
GPU-Based Global Illumination

Vertex Connection and Merging using

OptiX

Valdis Vilcans

Master of Science in Digital Media Engineering

Kongens Lyngby 2014

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Building 324, 2800 Kongens Lyngby, Denmark

Phone +45 4525 3031

compute@compute.dtu.dk

www.compute.dtu.dk

Summary

Physically based rendering algorithms are capable of producing high quality
images of virtual environments. The rendering time, however, usually is long
due to associated computation costs. The GPU processing power is increasing
in a relatively faster pace than CPUs and they are specially designed to handle
parallelizable workloads. This makes them attractive for accelerating physically
based algorithms. In recent years multiple tools such as OpenCL, Nvidia's
CUDA and OptiX for harnessing GPU power have appeared.

The goal of the thesis is to provide an overview of the novel Vertex Connection
and Merging (VCM) [GSK11] algorithm which combines bene�ts of Bidirectional
Path Tracing and Photon Mapping, and to describe an implementation using
Nvidia's OptiX ray-tracing framework [PBD+10].

The taken approach was to extend the OppositeRenderer, an open source OptiX
based renderer which contains Progressive Photon Mapping (PPM) implemen-
tation. We hoped that would help to speed up the implementation of Vertex
Merging through partial reuse of data structures used in PPM and to provide
richer feature set in the end. Due to experienced development issues and delays,
Vertex Merging was not implemented, however, Vertex Connections including
the common parts for both path sampling methods were implemented. Also
material handling capabilities were improved to allow �exibility of combining
multiple re�ection models for single material. The extended version of Opposite
Renderer is provided to the public same as the original was.

ii

Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in ful�llment of the re-
quirements for acquiring an M.Sc. in Digital Media Engineering.

The thesis main title encompasses a very broad area of computer graphics �eld.
This is so because the author had desire to investigate current state of the
art algorithms and techniques and explore possible ways of combining them or
implementing on GPU without having a concrete one in mind initially. During
this initial research which took much longer than anticipated, the author learned
about the novel Vertex Connection and Merging (VCM) algorithm introduced
by Georgiev et al. [GSK11] which formulates a new bidirectional path sampling
technique called Vertex Merging. It provides bene�ts of Photon Mapping [WJ01]
and allows to combine it e�ciently with traditional Bidirectional Path Tracing
(BPT) [Vea98]. This is the algorithm chosen for GPU implementation and is
described in this thesis.

Given the limited time the decision was to use the Nvidia OptiX [PBD+10],
a CUDA 1 based ray tracing engine that provides acceleration structures and
provides optimizations for various GPU architectures. As a staring basis the
open source renderer OppositeRenderer 2 was used, it contains an OptiX imple-
mentation of Progressive Photon Mapping (PPM) [HOJ08] and was created by
Stian Pedersen for his M.Sc. thesis [Ped13].

One of the goals for implementation was to use recursive Multiple Importance
Sampling (MIS) weight [Vea98] computation as proposed in [Geo12] that allows

1It works only with Nvidia GPUs
2http://apartridge.github.io/OppositeRenderer

http://apartridge.github.io/OppositeRenderer

iv Preface

e�cient path weigh computation without need to traverse connected subpaths.
Another was to use uniform light vertex sampling for connections as suggested
in [DKHS14], this would allow to use arbitrary number of connections and to
reduce negative e�ects due to connections to paths with many vertices.

The development using OptiX turned out slow due to problematic debugging,
the current versions of OptiX 3 have a bug that often causes crashes when
debug printing functions are used. Also multiple other bugs in OptiX 4 and
CUDA 5 were encountered and had to be worked around. Moreover, late in the
process it was recognized that MIS term computation formulas of [Geo12] should
be revisited when uniform light vertex sampling is used, since connections are
made to all light subpaths, not just one as in traditional BPT. An e�ort was
made to do that and the author of the algorithm Iliyan Georgiev con�rmed the
correctness of intended changes, but due to limited time this was not �nished.

The result is that within the given schedule the vertex connection part of the
VCM algorithm was implemented. This is the main contribution of the project.
Also a more �exible material handling system was added that allows easily com-
bining multiple re�ectance models and a Glossy material. The implementation
is available on GitHub 6. Given that the core of the algorithm is implemented,
vertex merging could be implemented building on grid data structures used in
PPM implementation.

The thesis consists of overview of the theoretical background and path space
sampling based algorithms, the Vertex Connection and Merging, the description
of implementation, the discussion of results, future work and conclusions.

Due to longer than expected time needed for implementation of the algorithm,
very little time remained for writing the thesis. Therefore it is as concise as pos-
sible, providing links to resources to allow the reader look up additional details
if needed. References are provided to all resources and work of other authors
that were used. All images present in the thesis are diagrams or renderings
made by the author or are used with author's permission.

33.5 and 3.6 at the time of writing
4The callable functions not receiving parameters, bu�er out of bounds exceptions not being

triggered, in�nite loops causing crashes that look like memory corruption when it actually is

graphics driver timeout error, only part of the debug output bu�er being forwarded to �le and

only after seconds context launch, and some others
5The CUDA 6 fails to compile the solutions due to a problem to inline a function
6http://github.com/voldemarz/OppositeRenderer

http://github.com/voldemarz/OppositeRenderer

v

Lyngby, 21-July-2014

Valdis Vilcans

vi

Acknowledgements

I would like to thank my supervisor Jeppe Revall Frisvad for provided guid-
ance. I thank Mircea-Costin Rohat and Janis Siksnans for support and help to
identify inconsistencies. Much gratitude goes to Stian Pedersen for sharing his
renderer with public and allowing to use some of his graphics �gures. Finally, I
thank Iliyan Georgiev for his valuable answers to questions about recursive mul-
tiple importance sampling terms and for allowing to use graphics from Vertex
Connection and Merging papers.

viii

Contents

Summary i

Preface iii

Acknowledgements vii

1 Introduction 1

2 Related Work 5
2.1 Algorithms . 5
2.2 Applications to GPU . 6

3 Theoretical background 9
3.1 Radiometry . 9

3.1.1 Radiant �ux . 11
3.1.2 Irradiance and radiant exitance 11
3.1.3 Intensity . 11
3.1.4 Radiance . 12

3.2 Surface re�ection . 12
3.3 Probability theory . 14

3.3.1 Random variables . 14
3.3.2 Expected value and Variance 14

3.4 Light transport and measurement 15
3.4.1 Light transport equation 15
3.4.2 Measurement equation . 15

3.5 Monte Carlo integration . 16
3.5.1 Bias and consistency . 16
3.5.2 Russian Roulette . 17
3.5.3 Importance Sampling . 17

x CONTENTS

3.5.4 Multiple Importance Sampling 18
3.6 Path sampling methods . 18

3.6.1 The path integral formulation 18
3.6.2 Path Tracing . 20
3.6.3 Bidirectional Path Tracing 20

3.7 Vertex Connection and Merging 21
3.7.1 Vertex Connections . 22
3.7.2 Vertex Merging . 22
3.7.3 Combined VCM estimator 25
3.7.4 E�cient path weight evaluation 26

4 Implementation 29
4.1 OptiX . 29
4.2 OppositeRenderer . 30
4.3 The VCM algorithm . 32
4.4 BPT with recursive MIS weights 34

4.4.1 Structure . 35
4.4.2 BSDF and BxDF classes 37
4.4.3 Light pass . 38
4.4.4 Camera Pass . 39
4.4.5 Shading with geometric normals 40
4.4.6 Final notes . 40

5 Results 41
5.1 Test scenes . 41
5.2 Analysis . 42

5.2.1 Empty Cornell Box . 42
5.2.2 Cornell Box with spheres 42
5.2.3 Crytek Sponza and Conference 44
5.2.4 Performance . 45

5.3 Final comments . 47

6 Future Work 49

7 Conclusions 51

Bibliography 53

Chapter 1

Introduction

The global illumination characterizes lighting quality of captured lighting e�ects
in a rendered image of a 3D scene. In particular that means e�ects such as color
bleeding from one object to another, light caustics due to specular re�ections,
glossy inter-re�ections, or di�cult lighting scenarios when light source is in
another room.

There are two main approaches to global illumination, one is based on sampling
the space of light carrying paths (e.g. Bidirectional Path Tracing [Vea98]) and
the other is using density estimation (e.g. Photon Mapping [WJ01]). Georgiev
et al. [GKDS12] recently introduced a method called Vertex Connection and
Merging (VCM) that provided bene�ts of both above mentioned approaches.

Rendering algorithms are well suited for parallelization since they generally per-
form same operations on varying input data. GPUs on the other hand contain
hundreds (or even thousands) of simple computation units and are speci�cally
designed for parallel workloads. The advance of programmable pipeline gave
some opportunities to use GPUs for general processing tasks, and later the
introduction of OpenCL and Nvidia's CUDA allowed to view GPUs purely as
general purpose computational units for highly parallel tasks. CUDA (Compute
Uni�ed Device Architecture) is a proprietary platform introduced by Nvidia in
[Cor] in 2007. OpenCL [Gro] was introduced in 2009 as an open standard sup-
ported by all major vendors including Nvidia. Currently CUDA is generally the

2 Introduction

preferred tool for implementing rendering algorithms due to its better perfor-
mance for these problems as shown in [KGF+11].

GPU processing power is growing consistently and generally in faster pace than
the one of CPUs. The Fig. 1.1 demonstrates the trend of theoretical maximum
number of �oating point operations (FLOPs) per seconds for Nvidia GPUs and
Intel processor architectures.

Figure 1.1: Maximum theoretical number of �oating operations for Nvidia
GPUs and Intel CPUs in GFLOPs per second. Courtesy of

Nvidia.

To alleviate developers from the need to optimize for various GPU architectures
Nvidia introduced a general purpose ray tracing engine OptiX [PBD+10], that
provides essential capabilities for ray tracers such as acceleration structures. It
allows to implement arbitrary algorithms by de�ning a set of programs (similarly
as shader programs in OpenGL and DirectX) that can be hooked into various
parts of the pipeline.

In this thesis we will focus on implementing the novel VCM algorithm using
OptiX. We base our work on the open source renderer OppositeRenderer with
implementation of progressive photon mapping (PPM) made by Stian Pederesen
for his M.Sc. thesis [Ped13]. It was decided to do so because it gave the potential
to speed up implementation of vertex merging by partially reusing grid data

3

structures used for PPM, also conveniently it provided scene loading using Asset
Import Library and an interactive interface.

The thesis is structured as follows:

• Chapter 2 presents work that serves as basis for Vertex Connection and
Merging and its GPU implementation

• Chapter 3 reviews theoretical background, important for understanding
the implementation

• Chapter 4 describes the design and implementation details
• Chapter 5 analyzes achieved results and compares them with the reference
implementation in SmallVCM

• Chapter 6 describes possible areas of future improvements
• Chapter 7 summarizes what has been done and achieved

4 Introduction

Chapter 2

Related Work

2.1 Algorithms

The Path Tracing algorithm introduced in 1986 by Kajiya [Kaj86] follows ran-
dom paths through the scene from camera to light sources. Veach et al. [VGS+95]
and Lafortune et al. [LWS93] introduced the Bidirectional Path Tracing (BPT)
that creates paths by combining sub-paths starting both from light sources and
camera, thus helping to �nd paths to occluded light sources. Veach [Vea98]
formulated rendering as an integration of a pixel measurement function over the
space of all paths and showed how to combine various path sampling techniques
in a provably good way using Multiple Importance Sampling (MIS).

