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Abstract

As the operating frequency of computer systems has reached a standstill, modern
computer architectures lean towards concurrency and Multi-Processor
System-on-Chip (MPSoC) solutions to increase performance. These architec-
tures use Networks-on-Chip (NoC) to provide sufficient bandwidth for the Mes-
sage Passing Interface (MPI) among the integrated processors. T-CREST is a
Network-on-Chip based general-purpose time-predictable multi-processor plat-
form for hard real-time applications. The T-CREST NoC uses static bandwidth
allocation, which is constant throughout the execution. In this thesis we extend
the T-CREST MPI with a mode change module that enables the reallocation of
the NoC bandwidth during run-time. For this purpose we use a dedicated broad-
cast network with tree topology and a mode change controller, which is driven
by a master processor. The designed module respects the time-predictability
asset of T-CREST and manages the mode changes transparently to the tasks
execution, providing the flexibility to the programmer of the general-purpose
T-CREST platform to define the policy under which the mode changes are per-
formed. The mode change extended T-CREST platform is prototyped on an
FPGA and it is shown that the resource overhead is very small.
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Chapter 1

Introduction

This chapter starts with an introduction of Multi-Processor-Systems-on-Chip
(MPSoC) and a definition of some important parameters on Hard Real-Time
Systems. Then follows a general approach to Networks-on-Chip (NoC) im-
plementing the Message Passing Interface (MPI) of MPSoCs. Subsequently,
T-CREST, a time-predictable MPSoC is briefly presented and, finally, the pur-
pose and layout of this thesis is stated.

1.1 Multi-Processor Systems-on-Chip

During the last decades a very rapid growth has been observed in the fields of
computer science, semiconductor industry and integrated circuits design. As the
number of transistors fitting in a single chip increased according to Moore’s Law
[1] and the MOSFETs scaled according to Dennard’s scaling [2], the computa-
tional performance offered by the computer systems increased with a constant
and very fast ratio. This has been the case until approximately 2005, when the
technological advancement reached the physical limit assumed by Dennard’s
scaling. For chip manufacturing processes of 90nm and below the power and
heat dissipation with respect to the operational frequency increase dramatically
[3]. However, the amount of transistors in a single die still increases. There-
fore, modern computer architectures utilize multiple cores on the same chip,
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managing this way to continue increasing the computational performance of the
systems.

In order for the applications to take advantage of this new trend, concurrency
has to be taken into account at the programming level [4] since the sequential
portion of a program can limit significantly the possible speed-up of a parallel
application (Amdahl’s Law) [5].

1.2 Real-Time systems

Real-time systems are a special class of computer systems where the Worst Case
Execution Time (WCET) of a task has to be guaranteed, otherwise catastrophic
consequences may occur. For this reason, time-predictability is an important
factor in such systems. The WCET analysis is the method that analyses the
execution of a task taking into account both hardware and software implementa-
tions, to calculate guaranteed upper bounds on the execution time of the tasks.
In order for the WCET analysis to be feasible, all of the underlying components
of an architecture have to be time-predictable. During the last years researchers
have been focusing on hard real-time Multi-Processor-Systems-on-Chip. In such
systems the WCET analysis is a very complex task.

1.3 Networks-on-Chip

The interconnection fabric of the Message Passing Interface (MPI) between
the cores of a MPSoC is very important since it can be a bottleneck to the
data transactions between the processors, limiting the system performance. As
MPSoCs grow and they incorporate many cores, it becomes apparent that a
system bus cannot provide enough bandwidth for the MPI. Instead, modern
architectures orient towards Network-on-Chip (NoC) solutions [6, 7, 8, 9].

A NoC generally consists of network adapters (the interface between the pro-
cessors and the NoC), routers and links, as illustrated in Figure 1.1. The links
therefore are a common multiplexed resource among the channels connecting
the Intellectual Properties (IP) that are attached to the NoC.

In [10] the basic characteristics for a NoC are presented and several NoCs are
classified according to these characteristics. Depending on the purpose of the
platform, different architectures have been proposed. For instance, lets assume a
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Figure 1.1: Overview of a NoC based multi-processor platform. ’IP’ stands
for intellectual property, ’NA’ for network adapter, ’R’ for routers
and ’L’ for links).

general-purpose application-independent platform, which must be flexible, scal-
able, and support a high level of parallelism. For such a system, with high packet
injection rates and small packet size, a packet-switched NoC architecture, where
the links are multiplexed on a packet transaction level, would deliver better re-
sults compared to a circuit-switched one [11]. In a circuit-switched NoC the
path of a channel has to be first set up. Then the links of the path are used
exclusively to transfer the data. When the transfer is finished, the path is
torn down and the links are released to be used by other paths. On the other
hand, a circuit switched NoC would suit better an application specific platform,
where the requirements are precise and the NoC can be tailored to these re-
quirements, avoiding unnecessary overhead. Examples of packet switched NoCs
are the QNoC [12], XPIPES [13], SoCIN [14], SPIN [15], Tiny NoC [16], Kavald-
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jiev NoC [17] and Argo NoC [18]. Examples of circuit switched NoCs are the
SoCBus [19], PNoC [20] and Wolkotte NoC [21].

Another important parameter is the timing organization of the system. As
Systems-on-Chip grow larger, and the IPs on the chip get diverse, different
clock domains must be supported. Globally Asynchronous Locally Synchronous
(GALS) [22] system organization suggests that the IPs are locally synchronous,
but possibly at different clock domains. The interface between the NoC and the
IPs therefore must be a well standardised interface, supporting clock domain
crossing, such as the Open Core Protocol (OCP) [23] which is used by XPIPES
[13], Æthereal [24] and Argo NoC [18].

Furthermore, on large SoCs the clock distribution might be challenging. The
NoC on the chip might cover distant locations on the die, and the introduced
skew can reduce the operational frequency of a synchronous NoC, limiting the
bandwidth and deteriorating the performance. Alternatively, mesochronous and
asynchronous NoC implementations (MANGO [25], Beigne NoC [26], aelite [27]
and Argo NoC [18]) can deal with this challenge, and they are a better fit to
GALS architectures.

Real-time platforms, in which there must be a static and optimised upper bound
to the latency of transferring a block of data, NoCs with Guaranteed Services
(GS) have to be used. Time Division Multiplexing (TDM) is a common approach
to avoid link contention, deadlocks and collisions. TDM is used by Nostrum
[28], Æthereal [24], aelite [27], dAelite [29] and Argo NoC [18]. Best Effort (BE)
NoCs focus on optimising the average case performance. Flow control, buffering
of packets and arbitration may be utilized, resulting usually in larger hardware.

Finally, depending on the purpose of the interconnection of the IPs, the topology
of a NoC can take different forms as grid, torus, cube, H-tree, butterfly etc. For
example, Tiny NoC [16] focuses on a 3D mesh topology, while SPIN [15] is based
on a fat-tree topology.

1.4 T-CREST - A time-predictable MPSoC

T-CREST is a project funded by the Seventh Framework Programme for Re-
search and Technological Development1 targeting to develop a general-purpose
platform incorporating a multi-processor time-predictable system that will sim-
plify the safety argument with respect to maximum execution time. As a multi-

1The Seventh Framework Programme (FP7) homepage can be found at http://cordis.
europa.eu/fp7/home_en.html

http://cordis.europa.eu/fp7/home_en.html
http://cordis.europa.eu/fp7/home_en.html
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processor system, it provides an MPI between the cores. This interface is imple-
mented with a TDM based, packet switched, guaranteed services, asynchronous
bi-torus NoC. This time-predictable NoC avoids traffic interference and provides
virtual end-to-end connections. The TDM is governed by a static schedule [30]
defining channels connecting the processors through the switched structure of
the NoC [18, 31, 32]. The schedule and the corresponding bandwidth of the pro-
vided communication channels are generated once, when building the platform.

1.5 Mode changes of T-CREST NoC

In a real application, most of the time the running tasks will not use the assigned
bandwidth of the static schedule. From a real-time point of view, over-assigning
resources is a common practice as long as the guarantees are being met. Still,
if the bandwidth could be re-distributed among the communication channels
according to the currently running tasks’ requirements, then the WCET of the
tasks would be reduced, improving the performance of the system. The need
for a schedule change may be driven by actual bandwidth requirements from
the tasks running on the processors (starting or finishing), safety reasons like IP
group isolation, or by external events (the pushing of a button, a sensor input,
etc).

In this thesis we add the possibility to change the schedule of the TDM-based
NoC of the time-predictable T-CREST platform, reassigning the network’s band-
width during run-time. For this purpose, we analyse the steps of a mode change,
we compare these steps against the available options, we design new hardware
components, we fully integrate the additional functionality both on hardware
and software API level to the T-CREST platform and we calculate the latency
of performing a mode change. Lastly, we verify the design and prototype it on
the Xilinx ML605 FPGA board.

1.6 Thesis Layout

We have given so far a description about the environment of the thesis, together
with some fundamental definitions and characteristics. The targeted platform
has been introduced and the motivation and contribution has been stated. The
upcoming chapters are as follows:

Chapter 2 explains the targeted platform and the aspects of it that affect the
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thesis project.

Chapter 3 presents mode change implementations of other NoC-based MP-
SoCs and compares their applicability against the T-CREST approach.

Chapter 4 performs an analysis of the phases of a mode change. We explore
the available options for every phase and make decisions regarding the
specifications over a mode change. An architectural overview of the sug-
gested extended platform is given and the phases of the mode change are
allocated to architectural components.

Chapter 5 elaborates on the design of the additional hardware, together with
the modifications to the existing hardware of the platform, with respect
to the specifications stated earlier.

Chapter 6 presents the implementation and integration of the change mode
module to the T-CREST platform and tool chain, both on hardware and
software level, and the interaction of these levels is discussed.

Chapter 7 provides performance results by calculating the contribution of ev-
ery mode change phase to the latency of performing a schedule change
and estimates the worst case mode change latency.

Chapter 8 describes the test cases used to prove functionality and presents
results regarding the correctness, the latency and the mode change module
additional resources on an FPGA prototype.

Chapter 9 discusses general aspects regarding the usage of the mode change
module, variations and extensions to its functionality.

Chapter 10 summarizes the thesis project, lists the contributions and suggests
future works.

Finally, the Bibliography and the Appendices with the VHDL mode change
module descriptions, the C software library API and the C test cases used for
the verification are listed.



Chapter 2

T-CREST background

T-CREST is an open source project1 targeting a general-purpose multi-core
time-predictable platform for embedded hard real-time applications, specially
designed to simplify the WCET analysis. For this purpose, all of the components
of the system are independently time-predictable. The IP of the T-CREST
platform is the statically scheduled, dual-issue RISC Patmos processor, which is
described in [33]. In the patmos handbook [34] it is stated that for the connection
of Patmos to a memory controller, I/O devices, the core-to-core NoC, and/or
the memory arbiter a subset of the OCP1 [23] interface standard is used.

The MPI of the platform is implemented with the TDM-based Argo NoC [18,
31, 32] which can support bi-torus, mesh or custom topologies. Additionally to
the local memories, the system provides access also to shared memory, which
can be implemented both as On-Chip or Off-chip memory. In this thesis we
will assume the On-Chip shared memory implementation, the access to which
is managed through an arbiter. The overview of the system is given from two
different perspectives, the MPI and the shared memory access perspective.

1The project’s sources are hosted on GitHub and are available on-line at https://github.
com/t-crest/

https://github.com/t-crest/
https://github.com/t-crest/
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2.1 Shared memory access

As the shared memory is a common resource to all the IPs, arbitration is required
to regulate the access to it. The arbiter of T-CREST utilizes the OCPburst
protocol, which is described in the Patmos handbook [34], for the communication
with the IPs. Details regarding the OCPburst are not relevant to the purpose
of the thesis and therefore they are not being reported. The general overview
of the access to the shared memory is depicted in Figure 2.1.

Figure 2.1: Shared memory access with Master-Slave OCPburst communica-
tions.

2.2 Message Passing Interface

In Figure 2.2 a mesh topology is illustrated focusing on a 3-by-3 area of the
mesh. Each tile in the grid is a processor, together with a network adapter
providing access to the NoC and a true dual port scratch pad memory, which is
used as a buffer for the incoming and outgoing data transactions of the MPI.



2.2 Message Passing Interface 9

Figure 2.2: Conceptual overview of a T-CREST platform with mesh topology.
’IP’ stands for intellectual property, ’NA’ for network adapter, R
for routers, ’L’ for links, ’SPM’ for scratch pad memory, ’IM’ and
’DM’ for instructions and data caches.

2.2.1 Timing organization and TDM

The Argo NoC of T-CREST is packet-switched and TDM-based. The time
is divided into periods, and each period into slots. Driven by a static global
schedule, the data to be sent are split into packets, and according to the current
slot, they are injected to the NoC. Due to the TDM static scheduling, the NoC
is contention free, meaning that there is no possibility of packets utilizing the
same link at the same time resulting into collisions. As a result, the routers
are implemented as simple pipelined crossbar switches. This requires that the
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network adapters have a common notion of the current slot.

Figure 2.3: GALS system organization of Argo NoC
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The Argo NoC of T-CREST provides a GALS approach to timing organization,
as shown in Figure 2.3. The processors are synchronous, but they can operate
at different clock domains to one another. The network adapters of the Argo
NoC though are mesochronous, which means that they have the same clock, but
a certain amount of skew can be tolerated among them. A slot-counter inside
every adapter keeps track of the current slot in parallel to the others. The
self-timed switching structure of asynchronous routers moves the data tokens
utilizing the 2-phase bundled data handshaking protocol [35], absorbing at the
same time the skew of the mesochronous domain.

2.2.2 Interfacing the NoC

In order for a processor to send a block of data through the NoC, a series of
steps have to be taken.

1. At first, the processor has to move the block of data to send to the local
SPM lying between the processor and the network adapter. The processor
port to the SPM, as seen in Figure 2.2, abides with the OCPcore protocol
described in the Patmos handbook [34]. The sequence of signals between
the master (in this case the processor) and the slave (the SPM), in order
to perform an OCPcore write or read operation is shown in Figure 2.4.

2. Then, the processor has to inform the network adapter that a block of data
in the SPM has to be sent to some recipient. The communication between
the processor and the network adapter is handled through the OCPio pro-
tocol described in the handbook. Moreover, a local space of addresses is
defined to distinguish among the configuration operations from the proces-
sor (master) to the adapter (slave). The sequence of signals is illustrated
in Figure 2.5.

2.2.3 Network adapter

The network adapter is the module that implements the static TDM schedule,
and moves data through the switched router structure. It has three fundamental
components, the slot counter, the slot table and the DMA table, as shown in
Figure 2.6. As explained in Subsection 2.2.1, the slot counter is driven by
the mesochronous TDM clock. Its value is used to index the slot table, which
contains information about the current slot. The counter counts up to the
last entry of the static schedule and then it is reset in order to start a new
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Clk

MCmd IDLE RD1 WR2 IDLE RD3 IDLE

MAddr A1 A2 A3

MData D2

MByteEn E1 E2 E3

SResp NULL DVA1 NULL DVA2 DVA3 NULL

SData D1 D3

A B C D E F

Figure 2.4: Patmos OCPcore timing diagram.

Clk

MCmd IDLE RD1 WR2 IDLE RD3 IDLE

MAddr A1 A2 A3

MData D2

MByteEn E1 E2 E3

MRespAccept

SResp NULL DVA1 NULL DVA2 DVA3 NULL

SData D1 D3

SCmdAccept
A B C D E F

Figure 2.5: Patmos OCPio timing diagram.
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schedule period. Every entry in the slot table indicates if the current slot is
valid, enabling a packet sending. In such case, the entry contains also a pointer
to another entry, this time in the DMA table.

Figure 2.6: The network adapter.

Every entry of the DMA table handles the transfer of a block of data. There
is one entry for every possible recipient of data through the MPI. For instance,
in an N-by-N mesh, with N2 IPs, the network adapter associated to an IP has
N2 − 1 entries in the DMA table, if communication to all is considered. The
information stored in a DMA entry is:

• The address in the local SPM from where the next word of the block being
transferred should be read
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• The address in the remote SPM of the recipient where the next word to
send must be written to

• The number of remaining words until the completion of transferring the
block

• The routing info defining the path of routers that the packet must go
through until reaching the recipient’s network adapter

• Some control flags

During the system’s boot phase, every processor has to perform the initial con-
figuration of the local network adapter. Each processor copies from the local
data cache memory the corresponding slot table and the routing info for every
DMA entry, utilizing the OCPio port to the network adapter and the local ad-
dress space. Afterwards the processors are synchronized and the execution of
the tasks proceeds. This operation is done only once, during the boot phase.
From that point on, all the communication between the processors and the net-
work adapters regards setting up block transfers by reading and writing the
DMA table entries.

Once a DMA block transfer has been set up, whenever there is a slot activating
that DMA entry, the DMA reads a word from the SPM from the location indi-
cated by the read pointer, a packet is built and injected to the NoC, the local
read pointer, the remote write pointer and the number of remaining words in
the block are updated, and if the block transfer is finished, the control flags are
set accordingly.

From the reception point of view, when a packet arrives, it contains the write
address and the data to be written to that address. Therefore, the network
adapter simply extracts the address and the data and performs a write operation
to the SPM.

The interface between the network adapter and the SPM is a synchronous read
synchronous write memory interface. An internal state machine in the network
adapter regulates when to perform a read and when a write operation to the
SPM.

At this point it has to be mentioned that the network adapter does not support
any way of signalling the completion of reception of a data block. This is resolved
in software level, by extending the block to be sent by one more word, which is
used as a flag to be polled by the receiver IP, indicating the completion of the
block.



2.2 Message Passing Interface 15

2.2.4 Routing and packet format

As it has been implied so far, the Argo NoC is a source routed network. The
information about the path a packet is routed through is contained inside the
packet itself. The packets used in Argo are fixed-size and they consist of 3 flits
of 35 bits each. The first 3 bits of every flit are a prefix used to specify the type
of the flit. The first flit is the header, containing the routing info and the write
address to the recipient’s local SPM. The remaining two flits are the payload,
and combined they form a 64bit word to be written to the address indicated by
the header. The structure of a packet is shown in Figure 2.7.

Figure 2.7: Packet format of Argo NoC.

Since the packet consists of 3 flits to be sent separately, but still as a group,
the network adapter clock is three times faster than the TDM clock. For every
three clock cycles the TDM advances by 1 slot. This gives enough time to the
network adapter to perform all the necessary read and write operations to the
SPM to accommodate for the sending and receiving of a packet during a TDM
slot. These read/write operations are managed by the control state machine of
the network adapter.

The path that a packet goes through consists of a series of routers and links,
until the destination network adapter is reached. Both the routers and the links
are pipelined to improve the network throughput.

2.2.5 Scheduling

The scheduler of T-CREST is the one described in [30]. It is a meta-heuristic
scheduler which operates on task graphs of parallel applications, like the one
shown in Figure 2.8. It receives as inputs the allocation of the tasks to the
platform processors, the topology, the desired bandwidth for every connection
and the depth of the routers and the links in terms of pipeline stages in order to
generate the static global TDM schedule. During this process, meta-heuristic
methods are applied to compress the schedule size.

The first note to make at this point is that the packet movement in the switched
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Figure 2.8: Task graph example of parallel application.

router structure is misaligned. This means that when a network adapter injects
the first flit of a packet to the local router, the second or the third flit of other
packets that are on their way to some destination may be entering the router as
well (off course from different ports and claiming different outputs). This hap-
pens because there is no correlation between the pipeline depth of the routers
and the links to the packet size. The scheduler of T-CREST takes into account
this misalignment. Additionally, the scheduler, together with corresponding
functionality in the network adapter, can postpone a slot by one or two clock
cycles, in order to increase the flexibility and maximize the compression capa-
bility. Empty slots, where a network adapter should not send data, are also
used. The information about the postponing of a slot is stored inside the slot
table of the network adapter, together with the validity flag of the slot and the
pointer to a DMA entry, as described in Subsection 2.2.3.

