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ABSTRACT Table of GTZAN classification accuracy from [1]:

Deep neural networks (DNNs) are being evaluated more and | | No Aggregation Aggregation
Hidden Units | Layer | ReLU+SGD | ReLU4+SGD+Dropout | ReLU+SGD | ReLU+SGD+Dropout

more for machine learning. This is due to a variety of factors, I | 7.0£13 750 £ 14 T5OELT 765+ 15
. o o . . 0 2 | 754£12 7.5+ 2.2 79.6 + 2.7 77.0 4+ 2.2
including improvements to training algorithm efhciency, the 3| 783+11 77.0 £ 1.2 813+ 1.8 78.0 £ 1.0
. . .. . All 79.0+ 2.0 78.0x1.6 81.3 £1.9 81.5 1.7
capacity of DNNs to implicitly learn features, and their T 2728 735£ 1.9 S 107 55111
. . 2 78.5+1.9 78.5 2.9 79.0 1.9 82.0 1.8
excellent performance in many domains. Two recent works 500 N 05 196 83,0 & 1.9 090+ 14
All 79.0L£ 1.4 80.0 = 1.8 82.5 1+ 2.3 83.0 1+ 1.1

[1,2] apply DNNs to content-based music information
retrieval, specifically music genre recognition (MGR). The
conclusions in these works are unfortunately drawn from

Results from our replication of systems and evaluation in [1]:

evaluations using the GTZAN dataset, which is now known to No Aggregation Aggregation
. . . . Hidden Units | Layer | ReLU+SGD | ReLU+SGD+Dropout | ReLU+SGD | ReLU+SGD+Dropout
contain faults (replicated observations and artists) that have 1 73.20 73.60 74.40 77.60
. . . . - 2 74.40 73.60 79.20 77.20
major effects when not taken into consideration [3]. We thus 3 76.40 72.80 78.40 76.00
. . . . . All 75.20 75.60 81.60 76.80
re-examine the conclusions in these works considering these i 67.20 72.50 71.60 76.40
. . 2 69.60 79.60 74.40 78.80
faults, and are led to question the degree to which the learned 500 3 75 00 8160 26,40 20.00
. R All 71.60 80.40 76.40 82.00
features are actually an improvement overstandard “hand-
crafted” features such as Mel-frequency cepstralcoefhicients
(MFCCs). All our results are reproducible with the open software Results with consideration of faults in GTZAN:
: . . : _ No Aggregation Aggregation
I'Cp OSltOI’Y. http s.//glthub.Com/coreyker/dnn mgr Hidden Units | Layer | ReLU4+SGD | ReLU+SGD+Dropout | ReLU+SGD | ReLU+SGD-+Dropout
1 40.34 40.00 39.06 39.66
SETUP " 2 38.62 39.66 42.07 41.03
3 38.28 40.00 44 .48 38.62
All 39.31 39.66 42 .41 39.31
: 1 42.07 42.07 39.06 40.69
e o o I Magnituae 0 2 41.72 43.79 41.03 45.52
(46ms frames) 3 40.69 44.14 42.76 48.97
All 40.69 43.79 41.03 47.59
2 coe |1 Confusions of two systems (highlighted above) built and tested
without (left) and with (right) consideration of GTZAN faults:
i = )
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Conclusion:

bredicted Iabels (10 Classes! Our evaluation of the DNN systems in [1, 2] produces dramatically lower

DNN architecture
- 46 ms FFT magnitude frames (513-d) input

figures of merit when considering the faults in GTZAN. In other work [3],
we find Bayesian classification using standard 'hand-crafted' features

(MFCCs) produces a classification accuracy of about 50% in GTZAN when

considering its faults. A random forest with MFCCs produces a

- 50 or 500 rectified lincar units (ReLU) per hidden layer classification accuracy of 51%. These results thus contradict the conclusion

- 3 hidden layers that these DNNs are producing features better or more relevant than

“hand-crafted"” MFCCs for MGR. We are led to the question, are DNNs

- Trained using SGD with (and without) 'dropout’ .
really learning relevant features?

Random forest
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