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ABSTRACT
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Predicted labels (10 classes)

- 50 or 500 rectified linear units (ReLU) per hidden layer 

- 46 ms FFT magnitude �ames (513-d) input 

- 3 hidden layers

- Trained using SGD with (and without) 'dropout'

DNN architecture

Random forest
- Input L1, L2, L3, or all three layers concatenated
- Trained with (and without) temporal aggregation of �ames

- 500 trees in forest

[1] S. Sigtia and S. Dixon, “Improved music feature learning with deep neural networks,” ICASSP, 20⒕

[2] P. Hamel and D. Eck, “Learning features �om music audio with deep belief networks.” ISMIR, 20⒑

Table of GTZAN classification accuracy from [1]:

Results from our replication of systems and evaluation in [1]:

Results with consideration of faults in GTZAN:

Confusions of two systems (highlighted above) built and tested 
without (left) and with (right) consideration of GTZAN faults:

Conclusion:
Our evaluation of the DNN systems in [1, 2] produces dramatically lower 
figures of merit when considering the faults in GTZAN. In other work [3], 
we find Bayesian classification using standard 'hand-cra�ed' features 
(MFCCs) produces a classification accuracy of about 50% in GTZAN when 
considering its faults. A random forest with MFCCs produces a 
classification accuracy of 51%. These results thus contradict the conclusion 
that these DNNs are producing features better or more relevant than 
``hand-cra�ed'' MFCCs for MGR. We are led to the question, are DNNs 
really learning relevant features?

[3] B. L. Sturm, “The state of the art ten years a�er a state of the art: Future research in music information 
retrieval,” J. New Music Research, 43⑵, pp. 147--172, 20⒕
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Deep neural networks (DNNs) are being evaluated more and 
more for machine learning. This is due to a variety of factors, 
including improvements to training algorithm efficiency, the 
capacity of DNNs to implicitly learn features, and their 
excellent performance in many domains. Two recent works 
[1,2] apply DNNs to content-based music information 
retrieval, specifically music genre recognition (MGR). The 
conclusions in these works are unfortunately drawn �om 
evaluations using the GTZAN dataset, which is now known to 
contain faults (replicated observations and artists) that have 
major effects when not taken into consideration [3]. We thus 
re-examine the conclusions in these works considering these 
faults, and are led to question the degree to which the learned 
features are actually an improvement overstandard ``hand-
cra�ed'' features such as Mel-�equency cepstralcoefficients 
(MFCCs). All our results are reproducible with the open so�ware 
repository:  https://github.com/coreyker/dnn-mgr   
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96.0 0.0 8.0 4.0 0.0 0.0 4.0 0.0 8.0 4.0 77.4

0.0 88.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

0.0 0.0 84.0 0.0 0.0 0.0 0.0 0.0 4.0 12.0 84.0

0.0 0.0 0.0 72.0 4.0 0.0 0.0 8.0 0.0 8.0 78.3

0.0 0.0 0.0 8.0 76.0 0.0 0.0 0.0 16.0 0.0 76.0

0.0 8.0 0.0 0.0 0.0 100.0 0.0 0.0 4.0 0.0 89.3

0.0 0.0 0.0 0.0 16.0 0.0 88.0 0.0 4.0 0.0 81.5

0.0 0.0 0.0 12.0 0.0 0.0 0.0 88.0 0.0 8.0 81.5

0.0 0.0 4.0 4.0 0.0 0.0 0.0 0.0 60.0 4.0 83.3

4.0 4.0 4.0 0.0 4.0 0.0 8.0 4.0 4.0 64.0 66.7

85.7 93.6 84.0 75.0 76.0 94.3 84.6 84.6 69.8 65.3 81.6
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12.9 0.0 20.0 3.4 0.0 0.0 3.7 0.0 0.0 6.2 28.6

0.0 100.0 0.0 0.0 3.7 18.5 0.0 0.0 0.0 0.0 83.8

12.9 0.0 16.7 3.4 0.0 0.0 0.0 0.0 0.0 12.5 35.7

9.7 0.0 26.7 24.1 0.0 22.2 3.7 10.0 11.5 43.8 15.6

3.2 0.0 0.0 17.2 55.6 0.0 3.7 13.3 26.9 3.1 44.1

32.3 0.0 13.3 0.0 3.7 33.3 3.7 6.7 7.7 3.1 30.0

12.9 0.0 0.0 3.4 0.0 0.0 81.5 0.0 0.0 6.2 75.9

0.0 0.0 3.3 3.4 25.9 14.8 0.0 63.3 15.4 0.0 52.8

3.2 0.0 6.7 24.1 11.1 0.0 0.0 3.3 34.6 18.8 31.0

12.9 0.0 13.3 20.7 0.0 11.1 3.7 3.3 3.8 6.2 9.1

17.8 91.2 22.7 18.9 49.2 31.6 78.6 57.6 32.7 7.4 42.4