One last, but very important thing that has to be mentioned about the
T-CREST static global schedule, is that it drains all the packets from the NoC
at the end of every schedule period. For example, in Figure 2.9 when the period
i starts, there are no flits of packets in the NoC, and none of the links is used
to propagate data. The blue lines in this figure separate the schedule periods,
while the red lines indicate the slots of the schedule period i. At the beginning
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Figure 2.9: The filling and draining effect of the static schedule.

of a period, the network adapters start injecting packets from the local port
of the corresponding router. As these packets proceed in the NoC and more
packets are injected by the network adapters, the other links implementing the
interconnection of the routers are also utilized. This utilization reaches a max-
imum, which is actually related to the bandwidth provided by the NoC. At the
end of the schedule period, the network adapters stop injecting packets. The
flits that are already in the NoC gradually arrive at their destinations and the
NoC is completely drained before a new schedule period starts. This way the
NoC returns to the same empty state at the end of every period.
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Chapter 3

Related work

In [21] Wolkotte described a circuit switched NoC for a heterogeneous multi-
tile System-on-Chip targeting multimedia applications where data streams are
semi-static and with periodic behaviour. This NoC supports both Guaranteed
Services (GS) and Best Effort (BE) traffic. The guaranteed services are provided
by scheduling the communication streams over non-time multiplexed channels.
The Best Effort traffic is handled by a separate packet switched structure and
it is used also to set-up connections between the processing elements. The NoC
is configured by a special node, the Central Coordination Node (CCN), which
allocates tasks to the processing elements and manages the NoC. The CCN
sends control packets over the BE network to the GS circuit switching routers.
The reconfiguration process is not elaborated though in [21] and the usage of
BE traffic does not provide guarantees on the connection set-up time.

Kavaldjiev in [17] introduced a packet switched NoC which targets mobile mul-
timedia devices where traffic is dominated by streams. This NoC provides both
GS and BE by using Virtual Channels (VC) to share the links. In every router
several VCs share a physical link on a cycle-by-cycle round robin basis. Thus,
all VCs equally share the bandwidth of the physical channel. A chain of VCs
forms a connection. Buffers are used at the input and output of the router.
For GS, the VCs are dedicated to a connection, while BE is implemented with
shared VCs. The packets are source routed, which means that each packet has a
header containing among others the route of VCs that it has to travel through.
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The mode change in this NoC is done with special BE packets that reserve the
VCs they traverse. NoC reconfiguration is managed by a central authority, the
Configuration Manager, and it is done only at the beginning of an application.
The mode change procedure is not explained further in [17]. Similarly to [21],
the usage of BE traffic to reconfigure the NoC does not abide with the T-CREST
time-predictability orientation.

SoCBus [19] is a circuit switched NoC providing dedicated end-to-end connec-
tions that can operate in the mesochronous domain. The connections are set
up with special BE packets that reserve or release links as they traverse them.
Arbitration is used on connection establishment, and the links are not shared
between connections, leading to excessive blocking. Some discussion is given on
the usage of static scheduling of communications to minimize the blocking, but
no further information is provided.

PNoC [20] is also a circuit switched NoC with dedicated end-to-end connec-
tions. The connections are set-up by the nodes with a lightweight mechanism
according to the authors, which involves arbitration and link request queues.
No information is given on how the configuration is managed.

Æthereal [24] describes three NoC designs. All three use contention-free rout-
ing and TDM, much like the T-CREST NoC. The first NoC uses distributed
routing, where the routing info is stored in the routers and the packets do not
have headers. The router is also enhanced with BE logic to maximize the uti-
lization of the links with BE traffic when there is no GS traffic. The BE part is
packet switched, source routed with wormhole switching, and the packets have
headers. In order to establish a connection, a special BE packet is sent by the
source to the destination, which reserves time slots as it traverses through the
routers. The establishment of a connection is acknowledged by the destination.
Like before, no guarantees can be given on the set-up time due to the BE traffic.
Moreover, the reconfiguration is not transparent to the tasks executed on the
IPs, since the connections are set-up with packets from the source to the des-
tination. The second NoC described drops the distributed routing for the GS
and uses source routed packets with headers instead, with higher priority over
the BE packets. Since no routing info exists in the routers, the mode change in-
volves reconfiguration of the network adapters. To set up a connection, a mode
change root process sends either special BE packets or BE packets to reserved
memory addresses to the source of the connection and to the destination of the
connection. The third NoC described is a NoC only with GS traffic. In this
case, the mode changes are done with GS packets from the root process to the
source and destination of every connection. This means though that some slots
(bandwidth) have to be reserved from the root process to all of the nodes. Con-
sidering that a mode change is an infrequent and bursty operation, the reserved
bandwidth is wasted and the connection set-up has big latency.
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The last NoC examined, whose connection set-up mechanism is actually closer
to our design, is the dAelite [29]. Like the first of the three Æthereal NoCs
[24] described, it uses contention free TDM and distributed routing. However,
this NoC supports only GS traffic and it focuses on multi-casting. A centralized
configuration mechanism is introduced to set-up and tear-down connections with
the usage of a dedicated broadcast tree network. A host IP co-operates with
a configuration module, which drives the broadcast tree, managing this way
the connections. ID tags and a complex protocol are used to configure the
network adapters and the routers. The configuration process is transparent to
the applications executed on the IPs of the NoC.

Even though the dAelite connection set-up mechanism has many qualities that
are common to our aspirations, there are some fundamental differentiations to
our approach. The T-CREST NoC is source routed without flow control. The
set-up of a connection is a simple slot configuration at the source. For this
reason, there is no need for a complex protocol. Furthermore, in dAelite the
schedule size is static. On the contrary, the T-CREST scheduler [30] generates
schedules of different sizes. Moreover, in dAelite the configuration is done one
connection at a time. For a different allocation of the bandwidth than the initial
configuration, many connections may need to be first torn down before setting
up new ones. In this project we aim at a more flexible approach, where all old
connections are torn down and the new ones are set up at the same time in
one instant. Finally, dAelite targets a synchronous platform, whilst the Argo
NoC [18] uses an asynchronous switched structure with mesochronous network
adapters that can tolerate skew almost up to three clock cycles, depending on
the operating frequency of the mesochronous clock.
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Chapter 4

Requirements and suggested
architecture

In this chapter, at first we define the mode change and we introduce some initial
requirements to the mode change module. Then, the mode change is split into
phases and an analysis of the available options is performed. Finally, the exact
requirements for the mode change module are specified.

4.1 Mode change definition

In Section 1.5 a mode change was regarded as the reassignment of the network’s
bandwidth during run-time. This reassignment is necessary due to new core-
to-core bandwidth requirements. In Subsection 2.2.5 it was mentioned that the
TDM schedule of T-CREST is generated according to the connection require-
ments of the tasks of a parallel application. During execution though some
tasks may finish, other tasks may start or some connection requirements may
be altered. Figure 4.1 illustrates such an example using task graphs. In this
example, task t3 finishes, other tasks start (tasks t7, t8, t9 and t10), a new con-
nection between tasks t1 and t4 is established and the connection between tasks
t2 and t5 has updated bandwidth requirements.
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Figure 4.1: The mode change through task graph connection requirements.

4.2 Initial requirements

This class of specifications is imposed by the general T-CREST concept and the
desired functionality.

Time-predictability The mode change module has to guarantee an upper
bound to the execution time of applying a mode change.

Schedule flushing The packet switched Argo NoC and the T-CREST sched-
uler does not allow for partial reconfiguration of the schedule in general.
Instead, a total schedule substitution is considered.

Transparency During a mode change, some tasks continue executing on the
processors. For this reason, a mode change must be completely transparent
to the applications.

Flexibility The mode change module must provide freedom to the user of the
platform to configure the schedules and the application policy.
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4.3 Mode change phases decomposition

To explore the requirements of a mode change, the operation is decomposed in
four phases, each of which is examined independently. These phases are:

Phase 1 Accept request for a mode change
A request for a mode change is transferred to the mode change module.

Phase 2 Schedule acquisition
A schedule accommodating the pending request is accessed.

Phase 3 Fetch the new schedule
The network adapters are updated with the new schedule.

Phase 4 Apply schedule
The new schedule is applied by the network adapters.

In the following subsections we explore the available options for every mode
change phase, and we indicate the chosen option with a red outline.

4.3.1 Requesting a mode change

What constitutes a request and how it is triggered is not part of this thesis. It
can be run-time dependent, like the start or the finish of a task with specific
bandwidth requirements or run-time independent, like an external event (push
of a button, timer interrupt, etc). On the contrary, the notification of the
mode change module of a pending request is important, and the matter can be
approached in three ways:

a) Through the Argo NoC
In such case the mode change module must access the NoC as a regular
node and some bandwidth has to be reserved to this node in the schedule.
Considering that requests for a mode change are not expected to be a
frequent event, this reserved bandwidth is being wasted.

b) Through a dedicated ”all-to-one” network
This network would have to be designed. As an all-to-one network, arbi-
tration would be required in its implementation, increasing the complexity
and the resource overhead.
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c) Use a processor

Due to the flexibility specification stated in Section 4.2, the requests must
be resolved on software level, so that the request service policy can be de-
fined by the user of the platform. Therefore, a processor must co-operate
with the mode change module. The shared memory, the I/O devices and
the processor interrupts can be used this way at the will of the program-
mer to implement the mode change request service policy. Due to the
transparency specification, this processor has to be dedicated to system
level tasks and not application level tasks.

4.3.2 Schedule acquisition

Two approaches can be followed regarding the schedule acquisition. The first
one is to generate the schedule when a request is given to provide for the re-
quested bandwidth requirements. In such case all the possible combinations
by the various tasks should be pre-calculated to guarantee that the requested
bandwidth is feasible. At the moment the T-CREST scheduler is not designed
to run as a service. For a statically scheduled TDM NoC, storing the applica-
ble schedules instead of generating them during run-time appears to be a more
suitable solution.

Regarding the location of storing the schedules, two options were considered:

a) A dedicated ROM
Since the schedules are constants and they cannot be changed, a dedicated
ROM holding the schedules seems a suitable solution. Considering though
the flexibility requirement, one can see that schedule handling from a
software point of view would not be possible.

b) Processor accessible memory

Two options are available in this case, the shared memory and the local
memory of the processors. In such case it is up to the software API and
the programmer to configure the schedules storage.

4.3.3 Fetching the schedule

The first consideration regarding the fetching of a schedule is whether the control
of the operation should be distributed or centralized. In a distributed control
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system, each processor would have to fetch a portion of the schedule to the local
network adapter. This way, the transparency specification cannot be met, since
the processors would have to pause their current task, regardless of the current
state of execution. In a centrally controlled system, the dedicated processor for
system level tasks can be in charge of the mode change.

Figure 4.2: Mode change suggested architecture with timing organization.
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In order to fetch the schedule, the following options were considered:

a) Use the NoC

The dedicated processor can be attached to the NoC and use its links
to transfer the new schedule to the network adapters. Special packets or
address spaces would have to be used to instruct the network adapters to
handle these packets for reconfiguration purposes. Some bandwidth from
the control processor to all the other nodes would have to be reserved,
affecting the performance of the NoC.

b) Use a dedicated broadcast tree network

The schedule lies in a processor-accessible memory and can be read word
by word. A dedicated broadcast tree that would send exactly the same
information to all of the nodes, utilizing an ID tag to distinguish among
them is the selected solution. Additional hardware has to be designed and
used, but due to the simplicity of a broadcast tree, the resource overhead
is expected to be very small.

4.3.4 Applying the new schedule

In Subsection 2.2.5 the schedule’s property to return to the initial empty state
at the end of every schedule period was introduced. This is the property that
allows us to do a mode change transparently to the applications. The network
adapters receive the new schedules and keep them inactive until a mode change is
performed when the slot counter returns to 0. It is very important that all of the
network adapters do the swap to the new schedule at the same (mesochronous)
moment. For this reason, there must be a command triggering the swap, driven
by the mode change module. Since the mode change event is a TDM-clock
event, the mode change module must have a notion of the current slot.

The module can know when it is time to give the command to change mode
with:

a) Flow control

The flow control on the broadcast tree can signal the reception of the new
schedule by all of the nodes.

b) Utilization of the static timing properties
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The schedule period size, the broadcast tree depth and the tolerable skew
of the mesochronous clock domain are well known. Schedule period coun-
ters can be used to define a moment in the future that the mode change
should take place.

4.4 Suggested architecture

For the mode change module we suggest the usage of a system task processor,
which has access to the shared memory as the processors shown in Figure 2.1, but
it is not attached to the MPI NoC. Instead, the system processor communicates
with the mode change controller through the OCPio port of the processor.

As it can be seen in Figure 4.2, between the mode change controller and the
system processor a simple dual port Scratch Pad Memory (SPM) is placed to
be used as a buffer for scheduling data. The write only port is driven through
the OCPcore port of the processor, while the read only port to the mode change
controller is a synchronous read memory port.

The mode change controller keeps track of the current schedule period and slot,
and when instructed by the processor, it manages the transfer of a schedule from
the scratch pad memory to the network adapters. This transfer is done through
the broadcast tree, at the leaves of which there is one schedule extractor for
every network adapter.

The slot tables of the network adapters are converted to simple dual port memo-
ries. The write only port is associated to the extractor and the read only port to
the network adapter. Moreover, the size of the slot table is duplicated and the
table is split into two areas, to be used mutually exclusively and in an interleaved
way by the extractor and the network adapter between mode changes.

From a timing organization point of view (Figure 4.2), the controller belongs to
the mesochronous domain of the TDM-clock, since it needs to have the same
notion of the current slot as the network adapters. To communicate data from
one area of the mesochronous domain to another area of the same domain, the
communication must go through the asynchronous domain, since the skew may
exceed one clock cycle.

The transfer of the new schedule is done through the broadcast tree network
and the extractors, which belong to the asynchronous domain. All of the com-
munications between the controller, the broadcast tree nodes and the extractors
are bundled data 2-phase asynchronous handshakes [35]. The interface from the
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extractors to the slot tables is a synchronous write memory interface, but the
writing clock pulses are generated asynchronously.

Except for the transfer of a schedule, the controller has also to command the
network adapters to apply the new schedule. Once again, as a mesochronous
node to mesochronous node communication, the command has to go through the
asynchronous domain. A 2-phase signal with bundled data is used to re-enter
the mesochronous domain. To avoid metastability, a series of flip-flops, clocked
with the clock of the network adapter is used at every adapter to synchronize
the 2-phase command signal [36], as shown in Figure 4.3.

Figure 4.3: 2-phase command signal with bundled data synchronization with
two flip-flops at every network adapter (NA).

4.5 Mode change phases and suggested architec-
ture

To sum up, an allocation of the defined mode change phases in Section 4.3 is
done with respect to the suggested architecture.
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Phase 1 Request a mode change
A task executing on a processor writes to the shared memory setting a
request flag. A routine on the system processor polls the shared memory
for pending requests. Alternative, an interrupt to the system processor
driven by an external event is issued. This interrupt may be associated to
a mode change. The mode change request definition and handling is done
on software level by the programmer.

Phase 2 Schedule acquisition
The schedules are stored either in the data cache of the system processor
or in the shared memory. A decision is made on which schedule to apply as
a response to the request and the selected schedule is copied to the SPM
of the mode change module through the OCPcore port. The copying
operation is managed through the software API of the module.

Phase 3 Fetch schedule
The system processor instructs the mode change controller through the
OCPio using the software API to transfer the schedule, providing the
location of the schedule in the SPM and the size of it. The mode change
is therefore initiated (Figure 4.4). The controller reads and pushes the
schedule in the broadcast tree, enhancing every word with an ID tag to
distinguish among the recipients. The extractors receive all of the words
sent, but according to the ID they extract the information related to their
local network adapter. The received schedule is stored in the idle bank of
the slot tables.

Figure 4.4: The mode change from the TDM-period time perspective.

Phase 4 Apply the schedule
Once the controller has finished pushing a schedule, it examines the cur-
rent slot and period and defines a moment in the future (between two
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periods) that the swap must be done. The 2-phase command signal is
toggled and the moment of swapping is passed as the bundled data of the
command signal. The network adapters receive the command, and start
comparing their local schedule period counter to the moment of swapping.
When the time comes, the network adapters simply start reading from the
updated bank of the slot table, taking also into account the size of the new
schedule in order to wrap their slot counters to 0 accordingly. Figure 4.4
demonstrates an example where the controller, after the fetching phase,
commands the network adapters to apply the new schedule at the end of
the TDM-period x+2.



Chapter 5

Design

In this chapter the additional hardware that was designed and the modifications
to the existing are elaborated. The new blocks are the mode change controller
(Section 5.1), the broadcast tree network (Section 5.2) and the extractor (Section
5.3). The T-CREST network adapter extension is described in Section 5.4.

5.1 Mode change controller

The mode change controller is the block that manages the fetching and the
application of a new schedule. The controller block, as depicted in Figure 5.1, is
interfaced with an OCPio port to the system processor, a synchronous memory
read-only port to the SPM, a 2-phase bundled data handshaking channel to the
broadcast tree and a 2-phase bundled data channel to the network adapters.
The connection of these ports is shown in Figure 4.2. The functionality of
the controller is based on the mesochronous counters and three state machines
managing the OCP communication to the system processor, the timing, and the
schedule fetching and applying respectively.
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Figure 5.1: Mode change controller block diagram.

5.1.1 Processor interface FSM

The controller is mapped to the system processor address space with a single
address. When the master (the system processor) reads from this address, then
the status regarding the availability of the controller is given as a response
through the OCPio port. On the other hand, when a write operation is done to
this address, then it is perceived as an instruction to perform a mode change.
The state machine handling these OCPio transactions is a Mealy machine, the
ASM chart of which is shown in Figure 5.2.

The FSM has two states. When in the idle state, it is waiting for an OCPio
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Figure 5.2: The controller’s OCPio handling state machine.

command from the processor. When an OCPio command is set, if the com-
mand is a read, then it is handled within the same state, and the status of the
controller (busy or free) is returned to the processor. In the case of a write
OCPio command, a mode change is initiated by setting the signal start and the
machine transits to the write done state, which handles the completion of the
OCPio write transaction.

As it can be seen in Figure 5.1, the start signal triggers the main FSM. The
size of the new schedule and its location in the SPM are the data of the write
operation, and they are used by the main FSM.
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5.1.2 TDM counters and timing FSM

The controller incorporates a slot counter that runs mesochronously and in
parallel to the slot counters of the network adapters. The slot counter increments
up to the size of the current schedule and then it is set back to 0 to start a new
period.

Figure 5.3: Controller slot and period counter ASM chart.

Additionally, the controller has a schedule period counter to keep track of the
current period. This counter is one-hot encoded and it is rotated every time the
slot counter reaches the maximum value.

As explained in Subsection 2.2.4, every slot has a duration of three clock cycles
of the mesochronous clock. A very simple state machine keeps track of timing
for the mode change controller. It has three states and it spends only one cycle
at every state. A full transition from all states is equivalent to a slot. The
first two states are empty and no operation is performed. At the last state,
the slot counter is enabled and if it is the last slot of the current schedule,
then it is set back to 0 and the schedule period counter advances to the next
period. Additionally, the end of period signal, which is an input to the main
FSM (Figure 5.1), is set. Otherwise, the slot counter increments to the next
slot. These transitions are shown in Figure 5.3. The last slot flag is the result
of the comparison of the current value of the slot counter to the register holding
the size of the current schedule (Figure 5.1).
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5.1.3 Schedule format

Let it be a system with N processors attached to the MPI NoC and a schedule
S of G slots per period to apply. Then, for every processor Pi, i ∈ [1, N ], there is
a view Si of the global schedule S, which is the information to be stored in the
local slot table of the processor. Each of these views consists of G words, the
slot table entries. The global schedule is the concatenation of the views in a big
array of words Wij , i ∈ [1, N ], j ∈ [1, G]. The first G words contain the slot table
for processor P1, the next G words the table for P2 and so on. An illustration of
the global schedule format is given in Figure 5.4. Of course, different schedules
may have different period lengths G and subsequently occupy areas of different
length (N ×G) in the memory.

