about the process can be read in this article [3].

This extension will make it possible to have groups in AORTA as they are defined
in definition 2.19 since each AORTA client would basically form a group. The
groups will be formed by a separate MAS in the respective APL, thus making
the agents able to communicate directly through its own instance of the APL.
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Chapter 3

Implementation

In this chapter we will describe and discuss our design choices in the different
parts of the system.

We will explain how the implementation of the environment, we will use, works,
and how the the agents we have made act in it. We will explain how we extended
the environment to support multiple instances of MASs, and the changes needed
in the existing systems. Lastly we will explain how we would extend AORTA
to allow communication between different AORTA instances.

3.1 BWAPI Bridge

In this section we describe the implementation of the Bridge between APLs and
the Brood War API (BWAPI Bridge) implemented as a master project in 2014
on DTU [8].

The project uses the Java Native Interface BWAPI (JNIBWAPI) [15] as the
API to SC:BW and is the bridge from JNIBWAPI to any APL based on EIS.
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3.1.1 Structure

In order to make the APLs work with SC:BW several systems need to be con-
nected in different ways. For an illustration of the connected system see fig-
ure 3.1.

The different parts needed are:

StarCraft: Brood War: This is the standard game as it was made by Bliz-
zard [5].

BWAPI: BWAPI is the Brood War API, which allows for C++ programming
of the SC:BW units by DLL injecting the game by running it through the
BWAPI Injector: Chaoslauncher [7].

JNIBWAPI: This is the java interface for the BWAPI, which allows for java
programming to interact with BWAPI [15].

BWAPI Bridge: This is the system that connects to JNIBWAPI and extends
EIS allowing APLs to connect to it [8].

3.1.2 Agent interface

In our project we have chosen two APLs, namely GOAL and Jason [13, 6], both
of which follow the programming paradigm AOP, and thus follows the BDI
model as described in section 2.1.3. This makes BWAPI Bridge responsible for
parts of the Belief Revision Function, i.e., the knowledge distribution, and
the Action Execution.

3.1.2.1 Belief Revision Function

The agents in the system receive a limited amount of different percept types
which can be seen in Table 3.1 on page 33. Since the agents do not need all
knowledge they do not receive the same percepts. Which percepts they get is
based on which groups they fit into:

All units receive: Idle, IsBeingConstructed, Id, Position, BuildtilePosition,
Base, Chokepoint, TotalResources, Unit, Enemy and Friendly percepts.
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BWAPI Bridge

EIS

APL

JNIBWAPI

BWAPI

Starcraft

Figure 3.1: An illustration of the systems used in the BWAPI Bridge and how
they are connected.
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All buildings receive: Minerals, Gas, Supply, QueueSize, BuildUnit percepts.

Attack capable units receive: Attack percepts.

All Worker units receive: Minerals, Gas, Supply, IsConstructing, Gather-
ing, Carrying, VespeneGeyser, ConstructionSite and WorkerActivity per-
cepts.

Terran Command Center receive: IdleWorker andWorkerActivity percepts.

Terran Marine receive: Stimmed percepts.

All units receive all percepts from all the categories into which they fit; e.g., a
Marine would get percepts from the categories: All Units, Attack Capable,
and Terran Marine.

3.1.2.2 Action Execution

BWAPI Bridge has a set of actions that the agents can use if they have the
corresponding capabilities. This can be seen in Table 3.2 on page 34. What an
agent is capable of is determined directly in BWAPI. A description of possible
actions each unit can use can be seen below:

SCV: Attack, Build, Gather, Move, Stop.

Marine: Attack, Move, Stop, Use(stim).

Firebat: Attack, Move, Stop, Use(stim).

Medic: Move, Stop, Use(heal).

Command Center: Train, Stop.

Barracks: Train, Stop.

3.2 StarCraft agents

Here we will discuss our implementation of the different MAS we have imple-
mented in this project. We will discuss the different aspects of the agents and
the different strategies they use as well as the implemented organization.
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Percept: Description:

Attacking What a certain unit is currently attacking.

Base This is locations on the map where outposts could be
established (near mineral fields).

BuildTilePosition Own position in Build Tiles.

BuildUnit Contains the ID of the builder unit which is currently
constructing the building.

Carrying That the unit is currently carrying some sort of re-
source.

Chokepoint
The location of chokepoints. These are the points on
the map where none-flying units needs to pass to get
to the other side.

Constructing That unit is currently building a building.

ConstructionSite A valid Building Tile for constructing a Terran Com-
mand Center.

Enemy An enemy with ID, type and position.
Friendly A friendly unit with ID, type and position.
GameStart That the game is started.
Gas Remaining vespene gas.
Gathering What a certain unit is currently gathering.
HitPoint Remaining hitpoint of the unit.
Id Own ID.
Idle That a certain unit is currently idle.
IdleWorker Contains the ID of an idle worker unit.
IsBeingConstructed That the unit itself is under construction or training.
Map This is the width and hight of the map.
MineralField Mineral field with ID and position.
Minerals Remaining minerals.
Position Own position on the map in Walk Tiles.
Queue What actions are queued on the buildings queue.
QueueSize The current queue size on the buildings queue.
Stimmed Whether the unit has used a stimpack.
Supply Currently used and max supply.

TotalGas Contains the total amount of vespene gas gathered
throughout the game.

TotalMinerals Contains the total amount of minerals gathered
throughout the game.

TotalResources Contains the current and total gathered of all three
resource types.

Unit The current amount of a unit type.
UnitType Own unit type.
VespeneGeyser Vespene geyser with ID and location.
WorkerActivity This is what the different workers are currently doing.

Table 3.1: Table of the percepts given by BWAPI Bridge.
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Action Description

Attack Order a unit to attack on either an ID or a position.
Build Build a certain building type at a certain position.

Gather Gather either vespene or minerals, determined from the type of
the map element based on the specified ID.

Move Move the unit to a certain position.
Train Train a certain unit type.
Stop Stop the unit, no mater what it is currently doing.

Use Use is used to utilize abilities, can be used either with a position,
an ID or nothing, based on the nature of the ability.

Table 3.2: A table of the possible actions through BWAPI Bridge.

3.2.1 Knowledge

We have the relation between knowledge and belief that if we know something
to be true we cannot believe the opposite and vice versa:

Kiϕ→ ¬Bi¬ϕ
Biϕ→ ¬Ki¬ϕ

How we distinguish between knowledge and belief in the mental state is based
on the dynamic of the perceived information.

Belief: Everything that is perceived from the environment is, at the point that
it is sent from BWAPI, true, which the agent knows. However at the time
our agents process the information, every dynamic part of the perceiv-
able environment might have changed, and hence it must be handled as
beliefs. This means that we often check if our beliefs from the time an
action is started still match the ones given by the current percepts. Our
understanding of percepts are formally denoted:

M, s, i |= Kipercept(ϕ)→ KiP (ϕ)

M, s, i |= Kipercept(ϕ)→ Bi(ϕ),

where M is the world, s is the state and i is an agent. All entities in
the system receive not only what is within their own range of vision, but
what is within the entire team’s range of vision. This means that all
percepts in the system are, at the time the percepts are sent, distributed
knowledge between all units in SC:BW (see definition 2.7). However, as
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the knowledge is collected in BWAPI Bridge and is sent with delays and
at different points in time for each agent, it is no longer neither distributed
nor knowledge when the agent gets it; it is individual beliefs.

The information of other agents’ actions are often made by conclusions
drawn using relations from knowledge with the related information from
beliefs, which means all information about the behavior and mental state
of the other agents are beliefs.

Knowledge: The only parts of the mental state we handle as knowledge is
methods coded into the agent and the static parts of the perceivable envi-
ronment. The methods on the agents represent relations which are known
to be true; e.g., if an enemy unit has the type "Terran Command Center"
then we know that it is a building. The static parts of the map can be
map width or position of a Vespene Geyser. Formally denoted:

M, s, i |= Kipercept(ϕ)→ KiAϕ,

where M is the world, s is the state, i is an agent, and ϕ is a static part
of the environment.

All the knowledge we have is assumed to be common knowledge in the
group that needs it; e.g., it is common knowledge among SCVs how to
calculate distances. This is however only reflected in the system by the
fact that our agents never share any conclusions drawn based on their
own knowledge. They simply assume that the other agents have gotten
similar percepts and based on these draw the same conclusions and react
accordingly, see example 3.1.

Example 3.1 (Failing to build a building) SCV1 has the goal of building a
Supply Depot. He believes the resources are sufficient, but by measuring all the
distances he sees that he is not currently the closest to the construction site, and
thus do not act on this goal. It does this since SCV1 knows, that if all other SCVs
get percepts similar to the ones it got itself, then one of them must be closest
and thus conclude that it should do the task of constructing.

Meanwhile SCV2 and SCV3 gets similar percepts, both of them are closer to the
construction site than SCV1, but as the distance is the same both of them con-
cludes that they are closest and commits to the goal. This results in two SCVs
trying to build the same building at the same construction site and thus they get
in each others way.

This means that the building was never built, making the agents try again. �
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3.2.1.1 Planning

The previously mentioned calculations of gain in equation 2.1 are not suited
for our continuous environment since the agents perceive at different times and
since they are required to react fast, they cannot wait for the gain from the
other agents or do the calculations themselves before deciding what to do. Even
if we were to wait for the results for all agents, the result would no longer be
correct resulting in even more wasted time without getting better results. To
accommodate this we have made a simplification where we filter the goals based
on the value and then the cost instead of a combined calculation.

In our MASs the planning part of the control flow as seen in figure 2.1 is done
by having a prioritized list of plan libraries, meaning that the agent will simply
commit to the first plan where the context holds. This corresponds roughly
to the value of a plan as described in section 2.1.4 whereas the cost needs to
be taken into consideration by the programmer in the context of the plan. An
example of calculating the cost of a plan can be seen in example 3.2.

Example 3.2 (Cost calculation) Consider a plan where an SCV is to build a
building at a specific position. By making sure the SCV only commits to the plan
iff. it believes it is the closest SCV to the building position, only the SCV with the
smallest cost, i.e., believed least distance, will try to follow the plan.

3.2.2 Aspects of the simulation

The different aspects of the simulation that we have taken into consideration is
the small autonomous tasks which the agents need to consider. We have chosen
to apply only a few to simplify the system and to show how they interact with
AORTA. The aspects we consider are:

Resource Gathering: This deals with the gathering of resources. If an agent
decides to gather, it needs to decide what and where to gather.

Build Building: This concerns whether a building can be built, where to build
it and whether a certain agent should try to build it or not.

Attack Enemy: This concerns whether an agent should attack an enemy, and
which enemy to attack if more are present.

Train Unit: This concerns whether a unit can be trained, and if the agent
should try to do so.
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Scouting the map: This concerns whether a unit should scout the map to
gain more knowledge of the environment.

Heal friendly unit: This concerns whether a unit should try to heal a friendly
unit.

Most of the handling of these aspects are done the same way on all the systems
we have made, and only the coordination differs from system to system. We
have chosen to solve these aspects using a number of goals distributed on the
relevant agents as described in Table 3.3 on page 42. Below we will show how
the different goals will be achieved if the agent chooses to do so:

gather: This goal is used to solve the aspect of Resource Gathering and is done
by figuring out whether mineral or gas should be gathered. Gas should be
gathered if there is currently less than three other agents doing so and we
are the closest agent not currently gathering gas. If this is not true the
agent will try to gather mineral from the nearest mineral patch available.

build(Building): This goal is used to solve the aspect of building a Build-
ing. It is done by first finding the building to build according to the
conditions (objectives, obligations and dependencies when using AORTA)
implemented on the agent.
When the building has been found, the location is found simply by taking
the nearest Building Tile to the Command Center (±δ to make room for
agents to move). Lastly the agent determines if it should build the building
by seeing if it is the closest to the location.

train(Unit, Amount): This goal is used to solve the aspect of Training Units.
We train a Unit if we have less than the desired Amount and currently
has enough supply and resources to train the unit. Agents that have this
goal also uses another goal called maintainMentalState to add this goal
again if some of the units die.

defend: This goal is used in cooperation with charge to solve the aspect of
Attacking the Enemy. This goal will simply make the agent attack enemy
units if they are closer than 125 Building Tiles to the Command Center.

charge: This goal is used in cooperation with defend to solve the aspect of
Attacking the Enemy. This goal will first try to attack the nearest visible
enemy unit, if one is not present it will move to the position of the last
spotted enemy base.

spot(X): This goal is used in cooperation with scouting to solve the aspect of
Scouting the map. This goal will simply make the agent look for X. We
use it to find Vespene Geysers and the Enemy Base.
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scouting: This goal is used in cooperation with spot(X) to solve the aspect of
scouting the map by making the agent move around the map in order to
try to get new knowledge about the environment. The way we did it is
a very random scouting mechanism where the agent moves to a random
position on the map until the Enemy Base has been found. This could
easily be optimized by only moving to unknown areas of the map each
time.

For the implementation of the plans to achieve these goals we refer to the im-
plementations of the agents in appendix C.2.

3.2.3 Implicit organization

As we implemented our agents in GOAL, we realized that some sort of organi-
zation (see definition 2.16) would be required in order to prevent all agents of
the same type to do the same action at the same time; e.g., all SCVs would try
to build a building at the same location at the same time resulting in errors for
all of them: ultimately meaning that the building was not built at all. We tried
implementing a communication based organization at first, but realized some
issues with the communication and therefore we tried an adjusted version ap-
plying less communication and more individual reasoning. These are examples
of implicit organizations as the organizational reasoning is distributed across
the agents. They are implemented directly in the conditions for the individual
actions since they react on information received through internal messages from
other agents. For a description highlighting the key coordinational differences
see section 3.2.3.1 and 3.2.3.2.

3.2.3.1 First iteration

Our initial implementation in GOAL was communication based, but was never
fully completed due to issues with the communication; it did teach us a lot about
GOAL. Below we will describe the three main differences from the previously
defined behaviour for the different aspects in section 3.2.2:

Resource management: We tried to make a slightly more advanced resource
management than just build or train something if the resources are avail-
able in the beginning of an action. We made a new agent which simply
received and granted resource requests. If the request was granted, the
player reserved the resources for the agent, such that a SCV would never
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initiate a building only to find insufficient funds as it arrived at the loca-
tion for the coming building. However, it turned out that all our resources
ended up being allocated to units, who never used it, due to communica-
tion errors and the non-determinism of the environment.