The Photon Mapping [WJ01] approximates radiance (it is biased, but consis-
tent) at any point via density estimation using light particles (photons) that
have been distributed from light sources and stored on surfaces in the scene.
It is e�cient in rendering lightning e�ects such as caustics, but has di�culties
in scenes with glossy surfaces. Vorba [Vor11] addressed this by using multiple
importance sampling (MIS) to combine contributions of photons at camera path
vertices.
Progressive Photon Mapping (PPM) introduced by Hachisuka [HOJ08] removes
the requirement of storing all photons in memory and diminishes bias in the
course of computation as density estimation radius is reduced. Stochastic pro-

6 Related Work

gressive photon mapping [HJ09] enables PPM to render distribution ray tracing
e�ects such as depth of �eld. Knaus et al. [KZ11] showed that radius reduction
doesn't need to depend on per pixel statistics, e�ectively removing dependency
between iterations in PPM.

Georgiev et al. [GSK11] formulates a new bidirectional path sampling tech-
nique called Vertex Merging that conceptually relates to photon mapping. It
is combined with traditional bidirectional path tracing (BPT) using multiple
importance sampling (MIS) and the resulting algorithm is called Vertex Con-
nection and Merging (VCM). A work of Hachisuka et al. [PJH12] addresses the
same problem, but uses signi�cantly di�erent theoretical formulation. The tech-
nical report of the VCM reference implementation [Geo12] presents an e�cient
way to compute MIS weights by recursively computing partial terms at every
path vertex that allow to compute full weight once it is connected or merged
without traversing the full path. The technique is similar to the one proposed
by Van Antwerpen [Ant11].

E�cient ray tracing requires acceleration structures that group geometry to-
gether and allow to avoid checking intersection with individual objects if the ray
doesn't intersect the group. Thus research in this area focuses on three main
issues: the selection of suitable acceleration structure, algorithms for their e�ec-
tive construction and traversal. Common examples of such structures are uni-
form grids, bounding volume hierarchies (BVHs) and kd-trees. Havran [Hav00]
provides an overview of CPU-based acceleration structure construction.

2.2 Applications to GPU

In the survey article from 2012 Ritchel et al. [RDGK12] provides a comprehen-
sive review of current methods for computing global illumination and attempts
to provide an approximate comparison using criteria such as speed, quality,
dynamism, scalability, ease of implementation, ease of mapping to GPU.

Initial attempts to use the programmable GPU pipeline for ray tracing date back
to the 2002 work of Carr et al. [CHH02] where they implement ray-triangle
intersection as a pixel shader and used uniform grid acceleration structure.
More recently, Aila et al. [LA09] [ALK12] showed how to approach theoreti-
cal peak ray tracing performance using Spatial Bounding Volume Hierarchies
(SBVHs) [SFD09] on Nvidia GPUs using CUDA. They observed that previously
known methods were about a factor of 2X o� from the theoretical optimum and
identi�ed that it was mostly caused by ine�ciencies in hardware work distribu-
tion. Much of the current research focuses on fast construction of acceleration

2.2 Applications to GPU 7

structures on GPU to allow interactive rendering of dynamic geometry. For
references and details we refer the reader to the survey on progressive light
transport algorithms on the GPU by Davidovi£ et al. [DKHS14].

The survey on progressive light transport algorithms on the GPU presents im-
plementations of the progressive photon mapping (and its bidirectional and
stochastic derivatives) and the bidirectional path tracing based on the state-of-
art method proposed by Van Antwerpen [VA11] [Ant10]. Both algorithm were
implemented within the CUDA ray casting framework based on work of [LA09].
They also review e�ects due to use of single or multiple CUDA kernels, propose
few improvements over state-of-art, present the �rst GPU implementation of
Vertex Connection and Merging, and compare all the implementations.

Upon introduction of OptiX ray tracing engine Nvidia demonstrated [PBD+10]
that a well optimized OptiX based solution can achieve performance of around
60% compared to a hand-optimized CUDA solution of [LA09]. However, Lud-
vigsen [LE10] who explored OptiX the same year concluded that it is 3-5 times
slower that hand-optimized CUDA solutions on similar scenes and hardware.

8 Related Work

Chapter 3

Theoretical background

This chapter introduces the theoretical background for global illumination, thus
laying foundation for understanding the Vertex Connection and Merging algo-
rithm. The focus is on the most essential concepts and references are provided
to resources with more detailed discussion.

We start with a brief overview of radiometry and continue with describing sur-
face re�ection. Next we discuss basic concepts of probability theory and light
transport. We continue by introducing the Monte Carlo as a technique for es-
timating integrals describing light distribution. Finally, we present an overview
of path sampling methods and continue with discussing the Vertex Connection
and Merging.

3.1 Radiometry

In order to generate an image of a virtual scene, the amount of re�ected light
towards the viewer needs to be computed. Radiometry provides the theoretical
basis for analyzing the propagation of light and the transfer of radiant energy. It
operates at the geometrical optics level, that is, where objects the light interacts
with are much larger than its wavelength. For more details we refer reader to

10 Theoretical background

Symbol Description
x Surface point
n Surface normal
M The set of all surface points
A Area m2

ω Solid angle / solid angle cone direction
S2 The set of all directions

H2(n) The hemisphere of directions around surface normal
Φ Radiant �ux J/s (W)
E Irradiance W/m2

I Intensity W/sr−1

L Radiance W/(sr−1m−2)
fr, fs Bidirectional re�ectance (r) / scattering (s) distribution

function
p Probability distribution function
〈I〉 Monte Carlo estimator for quantity I
f Measurement contribution function

x = x0 . . . xk Complete path of length k, x0 is on light source, xk is
on camera image plane

y = y0 . . . ys−1 Light sub-path with �rst vertex y0 ≡ x0

z = z0 . . . zt−1 Camera sub-path with �rst vertex z0 ≡ xk
We Sensor responsiveness / emitted importance

G(xi ↔ xj) Geometry factor between two points
T (x) Path throughput (product of geometry factors and BS-

DFs)
w Multiple importance sampling weight
i Subscript denotes incoming direction
o Subscript denotes outgoing direction

Table 3.1: Common notations.

3.1 Radiometry 11

text book on rendering such as [PH10].

3.1.1 Radiant �ux

This quantity, also called Power, denoted Φ, describes amount of radiant energy
per unit time and is expressed in watts (W or J/s). Its a typical way to describe
the amount of energy emitted by a light source.

3.1.2 Irradiance and radiant exitance

Irradiance E describes energy arriving at a surface and its units are W/m2. A
related quantity, radiant exitance (M), describes the amount of energy leaving
the surface.

3.1.3 Intensity

Before de�ning intensity we need to establish the notion of solid angle. It de-
scribes the area subtended by an object projected onto a unit sphere (Fig. 3.1).
That is, a small object close to the origin can subtend the same amount of space
as a distant object. It is measured in steradians (sr) and entire sphere subtends
solid angle of 4π, and a hemisphere 2π.
Finally, the intensity I describes �ux density per solid angle

Figure 3.1: Solid angle. An area subtended by an object projected onto
sphere. An illustration by Haage licensed under CC BY 3.0.

I =
dΦ

dω

<http://commons.wikimedia.org/wiki/File:Angle_solide_coordonnees.svg>
http://creativecommons.org/licenses/by/3.0/

12 Theoretical background

and is only meaningful for point light sources.

3.1.4 Radiance

Radiance L (Fig. 3.2) describes �ux density per unit area, per solid angle,
watts/(sr ·m2)

L =
dΦ

dωdA cos θ
(3.1)

The cosine term of an angle θ between the surface normal and solid angle cone
direction dω accounts for the fact that at grazing angles the incident ray will
cover more surface area than for directions close to the surface normal. As per
common convention in this thesis we always consider ω to be pointing away from
the surface.

Figure 3.2: Radiance. An illustration by Stian Pedersen.

It is the most common quantity used in rendering since all the other can be
computed by integrating over surface areas and directions.

3.2 Surface re�ection

The way an object looks is described by its material re�ection properties. Some
materials like wood re�ect incident light in all directions and look the same
from all directions. Mirror on the other hand has a perfect re�ection. A formal-
ism that allows to describe this behavior is bidirectional re�ectance distribution
function (BRDF) and describes the ratio of di�erential re�ected radiance ωo
and di�erential irradiance from direction ωi at a surface point x and is de�ned
as

fr(x,
−→ωi,−→ωo) =

dLo(x,
−→ωo)

dE(x,−→ωi)
=

dLo(x,
−→ωo)

Li(x,
−→ωi) cos θidωi

. (3.2)

3.2 Surface re�ection 13

The outgoing radiance is obtained by integrating over hemisphere of incident
directions

Lo(x, ωo) =

∫
H2(n)

fr(x, ωo, ωi)Li(x, ωi) cos θdωi (3.3)

Similarly also is de�ned the bidirectional transmittance distribution function
(BTDF) which describes the distribution of the transmitted light. In that case
the incident and the outgoing directions are on di�erent sides of the hemisphere.
As general case that combines both, it is common to de�ne the bidirectional scat-
tering distribution function (BSDF) which describes the outgoing radiance from
a point due to incident radiance from all directions. In that case the integral 3.3
is over the sphere of directions S2 and BSDF is abbreviated as fs where sub-
script s stands for scattering.

Physically based BRDFs have two important properties:

1. fr(x, ωi, ωo) = fr(x, ωo, ωi) (Helmholtz's reciprocity)
2.

∫
H2(n)

fr(x, ωo, ω
′) ≤ 1 (Energy balance)

The �rst states that for two given directions, the amount of the re�ected light
is the same, disregarding of the direction in which the light travels. The second
states that the fraction of the total amount of the re�ected energy cannot be
higher than 1.

The re�ection from surfaces can be split into four broad categories:

• Di�use - scatter light equally in all directions (example - matte paint)
• Perfect specular - scatter incident light in single outgoing perfect re�ection
direction (examples - mirror and glass)

• Glossy specular - scatter incident light mostly in directions close to perfect
re�ection direction (example - plastic)

• Retro-re�ective - scatter incident light mostly back along incident direction
(example - velvet)

In rendering the re�ection from a surface is simulated suing varios re�ection
models which can be based on measurement data or use a set of equations that
are e�ective for simulating the look of a given real world material. For example
of various re�ection models we refer the reader to a book on rendering such
as [PH10].

14 Theoretical background

3.3 Probability theory

In this section we provide brief review of some probability theory principles
used in the later chapters. For more in-depth discussion the reader could con-
sult [PH10] or books on probability theory.