Figure 5.4: A schedule of size G for N processors in the SPM, written at
location X.

5.1.4 Schedule fetch and apply - Main FSM

The basic functionality of the mode change controller is to read from the SPM
the schedule to apply, push it to the broadcast tree and command the network
adapters to apply the new schedule at some moment in the future. Then the
controller waits until that moment arrives before being once again available
to manage a new mode change. The interaction of the main FSM with its
environment is shown in Figure 5.1. Figure 5.5 illustrates the ASM chart of the
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main FSM.

The state machine initially is at the idle state and the status of the controller is
free. When an OCPio instruction to apply a new schedule is given by the system
processor, the start signal triggers the FSM and the status of the controller is
toggled to busy, the size of the new schedule and its location in the SPM are
stored in registers and the machine transits to state init. The id of the recipient
node is reset to 0 and a series of handshakes to the broadcast tree is commenced.
The machine transits to state push lead in.

For every new schedule and for every recipient node, the first word to be sent
is the size of the new schedule. Therefore, the push lead in state pushes to the
broadcast tree the size of the new schedule. The index counter is set to 0 and
the location of the first word of the global schedule is given as input to the
SPMbefore incrementing. Unconditionally the machine transits to push state.

The SPM has synchronous read. This means that the data available at the
output is the data corresponding to the location before the incrementing. The
machine stays in push state enabling handshakes and incrementing the index
counter and the location until the index counter reaches the size of the schedule,
which means that the schedule view for the first recipient (S1 in Figure 5.4) has
been sent out. Then, the node id is incremented and the machine transits to
push lead in state to repeat the same process for the second recipient.

The process is repeated for all of the recipients. The exit condition is given in
state push, when the last word of the schedule view for the last recipient (WNG

in Figure 5.4) has been written to the handshaking channel.

Then the controller sets a moment in the future based on the current value of
the period counter to perform the swap and commands the network adapters to
apply the new schedule at that moment (Figure 4.4). The controller uses a fixed
distance between the issuing of this command and the moment to do the swap
in terms of TDM periods. This distance defines the resolution of the period
counter. In the case of Figure 4.4, the distance is 2. After this, the machine
transits to wait moment state.

The machine stays at wait moment state until the last clock cycle of the TDM
period specified before. Then, the swap mode is disasserted and the status is
restored to free. Moreover, the schedule size is updated with the size of the new
schedule, so that the slot counter will increment up to this new value. At the
same time (with a mesochronous notion of time) all of the network adapters
are expected to swap to the new schedule, so that all of the slot counters will
continue to operate in parallel. In Figure 4.4, at the end of TDM period x + 2
the new schedule is applied. This new schedule has bigger size. For this reason
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Figure 5.5: ASM chart of main state machine of mode change controller.
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period x+3 is longer than the previous TDM periods. Then the machine returns
to idle state.

5.2 Broadcast tree network

The broadcast tree operates at the asynchronous domain, utilizing handshakes
between its components to propagate the information. The block interface of
the broadcast tree is shown in Figure 5.6.

Figure 5.6: Broadcast tree block interface

It consists of simple asynchronous pipeline stages and broadcasting forks, pro-
viding a structure that transfers the data from the root of the tree to all of
the leaves, without any intervention on them. Conceptually, a broadcast tree
to 8 leaves with conventional asynchronous components as described in [35] is
depicted in Figure 5.7.

The broadcast tree presented uses forks to three or two to reduce the fanout and
inserts the same amount of pipeline stages between the root and the leaves for
all of the leaves. This is not mandatory for the operation of the tree. Actually,
any tree structure would be acceptable, and the links could be pipelined too.
All that is important and has to be known for the analysis is the maximum path
from the root of the tree to a leaf.
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Figure 5.7: Broadcast tree to 8 leaves with conventional asynchronous latches
and forks. The root of the tree is connected to a token producer
(source) and the leaves to token consumers (sinks).

5.2.1 The asynchronous click element template

For the design of our asynchronous components we explore the usage of the
click elements, a class of asynchronous components introduced in [37] that uses
the 2-phase bundled data handshaking protocol and conventional flip-flops and
logic gates instead of latches and C-elements.

A simple pipeline stage with the click template is illustrated in Figure 5.8. It
has a state flip flip which toggles at every handshake driving the output request
and the backward acknowledgement. When the state is different than the input
request, then there is new data available at the input. Moreover, when the state
is the same as the incoming acknowledgement, then the component can accept
new data. These two conditions generate an event, the so-called click event. The
logic function state 6= a.req ∧ state = b.ack drives the click signal. When the
conditions are met, the signal goes HIGH. This signal is used to toggle the state
flip-flop. The toggling of the state forces the click signal to go back LOW, until
the environment responds to the handshake and new data arrive at the input,
so that a new event can occur. Therefore, the click signal is an asynchronous
local clock, the rising edges of which clock the state flip-flop. The click signal
drives also the clock of the register in the datapath, so that at the moment of
the event the bundled data at the input is captured in the pipeline stage.
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Figure 5.8: Click element pipeline stage.

5.2.2 Broadcast tree using click components

In [37] the example of a click join component that captures internally the data
on a handshake event was given. Under the same guidelines we design a click
fork component, the symbol and the schematic of which are given in Figure 5.9.

The click generating function is enhanced with more acknowledgements. The
symbol and circuit provided are generic, for a fork with n outputs. The click
function becomes therefore:

state 6= a.req ∧ (state = b1.ack ∧ state = b2.ack ∧ ... ∧ state = bn.ack)

The state of the fork drives all of the output requests bi.req, i ∈ [1, n]. Similarly
to the join example of [37], the click fork also captures the data when a hand-
shaking event occurs. Since the fork is used in our case to broadcast data, the
data register drives all of the data outputs bi.data, i ∈ [1, n].

Compared to the conventional asynchronous components, from a functional
point of view the click fork that captures data is equivalent to a handshak-
ing latch followed by a fork. Considering this, the design of a broadcast tree
with 8 leaves becomes as illustrated in Figure 5.10.
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Figure 5.9: Click element fork. (a) Symbol (b) Schematic

Figure 5.10: Broadcast tree to 8 leaves with click element data capturing forks.
The root of the tree is connected to a token producer (source)
and the leaves to token consumers (sinks).
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5.3 Extractor

The extractor is an asynchronous component that consumes tokens from its
input, extracts conditionally data out of the tokens and provides a synchronous
memory write port at its output. The block interface is shown in Figure 5.11.

Figure 5.11: Extractor block interface.

Each extractor is associated to an ID tag. The tokens also carry ID tags.
This way, according to the tag of a token the extractor can be aware of which
information is relevant and acts accordingly. The action to be taken is handled
by an asynchronous state machine. Therefore, the extractor can be regarded
as an asynchronous consumer with an asynchronous state machine. The click
element template was also used in the extractor design, which is illustrated in
Figure 5.12.

The function generating the click pulse is modified to state 6= req in order to
accommodate for a consumer, which is a sink of tokens. This function is a
simple XOR gate. The click pulse, together with the data at the input triggers
the transitions of the state machine, which drives the synchronous memory write
output port. In order to allow for the combinatorial to be stable, a matched
delay is introduced at the request path, as seen in Figure 5.12.

The registers of the extractor’s state machine are a register holding the size of
the schedule view under extraction and a counter used for indexing.

As seen in the ASM chart of the FSM in Figure 5.13, the FSM has only two
states, state idle and state extract. When in the idle state, the counter has the
value 0 and the machine waits for a token with a matching ID tag. When the
token arrives, its data is interpreted as the size of the new schedule, which is
stored, and the machine transits to state extract, where the extraction of the
new schedule takes place. For every token with matching ID that arrives, the
write enable of the memory port is set to HIGH and the counter increments.
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Figure 5.12: Asynchronous state machine of extractor.

The counter register and the data input are directly connected to the memory
port as address and data respectively. Together with the write enable and the
click signal as clock, they constitute the full synchronous memory write port.
The machine stays in extract state incrementing the counter for every matching
token until the counter reaches the size of the schedule. Then, the counter is
set to 0 and the machine transits back to idle state, in order to wait for a new
schedule.

From the previous it is apparent that there is no explicit signalling of a new
set of data to be extracted. The machine returns to idle after a comparison of
the indexing counter with the size register. The next matching token that will
arrive must contain the size of the new set of data to be extracted.

5.4 Network adapter modifications

In order for the network adapter to cooperate with the mode change module,
some modifications and additions had to be made. The modifications are related
to the DMA table, the slot table and the slot counter of the adapter, while the
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Figure 5.13: ASM chart of extractor’s state machine.

addition is the incorporation of the schedule period counter and the mode change
logic.

5.4.1 DMA table

As mentioned in Subsection 2.2.3, the DMA table entries consist of five parts,
1) the address in the local SPM to read from, 2) the address in the remote SPM
to write to, 3) the number of remaining words of the block being sent, 4) the
routing information defining the path in the NoC and 5) some control flags.

The routing paths is the only DMA information that is related to the schedule
and has to be altered due to a mode change. Future plans of T-CREST involve
relocating this field to the slot table. Thus, even though this change does not
affect the basic functionality of the mode change module, it has to be taken into
account. For this reason, the route field was removed from the DMA table and
moved to the slot table. As a result, a DMA entry ceases to be associated to a
path, as it has been the case so far in the T-CREST NoC. Instead, a slot entry
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contains the route that the packet sent during that slot should follow. This
allows for slots that point to the same DMA entry to navigate packets to the
same recipient through different paths, increasing the flexibility of the schedules,
but at the cost of additional memory space. For example, if a schedule defined
x slots during a TDM period for core i to send a packet to core j, then with the
previous arrangement of storing the routing information only one route would
be specified in the DMA table of core i at the entry handling the sending to
core j. With the new arrangement, every one of the x slots contains a route.
These routes do not have to be the same as mentioned before. Still, care must
be taken from behalf of the scheduler to avoid packet reordering.

5.4.2 Slot table

The slot table is converted into a simple dual port memory. So far the network
adapter would write the slot table during the boot phase of the platform with
information provided by the local processor through the OCPio port. This func-
tionality is eliminated and replaced by the mode change module. A synchronous
memory write-only input port is added to the interface of the network adapter
and it is connected to the write port of the slot table.

In order to allow for the reception of a new schedule, while the previous one is
still active, the size of the slot table is duplicated and the table is split into two
areas. While one of the areas contains the active schedule and is read slot by
slot at every TDM cycle, the other area can be written with a new schedule,
without any interference to the active one. When the network adapter performs
a swap to the new schedule, the roles of the two areas are also swapped.

As said, the size of the table is duplicated. Therefore the addresses to index the
table are longer by one bit. This extra bit, which is the MSB bit of the address
is used to select the area that contains the active schedule. When the MSB of
the address of the read port is set to HIGH, then the MSB of the address of
the write port is set to LOW. At a mode change the MSBs toggle, so that the
network adapter will proceed by reading the new schedule, which becomes the
active one, while the previous active area becomes the area to receive a new
schedule.

5.4.3 Schedule counters and mode change

The network adapter slot counter is modified to count up to a reconfigurable
value before being reset. Moreover, the adapter is enhanced with a schedule pe-
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riod counter, like the one of the mode change controller described in Subsection
5.1.2. As a result, the mode change module and the network adapters have the
same mesochronous notion of the current slot and period.

One more port is added to the network adapter, the one giving the command
to apply a new schedule at some moment in the future. The port is a 2-phase
bundled data channel. The toggling of the 2-phase signal means that a new
schedule must be applied. The size of the new schedule and the moment to
be applied are the bundled data. Then, according to the local slot and period
counter, when that moment comes, the network adapter simply toggles the
MSBs of the read and write addresses of the slot table.

The 2-phase bundled data input port is not synchronized to the local clock
domain. This is why the 2-phase signal has to go through a synchronizer to
avoid metastability. The synchronizer is simply a series of flip-flops clocked
with the local clock. The last flip-flop of the series provides the stable 2-phase
signal to be used by the additional network adapter mode change logic. This
technique to cross clock domains is described in [36]. With every flip-flop in the
series the risk of metastability is reduced further. In our design two flip-flops
were used to synchronize.

5.4.4 Summary of the new network adapter

In Figure 5.14 the modified network adapter is depicted. Comparing to Figure
2.6 presented in Subsection 2.2.3, the modifications are:

• Two extra ports have been added, one to the extractor and one to the
mode change controller.

• The slot table is no longer written or read through the OCPio slave port to
the processor. Instead it is written by the synchronous write-only memory
input port from the extractor.

• The route field has been moved from the DMA table to the slot table.

• The slot table is a simple dual port memory and its size has been dupli-
cated. The total area is split into two banks, one to be written by the
extractor and one to be read by the adapter.

• A bank select flip flop has been added to define the active slot table memory
bank.
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Figure 5.14: The modified network adapter.
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• A reconfigurable ceiling to the slot counter before resetting was added by
storing the size of the active schedule.

• The period counter was introduced.

• The mode change and timing FSM was added to handle the counters and
the bank selection.

• A synchronizer was added between the mode change controller input port
and the added FSM to allow for the 2-phase bundled data channel to cross
the clock domain.

5.5 Static timing properties of the design

In this section some fundamental timing assumptions on which the design is
based on are explained.

In an asynchronous circuit the frequency of the handshakes is defined by the
slowest path. In the case of the broadcast tree and the extractor, the slowest
path lies in the extractor, which incorporates a matched delay to compensate
for its logic and the slot table write operation. This delay though is small, and
it is a safe assumption that the extractor can operate at a higher frequency than
the mesochronous clock. Therefore, the backward acknowledgement from the
broadcast tree to the mode change controller is ignored. Instead, when pushing
a new schedule, the controller handshakes blindly at every clock cycle, and the
broadcast tree is fast enough to handle these handshakes.

In Figure 5.15 the handshakes of a path of 3 pipeline stages driven by the
controller is shown. At every clock cycle the controller toggles the handshake
signal and provides data A, B, C etc. Let it be that the mesochronous clock
period is 2 time units(tu). Stage 1 has a delay of 1.5 tu. Therefore it responds
to the incoming handshake from the controller after 1.5 tu, but still the interval
between the handshakes is the interval imposed by the controller. Stage 2 has
a delay of 1 tu and Stage 3 delays 1.8 tu. As a result, the word A arrives at
Stage 3 after 4.3 tu. In the worst case, the pipeline stages would be as slow as
the controller and each word would arrive at Stage 3 after 3 clock cycles (6 tu
in this example).

This way, if the path of a token in the broadcast tree has to go through B asyn-
chronous pipeline stages, considering also the write operation from the extractor
to the slot table, the maximum latency for a token from the controller to a slot
table is B + 1 cycles.
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Clk

Controller handshake

Controller data A B C D E F G H

Stage 1 handshake

Stage 1 data A B C D E F G H

Stage 2 handshake

Stage 2 data A B C D E F G

Stage 3 handshake

Stage 3 data A B C D E F

Figure 5.15: Mode change handshakes propagation.

When the controller has pushed the last word of a new schedule, it issues a
command to apply the new schedule at some moment in the future. At that
time the tokens still propagate in the broadcast tree. In addition, due to the
mesochronous clock, there may exist some skew between the controller and the
network adapters. The selected moment to apply the schedule must provide
enough time for both of the pre-mentioned conditions.

T-CREST platform targets a 64 core system. For such a system the broadcast
tree together with the extractors would have maximum path of 5 asynchronous
pipeline stages. As a result the maximum latency for a token to be written to
a slot table is 5 cycles of the mesochronous clock. Moreover, in [18] it has been
shown that the T-CREST NoC, under certain conditions, can tolerate almost
3 clock cycles of skew on the mesochronous clock. As a result, when issuing a
command to apply a new schedule, the selected moment has to be at least 8
cycles further.

The moment selection is done on schedule period granularity level. If no assump-
tions are made on the minimum size of a schedule, then the smallest possible
schedule needs to be considered. A schedule must always have at least 2 slots,
due to the NoC draining property. Moreover, the slot duration is 3 cycles. As a
result, a schedule period is always greater or equal to 6 cycles. This means that
if the schedule swap is set to be done after 2 TDM periods have elapsed, then
there are always 8 cycles for the data to arrive and to provide enough time for
the skew.
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Moreover, setting the swap moment 2 TDM periods further also guarantees
enough time for the clock domain crossing by the synchronizer at the network
adapters. The additional cycles needed are as many as the flip-flops used to
traverse the domain. Thus, swapping after two TDM periods is the earliest
possible, which provides at any case enough time for all of the pre-mentioned
conditions.

Alternatively, if the minimum size of a schedule is greater or equal to 4 slots,
then the swap moment can be set to the end of the next TDM period. In order
to set the swap moment even earlier, the current slot would have to be compared
to the size of the running schedule. If there is enough time, the controller could
command the new schedule application at the end of the current TDM period.
Still, this additional functionality would be only an average case optimization
that does not apply in all mode changes.

At this point, it has to be said that the swap moment selection does not have an
upper bound. This means that the links of the tree may be pipelined to increase
the throughput of the tree if the wires grow too long and the synchronizer may
incorporate more flip-flops to decrease further the risk of metastability. In any
case, all that is required is to postpone the swapping to a new schedule further
in time.

Finally, due to the skew, a minimum separation has to be introduced between
the swapping to a new schedule and the pushing of a new one. For example, the
mode change controller may be ahead of a network adapter by 3 cycles. After
doing a swap, the controller returns to idle state, while the network adapter has
not swapped yet due to the skew. Then the controller is instructed to push a
new schedule. If a token arrives to the slot table of the network adapter before
the pending swap is completed, then the schedule will be corrupted. Still, the
state machine of the mode change controller, after swapping, has to spend two
cycles in state idle, one for the system processor to read that the module is free
and one to initiate a new mode change procedure. Then, one more cycle is spent
in state init to initialize the procedure. Therefore, the minimum separation of
three cycles is met by default.
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Integration and
Implementation

So far the design of the mode change module and the modifications to the
T-CREST hardware platform to integrate the module have been presented. The
integration though extends also to the software level. As it was specified in
Section 4.2, the schedule selection and the policy to apply schedules is managed
by the programmer.

6.1 Software support

A software API was developed with functions handling the system processor
OCPio and OCPcore communication to the controller and the SPM of the mode
change module respectively. These functions interact with the hardware through
a local address space for the SPM and a single-address address space for the
controller.

The developed software has a special way of managing the memory space of the
SPM of the mode change module. On hardware level a maximum size for a
schedule is defined. Then, we selected to set the size of the mode change SPM
to fit two maximum-sized schedules. The software API splits the SPM into two
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banks. When a mode change is to be performed, the function apply schedule is
called, which:

1. copies the schedule to one bank of the SPM,

2. waits until the controller is free,

3. instructs the controller to fetch and apply the new schedule, providing the
size and the location in the SPM as arguments.

After that, if another schedule needs to be applied, then the function may be
called again, and the other bank of the SPM will be used to copy the new
schedule. This way, by using two areas in the SPM in an interleaved way, some
latency of doing a mode change is hidden.

Other strategies of utilizing the SPM and applying new schedules may be used,
simply by modifying or enhancing the software API.

Since the NoC mode change is handled by the mode change module, the initial-
ization of the network adapters by the local cores during the boot phase was
removed.

6.2 T-CREST tool-chain integration

T-CREST provides a tool-chain to generate customizable platforms. The pa-
rameters to be customized are the size of the system, the topology, the link
depth of the switched structure, the type of the IPs, the shared memory type,
the application to be loaded, etc. The configuration parameters of the platform
to be exported are described through xml files, which are parsed by python
scripts exporting VHDL and Verilog hardware descriptions.

