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Summary (English)

Quality assurance in food industries is essential, both in regards to consumer
satisfaction and also food safety. During food processing, unwanted foreign
objects can be introduced to food products, which can both be unappetizing
and hazardous for the consumer. Nowadays, X-ray conveyor belt solutions can
detect non-organic materials, but �nding organic foreign objects in food with
typical X-ray systems is not a simple task.

The goal of the thesis is to demonstrate the improvement introduced in foreign
body detection by a new X-ray imaging technique when organic materials are
potential foreign bodies. This novel X-ray technique is based on interferometry,
created by adding gratings to a conventional X-ray source. This technique pro-
vides information about a sample's absorption, refraction and scattering proper-
ties; whereas conventional X-rays just grant the absorption pro�le of a sample.

A grating-based interferometer set-up is available at Technische Universität
München, where data was acquired personally. Each image, consisting of three
imaging modalities (absorption, phase contrast and dark-�eld), contains a food
sample contaminated by di�erent sized foreign bodies (organic and non organic).
Several food products were imaged. These products have di�erent properties
and are of importance to the NEXIM project (New X-ray Imaging Modalities
for safe and high quality food) collaborators.

In this thesis, the performance of two classi�cation algorithms is compared, one
is supervised and the other is unsupervised. Focusing on the unsupervised tech-
nique, food models with varying number of features are compared and detection
results are contrasted with those obtained when using only the absorption.
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Chapter 1

Introduction

This chapter �rst explains the motivation for the detection of foreign bodies and
then explains the challenge that organic materials represent. After introducing
the background for this new X-ray imaging technique, the state of the art on
foreign object detection is discussed.

1.1 Motivation

The detection of foreign objects plays an important part in the quality assurance
of food. It is never appealing to �nd a spider or a stone in your food, nor
hygienic. Getting injured while eating could be a very negative advertisement
for a food manufacturer, which could even result in legal action. For this reason,
quality assurance is a high priority task for food producers.

This project will provide an answer to two major questions:

1. How can this inspection be performed in an automatic and e�cient man-
ner?

2. Can we �nd organic materials - such as insects, plastics or wood - using
X-rays?
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1.2 Problem Formulation

In countless �elds there is a need for obtaining internal structural information on
complex objects without an actual dissection. Additionally, obtaining such in-
formation can be achieved with X-ray imaging, where the sample can be probed
in a non-invasive manner. This structural information is of use in a wide variety
of industries for inspection purposes, including food, construction and phar-
maceutical product quality assurance, airport security and medical diagnostics,
among others.

Typical X-ray systems have been used for many years for in-line detection of
foreign bodies in food products. Nevertheless, conventional X-ray absorption
contrast is not suitable for detecting di�erences between di�erent soft materials,
which seem much more challenging. However, improved contrast in imaging soft
matter can be encountered via the use of X-ray imaging methods based on the
sample's refraction and scattering properties. This drastically increases the
number of scenarios where the object's structural information can be obtained,
boosting the number of possible applications.

The aim of this study is to detect foreign objects - objects that are not supposed
to be in a speci�c place - namely in food products, using a novel technique
known as Grating-Based Interferometry (GBI). With this technique, a multi-
modal image consisting of three modalities (transmission, phase contrast and
dark-�eld) is available for all kinds of food samples.

For the purpose of investigating the applicability of using the GBI technique to
detect foreign objects in food, several food products should be chosen together
with a range of foreign objects which are typically found in the industry.
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Figure 1.1 gives an overview of suggestions given by industrial collaborators on
foreign bodies (contaminants) and size ranges which are commonly encountered
in certain food products.

Figure 1.1: Proposed food products, foreign bodies and their sizes by indus-
trial collaborators.

In Figure 1.2 the di�erent materials used as foreign bodies can be observed in
a speci�c food product, rye bread.

Figure 1.2: Purple: Soft plastic, Pink : Hard plastic, Blue: Glass,
Green: Wood, Red : Insect, Orange: Metal, Cyan: Stone
and Yellow : Rubber.