3.3.1 Random variables

The random variable is described by its cumulative distribution function (CDF)
and probability distribution function (PDF) [PH10]. Having a distribution of
random variables X, the CDF describes the probability that a value from vari-
able's distribution is less than or equal to some value x:

P (x) = Pr{X ≤ x}. (3.4)

The PDF p(x) is the derivative of the random variable's CDF

p(x) =
dP (x)

dx
(3.5)

and describes probability for sampling a random variable with value x from the
distribution X.

3.3.2 Expected value and Variance

The expected value Ep[f(x)] of a function is de�ned as the average value of the
function over some distribution of values p(x) over it's domain D [PH10]

Ep[f(x)] =

∫
D

f(x)p(x)dx. (3.6)

The variance of a function is the expected deviation of the function from its
expected value and is de�ned as [PH10]

V [f(x)] = E[(f(x)− E[f(x)])2]. (3.7)

In rendered images it presents itself as noise. It is a fundamental method in
quantifying the error produced by a Monte Carlo estimator that will be intro-
duced in next section.

3.4 Light transport and measurement 15

3.4 Light transport and measurement

Here we brie�y introduce concepts of light transport and measurement functions
following Veach [Vea98].

3.4.1 Light transport equation

The light transport equation, also known as the rendering equation, was intro-
duced by Kajiya [Kaj86] and it describes the equilibrium distribution of radiance
in a scene, which means constant energy as emitted radiance is continuously ab-
sorbed due to conservation of energy. Another assumption is that light travels
instantly and hence the equilibrium state is achieved instantly. The equation
states that the outgoing radiance from a point is equal to the sum of the emit-
ted radiance and the re�ected radiance which is obtained by integrating over all
incident directions

Lo(x, ωo) = Le(x, ωo) +

∫
H2(n)

fr(x, ωo, ωi)Li(x, ωi) cos θidω (3.8)

The incident radiance Li is obtained using

Li(x, ω) = Lo(t(x, ω),−ω) (3.9)

where t(x, ω) is the ray casting function returning the �rst point x′ visible from
x.

3.4.2 Measurement equation

The goal in rendering is to compute measurements I of light incident at an
image pixel (camera sensor). The measurement corresponds to the output of a
hypothetical sensor that responds to incident radiance Li(x, ω). The response
may vary depending on position and direction at which light strikes, this is
characterized by sensor responsiveness We(x, ω). For more details we refer the
reader to [Vea98]. Therefore the total response is determined by integrating the
product WeLi

I =

∫
We(x, ω)Li(x, ω) cos θdA(x)dω (3.10)

The subscript �e� for the sensor responsiveness We stands for �emitted�. This
is because conceptually this measure can be seen as emitted from the camera

16 Theoretical background

and propagated through the scene following the same rules as for the radiance
(with some exceptions). In that case this quantity is called importance and its
propagation � importance transport. This concept is used in the path integral
formulation.

The exceptions apply to non-symmetric BSDFs as indicated by Veach [Vea98].
They do not adhere to the reciprocity property, that is, for two directions wo
and wi, a di�erent amount of light is scattered in each direction fs(wo, wi) 6=
fs(wi, wo). An example of such case is refraction. We refer the reader to work
of Veach for additional details.

3.5 Monte Carlo integration

Monte Carlo is a numerical integration method that allows to evaluate the value
of an arbitrary integral by sampling it with random numbers. The estimator
for an integral I =

∫
f(x)dx is [PH10]

〈I〉N =
1

N

N∑
i=1

f(Xi)

p(Xi)
(3.11)

where p(Xi) is the probability density function that describes possibility of
sampling the random variable Xi from some distribution X with restriction
that it must be non zero for all x where |f(x) > 0| . The number of samples
N can be chosen arbitrarily and its convergence rate O(

√
N) is independent

of dimensionality of the integral. This makes it the only practical numerical
integration algorithm for integrals with high (or in�nite) dimensionality which
are common in rendering.

3.5.1 Bias and consistency

An estimator 〈I〉 is unbiased if its expected value is equal to the value of the
integral being estimated. Otherwise the amount of bias is

β = E[〈I〉]−
∫
f(x)dx (3.12)

and the estimator is said to be biased.
An estimator 〈I〉 is consistent if it converges to the correct value as the number
of samples N increases. Formally that can be expressed as

lim
N→∞

Pr[|〈I〉N − I| > ε] = 0 (3.13)

3.5 Monte Carlo integration 17

where is ε is some small �xed value. The equation states that as the number
of samples approaches in�nity, the probability of the error being greater than
ε approaches zero. Having ε = 0 means that estimator approaches the exact
answer.
Unbiased estimators produce the correct result on average and increasing the
number of samples will typically reduce the variance. Biased, but consistent
estimators approach the correct value only in the limit.

3.5.2 Russian Roulette

The Russian Roulette [PH10] is a technique that increases e�ciency of the esti-
mator. It addresses the problem of evaluating samples that have small contribu-
tion to the �nal result. It is applied by introducing a termination probability q
and checking it before computation of some expensive function. The computa-
tion is continued with probability 1− q, but the result is scaled by a factor 1

1−q .
The expected value of the estimator is unchanged, but its variance increases,
therefore the choice of q is important and should be inversely proportional to
the importance of the evaluation to the �nal result.

3.5.3 Importance Sampling

Importance sampling is a variance reduction technique that exploits the fact
that Monte Carlo estimators converge quicker if samples are taken from the
distribution p(x) that is similar to the function f(x) [PH10]. It can be demon-
strated using a simple example. Suppose we are trying to evaluate some integral∫
f(x)dx. Since p(x) can be freely chosen, suppose p(x) = cf(x), this means

c =
1∫

f(x)dx

In this case the estimate would have the value

Xi

p(Xi)
=

1

c
=

∫
f(x)dx

which is the exact value we were trying to estimate. Of course it is not realistic
to �nd such PDF since that would require to know the value for the integral
that we are trying to estimate, but it shows how the PDF a�ects the estimate.
Similarly, applying this concept to the light transport equation 3.8, it would be
bene�cial to choose p(x) proportional, for example, to BRDF or incident light
distribution.

18 Theoretical background

3.5.4 Multiple Importance Sampling

It is di�cult to �nd a PDF that works well in all cases for importance sampling
presented in the previous section due to the product of multiple functions in the
integral, Li and fr. If we were to sample using a density function that matches
the BSDF, but the incident radiance is large from an unimportant direction
according to the BSDF probability density, then variance would also be large.

Multiple importance sampling (MIS) introduced by Veach [Vea98] solves this
by weighting the samples from each technique and so helps to eliminate large
variance spikes due to mismatch between integrand's value and the sampling
density. The multi-sample estimator for m di�erent distributions (or sampling
techniques), each given by its probability density function pi is

〈I〉MIS =

m∑
i=0

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,i)

pi(Xi,j)
(3.14)

where ni is a number of samples for given technique, Xi,j are independent ran-
dom variables with distribution pi and wi is the weighting function for i-th
sampling technique. To produce the correct result the weighting functions must
satisfy two conditions:

•
∑n
i=1 wi(x) = 1 i� f(x) 6= 0

• wi(x) = 0 whenever pi(x) = 0

There are many weighting functions that satisfy these conditions, but Veach [Vea98]
showed that in a general case the power heuristic

wi(x) =
(nipi(x))β∑n
k=1(nkpk(x))β

(3.15)

with β=1 (balance heuristic) is the best option. In some cases β=2 is bene�cial,
we refer reader to the original work for the details.

3.6 Path sampling methods

3.6.1 The path integral formulation

Veach reformulated the light transport equation in form of an integral over paths
(path integral framework) [Vea98] that allows to express the pixel j measurement

3.6 Path sampling methods 19

as a non-recursive integral:

Ij =

∫
Ω

fj(x)dµ(x) (3.16)

In the equation x = x0 . . . xk is a light path with k≥1 edges, where the �rst
vertex x0 is on the light source and the last vertex xk on the camera im-
age plane. The Ω represents the set of all paths of any length (paths space),
dµ(x) = dA(x0) . . . dA(xk) is the di�erential area product measure, and f is the
measurement contribution function for the pixel.
The measurement contribution function f(x) gives the energy �owing through
the path (Fig. 3.3) per unit area product measure and is de�ned as

f(x) = Le(x0)G(x0 ↔ x1)

[
k−1∏
i=1

fs(xi)G(xi ↔ xi+1)

]
We(xk). (3.17)

The terms in the equation are:

• Le(x0) = Le(x0 ↔ x1) is the radiance emitted from a light source
• We(xk) = We(xk−1 → xk) is the pixel responsiveness to light arriving at
xk from direction of xk−1

• fs(xi) = fs(xi−1 → xi → xi+1) is the bidirectional scattering function
(BSDF)

• G(xi−1 ↔ xi) = V (xi−1 ↔ xi)
| cos θi−1,i|| cos θi,i−1|

||xi−1−xi||2 is the geometry factor

where V (xi−1 ↔ xi) is the visibility term, and the rest are due to change
from integration over solid angle to surface area.

Figure 3.3: Path from the light source to camera. Used with permission
from [GKDS12]

The product of all the geometry terms and BSDF factors describes the fraction
of light reaching the sensor and is called throughput :

T (x) = G(x0 ↔ x1)

k−1∏
i=1

fs(xi)G(xi ↔ xi+1). (3.18)

This allows to express the measurement function as

f(x) = Le(x0)T (x)We(xk). (3.19)

20 Theoretical background

The PDF of the light p(x) = x0 . . . xk is the product of individual probabilities
of conditional vertex PDFs p(x) = p(x0) . . . p(xk). The PDF of a vertex xi
characterizes probability to be sampled on some surface from the previous vertex
xi−1. For the path starting point x0 it is the probability of being sampled on
some light source.

As the equation 3.19 shows we may start creating the path at the camera, this
can be seen as propagation of the sensor responsiveness We as it was mentioned
in 3.4.2. In that case BSDF fs(xi) = fs(xi+1 ← xi ← xi−1).

3.6.2 Path Tracing

The Path Tracing is an unbiased rendering algorithm originally proposed by
Kajiya as a solution to the rendering equation [Kaj86]. Using the path integral
framework it is de�ned by the following estimator

〈I〉 =
∑
t≥2

f(zt)

pt(zt)
(3.20)

where zt is a camera path with t vertices. The paths are constructed unidi-
rectionally staring from a sampled point within a pixel on an image plane and
then tracing an outgoing ray to �nd �rst intersection. At the intersection point
a path is completed by connecting to randomly sampled position on a light
source (next event estimation), then an outgoing ray direction is sampled for
next path vertex. Since the estimate contains an in�nite sum of path samples
and constructing a path is an expensive process involving path vertex visibility
checking, the standard approach is to reuse previously generated path as the
starting point for the next one, instead of creating completely new path that is
one segment longer. To avoid constructing paths in�nitely, the path generation
is possibly stopped by Russian Roulette technique 3.5.2, for example, by having
high stopping probability when path throughput is low.

3.6.3 Bidirectional Path Tracing

The path tracing algorithm is simple, but has di�culty �nding paths to light
sources that are occluded by objects, handling light caustics (paths where light is
scattered by specular interactions before landing on a di�use surface). Bidirec-
tional path tracing (BPT) [LWS93] [Vea98] addresses these issues by combining
light paths and camera paths, we will call them sub-paths.