The platform generation process, except for generating descriptions according
to the configuration parameters, it also incorporates the compilation of the user
application and the generation of the binary code to be written in the local
caches of the processors.
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6.2.1 Generic generation of broadcast tree network struc-
ture

In order for the designed module to be integrated to this dynamic generation
process, the module was described in VHDL using generic coding techniques to
support systems of any size. Depending on the number of processors that are
attached to the NoC, the structure of the broadcast tree network is generated
accordingly to provide as many leaves as these processors. The generic broadcast
tree is generated under two fundamental guidelines. All of the routes from the
tree root to the leaves traverse the same number of pipeline stages, and only
forks to 2 or 3 stages are used. Since all of the paths are of equal length, the tree
is organised in levels, where a level is the order of a pipeline stage in the path
from the root to the leaves. Each level contains parallel nodes implemented with
click-element forks with capture. The number of levels, the number of nodes
per level and the type of every node (fork to 2 or 3) is generated using functions
and generic VHDL descriptions.

6.2.2 Tool-chain extensions and modifications

To allow for a complete integration to T-CREST, the configurable parameters
in the xml files were enhanced with support for the mode change module. Ad-
ditionally, the python scripts that parse the parameters and generate platform
hardware descriptions were modified and extended to incorporate condition-
ally (under the guidance of the parameters) the mode change module. The
extensions involve the instantiation of the generic mode change module in the
platform hierarchy, while the modifications affect the component selection, the
interfaces of the generated components and the interconnection of the instances.
For example, if the mode change module is enabled, then the modified network
adapter has to be used instead, which has an extended interface. This extended
interface has to be taken into account in the platform hierarchy and be inter-
connected accordingly. As a result, the mode change has become a T-CREST
platform configuration parameter.
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Chapter 7

Latency estimation

The first thing to consider when doing the latency estimation is what constitutes
the latency in a mode change. The presented design allows the programmer to
define the schedule application policy and the management of the mode change
SPM. Nevertheless, the software API accompanying the module provides a cer-
tain way of accessing the SPM, as described in Section 6.1. The estimation
done is based on this approach. Similarly, estimations can be done for other
approaches. So, we define as mode change latency the time from the moment
that a decision to apply a schedule has been taken to the moment that the
schedule is actually applied. This includes the schedule acquisition, fetch and
application phases of the mode change.

Before proceeding, some fundamental assumptions have to be made. Even
though T-CREST platform has a GALS timing organization, at the time no
clock domain crossing is supported between the cores and the network adapters.
Instead, the same clock is used for all. This is the reason why the read/write
operations through the OCP ports are considered to have a duration of 1 cycle.
Furthermore, the schedules are considered to be stored in the local data cache
of the system processor. Lastly, the schedule swap moment is set to be after
P = 2 full schedule periods in the future.

Having said the above, and considering as size of a schedule always the maximum
size, the latency of a mode change can be divided in four steps:



58 Latency estimation

Step 1 Schedule acquisition latency
It is the time required to copy the new schedule from the data cache of the
system processor to the mode change SPM. The interval between OCPcore
writes from the processor is 8 cycles due to index incrementing in software.
If loop unrolling is used, then this interval can be reduced. The copying
time is at most sizemax ×NODES × 8 cycles.

Step 2 Waiting period
The controller may be occupied by a previous mode change operation.
Totally, a mode change operation, once started, may last:

i 1 cycle for the initialization,
ii NODES×(sizemax +1) cycles for the pushing out of the new sched-

ule and
iii (P + 1)× sizemax× 3− 1 cycles (periods× slots

period ×
cycles

slot − cycles),
which means at least P periods until the swapping to the new schedule
is completed.

Nevertheless, at the worst case that a previous mode change is ongoing,
still a part of this operation is parallel to the schedule acquisition. The
waiting period so is at most the difference of the sum of i, ii and iii from
the schedule acquisition latency that was calculated in Step 1. Taking into
account that a schedule cannot have size less than 2, that a system cannot
have less than 2 processors attached to the NoC, and setting P ≤ 2, we
can derive that the worst case acquisition latency is always greater than
the worst case waiting time. So, the waiting time is not considered in
the worst case mode change latency. Still, 10 cycles are required for the
processor to read that the mode change controller is free and instruct a
mode change through the OCPio port.

Step 3 Schedule fetching latency
Once the instruction has been given, 2 cycles are needed to start and ini-
tialize the mode change, and NODES× (sizemax + 1) cycles additionally
for the fetching.

Step 4 Schedule apply latency
After the fetching has finished, at the worst case the swapping to the new
schedule will happen after 3× (P + 1)× sizemax − 1 cycles.

Summing all of the above partial sums we get that the total worst case latency
of a mode change, under the assumed configuration, lasts:

TW Clatency = 8×NODES × sizemax + NODES × (sizemax + 1)+
3× (P + 1)× sizemax + 11 cycles

(7.1)
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The calculation was done assuming always schedules of maximum size. For a
given system, the size of the biggest schedule should be used to determine the
worst case latency.
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Chapter 8
Verification with test cases

and results

In this chapter we present the test cases that were used to verify the functionality
of the design, along with some results regarding the latency of a mode change
and the resources used by the FPGA prototype.

For the verification, two perspectives have to be considered. The first per-
spective is related to the active communication channels. When doing a mode
change, some virtual end-to-end circuits connecting cores may be disabled, while
others are activated. Furthermore, a communication channel may remain open
after a mode change, possibly with different bandwidth or paths to the destina-
tion. The second perspective is about the correctness of the transferred blocks.
The mode changes are performed transparently to the execution of the tasks.
Due to a mode change, a channel may change paths, or it may be disabled and
enabled later on with another mode change. In any case, the block transfers
must be correct. It is the programmer’s responsibility to maintain the required
connections open.

Two applications were developed to verify the design under the two perspec-
tives. The applications define a set of tasks that use the MPI NoC to exchange
blocks while the system processor performs mode changes within a static set of
schedules. The serial port of the system processor is used to monitor correctness
reports by the tasks.
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For the developed test cases a 4 core T-CREST platform with 2x2 bitorus topol-
ogy for the MPI NoC was generated. The core with ID 0 was used as the system
processor, and therefore it was disconnected from the MPI NoC and connected
to the mode change module instead.

Lastly, when in simulation, the T-CREST platform simulation model forces
faster clock ticks to the serial port to speed up the simulation, which otherwise
would be infeasible.

Table 8.1: Static set of global schedules for test cases. Twelve schedules are
used. The size and the open core-to-core connections of every sched-
ule are shown in the second and the third column respectively.

Schedule
index

Size
(slots/period)

Active
communication channels

1 5 Core 1 → Core 2 , Core 2 → Core 3
Core 3 → Core 1 , Core 1 → Core 3
Core 2 → Core 1 , Core 3 → Core 2

2 4 None-to-none

3 5 Core 1 → Core 2 , Core 2 → Core 3
Core 3 → Core 1 , Core 1 → Core 3
Core 2 → Core 1 , Core 3 → Core 2

4 3 Core 1 → Core 2

5 3 Core 2 → Core 3

6 3 Core 3 → Core 1

7 3 Core 1 → Core 3

8 3 Core 2 → Core 1

9 3 Core 3 → Core 2

10 3 Core 1 → Core 2 , Core 2 → Core 1

11 3 Core 2 → Core 3 , Core 3 → Core 2

12 3 Core 3 → Core 1 , Core 1 → Core 3

8.1 Static set of schedules

A set of 12 global schedules was written to select among them for the mode
changes of the test cases. The schedules activate different combinations of com-
munication channels and utilize different routes and slot allocations. All of
the schedules are compressed, with equal bandwidth for every active channel
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and one slot per period for every recipient. Table 8.1 presents the sizes of the
schedules and the enabled communication channels per schedule. The schedules
with indices 1 and 3 differ as they use different routes through the NoC for the
connections.

8.2 Test case 1: Open communication channels
verification

The purpose of this test case is to monitor the enabled communication channels
while performing mode changes. For this reason an application was written. In
this application, every core of the NoC is in an infinite loop, at every iteration
of which the process attempts to set up a block transfer to every other NoC-
attached core and checks on the reception of incoming blocks. There is neither
MPI synchronization between the senders and the receivers, nor verification of
the contents of the blocks being transferred. All that is important in this test
case is to demonstrate that blocks are being transferred, and monitor on which
channels the transfers are done.

T-CREST NoC is supported with a set of functions to handle the DMAs through
the OCPio port and instantiate block transfers on software level. The function
to instantiate a block sending is a blocking function, which will not return until
the DMA handling the transfer is available and set up. This functionality does
not fit the purpose of the first test case. For this reason, a modified function
was used which instead of doing, it attempts a DMA set up returning a boolean
flag reporting if the set up was successful.

As mentioned before, the serial port of the system processor, which is core 0, is
used to send out reports. Whenever a process receives a block, it notifies the
system processor about the reception and the ID of the sender. This notification
is done through the shared memory. A set of semaphores is defined and stored in
the shared memory, one for every NoC-attached core. The semaphores are set by
the core processes respectively when receiving a block and cleared by the system
processor when processed. From the moment that a block is received by a core
until the printing out of the corresponding report by the system processor and
the clearing of the core semaphore, the core process is blocked. In the meanwhile,
other blocks may arrive, the reception of which is being ignored. After all, the
purpose of the application is to demonstrate just that traffic exists, and report
on the active channels.

The system processor, except for managing the reports through the serial port,
it also performs mode changes. The schedules used are the schedules with index
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Table 8.2: Simulation console output result of test case 1.

Time
(nsec)

Serial port

987,5 Schedule 4
9187,5 1to2

12137,5 1to2
15137,5 1to2
18087,5 1to2
21037,5 1to2
24037,5 1to2
26987,5 1to2
29937,5 1to2
32250,0 Schedule 5
37187,5 1to2
38887,5 2to3
41837,5 2to3
44837,5 2to3
47787,5 2to3
50737,5 2to3
53687,5 2to3
56637,5 2to3
59637,5 2to3
62587,5 2to3
65537,5 2to3
67600,0 Schedule 6
72787,5 2to3
74437,5 3to1
77437,5 3to1
80437,5 3to1
83437,5 3to1
86437,5 3to1
89437,5 3to1
92437,5 3to1
95437,5 3to1
98437,5 3to1

101437,5 3to1
103200,0 Schedule 7
107937,5 3to1
109837,5 1to3
112737,5 1to3
115637,5 1to3
118537,5 1to3
121437,5 1to3
124337,5 1to3
127237,5 1to3
130137,5 1to3
133037,5 1to3
135937,5 1to3
138000,0 Schedule 8
143337,5 1to3
144937,5 2to1
147987,5 2to1

Time
(nsec)

Serial port

151037,5 2to1
153937,5 2to1
156987,5 2to1
160037,5 2to1
162937,5 2to1
165987,5 2to1
169037,5 2to1
172087,5 2to1
173850,0 Schedule 9
178787,5 2to1
180487,5 3to2
183737,5 3to2
186737,5 3to2
189637,5 3to2
192637,5 3to2
195637,5 3to2
198537,5 3to2
201537,5 3to2
204537,5 3to2
207437,5 3to2
209800,0 Schedule 10
215487,5 3to2
217537,5 2to1
219237,5 1to2
222787,5 1to2
224787,5 2to1
227837,5 2to1
229487,5 1to2
232737,5 1to2
234737,5 2to1
237787,5 2to1
239437,5 1to2
242887,5 1to2
244887,5 2to1
247937,5 2to1
249587,5 1to2
252687,5 1to2
254687,5 2to1
256650,0 Schedule 11
266737,5 2to1
268437,5 1to2
270437,5 2to3
273287,5 3to2
276837,5 3to2
278487,5 2to3
281637,5 2to3
283487,5 3to2
286787,5 3to2
288437,5 2to3

Time
(nsec)

Serial port

291737,5 2to3
293687,5 3to2
296937,5 3to2
298587,5 2to3
301737,5 2to3
303587,5 3to2
306787,5 3to2
308437,5 2to3
310850,0 Schedule 12
321037,5 3to2
322887,5 2to3
324487,5 3to1
327187,5 1to3
330837,5 1to3
332437,5 3to1
335837,5 3to1
337737,5 1to3
340737,5 1to3
342487,5 3to1
345737,5 3to1
347637,5 1to3
350887,5 1to3
352487,5 3to1
355637,5 3to1
357487,5 1to3
360787,5 1to3
362387,5 3to1
364550,0 Schedule 1
375187,5 3to1
376887,5 1to2
378587,5 1to3
380487,5 2to1
382987,5 3to2
385487,5 2to3
387987,5 3to1
390487,5 1to2
392987,5 1to3
395387,5 2to1
397987,5 3to2
400487,5 2to3
402987,5 3to1
405487,5 1to2
407987,5 1to3
410387,5 2to1
412987,5 3to2
415487,5 2to3
417987,5 3to1
420487,5 1to2
422987,5 1to3
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4, 5, 6, 7, 8, 9, 10, 11, 12 and 1, as defined in Table 8.1, and they are applied
in a cyclic fashion and with some delay between the mode changes. Every time
the mode is changed, the index of the new schedule is also reported through the
serial port.

The application was executed on the simulation model of the platform using
Modelsim SE and the output of the serial port, together with timing annotation,
is shown in Table 8.2. Comparing to the enabled communication channels per
schedule, which are presented in Table 8.1, we can see that after a mode change,
the open channels match the ones defined by the active schedule.

8.3 Test case 2: Correctness of functionality

The second test case examines the correctness of the block transfers when mode
changes are performed transparently to the tasks executed on the cores of the
NoC. A series of block transfers between the cores is done and then a validation
function compares the received blocks to the expected ones. If the comparison
is successful and the blocks are correct, then the system processor prints out
from the serial port a report of correctness. Otherwise, an error is reported.
The block transfers and the validation is repeated infinitely.

Similarly to the first task, the system processor manages the mode changes and
the reports to the serial port. The schedules used in this test case are schedules
1, 4, 3 and 2 as presented in Table 8.1. Once again the shared memory is used to
pass reports through semaphores from the tasks to the system processor. This
time though, the reports are about the success or the failure of the validation
of the transferred blocks.

Every process, except of course from the system process on processor 0, has 2
different blocks to send and two phases. The first block is associated to phase
A and the second to phase B. The sending blocks of every process are different
to one another. Each phase is divided in three steps:

1. At first, two block transfers are set up to both of the other two NoC
processors. Both of the transfers send the same block. In Figure 8.1, at
step 1 of phase A, processor 1 (P1) sets up the transfer of block b1A to
processors 2 (P2) and 3 (P3). P2 sets up the transfer of b2A to P1 and
P3, and P3 the transfer of b3A to P1 and P2. Then, every process receives
two blocks from the other two processors.

2. The received blocks are sent out again, without any change, but not to
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Figure 8.1: Test case 2 phases and block transfers diagram.

the processor that they came from. For example, at the end of step 1 P1
receives from P2 and P3. The block received from P2 is sent to P3 and
the one received from P3 is sent to P2. The same applies for all NoC
cores. Then, once again every process receives two blocks from the other
two processors.

3. The third step is identical to the second one, with the addition of the
correctness checking. All NoC processors send out the received blocks
with the same policy and then they receive two blocks. Following the
trace of the previous steps, it can be seen that at the end of the third
step, each NoC processor receives two blocks that are expected to be the
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same as the block that was sent out at step 1. Therefore, the received
blocks are compared against it, and the boolean result of the comparison
is passed to the semaphore related to the processor, so that the system
processor can print out the corresponding report.

Table 8.3: Simulation console output result of test case 2.

Time
(nsec)

Serial port

3387,5 Schedule 1
21837,5 Core 1 :OK
24587,5 Core 2 :OK
27187,5 Core 3 :OK
46087,5 Core 1 :OK
48837,5 Core 2 :OK
51437,5 Core 3 :OK
70387,5 Core 1 :OK
73137,5 Core 2 :OK
75737,5 Core 3 :OK
88337,5 Schedule 4
93837,5 Core 2 :OK
96587,5 Core 3 :OK

100187,5 Core 1 :OK
174537,5 Schedule 3
190337,5 Core 3 :OK
193087,5 Core 1 :OK

Time
(nsec)

Serial port

195687,5 Core 2 :OK
212037,5 Core 2 :OK
214787,5 Core 3 :OK
217387,5 Core 1 :OK
236287,5 Core 2 :OK
239037,5 Core 3 :OK
241637,5 Core 1 :OK
259737,5 Schedule 2
262737,5 Core 1 :OK
266087,5 Core 2 :OK
271487,5 Core 3 :OK
348725,0 Schedule 1
364437,5 Core 3 :OK
367187,5 Core 1 :OK
369787,5 Core 2 :OK
386187,5 Core 2 :OK
388937,5 Core 3 :OK

Time
(nsec)

Serial port

391537,5 Core 1 :OK
410337,5 Core 2 :OK
413087,5 Core 3 :OK
415687,5 Core 1 :OK
433387,5 Schedule 4
436387,5 Core 1 :OK
439737,5 Core 2 :OK
445137,5 Core 3 :OK
522287,5 Schedule 3
538037,5 Core 3 :OK
540787,5 Core 1 :OK
543387,5 Core 2 :OK
559737,5 Core 2 :OK
562487,5 Core 3 :OK
565087,5 Core 1 :OK
583987,5 Core 2 :OK
586737,5 Core 3 :OK

The second phase of the application is identical to the first one, but the blocks
sent out at step 1 are different than the ones of the first phase. The reason for
this is to exercise better the block transfers through the NoC. The two phases
are interleaved in an infinite loop of execution.

The application, for proper execution, expects an equal bandwidth from all
cores to all cores. Still, if some connection is not enabled by the schedule, then
no failure is expected. Instead, the process that waits on that channel will be
blocked in a polling loop, waiting for the reception. Subsequently, that process
will not set up other block transfers and therefore other processes will be also
blocked waiting for reception, much like a domino effect. When the bandwidth
is restored by a mode change, the execution proceeds normally.

The application was executed on the simulation model of the platform under
Modelsim SE and the serial port output of the system processor is shown in Ta-
ble 8.3. As it can be seen in the table, when schedules 1 and 3 are active, which
provide all-to-all communication, the blocks are being transferred continuously
and correctly. When a mode change activates schedule 4 or 2, which are sched-
ules that do not enable all the required communication channels, the execution
is blocked. The hysteresis that can be seen, being the successful block transfer
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cycle after a mode change to an inadequate schedule, is due to the validating
function which is executed at the end of step 3, introducing some delay between
the actual reception and the printing of the report. Table 8.3 verifies that all of
the block transfers are successful.

8.4 Mode change swap demonstration on Mod-
elsim

In this section a mode change swap to a new schedule from the perspective of the
network adapters is given through the waveforms generated by the simulation
on Modelsim SE.

Some skew was introduced between the network adapters and the mode change
controller. The controller and the network adapter of processor 1 are at the
same phase. The adapter of processor two is delayed by one clock cycle and the
adapter of processor 3 by two clock cycles. The skew can be seen in Figure 8.2
by observing the phase difference between the slot counters.

As shown in Figure 8.2, at first the state of the controller transits to state
wait disassert, and the 2-phase swap command signal is toggled. Since the
current period, according to the period counter of the controller, is the period
100 (one-hot encoding), the moment to swap is set at least two periods later
and therefore at the end of period 010 (100 rotated left twice). The network
adapters receive the command but do not act until the end of period 010. Due
to the skew, each network adapter has its own notion of the current slot and
period. At the end of period 010 Figure 8.2 shows how every network adapter
swaps to the new schedule, which lies in the other bank of the slot table, simply
by toggling their bank selection flag.

8.5 Latency results

As explained in chapter 7, the latency is partially dependent on the mode change
policy selected by the programmer. The following analysis is based on the mode
change policy of the provided software API that supports the design. At first,
we do an estimation based on the steps presented in chapter 7, but considering
the actual sizes of the active and the new schedule of the case studied and not
the maximum. Then, we compare this upper bound estimation to the reported



8.5 Latency results 69

Figure 8.2: Modelsim simulation waveforms of a mode change swap.
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one by the simulation, and finally we show that it is smaller than the worst case
latency according to the formula of Chapter 7.