Mineral Gathering: The SCVs fallback action, in case there was nothing else
to do, was to gather minerals. By the simple reasoning on the belief of
carrying that justCarried ∧ ¬carrying → justDelivered we tried to make
the agents stop and recalculate closest mineral field after every delivery of
minerals to the Command Center. However, they got the percepts quite
late, meaning that sometimes they stopped in the middle of a gathering,
or not at all, which left this approach doing more harm than good.

Build Building: The Command Center tells one specific SCV to build a cer-
tain building and where to build it. Then the SCV pursue this action until
the building itself says that it is done which in turn makes the SCV tell the
Command Center that the building is completed and hereafter continues
to do something else. However, as this action can fail and the agents do
not always listen, the building was not always completed and the agents
did not always tell the Command Center about the outcome.
To get assurance that a building would be built at least once, we tried
to implement a time based failsafe such that the Command Center would
assign a new SCV to the task if the first one never responded. Furthermore,
after a given amount of time the SCV would pursue a new goal no matter
if the building was built or not. However, the messages were inconsistent
in arriving, and often the Command Center never got the message and
made another SCV build another.

Very little of this system managed to be coordinated, as messages did not always
get to the recipient. This meant that a time based failsafe triggered almost every
time when used, and without it the system did not do what it was supposed to.
For this reason we tried to make one with less communication, i.e., avoid time
sensitive communication.

3.2.3.2 Second iteration

The second iteration had a lot more calculations, as all time-critical information
had to be calculated for every agent, instead of only one place and hereafter sent
to the others.

Mineral Gathering: The SCVs simply take the mineral field closest to the
SCVs location and the beginning of the gathering. We have made recalcu-
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lation like the one from the first iteration, but as it does no longer call the
stop method they use the StarCraft gathering method until they change
their goal to something else and back again. This means that they will of-
ten keep gathering in one direction away from the Command Center even
though closer mineral patches are available.

Vespene Gathering: We tried to make the Refinery responsible for this, how-
ever, it was not a valid entity in BWAPI Bridge thus we assigned it to the
Command Center instead. The Command Center assigns an additional
SCV to the task if less than three is already gathering. It decides which
SCV should gather vespene by calculating the closest ones to the Terran
Refinery and send a message to them telling them that they should do
it. As this is not time sensitive and whether three or four SCVs gather
vespene is not important, this solution works even though it is not correct.

Build Building: The SCVs decides which building, if any, should be built and
individually calculates the right building spot, and then they calculate
whether they are the closest to that spot, and if they are, they try to
build it. This often makes more than one SCV attempt to construct the
building, causing them to stand in the way of each other and the building
is then not build.

Resource Management: As communication is limited and training units and
building buildings need to happen as fast as possible, the resource man-
agement is simplified. We simply check the current amount of resources
directly in the environment and pursue the action if the resources are suf-
ficient. This however often results in insufficient resources; e.g., an SCV
initiates the building of a building, but before arriving at the building lo-
cation the barracks has initiated the training of a marine, hereby spending
the resources. This does however only cause the unit, who ends up not
building or training anything, to loose a single iteration of reasoning and
at most a few seconds in the game.

This method relies a lot on the environment stopping them if: they do something
they are not supposed to, do not have enough resources for, or are otherwise
not able to do.

3.2.4 Explicit organization

In this sub-section we will explain how we have been implementing our organi-
zation according to the rules discussed in section 2.4 in order to show how to
organize heterogeneous agents across multiple APLs.
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Our original plan was to create an advanced organization including plans for
building an entire base and complicated attack strategies. After initial testing of
both Jason and AORTA we realized that the systems are not optimized enough
to be able to accomplish this due to the fairly heavy computations needed and
the added delay through all the interfaces, i.e., BWAPI Bridge, JNIBWAPI and
BWAPI.

Instead we have made some more simplistic plans which are basically a simpli-
fication of the explicit organization already present in the game, e.g., a Terran
Barracks is dependent on a Terran SCV building an Academy in order to be
able to train Firebats. Furthermore we limited the number of agents to a single
one of each type. The roles, objectives and dependencies can be seen in Table
3.3 on page 42.

The main idea about this is that we can show that the base will be constructed
in the correct order while agents only receive goals that makes sense according
to the organization. Furthermore we will see that the infantry units, with the
role attacker, only charges the enemy when the enemy base has been spotted
by a scout.

3.2.4.1 Reasoning

We have chosen to set a context in AORTA such that agents take roles if they
have capabilities of at least one of the objectives, the roles are responsible for
and it is not explicitly ignored on the agent. When an agent has a role, we will
utilize the option to send a message to other agents notifying them of this.

We have chosen to design our plan tree as objectives and sub-objectives using
dependency relations for communication between dependent roles. By making
the agent delegate not yet achieved sub-objectives to agents playing the roles
that can help solve them. We have the functionality of our all nodes from
section 2.1.4. An agent has the option to commit to an objective iff. it has the
capabilities to do so, it is not ignored and all sub-objectives has been solved.
In order to make it possible for the agent to know this, dependency relations
are defined for all sub-objectives that the role can not solve itself as this gives
the dependee the option to send a message back to dependent roles when an
achievement has been solved.

Lastly the agent will react on the option to deact a role if it already has the
role.

The implementation of the reasoning described above can be seen in listing C.2.1.
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Role Objectives Dependencies Dependency Objective

healer heal - -

gatherer gather - -

scout scouting - -

builder build("Terran Barracks")

train("Terran SCV", 5)

train("Terran Marine", 1)

train("Terran Firebat", 1)

commander trainArmy
armyTrainer

train("Terran Medic", 1)

build(Building) - -
builder

build("Terran Refinery") scout spot("Vespene geyser")

defend - -

scout spot("Enemy Base")attacker
charge

commander trainArmy

train(Unit,Count) - -

build("Terran Academy")
train("Terran Medic",Count) builder

build("Terran Refinery")

build("Terran Academy")

armyTrainer

train("Terran Firebat",Count) builder
build("Terran Refinery")

Table 3.3: Table showing the objectives (see section 3.2.4.3) each role is re-
sponsible for. If the agent cannot achieve the objective by itself a
dependency relation can also be seen. A more detailed description
of the dependencies will be discussed in section 3.2.4.4.
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Unit Name Capabilities Roles

build(Building)
build(Building,X,Y) gathererSCV
gather builder

Marine

spot("Vespene Geyser")
spot("EnemyBase")
scouting
charge
defend

scout

move

attacker

charge
defendFirebat
move

attacker

Medic matchUp
heal healer

trainArmy
train(Unit,Amout) commanderCommand Center
maintainMentalState armyTrainer

Barracks train(Unit,Amout)
maintainMentalState armyTrainer

Supply Depot - -
Terran Refinery - -
Academy - -

Table 3.4: This table shows the capabilities of our agents for the different units
described in Table 2.1 on page 20 and lists their possible roles.
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3.2.4.2 Roles

Each role is associated with one or more objectives which they are responsible
for gets done. Whether they do it themselves or delegate it will be defined later
in the meta model. The roles can be seen in listing C.2.1.

3.2.4.3 Objectives

The objectives are used in cooperation with dependencies and obligations to
form plan trees. The complete plan tree for our organization can be seen in
figure 3.2. The objectives in Table 3.3 on page 42 are implemented in the Meta
Model as shown in listing C.2.1.

Below we will describe when the different objectives are used. We refer to
section 3.2.2 for descriptions of how these objectives are achieved if the agents
pursue them as goals. We use the syntax of the mental state and AORTA for
the different terms in order to make it easier to relate to.

scouting: If an agent has the role scout it will commit to this objective until
the enemy base has been spotted. Formally denoted:

M, s |= org(rea(scout)) → commit(scouting) U bel(spot("Enemy Base"))

spot(X): If an agent has the role scout it will commit to this objective until X
has been spotted; this is basically the way GOAL works with achievement
goals. Formally denoted:

M, s |= org(rea(scout)) → commit(spot(X)) U bel(spot(X))

gather: If an agent has the role gatherer it will commit to this objective at
all times since we use it as a fallback action if there is nothing else to do.
Formally denoted:

M, s |= org(rea(gatherer)) ∧ ¬bel(busy) → commit(gather)

trainArmy: If an agent has the role commander it will commit to this objective
when all sub-objectives has been achieved. Formally denoted:

M, s |= org(rea(commander)) ∧ bel(SubObjectives) → commit(trainArmy),

where bel(SubObjectives) denotes that the agent believes that all sub-
objectives has been solved.
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train(Unit, Amount): If an agent has the role armyTrainer it will commit
to this objective if at any point in the game there is less than Amount Unit
present and all sub-objectives has been achieved. Formally denoted:

M, s |= org(rea(armyTrainer)) ∧ bel(SubObjectives)

→ commit(train(Unit,Amount)) U bel(unit(Unit,Amount)),

where bel(SubObjectives) denotes that the agent believes that all sub-
objectives has been solved.

build(Building): If an agent has the role builder it will commit to this ob-
jective if it is time to build Building according to the plan tree and if all
sub-objectives has been solved. Formally denoted:

M, s |= org(rea(builder)) ∧ bel(SubObjectives)

→ commit(build(Building)),

where bel(SubObjectives) denotes that the agent believes that all sub-
objectives has been solved.

defend: If an agent has the role attacker it will commit to this objective until
we have trained an army and the scouts have found the enemy base.
Formally denoted:

M, s |= org(rea(attacker))

→ commit(defend) U bel(trainArmy ∧ spot("Enemy Base"))

charge: If an agent has the role attacker it will commit to this objective when
the two sub-objectives, i.e., train an army and find the enemy base, has
been achieved. This means that we basically switch from a defend strategy
to a more aggressive one. Formally denoted:

M, s |= org(rea(attacker)) ∧ bel(SubObjectives) → Acommit(charge),

where bel(SubObjectives) denotes that the agent believes that all sub-
objectives has been solved.

heal: If an agent has the role healer it will commit to this objective throughout
the whole game since we need to protect our units. Formally denoted:

M, s |= org(rea(healer)) → Acommit(heal)
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Charge

Upgrade Army Train ArmySpot( Enemy Base )

Train( FireBat ) Train( Medic )Train( Marine )

Build( Barracks )

Build( Academy ) Build( Refinery ) 

Infantry Armor Infantry Weapon

Build( Engineering 
Bay )

Stimpak

Build( Refinery ) 

Spot( Vespene 
Geyser )

Figure 3.2: Illustration of the plan tree we have used without environmental
implicit dependencies. The blue part indicates the part we imple-
mented and the red indicates the upgrade part of the plan tree
which was not implemented.

3.2.4.4 Dependencies

All dependencies in our system can be derived from the roles, capabilities, and
the plan tree formed by objectives and sub-objectives. To make AORTA generate
the right options for the agents to communicate and delegate objectives, the
dependency relations still needs to be implemented in the meta model as can be
seen in listing C.2.1.

3.2.4.5 Obligations

As discussed in section 2.4 the obligations are used to describe who has an obli-
gation to follow a goal if they meet certain conditions. Furthermore a violation
criteria can be defined. In SC:BW this deadline does not really help us that
much, since it wont help the system in any way to punish an agent if it does not
do something before a deadline. Most objectives need to be done no matter how
late it is, which is why we have chosen not to use the deadlines in this project.
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Most of the behaviour of the agents are in the plan tree formed by the objectives,
sub-objectives, dependencies, and obligations. The agents will communicate with
each other to achieve more complex plans. We use the obligations as a way to
make sure that a given role initiates the execution of a plan tree, by obligating
it to the root-objective and let it distribute the remaining objectives; e.g., when
the commander starts the trainArmy objective he will delegate all sub-objectives
to the armyTrainer who in turn will delegate sub-objectives to the builder in
order to train specific units, who then delegates to the scout. See listing C.2.1
for the implementation.

3.3 RMI BWAPI Bridge

To get more than one MAS to connect to the BWAPI Bridge, we have extended
it using Remote Method Invocation (RMI) which will make it possible to connect
multiple implementations of agents to the same instance of the environment. An
example on how we want the information flow to be implemented can be seen
in example 3.3. The source code for this system is called EISBW-remote and
can be found in appendix C.1.

3.3.1 Structure

A figure of the client/server implementation of the BWAPI Bridge can be seen
in figure 3.3. Since we need to connect several implementations to the same
instance of the environment we need the server to run a game of SC:BW and let
the clients connect through RMI. This means that the environment that each of
the implementations use will not be the same, but a client representation that
can connect to the actual environment on the server.
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RMI RMI

BWAPI Bridge

Server

GOALJason

Client Client

   

Figure 3.3: Illustration of the design of the client/server implementation of
the BWAPI Bridge.

Both the server and the client are based on a remote implementation of EIS
called EIS-remote, found on EIS’ github[9], as both BWABI Bridge and the
APLs are dependent on EIS. The implementation was not finished and we have
refactored it to use parts of the implementation from EIDefaultImpl by extend-
ing it and overwriting methods that we needed to change due to the communi-
cation through RMI. The class diagrams of the implementation can be seen in
figure 3.4 and 3.5.

3.3.2 Requirements

In order to make the RMI meet the requirements of EIS there are several meth-
ods that need to be linked from the Client to the Server, e.g., getAllPercepts-
FromEntity and performEntityAction. We needed an APL using our modified
EIS in order to make debugging statements, to figure out which methods were
used directly. We did this in GOAL by compiling the GOAL-core using our EIS,
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EIS

EIDefaultImpl

BWAPIBridge

EIServerDefaultImpl

Server

<<interface>>
Remote

<<interface>>
EIServerRemote

+registerAgent(agent:String)
+unregisterAgent(agent:String)
+getAgents(): List<String>
+getEntities(): List<String>
+associateEntity(agent:String,entity:String)
+freeEntity(entity:String)
+freeAgent(agent:String)
+freePair(agent:String,entity:String)
+getAssociatedEntities(agent:String): Set<String>
+getAssociatedAgents(): Set<String>
+getFreeEntities(): List<String>
+performAction(agent:String,action:Action, entities:String[]): Map<String, Percept>
+getAllPercepts(agent:String,entities:String[]): Map<String, Collection<Percept»
+getType(entity:String): String
+attachClientListener(client:EIClientRemote)
+detachClientListener(client:EIClientRemote)
+getAllPerceptsFromEntity(entity:String): List<Percept>
+setState(state:EnvironmentState)
+getState(): EnvironmentState

Figure 3.4: Class diagram showing how the server side of the implementation
has been designed. All methods specified the EIServerRemote
interface is the methods that can be activated remotely. The EIS
package is the one we have modified.