3.7 Vertex Connection and Merging 21

Connecting the light and camera sub-paths potentially results in multiple pos-
sible ways (techniques) to create a path of a given length. For example having
a light sub-path y = y0y1 and camera sub-path z = z0z1 both of length 1, there
are two ways of creating a path of length 2, = y0y1z0 and = y0z1z0. The paths
with varying number of light vertices s and camera vertices t, techniques (s,t),
correspond to di�erent density functions ps,t on the path space, they e�ectively
account for di�erent lightning e�ects. [Vea98] To take advantage of this Veach
proposed to use MIS to combine them by computing the pixel measurement I
as

〈I〉 =
∑

s≥0,t≥0

ws,t(xs,t)
f(xs,t)

ps,t(xs,t)
(3.21)

where ps,t(xs,t) is the probability density for generating a path x using the
technique (s,t) and ws,t(xs,t) is the MIS weight for this path. The sum over all
lengths of s and t, represents all possible connection techniques, but use only
one sample from each technique, therefore it represents only the inner sum in
the MIS equation 3.14.

The standard approach to implement BPT algorithm is to generate 1 light
and camera sub-path per pixel and then connect all pairs of their vertices. The
connection process involves computation of MIS weight which requires to iterate
over all light and camera vertices. This process can be made more e�ective by
computing partial MIS terms for each vertex while doing a random walk through
the scene, so that all required terms for MIS weight computation are available
for any 2 given vertices. [Geo12] [Ant11]

3.7 Vertex Connection and Merging

Bidirectional path tracing in combination with multiple importance sampling is
e�ective in diminishing weight for sampling techniques that are inappropriate,
e.g., has low PDF and would cause variance spikes. This weighting is only pos-
sible if alternative sampling techniques exist (non zero PDF). Specular-di�use-
specular paths can only be found unidirectionally, since it is not possible to
connect to a vertex of a specular surface where re�ected direction is strictly de-
�ned. Vertex Merging is a path sampling technique that addresses this problem.
It is conceptually related to the Photon Mapping [WJ01].

Georgiev et al. [GKDS12] [GSK11] introduced the Vertex Connection and Merg-
ing (VCM) algorithm that combines vertex connection path sampling technique
used in BPT and vertex merging using multiple importance sampling 3.5.4. Ver-
tex merging can intuitively be thought to concatenate two sub-paths by welding

22 Theoretical background

their endpoints if they lie within a given distance r to each other (Fig. 3.4).
The work of Hachisuka et al. [PJH12] addresses the same problem but with
signi�cantly di�erent theoretical formulation.

Figure 3.4: Di�erent techniques for sampling a light path, with the
corresponding PDF terms associated with each vertex. For paths
with k edges (here k=3) bidrectional path tracing provides k + 2
sampling techniques. Vertex merging brings k− 1 new techniques

corresponding to merging at the k-1 di�erent interior path
vertices. Used with permission from [GKDS12]

3.7.1 Vertex Connections

The vertex connection part of the algorithm is the same as vertex connections
in BPT. Here we will just de�ne PDF of a vertex connected path with s light
and t camera vertices as

pvc,s,t(x) = ps(y)pt(z) (3.22)

where y and z are light and camera sub-path PDFs.

3.7.2 Vertex Merging

3.7.2.1 Path PDF

Vertex merging path sampling technique determines if light and camera sub-
path vertices (end therefore the sub-paths leading up to these vertices) should
be merged by checking if camera path vertex is within the acceptance ra-
dius (Fig. 3.5 right). We will consider the light path vertex where this is evalu-
ated as x∗s, the endpoint of light sub-path with vertices x0x1 . . . xs−1x

∗
s

3.7 Vertex Connection and Merging 23

Figure 3.5: Left: Photon mapping can be considered to sample extended
paths x∗ of length k that has k+2 vertices, photons x∗s in
neighborhood of xs are used to estimate incident radiance.

Right: To remain compatible with the path integral framework
for BPT, vertex merging is interpreted to sample regular paths x
of same length k, but with k+1 vertices. Path is accepted if x∗s

lies within distance r from xs. Used with permission
from [GKDS12]

Consider a vertex xs of the camera sub-path xs . . . xk with t vertices where xk
is on the camera sensor and xs has landed near the light sub-path vertex x∗s. If
x∗s is within the acceptance radius then the following path is constructed

xk = x0 . . . xs−1xs . . . xk (3.23)

and the path PDF is

pvm,s,t(x) = pvc,s,t(x) · Pacc,s,t(x) (3.24)

where Pacc,s,t(x) is the path acceptance probability. Note that there is no x∗s in
the path. PDF was expressed this way to allow using this technique together
with vertex connection sampling in MIS estimator which requires both PDFs to
be expressed with respect to the same area measure. x∗s is used as the acceptance
condition, it is interpreted as the Monte Carlo sample used to estimate the
integral and serves as the Russian Roulette random variable. [GKDS12]
The acceptance probability is de�ned as

Pacc(x) = Pr(‖xs − x∗s‖ < r) =

∫
AM

p(xs−1 → x)

≈ πr2p(xs−1 → x∗s),

(3.25)

where AM = {x ∈M | ‖xs−x‖ < r} is the set of surface points within distance r
of xs. p(xs−1 → x∗s) is the probability of sampling a vertex x∗s from xs−1 and is
multiplied with the circle area around xs. The result is obtained using common
assumptions used in progressive photon mapping that the PDF within the circle
area (points in AM) is constant and that the surface is locally �at [GKDS12].

24 Theoretical background

This approximately gives the probability of having sampled any point within
the circle. In case x∗s comes from a specular vertex xs−1 the Pacc = 1.

3.7.2.2 Contribution function estimator

Here we brie�y describe derivation of the vertex merging contribution func-
tion estimator. For more detailed derivation and discussion we refer to the
Appendix A in the original work [GKDS12].

The measurement contribution function for vertex merging does account for x∗s
and considers contribution from an extended path(Fig. 3.5 left)

xk = x0 . . . xs−1x
∗
s, xs . . . xk. (3.26)

It is extended in the sense that it contains an additional vertex x∗s compared
to regular paths (all complete paths discussed before). The measurement con-
tribution function for extended paths (note, not vertex merging measurement
contribution) is de�ned as

f(x∗) =

Le(x0)T (x0 . . . , x
∗
s)Kr(||x∗s − xs||)fs(x∗s, xs)T (xs . . . , xk)We(xk)

(3.27)

where fs(x
∗
s, xs) = fs(xs−1 → x∗s;xs;xs → xs+1) denotes the BSDF at xs

evaluated for incoming direction xs−1 → x∗s and outgoing direction xs → xs+1.
Kr(||x∗s−xs||) is the density estimation kernel with support radius r similarly as
in photon mapping [WJ01] that weights photons depending on their proximity
to estimation point. We will use a simple Kr = 1

πr2 that weights all particles
(photons) equally.

Due to the extra vertex x∗s compared to regular paths, the vertex merging mea-
surement contribution function is de�ned as an integration of extended path
measurements over the scene surfaces M :

fvm =

∫
M

f(x∗)dA(x∗s). (3.28)

One-sample Monte Carlo estimate of fvm can be obtained using x∗s (photon) as

〈f〉vm(x) = f(x∗)
/[

p(xs−1 → x∗s)∫
AM

p(xs−1 → x)

]
= f(x∗)πr2, (3.29)

where p(xs−1 → x∗s) is the probability of sampling the x∗s on a given surface
which is normalized using integral over surface points within circle area to ob-
tain a valid surface PDF, since only points within merging radius survive the

3.7 Vertex Connection and Merging 25

Russian Roulette. The end result is obtained using same assumptions as for
path acceptance probability 3.25.

Finally the vertex merging estimator can be de�ned using the VM path PDF
pvm(x) as

〈I〉vm(x) =
〈f〉vm(x)

pvm(x)
=
f(x∗)πr2

pvm(x)
=

f(x∗)

p(xs−1 → x∗s)pvc(x)
, (3.30)

where the end result is obtained by observing that πr2 is present also in pvm
and therefore cancels out. Notice that measurement contribution function uses
an extended path, but pvc uses a regular path, thus allowing VM estimator
to be combined using multiple importance sampling with BPT. The potential
e�ciency of vertex merging stems from the fact that we can merge large number
number of vertices without the need of checking visibility between vertices as
for vertex connections.

3.7.3 Combined VCM estimator

Having de�ned vertex merging as a sampling technique for regular paths, it
can be combined with vertex connection (BPT) using the MIS multi-sample
estimator as

〈I〉V CM =
1

nvc

nvc∑
l=1

∑
s≥0,t≥0

wvc,s,t(xs,t)〈I〉V C(xs,t) +

1

nvm

nvm∑
l=1

∑
s≥2,t≥2

wvm,s,t(xs,t)〈I〉VM (xs,t)

(3.31)

where nvc is the number of light sub-paths whose vertices are connected to
vertices of one camera sub-path for a given pixel estimate (number of samples or
path pairs for the VC/BPT estimator 3.21), nvm is the total number of light sub-
paths (samples for VM estimator), wvc,s,t and wvm,s,t are the power heuristic
weights. The sum variables for VM estimator start at 2 since both light and
camera sub-paths need to have at least 2 vertices (no need to merge vertices on
light source and camera). The power heuristic weight for the technique (v, s, t)

26 Theoretical background

where v ∈ {vc, vm} is

wv,s,t(x) =
nβvp

β
v,s,t(x)

nβvc
∑

s′≥0,t′≥0

pβvc,s′,t′(x) + nβvm
∑

s′≥2,t′≥2

pβvm,s′,t′(x)

=
1

nβvc
nβv

∑
s′≥0,t′≥0

pβ
vc,s′,t′ (x)

pβv,s,t(x)
+ nβvm

nβv

∑
s′≥2,t′≥2

pβ
vm,s′,t′ (x)

pβv,s,t(x)

(3.32)

The weight takes into account all possible ways of sampling x with vertex con-
nection (left side sum) and merging (right side sum) by considering all pairs of
light and camera sub-paths with s′ and t′ vertices. If path constructed by other
(s,t) technique will have a larger PDF, the weight of the given path will get
scaled down.

As pointed out in [GKDS12] the images produced by the combined algorithm
will contain systematic error (bias) in the form of blur due to vertex merging. It
can be made consistent 3.5.1 by progressively reducing the merging radius r and
accumulating the resulting images. The proposed radius reduction technique by
the original paper is

ri = r1

√
iα−1 (3.33)

where r1 is the initial radius and α ∈ (0, 1) is a user parameter that controls ra-
dius reduction rate. The authors show that optimal convergence rate is achieved
using α = 2/3.

3.7.4 E�cient path weight evaluation

As it can be seen in the power heuristic formula 3.32 the weight evaluation
requires computing PDFs for all other paths. In the technical report of the
reference implementation Georgiev et al. [Geo12] proposed an e�cient recursive
approach to accomplish this. It is quite extensive, therefore we will not describe
it here, we will only point to the key factors useful for understanding it.