The case that is analysed is that the active schedule has 10 slots and a mode
change to a schedule of 5 slots has been requested. The system has 4 cores
attached to the NoC. Then the estimation for every step is as follows:

Schedule acquisition

5 slot words × 4 cores × 8 cycles

word
= 160 cycles (8.1)

Mode change instruction

10 cycles (8.2)

Schedule fetching

2 cycles+ 4 cores ×(5 slot words + 1 size word) × 1 cycle

word
= 26 cycles

(8.3)

Apply schedule

3 cycles

slot
× 3 periods × 10 slots

period
− 1 cycle = 89 cycles (8.4)

The total of the above estimation is 285 cycles. The simulation of the above
mode change resulted into 280 cycles. The difference is due to the fact that the
formula of the schedule application latency takes into account the worst case
scenario that the mode change command is given after a new period has just
started. In such case, the current period has to elapse, plus two more periods
as defined by the policy, before swapping to the new schedule.

If the schedule of 10 slots that was considered is the biggest schedule for this
system, then the worst case latency, derived by a mode change from a schedule
of 10 slots to another schedule of 10 slots is 465 cycles, which is bigger than the
latency reported by the simulation.

If the maximum schedule size is considered to be 256 slots, then the worst case
latency of a mode change in this system with 4 NoC-attached cores would be
11535 cycles. However, due to the T-CREST scheduler property to compress
the generated schedules, the schedule sizes are kept to smaller values.
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Finally, it has to be commented that the latency of the schedule acquisition is
the factor that contributes more to the total sum. If loop unrolling when writing
the schedule to the SPM or other policies are used, like utilizing a larger SPM,
so that more global schedules can be kept in it, then the schedule acquisition
latency could be reduced significantly, or even eliminated.

8.6 FPGA prototyping

The mode change extended T-CREST platform was successfully prototyped on
the Xilinx ML605 FPGA-board. Special techniques were invoked to prototype
asynchronous components on the FPGA, which typically targets synchronous
designs.

8.6.1 Asynchronous components FPGA implementation

The T-CREST platform operates partially in the asynchronous domain, since
the switched structure of the NoC is self-timed. Moreover, the designed mode
change module passes through the asynchronous domain also. The asynchronous
components that need special treatment on an FPGA are the matched delays
that are used to guarantee bundling constraints (needed to satisfy setup and
hold time requirements) and the Muller C-gates used by the routers of the NoC,
and their FPGA prototyping has been elaborated in [38]. Since the mode change
module uses just matched delays, we will focus on that. For more details refer
to [38].

The VHDL after statement is not synthesizable and Xilinx ISE does not support
constraints for minimum delay of a path. Therefore, we implement the delay as
an array of Look Up Tables. The introduced delay grows with the length of the
array. The logic function of each LUT is an AND gate, but since both inputs are
connected to the same signal, each LUT behaves as a simple delay (Figure 8.3).
Behavioural VHDL statements cannot be used to describe the array because
they are being optimised out during synthesis. Instead, the matched delay is
described structurally, as an array of instances of LUT components from the
Xilinx library, the contents of which are hard-written and not inferred by a
logic function.
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Figure 8.3: Matched delay as an array of Look Up Tables.

8.6.2 Resources report

The hierarchical ML605 FPGA-board resources utilization by a mode change
extended T-CREST platform with a total of 4 processors is presented in Listing
8.1. As mentioned in the listing, for every column two numbers are reported, the
first being the resources used solely at the hierarchical level of the instance and
the second being the resources used totally by the instance from its hierarchical
level and down.

Listing 8.1: T-CREST platform with mode change module resources utiliza-
tion by hierarchy on Xilinx ML605 FPGA board.

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Module | S l i c e s ∗ | S l i c e | LUTs | LUTRAM | BRAM |
| | | Reg | | | FIFO |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− +
| top | 2/13838 | 4/23182 | 4/27750 | 1/489 | 0/326 |
| cmp | 0/13728 | 0/22978 | 0/27588 | 0/488 | 0/70 |
| a r b i t e r | 48/48 | 6/6 | 69/69 | 0/0 | 0/0 |
| mode change | 0/108 | 0/205 | 0/172 | 0/0 | 0/0 |
| c o n t r o l l e r | 35/35 | 61/61 | 63/63 | 0/0 | 0/0 |
| e x t r a c t o r 0 | 9/12 | 18/18 | 15/18 | 0/0 | 0/0 |
| e x t r a c t o r 1 | 9/12 | 18/18 | 19/22 | 0/0 | 0/0 |
| e x t r a c t o r 2 | 9/12 | 18/18 | 15/18 | 0/0 | 0/0 |
| e x t r a c t o r 3 | 9/12 | 18/18 | 19/22 | 0/0 | 0/0 |
| t r e e | 0/25 | 0/72 | 0/29 | 0/0 | 0/0 |
| noc | 0/2868 | 0/4641 | 0/3500 | 0/0 | 0/4 |
| node 0 | 1/583 | 1/882 | 1/680 | 0/0 | 0/1 |
| node 1 | 1/744 | 1/1253 | 1/960 | 0/0 | 0/1 |
| adapter | 158/243 | 322/564 | 325/401 | 0/0 | 0/1 |
| dma table | 21/85 | 2/242 | 24/76 | 0/0 | 0/0 |
| s l t t a b l e | 0/0 | 0/0 | 0/0 | 0/0 | 1/1 |
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| node 2 | 1/772 | 1/1253 | 1/926 | 0/0 | 0/1 |
| node 3 | 1/769 | 1/1253 | 1/934 | 0/0 | 0/1 |
| p r o c e s s o r 0 | 45/2651 | 1/4552 | 56/5930 | 0/128 | 0/10 |
| p r o c e s s o r 1 | 45/2579 | 1/4520 | 56/5935 | 0/120 | 0/10 |
| p r o c e s s o r 2 | 45/2738 | 1/4520 | 56/5918 | 0/120 | 0/10 |
| p r o c e s s o r 3 | 49/2635 | 1/4520 | 56/5937 | 0/120 | 0/10 |
| mc spm | 2/2 | 2/2 | 1/1 | 0/0 | 0/2 |
| noc spm 1 | 30/30 | 4/4 | 42/42 | 0/0 | 0/8 |
| noc spm 2 | 39/39 | 4/4 | 42/42 | 0/0 | 0/8 |
| noc spm 3 | 30/30 | 4/4 | 42/42 | 0/0 | 0/8 |
| shared memory | 17/108 | 20/200 | 28/158 | 0/0 | 0/256 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− +

∗ S l i c e s can be packed with b a s i c e lements from m ul t ip l e
h i e r a r c h i e s .

Therefore , a s l i c e w i l l be counted in every h i e r a r c h i c a l module
that each o f i t s packed b a s i c e lements belong to .

∗∗ For each column , the re are two numbers repor ted <A>/<B>.
<A> i s the number o f e lements that belong to that s p e c i f i c

h i e r a r c h i c a l module .
<B> i s the t o t a l number o f e lements from that h i e r a r c h i c a l

module and any lower l e v e l
h i e r a r c h i c a l modules below .

∗∗∗ The LUTRAM column counts a l l LUTs used as memory i n c l u d i n g RAM,
ROM, and s h i f t r e g i s t e r s .

It is clear that the mode change module in total is significantly smaller than a
single network adapter. The important overhead is the system processor, which
is managing the mode changes, together with the serial port. Configuration,
user interacting and monitoring services are system services that are generally
needed and can be combined with the mode change management in the system
processor. Therefore we do not consider the system processor as a mode change
extension overhead.
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Chapter 9

Discussion

So far we have described the design and the implementation of the mode change
module and its integration to the T-CREST platform, allowing for changing the
schedule of the TDM NoC, reassigning the bandwidth during execution, with
respect to the time-predictability and transparency specifications. The system
processor, under some user defined mode change request policy, instructs the
designed module to execute the change, which is then done within a static time
bound, the calculation for which has been provided.

9.1 Alternative utilization of mode change mod-
ule

The worst case latency that was calculated is dependent on the size of the
platform and the biggest schedule supported. The fact that the latency increases
with the number of processors attached to the NoC could lead to cases that the
mode change cannot be performed as fast as the user of the platform would like
it to be. After all, how much latency can be tolerated for a mode change is an
application specific parameter. Still, in such case the designed module gives to
the programmer the flexibility to handle the usage of the mode change SPM
in a different way by modifying the provided software API. For instance, the
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SPM could be increased to fit more than two schedules, if not all of the global
schedules of the application. Then, the schedule acquisition latency could be
transferred to a system booting phase, after which the latency of a mode change
would not take into account the schedule acquisition latency.

9.2 Latency vs resources trade-off

Another way to minimize the latency would be to introduce a distributed mode
change control system, where a control unit and a mode change SPM would exist
for every network adapter, increasing further the resources required. At this
point one should wonder how often is a mode change expected and if the trade-
off between latency and resources is worth of making such a decision. T-CREST
is a general-purpose time-predictable platform for hard real-time applications.
Under this perspective, the designed module, which uses minimum resources,
moves the mode change policy to the programming level and provides timing
guarantees, is well suited for this platform.

9.3 Mode change under a real-time OS

Another issue to be discussed is how a request for a mode change can be trig-
gered. As already mentioned in Subsection 4.3.1, a mode change can be the
result of run-time dependent or independent events, like tasks starting, finish-
ing or requesting for bandwidth according to their execution phase, external
interrupts, timer events or simply the push of a button. From the above it is
apparent that a mechanism to handle the requests is needed. It is up to the
user of the platform to implement this mechanism according to the needs of his
application. However, if a real-time operating system was ran on the platform,
then the mode change could become part of it, having the O/S allocating tasks
to processors and managing the bandwidth of the MPI interface.

9.4 Schedule generation as a system service

Another perspective to be considered is having the scheduler run as a system
service. Then, the global schedules would not be stored but instead generated
during run-time according to the current bandwidth requirements. In such
case, the scheduler service must guarantee that it can always generate a schedule
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meeting the bandwidth requirements, and the latency of the schedule generation
must be bound. The designed mode change module is compatible with this
option too.

9.5 FPGA prototyping of asynchronous circuits

Implementing asynchronous circuits on FPGA boards is particularly challeng-
ing, since the synthesizer is a tool oriented to synchronous design for synchronous
platforms. Actually, the only way to be done is by misusing the tools and manip-
ulating the synthesis process with manual constraints and directives on signal
level. Obtaining timing closure becomes infeasible, and the only way to reach
a result is to iterate between synthesizing and performing post Place & Route
simulation until the proper constraints have been set. This process becomes
even more challenging when similar techniques to clock gating are used in the
asynchronous domain, as it has been the case for the switched structure of the
T-CREST NoC.
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Chapter 10

Conclusion

The purpose of this thesis has been the enhancement of T-CREST platform, a
Network-on-Chip based multi-processor platform, with the ability to change the
mode of operation of the TDM NoC, reassigning the Message Passing Interface
bandwidth between the cores with respect to the time-predictability asset of
T-CREST.

Some default specifications were set regarding the desired operation of the mode
changes. T-CREST is a general-purpose platform that the user of which must
be able to configure and adjust to his needs. From this point of view, the mode
change module that was designed is flexible and configurable from the pro-
gramming level, allowing the end-users to define their schedules and their mode
change policy. Moreover, the transparency of a mode change to the tasks exe-
cuted on the processors was a fundamental specification. The designed module
does not interfere at all with the tasks’ execution, which continues uninterrupt-
edly during a mode change. Special focus was given to analyse the phases of a
mode change and examine them separately, comparing their requirements to the
available options by T-CREST in order to identify the necessary modifications.
Our module utilizes the existing hardware where possible and minimizes the
additional resources.

Due to the Globally Asynchronous Locally Synchronous timing organization of
T-CREST platform and the mesochronous domain of the TDM NoC network
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adapters that allows for skew between them, we explored asynchronous hand-
shaking techniques to propagate data in the asynchronous space of the GALS
organization, along with the Click element template [37] to design the asyn-
chronous components that served our design.

The theoretical analysis, which was based on the static timing properties of the
design, provided a bound to the worst case execution time of a mode change. The
module was integrated and tested on T-CREST with two applications exercising
the transparent bandwidth re-assignment while blocks are being successfully
exchanged among the tasks. The correctness of functionality under skewed
operation and the latency estimation were verified by simulation.

The contribution of this thesis project can be summarized to the following
points:

• Design and implementation of mode change module for the TDM NoC
based multi-processor time-predictable T-CREST platform

• Design and implementation of the asynchronous broadcast fork and state
machine components using the click element template

• Integration of the mode change module to T-CREST hardware platform

• Modification and extension of the T-CREST network adapter to incorpo-
rate the mode change functionality

• Development of mode change supporting software API

• Two applications exercising the Message Passing Interface of T-CREST
platform

• Integration of mode change module and software API to T-CREST tool-
chain

• FPGA prototyping of mode change extended T-CREST platform

As future work, the generation of global schedules as a service executed during
run-time is an aspect that can be explored. Already in [39] an online alloca-
tion of TDM slots is described for contention-free routing. Furthermore, the
development of a real-time operating system that will manage the allocation of
tasks to the processors and the bandwidth offered to them by the MPI is a very
interesting perspective.
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Listing 1: File: mc defs.vhd
1 -- -----------------------------------------------------------------
2 -- Definitions package
3 --
4 -- Author : Ioannis Kotleas
5 -- -----------------------------------------------------------------
6

7 library ieee;
8 use ieee. std_logic_1164 .all;
9 use ieee. numeric_std .all;

10 use ieee. math_real .all;
11 use work. config .all;
12 use work. noc_defs .all;
13

14 package mc_defs is
15 -- ---------------------------------------------------------------
16 -- Constants for schedule and counter sizes
17 constant MAX_SCHEDULE_SIZE : integer := 256;
18 constant BOOT_SCHEDULE_SIZE : integer := 10;
19 constant SLOT_CNT_SIZE : integer := integer (ceil(log2(real(

MAX_SCHEDULE_SIZE ))));
20

21 -- The schedule periods counter is one -hot encoded . The size
22 -- defines the amount of periods to wait before swapping to the
23 -- new schedule . A size of 3 gives two periods interval .
24 constant PERIOD_CNT_SIZE : integer := 3;
25

26 -- ---------------------------------------------------------------
27 -- Mode change SDP memory that holds the schedule
28 constant MC_SPM_SIZE : integer := 2 * MAX_SCHEDULE_SIZE * NODES ;
29 constant MC_SPM_DATA : integer := DMA_IND_WIDTH + 3 + BANK2_W ;
30 constant MC_SPM_ADDR : integer := integer (ceil(log2(real(

MC_SPM_SIZE ))));
31

32 -- Read -only port of MC SDP memory
33 type mc_mem_m is record
34 address : std_logic_vector ( MC_SPM_ADDR - 1 downto 0);
35 end record mc_mem_m ;
36

37 type mc_mem_s is record
38 data : std_logic_vector ( MC_SPM_DATA - 1 downto 0);
39 end record mc_mem_s ;
40

41 -- ---------------------------------------------------------------
42 -- Subtype definitions for data propagated on the broadcast
43 -- tree
44 subtype mc_word_t is std_logic_vector ( MC_SPM_DATA - 1 downto 0);
45 subtype node_id_t is unsigned ( integer (ceil(log2(real( NODES )))) -

1 downto 0);
46

47 -- ---------------------------------------------------------------
48 -- Data handshake channel records to propagate a schedule through
49 -- the tree
50 type mc_data_channel_f is record
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51 req : std_logic ;
52 id : node_id_t ;
53 data : mc_word_t ;
54 end record mc_data_channel_f ;
55

56 type mc_data_channel_b is record
57 ack : std_logic ;
58 end record mc_data_channel_b ;
59

60 -- ---------------------------------------------------------------
61 -- Swap channel record . No acknowledgment used.
62 type mc_swap_channel_f is record
63 req : std_logic ;
64 moment : std_logic_vector ( PERIOD_CNT_SIZE - 1 downto 0);
65 end record mc_swap_channel_f ;
66

67 -- ---------------------------------------------------------------
68 -- Combined data and swap channels to reduce wiring
69 type mc_channels_f is record
70 data_channel : mc_data_channel_f ;
71 swap_channel : mc_swap_channel_f ;
72 end record mc_channels_f ;
73

74 type mc_channels_b is record
75 data_channel : mc_data_channel_b ;
76 end record mc_channels_b ;
77

78 -- ---------------------------------------------------------------
79 -- Unconstrained arrays of combined records . To be used for
80 -- dynamic wiring .
81 type mc_array_f is array ( natural range <>) of mc_channels_f ;
82 type mc_array_b is array ( natural range <>) of mc_channels_b ;
83

84 -- ---------------------------------------------------------------
85 -- Interface between controller command bus and network adapters
86 type mc_join_channel_f is record
87 req : std_logic ;
88 size : unsigned ( SLOT_CNT_SIZE - 1 downto 0);
89 moment : std_logic_vector ( PERIOD_CNT_SIZE - 1 downto 0);
90 end record mc_join_channel_f ;
91

92 type slot_table_write_interface is record
93 wen : std_logic ;
94 waddr : std_logic_vector ( SLOT_CNT_SIZE downto 0);
95 wdata : mc_word_t ;
96 wclk : std_logic ;
97 end record slot_table_write_interface ;
98

99 type mc_to_ni is record
100 swap_channel : mc_join_channel_f ;
101 slot_write : slot_table_write_interface ;
102 end record mc_to_ni ;
103

104 -- ---------------------------------------------------------------
105 -- Unconstrained array of mc/ adapter interfaces . To
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106 -- be used for dynamic wiring .
107 type mc_to_ni_a is array ( natural range <>) of mc_to_ni ;
108

109 -- ---------------------------------------------------------------
110 -- Broadcast tree unconstrained parameters definitions . Used to
111 -- generate a tree of total leaves amount provided as a generic .
112 type tree_level is array (0 to 1) of integer ;
113 type tree_sizes is array ( natural range <>) of tree_level ;
114

115 function calc_levels (nods : natural ) return natural ;
116 function calc_tree_levels (nods : integer ) return tree_sizes ;
117 function calc_connections_of_level ( sizes : tree_sizes ; level :

integer ) return integer ;
118 function calc_total_connections ( sizes : tree_sizes ; levels :

natural ) return integer ;
119 function calc_connections_of_previous_levels ( sizes : tree_sizes ;

level : integer ) return integer ;
120

121 end package mc_defs ;
122

123 package body mc_defs is
124 function calc_levels (nods : natural ) return natural is
125 variable result : integer := 0;
126 variable nodes : natural := nods;
127 begin
128 while nodes > 1 loop
129 nodes := natural (ceil(real( nodes ) / real (3)));
130 result := result + 1;
131 end loop;
132 return result ;
133 end function ;
134

135 function calc_tree_levels (nods : integer ) return tree_sizes is
136 constant levels : natural := calc_levels (nods);
137 variable result : tree_sizes ( levels - 1 downto 0);
138 variable temp , u_nods : integer := nods;
139 begin
140 for level in 0 to levels - 1 loop
141 temp := u_nods ;
142 u_nods := 0;
143 result ( level )(0) := 0;
144 result ( level )(1) := 0;
145 while temp > 4 loop
146 result ( level )(0) := result ( level )(0) + 1;
147 temp := temp - 3;
148 u_nods := u_nods + 1;
149 end loop;
150 if temp = 3 then
151 result ( level )(0) := result ( level )(0) + 1;
152 u_nods := u_nods + 1;
153 elsif temp = 4 then
154 result ( level )(1) := 2;
155 u_nods := u_nods + 2;
156 elsif temp = 2 then
157 result ( level )(1) := 1;
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158 u_nods := u_nods + 1;
159 end if;
160 end loop;
161 return result ;
162 end function ;
163

164 function calc_connections_of_level ( sizes : tree_sizes ; level :
integer ) return integer is

165 variable result : integer := 0;
166 begin
167 result := sizes ( level )(0) * 3 + sizes ( level )(1) * 2;
168 return result ;
169 end function ;
170

171 function calc_connections_of_previous_levels ( sizes : tree_sizes ;
level : integer ) return integer is

172 variable result : integer := 0;
173 begin
174 for I in 0 to level - 1 loop
175 result := result + calc_connections_of_level (sizes , I);
176 end loop;
177 return result ;
178 end function ;
179