EIS

EIDefaultImpl

EIClientDefaultImpl

Client

<<interface>>
Remote

<<interface>>
EIClientRemote

+notifyAgent(agent:String, percept:Percept)
+notifyFreeEntity(entity:String, agents:Collection<String>)
+notifyNewEntity(entity:String)
+notifyDeletedEntity(entity:String)
+handleStateChange(state:EnvironmentState)
+toString()

Figure 3.5: Class diagram showing how the client side of the implementation
has been designed. All methods specified the EIClientRemote
interface is the methods that can be activated remotely. The EIS
package is the one we have modified.
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the process of this can be seen in appendix A.3.

In order to make the required methods remotely accessible we had to change
the visibility of some of the variables in EIDefaultImpl in the EIS project from
private to protected, since this is neccessary in order to give the server access
to these variables. This modified EIS is used on the server side, meaning that
BWAPI Bridge has to be rebuilt using this more open version of EIS. We had
to change the visibility of the following variables from private to protected in
order to access them from the server:

entities: A list of the entities which currently exists in the environment.

agentsToEntities: A map to see which entities are connected to which agents.

registeredAgents: A list of the agent connected to the environment.

entitiesToType: A map of which type each agent is.

Example 3.3 As an example we can take a look at how an agent will get his
percepts in this new implementation. getAllPerceptsFromEntity will be called on
the client which will simply pass on the request to the server using RMI. The
Server will then fetch the percepts through the BWAPI Bridge and return them
all the way back to the Client. �

3.3.2.1 Bookkeeping

When making the system remote we have to think about which entities con-
nects to which agents and which listeners needs to be where. This means some
bookkeeping is required and some decisions regarding the placement of the in-
formation needs to be made.

As we need our server to extend the BWAPI Bridge and we need the client to
implement EIS; both sides end up implementing EIS meaning that some data
structures needs to be kept on both sides; e.g., agents are handled on the client
since they are created by the APL, whereas entities are handled on the server
since they are created by the environment. The mapping between the agents and
the entities are handled on both sides, as the agentsToEntities map is included
in EIS. However, the actual agent to entity association is initially called at the
client side, which means the client needs to call the server to make it associate
the agent and entity.
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3.3.2.2 Remote objects

Some objects cannot directly be retrieved through a RMI, as they need to be
serializable and instantiated as a remote object or they will be returned as they
were instantiated. In EIS the retrieval of stored information happens in the
entity management which means we need some remote object to handle the
entities.

We have chosen to make a remote object called ClientEventHandler which is
a hash map linking each client to a queue of events which then contains the
entity. The client will then regularly access this queue and handle the retrieved
events.

3.4 Communication between AORTA instances

In this section we will start analyzing different possibilities of connecting mul-
tiple MAS through AORTA. Then we will describe the result of our implemen-
tation using RMI. The source for this system is in the framework for AORTA
in package framework.aorta.remote and we also refactored parts of the system
as we will describe in this section. The source can be found in appendix C.1.

3.4.1 Analysis

When having different MAS connected to the same environment all using AORTA,
we need a way to make them acknowledge the agents of the other system and use
them in the organization. As we have separate systems with different instances
of AORTA, we need some sort of communication between them.

3.4.1.1 Communication method

The communication is possible to do through EIS using percepts as communica-
tion, by simply adding the information as a percept on the RMI-BWAPI server
we have made and let the server distribute the information as percepts to the
agents. However, this would require additional methods to be implemented on
every environment the remote AORTA should use, which opposes the concept
of AORTA.



52 Implementation

Instead we have chosen to implement a new RMI message server for handling
of the agents’ organizational communication, where the server has a mapping
between agent names and their individual message queue in a remote object as
in section 3.3.2.2.

3.4.1.2 Knowledge sharing

The knowledge we need to share for AORTA to be able to complete its reasoning
cycle is the agent names and all the organizational related messages the agents
are currently sending to each other.

All agents need to send and receive through this new messaging server instead
of the old method which sent messages through the APLs’ internal communica-
tion method. This will also make it possible for the agents to use the internal
messaging strictly for sharing of knowledge between the agents that are part of
the group.

3.4.2 Result

We have made the use of the remote methods optional as they are activated
by the flag msgServer in the .mas2j file. This sub-section describes what we
did to make AORTA organize through the message server. When implementing
this extension we had to implement two new classes and an interface for the
AortaMsgServer. The classes we had to implement were:

MsgQueueHandlerRemote: This is the interface of our remote object which
is needed in order to make certain methods remotely accessible.

MsgQueueHandler: This is the implementation of the earlier mentioned in-
terface which handles the hash map of agent names to message queues.
Furthermore we have added a method (addAortaAgent(aortaAgentName))
which adds new AORTA agent names to the system; this method will im-
itate communication between agents by adding a message to all agents
notifying them of the name of the new agent using the message form:
org(aortaAgent(AgentName)).

AortaMsgServer: This is the actual object that each AortaAgent will create.
The constructor of this class will then either create a new server and remote
object (MsgQueueHandler) if a server does not already exist, otherwise
connect to the existing ones. This means that it will be working as the
interface between all the agents and the remote object MsgQueueHandler.
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To use this extended message handling we had to refactor several files in the
existing AORTA source code to use AortaMsgServer’s added functionality. We
start describing all the changes needed in the original source code for AORTA,
in order to send messages using the message server:

OrganizationalMessage: In order to send organizational messages over the
remote object it needs to be serializable. Furthermore as we no longer
use the APL’s internal messaging system, we do not need the Incomming-
OrganizationalMessage; however, the field sender in this class is needed
and we had to add it as a field in the message sent through the Aor-
taMsgServer. We have done this by making a new abstract extension
of OrganizationalMessage called OrganizationalMessageWithSender
and made IncommingOrganizationalMessage as well as the new Aorta-
MsgServerOrganizationalMessage extend it, the last one being the one
used for the new AortaMsgServer as both the outgoing and incomming
message.

Aorta: We use the already existing method for adding new agents (addAgent(
agentName)) to add a new entry for the hash map on the AortaMsgServer
using the agents name, this is done by calling the method addAortaAgent
on the remote object MsgQueueHandler.

AortaAgent: This class now contains an instance of AortaMsgServer used for
the message handling. Instead of using the internal messaging of the APL
to send a message to another agent, it now adds the message to the respec-
tive queue in the remote hash map using the method sendMessage(msg).

SendAction/SendOnceAction: All send functions use the AortaMsgServer-
OrganizationalMessage instead of the OutgoingOrganizationalMessa-
ge.

In order to receive messages from the message server instead of the APL’s in-
ternal message system we had to change the following:

AgentState/MessageFunction: As we removed the IncommingOrganizati-
onalMessage we had to refactor both insertMessage and process, from
AgentState and MessageFunction respectively, to use AortaMsgServer-
OrganizationalMessage instead.

Check: Instead of receiving messages through the ExternalAgent we use A-
ortaMsgServer to get the message queue corresponding to the Agent-
Name. Furthermore, upon receiving this message we check whether the
message declares the existence of a new agent or not, and if it does we add
aortaAgent(Name) to the organizational mental state of the agent.
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An illustration of the entire system can be seen in figure 3.6.

3.5 Implementation discoveries

While implementing the system we have come across some noteworthy discov-
eries which we want to highlight in this section:

Building location: The building locations that are received from BWAPI are
not consistent with the way Jason and GOAL handles build actions, i.e.,
BWAPI returns the center of the building but the APLs use the lower left
corner of the building. This was primarily a problem when trying to build
a Terran Refinery since it needs to be exactly on the Vespene Geyser.
The way we found this error was by moving around a Marine while out-
putting its position as well as the building location returned by BWAPI.
In the end we found that we needed to add (−2,−1) to the position re-
turned from BWAPI for a Terran Refinery, this vector is not the same
for all buildings since it is dependent on the building size. We only fixed
this on the Refinery since it is not a problem on the other buildings as
the position is calculated using a Terran Command Center (the largest
building) meaning that it will always be possible to build every building
smaller than a Terran Command Center even though this error is there.

Building/walk tiles inconsistency: The percepts in the BWAPI bridge are
not very consistent in using walk/building tiles. We have changed some
percepts to accommodate this by either sending both positions or adding
an extra percept that returns the other position.

Java internal actions: When working with Jason it is possible to use internal
actions in Java. Since this is not a possibility in GOAL we added a percept
to BWAPI that returns possible construction sites (constructionSite(BX,
BY)). The generation of this percept is quite heavy since we need to ask
the API if it is possible to build on a location for all visible BuildTiles.
After working with our addition to BWAPI, namely BWAPI-remote, it is
also not possible to use internal actions in Jason since it is not connected
to the server directly but has the client in between which means there is no
direct contact with BWAPI. This could be solved by some extra handling
on BWAPI-remote, but we chose not to do this since we already had a
functioning solution for our problem by using constructionSite(BX,BY).

EIS changes: The EIS changes, discussed in section 3.3.2, were found while
implementing BWAPI-remote as some of the functions needed to be re-
motely accessible.
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Figure 3.6: Illustration of the entire system. For our system both APLs are
Jason.
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GOAL: It turned out to be more difficult than anticipated to make a GOAL
program, as the two IDEs from the homepage offered different possibilities
(see [13]). Their own IDE did not allow for modules, which was quite
confusing as the examples we found did not compile. It did however include
a knowledge inspector much like the one from Jason. The Eclipse plugin
did allow for modules, but had next to no implementation hints, which
made debugging difficult.

GOAL documentation: The GOAL documentation needed in order to com-
pile: GOAL itself, the plugin for eclipse, and in general the wiki on the
GOAL homepage [13]; were not up to date and were missing vital parts,
meaning that it was not possible to build without further assistance over
email and phone. For the results of this assistance along with discoveries
in the GOAL implementation: see appendix A.3.



Chapter 4

Tests and Discussions

In this chapter we will describe the tests we have done and discuss the findings we
have made. We will start with the general debugging techniques we have used,
then the alpha testing of AORTA, and then the functionality of the organization
we have implemented. How to run the agents we have implemented can be seen
in appendix A.1 and A.2. All time comparisons are not based on an accurate
average, but on an observed tendency and the screen shot from a typical run
through for each system, and are there simply to show the increasing time usage.

4.1 Basic agent tests

In this section we will describe the basic tests we have been doing for our agents
throughout the project. Due to a couple of reasons; i.e., none of us have been
working much with APLs before and we are alpha testers on AORTA, we have
been implementing the agents in a test driven fashion. Meaning that we have
been implementing small parts of the system at a time to see how it works.
We have been doing so by inspection of the agents mental state through the
AORTA inspector interface, in which we could easily see if the agents got the
right beliefs and/or if they enacted and committed to the right roles and goals,
see figure 4.1.
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Furthermore we have been using the oldschool debugging method of printing
information to the Jason/GOAL console to see what the agents think belief.
This proved to be quite effective as the agents did not always believe what we
thought they did, see figure 4.2 for a screenshot of this from Jasons console.

4.1.1 Testing of GOAL and Jason

The two APLs we have been working with in this project needed to be tested
to see how they work for our environment.

Even though GOAL and Jason both use the same programming paradigm, i.e.,
AOP, we have found some very distinct differences between the two of them.

• When a lot of agents were created Jason started to crash randomly around
30 agents. GOAL seemed to never crash; instead it just got extremely slow
making the agents react very late and in small groups at a time.

• In an attempt to reduce duplication of code we tried to group up knowledge
and plans about specific goals in modules. Besides getting slower GOAL
started giving a lot of warnings because it thought the agent did not have
the right knowledge even though it did when running the code. In Jason
we found that modules in general seemed to work better but the IDE did
not show the modules so you had to open then from outside the IDE.

• In Jason beliefs are automatically updated according to the incoming per-
cepts, whereas GOAL adds them to the beliefs with an extra predicate
percept(). This is simply a difference in design and both languages can
do the exact same thing with some manual handling.

• Communication in GOAL seemed to be very slow as described in sec-
tion 3.2.3, but worst after we reached around 45 agents, which makes it
difficult to compare with Jason.

4.2 AORTA test

As a part of this project we have been alpha testing the organizational addition
to agents, AORTA. In this section we will discuss how we did this, how the flow
was and discuss some of the larger issues we found when using AORTA.
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Figure 4.1: The inspector used to inspect the organizational layer of the
agents. For each agent the complete internal state can be retrieved
as a string through the button in the bottom of each chosen agent.
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Figure 4.2: The MAS Console from Jason which we used to debug agents
printing their beliefs directly. Here we can also see an example
of an SCV trying to gather minerals from a mineral field that is
not there anymore, resulting in an exception. This is an exam-
ple of why percepts are beliefs and not knowledge as described in
section 3.2.1

.
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In the start we only had some general descriptions of AORTA in the form of
articles discussing the idea, and some examples in which we could see some of
the syntax, which meant that when we started using AORTA we were pretty
much using trial and error to figure out how to use it. Some of the examples
were for older versions of AORTA where no meta model was present.

Later on in the project we got a description of the language and it helped a lot.
Not everything was consistent with the descriptions though, but that is part of
alpha testing and we simply sent a ’bug report’ and most of the errors got either
fixed or explained right away. One example on this is that a role needs to have
at least one objective assigned, which is not what is explained in the description.

We have listed the larger issues in this section according to their overall type.