The approach proposed by [Vea98] for BPT (the VC sum, on the right in the
denominator of 3.32) was to iterate once over light and camera sub-path vertices
and accumulate PDF fractions. This approach is suboptimal since every time a
sub-path is reused, the same terms are recomputed (and accessed in memory).
For example, for light sub-paths with 3 and 4 vertices, the PDFs of �rst 3 vertices
will be the same. This could be a signi�cant overhead for vertex merging which
relies heavily on sub-path reuse.

3.7 Vertex Connection and Merging 27

Suppose we have sampled a path with s = 4 light and t = 2 camera vertices

yszt ≡ y0y1y2y3z1z0 ≡ x0x1x2x3x4x5x6 ≡ xk. (3.34)

The PDF for such path is

−→p 0(y) . . .−→p 3(y)−→p 1(z)−→p 0(z) (3.35)

where −→p denotes a forward PDF with respect to the path �growth� direction
(light and camera paths grow towards each other, i.e. in opposite directions).
As 3.34 shows, the light and the camera path abbreviations y and z are only
for convenience. We can similarly express z1z0 as y4y5, and use reverse PDFs
←−p 4(y)←−p 5(y) to describe their sampling probabilities (they still are part of the
camera path). The complete path PDF with respect to light path growth (light
propagation) direction then is

−→p 0
−→p 1
−→p 2
−→p 3
←−p 4
←−p 5 (3.36)

Consider a possible alternative path created using these same vertices with tech-
nique with s′ = 3 t′ = 3, its PDFs then is

−→p 0
−→p 1
−→p 2
←−p 3
←−p 4
←−p 5 (3.37)

The VC sum fraction (right sum in the denominator of 3.32) for these paths
then is −→p 0

−→p 1
−→p 2
←−p 3
←−p 4
←−p 5

−→p 0
−→p 1
−→p 2
−→p 3
←−p 4
←−p 5

=
←−p 3
−→p 3

(3.38)

Similarly the fraction term for alternative technique with s′ = 2 and t′ = 4 is

−→p 0
−→p 1
←−p 2
←−p 3
←−p 4
←−p 5

−→p 0
−→p 1
−→p 2
−→p 3
←−p 4
←−p 5

=
←−p 2
←−p 3

−→p 2
−→p 3

(3.39)

We can observe that most of the terms cancel out and the ones that remain are
for vertices that use PDFs of di�erent sampling directions. If we only consider
alternative techniques with s′ < s all the VC fraction sum is

←−p 0
←−p 1
←−p 2
←−p 3

−→p 0
−→p 1
−→p 2
−→p 3

+
←−p 1
←−p 2
←−p 3

−→p 1
−→p 2
−→p 3

+
←−p 2
←−p 3

−→p 2
−→p 3

+
←−p 3
−→p 3

(3.40)

For techniques with s′ > s the VC fraction sum is

−→p 4
−→p 5

←−p 4
←−p 5

+
−→p 4
←−p 4

(3.41)

The sums 3.40 and 3.41 represent the terms that can be partially evaluated
when tracing respectively light and camera sub-paths. Partially because some

28 Theoretical background

of the terms depend on vertices that are not yet known during the tracing stage,
for example −→p 4 in the camera sum 3.41 represents the probability of sampling
a camera path vertex y4 ≡ z1 from the light path endpoint y3.
The sum 3.40 can be expressed recursively as

wvc,0 =
←−p 0
−→p 0

wvc,i =
←−p i
−→p i

(1 + wvc,i−1)

(3.42)

A similar idea as demonstrate above is used in [Geo12] to derive the full recursive
quantities for both the VC and VM path weights. As discussed in the example
with −→p 4, there are terms that depend on yet unknown quantities, therefore it is
not possible to fully precompute these sums for each sub-path as we trace. But
it is possible to split the computation and precompute using all the terms that
are known and complete the evaluation of these recursive quantities once the
vertices are connected and merged. The resulting approach is to precompute
3 recursive quantities dVC, dVM and dVCM for each path vertex that enables
e�cient computation of path weight using only information stored at the vertices
being connected or merged.

Chapter 4

Implementation

4.1 OptiX

OptiX is a general purpose ray tracing engine provided by Nvidia that builds on
CUDA's parallel computation capabilities [PBD+10]. We chose to use it for our
implementation since allows to focus on the algorithm rather than optimizations
for GPU architectures. OptiX requires developers to provide a set of programs
(similarly to shader programs in OpenGL and DirectX) that get called at speci�c
places in the pipeline and allows to implement desired algorithms. The main
types of programs are:

• Ray generation - is the entry point of the pipeline. It is expected to
generate rays and possibly provide arbitrary payload data for them. There
can be multiple entry points with di�erent ray generation programs that
can be used to implement multi-pass algorithms;

• Intersection - gets called to determine intersections with arbitrary types
of geometry;

• Bounding box - gets called to compute axis-aligned bounding box for
geometry during acceleration structure build;

• Closest hit - gets called when closest ray intersection has been found.
This is the place where object shading typically will be done;

30 Implementation

• Any hit - allows to check if a ray intersects anything. Typically used for
shadow rays;

• Miss - gets called if a ray does not hit any geometry;
• Exception - gets called when exception such as stack over�ow or an
invalid ray has been encountered.

OptiX consists of host-side and device-side APIs. The host side API provides
functions to create and con�gure OptiX context, load and bind programs, create
materials, geometry, to de�ne acceleration structure, create data bu�ers and tex-
tures and eventually launch the ray generation program. The devide-side API
used in OptiX programs provides access to special functions such as reporting
ray-object intersections, tracing a ray, and also many optimized utility func-
tions common in rendering algorithms such as hemisphere sampling routines.
These programs are CUDA kernels and therefore can leverage also functionality
provided by CUDA framework.

The programs get compiled into Parallel Thread Execution functions (.PTX �le)
which is a virtual assembly language and implements low-level virtual machine
similar to the open-source LLVM 1 [PBD+10]. The PTX is de�ned from the
perspective of a single thread, thus gives the OptiX runtime the ability to manip-
ulate and optimize the resulting code. This is performed before the �rst context
launch after all OptiX programs have been loaded. OptiX runtime performs
Just-In-Time (JIT) compilation, this involves combining all provided programs
into one or more kernels, performing optimizations speci�c to GPU architec-
ture used on a given machine, analyzing scene graph to identify data-dependent
optimizations.

As shown by Aila [LA09] [ALK12], currently a monolithic mega-kernel is con-
sidered the best approach since it minimizes context launch overhead. OptiX
currently favors this approach and requires all function calls to be inlined and
may fail at runtime during JIT compilation if done otherwise.

4.2 OppositeRenderer

Instead of writing everything from scratch it was decided to extend an existing
OptiX based renderer OppositeRenderer 2 that contains implementations of the
progressive photon mapping (PPM) and the path tracing (PT), scene loading
capabilities, an interactive interface and a support for network based multi-
workstation rendering. It was hoped that it may be possible to leverage GPU

1http://llvm.org/
2http://apartridge.github.io/OppositeRenderer/

http://llvm.org/
http://apartridge.github.io/OppositeRenderer/

4.2 OppositeRenderer 31

the grid data structures used in PPM for light vertex storage for use in Vertex
Merging. Here were brie�y describe the renderer and its project structure. For
more details and the user guide we refer the reader to the work of the author
Stian Pedersen [Ped13]. Figure 4.1 shows the interface of the renderer.

Figure 4.1: OppositeRenderer iterface

The solution for the Windows application is built using Microsoft Visual Studio
and uses QT Framework 3. It is modular and consists of �ve C++ projects:

• RenderEngine - a library that contains all the functionality responsible
for rendering an image using a single GPU;

• Standalone - an application that uses RenderEngine to render a scene
• Server - an application that uses RenderEngine to render a scene re-
quested by a connected Client and sends the renderer image to it over the
network. There can be multiple Server instances running on a machine,
thus allowing to leverage multiple GPUs;

• Client - an application that connects to one or more Servers over the
network and controls the rendering process;

• Application - contains common functionality for Standalone, Server and
Client projects, such as parts of GUI and scene loading using Asset Import
Library (Assimp) 4.

3http://qt-project.org
4http://assimp.sourceforge.net

http://qt-project.org
http://assimp.sourceforge.net

32 Implementation

The core rendering related functionality of the RenderEngine is in the Op-
tixRenderer class. It initializes and binds OptiX programs, bu�ers and launches
context entry point for the desired algorithm. The Scene class loads textures,
creates materials, geometry and the OptiX scene graph from scene representa-
tion of Assimp.

4.3 The VCM algorithm

In this section we provide an overview of the VCM algorithm implementation.
Due to various issues experienced during the development we were severely
delayed, as a consequence we managed to implement the vertex connection part
of the algorithm which is a bidirectional path tracer, but vertex merging part
is missing, although some parts essential for it such as recursive MIS weight
computation are done. Some of the issues are accounted in the Preface , therefore
we will not repeat them again. The author plans to continue working on the
project and implement the vertex merging as well, therefore in this section
for completeness we consider the full VCM algorithm. The Fig. 4.2 and the
psoudocode listing 1 gives an overview of the algorithm.

Figure 4.2: Stages of the VCM algorithm. Used with permission
from [Geo12]

The rendering is performed in two stages. In the �rst stage we trace light sub-
paths from light sources and store their vertices (lines 3-17) by performing a

4.3 The VCM algorithm 33

Algorithm 1 Pseudocode for VCM algorithm given a merging radius r and
numLightPaths = numPixels, estimate 3.31 sample count nvc = 1 and
nvm = numLightPaths

1: procedure VertexConnectionAndMerging(r)
2: . 1. Light path sampling
3: for i = 1 to numPixels do

4: lightV ertex = TraceRay(SampleLightPoint())
5: while lightV ertex is valid do

6: if lightV ertex is not specular then

7: if lightV ertex is not �rst then

8: lightPaths[i] += lightVertex
9: end if

10: . Vertex connection (VC) - project light vertex to camera pixel
11: lightV ertexOnCamera = ConnectToCamera(lightVertex)
12: Accum(lightV ertexOnCamera, V C, r, GetPixel(lightV ertexOnCamera))
13: end if

14: lightV ertex = ContinueRandomWalk(lightV ertex)
15: end while

16: end for

17: rangeStruct = BuildRangeSearchStruct(lightPaths)
18: . 2. Camera path sampling
19: for j = 1 to numPixels do

20: cameraV ertex = TraceRay(SamplePixel(j))
21: while cameraV ertex is valid do

22: . Vertex connection (VC) - random light hit, unidirectional sampling
23: if cameraV ertex is emissive then

24: Accum(cameraV ertex, V C, r, j)
25: end if

26: . Vertex connection (VC)
27: for lightV ertex in lightPaths[j] ∪ SampleLightPoint() do

28: Accum(Connect(cameraV ertex, lightV ertex), V C, r, j)
29: end for

30: . Vertex merging (VM)
31: for lightV ertex in RangeSearch(rangeStruct, cameraV ertex, r) do