By virtue of this new imaging technique, the refraction and scattering properties
are taken into account, as well as the sample's absorption. As a result, soft
matter may be found in higher contrast, whereas it was not highlighted by
conventional X-ray.
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In Figure 1.3 we can see that di�erent materials stand out best in di�erent
modalities. Glass, metal and stones can be detected easily by the di�erence in
intensity from the absorption modality (transmission). On the contrary, soft
and hard plastic, rubber, insects and wood are better enhanced in the other two
modalities.

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure 1.3: Rump steak with foreign bodies shown for all three GBI modal-
ities. Foreign bodies are seen with varying contrast between the
di�erent modalities.

Summarizing, in order to reach the target of detecting foreign objects in food
products, a test case will be set up. For this test case, several steps are needed.

1. The data needs to be collected, so the food products and foreign objects
that are going to be investigated have to be identi�ed, as well as limited
so that the data acquisition is reasonable.

2. In order to analyse the acquired data, two di�erent algorithms will be
probed and di�erent parameters will be optimized.

3. These algorithms' performance will be compared, and results will be dis-
played.

4. The gain in e�ciency, thanks to these new X-ray modalities, will be pre-
sented, compared to the e�ciency in detection that conventional X-ray
provided.

Before going into more details of the speci�c case study of this project, the
background literature, and state of the art will be discussed.
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1.3 Literature Study

Imaging techniques have been essential in a wide range of areas. In fact, when
a new imaging technique was invented, it was usually followed by a scienti�c
implementation. This development can be observed after the discovery of X-
rays by Wilhelm Röntgen in 1895 [Röntgen, 1895], when X-rays were used for
clinical purpose [Spiegel, 1995]. A similar evolution can be noted in optical
microscopy. Imaging of biological samples was carried out after the invention of
the �rst microscope in the 17th century [Hooke, 1665].

During the 20th century, new forms of imaging appeared, such as dark-�eld
and phase contrast imaging [Rost and Old�eld, 2000, Zernike, 1942]. Instead of
relying on absorption-based contrast - like microscopy - they measure refraction
and scattering, respectively.

In the last decade, there has been an enormous evolution in X-ray imaging, in-
volving the use of X-ray techniques which are based on these modalities, phase
contrast and dark-�eld. These modalities are more sensitive than absorption
to low impedance materials, such as organic materials. Grating-based interfer-
ometry allows us to obtain the three modalities simultaneously with pixel cor-
respondence (absorption, phase contrast and dark-�eld), can be implemented
in laboratories [F. Pfei�er and David, 2006] and shows potential towards indus-
trial implementation [Kottler et al., 2010].

Several studies have been carried out concerning this recent imaging technique,
its parameters and applications [Nielsen, 2012, Bech, 2009]. Other strategies,
which do not make use of dark-�eld and phase contrast, have been discussed
when it comes to organic foreign object detection, such as increasing absorption
contrast applying low X-ray energies in the 10-25 keV range, in order to bene�t
from the higher attenuation of light elements [M. S. Nielsen and Fidenhans, 2012],
but concluded that grating-based imaging (GBI) was an option worth looking
into, as it does not imply a lower scanning speed, nor such high X-ray power
levels.
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1.3.1 How do X-rays �nd foreign objects?

1.3.1.1 What are X-rays?

X-Rays refer to an invisible form of electromagnetic radiation, of the same nature
as radio waves, microwaves, infra-red and visible light, ultraviolet and Gamma
rays. The main di�erence between X-rays and Gamma rays is the origin: X-rays
are formed by extra-nuclear events, whereas Gamma rays have a nuclear origin.
The energy of the X-rays is, in general, in between the ultra-violet radiation
and the natural Gamma rays' energy, as we can see in Figure 1.4.

Figure 1.4: Electromagnetic Spectrum.