4.2.1 Parse issues

In this sub-section we have listed parse related issues about AORTA:

Strings from AORTA to Jason: We found that when using objectives like,
e.g., train("Terran Marine", X) in AORTA, some parse errors appeared
such that they were not in accordance with the matching plan in the Ja-
son Specification. Until this issue was fixed, we implemented a temporary
solution by wrapping objectives such that the beforementioned objective
became: trainTerranMarineX which we were able to match in Jason.

Capabilities with identical functors: We found that AORTA did not dis-
tinguish between two plans with the same functor, but different argu-
ments, as different capabilities, e.g., spot("Vespene Geyser") and spot(
"Enemy"). As a temporary solution we made the plan spot(X) and spec-
ified the value of X inside the plan on the Jason agent.

Integer/float issue on Sub-objectives: When implementing plan trees us-
ing sub-objectives, we found that an objective where an integer or float was
present resulted in parsing errors, since they were not parsed consistently
throughout the mental state. An example could be the objective train(
"Terran Marine", 1), when parsed as a sub-objective of trainArmy we
got:

org(obj(trainArmy, [train("Terran Marine", 1.0)])),

which caused the tuProlog solver not to be able to match the two.
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4.2.2 Understanding

In this sub-section we have listed issues related to our understanding of AORTA:

Objectives: When we started we thought the objectives were supposed to be
global objectives meaning that AORTA would make sure only one agent
were committed in achieving a goal, or at least make agents stop following
an objective if another agent already achieved it. We assumed the orga-
nizational beliefs were global knowledge between the agents, this was not
the case, and the agents themselves had to handle who actually were to
complete the objective.

Objectives/Sub-objectives misunderstanding. We thought that AORTA
would handle a lot of dependencies and obligations automatically; e.g.,
if an objective was defined with sub-objectives the role would automati-
cally be dependent on the role capable of the sub-objective. This is not
the case, but AORTA does generate some organizational beliefs making
it possible to handle this in the .aorta file. E.g., org(obj(Objective,
[SubObjectives])) and org(dep(Role1, Role2, Objective)), describ-
ing the sub-objective of an objective as well as the dependencies of a role.

4.2.3 Functionality issues

In this sub-section we have listed functionality issues related to AORTA, which,
as earlier mentioned, is in alpha state:

Problem with Rules in Metamodel: While implementing our organization
in AORTA we have had some problems with the rules in the meta model
since it seems that not all of tuProlog works.

AORTA agents not generated for new Entities: When we started using
AORTA, new agents were not generated for new entities in EIS. This was
fixed after a bug-report.

Slow: When using AORTA with a lot of agents in a big environment like this
we found that there were some bottlenecks making the system very slow.
A voluntary sleep and disabling of the AORTA-inspector was added to
address this problem. The sleep does make the agents react slower to
changes in the environment, but for our purposes it is not such a big
problem.
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Options generated for other agents: Since we were using the inspector for
debugging we were quite confused at some points seeing that some of the
agents had options that we had not assigned them. This was an error in
AORTA and was partly fixed after a bug-report; the agents still receive
options to deact roles that they have not enacted. This resulted in agents
getting stuck deacting the same role over and over instead of committing
to new objectives, we fixed this in the .aorta file by only deacting if we
actually have the role.

Inconsistency in context of rules in the .aorta file: org(obj(...)) and
org(role(...)) could not be applied in the context of .aorta file as
described in the syntax. This was settled after a bug-report.

Objectives without arguments: In the start objectives without arguments,
like scouting, did not work. We had to add a random argument as a
temporary solution like scouting(X) until the bug was fixed.

4.2.4 Prolog issues

Lastly we have listed prolog issues related to AORTA:

Rules in metamodel: checkSubObjectives([]). does not work even though
it is valid prolog [10], instead we used:

checkSubObjectives(List) :- List = [].

In the end we did not use this either since a rule like:

checkSubObjectives(List) :- List = [Head|Tail].

did not work neither.

4.3 AORTA functional tests

In this section we will have a description of all the functional tests we have made
for our AORTA agents.

Since the organization has such a large communication and calculation overhead,
the decision making is so inefficient that we cannot compete with the standard
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AI in SC:BW on normal maps. To address this we have made two custom maps
that can be seen in figure 4.3 and 4.4.

The reason we have two almost identical maps is that the scouting is completely
random meaning we might not always defend our base in the map in figure 4.4
since we do not find the Medic near the base before the enemy’s base is destroyed.
On the other map in figure 4.3 everything is visible, making it easy to see that
the Marine spots the enemy base early on while it is defending against the medic
near the base. We can also see that it does not charge the enemy base before
the commander announces that the army is ready.

We have created one large test that covers the whole organization, and the
complete replay of the game can be seen on the URL in appendix B.1. We have
taken some screenshots of the replay to illustrate what happened. It has been
split up into the following parts:

Commander and gatherers start up: figure 4.5.

Builders construction of the base: figure 4.6.

Scouts scouting of the map: figure 4.7.

ArmyTrainers training of units: figure 4.8.

Attackers defend and charge against the enemy: figure 4.9.

A time comparison between the MAS using Jason and AORTA and ACMAS
we made in GOAL can be seen in figure 4.8c for the AORTA version and ap-
pendix B.5 for the GOAL version. Here we can see that the AORTA version
uses 9.10min where GOAL only used 4.40min. This is a significant performance
difference as they have the same criteria for when to pursue a goal, but Jason
with an explicit organization and GOAL with an implicit.

4.4 Remote test

We now want to test the remote parts of the system. We have chosen to do so
in two steps.

1. GOAL and Jason on each client

2. AORTA Jason on two different channels.
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Figure 4.3: This is a custom map where we can see the enemy’s units right
from the beginning due to pre placed bunkers. The point of this is
that we can see by inspecting the Marine that he does not charge
the enemy base or the Medic in the middle of the map before the
commander has done the trainArmy objective. The medic in the
top right corner will be killed as it is inside a specific radius of the
base.
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Figure 4.4: This is the same map as the one in figure 4.3 without the bunkers
that shows the enemy units. The point here being is that the
agents have to scout the map while constructing the base.
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(a) We start with a Command Center and
three SCVs. The Command Center
needs to train 5 SCVs to fullfill one
of the sub-goals of his goal trainArmy.

(b) Another SCV is being trained in the
Command Center which can be seen
in the bottom of the screenshot since
it has been selected.

(c) The SCV has been fully trained and
emerges from the building. Some of
the SCVs decides to gather minerals.

(d) The last of the 5 SCVs needed for the
commander to train an army, has been
trained.

Figure 4.5: Illustration of the completion of the first sub-objectives of the ob-
jective trainArmy on the role commander. In these figures, we can
also see that the SCVs have chosen to gather minerals since they
have nothing else to do.
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(a) The Supply Depot is being built since
it is the first building we have re-
sources for and the SCVs are obligated
to build it from the start.

(b) The Barracks is being built since the
commander has sent this option to the
builders through their dependencies
on the objective trainArmy.

(c) The Academy is being built as it is a
sub-objective of the objective of train-
ing Firebats and Medics. Since it has
no sub-objectives, it is often built be-
fore the Refinery.

(d) The Refinery is being built as it is a
sub-objective of the objective of train-
ing Firebats and Medics, and the sub-
objective of finding a Vespene Geyser
has been achieved by the scout.

(e) This shows the final base constructed in our example.

Figure 4.6: This illustration shows how and in which order the base is being
constructed due to the structure of the organization we have made.
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(a) The Marine spots an enemy Medic far
from the base.

(b) The Marine continues its scouting
routine and spots an enemy Medic
close to the base.

(c) The Marine spots the enemy base which is the last sub-objective
of the charge objective which means that the attackers can now
charge the enemy base.

Figure 4.7: This illustration shows how the Marine scouts the map. Note that
the scout function is quite random and we were just lucky to get
this good results. In a MAS designed to be good at SC:BW, this
is one of the things that should obviously be changed. We refer to
figure 4.9 to show how the agents react to this information.
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(a) The first sub-objective is to train a Ma-
rine, which at the same times gives us
a possibility to scout as seen in fig-
ure 4.7.

(b) The Firebat is the second unit to be
trained and is here seen on the choke
point.

(c) The last unit to be trained is
the Medic which means that the
commander has achieved the goal
trainArmy. This gives the attackers
the possibility to charge the opponent
base (if it has been spotted of course).

(d) This figure is actually not about the
sub-objectives of the trainArmy goal,
but serves more as an illustration to
show that the Medic is paired up with
a Firebat and follows it to keep him
safe.

Figure 4.8: This illustration shows the Barracks achieve the three sub-
objectives of training Marines, Medics and Firebats of the
commanders goal trainArmy.
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(a) Just after the Marine discovers the en-
emy Medic far from our base it starts
attacking it. This is not part of our
organization but merely a part of the
game since it was too close.

(b) Just after the Marine discovers the en-
emyMedic near our base both the Ma-
rine and Firebat attacks it to defend
the base.

(c) The Firebat charges the enemy base.
Note that the Medic is defending the
Firebat.

(d) The Marine join in on the action to
charge the enemy base.

(e) And we end up destroying the enemy
base.

Figure 4.9: This illustration shows how the agents react to what the scout
discovers. Also see section 3.2.2 for a more detailed description of
this.
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When we have different systems connected through the RMI BWAPI Bridge, we
need to handle which agents are controlled by which of the connected clients.
The way we split it between the clients is by agent type; i.e., all SCVs are
controlled by the same client and so on.

As the behaviour is basically the same as from the functional test, only findings
will be discussed in this section.

4.4.1 GOAL-Jason RMI

This test was to see how two different ACMASs would work together, we chose
to let Jason handle the buildings and GOAL handle the rest. This test went
according to the plan, but worth noticing was that as Jason had very few agents
to handle: it kept going way beyond its normal limit of 30 ingame agents in
total, since all the infantry were handled by GOAL. This might indicate that
Jason has some memory issues when handling many agents.

4.4.2 AORTA Message Server

The purpose of this test was to see if the organization would work across more
than one instance of AORTA using our extended AortaMsgServer. We did
this by using two versions of the MAS with the organization, where we let one
version take the buildings and the other take the rest of the units.

We found that all the communication came through, and the agents did manage
to complete their goals and charge the enemy; however, it turned out to be very
slow. For a time comparison see figure 4.8c and appendix B.1 where it can be
seen that when all non-random tasks are done the local RMI version takes
10.47min and the single system took 9.10min. This is slower for the remote
version, and in a RTS this is critical.

The time for when the enemy base is destroyed in the two examples are however
15.03min for the local RMI and 22.51min for the single system, see appendix B.2
and figure 4.9e. This last part is however based on the random scouting of the
scout and is not a valid part of the test.

Additionally we tested it using an actual distributed system, having one com-
puter hosting the server and a client, and another hosting the other client. For
this we temporarily had to hard code the IP of the server on the client. The
results for the non-random tasks were 11.28min and for the enemy base to be
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destroyed were 15.29min, see appendix B.3 and appendix B.4. As expected this
was slightly slower than the local RMI solution, it did however show that the
client and server are completely separated.

As this RMI version of AORTA is very new and have a lot of unoptimized parts
it does have some errors and bugs. With some optimization we believe the
performance could be boosted a bit, though it will always be slower than the
single system version due to the RMI overhead.

This test has shown that the AortaMsgServer works with two different instances
of AORTA, thus it stands to reason that, if a GOAL-AORTA Bridge was imple-
mented, making GOAL and Jason work together through AORTA, should be
possible.
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Chapter 5

Conclusion

In this project our main goal has been to show how to organize agents using
AORTA as the organizational layer. To do this we have been implementing
agents in two APLs, i.e., GOAL and Jason. Besides this we aimed to make it
possible to organize agents across multiple languages. To do this there were a
lot of different systems that needed to be extended.

Here we will discuss our findings throughout the project.

5.1 BWAPI Bridge: SC:BW as environment

BWAPI Bridge distributes percepts to the agents quite well and is easy to
extend with new functionalities. Unfortunately the percepts were not always
as consistent in the way they were used; e.g., Walk Tiles and Build Tiles were
used as X and Y in different percepts resulting in weird errors. With some
refactoring of some percepts it did however work quite well.

For implementing an efficient AI for StarCraft: Brood War, this system is not
optimal as the actions need to go through several different systems in order
to reach the game, and so do the percepts in order to get back. This causes
the percept get to the agents late, which then in turn means that it is very
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difficult to compete with the built in AI of the game. That said it is useful for
visualization purposes of MASs.

5.2 AORTA as organizational layer

Seeing as AORTA is only in alpha state we were impressed with how well the
separation of code helped organize the agents. This was especially when compar-
ing the logic needed to implement dependencies: in GOAL with communication,
and our Jason agents using the explicit organization through AORTA.

When this has been said, we do believe that there are still a lot of things that
could be optimized in future development, when using it as we have. One
thing being common organizational knowledge since this could potentially au-
tomatically infer dependencies from the definitions of Roles, Objectives and
Capabilities of an agent.

The organization would have been a lot easier to test if we had not chosen a real
time simulating environment such as SC:BW but instead had used a discrete
environment with no time limit on computations. As it is now both AORTA
and the other systems,we have been using, are all still not quite finished or
optimized, meaning that their are to computationally heavy to run in a real
time environment.

5.3 GOAL-AORTA Bridge

In order to make it possible to use AORTA with other languages than Jason: a
bridge to the given language is needed. In our case our goal was to implement
AORTA for GOAL since it is very similar to Jason as both are based on the
BDI model, implements EIS and are implemented in Java. Unfortunately we
never got to implement this due to problems compiling the GOAL-core and
GOAL-plugin for eclipse.

We did however manage to implement agents in GOAL that are ready for
AORTA with minimal changes to the code.
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5.4 RMI BWAPI Bridge

In order to connect multiple instances of APLs to BWAPI Bridge we successfully
implemented an RMI version of the BWAPI Bridge making it possible to connect
multiple MASs to the same environment.

When implementing the system we found that both BWAPI Bridge and Jason
were heavily dependent on EIS, meaning that we had to meet the interface on
both sides of the RMI. This did however prove to be fairly simple to implement
after we made some minor changes to EIS.

We chose to implement this as a server that needs to be started separately
instead of making the agents start it automatically in order to avoid having to
change the version of EIS used in the languages of all systems connecting to it.