32: Accum(Merge(cameraV ertex, lightV ertex, r), VM, r, j)
33: end for

34: cameraV ertex = ContinueRandomWalk(cameraV ertex)
35: end while

36: end for

37: end procedure

38:
39: . Accumulates the pixel measurement due to a given path
40: procedure Accum(path, technique, r, i)
41: contrib = MeasurementContribution(path, technique, r)
42: pdf = Pdf(path, technique, r)
43: weight = PowerHeuristic(path, technique, pdf)
44: if technique = V C then

45: image[i] += weight ∗ contrib/pdf
46: else

47: image[i] += weight ∗ contrib/(pdf ∗ numLightPaths)
48: end if

49: end procedure

34 Implementation

random walk. We use the same number of light sub-paths as the number of
pixels. The vertices are stored only on non-specular surfaces since only these
can be connected or merged, we also do not store the �rst path vertex to reduce
correlation (lines 6-9), instead connection points on light sources are sampled
directly. Specular BSDFs contain delta distribution [PH10] which means that
the PDF for any arbitrary direction is zero, except for exactly the one of specular
re�ection direction. We also need to connect the light vertices to the camera
(lines 11-12), this corresponds to path sampled with technique (s > 0, t = 1)
(one camera path vertex). This step possibly could be done after all light sub-
paths are traced as shown in Fig. 4.2, but we choose to do it while tracing each
path. We project the vertex to camera image plane to obtain the origin position
of the ray that would have hit the current light vertex position. The procedure
Accum (lines 40-49) computes the path contribution estimate, evaluates MIS
weight and contribution to the pixel. After the tracing the range search data
structure should be built for the vertices for use in vertex merging (line 18).
Same as the reference implementation of VCM [Geo12] we ignore light paths
that randomly hit camera lens, technique (s > 0, t = 0), since the probability of
this happening is very low or even zero in case of pinhole camera model where
the camera aperture is described as a point.

In the second stage we trace camera sub-path for each pixel. Upon sampling
a vertex on a light source, we accumulate the emitted radiance (lines 21-23),
this corresponds to a path sampled with the technique (s = 0, t > 0). If the
sampled vertex is not on a light source, it is connected to all vertices of one light
sub-path (lines 27-29), it corresponds to the technique (s > 1, t > 1). Since we
do not store the �rst vertex of a light path, we connect to a randomly sampled
point on a light source, it corresponds the technique (s = 1, t > 1). Finally we
merge vertices that lie within the radius r from the cameraV ertex (lines 31-33),
it corresponds to the technique (s > 1, t > 1).

4.4 BPT with recursive MIS weights

In this section we present the implementation of the bidirectional path tracing
with recursive MIS weight computation that was implemented as part of work
on VCM. This can be seen as a special case of the full VCM algorithm when
having nvm = 0 samples from vertex merging estimator 3.31. Since our goal
was the complete VCM, this abbreviation is used every in the source code. Our
extended version of the OppositeRender can be found on GitHub 5. To allow
evaluating the extent of author's contributions, the author's name was added to
the contributors list in headers of modi�ed �les.

5http://github.com/voldemarz/OppositeRenderer

http://github.com/voldemarz/OppositeRenderer

4.4 BPT with recursive MIS weights 35

4.4.1 Structure

We brie�y described the structure of the OppositeRenderer solution in the sec-
tion 4.2 and mentioned that the rendering related code in is RenderEngine
project. The core of our added code is located in the "RenderEngine/ren-
derer/vcm" subdirectory of the renderer. We also made numerous additions,
modi�cations and �xes all around in the existing solution �les.

Our implementation follows quite closely the reference implementation of VCM
in SmallVCM 6. We also used the recursive MIS term computation proposed
in the technical report of SmallVCM [Geo12], it requires tracking of 3 quanti-
ties dV C, dV CM , dVM (dVM is not used for BPT) with the path state and
storing with each path vertex, this later allows to compute MIS weight without
traversing all path vertices. All the �tech. rep. (#)� comments with equation
numbers refer to that paper. We also forked the SmallVCM project on GitHub 7

and used as a veri�cation tool for our implementation by setting up same scene
dimensions, light and material properties.

The following list summarizes main �les and functions implementing the algo-
rithm and how they relate to the pseudocode:

• VCMLightPass.cu - light pass entry point program, contains the while
loop that corresponds to the �rst stage described in pseudocode 1;

• VCMCameraPass.cu - camera pass entry point program, contains the
while loop that corresponds to the second stage described in pseudocode 1;

• mis.h - recursive MIS quantity initialization and update functions;
• vcm.h - contains the core parts of the implementation:

� lightHit() - is called from closest hit programs (material shaders),
corresponds to the inner part of the light tracing loop. If a ray
survives the Russian Roulette, a new ray direction is sampled using
the surface BSDF;

� connectCameraT1() - is called from lightHit(), corresponds to lines
11-12 in the pseudocode;

� cameraHit() - is called from closest hit programs (material shaders),
corresponds to the inner part of the camera tracing loop. If a ray
survives the Russian Roulette, a new ray direction is sampled using
the surface BSDF;

� connectLightSourceS0() - is called from Di�useEmitter material clos-
est hit program (pseudocode line 24);

� connectLightSourceS1() - is called from cameraHit(), connects cam-
era sub-path vertex to sampled point on a light source (psudocode

6http://www.smallvcm.com
7http://github.com/voldemarz/SmallVCM

http://www.smallvcm.com
http://github.com/voldemarz/SmallVCM

36 Implementation

lines 27-28);
� connectVertices() - is called in from cameraHit() from a loop over
light sub-path vertices being connected to the given camera sub-path
vertex (psudocode lines 27-28)

� sampleScattering() - is called by lightHit() and cameraHit() to sample
a new ray direction using the BSDF. The tracing is possibly stopped
here using the Russian Roulette and a corresponding �ag set in the
ray payload (psudocode lines 14 and 34).

When OptiX launches an entry point program, it creates many threads that
execute the same program in parallel. The number of threads is determined by
the launch dimensions, which in our case is equal to output image dimensions.
Both light and camera pass entry point programs initialize a ray and its payload,
and then traces the ray in a loop until the stopping �ag is set in the ray payload.
The ray payload is a data structure that is passed along with the ray and the
main information it contains is

• ray origin;
• ray direction;
• path throughput;
• path length;
• accumulated full path contribution due to vertex connections;
• recursive MIS quantities;
• boolean �ag identifying if tracing should be stopped.

The ray origin and direction is updated in lightHit() and cameraHit() functions
called by closest hit programs (materials shaders) if it survives the Russian
Roulette. The tracing is also stopped if the ray fails to hit geometry, in this
case a miss program is called that sets the stopping �ag.

We used an iterative approach for casting rays from the loop in entry point
program instead of doing recursively and casting new rays from closest hit pro-
grams to avoid issues due stack size limitations. Doing it recursively requires
increasing stack size for threads, which signi�cantly degrades performance and
increases memory requirements. An iterative approach is generally the preferred
way in OptiX and most OptiX SDK samples use the same approach.

4.4.1.1 Passing bu�ers

As described above the core of the implementation is in the vcm.h header �le.
The functions de�ned in this �le need access to various bu�ers. OptiX doesn't
allow using bu�er pointers since they are subject to being moved if required for

4.4 BPT with recursive MIS weights 37

memory optimization, instead bu�er data is accessed via handles which are not
allowed to be passed as function parameters. Fortunately since version 3.5 it is
possible to construct a bu�er handle using bu�er ID, which can then be used to
access data [Cor14]. We used this new feature to pass bu�er IDs to functions
de�ned in vcm.h. This allowed to keep all related code together, thus it is easier
to manage and comprehend.

4.4.2 BSDF and BxDF classes

As we described in section 3.2 the re�ection of a surface is described by its
BRDF (or BSDF in general case that includes transmission). Scattering from
realistic surfaces if often best described by a mixture of multiple BSDFs (re�ec-
tion models). The existing material implementations in the renderer performed
contribution computation in the closest hit programs. To implement vertex con-
nections we had to be able to store material information with the vertex and
evaluate BSDF when connecting vertices. Therefore, we added two separate
classes that allow us to characterize a material by combining multiple re�ection
models and store the necessary information together with vertices:

• BxDF - a base class that should be derived by an implementation of a
re�ection model

• BSDF - a class that describes a material re�ection by combining multiple
BxDFs

The BxDF and BSDF classes are customized versions of those found in PBRT 8,
the companion renderer for Physically Based Rendering textbook [PH10]. These
classes provide methods for evaluating the re�ected radiance and the PDF for
given incoming and outgoing directions, and also to sample a new direction.
When the BSDF sampling method is called the re�ection model for sampling is
chosen uniformly.

To add support for materials present in the renderer (Di�use, Glass, Mirror, Tex-
ture) we implemented the Lambertian, Specular Re�ection and Specular Trans-
mission re�ection models following [PH10]. We also added the Modi�ed Phong
re�ection model [LW94] similarly as in SmallVCM and used it in combination
with Lambertian to create a Glossy material. Currently, it only works with our
BPT implementation, the path tracer and photon mapper just use the di�use
component.

8http://www.pbrt.org

http://www.pbrt.org

38 Implementation

To simplify the implementation we have the VcmBSDF class derived from the
BSDF class that additionally stores the incident direction (this simpli�es reverse
PDF evaluation). It also picks BxDFs to sample with probability relative to their
re�ectance.

One caveat is that CUDA doesn't support virtual functions, therefore to work
around this and make BSDF able to call the actual re�ectance model imple-
mentation class methods we used a preprocessor macro that at compilation
time expands to an if-else block which checks BxDF type ID, casts pointer to
the target type and then calls the correct method.

When a ray hits geometry, its material closest hit (shading) program is called. At
this point an instance BSDF is created and initialized using BxDFs that describe
the material. Here we can potentially initialize any sophisticated BxDF, we
could even pass an ID of a data bu�er if it needs one for evaluation and sampling.
This BSDF instance is then passed to lightHit() or cameraHit() functions as
explained in section 4.4.1.

4.4.3 Light pass

As noted in section 4.4.1, the entry point program for the light path tracing pass
casts rays and material closest hit programs call lightHit(). It updates the ray
payload MIS terms, stores a light vertex in a bu�er and connects to a camera
if the surface is not specular using function connectCameraT1(). The camera
connection results in a contribution added directly to an image output bu�er,
the receiving pixel is determined by projecting the vertex onto the image plane.
The path is possibly stopped using the Russian Roulette, if it survives a new
direction is sampled using BSDF and is set in the ray payload.

The light vertex is stored in a common bu�er which is guarded by an atomic
index counter. Vertex index pointing to the data is stored in sub-path vertex
bu�er. The light vertex data contains hit point, BSDF, throughput, path length
and recursive MIS quantities. We also have a bu�er where we count the number
of vertices each path has stored.

Storing vertices randomly in a common bu�er instead of allocating space each
sub-path, allows to lower memory requirements and removes the need for path
length limitation (at least for scenes that do not contain only mirrors). In the
end we did set a maximum path length limit to 10 for performance reasons, so
the result is not unbiased. This could be made as a user interface option to set
path length limit if any.