The fact that X-rays do not pass as easily through all materials, creates this
di�erence in intensity which can be observed in the absorption contrast. This
ability to penetrate a material is also dependent on the material's density and
thickness. As can be seen in Figure1.5, the thicker the cheese is, that is to say,
the more layers stacked, the harder it is for the rays to cross the material. As
a result, less amount of signal will reach the detector, which implies a darker
intensity. The foreign bodies that are denser than cheese stand out in this
modality.
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Figure 1.5: Absorption modality for stacked slices of cheese with several for-
eign bodies.

1.3.1.2 Di�erent approaches to scanning for foreign bodies

It should be noted that machine and human vision, both relying on images,
are very di�erent. For this reason, it is di�cult, but necessary, to prevent our
own preconceptions from in�uencing the type of image processing that should
be applied.

Some studies have tried to �nd foreign bodies within an absorption image
[B. G. Batchelor and Graves, 2004]. The techniques rely on the di�erence be-
tween intensity, that is, between density of the foreign objects and the speci�c
food product. These intensities are homogeneous for some food products and
foreign bodies, or can follow a certain pattern. For example, a certain arrange-
ment can be observed in minced meat, Figure 1.6. For this reason, studies
referring to texture analysis are also of importance. Moreover, shapes could
also be analysed, but in this case they are not useful, as fragmented objects
could have in�nite di�erent shapes.

This thesis work focuses on combining the GBI technique with data analysis
relying on statistical, image analysis and machine learning techniques. Both
spectral (intensity) and spatial (texture) information are considered particularly
relevant.

1.4 Outline

The outline of the remainder of the thesis is the following:



8 Introduction

Figure 1.6: Absorption image of minced beef without foreign bodies.

1. In chapter 2, the focus is the design facet. First, a quick description of
the used X-ray set-up for the data acquisition. Second, a discussion of the
reasons for choosing the di�erent materials (food and foreign bodies). And
third, an introduction of the implemented methods, followed by a brief
understanding of each of the used methods and the motivation towards
their selection.

2. In chapter 3, the obtained results are presented. First, di�erent Gaussian
models are compared for one single product. Second, the performance
of the Gaussian model is compared to Support Vector Machines for one
speci�c set of features. Finally, several food products are probed.

3. In chapter 4, conclusions concerning the results are drawn and possible
future work is discussed.



Chapter 2

Design

The following chapter looks at the design aspect of the novelty detection task.
The grating-based imaging and the detection methods used throughout the re-
port are presented and discussed.

2.1 Set-up

In typical X-ray imaging the change in beam amplitude is measured to calcu-
late a sample's absorption properties. This is portrayed in Figure 2.1, where
the green beam pro�le shows a decrease in amplitude when travelling through
an absorptive material. For grating-based imaging, the set-up is expanded to
include gratings, which create an interference pattern. In addition to the absorp-
tion, the sample's refraction and scattering can be calculated by analysing this
interference pattern. These refraction and scattering properties are observed in
the detector as a beam shift and broadening, respectively. The blue and red
beam pro�les in Figure 2.1 illustrate this.
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Figure 2.1: Interactions: The change on an incoming beam by inserting a
material, which is Green: absorptive, Blue: refractive or Red :
ordered in its micro-structure [Nielsen, 2012].

In Figure 2.2 the GBI experimental set-up is illustrated. Grating G1 produces
an interference pattern of periodic fringes, which are transversal to the beam
direction. The change in position and amplitude of the fringes is investigated
with a second grating G2 part by part (accomplished by stepping one of the
gratings, G1 in this speci�c set-up), obtaining measures for the sample's ab-
sorption, refraction and scattering properties simultaneously. The third grating
G0 adds spatial coherence to the X-ray beam [Nielsen, 2012, Bech, 2009].

Figure 2.2: Sketch of a Talbot-Lau interferometer [Bech, 2009]
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The grating-based X-ray system which has been used for imaging the food sam-
ples is located at the Chair of Biomedical Physics of the Technische Universität
München (TUM). It is a three grating Talbot-Lau interferometer, consisting of
a conventional X-ray tube, a source grating, a phase grating and an analyser
grating. The gratings were produced by Microworks (Karlsruhe, Germany) with
grating periods of 10 µm, 3.24 µm and 4.8 µm. The phase grating introduces
a phase-shift of π/2 to incoming X-rays with an energy of 27 keV. The dis-
tance between the source and phase grating is 106 cm, whereas the distance
between the phase and analyser grating is 51 cm. For more information see
[Scherer et al., 2014]. A photo of the set-up can be seen in Figure 2.3.