5.5 AORTA Communication Extension

In order to make the two connected systems work together in the case of de-
pendencies and organizational communication, AORTA needs to communicate
through a server instead of the APLs’ internal messaging capabilities.

We did this after analyzing the AORTA implementation and implementing the
modifications to the existing communication methods. We managed to get it
working, for the parts of AORTA that we have been using. Despite the fact
that we only used a single language for our multi system test, and the time
performance was less than optimal, we have shown the possibility of organizing
MASs across multiple systems using AORTA.

5.6 GOAL and Jason agents

We successfully implemented Jason agents that are working with AORTA, we
also implemented GOAL agents that work with the same strategies as the Jason
agents. Unfortunately we were not able to test the GOAL Agents since we did
not manage to implement the GOAL-AORTA Bridge, but the agents should be
ready for testing with minimal changes to the implementation though.

Through our work with the two languages, we found that they vary a little but
seeing as most of the differences are design choices, deciding which is best is a
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matter of personal preferences. A system where multiple languages can work in
the same organization, seems to be useful since more people can work together
in their favorite languages.

5.7 Final Remarks

The whole idea about splitting the system in multiple MASs working together
through the same organization, opens up for a lot of interesting possibilities.
However, performance wise it is not preferable since we add yet another layer,
adding even more delay to the already inefficient system. By using a less time
dependent environment, e.g., a discrete environment, this system would make
it possible to organize several heterogeneous agents across multiple languages,
hereby adding a clean distinction between groups in a MAS while separating
the organization completely from the agents’ reasoning. When implementing
large MASs this could open up for interesting possibilities, as the agents will no
longer be limited to a single language.

We believe that the complete system works well as a visualization tool for MASs
in research areas, but if the goal is to implement a good AI to play a game of
SC:BW there are much better choices out there since all the interfaces and
connections simply make the system too slow to make efficient decisions. With
more time, optimization could be achieved through all layers possibly making the
system fast enough to use for more than visualization purposes in a continuous
environment like this; until then a less time dependent environment would be
preferable.
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A.1 Jason AORTA

You need to install Jason from the homepage and the AORTA from the .zip file
described in appendix C.1.

We have two ways of running the system, with one system and with several.

A.1.1 Single system

When running Jason - AORTA normally, things you need to be aware of is:

• In the .mas2j file make sure that:

– All the agents are present.
– The msgServer flag is not set.
– That the path for the environment is "../../../EISBW/dist/EISBW-

with-deps.jar"

• In the .aorta file make sure that agent(X) is used instead of aortaAgent(X)

when running it simply:

• run the .mas2j file in Jason.

• start BWAPI chaos launcher.

A.1.2 Local multiple clients system

When running multiple systems you need to be aware of that:

• In the .mas2j files make sure that:

– All the agent types are present, but only in one of the systems.
– The msgServer flag is set.
– That the path for the environment is "../../../EISBW-remote/dist/EISBW-

remote.jar"
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• In the .aorta file make sure that aortaAgent(X) is used instead of agent(X).

when running the systems you need to:

• run the server.java in the EISBW-remote project.

• start all the .mas2j files in Jason.

• start BWAPI chaos launcher.

Note: Jason IDE synchronizes so you need to start two instances open one
project in one, run it and start the other in the other and the run it there.

A.2 GOAL

To run GOAL do like with Jason-AORTA (see appendix A.1), but use the .mas2g
file instead of .mas2j and ignore everything about AORTA, like the .aorta file
and the msgServer flag.

Important thing to notice is that we use EIS 0.3, and the newest GOAL uses 0.4
which is not compatible, but an older GOAL is. For single system run, BWAPI
Bridge can be modified to accept the new GOAL, in the BWAPI Bridge file
under required version, but the EISBW-remote is not compatible.

A.3 GOAL-AORTA Bridge

In order to develop GOAL-AORTA Bridge first step is to compile GOAL, which
is more complex than the wiki implies. You should follow their wiki with small
changes:

1. Make sure that the eclipse you use is 64-bit and the one for plugins.

2. Make sure that you import the 6 project mentioned in the wiki, where the
last one to import is the parent folder of the others. Eclipse wont allow it
the other way around.

When everything is imported, the way you compile to the eclipse plugin is:
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1. In the GOAL project:

• note the vesion of EIS you used, needs to be 0,4.
• right click on build.xml->run as->build ant.

2. GOALplugin

• Copy the goal.jar just created to the folder GOALplugin is pointing
to in its buildpath, redirecting the build path does not work.
• place client-bridge-amd64.dll in the \GOALeclipse\lib\.
• right click on project->run as-> Eclipse application.

3. NewPlugin

• Import the GOAL agents that you want to run.
• Right click on the mas2g file->run as-> GOAL; Note: run in the top
does not work.

When this is done, we need to make GOAL compatible with AORTA. In order
to do that it is necessary that an AORTA-GOAL Bridge is implemented. What
we hereby need to accomplish is to:

• Understand the reasoning cycle of GOAL

• Find the agent generation

• Find the mental state of the agent

As far as we can see all agents in GOAL are created using the same ab-
stract class: AbstractAgentFactory, which should be possible to extend, and
all agents extend Agent, which should make it possible to extend in a simi-
lar way to the Jason-AORTA Bridge. Then by keeping the communication in
AortaMsgServer, this should be possible.

The mental state is probably located in the package named:

”GOAL.src.main.java.goal.core.mentalstate”

However, since the implementation is very large, it is extremely time consuming
without a documentation to find the reasoning cycle and specifications of the
mental state, which is why we did not have time to implement the bridge.
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B.1 Functional test Replay

The replay of our full functional tests of our agents can be seen in the .zip found
in appendix C.1.

B.2 Remote AORTA test with Jason agents

Figure B.1: Screenshot of the Remote AORTA system training the last unit.
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Figure B.2: Screenshot of the Remote AORTA system destroying the enemy
base.

B.2.1 Distributed

The test where the system is run on two different computers.
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Figure B.3: Screenshot of the distributed AORTA system training the last
unit.
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Figure B.4: Screenshot of the distributed AORTA system destroying the en-
emy base.
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B.3 Final GOAL agents

Figure B.5: Screenshot of the final GOAL system training the last unit.
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Figure B.6: Screenshot of the final GOAL system destroying the enemy base.
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C.1 System

For source code on the RMI BWAPI Bridge (which is called EISBW-remote),
AortaMsgServer and in general the complete system, we refer to the .zip found
on:

https://www.dropbox.com/s/j1s3o86cn19a1gr/result.zip?dl=0

An explanation of the files in the .zip can be seen below:

aorta: This is the source code for AORTA. The original can be found on its
GitHub page at: https://github.com/andreasschmidtjensen/aorta.
The main part of this folder in which we have made changes are:

.\result.zip\result\aorta\framework\src\java\aorta\remote\

We did however refactor small parts in the rest of the framework as de-
scribed in section 3.4.

Custom maps: This is where the two custom maps discussed in section 4.3 is
located.

Replays: This is where the replays of our functional tests discussed in section
4.3 and 4.4 are located. The replays can be seen by opening them in
SC:BW.

• FunctionalTestAORTA.rep is the replay of our single Jason system
using AORTA.

• FunctionalTestAORTARMI.rep is the replay of our Jason agents split
into two MAS using AORTA on a single computer.

• FuntionalTestAORTADistributed.rep is the replay of our Jason agents
split into two MAS using AORTA across multiple platforms.

• FuntionalTestGOAL.rep is the replay of our final ACMAS GOAL
agents.

scbw-mas: This is the source code for the BWAPI Bridge which is located in
the EISBW folder. The original as well as our final agents can also be found
at its GitHub page at: https://github.com/andreasschmidtjensen/
scbw-mas/

• EISBW-remote is where the source code for RMI Bwapi Bridge is
located.

https://www.dropbox.com/s/j1s3o86cn19a1gr/result.zip?dl=0
https://github.com/andreasschmidtjensen/aorta
https://github.com/andreasschmidtjensen/scbw-mas/
https://github.com/andreasschmidtjensen/scbw-mas/
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• eis-for-remote is where the source code for our modified eis is located.
• examples\GOAL\HeterogeneousAgents\ is where our final GOAL
agents are located.
• examples\GOAL\StarcraftAgents_communication\ is where our
GOAL agents using implicit organization in the form of communica-
tion protocols are located.
• examples\Jason\SimpleAgentsAorta\ is where our final Jason agents
using AORTA is located.
• examples\Jason\SimpleAgentsAortaRmi1\ is where our final Ja-
son agents using AORTA for the infantry part of the system is lo-
cated.
• examples\Jason\SimpleAgentsAortaRmi2\ is where our final Ja-
son agents using AORTA for the buildings part of the system is lo-
cated.

C.2 Agents

We have included the source code of all our final agents. For source code on
other versions of our agents we refer to the .zip with the complete system found
in appendix C.1.

C.2.1 Jason: Aorta organization

1 %Enact roles if we have capability for at least one objective and
we have not ignored the role.

2 role(R) : org(role(R, Os)), bel(member(X,Os)), cap(X), ~bel(ignored
(R)) => enact(R).

3
4 if bel(me(Me)), org(rea(Me,OwnRole)){
5 % tell others about enacting roles
6 send(_,tell ,org(rea(Me,OwnRole))) : bel(agent(A), A \= Me), ~bel(

sent(A, org(rea(Me,OwnRole)))) => send(A, org(rea(Me,OwnRole)
)).

7
8 % tell others about dependency roles
9 send(Role ,tell ,bel(X)) : bel(agent(A), A \= Me), org(rea(A,Role))

, ~bel(sent(A, bel(X))) => send(A, bel(X)).
10 %send(Role ,achieve ,bel(X)) : bel(agent(A), A \= Me), org(rea(A,

Role)), ~bel(sent(A, opt(obj(X)))) => send(A, opt(obj(X))).
11 %send SubObjective to dependee.
12 obj(O) : ~goal(O), cap(O), ~bel(ignored(O)), org(obj(O,SOL)), bel

(member(SO,SOL)),~bel(SO),
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13 org(dep(OwnRole ,Role ,bel(SO))), org(rea(A,Role)), bel(agent(A
)),

14 ~bel(sent(A, opt(obj(SO)))) => send(A, opt(obj(SO))).
15
16 % commit to goals where all subobjectives are done if we have

capability to do so.
17 obj(O) : ~goal(O), cap(O), ~bel(ignored(O)), org(obj(O,SOL)), bel

(findall(SO, (member(SO, SOL), \+ bel(SO)) ,[]))=>commit(O).
18
19 ~role(R) : org(rea(Me,R)) => deact(R).
20 }

Listing C.1: src/Jason/groundUnit.aorta

1 ROLES:
2 gatherer: gather.
3 builder: build(X).
4 scout: scouting.
5 armyTrainer: train(Unit , Amount).
6 attacker: charge; defend.
7 commander: trainArmy.
8 healer: heal.
9

10 OBJECTIVES:
11 scouting.
12 spot("Vespene␣Geyser").
13 spot("Enemy␣Base").
14 gather.
15 trainArmy:
16 build("Terran␣Barracks");
17 train("Terran␣SCV", 5);
18 train("Terran␣Marine" ,1);
19 train("Terran␣Firebat" ,1);
20 train("Terran␣Medic" ,1).
21 train("Terran␣SCV", 5).
22 train("Terran␣Marine" ,1).
23 train("Terran␣Firebat" ,1):
24 build("Terran␣Academy");
25 build("Terran␣Refinery").
26 train("Terran␣Medic" ,1):
27 build("Terran␣Academy");
28 build("Terran␣Refinery").
29 build("Terran␣Refinery"):
30 spot("Vespene␣Geyser").
31 build("Terran␣Barracks").
32 build("Terran␣Supply␣Depot").
33 build("Terran␣Academy").
34 charge:
35 trainArmy;
36 spot("Enemy␣Base").
37 defend.
38 heal.
39
40 DEPENDENCIES:
41 attacker > commander: trainArmy.
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42 attacker > scout: spot("Enemy␣Base").
43 builder > scout: spot("Vespene␣Geyser").
44 armyTrainer > builder: build("Terran␣Refinery").
45 armyTrainer > builder: build("Terran␣Academy").
46 commander > builder: build("Terran␣Barracks").
47 commander > armyTrainer: train("Terran␣Firebat" ,1).
48 commander > armyTrainer: train("Terran␣Medic" ,1).
49 commander > armyTrainer: train("Terran␣Marine" ,1).
50 commander > armyTrainer: train("Terran␣SCV" ,5).
51
52 OBLIGATIONS:
53 gatherer: gather < false | true.
54 builder: build("Terran␣Supply␣Depot") < false | true.
55 scout: scouting < false | true.
56 commander: trainArmy < false | true.
57 attacker: defend < false | \+ trainArmy , \+ spot("Enemy␣Base").
58 attacker: charge < false | true.
59 healer: heal < false | true.

Listing C.2: src/Jason/scbw.mm

C.2.2 Jason: Agents for AORTA organization

1 MAS res {
2 infrastructure: AORTA(organization("scbw.mm"),sleep (200) ,

inspector)
3 environment: jason.eis.EISAdapter("../../../ EISBW/dist/EISBW -with

-deps.jar")
4 agents:
5 terranSCV[aorta="groundUnit.aorta"];
6 terranCommandCenter[aorta="groundUnit.aorta"];
7 terranBarracks[aorta="groundUnit.aorta"];
8 terranMarine[aorta="groundUnit.aorta"];
9 terranFirebat[aorta="groundUnit.aorta"];

10 terranMedic[aorta="groundUnit.aorta"];
11
12 classpath: "../../../ libs/eis -0.3. jar";"../../../ libs/jason -eis.

jar";"../../../ libs/jnibwapi.jar";"../../../ EISBW/dist/EISBW -
with -deps.jar";

13 }

Listing C.3: src/Jason/broodwar.mas2j

1 isBuilding("Terran␣Command␣Center").
2 isBuilding("Terran␣Barracks").
3 isBuilding("Terran␣Supply␣Depot").
4 isBuilding("Terran␣Academy").
5 isBuilding("Terran␣Engineering␣Bay").
6 isBuilding("Terran␣Refinery").
7 isBuilding("Terran␣Machine␣Shop").
8 isBuilding("Terran␣Bunker").
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9 isBuilding("Terran␣Armory").
10 isBuilding("Terran␣Nuclear␣Silo").
11 isBuilding("Terran␣Missile␣Turret").
12 isBuilding("Terran␣Comsat␣Station").
13 isBuilding("Terran␣Factory").
14
15 distance(MyX ,MyY ,X,Y,D)
16 :- D = math.sqrt((MyX -X)**2 + (MyY -Y)**2).