4.4 BPT with recursive MIS weights 39

The size of the vertex bu�er is estimated by doing a light sub-path length
estimate pass which is exactly the same as normal light pass, except no light
vertices are stored. Then we scale it up to guarantee some extra safety margin
and use it to evaluate necessary bu�er size, unless it is larger than allowed
maximum length.

Without the path length limitation, some paths reached lengths of more that
40 segments. This largely is because as a continuation probability in Russian
Roulette (RR) we use the largest RGB component of the re�ectance, and at least
one of them often is close to 1. We choose the probability this way following
the SmallVCM reference implementation with vertex merging in mind. The
reasoning behind it is to ensure that particle weight does not rise after Russian
Roulette. It is important in vertex merging (and photon mapping) for particles
to have similar weights, otherwise particles with signi�cantly larger weight than
others cause noticeable spots in the resulting image [PH10]. We tried to use
luminance as an alternative approach also proposed in SmallVCM, but it caused
noticeably more noise.

4.4.4 Camera Pass

During the camera pass material hit programs call cameraHit(). The MIS terms
are updated similarly as during the light pass. If the surface is not specular the
camera vertex is �rst connected to a random light source using the function
connectLightSourceS1() and contribution is added to the ray payload.

Next the camera sub-path vertex is connected to vertices of a light sub-path
with a matching ID using connectVertices() and the resulting path contributions
are accumulated in the payload. The ID of a path is the thread index which
corresponds to 2D index within context launch dimensions and in our case both
passes have same dimensions, i.e., number of threads. We �rst retrieve the
number of vertices the light path has stored. Then in a loop we retrieve the
vertex indices and next the vertices themselves.

If a ray hits the Di�useEmitter material, its closest hit program calls connect-
LightSourceS0 which computes the contribution from the light source.

When tracing is stopped due to Russian Roulette or missing any geometry, the
entry point program exits the loop and stores the accumulated path contribu-
tions in the output bu�er.

40 Implementation

4.4.5 Shading with geometric normals

Our current implementation is using geometric normals for shading even if shad-
ing normals are available. We do so since the use of shading normals causes
non-symmetric BSDFs as pointed out by Veach in the section 5.3 of [Vea98].
Veach also demonstrates how to solve this.

4.4.6 Final notes

The readme.md �le in the root directory of the solution contains instructions
on how to set up the development environment, the dependencies and build
the solution. The solution is con�gured to use Visual Studio 2010 toolchain for
Win32 build and Visual Studio 2012 toolchain for x64 to match the available
precompiled versions of the Qt Framework 5.2.1/5.3 with OpenGL.

The minimal required OptiX version is 3.5 and the required CUDA Tookit
version is 5.5. CUDA Toolkit 6 fails to inline VcmBSDF class sampling function
call and eventually fails to compile.

Chapter 5

Results

This chapter presents the results obtained by our implementation of bidirec-
tional path tracer. We �rst focus on the quality of the results and compare with
the reference implementation and afterwards discuss the performance. All ren-
derings were performed on a PC running Windows 8.1 x64 with Intel i7-4770K
4.0 GHz CPU, 16 GB RAM, Nvidia GeForce GTX 770 GPU (1536 CUDA cores,
1137/1189 MHz core clock , 2GB memory, 3.493 GFLOPS peak �oating point
performance).

5.1 Test scenes

As mentioned in the previous chapter we used the SmallVCM1, a reference CPU
implementation of VCM, to check correctness of our implementation. We forked
the project on GitHub2 and slightly modi�ed. We rounded the coordinates
of vertices de�ning scene geometry so it is easier duplicate the same in the
OppositeRenderer, and to allow easier comparison of values when using the
debugger. We also added few more scene variations. We duplicated the scenes
from SmallVCM with area light and point light in the OppositeRenderer. These
can be accessed through the �File→Open built-in scene� menu.

1http://www.smallvcm.com
2http://github.com/voldemarz/SmallVCM

http://www.smallvcm.com
http://github.com/voldemarz/SmallVCM

42 Results

Additionally we used two scenes that the author of OppositeRenderer used. One
is the Conference Room scene containing di�use surfaces except for a two glass
exit signs. It contains eight area light sources and two point light behind exit
signs. The other is Crytek Sponza scene that consists of textured di�use surfaces
and is illuminated by a single point lights that is positioned 60 meters above
the ground. The height of the structure is about 11 meters.

5.2 Analysis

We used identically de�ned scenes and compared the output of our implemen-
tation with the output from SmallVCM using the image processing tool Im-
ageMagick 3 for subtracting images from each other.

5.2.1 Empty Cornell Box

The Figure 5.1 shows an empty Cornell Box scene images generated by both
renderers using 200 iterations. For both renderers we account the time spent
and the number of iterations per second, for our implementation we also list the
number of light vertices stored per light path and the average execution time
of each pass. By observing results closely it is possible to see that, surprisingly,
the SmallVCM image exhibits more noise and took about 15 % more time to
compute. The sub�gure 5.1c shows a 5x scaled di�erence image.

5.2.2 Cornell Box with spheres

The Figure 5.2 shows the Cornell scene from the SmallVCM with glass and
mirror spheres that we also added to the OppositeRender.

3http://www.imagemagick.org

http://www.imagemagick.org

5.2 Analysis 43

(a) OppositeRenderer:
61 s, 3.3 iter/s,
2.41 vert/path,

0.075 s avg Light pass,
0.228 s avg Camera pass

(b) SmallVCM:
69.6 s, 2.87 iter/s

(c) SmallVCM -
OppositeRenderer

5x scaled

Figure 5.1: Comparison of empty Cornell Box scene (200 iterations, 512x512
resolution)

(a) OppositeRenderer:
86 s, 2.3 iter/s, 2.33 vert/path,

0.128 s avg Light pass,
0.3 s avg Camera pass

(b) SmallVCM:
54.8 s, 3.65 iter/s

(c) OppositeRenderer - SmallVCM
5x scaled

(d) SmallVCM - OppositeRenderer
5x scaled

Figure 5.2: Comparison of Cornell Box with spheres (200 iterations, 512x512
resolution)

44 Results

In the Figure 5.2 we can observe that both renderers produce very similar result
and that di�erences most likely are due to noise since none of the subtracted
images is signi�cantly brighter than the other suggesting that it is not due to
a some systemic error. However, the ceiling is noticeably more noisy for Small-
VCM image. Interestingly performance of the GPU implementation signi�cantly
decreased compared to the empty Cornell Box scene, but for the CPU renderer
it increased. It seems that more complicated computations due to Phong, Spec-
ular Re�ection and Refraction re�ection models cause signi�cant slowdown for
GPU. The speedup for CPU could be due the fact that the glossy �oor helps
rays bouncing from wall to escape the scene.

5.2.3 Crytek Sponza and Conference

The Figures 5.4 and 5.3 show the Conference and the Crytek Sponza scenes
after 300 iterations. In the Sponza scene point the light is quite far from building
and therefore very few rays enter the scene, slowing down the convergence.

Figure 5.3: Crytek Sponza : 1280x720 res, 300 iter, 306 s, 0.98 iter/s,
0.541 vert/path, 0.185 s avg Light pass, 0.81 s avg Camera pass

5.2 Analysis 45

Figure 5.4: Conference : 1280x720 res, 300 iter, 300 s, 1 iter/s,
1.47 vert/path, 0.37 s avg Light pass, 0.72 s avg Camera pass

5.2.4 Performance

Although Cornell Box is a simple scene, it allows us to directly compare our
Optix GPU implementation with the reference SmallVCM. As we saw, the qual-
ity of both solutions is similar with our implementation having less noise, but
performance of the GPU implementation degrades with more complicated BS-
DFs. It might be related to the scheme we used to emulate virtual functions
that result in branches and therefore thread divergence. This requires deeper
investigation and possibly testing using BSDFs with more than two BxDFs to
see the e�ect.

We observed that the GPU and the reference CPU implementation perform
roughly the same, which means that unfortunately the GPU implementation
did not bring the expected speedup, although we have to admit that the given
CPU is also rather powerful. The VCM GPU implementation in [DKHS14] that
used highly optimized CUDA ray shooting framework, outperformed reference
CPU implementation by factor of 6-10x. In the same paper authors present
the implementation of BPT that was based on the state-of-art streaming BPT
approach of Van Antwerpen [VA11] with thread compaction and sample regen-
eration. The test scene was also Crytek Sponza, though with slightly di�erent
texture set and also it is not clear what was the con�guration of light sources.
However we can still attempt to compare their results to ours.

46 Results

Davidovi£ [DKHS14] proposed improvements in form of uniform light vertex
sampling and optimized loop routines. The resulting algorithm outperformed
the state-of-are roughly by a factor of 2.5, using the same GPU (GTX 580,
Fermi architecture) and test scene (Crytek Sponza). The proposed approach
produced 8.66 million samples (light-camera sub-path pairs) compared to the
previous state-of-art 3.64 million samples. Authors also tested the newer Kepler
architecture GPU GTX 680, which reached 84% of the GTX 580 performance.
This allows to roughly estimate that Van Antwerpen's implementation would
reach about 3.06 million samples on the given GPU. The results are summarized
in the Figure 5.5a.

GPU (arch) 106 samples
GTX 580 (Fermi) 3.64 [VA11]
GTX 580 (Fermi) 8.66 [DKHS14]
GTX 680 (Kepler) 7.27 [DKHS14]
GTX 680 (Kepler) 3.06 [VA11] expected

(a) Streaming BPT

GPU (arch) 106 samples
GTX 770 (Kepler) 0.53

(b) Our BPT

Figure 5.5: StreamingBPT performance in Crytek Sponza for Fermi and
Kepler GPU architectures compared to our OptiX BPT

The GTX 680 used in [DKHS14] is very similar to GTX 770 used by us. They
both are based on the Kepler architecture, have the same number or CUDA
cores, and perform very similarly in benchmarks. The only notable di�erence
is generally slightly higher memory frequency on GTX 770 (varies model by
model). This allows us to compare our result to that achieved in [DKHS14].
We placed the camera and the light source roughly in the same position and
achieved the performance of 0.53 million samples per second. That is roughly
6 times slower than would be expected for Van Antwerpen's implementation on
the given GPU.

Our result is in line with Van Antwerpen's �ndings on SIMD e�ciency. He

5.3 Final comments 47

observed that the average fraction of active threads in a GPU warp (a set threads
executing the same kernel) for the naive BPT with no thread compaction and
sample regeneration was 17% during connection phase and 29% during random
walk phase. It's not clear how well OptiX handles thread compaction, but it
seems that exactly the poor SIMD e�ciency is causing the most of performance
di�erence. Some of it likely is due to less coherent memory access patterns than
in state-of-art solutions.

5.3 Final comments

For anyone trying using this version of the renderer, we would like to note that
while our results are close to renderings of SmallVCM, the existing Path Trac-
ing and Progressive Photon Mapping implementations in the OppositeRenderer
seem to produce images that are too bright which suggests there are issues in
their implementations. The Figure 5.6 shows the comparison.