180 function calc_total_connections ( sizes : tree_sizes ; levels :
natural ) return integer is

181 variable result : integer := 0;
182 begin
183 for I in 0 to levels - 1 loop
184 result := result + calc_connections_of_level (sizes , I);
185 end loop;
186 return result ;
187 end function ;
188

189 end mc_defs ;
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Listing 2: File: mc controller.vhd
1 -- -----------------------------------------------------------------
2 -- Mode change controller
3 --
4 -- Author : Ioannis Kotleas
5 -- -----------------------------------------------------------------
6

7 library ieee;
8 use ieee. std_logic_1164 .all;
9 use work. mc_defs .all;

10 use ieee. numeric_std .all;
11 use work. config .all;
12 use work. noc_defs .all;
13 use work.ocp.all;
14

15 entity mc_controller is
16 port(
17 clk : in std_logic ;
18 reset : in std_logic ;
19

20 -- SDP Memory interface
21 spm_in : in mc_mem_s ;
22 spm_out : out mc_mem_m ;
23

24 -- Configuration OCP interface
25 proc_in : in ocp_io_m ;
26 proc_out : out ocp_io_s ;
27

28 --Broadcast tree interface
29 push_schedule_f : out mc_channels_f ;
30 push_schedule_b : in mc_channels_b
31 );
32 end mc_controller ;
33

34 architecture rtl of mc_controller is
35 -- Pushing schedule to broadcast tree
36 signal push_handshake : std_logic ;
37 signal enable_push_handshake : boolean ;
38 alias push_data : std_logic_vector ( MC_SPM_DATA - 1

downto 0) is push_schedule_f . data_channel .data;
39

40 -- Index of data to read from memory
41 signal location : unsigned ( MC_SPM_ADDR - 1 downto 0)

;
42 signal next_location : unsigned ( MC_SPM_ADDR - 1 downto 0)

;
43 -- Recipient network adapter id
44 signal next_node_id , node_id : node_id_t ;
45 -- Words per recipient counter
46 signal index_cnt : unsigned ( SLOT_CNT_SIZE - 1 downto

0);
47 signal next_index_cnt : unsigned ( SLOT_CNT_SIZE - 1 downto

0);
48
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49 -- Swap command flip flop - 2 phase signal
50 signal swap_2ph : std_logic ;
51

52 -- Mode change module state
53 signal toggle_occupied : boolean ;
54 signal occupied : std_logic ;
55

56 --To be written / driven by the OCP -IO:
57 alias schedule_location : std_logic_vector ( MC_SPM_ADDR - 1

downto 0) is proc_in . MData ( MC_SPM_ADDR + 16 - 1 downto 16);
58 signal schedule_max_index : std_logic_vector ( SLOT_CNT_SIZE - 1

downto 0);
59 signal start : boolean ;
60

61 -- Time to swap schedule
62 signal moment : std_logic_vector ( PERIOD_CNT_SIZE - 1 downto 0);
63

64 -- Slot counter
65 signal slt_cnt : unsigned ( SLOT_CNT_SIZE - 1 downto 0);
66 signal next_slt_cnt : unsigned ( SLOT_CNT_SIZE - 1 downto 0);
67 signal enable_slt_cnt : boolean ;
68 signal max_slt_cnt : unsigned ( SLOT_CNT_SIZE - 1 downto 0);
69

70 -- Schedule period counter one -hot encoded
71 signal period_cnt : std_logic_vector ( PERIOD_CNT_SIZE - 1

downto 0);
72 signal enable_period_cnt : boolean ;
73

74 -- Swap control signals : boolean ;
75 signal assert_swap , disassert_swap : boolean ;
76

77 -- Push schedule state machine
78 type states is (idle , init , push_lead_in , push , wait_disassert );
79 signal state , next_state : states ;
80 -- Regulate OCP -IO state machine
81 type ocp_io_states is (idle , write_done );
82 signal io_state , next_io_state : ocp_io_states ;
83 -- Slot and period counter state machine
84 type cnt_states is (s1 , s2 , s3);
85 signal cnt_state , next_cnt_state : cnt_states ;
86

87 begin
88 push_schedule_f . data_channel .req <= push_handshake ;
89 push_schedule_f . data_channel .id <= node_id ;
90 push_schedule_f . swap_channel .req <= swap_2ph ;
91 push_schedule_f . swap_channel . moment <= moment ;
92

93 -- OCP -IO state machine . When the processor asks to read the
94 -- pre - specified address ST_MASK the state ( occupied or not)
95 -- of the module is returned . When the same address is written
96 -- by the processor , it is interpreted as an " apply the new
97 -- schedule " command . The location of the schedule in the
98 -- mode change memory and the size of the new schedule are
99 -- given as data of the OCP -IO write command .

100 ocp_io_fsm : process (io_state , proc_in , occupied )



94 VHDL code of the mode change module

101 variable ocp_read , ocp_write : boolean ;
102 variable accepted_resp , valid_command : boolean ;
103 begin
104 -- Variables
105 ocp_read := proc_in .MCmd = "010";
106 ocp_write := proc_in .MCmd = "001";
107 accepted_resp := proc_in . MRespAccept = ’1’;
108 valid_command := proc_in . MAddr ( OCP_ADDR_WIDTH - 1 downto

OCP_ADDR_WIDTH - ADDR_MASK_W ) = ST_MASK ;
109 -- Defaults
110 next_io_state <= io_state ;
111 proc_out . SData <= ( others => ’0’);
112 proc_out . SResp <= OCP_RESP_NULL ;
113 proc_out . SCmdAccept <= ’0’;
114 start <= false ;
115 case io_state is
116 when idle =>
117 if ocp_write then
118 if valid_command then
119 start <= true;
120 end if;
121 next_io_state <= write_done ;
122 end if;
123 if ocp_read then
124 proc_out . SCmdAccept <= ’1’;
125 proc_out . SData (0) <= occupied ;
126 if valid_command then
127 proc_out . SResp <= OCP_RESP_DVA ;
128 else
129 proc_out . SResp <= OCP_RESP_ERR ;
130 end if;
131 end if;
132 when write_done =>
133 proc_out . SCmdAccept <= ’1’;
134 if valid_command then
135 proc_out . SResp <= OCP_RESP_DVA ;
136 else
137 proc_out . SResp <= OCP_RESP_ERR ;
138 end if;
139 if accepted_resp then
140 next_io_state <= idle;
141 end if;
142 end case;
143 end process ocp_io_fsm ;
144

145 -- The module maintains a slot counter and a schedule period
146 -- counter running mesochronously in parallel to the network
147 -- adapters ’ counters .
148 cnt_fsm : process (cnt_state , max_slt_cnt , slt_cnt )
149 variable last_slot : boolean ;
150 begin
151 --Variables
152 last_slot := max_slt_cnt = slt_cnt ;
153 --Defaults
154 next_slt_cnt <= slt_cnt + 1;
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155 enable_slt_cnt <= false ;
156 enable_period_cnt <= false ;
157

158 case cnt_state is
159 when s1 =>
160 next_cnt_state <= s2;
161 when s2 =>
162 next_cnt_state <= s3;
163 when s3 =>
164 next_cnt_state <= s1;
165 enable_slt_cnt <= true;
166 if last_slot then
167 next_slt_cnt <= ( others => ’0’);
168 enable_period_cnt <= true;
169 end if;
170 end case;
171 end process ;
172

173 -- Protect addra from overflowing .
174 spm_out . address <= std_logic_vector ( location ) when location <

MC_SPM_SIZE else ( others => ’0’);
175

176 -- State machine that regulates the pushing of a new schedule ,
177 -- waits synchronization with the period counter , asserts a swap
178 -- schedule state and waits until the schedule is applied and
179 -- the swap state is disasserted .
180 fsm : process (state , start , schedule_location , schedule_max_index

, location , index_cnt , node_id , enable_period_cnt ,
disassert_swap , spm_in .data , moment , period_cnt )

181 variable node_last_slot , last_node , time_to_swap : boolean ;
182 begin
183 -- Variables
184 node_last_slot := index_cnt = unsigned ( schedule_max_index );
185 last_node := node_id = NODES - 1;
186 time_to_swap := moment = period_cnt and enable_period_cnt ;
187

188 -- Defaults
189 next_state <= state ;
190 push_data <= spm_in .data;
191 next_location <= location ;
192 next_index_cnt <= index_cnt ;
193 next_node_id <= node_id ;
194 enable_push_handshake <= false ;
195 toggle_occupied <= false ;
196 assert_swap <= false ;
197 disassert_swap <= false ;
198 case state is
199 when idle =>
200 if start then
201 next_state <= init;
202 toggle_occupied <= true;
203 next_location <= unsigned ( schedule_location );
204 end if;
205 when init =>
206 next_node_id <= ( others => ’0’);
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207 enable_push_handshake <= true;
208 next_state <= push_lead_in ;
209 when push_lead_in =>
210 --data for pending handshake
211 push_data <= ( others => ’0’);
212 push_data ( SLOT_CNT_SIZE - 1 downto 0) <= schedule_max_index

;
213 next_index_cnt <= ( others => ’0’);
214 next_location <= location + 1;
215 enable_push_handshake <= true;
216 next_state <= push;
217 when push =>
218 if node_last_slot then
219 if last_node then
220 next_state <= wait_disassert ;
221 assert_swap <= true;
222 else
223 enable_push_handshake <= true;
224 next_node_id <= node_id + 1;
225 next_state <= push_lead_in ;
226 end if;
227 else
228 enable_push_handshake <= true;
229 next_location <= location + 1;
230 next_index_cnt <= index_cnt + 1;
231 end if;
232 when wait_disassert =>
233 if time_to_swap then
234 disassert_swap <= true;
235 next_state <= idle;
236 toggle_occupied <= true;
237 end if;
238 end case;
239 end process fsm;
240

241 registers : process (reset , clk)
242 begin
243 if reset = ’1’ then
244 push_handshake <= ’0’;
245 index_cnt <= ( others => ’0’);
246 location <= to_unsigned (33 , location ’ length );
247 node_id <= ( others => ’0’);
248 state <= idle;
249 slt_cnt <= ( others => ’0’);
250 max_slt_cnt <= to_unsigned ( BOOT_SCHEDULE_SIZE - 1,

max_slt_cnt ’ length );
251 for I in 1 to PERIOD_CNT_SIZE - 1 loop
252 period_cnt (I) <= ’0’;
253 end loop;
254 period_cnt (0) <= ’1’;
255 cnt_state <= s1;
256 moment <= ( others => ’0’);
257 swap_2ph <= ’1’;
258 occupied <= ’0’;
259 schedule_max_index <= ( others => ’0’);
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260 io_state <= idle;
261

262 elsif rising_edge (clk) then
263 index_cnt <= next_index_cnt ;
264 location <= next_location ;
265 state <= next_state ;
266 node_id <= next_node_id ;
267 cnt_state <= next_cnt_state ;
268 io_state <= next_io_state ;
269 if disassert_swap then
270 max_slt_cnt <= unsigned ( schedule_max_index );
271 end if;
272 if enable_push_handshake then
273 push_handshake <= not push_handshake ;
274 end if;
275 if enable_slt_cnt then
276 slt_cnt <= next_slt_cnt ;
277 end if;
278 if assert_swap then
279 for I in 0 to PERIOD_CNT_SIZE - 2 loop
280 moment (I) <= period_cnt (I + 1);
281 end loop;
282 moment ( PERIOD_CNT_SIZE - 1) <= period_cnt (0);
283 swap_2ph <= not swap_2ph ;
284 end if;
285 if enable_period_cnt then
286 for I in 1 to PERIOD_CNT_SIZE - 1 loop
287 period_cnt (I) <= period_cnt (I - 1);
288 end loop;
289 period_cnt (0) <= period_cnt ( PERIOD_CNT_SIZE - 1);
290 end if;
291 if toggle_occupied then
292 occupied <= not occupied ;
293 end if;
294 if start then
295 schedule_max_index <= proc_in . MData ( SLOT_CNT_SIZE - 1

downto 0);
296 end if;
297 end if;
298 end process registers ;
299

300 end rtl;
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Listing 3: File: mc broadcast tree node.vhd
1 -- -----------------------------------------------------------------
2 -- Mode change broadcast tree node
3 --
4 -- It consists of two forks . The fork size is given as a generic .
5 -- Data channel fork:
6 -- Asynchronous buffered fork , implemented with click element
7 -- template .
8 -- Swap channel fork:
9 -- Just wiring propagating the input to all outputs . No

10 -- acknowledgment used. Mono - directional channel . No buffering .
11 --
12 -- Author : Ioannis Kotleas
13 -- -----------------------------------------------------------------
14 library ieee;
15 use ieee. std_logic_1164 .all;
16 use work. mc_defs .all;
17

18 entity mc_broadcast_tree_node is
19 generic (SIZE : integer ;
20 MATCHED_DELAY_REQ : natural );
21 port(
22 reset : std_logic ;
23 in_f : in mc_channels_f ;
24 in_b : out mc_channels_b ;
25 out_f : out mc_array_f (SIZE - 1 downto 0);
26 out_b : in mc_array_b (SIZE - 1 downto 0)
27 );
28 end mc_broadcast_tree_node ;
29

30 architecture rtl of mc_broadcast_tree_node is
31 -- 1 to SIZE fork - handshake and data signals
32 -- Control
33 signal data_click : std_logic ;
34 signal data_state : std_logic ;
35 signal data_acks : std_logic_vector (SIZE - 1 downto 0);
36 signal del_req : std_logic ;
37 -- Data
38 signal id : node_id_t ;
39 signal data : mc_word_t ;
40

41 begin
42

43 -- Connect all inputs and outputs
44 in_b. data_channel .ack <= data_state ;
45

46 out_req : for J in 0 to SIZE - 1 generate
47 out_f (J). data_channel .req <= data_state ;
48 out_f (J). data_channel .data <= data;
49 out_f (J). data_channel .id <= id;
50 out_f (j). swap_channel .req <= in_f. swap_channel .req;
51 out_f (j). swap_channel . moment <= in_f. swap_channel . moment ;
52 data_acks (J) <= out_b (J). data_channel .ack;
53 end generate ;
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54

55 -- Matched delay for setup time violations
56 delay : entity work. matched_delay
57 generic map( MATCHED_DELAY_REQ )
58 port map(in_f. data_channel .req , del_req );
59

60 -- Click generating process
61 data_click_proc : process (del_req , data_acks , data_state )
62 variable set : boolean ;
63 begin
64 set := data_state /= del_req ;
65 for I in 0 to SIZE - 1 loop
66 set := set and data_state = data_acks (I);
67 end loop;
68 if set then
69 data_click <= ’1’;
70 else
71 data_click <= ’0’;
72 end if;
73 end process ;
74

75 -- Registers
76 data_reg : process (reset , data_click )
77 begin
78 if reset = ’1’ then
79 data_state <= ’0’;
80 id <= ( others => ’0’);
81 data <= ( others => ’0’);
82 elsif rising_edge ( data_click ) then
83 data_state <= not data_state after 2 ns;
84 id <= in_f. data_channel .id;
85 data <= in_f. data_channel .data;
86 end if;
87 end process ;
88

89 end rtl;
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Listing 4: File: mc broadcast tree level.vhd
1 -- -----------------------------------------------------------------
2 -- Mode change broadcast tree level
3 --
4 -- It is a group of nodes . It supports 2 kinds of nodes , 1to3 nodes
5 -- and 1to2 nodes . The nodes of a level stand in parallel and have
6 -- no connections to one another . The level has as many inputs
7 -- ( input array size) as the amount of nodes and as many outputs
8 -- ( output array size) as the sum of the outputs of the nodes .
9 --

10 -- Click element pipeline stage template used
11 --
12 -- Author : Ioannis Kotleas
13 -- -----------------------------------------------------------------
14 library ieee;
15 use ieee. std_logic_1164 .all;
16 use work. mc_defs .all;
17

18 entity mc_broadcast_tree_level is
19 generic ( THREES : integer ;
20 TWOS : integer ;
21 MATCHED_DELAY_REQ : natural );
22 port(
23 reset : in std_logic ;
24 in_f : in mc_array_f ( THREES + TWOS - 1 downto 0);
25 in_b : out mc_array_b ( THREES + TWOS - 1 downto 0);
26 out_f : out mc_array_f ( THREES * 3 + TWOS * 2 - 1 downto 0);
27 out_b : in mc_array_b ( THREES * 3 + TWOS * 2 - 1 downto 0)
28 );
29 end mc_broadcast_tree_level ;
30

31 architecture structural of mc_broadcast_tree_level is
32 component mc_broadcast_tree_node is
33 generic (SIZE : integer ;
34 MATCHED_DELAY_REQ : natural );
35 port(
36 reset : std_logic ;
37 in_f : in mc_channels_f ;
38 in_b : out mc_channels_b ;
39 out_f : out mc_array_f (SIZE - 1 downto 0);
40 out_b : in mc_array_b (SIZE - 1 downto 0)
41 );
42 end component ;
43

44 begin
45 node_1to3 : for I in 1 to THREES generate
46 n3 : mc_broadcast_tree_node
47 generic map (3, MATCHED_DELAY_REQ )
48 port map(
49 reset => reset ,
50 in_f => in_f(I - 1) ,
51 in_b => in_b(I - 1) ,
52 out_f => out_f (I * 3 - 1 downto (I - 1) * 3) ,
53 out_b => out_b (I * 3 - 1 downto (I - 1) * 3)
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54 );
55 end generate node_1to3 ;
56

57 node_1to2 : for I in THREES + 1 to THREES + TWOS generate
58 n2 : mc_broadcast_tree_node
59 generic map (2, MATCHED_DELAY_REQ )
60 port map(
61 reset => reset ,
62 in_f => in_f(I - 1) ,
63 in_b => in_b(I - 1) ,
64 out_f => out_f ( THREES * 3 + (I - THREES ) * 2 - 1 downto

THREES * 3 + (I - THREES - 1) * 2) ,
65 out_b => out_b ( THREES * 3 + (I - THREES ) * 2 - 1 downto

THREES * 3 + (I - THREES - 1) * 2)
66 );
67 end generate node_1to2 ;
68

69 end structural ;
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Listing 5: File: mc broadcast tree.vhd
1 -- -----------------------------------------------------------------
2 -- Broadcast tree. All paths of equal length .
3 -- Dynamically generated by the amount of leaves .
4 --
5 -- Author : Ioannis Kotleas
6 -- -----------------------------------------------------------------
7 library ieee;
8 use ieee. std_logic_1164 .all;
9 use work. mc_defs .all;

10 use work. delays .all;
11

12 entity mc_broadcast_tree is
13 generic ( leaves : natural );
14 port(
15 reset : in std_logic ;
16 in_f : in mc_channels_f ;
17 in_b : out mc_channels_b ;
18 out_f : out mc_array_f ( leaves - 1 downto 0);
19 out_b : in mc_array_b ( leaves - 1 downto 0)
20 );
21 end mc_broadcast_tree ;
22

23 architecture structural of mc_broadcast_tree is
24 -- Calculate how many levels the tree must be consisted of
25 constant levels : natural := calc_levels ( leaves );
26 -- For every tree level , calculate how many forks to three
27 -- and how many forks to two the level is consisted of
28 constant level_sizes : tree_sizes := calc_tree_levels ( leaves );
29

30 -- A level is a group of buffered forks to three and forks to two
31 component mc_broadcast_tree_level is
32 generic ( THREES : integer ;
33 TWOS : integer ;
34 MATCHED_DELAY_REQ : natural );
35 port(
36 reset : in std_logic ;
37 in_f : in mc_array_f ( THREES + TWOS - 1 downto 0);
38 in_b : out mc_array_b ( THREES + TWOS - 1 downto 0);
39 out_f : out mc_array_f ( THREES * 3 + TWOS * 2 - 1 downto 0);
40 out_b : in mc_array_b ( THREES * 3 + TWOS * 2 - 1 downto 0)
41 );
42 end component ;
43