Figure 2.3: Photo of set-up at Technische Universität München (TUM). Red :
X-Ray source, Blue: Grating G0, Green: Sample holder, Purple:
Grating G1, Pink : Grating G2 and Yellow : Sensor/detector.

The set-up had been optimized for breast tissue, which is similar in attenuation
to food products. The parameters of the set-up were not changed in order to
avoid an extensive optimization study. Ideally, it should have been optimized
for each of the seven food products which were imaged.
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The e�ective energy was set to 25 keV and each sample was imaged from one
single projection and the grating was stepped 9 times.

The integration time, tint, was the only parameter which was changed while
imaging. Most of the time it was set to two seconds, but for two of the images
(turkey and steak with 4x4x4 mm foreign bodies) it was set to one second. It
can be seen in Figure 2.4 that when the integration time is too low, 0.2 seconds,
there is a lot of noise in the image. In contrast, the higher that tint is, the more
artefacts can be appreciated, such as phase wrapping, as can be seen when tint
is two seconds. As a trade-o� value, the exposure time was chosen to be one
second for this particular image. But, in general, two seconds seemed a good
adjustment for the exposure time, so that the images did not include too much
noise or artefacts.

(a) tint = 0.2 (b) tint = 1 (c) tint = 2

Figure 2.4: Turkey imaged with varying integration times.

2.2 Materials

The data consists of three imaging modalities, where food containing foreign
bodies is imaged. This data was acquired personally at the Technische Univer-
sität München.

Data acquisition is a slow process, both due to the fact that samples need to
be manually placed in a sample container, set into the X-ray set-up, and that
during the image acquisition the physical stepping of the grating is slow. For
this reason, the option of synthesising data was considered. Unfortunately, it is
not possible to synthesise data because the scattering of the di�erent materials
cannot be predicted. That is to say, the size of the foreign bodies in the dark-
�eld modality can not be predicted, as it could be di�erent depending on the
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placement of the foreign body or on the speci�c type of wood, for example.

2.2.1 Food

To replicate the variation of food products within the food industry, a range of
products di�ering in homogeneity has been chosen. Sliced cheese represents a
completely homogeneous product whilst rye bread with seeds/kernels represents
a non-homogeneous product. It is expected that the modelling of homogeneous
products will be simpler.

In addition, the products have been selected to have di�erent scattering prop-
erties, in order to cover varying di�erences in contrast between foreign bodies
and food. Wheat bread contains �our, which is highly scattering due to its
�ne micro-structure. As a consequence, it is expected that foreign objects will
not stand out in contrast very well in the dark-�eld modality of wheat bread,
whereas the foreign bodies will be better appreciated in rye bread, as can be
seen in Figure 2.5. In other words, when the scattering properties of food and
foreign bodies di�er more, the foreign bodies become more identi�able.

(a) Rye bread dark-�eld (b) Wheat bread dark-�eld

Figure 2.5: Di�erent intensity contrasts in dark-�eld.

Moreover, as this thesis is a part of the NEXIM project1, some of the chosen food
products are those produced by the industries which collaborate in this survey.
Minced meat, dairy products, bread and chicken are products of interest for our
industrial collaborators.

1http://nexim.nbi.ku.dk/
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Finally, the selected food products for imaging were minced meat, wheat and
rye bread, turkey (similar to chicken), cheese, rump steak and salami. All
food products were modelled, but only some are going to be highlighted in this
thesis. Turkey and steak are similar, so only turkey will be considered. Salami
and minced meat both contain meat and fat, so salami is the product which
will be explored in greater depth. Regarding the bread, the focus will be on
rye bread, as it is much more important for the Danish food industry. In fact,
this new technique is not worthwhile for imaging wheat bread, due to its strong
scattering properties. Furthermore, rye bread is particularly interesting as it is
the least homogeneous product in texture.