Listing C.4: src/Jason/generalKnowledge.asl

1 +gameStart <- !move.
2
3 closest("Enemy", ClosestId)
4 :- position(MyX ,MyY) &
5 .findall ([Dist ,Id],(enemy(_,Id,WX,WY ,_,_)&distance(MyX ,MyY ,WX ,

WY,Dist)),L) &
6 .min(L,[ ClosestDist ,ClosestId ]).
7
8 closestToBase("Enemy", ClosestId , ClosestDist)
9 :- friendly(_, "Terran␣Command␣Center", Id, X, Y, _, _) &

10 .findall ([Dist ,EId],(enemy(_,EId ,WX,WY,_,_)&distance(WX,WY,X,Y,
Dist)),L) &

11 .min(L,[ ClosestDist ,ClosestId ]).
12
13
14 +! charge
15 : closest("Enemy", ClosestId)
16 <- attack(ClosestId); .wait (200); !! charge.
17 +! charge
18 : lastSpottedEnemy(Id ,X,Y)
19 <- move(X,Y); .wait (2000); attack(Id).
20 -!charge
21 <- .wait (200); !! charge.
22
23 +! defend
24 : closestToBase("Enemy", ClosestId , ClosestDist) &
25 ClosestDist < 125
26 <- attack(ClosestId).
27 -!defend
28 <- .wait (200); !! defend.
29
30 +! move
31 : position(MyX ,MyY) &
32 .findall ([D,X,Y], (chokepoint(X,Y) & jia.tileDistance(MyX ,MyY ,X

,Y,D)), L) &
33 .min(L, [_,X,Y])
34 <- move(X,Y).
35
36 -!move <- .wait (200).

Listing C.5: src/Jason/groundUnit.asl

1 +! spot("Vespene␣Geyser")
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2 : vespeneGeyser(Id, _, _, BX, BY) &
3 not spottedVespeneGeyser(Id,BX,BY)
4 <- .broadcast(tell ,spottedVespeneGeyser(Id ,BX,BY));+

spottedVespeneGeyser(Id ,BX,BY);+ spot("Vespene␣Geyser").
5 +! spot("Vespene␣Geyser") <-.wait (200); !! spot("Vespene␣Geyser").
6
7 +! spot("Enemy␣Base")
8 : enemy(Type ,Id,WX,WY ,_,_) &
9 isBuilding(Type) &

10 not lastSpottedEnemy(Id ,WX,WY)
11 <- .broadcast(tell ,lastSpottedEnemy(Id,WX,WY)); +

lastSpottedEnemy(Id,WX ,WY);+ spot("Enemy␣Base").
12 +! spot("Enemy␣Base") <-.wait (200).
13 -!spot("Enemy␣Base") <-.wait (200).
14
15 +! scouting
16 : spot("Enemy␣Base")
17 <- +scouting.
18 +! scouting
19 : friendly(Name , "Terran␣Command␣Center", _, ComX , ComY , _, _ ) &
20 position(MyX ,MyY) &
21 distance(MyX ,MyY ,ComX ,ComY ,D) &
22 .findall ([Name ,OtherX ,OtherY ,OtherD], (friendly(Name , "Terran␣

Marine", _, OtherX , OtherY , _, _) & distance(OtherX ,OtherY ,
ComX ,ComY ,OtherD) & OtherD > D), []) &

23 map(MapWidth ,MapHeight)&
24 .random(Rand1)& X = Rand1 * MapWidth * 4 &
25 .random(Rand2)& Y = Rand2 * MapHeight * 4
26 <- move(X,Y); .wait (2500).
27
28 +! scouting <-.wait (200).
29 -!scouting <-.wait (200).

Listing C.6: src/Jason/scouting.asl

1 { include("generalKnowledge.asl") }
2 { include("trainer.asl") }
3 ignored(commander).
4
5 cost("Terran␣Marine", 50, 0, 2).
6 cost("Terran␣Firebat", 50, 25, 2).
7 cost("Terran␣Medic", 50, 25, 2).

Listing C.7: src/Jason/terranBarracks.asl

1 { include("generalKnowledge.asl") }
2 { include("trainer.asl") }
3
4 cost("Terran␣SCV", 50, 0, 2).
5
6 +! trainArmy
7 <- +trainArmy.

Listing C.8: src/Jason/terranCommandCenter.asl
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1 { include("generalKnowledge.asl") }
2 { include("groundUnit.asl") }

Listing C.9: src/Jason/terranFirebat.asl

1 { include("generalKnowledge.asl") }
2 { include("groundUnit.asl") }
3 { include("scouting.asl") }
4 ignored(builder).

Listing C.10: src/Jason/terranMarine.asl

1 { include("generalKnowledge.asl") }
2 +! matchUp
3 : Type = "Terran␣Firebat" &
4 friendly(_, Type , Id, _, _, _, _)
5 <- +match(Id); .print("Matched␣with:␣", Id).
6
7 +! matchUp
8 <- .wait (1000); !matchUp.
9

10 +! heal
11 : match(Id) &
12 friendly(_, _, Id , WX, WY, _, _) &
13 position(MyX ,MyY) &
14 distance(WX,WY ,MyX ,MyY ,Distance) &
15 Distance > 16
16 <- move(WX ,WY).
17 +! heal
18 : match(Id) &
19 not friendly(_, _, Id , _, _, _, _)
20 <- -match(Id); !matchUp.
21 +! heal
22 : not match(Id)
23 <- !matchUp.
24 -!heal
25 <- .wait (200); !! heal.

Listing C.11: src/Jason/terranMedic.asl

1 { include("generalKnowledge.asl") }
2
3 cost("Terran␣Supply␣Depot", 100, 0).
4 cost("Terran␣Barracks", 700, 0).
5 cost("Terran␣Academy", 150, 0).
6 cost("Terran␣Engineering␣Bay", 125, 0).
7 cost("Terran␣Bunker", 100, 0).
8 cost("Terran␣Refinery", 100, 0).
9

10 findBuildingLocation(Id ,Building ,ResX ,ResY)
11 :- friendly(_, "Terran␣Command␣Center", _, _, _, CX, CY) &
12 .findall ([Dist ,X,Y],( constructionSite(X,Y)&distance(CX,CY,X,Y,

Dist)), L) &
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13 .min(L, [_,ResX ,ResY]).
14
15 canBuild(Building , X, Y)
16 :- cost(Building , M, G) &
17 minerals(MQ) & M <= MQ &
18 gas(GQ) & G <= GQ &
19 friendly(_, "Terran␣Command␣Center", Id, _, _, _, _) &
20 findBuildingLocation(Id , Building , X, Y) &
21 buildTilePosition(MyX ,MyY) &
22 distance(MyX ,MyY ,X,Y,D) &
23 .findall ([OtherX ,OtherY ,OtherD], (friendly(Name , "Terran␣SCV",

_, _, _, OtherX , OtherY) & distance(OtherX ,OtherY ,X,Y,
OtherD) & OtherD < D), []).

24
25 closest("mineral␣Field", ClosestId)
26 :- buildTilePosition(MyX ,MyY) &
27 .findall ([Dist ,Id],( mineralField(Id,_,_,X,Y)&distance(MyX ,MyY ,X

,Y,Dist)),L) &
28 .min(L,[ ClosestDist ,ClosestId ]).
29
30 +! build(Building)
31 : unit(Building ,_)
32 <- +build(Building).
33 +! build(Building)
34 : Building = "Terran␣Refinery" &
35 spottedVespeneGeyser(Id , X, Y) &
36 buildTilePosition(MyX ,MyY) &
37 distance(MyX ,MyY ,X,Y,D) &
38 .findall ([OtherX ,OtherY ,OtherD], (friendly(Name , "Terran␣SCV",

_, _, _, OtherX , OtherY) & distance(OtherX ,OtherY ,X,Y,
OtherD) & OtherD < D), [])

39 <- !build(Building , X-2, Y-1).
40 +! build(Building)
41 : not Building="Terran␣Refinery" &
42 canBuild(Building , X, Y)
43 <- !build(Building , X, Y).
44 +! build(Building) <-.wait (200).
45 -!build(Building) <-.wait (200).
46
47 +! build(Building , X, Y)
48 : not(busy) &
49 cost(Building , M, G) &
50 minerals(MQ) & M <= MQ &
51 gas(GQ) & G <= GQ
52 <- +busy; build(Building , X, Y); .wait (2000); -busy.
53
54 +! build(Building , X, Y)
55 <- .wait (200); !build(Building , X, Y).
56
57 +! gather
58 : gathering(vespene) &
59 .findall(_, gathering(_, vespene), L) &
60 .length(L, N) &
61 .print("Stopping␣gathering", N) &
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62 N >= 3 //Off by one due to own ID not present in gathering(Id ,
vespene) but in gathering(vespene)

63 <- stop.
64 +! gather
65 : not(busy) &
66 friendly(_, "Terran␣Refinery", Id, _, _, _, _) &
67 .findall(_, gathering(_, vespene), L) &
68 .length(L, N) &
69 N < 3 &
70 .print("Vespene␣count",N)
71 <- +busy; gather(Id); .wait (2000); -busy.
72 +! gather
73 : not(busy) &
74 not(gathering(_)) &
75 id(MyId)&
76 closest("mineral␣Field",ClosestId)
77 <- +busy;gather(ClosestId); .wait (2000); -busy.
78 -!gather <- .wait (200).
79 +! gather <-.wait (200).

Listing C.12: src/Jason/terranSCV.asl

1 unitType("Terran␣Marine").
2 unitType("Terran␣SCV").
3 unitType("Terran␣Firebat").
4 unitType("Terran␣Medic").
5
6 canTrain(Unit) :-
7 queueSize(Q) & Q < 3 &
8 cost(Unit , M, G, S) &
9 minerals(MQ) & M <= MQ &

10 gas(GQ) & G <= GQ &
11 supply(C, Max) & C + S <= Max.
12
13 +gameStart <- !! maintainMentalState .
14
15 +! train(Unit ,Y)
16 : unit(Unit ,Count) &
17 Count >= Y
18 <- +train(Unit ,Y).
19 +! train(Unit ,Y)
20 : not training &
21 not unit(Unit ,_) &
22 queueSize(Q) &
23 Q < Y &
24 canTrain(Unit)&
25 .print("QueueSize:␣", Q)
26 <- +training; train(Unit); .wait (2000); -training; !! train(Unit ,

Y).
27 +! train(Unit ,Y)
28 : not training &
29 unit(Unit ,Count) &
30 queueSize(Q) &
31 Q+Count < Y &
32 canTrain(Unit)&
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33 .print("QueueSize:␣", Q, "␣Count:␣",Count)
34 <- +training; train(Unit); .wait (2000); -training; !! train(Unit ,

Y).
35
36 -!train(Unit ,Y) <- .wait (200); !! train(Unit ,Y).
37
38 +! maintainMentalState
39 : unitType(Unit) &
40 not cost(Unit ,_,_,_) &
41 not ignored(train(Unit ,_)) &
42 .print("Updating␣ignored", ignored(train(Unit ,X)))
43 <- +ignored(train(Unit ,_)); !! maintainMentalState .
44 +! maintainMentalState
45 : train(Unit ,Count) &
46 not (unit(Unit ,Count2) & Count2 >= Count) &
47 .print("removing␣train␣belief")
48 <- -train(Unit ,Count); !! maintainMentalState .
49 +! maintainMentalState
50 <- .wait (200); !! maintainMentalState .
51 -! maintainMentalState
52 <- .wait (200); !! maintainMentalState .

Listing C.13: src/Jason/trainer.asl

C.2.3 GOAL: Agents for AORTA organization

1 environment {
2 env = "../../../ EISBW/dist/EISBW -with -deps.jar".
3 }
4
5 agentfiles{
6 "TerranSCV.goal" [name = terranSCV ].
7 "TerranBarracks.goal" [name = terranBarracks ].
8 "TerranMarine.goal" [name = terranMarine ].
9 "TerranFirebat.goal" [name = terranFirebat ].

10 "TerranMedic.goal" [name = terranMedic ].
11 "TerranSupplyDepot.goal" [name = terranSupplyDepot ].
12 "TerranAcademy.goal" [name = terranAcademy ].
13 "TerranEngineeringBay.goal" [name = terranEngineeringBay ].
14 "TerranRefinery.goal" [name = terranRefinery ].
15 "TerranCommandCenter.goal" [name = terranCommandCenter ].
16 }
17
18 launchpolicy{
19 when [type = terranSCV]@env do launch terranSCV:terranSCV.
20 when [type = terranBarracks]@env do launch terranBarracks:

terranBarracks.
21 when [type = terranMarine]@env do launch terranMarine:

terranMarine.
22 when [type = terranFirebat]@env do launch terranFirebat:

terranFirebat.
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23 when [type = terranCommandCenter]@env do launch
terranCommandCenter:terranCommandCenter.

24 when [type = terranMedic]@env do launch terranMedic:terranMedic.
25 when [type = terranSupplyDepot]@env do launch terranSupplyDepot:

terranSupplyDepot.
26 when [type = terranAcademy]@env do launch terranAcademy:

terranAcademy.
27 when [type = terranEngineeringBay]@env do launch

terranEngineeringBay:terranEngineeringBay.
28 when [type = terranRefinery]@env do launch terranRefinery:

terranRefinery.
29 }

Listing C.14: src/GOAL/HeterogeneousAgents.mas2g

1 main module{
2 knowledge{
3 #import "GeneralKnowledge.pl".
4 shouldUpgrade(’U-238␣Shells ’).
5 shouldUpgrade(’Caduceus␣Reactor ’).
6 %shouldUpgrade(’StimPack ’).
7 %shouldUpgrade(’Restoration ’).
8 %shouldUpgrade(’Optic Flare ’).
9

10 }
11 beliefs {
12 }
13 goals{
14
15 }
16 program[order=linearall ]{
17 if true then handlePercepts+upgrade.
18 }
19 }
20
21 #import "UpgradeHandler.mod2g".
22 #import "Communication.mod2g".
23 #import "PerceptHandler.mod2g".
24
25 event module {
26 program[order=linearall] {
27 if true then idNameMapping+clearSent.
28 }
29 }

Listing C.15: src/GOAL/TerranAcademy.goal

1 main module{
2 knowledge{
3 #import "GeneralKnowledge.pl".
4
5 }
6 goals {
7 train(’Terran␣Marine ’ ,50).
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8 train(’Terran␣Firebat ’ ,50).
9 train(’Terran␣Medic’ ,50).