44 -- Dynamic wiring . Calculate the total connections among the
45 -- tree levels and the schedule extractors and declare record
46 -- array .
47 signal interconnect_f : mc_array_f ( calc_total_connections (

level_sizes , levels ) - 1 downto 0);
48 signal interconnect_b : mc_array_b ( calc_total_connections (

level_sizes , levels ) - 1 downto 0);
49

50 begin
51 out_f <= interconnect_f ( leaves - 1
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downto 0);
52 interconnect_b ( leaves - 1 downto 0) <= out_b ;
53

54 -- For every level calculate how many are the inputs and how many
55 -- the outputs , perform some indexing calculations for the
56 -- dynamic wiring , and instantiate the tree level with parameters
57 -- the amount of forks to three and forks to two the level is
58 -- consisted of.
59 level : for I in 0 to levels - 1 generate
60 not_top : if I < levels - 1 generate
61 level : block
62 constant input_connections : integer :=

calc_connections_of_level ( level_sizes , I + 1);
63 constant output_connections : integer :=

calc_connections_of_level ( level_sizes , I);
64 constant already_connected : integer :=

calc_connections_of_previous_levels ( level_sizes , I);
65 signal level_in_f : mc_array_f ( input_connections

- 1 downto 0);
66 signal level_in_b : mc_array_b ( input_connections

- 1 downto 0);
67 signal level_out_f : mc_array_f ( output_connections

- 1 downto 0);
68 signal level_out_b : mc_array_b ( output_connections

- 1 downto 0);
69

70 begin
71 interconnect_f ( already_connected + output_connections - 1

downto already_connected ) <= level_out_f ;
72

73 interconnect_b ( already_connected + output_connections +
input_connections - 1 downto already_connected +
output_connections ) <= level_in_b ;

74

75 level_out_b <= interconnect_b ( already_connected +
output_connections - 1 downto already_connected );

76 level_in_f <= interconnect_f ( already_connected +
output_connections + input_connections - 1 downto
already_connected + output_connections );

77

78 l : mc_broadcast_tree_level
79 generic map( level_sizes (I)(0) , level_sizes (I)(1) ,

link_req_delay )
80 port map(
81 reset => reset ,
82 in_f => level_in_f ,
83 in_b => level_in_b ,
84 out_f => level_out_f ,
85 out_b => level_out_b
86 );
87

88 end block level ;
89 end generate not_top ;
90

91 top : if I = levels - 1 generate
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92 level : block
93 constant input_connections : integer := 1;
94 constant output_connections : integer :=

calc_connections_of_level ( level_sizes , I);
95 constant already_connected : integer :=

calc_connections_of_previous_levels ( level_sizes , I);
96 signal level_in_f : mc_array_f ( input_connections

- 1 downto 0);
97 signal level_in_b : mc_array_b ( input_connections

- 1 downto 0);
98 signal level_out_f : mc_array_f ( output_connections

- 1 downto 0);
99 signal level_out_b : mc_array_b ( output_connections

- 1 downto 0);
100

101 begin
102 interconnect_f ( already_connected + output_connections - 1

downto already_connected ) <= level_out_f ;
103

104 level_out_b <= interconnect_b ( already_connected +
output_connections - 1 downto already_connected );

105 level_in_f (0) <= in_f;
106 in_b <= level_in_b (0);
107

108 l : mc_broadcast_tree_level
109 generic map( level_sizes (I)(0) , level_sizes (I)(1) ,

link_req_delay )
110 port map(
111 reset => reset ,
112 in_f => level_in_f ,
113 in_b => level_in_b ,
114 out_f => level_out_f ,
115 out_b => level_out_b
116 );
117

118 end block level ;
119 end generate ;
120 end generate level ;
121

122 end structural ;
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Listing 6: File: mc extractor.vhd
1 -- -----------------------------------------------------------------
2 -- Asynchronous 2- phase schedule extraction module
3 -- Click element template used
4 -- Author : Ioannis Kotleas
5 -- -----------------------------------------------------------------
6 library ieee;
7 use ieee. std_logic_1164 .all;
8 use work. mc_defs .all;
9 use ieee. numeric_std .all;

10

11 entity mc_extractor is
12 generic (ID : natural ;
13 MATCHED_REQ_DELAY : natural );
14 port(
15 reset : std_logic ;
16 -- Interface to the tree
17 in_f : in mc_channels_f ;
18 in_b : out mc_channels_b ;
19 -- Interface to network adapter
20 out_f : out mc_to_ni ;
21 bank : in std_logic
22 );
23 end mc_extractor ;
24

25 architecture behavioural of mc_extractor is
26

27 -- Click handshaking signals
28 signal click : std_logic ;
29 signal state : std_logic ;
30

31 -- Matched delay signals
32 signal delay_req : std_logic ;
33

34 -- Indexing signals
35 signal counter , ncounter : unsigned ( SLOT_CNT_SIZE - 1 downto 0);
36 signal size : unsigned ( SLOT_CNT_SIZE - 1 downto 0);
37 type states is (idle , extract );
38 signal fsm_state , n_fsm_state : states ;
39

40 -- Register enable
41 signal enable_size , enable_counter , enable_fsm : boolean ;
42

43 begin
44 -- Enable module when the ID matches the receptor ’s ID
45

46 -- The size is not sent explicitly . The first word of a new
47 -- schedule is the size. The last_slot flag is used to indicate
48 -- when it is time to reset the counter and receive a new size.
49

50

51 -- Backward acknowledgment to data channel . The extractor is
52 -- a token consumer for the data channel .
53 in_b. data_channel .ack <= state ;
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54

55 -- Enhance the mono - directional swap command channel with the
56 -- size of the new schedule and pass on to the network adapter
57 out_f . swap_channel .req <= in_f. swap_channel .req;
58 out_f . swap_channel .size <= size;
59 out_f . swap_channel . moment <= in_f. swap_channel . moment ;
60

61 -- Slot table write interface
62 -- The MSB of the write address is driven by the input bank
63 -- from the network adapter . Therefore the adapter chooses
64 -- the current write memory bank.
65

66 out_f . slot_write . waddr <= bank & std_logic_vector ( counter );
67 out_f . slot_write . wdata <= in_f. data_channel .data;
68 out_f . slot_write .wclk <= click ;
69

70 -- Matched delay for the combinatorial of this component
71 delay : entity work. matched_delay
72 generic map( MATCHED_REQ_DELAY )
73 port map(in_f. data_channel .req , delay_req );
74

75 -- Click generating process
76 clock : process (delay_req , state )
77 variable set : boolean ;
78 begin
79 set := state /= delay_req ;
80 if set then
81 click <= ’1’;
82 else
83 click <= ’0’;
84 end if;
85 end process ;
86

87 fsm : process (fsm_state , in_f. data_channel .id , counter , size)
88 variable enable , last_slot : boolean ;
89 begin
90 -- Variables
91 enable := in_f. data_channel .id = ID;
92 last_slot := counter = size;
93 -- Defaults
94 n_fsm_state <= idle;
95 enable_size <= false ;
96 enable_counter <= false ;
97 enable_fsm <= false ;
98 out_f . slot_write .wen <= ’0’;
99 ncounter <= counter + 1;

100 case fsm_state is
101 when idle =>
102 if enable then
103 enable_size <= true;
104 enable_fsm <= true;
105 n_fsm_state <= extract ;
106 end if;
107 when extract =>
108 if enable then
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109 out_f . slot_write .wen <= ’1’;
110 enable_counter <= true;
111 if last_slot then
112 ncounter <= ( others => ’0’);
113 enable_fsm <= true;
114 n_fsm_state <= idle;
115 end if;
116 end if;
117 end case;
118 end process fsm;
119

120 -- Registers with register enable
121 reg : process (reset , click )
122 begin
123 if reset = ’1’ then
124 state <= ’0’;
125 counter <= ( others => ’0’);
126 size <= ( others => ’1’);
127 fsm_state <= idle;
128 elsif rising_edge ( click ) then
129 state <= not state ;
130 if enable_fsm then
131 fsm_state <= n_fsm_state ;
132 end if;
133 if enable_size then
134 size <= unsigned (in_f. data_channel .data( SLOT_CNT_SIZE - 1

downto 0));
135 end if;
136 if enable_counter then
137 counter <= ncounter ;
138 end if;
139 end if;
140 end process ;
141 end behavioural ;
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Listing 7: File: mc module.vhd
1 -- -----------------------------------------------------------------
2 -- Mode change module .
3 -- Dynamically generated by the amount of leaves .
4 --
5 -- Author : Ioannis Kotleas
6 -- -----------------------------------------------------------------
7 library ieee;
8 use ieee. std_logic_1164 .all;
9 use work. mc_defs .all;

10 use work.ocp.all;
11 use work. delays .all;
12

13 entity mc_module is
14 generic ( leaves : natural );
15 port(
16 reset : in std_logic ;
17 clk : in std_logic ;
18

19 -- SDP Memory interface
20 spm_in : in mc_mem_s ;
21 spm_out : out mc_mem_m ;
22

23 -- Configuration OCP interface
24 proc_in : in ocp_io_m ;
25 proc_out : out ocp_io_s ;
26

27 -- Interface to NI
28 ni_out : out mc_to_ni_a ( leaves - 1 downto 0);
29 ni_in : in std_logic_vector ( leaves - 1 downto 0)
30 );
31 end mc_module ;
32

33 architecture structural of mc_module is
34

35 -- Mesochronous mode change controller .
36 component mc_controller is
37 port(
38 clk : in std_logic ;
39 reset : in std_logic ;
40 spm_in : in mc_mem_s ;
41 spm_out : out mc_mem_m ;
42 proc_in : in ocp_io_m ;
43 proc_out : out ocp_io_s ;
44 push_schedule_f : out mc_channels_f ;
45 push_schedule_b : in mc_channels_b
46 );
47 end component mc_controller ;
48

49 -- Schedule extracting module . Based on the ID it decides which
50 -- data to keep and which to ignore
51 component mc_extractor is
52 generic (ID : natural ;
53 MATCHED_REQ_DELAY : integer );
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54 port(
55 reset : std_logic ;
56 in_f : in mc_channels_f ;
57 in_b : out mc_channels_b ;
58 out_f : out mc_to_ni ;
59 bank : in std_logic
60 );
61 end component mc_extractor ;
62

63 component mc_broadcast_tree is
64 generic ( leaves : natural );
65 port(
66 reset : in std_logic ;
67 in_f : in mc_channels_f ;
68 in_b : out mc_channels_b ;
69 out_f : out mc_array_f ( leaves - 1 downto 0);
70 out_b : in mc_array_b ( leaves - 1 downto 0)
71 );
72 end component mc_broadcast_tree ;
73

74 signal controller_handshake_f : mc_channels_f ;
75 signal controller_handshake_b : mc_channels_b ;
76 signal tree_handshake_f : mc_array_f ( leaves - 1 downto 0);
77 signal tree_handshake_b : mc_array_b ( leaves - 1 downto 0);
78

79 begin
80 controller : mc_controller
81 port map(
82 clk => clk ,
83 reset => reset ,
84 spm_in => spm_in ,
85 spm_out => spm_out ,
86 proc_in => proc_in ,
87 proc_out => proc_out ,
88 push_schedule_f => controller_handshake_f ,
89 push_schedule_b => controller_handshake_b
90 );
91

92 tree : mc_broadcast_tree
93 generic map(
94 leaves => leaves
95 )
96 port map(
97 reset => reset ,
98 in_f => controller_handshake_f ,
99 in_b => controller_handshake_b ,

100 out_f => tree_handshake_f ,
101 out_b => tree_handshake_b
102 );
103

104 -- Generate a schedule extractor for every leaf
105 extractor : for I in 0 to leaves - 1 generate
106 e : mc_extractor
107 generic map(I, schedule_receptor_req_delay )
108 port map(
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109 reset => reset ,
110 in_f => tree_handshake_f (I),
111 in_b => tree_handshake_b (I),
112 out_f => ni_out (I),
113 bank => ni_in (I)
114 );
115 end generate ;
116 end structural ;
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Listing 8: File: schedules.h
1 /*
2 Author : Ioannis Kotleas
3

4 Contains : The schedules to be applied
5 */
6

7 # ifndef _SCHEDULES_H_
8 # define _SCHEDULES_H_
9

10

11 // The maximun schedule size supported in terms of slots
12 const unsigned MAX_SCHEDULE_SIZE = 256;
13

14 // The number of nodes on the NoC
15 const int NOC_CORES_NUM = 4;
16

17 // The size in terms of slots of the specified schedules
18 const int S1 = 5;
19 const int S2 = 4;
20 const int S3 = 5;
21 const int S4 = 3;
22 const int S5 = 3;
23 const int S6 = 3;
24 const int S7 = 3;
25 const int S8 = 3;
26 const int S9 = 3;
27 const int S10 = 3;
28 const int S11 = 3;
29 const int S12 = 3;
30 const int SCHEDULE_SIZES [] =
31 {S1 ,S2 ,S3 ,S4 ,S5 ,S6 ,S7 ,S8 ,S9 ,S10 ,S11 ,S12 };
32

33 // The starting index of every schedule in the SCHEDULES array
34 const int SCHEDULE_LOCATIONS [] = {
35 0,
36 S1* NOC_CORES_NUM ,
37 (S1+S2)* NOC_CORES_NUM ,
38 (S1+S2+S3)* NOC_CORES_NUM ,
39 (S1+S2+S3+S4)* NOC_CORES_NUM ,
40 (S1+S2+S3+S4+S5)* NOC_CORES_NUM ,
41 (S1+S2+S3+S4+S5+S6)* NOC_CORES_NUM ,
42 (S1+S2+S3+S4+S5+S6+S7)* NOC_CORES_NUM ,
43 (S1+S2+S3+S4+S5+S6+S7+S8)* NOC_CORES_NUM ,
44 (S1+S2+S3+S4+S5+S6+S7+S8+S9)* NOC_CORES_NUM ,
45 (S1+S2+S3+S4+S5+S6+S7+S8+S9+S10)* NOC_CORES_NUM ,
46 (S1+S2+S3+S4+S5+S6+S7+S8+S9+S10+S11)* NOC_CORES_NUM
47 };
48

49 // The schedules all together in an array
50 const int SCHEDULES [] = {
51

52 // Schedule 1 - all to all basic
53 // Node 0



113

54 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0
x00 < <16|0 x0000 ,

55 // Node 1
56 0x18 < <16|0 x0034 ,0x00 < <16|0 x0000 ,0x1e < <16|0 x0008 ,0x04 < <16|0 x0000 ,0

x04 < <16|0 x0000 ,
57 // Node 2
58 0x14 < <16|0 x0034 ,0x1e < <16|0 x000d ,0x00 < <16|0 x0000 ,0x08 < <16|0 x0000 ,0

x08 < <16|0 x0000 ,
59 // Node 3
60 0x00 < <16|0 x0000 ,0x1a < <16|0 x000d ,0x16 < <16|0 x0008 ,0x0c < <16|0 x0000 ,0

x0c < <16|0 x0000 ,
61

62 // Schedule 2 - none to none
63 // Node 0
64 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
65 // Node 1
66 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
67 // Node 2
68 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
69 // Node 3
70 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
71

72 // Schedule 3 - alternative all2all with different routes
73 // Node 0
74 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0

x00 < <16|0 x0000 ,
75 // Node 1
76 0x18 < <16|0 x001e ,0x00 < <16|0 x0000 ,0x1e < <16|0 x0002 ,0x04 < <16|0 x0000 ,0

x04 < <16|0 x0000 ,
77 // Node 2
78 0x14 < <16|0 x001e ,0x1e < <16|0 x0007 ,0x00 < <16|0 x0000 ,0x08 < <16|0 x0000 ,0

x08 < <16|0 x0000 ,
79 // Node 3
80 0x00 < <16|0 x0000 ,0x1a < <16|0 x0007 ,0x16 < <16|0 x0002 ,0x0c < <16|0 x0000 ,0

x0c < <16|0 x0000 ,
81

82 // Schedule 4 - Node 1 to node 2
83 // Node 0
84 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
85 // Node 1
86 0x18 < <16|0 x0034 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
87 // Node 2
88 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
89 // Node 3
90 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
91

92 // Schedule 5 - Node 2 to node 3
93 // Node 0
94 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
95 // Node 1
96 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
97 // Node 2
98 0x1e < <16|0 x000d ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
99 // Node 3

100 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
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101

102 // Schedule 6 - Node 3 to node 1
103 // Node 0
104 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
105 // Node 1
106 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
107 // Node 2
108 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
109 // Node 3
110 0x16 < <16|0 x0008 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
111

112 // Schedule 7 - Node 1 to node 3
113 // Node 0
114 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
115 // Node 1
116 0x1e < <16|0 x0008 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
117 // Node 2
118 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
119 // Node 3
120 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
121

122 // Schedule 8 - Node 2 to node 1
123 // Node 0
124 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
125 // Node 1
126 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
127 // Node 2
128 0x14 < <16|0 x0034 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
129 // Node 3
130 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
131

132 // Schedule 9 - Node 3 to node 2
133 // Node 0
134 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
135 // Node 1
136 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
137 // Node 2
138 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
139 // Node 3
140 0x1a < <16|0 x000d ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
141

142 // Schedule 10 - Node 1 to node 2 and node 2 to node 1
143 // Node 0
144 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
145 // Node 1
146 0x18 < <16|0 x0034 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
147 // Node 2
148 0x14 < <16|0 x0034 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
149 // Node 3
150 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
151

152 // Schedule 11 - Node 2 to node 3 and node 3 to node 2
153 // Node 0
154 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
155 // Node 1
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156 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
157 // Node 2
158 0x1e < <16|0 x000d ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
159 // Node 3
160 0x1a < <16|0 x000d ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
161

162 // Schedule 12 - Node 3 to node 1 and node 1 to node 3
163 // Node 0
164 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
165 // Node 1
166 0x1e < <16|0 x0008 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
167 // Node 2
168 0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
169 // Node 3
170 0x16 < <16|0 x0008 ,0x00 < <16|0 x0000 ,0x00 < <16|0 x0000 ,
171 };
172

173 # endif /* _SCHEDULES_H_ */
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Listing 9: File: mc.h
1 /*
2 Author : Ioannis Kotleas
3

4 Contains : The software support of the mode change module
5 */
6

7 # ifndef _MC_H_
8 # define _MC_H_
9

10 /*
11 Apply one of the schedules defined in schedules .h.
12 The schedule must be provided by its index . Therefore
13 Schedule 1 has index 0, schedule 2 has index 1 and so on.
14 */
15

16 void apply_schedule ( unsigned schedule );
17

18 # endif /* _MC_H_ */
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Listing 10: File: mc.c
1 /*
2 Author : Ioannis Kotleas
3

4 Contains : The software support of the mode change module
5 */
6

7 # include <machine / patmos .h>
8 # include <machine /spm.h>
9 # include "mc.h"

10 # include " schedules .h"
11 # include " libnoc /noc.h"
12

13 /// The address of the mode change module status
14 # define MC_STATUS_ADDRESS NOC_ST_BASE
15 /// The base address of the MC SPM
16 # define MC_SPM_BASE NOC_SPM_BASE
17

18 /*
19 The MC SPM is split in two areas ,
20 each of which can hold a full schedule of maximum size. Each
21 new schedule is written to a different area than the previous .
22 So , the first schedule goes to the first area , the second to the
23 second , the third to the first area again and so on. This way the
24 worst case time to apply a schedule is reduced , since we do not
25 have to wait until the previous schedule is actually applied and
26 the mode change module is free to copy a new schedule to the
27 memory .
28 */
29 unsigned active_location = 0;
30 const unsigned ALTERNATIVE_LOCATION = MAX_SCHEDULE_SIZE *

NOC_CORES_NUM ;
31

32 /*
33 Utilize the OCP -IO port of the processor ( IODEV ) to read the
34 status of the mode change module and start a new schedule
35 */
36 static struct mc_interface
37 {
38 volatile int _IODEV * status ;
39 } mc_interface = {
40 MC_STATUS_ADDRESS
41 };
42