2.2.2 Foreign Bodies

Foreign bodies are selected to have di�erent absorption, refraction and scat-
tering properties. In addition, foreign bodies proposed by NEXIM's industrial
collaborators (see section 1.2) are also taken into consideration, as well as the
data from a Japanese Survey.

Figure 2.6 shows the results from a Japanese survey on consumer contaminant
complaints. It presents the frequency of encountering a certain contaminant,
given the food is contaminated, and the level of di�culty when detecting these
contaminants with normal X-rays. Typical X-ray techniques measure the ab-
sorption properties of the material, which means that the object will be more
di�cult to �nd the closer its density is to the food's density, i.e. closer to wa-
ter's (1,000.00 kg/m3). For this reason, paper and other organic materials are
particularly hard to identify.

Figure 2.6: Japanese survey results for consumer contaminant complaints
[Takashi, 2009].
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Finally, two major types of foreign bodies are selected:

1. Easy to �nd with absorption modality, such as metal, stone or glass.

2. Not visible in absorption modality, such as organic materials. Speci�cally,
insects, wood, rubber and two types of plastic (hard and soft) are chosen.

In Figure 2.7 the chosen foreign bodies are illustrated. The sizes are selected
approximately from 2x2x2 to 4x4x4 mm, as smaller objects are considered not
to be harmful. The approximate thickness sizes measured in the direction of
which the X-rays transverse through the objects are shown in Table 2.1.

Figure 2.7: Selected foreign bodies, with approximate sizes of 2x2x2, 3x3x3
and 4x4x4 mm, from left to right.
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Type
Thickness (mm)
2 3 4

1.Glass 2 3 5
2.Metal 0.5 1 2
3.Wood 2 4 6
4.Insects 2 3 5

5.Hard plastic 2 3 6
6.Soft plastic 2 3 5
7.Rubber 2 3 4
8.Stones 3 4 6

Table 2.1: Thickness of the objects, measured in the direction of which the
X-rays transverse through them.

To sum up, three images are available for each of the seven food products,
each image contains the 8 foreign objects of the same approximate size. As an
example, see Figure 2.8.

(a) Size 4x4x4 mm (b) Size 3x3x3 mm (c) Size 2x2x2 mm

Figure 2.8: Turkey with di�erent sized foreign bodies.

2.3 Methods

In this section, the methods used for preprocessing and feature acquisition will
be discussed. In addition, the techniques used for training the classi�cation will
also be discussed.

2.3.1 Preprocessing

In real industrial set-ups, the background of the image ought to be removed.
Moreover, the characteristics of the packaging and the size and shape of the
sliced products will be modelled for each speci�c industry and product.
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The focus of this thesis is not on a single product, so the selected products are
imaged without a background or stacking of the product slices. This way, no
preprocessing of this kind is necessary.

Nevertheless, some preprocessing needs to be done, which would not be nec-
essary in a conveyor belt solution. Some pixels need to be removed, such as
those belonging to the tape used for �xing the samples into the imaging sample
container. This is solved with simple masking.

Due to the imaging time constraints, data which only contains food (and no
foreign bodies) is not available, so labelling each image into food regions and
foreign bodies is necessary. This is used both for training and for validating and
testing detection results.

2.3.2 Features

Three spectral features are directly available for every observation/pixel in the
image, corresponding to the intensity of the pixel in each of the three modalities.
Nevertheless, food and foreign bodies might be easier to separate if more features
are added. For this reason, spatial information is also considered, in particular
texture features.

2.3.2.1 Texture Features

Texture analysis can be approached in di�erent ways. A focus can be made
on the image's �rst, second or even higher order statistics [Cartensen, 1992], or
more complex techniques can be used, such as wavelet features
[Arivazhagan and Ganesan, 2003], textons [Leung and Malik, 1999] or Basic Im-
age Features [Crosier and Gri�n, 2008].