10
11 }
12 program{
13 if true then train.
14
15 }
16 }
17 #import "TrainHandler.mod2g".
18
19 #import "Communication.mod2g".
20
21 #import "PerceptHandler.mod2g".
22
23
24 event module {
25 program[order=linearall] {
26 if true then idNameMapping+handlePercepts+clearSent.
27 }
28 }

Listing C.16: src/GOAL/TerranBarracks.goal

1 main module{
2 knowledge{
3 #import "GeneralKnowledge.pl".
4
5
6
7 nearestField(vespene , Id, X, Y) :- findall( (BestId ,BestX ,BestY

),
8 percept(friendly(_,’Terran␣Refinery ’,BestId ,_,_

,BestX ,BestY)),
9 [M1|Rest]),

10 nearestField(M1, Rest , (Id, X, Y)).
11
12 nearestField(MineralField , [], MineralField).
13 nearestField ((BestId ,BestX ,BestY), [(Id,X,Y)|Rest],

MineralField) :-
14 distanceTo(BestX ,BestY ,Res),
15 distanceTo(X,Y,Res1),
16 Res <Res1 -> nearestField ((BestId ,BestX ,BestY),

Rest , MineralField)
17 ; nearestField ((Id,X,Y), Rest ,

MineralField).
18
19 shouldMineVespene(Id,VesId , X ,Y ) :- percept(unit(’Terran␣

Refinery ’,RefCount)),
20 NeededWorkers is RefCount * 3,
21 aggregate_all(count , percept(workerActivity(_

,vespene)), Count),
22 Count < NeededWorkers ,
23 chooseWorkerForVespene(Id ,VesId , X,Y).
24
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25 chooseWorkerForVespene(BestId ,VesId , VesX ,VesY):-
26 findall( (Id,X,Y),percept(friendly(_, ’Terran␣SCV’,Id ,_,_,X

,Y)), [W1|Rest]),
27 nearestField(vespene , VesId , VesX , VesY),
28 chooseWorkerForVespene(W1 , Rest ,VesX ,VesY , (BestId ,_,_)).
29
30 chooseWorkerForVespene(Worker , [],X,Y, Worker).
31 chooseWorkerForVespene ((BestId ,BestX ,BestY), [(Id,X,Y)|Rest],

VesX ,VesY , Worker) :-
32 distance(BestX ,BestY ,VesX ,VesY ,Res),
33 distance(X,Y,VesX ,VesY ,Res1),
34 Res <Res1 -> chooseWorkerForVespene ((BestId ,BestX ,BestY),

Rest ,VesX ,VesY , Worker)
35 ; chooseWorkerForVespene ((Id,X,Y), Rest ,VesX ,VesY

, Worker).
36 }
37 beliefs {
38 }
39 goals{
40 train(’Terran␣SCV’ ,25).
41 }
42 program[order=linearall ]{
43
44 if true then handlePercepts+train.
45
46 if bel(shouldMineVespene(Id,VesId ,X,Y), nameMapping(Mail ,_,Id))

then print(’Sending␣message␣to␣SCV’)+Mail.send(gather(
vespene ,VesId ,X,Y)).

47
48 }
49 }
50
51 #import "TrainHandler.mod2g".
52
53 #import "Communication.mod2g".
54
55 #import "PerceptHandler.mod2g".
56
57
58 event module {
59 program[order=linearall] {
60 %if true then clearSent.
61 if true then idNameMapping+clearSent.
62 if bel(not(hasSent)) then idNameMappingBroadcast.
63
64
65 }
66 }

Listing C.17: src/GOAL/TerranCommandCenter.goal

1 main module{
2 knowledge{
3 #import "GeneralKnowledge.pl".
4
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5 shouldUpgrade(’Terran␣Infantry␣Weapons ’).
6
7 shouldUpgrade(’Terran␣Infantry␣Armor ’).
8
9 }

10 beliefs {
11 }
12 goals{
13
14 }
15 program[order=linearall ]{
16 if true then handlePercepts+upgrade.
17 }
18 }
19
20 #import "UpgradeHandler.mod2g".
21 #import "Communication.mod2g".
22 #import "PerceptHandler.mod2g".
23
24
25 event module {
26 program[order=linearall] {
27 if true then idNameMapping+clearSent.
28 }
29 }

Listing C.18: src/GOAL/TerranEngineeringBay.goal

1 main module{
2 knowledge{
3 #import "GeneralKnowledge.pl".
4
5 }
6 beliefs {
7 }
8 program{
9 if true then attack.

10 }
11
12 }
13
14 #import "AttackHandler.mod2g".
15
16
17 event module {
18 program {
19 }
20 }

Listing C.19: src/GOAL/TerranFirebat.goal

1 main module{
2 knowledge{
3 #import "Buildings.pl".
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4 #import "GeneralKnowledge.pl".
5
6 }
7 beliefs {
8 }
9 goals{

10 spotEnemyBase.
11 spotVespeneGeyser.
12 scouting.
13 }
14 program{
15 if true then attack.
16 %Spot:
17
18 % spot goal :
19 if a-goal(spotVespeneGeyser), bel(percept(vespeneGeyser(_,_,_,

BX,BY)),not(percept(freindly(_,’Terran␣Refinery ’,_,_,_,_)))
) then allother.sendonce(vespene(BX ,BY)) + insert(
spotVespeneGeyser)+ print("sender␣vespene").

20 if a-goal(spotEnemyBase),bel(percept(enemy(Type ,EId ,Ex ,Ey,_,_))
,isBuilding(Type)) then allother.sendonce(lastSpottedEnemy(
EId ,Ex ,Ey)) + insert(spotEnemyBase) + insert(scouting).

21
22
23 %Scout:
24 if a-goal(scouting),bel(not(percept(enemy(_,_,_,_,_,_))),

percept(map(Width ,Height)),WWidth is Width*4,WHeight is
Height *4,random(0,WWidth ,RWidth),random(0,WHeight ,RHeight)
)then{

25 if bel(not(percept(attacking(_))),percept(enemy(_,_,_,_,_
,_))) then move(RWidth ,RHeight).

26 if bel(not(percept(enemy(_,_,_,_,_,_)))) then move(RWidth
,RHeight).

27 }
28
29 }
30 actionspec {
31 move(X,Y) {
32 pre {true}
33 post {true}
34 }
35 }
36 }
37
38 #import "AttackHandler.mod2g".

Listing C.20: src/GOAL/TerranMarine.goal

1 main module{
2 knowledge{
3 #import "GeneralKnowledge.pl".
4
5 }
6 beliefs {
7 }
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8 program{
9 if bel(paired(Id), percept(friendly(_,_,Id ,X,Y,_,_))) then move

(X,Y).
10 }
11
12 actionspec {
13 move(X,Y) {
14 pre { percept(position(SelfX ,SelfY)), distance(X,Y,SelfX ,

SelfY ,Res), Res >=10}
15 post {true}
16 }
17 }
18 }
19
20 event module {
21 program {
22 if bel(not(paired(_)), percept(friendly(_,’Terran␣Marine ’, Id ,

X, Y, _, _)), percept(id(SelfId)),
23 string_concat(’Medic␣’, SelfId , Res), string_concat(Res , ’␣

paired␣up␣with␣Terran␣Marrine:␣’, Res2),
24 string_concat(Res2 , Id, Res3)) then print(Res3)+insert(paired

(Id)).
25 if bel(paired(Id), not(percept(friendly(_,_, Id, _, _, _, _))))

then delete(paired(Id)).
26 }
27 }

Listing C.21: src/GOAL/TerranMedic.goal

1 main module{
2 knowledge{
3
4 }
5 beliefs {
6 }
7 goals{
8
9 }

10 program[order=linearall ]{
11 if bel(percept(workerActivity(Id,Activity)),
12 string_concat(Id , Activity , Res)) then print(Res).
13 if true then print(sDFS).
14 }
15 }
16
17 #import "Communication.mod2g".
18
19 event module {
20 program[order=linearall] {
21 if true then idNameMapping+clearSent.
22 }
23 }

Listing C.22: src/GOAL/TerranRefinery.goal
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1 main module{
2 knowledge{
3 #import "GeneralKnowledge.pl".
4 nearestField(mineral , Id, X, Y) :- findall( (BestId ,BestX ,BestY

),percept(mineralField(BestId ,_,_,BestX ,BestY)), [M1|Rest])
,

5 nearestField(M1, Rest , (Id, X, Y)).
6 nearestField(vespene , Id, X, Y) :- findall( (BestId ,BestX ,BestY

),percept(friendly(_,’Terran␣Refinery ’,BestId ,_,_,BestX ,
BestY)), [M1|Rest]),

7 nearestField(M1, Rest , (Id, X, Y)).
8
9 nearestField(MineralField , [], MineralField).

10 nearestField ((BestId ,BestX ,BestY), [(Id,X,Y)|Rest],
MineralField) :-

11 distanceTo(BestX ,BestY ,Res),
12 distanceTo(X,Y,Res1),
13 Res <Res1 -> nearestField ((BestId ,BestX ,BestY),

Rest , MineralField)
14 ; nearestField ((Id,X,Y), Rest ,

MineralField).
15 }
16
17 beliefs{
18 }
19 goals{
20 delivered(minerals).
21 }
22
23
24 program[order = linearall ]{
25 if true then handlePercepts+handleConstruction.
26
27 if bel(not(percept(constructing))) then {
28
29 if bel(gather(vespene ,Id ,X,Y), not(percept(gathering(vespene)

))) then print(’Started␣printed␣vespene ’)+gather(Id).
30
31 if bel(not(gather(_,_,_,_))) then {
32
33 if bel(not(carrying),percept(carrying)) then insert(

carrying).
34 if bel(carrying , not(percept(carrying))),
35 goal(delivered(Resource)) then delete(carrying)+
36 insert(delivered(Resource))+
37 drop(delivered(Resource)).
38
39 if a-goal(delivered(Resource)),
40 bel(not(gathering(Resource)),
41 nearestField(mineral , Id, X, Y)) then
42 insert(gathering(Resource))+
43 gather(Id).
44
45
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46 if bel(delivered(OldResource)) then delete(delivered(
OldResource))+

47 adopt(delivered(mineral)).
48 }
49 }
50 }
51
52 actionspec {
53 gather(Id) {
54 pre { true }
55 post { true }
56 }
57 }
58
59 }
60
61 #import "Communication.mod2g".
62 #import "ConstructionHandler.mod2g".
63 #import "PerceptHandler.mod2g".
64
65 event module {
66 program {
67 if bel(received(Sender , gather(vespene ,Id,X,Y))) then
68 insert(gather(vespene ,Id,X,Y))+
69 delete(received(Sender , gather(vespene ,Id ,X,Y))).
70 forall bel(not(percept(gathering(Resource))),gathering(Resource

)) do delete(gathering(Resource)).
71
72
73 if true then idNameMapping+clearSent.
74 if bel(not(hasSent)) then idNameMappingBroadcast.
75 }
76
77 }

Listing C.23: src/GOAL/TerranSCV.goal

1 main module{
2 knowledge{
3 #import "GeneralKnowledge.pl".
4
5 }
6 beliefs {
7 }
8 goals{
9

10 }
11 program[order=linearall ]{
12 }
13 }
14
15
16 #import "Communication.mod2g".
17
18
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19 event module {
20 program[order=linearall] {
21 if true then idNameMapping+clearSent.
22
23 if bel(not(hasSent)) then idNameMappingBroadcast.
24 }
25 }

Listing C.24: src/GOAL/TerranSupplyDepot.goal

1 module attack{
2 knowledge{
3 findEnemy(Id):- percept(enemy(_,_,_,_,_,_)),
4 findall( (EId ,BestX ,BestY),percept(enemy(_,EId ,BestX ,BestY ,

_,_)), [C1|Rest]),
5 findEnemy(C1, Rest , (Id,X,Y)).
6
7 findEnemy(Enemy , [], Enemy).
8 findEnemy ((BestEId ,BestX ,BestY), [(Eid ,X,Y)|Rest], Enemy) :-
9 walkDistanceTo(BestX ,BestY ,Res),

10 walkDistanceTo(X,Y,Res1),
11 Res >Res1 -> findEnemy ((EId ,X,Y), Rest , Enemy)
12 ;findEnemy ((BestEId ,BestX ,BestY), Rest ,

Enemy).
13 }
14 goals{
15 defend.
16 charge.
17 }
18 program{
19 if bel(received(_,lastSpottetEnemy(Id,X,Y))) then insert(

lastSpottetEnemy(Id,X,Y)) + insert(defend).
20
21
22 if goal(charge),bel(lastSpottetEnemy(Id ,X,Y)) then attack(Id).
23 if goal(charge),bel(lastSpottetEnemy(Id ,X,Y),findEnemy(EId),

percept(enemy(_,EId ,_,_,_,_))) then attack(EId).
24
25
26 if goal(defend),bel(findEnemy(EId), percept(enemy(_,EId ,Wx ,Wy,_

,_)),percept(freindly(_,’Terran␣Command␣Center ’,Wxc ,Wyc ,_,_
)),distance(Wx,Wy,Wxc ,Wyc ,Distance),Distance <1000) then
attack(EId).