(a) OppositeRenderer - BPT (b) OppositeRenderer - PT

Figure 5.6: Comparison of empty Cornell Box scene (200 iterations, 512x512
resolution)

We also would like to comment on performance of on the �rst context launch
after the renderer is started which can take 2 minutes or more, so that po-
tential users are aware. During the development we had set the environment
variable CUDA_CACHE_DISABLE=1 which disables compiled kernel caching
by CUDA runtime. It also a�ects OptiX and therefore it was always performing
new JIT compilation every time renderer application was restarted instead of
reusing compiled versions from cache. This way we tried to identify what is

48 Results

causing slow the slow context compilation. On our relatively powerful worksta-
tion the �rst launch can take even up to two minutes. It seems to happen when
scene uses multiple materials (such as scene with two sphere and glossy �oor)
and OptiX tries to analyze/optimize something in regards to them.

Chapter 6

Future Work

There are multiple opportunities for improvement of the current implementa-
tion. The most obvious of course is addition of vertex merging. As indicated
in the section 4.4.5 the current implementation does not handle non-symmetry
caused by shading normals. This could be solved following Veach [Vea98].

A potential improvement could come from use of uniform vertex sampling as
proposed in [DKHS14]. This would mean connecting some predetermined num-
ber of random light vertices from the set of all vertices, instead of connecting
to vertices of one light sub-path. The number of connections could be the av-
erage number of vertices in a light sub-path. This could improve performance
by avoiding cases when most of the threads are stalling and waiting on some
others to �nish connecting to light sub-paths that are much longer than others.
Also there would be fewer memory accesses since we would use only one bu�er
instead three (vertex bu�er, vertex index bu�er for a path, path vertex count
bu�er) in the current solution.

The same paper [DKHS14] also proposes loading light vertex bu�er using texture
units in Array of Structure (AoS) layout for optimal performance.

As mentioned in the section 4.4.4 we added a path length limitation since Rus-
sian Roulette was not very e�ective in stopping the path due to use of maximum
component of the re�ectance as the continuation probability. As a solution to

50 Future Work

this we could use the approach suggested in [PH10, page 811] to use the ratio
of a particle weight luminance after the scaling with a BSDF and the particle
weight luminance before scaling with the BSDF. In case the new weight is much
lower, the continuation probability will be low as well. Also the particle weight
should regain its original value after the division with the ratio based probability
if it survives Russian Roulette.

There are also multiple improvements that could be added to the OppositeRen-
derer. One is to add support for loading Glossy materials as part of external
scenes. Also it should be implemented for path tracing and photon mapping.
It should be simple to add support for using our BPT solution in Client-Server
setup. We could add a con�guration dock that allows to control the max path
length, number of light sub-paths, types of techniques (s,t) for which to ac-
count contributions. Also OptixRenderer class could be made as an interface
class, and move every algorithm to individual classes, that could improve initial
context launch time which currently can be quite long. Finally, using the new
BSDF and BxDF classes, more sophisticated materials could be added.

Chapter 7

Conclusions

The thesis has provided an overview of theory related to global illumination
concepts and described the Vertex Connection and Merging algorithm. We also
discussed how to e�ciently compute Multiple Importance Sampling weights re-
cursively that allows to compute a full path MIS weight using only any two given
vertices being connected or merged. In the chapter 4 we described the result
of our work towards implementation of the VCM in the form of Bidirectional
Path Tracer with recursive MIS weight computation. It is available online in
GitHub1. The chapter 5 presented the achieved results in form of sample ren-
derings and comparison with the reference SmallVCM renderer. It shows that
our results are practically identical to SmallVCM and di�erences seem to be
due to noise. The performance of the implementation is about the same as the
reference CPU implementation, which is slower than expected. However it is
in line with Van Anwerpen's [VA11] observations about SIMD ine�ciencies for
BPT implementations without thread compaction and sample regeneration. In
our case it is handled by OptiX framework. The chapter 6 lists multiple possi-
ble improvements for the current implementation such as use of uniform vertex
sampling which could improve SIMD e�ciency by avoiding thread stalling in
cases when some threads connect to much longer light sub-paths than average.

1https://github.com/voldemarz/OppositeRenderer

https://github.com/voldemarz/OppositeRenderer

52 Conclusions

Bibliography

[ALK12] Timo Aila, Samuli Laine, and Tero Karras. Understanding the
e�ciency of ray traversal on GPUs � Kepler and Fermi adden-
dum. NVIDIA Technical Report NVR-2012-02, NVIDIA Corpo-
ration, June 2012.

[Ant10] Dietger Van Antwerpen. Unbiased physically based rendering on the
gpu, 2010.

[Ant11] Dietger Van Antwerpen. Recursive mis computation for streaming
bdpt on the gpu. Technical report, 2011.

[CHH02] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine.
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,
pages 37�46, 2002.

[Cor] Nvidia Corporation. About cuda.
http://developer.nvidia.com/about-cuda.

[Cor14] Nvidia Corporation. NVIDIA R© OptiXTM Ray Tracing Engine Pro-
gramming Guide, June 2014.

[DKHS14] Tomá² Davidovi£, Jaroslav K°ivánek, Milo² Ha²an, and Philipp
Slusallek. Progressive light transport simulation on the gpu: Sur-
vey and improvements. ACM TRANSACTIONS ON GRAPHICS,
33(3):�, 2014.

[Geo12] Iliyan Georgiev. Implementing vertex connection and merging. Tech-
nical report, Saarland University, 2012.

54 BIBLIOGRAPHY

[GKDS12] Iliyan Georgiev, Jaroslav K°ivánek, Tomá² Davidovi£, and Philipp
Slusallek. Light transport simulation with vertex connection and
merging. ACM TRANSACTIONS ON GRAPHICS, 31(6):�, 2012.

[Gro] Khronos Group. Opencl. http://www.khronos.org/opencl.

[GSK11] Iliyan Georgiev, Philipp Slusallekz, and Jaroslav K°ivánek. Bidirec-
tional light transport with vertex merging. SIGGRAPH Asia 2011
Sketches, SA'11, page 27, 2011.

[Hav00] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis,
Department of Computer Science and Engineering, Faculty of Elec-
trical Engineering, Czech Technical University in Prague, November
2000.

[HJ09] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive
photon mapping. ACM TRANSACTIONS ON GRAPHICS, 28(5):�
, 2009.

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Pro-
gressive photon mapping. International Conference on Computer
Graphics and Interactive Techniques, pages 1�8, 2008.

[Kaj86] James T. Kajiya. The rendering equation. In Computer Graphics,
pages 143�150, 1986.

[KGF+11] Arjan Kuijper, Thomas Gierlinger, Dieter Fellner, Andre Stork, and
Rafael Hu�. A comparison of xpu platforms exempli�ed with ray
tracing algorithms. Proceedings - 2011 13th Symposium on Virtual
Reality, SVR 2011, pages 1�8, 2011.

[KZ11] Claude Knaus and Matthias Zwicker. Progressive photon mapping:
A probabilistic approach. ACM TRANSACTIONS ON GRAPH-
ICS, 30(3):�, 2011.

[LA09] Samuli Laine and Timo Aila. Understanding the e�ciency of ray
traversal on gpus. Proceedings of the HPG 2009: Conference on
High-Performance Graphics 2009, pages 145�150, 2009.

[LE10] H. Ludvigsen and A. C. Elster. Short paper real-time ray tracing
using nvidia optix, 2010.

[LW94] Eric P. Lafortune and Yves D. Willems. Using the modi�ed phong
re�ectance model for physically based rendering. Technical report,
1994.

[LWS93] E. P. Lafortune, Y. D. Willems, and H. P. Santo. Bi-directional path
tracing. 1993.

BIBLIOGRAPHY 55

[PBD+10] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich,
Jared Hoberock, David Luebke, David McAllister, Morgan McGuire,
Keith Morley, Austin Robison, and Martin Stich. Optix: A general
purpose ray tracing engine. ACM Transactions on Graphics, August
2010.

[Ped13] Stian Aaraas Pedersen. Progressive photon mapping on gpus. Mas-
ter's thesis, 2013.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Sec-
ond Edition: From Theory To Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2010.

[PJH12] Jacopo Pantaleoni, Henrik Wann Jensen, and Toshiya Hachisuka.
A path space extension for robust light transport simulation. ACM
Transactions on Graphics, 31(6):�, 2012.

[RDGK12] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan
Kautz. The state of the art in interactive global illumination. COM-
PUTER GRAPHICS FORUM, 31(1):160�188, 2012.

[SFD09] Martin Stich, Heiko Friedrich, and Andreas Dietrich. Spatial splits
in bounding volume hierarchies. In Proceedings of the Conference on
High Performance Graphics 2009, HPG '09, pages 7�13, New York,
NY, USA, 2009. ACM.

[VA11] Dietger Van Antwerpen. Improving simd e�ciency for parallel monte
carlo light transport on the gpu. Proceedings - HPG 2011: ACM
SIGGRAPH Symposium on High Performance Graphics, pages 41�
50, 2011.

[Vea98] Eric Veach. Robust Monte Carlo Methods for Light Transport Sim-
ulation. PhD thesis, Stanford, CA, USA, 1998. AAI9837162.

[VGS+95] E. Veach, L. Guibas, G. Sakas, P. Shirley, and S. Muller. Bidirec-
tional estimators for light transport. 1995.

[Vor11] Ji°í Vorba. Bidirectional photon mapping. Technical report, Charles
University, 2011.

[WJ01] H. Wann Jensen. Realistic image synthesis using photon mapping.
AK Peters, 2001.

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Related Work
	2.1 Algorithms
	2.2 Applications to GPU

	3 Theoretical background
	3.1 Radiometry
	3.1.1 Radiant flux
	3.1.2 Irradiance and radiant exitance
	3.1.3 Intensity
	3.1.4 Radiance

	3.2 Surface reflection
	3.3 Probability theory
	3.3.1 Random variables
	3.3.2 Expected value and Variance

	3.4 Light transport and measurement
	3.4.1 Light transport equation
	3.4.2 Measurement equation

	3.5 Monte Carlo integration
	3.5.1 Bias and consistency
	3.5.2 Russian Roulette
	3.5.3 Importance Sampling
	3.5.4 Multiple Importance Sampling

	3.6 Path sampling methods
	3.6.1 The path integral formulation
	3.6.2 Path Tracing
	3.6.3 Bidirectional Path Tracing

	3.7 Vertex Connection and Merging
	3.7.1 Vertex Connections
	3.7.2 Vertex Merging
	3.7.3 Combined VCM estimator
	3.7.4 Efficient path weight evaluation

	4 Implementation
	4.1 OptiX
	4.2 OppositeRenderer
	4.3 The VCM algorithm
	4.4 BPT with recursive MIS weights
	4.4.1 Structure
	4.4.2 BSDF and BxDF classes
	4.4.3 Light pass
	4.4.4 Camera Pass
	4.4.5 Shading with geometric normals
	4.4.6 Final notes

	5 Results
	5.1 Test scenes
	5.2 Analysis
	5.2.1 Empty Cornell Box
	5.2.2 Cornell Box with spheres
	5.2.3 Crytek Sponza and Conference
	5.2.4 Performance

	5.3 Final comments

	6 Future Work
	7 Conclusions
	Bibliography