43 /*
44 Function that utilizes the OCP -CORE port of the processor (_SPM)
45 to copy the schedule whose index is provided as argument to the
46 location of the MC SPM specified by the second argument
47 */
48 void write_schedule ( unsigned sched , unsigned location ){
49 unsigned total = SCHEDULE_SIZES [ sched ]* NOC_CORES_NUM ;
50 unsigned sched_loc = SCHEDULE_LOCATIONS [ sched ];
51 _SPM int * target_loc = (( _SPM int *) MC_SPM_BASE )+ location ;
52 for( unsigned i=0; i < total ; i++){
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53 *( target_loc +i) = SCHEDULES [ sched_loc +i];
54 }
55 }
56

57 /*
58 Read from the OCP -IO the status of the mode change module and
59 return 1 if it is free
60 */
61 unsigned mc_is_free (){
62 return *( mc_interface . status ) == 0 ? 1 : 0;
63 }
64

65 /*
66 Command the mode change module to apply the schedule that
67 lies in the memory . The size of the schedule and its location
68 in the memory are provided as arguments
69 */
70 void apply_sched_command ( unsigned size , unsigned location ){
71 *( mc_interface . status ) = ( location << 16) | (size -1);
72 }
73

74 /*
75 Apply a schedule
76 This function copies the selected schedule to the MC SPM ,
77 then waits until the module is free , commands the
78 application of the new schedule and updates the active location
79 to which the next schedule may be written .
80 */
81 void apply_schedule ( unsigned schedule ){
82 write_schedule (schedule , active_location );
83 while (! mc_is_free ());
84 apply_sched_command ( SCHEDULE_SIZES [ schedule ], active_location );
85 active_location = ( active_location ==0)? ALTERNATIVE_LOCATION :0;
86 }
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Listing 11: File: app1.c
1 /*
2 Author : Ioannis Kotleas
3

4 Purpose of application : Demonstrate the effect of a schedule
5 change to the communication channels
6 independently . The correctness is
7 verified with application app2.
8

9 Functionality : Each processor , except for processor 0, sends
10 to the other processors , except processor 0,
11 blocks repeatedly and as soon as possible ,
12 without any synchronization . Similarly , the
13 processors perform non - blocking poll of the SPM
14 to receive blocks from the others . Whenever
15 a block is received , a message is printed out
16 on the serial port of processor 0.
17 The application does not verify neither the
18 contents of the received blocks , nor the
19 reception of all the incoming blocks . On the
20 contrary , it verifies that a communication
21 channel is open and blocks can be received .
22 */
23

24 # include <machine /spm.h>
25 # include <machine / patmos .h>
26 # include " libnoc /noc.h"
27 # include " patio .h"
28 # include " bootable .h"
29 # include "mc.h"
30 # include " app_util .h"
31

32 const int NOC_MASTER = 0;
33

34 # define DW(X) (((X)+7) /8)
35 struct monitor_t {
36 volatile char done [3];
37 volatile char result [3];
38 };
39

40 # define monitor (( _UNCACHED struct monitor_t *)0 x00010000 )
41

42 static void master (void);
43 static void function (void);
44 int noc_send_attempt ( int dst_id ,
45 volatile void _SPM *dst ,
46 volatile void _SPM *src ,
47 size_t len);
48

49 /* ////////////////////////////////////////////////////////////////
50 // Main
51 //////////////////////////////////////////////////////////////// */
52

53 int main () {
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54 if( get_cpuid () == 0) {
55 monitor ->done [0]=0;
56 monitor ->done [1]=0;
57 monitor ->done [2]=0;
58 master ();
59 } else {
60 function ();
61 }
62 return 0;
63 }
64

65 /* ////////////////////////////////////////////////////////////////
66 // Mode change function running on processor 0
67 //////////////////////////////////////////////////////////////// */
68

69 static void master (void) {
70 unsigned schedules_to_apply []={4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,1};
71 const unsigned amount = 10;
72 const unsigned steps = 20;
73 while (1){
74 for(int i=0;i< amount ;i++){
75 WRITE (" Apply schedule " ,15);
76 print_uart_num ( schedules_to_apply [i]);
77 WRITE ("\n" ,1);
78 apply_schedule ( schedules_to_apply [i] -1);
79 // Insert delay between applying a new schedule
80 for(int k=0;k< steps ;k++){
81 for(int j=0;j <3;j++){
82 if(monitor ->done[j]){
83 print_uart_num (monitor -> result [j]);
84 WRITE ("to" ,2);
85 print_uart_num (j+1);
86 WRITE ("\n" ,1);
87 monitor ->done[j]=0;
88 }
89 }
90 }
91 }
92 }
93 return ;
94 }
95

96 /* ////////////////////////////////////////////////////////////////
97 // Application process running on processors 1, 2 and 3
98 //////////////////////////////////////////////////////////////// */
99

100 static void function (void) {
101

102 const unsigned block_size = 32;
103 /* Processors 1, 2 and 3 are exchanging blocks . Each processor
104 sends blocks to the other two , namely processor A and
105 processor B. Even though it does not serve the purpose
106 of the application , two sending blocks per recipient processor
107 are declared for debugging purposes */
108 volatile _SPM unsigned char * sblock_a1 ;
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109 sblock_a1 = ( volatile _SPM unsigned char *) NOC_SPM_BASE ;
110 volatile _SPM unsigned char * sblock_a2 = sblock_a1 + block_size ;
111 volatile _SPM unsigned char * sblock_b1 = sblock_a2 + block_size ;
112 volatile _SPM unsigned char * sblock_b2 = sblock_b1 + block_size ;
113

114 // Receiving block locations on the SPM
115 volatile _SPM unsigned char * rblock_a = sblock_b2 + block_size ;
116 volatile _SPM unsigned char * rblock_b = rblock_a + block_size ;
117

118 /* Flags to manage which block to send and what is the expected
119 block per communication channel . Used for debugging .*/
120 unsigned psa =0, psb =0, pra =0, prb = 0;
121

122 // Define the recipient processors ids
123 int a_id ,b_id;
124 a_id = ( get_cpuid () ==3)? 1 : get_cpuid () +1;
125 b_id = ( get_cpuid () ==1)? 3 : get_cpuid () -1;
126

127 /* Initialize the blocks to send with data depending on the
128 recipient ’s id. Not used in this application to verify .
129 */
130 for(int i=0;i <( block_size -1);i++){
131 *( sblock_a1 +i) = a_id+i;
132 *( sblock_a2 +i) = (a_id+i) <<1;
133 *( sblock_b1 +i) = b_id+i;
134 *( sblock_b2 +i) = (b_id+i) <<1;
135 }
136

137 /* Set the last entry of the sending block to all HIGH. The
138 recipient polls this entry in order to be notified of the
139 reception .
140 */
141 *( sblock_a1 + block_size -1) = 0xFF;
142 *( sblock_a2 + block_size -1) = 0xFF;
143 *( sblock_b1 + block_size -1) = 0xFF;
144 *( sblock_b2 + block_size -1) = 0xFF;
145

146 while (1){
147

148 if( noc_send_attempt (
149 a_id ,
150 rblock_a ,
151 (psa ==0)? sblock_a1 :sblock_a2 ,
152 block_size )
153 ) psa =( psa ==0) ?1:0;
154

155 if( noc_send_attempt (
156 b_id ,
157 rblock_b ,
158 (psb ==0)? sblock_b1 :sblock_b2 ,
159 block_size )
160 ) psb =( psb ==0) ?1:0;
161

162 /* The completion of a block is signaled by the last entry of
163 the block being all HIGH. If the block is complete , clear the
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164 last entry , so that it is set HIGH again by the next
165 reception and print on the serial port of processor 0 a
166 message indicating the reception . The serial port is slow.
167 While printing , more than one blocks may arrive in the
168 meanwhile . Still , the purpose of this app is to show that the
169 communication channel is open , not how many blocks arrived .
170 */
171

172 if ((*( rblock_a + block_size -1))==0 xFF){
173 monitor -> result [ get_cpuid () -1] = b_id;
174 monitor ->done[ get_cpuid () -1] = 1;
175 while (monitor ->done[ get_cpuid () -1]) {;}
176 *( rblock_a + block_size -1) =0;
177 pra = (pra ==0) ?1:0;
178 }
179 if ((*( rblock_b + block_size -1))==0 xFF){
180 monitor -> result [ get_cpuid () -1] = a_id;
181 monitor ->done[ get_cpuid () -1] = 1;
182 while (monitor ->done[ get_cpuid () -1]) {;}
183 *( rblock_b + block_size -1) =0;
184 prb = (prb ==0) ?1:0;
185 }
186 }
187 return ;
188 }
189

190 /*
191 Modified noc_send function from libnoc library to perform
192 non - blocking send attempt . If it succeeds to initialize the
193 sending , it returns 1, otherwise 0.
194 */
195

196 int noc_send_attempt ( int dst_id ,
197 volatile void _SPM *dst ,
198 volatile void _SPM *src ,
199 size_t len) {
200 unsigned wp = (char *) dst - (char *) NOC_SPM_BASE ;
201 unsigned rp = (char *) src - (char *) NOC_SPM_BASE ;
202 return noc_dma (dst_id , DW(wp), DW(rp), DW(len));
203 }
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Listing 12: File: app2.c
1 /*
2 Author : Ioannis Kotleas
3

4 Purpose of application : Demonstrate transparency and correctness
5 of schedule changes
6

7 Functionality : At first each processor , except for processor 0,
8 sends to the other processors a block . Therefore
9 each processor receives two blocks from the other

10 two processors . Then each processor re - sends the
11 blocks that it received . For example : Processor 1
12 receives block A from processor 2 and block B from
13 processor 3. Then processor 1 sends block A to
14 processor 3 and block B to processor 2. The same
15 is repeated one more time. As a result , a block
16 originating from processor 1 does the trip
17 1->2->3->1, while the second block from processor
18 1 does the trip 1->3->2->1. The same happens for
19 all the processors .
20 1->2->3->1
21 2->3->1->2
22 3->1->2->3
23 1->3->2->1
24 2->1->3->2
25 3->2->1->3
26 When the round trip finishes each processor checks
27 the received blocks against the ones sent
28 originally to verify the correctness .
29

30 Blocking polling is used to check if a block has
31 arrived and blocking send is used to send a block ,
32 meaning that if the DMA is not available , the
33 noc_send function will halt until the DMA is
34 available .
35

36 In the meanwhile the schedule changes multiple
37 times . As a result the execution is blocked if
38 the applied schedule does not provide the required
39 communication channels . Nevertheless , when the
40 bandwidth is granted the execution proceeds .
41 */
42

43 # include <machine /spm.h>
44 # include <machine / patmos .h>
45 # include " libnoc /noc.h"
46 # include " patio .h"
47 # include " bootable .h"
48 # include "mc.h"
49 # include " app_util .h"
50

51 static void master (void);
52 static void function (void);
53 static char proof ( volatile _SPM unsigned char *a,
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54 volatile _SPM unsigned char *b,
55 volatile _SPM unsigned char *c,
56 unsigned size);
57

58 struct monitor_t {
59 volatile char done [3];
60 volatile char result [3];
61 };
62

63 const int NOC_MASTER = 0;
64

65 # define monitor (( _UNCACHED struct monitor_t *)0 x00010000 )
66

67 /* ////////////////////////////////////////////////////////////////
68 // Main application
69 //////////////////////////////////////////////////////////////// */
70

71 int main () {
72 if( get_cpuid () == 0) {
73 monitor ->done [0]=0;
74 monitor ->done [1]=0;
75 monitor ->done [2]=0;
76 master ();
77 } else {
78 function ();
79 }
80 return 0;
81 }
82

83 /* ////////////////////////////////////////////////////////////////
84 // Mode change function running on processor 0
85 //////////////////////////////////////////////////////////////// */
86

87 static void master (void) {
88 unsigned schedules_to_apply []={1 ,4 ,3 ,2};
89 const unsigned amount = 4;
90 const unsigned steps = 10;
91 while (1){
92 for(int i=0;i< amount ;i++){
93 apply_schedule ( schedules_to_apply [i] -1);
94 WRITE (" Apply schedule " ,15);
95 print_uart_num ( schedules_to_apply [i]);
96 WRITE ("\n" ,1);
97

98 // Insert delay between applying a new schedule
99

100 for(int k=0;k< steps ;k++){
101 for(int j=0;j <3;j++){
102 if(monitor ->done[j]){
103 WRITE ("Core " ,5);
104 print_uart_num (j+1);
105 if(monitor -> result [j]){
106 WRITE (" :OK\n" ,5);
107 }
108 else{
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109 WRITE (" : ERROR \n" ,8);
110 }
111 monitor ->done[j]=0;
112 }
113 else{
114 delay (24);
115 }
116 }
117 }
118 }
119 }
120 return ;
121 }
122

123 /* ////////////////////////////////////////////////////////////////
124 // Application process running on processors 1, 2 and 3
125 //////////////////////////////////////////////////////////////// */
126

127 static void function (void) {
128 const unsigned block_size = 32;
129 /* Processors 1, 2 and 3 are exchanging blocks . Each processor
130 sends a block to the other two. Then it receives blocks which
131 are resent . The send - receive pair is repeated three times until
132 a processor receives the original block . Then it will send a
133 different block . Therefore each processor has 2 original
134 sending blocks to send in an interleaved manner between the
135 3-step phases of the procedure */
136 volatile _SPM unsigned char * sblock1 ;
137 sblock1 = ( volatile _SPM unsigned char *) NOC_SPM_BASE ;
138 volatile _SPM unsigned char * sblock2 = sblock1 + block_size ;
139

140 // Receiving block locations on SPM
141 //3 steps * 2 processors = 6 blocks
142 volatile _SPM unsigned char * rblock1 = sblock2 + block_size ;
143 volatile _SPM unsigned char * rblock2 = rblock1 + block_size ;
144 volatile _SPM unsigned char * rblock3 = rblock2 + block_size ;
145 volatile _SPM unsigned char * rblock4 = rblock3 + block_size ;
146 volatile _SPM unsigned char * rblock5 = rblock4 + block_size ;
147 volatile _SPM unsigned char * rblock6 = rblock5 + block_size ;
148

149 // The phase of the procedure defining the block to send
150 unsigned phase = 0;
151

152 // Define the recipient processors ids
153 int rcv_id1 , rcv_id2 ;
154 rcv_id1 = ( get_cpuid () ==3)? 1 : get_cpuid () +1;
155 rcv_id2 = ( get_cpuid () ==1)? 3 : get_cpuid () -1;
156

157 // Boolean flag for validation result
158 char valid ;
159

160 /* Initialize the blocks to send with data depending on the
161 sender ’s id. Used to verify correctness .
162 */
163 for(int i=0;i <( block_size -1);i++){



127

164 *( sblock1 +i) = get_cpuid ()+i;
165 *( sblock2 +i) = 2*( get_cpuid ()+i);
166 }
167

168 /* Set the last entry of the sending block to all HIGH. The
169 recipient polls this entry in order to be notified of the
170 reception .*/
171 *( sblock1 + block_size -1) = 0xFF;
172 *( sblock2 + block_size -1) = 0xFF;
173

174 while (1){
175

176 // Step 1 - send original block to both recipients
177 noc_send (rcv_id1 ,rblock1 , phase ==0? sblock1 :sblock2 , block_size );
178 noc_send (rcv_id2 ,rblock2 , phase ==0? sblock1 :sblock2 , block_size );
179

180 *( rblock3 + block_size -1) =0;
181 *( rblock4 + block_size -1) =0;
182

183 // Receive blocks from others
184 while ((*( rblock1 + block_size -1))!=0 xFF){;}
185 while ((*( rblock2 + block_size -1))!=0 xFF){;}
186

187 // Step 2 - re -send the received blocks
188 noc_send (rcv_id1 , rblock3 , rblock1 , block_size );
189 noc_send (rcv_id2 , rblock4 , rblock2 , block_size );
190

191 // Receive blocks from others
192 while ((*( rblock3 + block_size -1))!=0 xFF){;}
193 while ((*( rblock4 + block_size -1))!=0 xFF){;}
194

195 // Step 3 - re -send the received blocks
196 noc_send (rcv_id1 , rblock5 , rblock3 , block_size );
197 noc_send (rcv_id2 , rblock6 , rblock4 , block_size );
198

199 *( rblock1 + block_size -1) =0;
200 *( rblock2 + block_size -1) =0;
201

202 // Receive blocks from others
203 while ((*( rblock5 + block_size -1))!=0 xFF){;}
204 while ((*( rblock6 + block_size -1))!=0 xFF){;}
205

206 *( rblock5 + block_size -1) =0;
207 *( rblock6 + block_size -1) =0;
208 // Both of the received blocks are expected to be the same
209 // as the one sent in step 1
210 valid = proof ( phase ==0? sblock1 :sblock2 ,rblock5 ,rblock6 ,

block_size -1);
211

212

213 monitor -> result [ get_cpuid () -1] = valid ;
214 monitor ->done[ get_cpuid () -1] = 1;
215 // Wait until monitoring message has been processed
216 while (monitor ->done[ get_cpuid () -1]) {;}
217
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218

219 // Change phase so that the data written to the SPMs is
220 // different every time
221 phase = ( phase ==0) ?1:0;
222 }
223 return ;
224 }
225

226 /*
227 Function comparing blocks and returning the result of the
228 comparison
229 */
230 static char proof ( volatile _SPM unsigned char *a,
231 volatile _SPM unsigned char *b,
232 volatile _SPM unsigned char *c,
233 unsigned size){
234 char flag = 1;
235 for(int i=0;i<size;i++){
236 flag = ((*(a+i)) ==(*( b+i)) && (*(a+i)) ==(*( c+i)))?flag :0;
237 }
238 if (flag){
239 return 1;
240 }
241 else{
242 return 0;
243 }
244 }
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Listing 13: File: app util.h
1 /*
2 Author : Ioannis Kotleas
3

4 Contains : Common utilities for apps
5 */
6

7 # ifndef _APP_UTIL_H_
8 # define _APP_UTIL_H_
9

10 /*
11 Dummy function to print a number in [0 ,12] to the serial port
12 */
13 void print_uart_num (int n);
14

15 /*
16 Custom delay function , specially factored not to be optimized
17 out by the compiler . Used to introduce a sufficient time interval
18 before applying another schedule .
19 */
20 void delay (int steps );
21

22 # endif // _APP_UTIL_H_
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Listing 14: File: app util.c
1 /*
2 Author : Ioannis Kotleas
3

4 Contains : Common utilities between apps
5 */
6

7 # include " patio .h"
8 # include "mc.h"
9 # include " app_util .h"

10

11 /*
12 Dummy function to print a number in [0 ,12] to the serial port
13 */
14 void print_uart_num (int n){
15 switch (n){
16 case 0:
17 WRITE ("0" ,1);
18 break ;
19 case 1:
20 WRITE ("1" ,1);
21 break ;
22 case 2:
23 WRITE ("2" ,1);
24 break ;
25 case 3:
26 WRITE ("3" ,1);
27 break ;
28 case 4:
29 WRITE ("4" ,1);
30 break ;
31 case 5:
32 WRITE ("5" ,1);
33 break ;
34 case 6:
35 WRITE ("6" ,1);
36 break ;
37 case 7:
38 WRITE ("7" ,1);
39 break ;
40 case 8:
41 WRITE ("8" ,1);
42 break ;
43 case 9:
44 WRITE ("9" ,1);
45 break ;
46 case 10:
47 WRITE ("10" ,2);
48 break ;
49 case 11:
50 WRITE ("11" ,2);
51 break ;
52 case 12:
53 WRITE ("12" ,2);
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54 break ;
55 }
56 }
57

58 /*
59 Custom delay function , specially factored not to be optimized
60 out by the compiler . Used to introduce a sufficient time interval
61 before applying another schedule .
62 */
63 void delay (int steps ){
64 int wait =0;
65 for(int i=0;i< steps ;i++){
66 wait =( wait+i) >>1;
67 }
68 print_uart_num (wait +13);
69 }
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