27
28 }
29
30 actionspec {
31 attack(Id) {
32 pre {percept(enemy(_,Id ,_,_,_,_))}
33 post {true}
34 }
35 }
36 }

Listing C.25: src/GOAL/AttackHandler.mod2g
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1 module idNameMapping{
2 knowledge {
3
4 }
5
6 program[order=linearall ]{
7 forall bel(received(Sender ,nameExchange(Type ,Id)), percept(id(

MyId)), percept(unitType(MyType))) do insert(nameMapping(
Sender ,Type ,Id)) +

8 delete(received(Sender ,nameExchange(
Type ,Id))) +

9 Sender.sendonce(name(MyType ,MyId)).
10
11 forall bel(received(Sender ,name(Type ,Id))) do insert(

nameMapping(Sender ,Type ,Id)) +
12 delete(received(Sender ,name(Type ,Id))).
13
14 }
15 }
16
17 module idNameMappingBroadcast{
18
19 program[order=linearall ]{
20
21 if bel(not(hasSent), percept(id(MyId)), percept(unitType(MyType

))) then allother.sendonce(nameExchange(MyType ,MyId))+
insert(hasSent).

22 }
23
24 }
25
26
27 % Clears out received messages and sent messages , these are now

processed and irrelevant , hence slowing down the queries for no
reason

28 module clearSent{
29 program[order=linearall ]{
30 forall bel(sent(Agent ,Message)) do delete(sent(Agent ,Message)).
31 }
32 }

Listing C.26: src/GOAL/Communication.mod2g

1
2 module handleConstruction{
3 knowledge{
4 #import "BuildingDatabase.pl".
5 #import "ResourceKnowledge.pl".
6 }
7 goals{
8 build(’Terran␣Supply␣Depot ’ ,24).
9 build(’Terran␣Barracks ’ ,3).

10 build(’Terran␣Refinery ’ ,2).
11 build(’Terran␣Engineering␣Bay’ ,1).
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12 build(’Terran␣Academy ’ ,1).
13
14 }
15 program[order=linearall ]{
16 %supply depot
17 %request for resource
18
19 if bel(percept(unit(Type ,Amount)),build(build(Type ,Old))),goal(

build(Type ,_)) then delete(build(build(Type ,Old)))+insert(
build(build(Type ,Amount))).

20 if bel(percept(unit(Type ,Amount)),not(build(build(Type ,_)))),
goal(build(Type ,_)) then insert(build(build(Type ,Amount))).

21 if bel(received(Sender ,vespene(X,Y))) then insert(vespene(X,Y))
.

22
23
24 if a-goal(build(Type ,Amount)),bel(shouldConstruct(Type),
25 isBuilding(Type),
26 chooseWorker(Type ,WorkerId ,X,Y),
27 percept(id(Id)),
28 WorkerId = Id) then {
29 if bel(gather(vespene ,Id ,X,Y)) then delete(gather(

vespene ,Id ,X,Y)).
30 if true then build(Type , X, Y) .
31 }
32
33 }
34 actionspec{
35 build(Type ,X,Y) {
36 pre {canAfford(Type)}
37 post { true }
38 }
39 }
40
41 }

Listing C.27: src/GOAL/ConstructionHandler.mod2g

1 module handlePercepts{
2 beliefs{
3 minerals (0).
4 gas (0).
5 supply (0,0).
6 }
7 program[order = linearall ]{
8
9 forall bel(percept(minerals(M)), minerals(CM), M \= CM) do

insert(minerals(M))+delete(minerals(CM)).
10 forall bel(percept(gas(G)), gas(CG), G \= CG) do delete(gas(CG)

)+insert(gas(G)).
11 forall bel(percept(supply(S,TS)), supply(CS ,CTS), (S\=CS;TS\=

CTS)) do delete(supply(CS,CTS))+insert(supply(S,TS)).
12
13 }
14 }
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Listing C.28: src/GOAL/PerceptHandler.mod2g

1 module train{
2 knowledge {
3 #import "UnitCostDatabase.pl".
4 #import "ResourceKnowledge.pl".
5
6 }
7
8 program[order = linearall ]{
9 %Manage Goals

10
11 if a-goal(train(Unit ,X)),bel(train(Unit ,Y),percept(queueSize(

Size)),Size <3,Total is Y+Size ,Total <X,canAfford(Unit)) then
train(Unit).

12 if a-goal(train(Unit ,X)),bel(not(train(Unit ,_)),percept(
queueSize(Size)),Size <3) then train(Unit).

13
14 %manage beliefs
15 if bel(percept(unit(Type ,Amount)),train(Type ,Old),Old\= Amount)

then delete(train(Type ,Old))+insert(train(Type ,Amount)).
16 if bel(percept(unit(Type ,Amount)),not(train(Type ,_))) then

insert(train(Type ,Amount)).
17 }
18 actionspec {
19 train(Type) {
20 pre {canAfford(Type)}
21 post {true}
22 }
23 }
24 }

Listing C.29: src/GOAL/TrainHandler.mod2g

1 module upgrade{
2 knowledge {
3 #import "UpgradeDatabase.pl".
4 #import "ResourceKnowledge.pl".
5 }
6
7 program[order = linearall ]{
8
9 if bel(shouldUpgrade(Type), percept(id(Id)), string_concat(Id ,

’␣Trying␣to␣upgrade:␣’, Res), string_concat(Res , Type , Res2
)) then print(Res2)+upgrade(Type).

10
11 }
12 actionspec {
13 upgrade(Type) {
14 pre {canAfford(Type)}
15 post {true}
16 }
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17 }
18 }

Listing C.30: src/GOAL/UpgradeHandler.mod2g

1 isBuilding(’Terran␣Command␣Center ’).
2 isBuilding(’Terran␣Barracks ’).
3 isBuilding(’Terran␣Supply␣Depot ’).
4 isBuilding(’Terran␣Academy ’).
5 isBuilding(’Terran␣Engineering␣Bay’).
6 isBuilding(’Terran␣Refinery ’).
7 isBuilding(’Terran␣Armory ’).
8
9 %buildings

10 cost(’Terran␣Supply␣Depot’ ,100,0,0).
11 cost(’Terran␣Barracks ’ ,150,0,0).
12 cost(’Terran␣Engineering␣Bay’ ,125,0,0).
13 cost(’Terran␣Academy ’ ,150,0,0).
14 cost(’Terran␣Command␣Center ’ ,400,0,0).
15 cost(’Terran␣Refinery ’ ,100,0,0).
16 cost(’Terran␣Bunker ’ ,100,0,0).
17 cost(’Terran␣Factory ’ ,200,100,0).
18 cost(’Terran␣Missile␣Turret ’ ,75,0,0).
19 cost(’Terran␣Starport ’ ,150,100,0).
20 cost(’Terran␣Armory ’ ,100,50,0).
21
22
23 shouldConstruct(’Terran␣Supply␣Depot ’):-percept(supply(S,TotalS

)),CompareS is TotalS -14,S>=CompareS ,TotalS <400.
24
25 shouldConstruct(’Terran␣Barracks ’):- percept(supply(S,TotalS)),

TotalS > 20,
26 percept(unit(’Terran␣Barracks ’, Count)),
27 percept(minerals(M)),
28 shouldConstruct(’Terran␣Barracks ’,Count ,M).
29
30 shouldConstruct(’Terran␣Barracks ’):- percept(supply(S,TotalS)),

TotalS > 20,
31 not(percept(unit(’Terran␣Barracks ’, _))),
32 percept(minerals(M)),
33 shouldConstruct(’Terran␣Barracks ’,0,M).
34
35 shouldConstruct(’Terran␣Barracks ’,0,M):-M >=150.
36 shouldConstruct(’Terran␣Barracks ’,1,M):-M >=1000.
37 shouldConstruct(’Terran␣Barracks ’,2,M):-M >=2000.
38
39
40 shouldConstruct(’Terran␣Refinery ’) :- percept(vespeneGeyser(_,_

,_,_,_)).
41
42
43
44 shouldConstruct(’Terran␣Engineering␣Bay’):-percept(unit(’Terran

␣Barracks ’, _)),
45 not(percept(unit(’Terran␣Engineering␣Bay’, _))).
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46
47 shouldConstruct(’Terran␣Academy ’):- percept(unit(’Terran␣

Barracks ’, _)),
48 not(percept(unit(’Terran␣Academy ’, _))).
49
50
51
52 %For some reason the position received from EISBW is off
53 %since we receive the center building block and the bottom
54 %left one is needed.
55 someConstructionSite(’Terran␣Refinery ’,X1,Y1):- vespene(X,Y),X1

is X - 2 , Y1 is Y-1.
56
57 someConstructionSite(_,X,Y):-
58 findall( (BestX ,BestY),percept(constructionSite(BestX ,BestY

)), [C1|Rest]),
59 findall( (BuildX ,BuildY) ,(percept(friendly(_,Type ,_,_,_,

BuildX ,BuildY)), isBuilding(Type)), BuildingList),
60 percept(friendly(_, ’Terran␣Command␣Center ’, _,_,_,CX ,CY)),
61 someConstructionSite(C1 , Rest , CX,CY,BuildingList , (X,Y)).
62
63 someConstructionSite(ConstructionSite , [], CX,CY ,BuildingList ,

ConstructionSite).
64 someConstructionSite ((BestX ,BestY), [(X,Y)|Rest], CX,CY,

BuildingList , ConstructionSite) :-
65 distance(BestX ,BestY ,CX,CY,Res),
66 distance(X,Y,CX ,CY,Res1),
67 Res >Res1 , distanceLargerThan(BuildingList , X,Y) ->

someConstructionSite ((X,Y), Rest , CX,CY ,BuildingList ,
ConstructionSite)

68 ;someConstructionSite ((BestX ,BestY), Rest , CX,CY ,
BuildingList , ConstructionSite).

69
70 distanceLargerThan ([(CX,CY)|Rest],X,Y) :-distance(X,Y,CX,CY,Res

),
71 Res > 4 -> distanceLargerThan(Rest ,X,Y)
72 ;!,fail.
73
74 chooseWorker(Type ,BestId ,ConX ,ConY):-
75 findall( (Id,X,Y),(percept(friendly(_, ’Terran␣SCV’,Id,_,_,

X,Y)),not(percept(workerActivity(Id,constructing)))), [
W1|Rest]),

76 someConstructionSite(Type ,ConX ,ConY),
77 chooseWorker(W1, Rest ,ConX ,ConY , (BestId ,_,_)).
78
79 chooseWorker(Worker , [],X,Y, Worker).
80 chooseWorker ((BestId ,BestX ,BestY), [(Id,X,Y)|Rest],ConX ,ConY ,

Worker) :-
81 distance(BestX ,BestY ,ConX ,ConY ,Res),
82 distance(X,Y,ConX ,ConY ,Res1),
83 Res <Res1 -> chooseWorker ((BestId ,BestX ,BestY), Rest ,ConX

,ConY , Worker)
84 ; chooseWorker ((Id,X,Y), Rest ,ConX ,ConY , Worker).

Listing C.31: src/GOAL/BuildingDatabase.pl
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1 buildTilePosition(X,Y) :- percept(buildTilePosition(X,Y)).
2 position(X,Y) :- percept(position(X,Y)).
3
4 walkDistanceTo(X1 ,Y1,Res):-position(SelfX ,SelfY),distance(X1,Y1,

SelfX ,SelfY ,Res).
5 distanceTo(X1,Y1 ,Res):-buildTilePosition(SelfX ,SelfY),distance(X1,

Y1,SelfX ,SelfY ,Res).
6 distance(X1,Y1 ,X2,Y2 ,Res):- Res is sqrt((X2-X1)**2 + (Y2 -Y1)**2).

Listing C.32: src/GOAL/GeneralKnowledge.pl

1 canAfford(Type) :- cost(Type , CostM , CostG , CostS),
2 minerals(M),
3 gas(G),
4 supply(S,TS),
5 DiffS is TS - S,
6 CostM =< M,
7 CostG =< G,
8 CostS =< DiffS.

Listing C.33: src/GOAL/ResourceKnowledge.pl

1 cost(’Terran␣Firebat ’ ,50,25,2).
2 cost(’Terran␣Medic ’ ,50,25,2).
3 cost(’Terran␣Marine ’ ,50,0,2).
4 cost(’Terran␣SCV’ ,50,0,2).

Listing C.34: src/GOAL/UnitCostDatabase.pl

1 cost(’Terran_Infantry_Weapons ’, 100 ,100 ,0).
2 cost(’Terran␣Infantry␣Armor’ ,100,100,0).
3 cost(’U-238␣Shells ’ ,100,150,0).
4 cost(’Caduceus␣Reactor ’ ,150,150,0).
5 %cost(’StimPack ’,100,100,0).
6 %cost(’Restoration ’,100,100,0).
7 %cost(’Optic Flare ’,100,100,0).

Listing C.35: src/GOAL/UpgradeDatabase.pl

1 isBuilding("Terran␣Command␣Center").
2 isBuilding("Terran␣Barracks").
3 isBuilding("Terran␣Supply␣Depot").
4 isBuilding("Terran␣Academy").
5 isBuilding("Terran␣Engineering␣Bay").
6 isBuilding("Terran␣Refinery").
7 isBuilding("Terran␣Machine␣Shop").
8 isBuilding("Terran␣Bunker").
9 isBuilding("Terran␣Armory").

10 isBuilding("Terran␣Nuclear␣Silo").
11 isBuilding("Terran␣Missile␣Turret").
12 isBuilding("Terran␣Comsat␣Station").
13 isBuilding("Terran␣Factory").
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Listing C.36: src/GOAL/Buildings.pl
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Acronym List

ACMAS: Agent Centered MAS.

AE: Action Execution.

AI: Artificial inteligence.

AOP: Agent Oriented Programming.

AORTA: Adding Organizational Reasoning To Agents.

API: Application Programming Interface.

APL: Agent Programming Language.

BDI: Belief Desire Intention.

BWAPI: BroodWar API.

EIS: Environment Insterface Standart.

GPS: Global Position System.

IDE: Integrated Development Environment.

JNI: Jave Native Interface.

JNIBWAPI: JNI BWAPI.

MAS: Multi-Agent System.

OCMAS: Oganization Centered MAS.
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RMI: Remote Method Invocation.

RTS: Real Time Strategy.

SCV: Space Construction Vehicle.
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