One of the reasons for the popularity of Basic Image Features is that it allows
texture classi�cation without a need for tuning parameters depending on the
data set [Crosier and Gri�n, 2010]. For this reason, Basic Image Features is
the method used for performing texture analysis throughout this thesis.

Basic Image Features (BIF) provide a response vector to seven qualita-
tively distinct types of local image structure via applying a set of six Gaussian
derivative �lters to the image at a certain scale σ. Also, the �atness parameter
ε needs to be set, in order to decide when the surface can be considered to be
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uniform (�rst type of local structure, left of Figure 2.9). The di�erent structures
captured by the the BIFs are illustrated in Figure 2.9 [Crosier and Gri�n, 2010].

Figure 2.9: Patch stereotypes captured by Basic Image Features (BIF)
(Adapted from [Crosier and Gri�n, 2010]).

2.3.2.2 Regression/Feature Selection (FS)

The BIF are calculated at three di�erent scales (σ = 1, 5, 10) and the �atness
parameter is �xed to ε = 0.1 for simplicity. Consequently, the total number of
available features will be

1. Three intensity features, corresponding to the three modalities (absorp-
tion, dark-�eld and phase contrast).

2. Seven texture features per modality and scale, i.e. a total of 63 texture
features (7 structures × 3 scales × 3 modalities).

For regression and feature selection (FS) purposes there are several methods

1. Lasso selects the most relevant features by constraining the |L|1 of the
parameters.

2. Ridge performs shrinkage by constraining the |L|2 of the parameters.

3. Elastic net combines the shrinkage and the parameter selection in order
to allow for robust sparse estimates.

The number of observations (pixels) is very high compared to the number of
features, so feature selection is not needed. Elastic net needs two parameters to
be tuned, so ridge regression is used as it is simpler and more appropriate for
this purpose.

Ridge regression minimizes the Euclidean norm between the data and its linear
�t, |L|2 , while decreasing the negative impact of collinearity between features.
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Therefore, it avoids cancellation between correlated features which are relevant
for predicting the output when performing Least Square (LS) estimation in a
regression context [McDonald, 2009].

2.3.3 Training and Classi�cation Methods

The task of classifying each pixel as belonging to food or to a foreign body re-
quires a trained model. Several methods can be used for classi�cation purposes,
two of the simplest, but most appropriate methods, are discussed in this section.

2.3.3.1 GMM

A mixture model is a probabilistic model which represents the presence of one
or more populations within an overall population. In particular, a Gaussian
mixture model �ts a pre-speci�ed number of Gaussians to the data. The number
of populations does need to be speci�ed, but there is no need to determine any
more information about these populations, other than the observed data. In
other words, the learning method is unsupervised. In addition, there can be any
number of features/dimensions.

The multivariate (k = n dimensions/features) Gaussian distribution can be
written

φ(x|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp−1/2(x−µ)T Σ−1(x−µ) (2.1)

where µ is the mean vector and Σ is the covariance matrix of the Gaussian
distribution. The n-dimensional vector x will be observed in this distribution
with a probability φ.

The mixture distribution of L Gaussians is

p(x) =

L∑
l=1

plφ(x|µl,Σl) (2.2)

where pl is the prior probability of each mixture.
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In order to �t these Gaussians to the multivariate data, the expectation-maximization
(EM) algorithm is used [Dempster et al., 1977]. The Gaussians are initialized
to have a random mean and a unitary covariance matrix. The steps expectation
(E), which assigns a weight for each cluster, and maximization (M), which cal-
culates the new mean and covariance matrix of the cluster, are performed until
the maximum likelihood parameters for the Gaussian model are found, i.e. the
best possible �t.

Advantages of using GMM

1. Image noise is typically Gaussian in intensity.

2. Food intensity can be considered as a Gaussian with the mean being water,
the food's main constituent part.

3. Only the food needs to be represented in the training set, so any foreign
body could be found, even unknown foreign bodies.

Disadvantages of using GMM

1. A number of clusters or sub-populations has to be assumed. This is not an
easy task, as the data cannot be visualized when there are more than three
features. If this number is not right, the model will be highly inadequate.

2. The probability distribution is speci�ed to be a Gaussian, it is probably
close to a Gaussian but the results will not be exact.

The Mahalanobis distance, DM (x) is the measure which has been chosen in
this thesis for calculating the similarity between the image pixels to be classi�ed
and the food-�tted Gaussian model.

DM (x) =
√

(x− µ)TΣ−1(x− µ) (2.3)

where x = (x1, x2, x3, ...xn)T are the feature vectors for each of the N observa-
tions/pixels and µ and Σ are the mean vector and covariance matrix of the food
model, respectively.

The advantages of the Mahalanobis distance compared to the Euclidean distance
is that it is scale-invariant and it considers the correlations within the data set
[Bose, 1993].
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After calculating the Mahalanobis distance, a hard threshold is set in order to
classify each pixel as belonging to food or foreign object.

2.3.3.2 SVM

Support vector machine (SVM) is a supervised learning model. A training
data set, which has been previously labelled, is introduced to the SVM training
algorithm, which �nds a separation between the labelled classes. This separation
is optimal if there is no overlapping between these classes. Nevertheless, SVM
allows for some misclassi�cation, granting simpler models. This is illustrated
in Figure 2.10, where a separation is found, even though some observations are
misclassi�ed in Figure 2.10(b). The boundary that separates the classes (food
and foreign body) can be chosen to be as simple as a linear function or as
complex as wanted by the user, as there is also the possibility of introducing a
non pre-speci�ed function [Trevor Hastie, 2008].

(a) Separable case (b) Non-separable with a linear boundary.

Figure 2.10: Support vector classi�ers.

The problem is quadratic with linear inequality constraints, i.e. it is a convex
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optimization problem.

argmin
ββ0

1

2
‖β‖2 + C

n∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi∀i

(2.4)

where the "cost" parameter C is introduced for the non-separable case; the
separable case corresponds to C = ∞ [Trevor Hastie, 2008]. If it is too large,
we have a high penalty for non-separable points and we may store many support
vectors and over�t. If it is too small, we may have under�tting [Khan, 2008].

For this particular case-study, a linear boundary will be used for simplicity and
overlapping will be allowed to some extent.

As in GMM, there can also be any number of features/dimensions. In fact, as
the number of added signi�cant features grows, there is a higher probability of
separating the populations correctly.

Advantages of using SVM

1. No assumption is made of probability distribution, so even though food
can be approximated by a mixture of Gaussians, the classi�cation could be
more accurate if no prior assumption is made about the exact distribution.

Disadvantages of using SVM

1. For this speci�c case study, the computational time is extremely high
because the number of observations is so big. In other cases, this is an
advantage of SVM, unlike other methods, it can cope with a large number
of features when the number of available observations is not that high.

2. Pixels from every possible class need to be contained in the training data
set. As a consequence, foreign bodies of materials which have di�erent
properties from those used in the training data set will probably not be
found, whereas in GMM any type of foreign body could be found.



Chapter 3

Results

In this section, the focus will be on creating and comparing the di�erent models.
For this purpose, only a single food product will be used, namely turkey. Several
Gaussian models, with a varying number of features, are �tted to the food
observations. These models are optimized, and the pixel-based classi�cation
results are compared in order to determine the optimal set of modalities for this
speci�c food product, and whether texture features are worthwhile. After that,
the model that performs the best will be compared to the best of the two models
that contain only the absorption modality, with and without texture analysis.
Then, SVM and GMM's performance are compared for one of the models.

To determine the robustness of the optimal model, three more products are
introduced. Will the optimal set of modalities vary from one product to another
depending on its absorption, refraction and scattering properties? How good will
the model with the optimal set of features and modalities be compared to the
optimal absorption model?
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3.1 Primary Dataset: Turkey

So as to detect foreign bodies, a model needs to be trained. Next, its parameters
need to be optimized and, �nally, the model performance needs to be evaluated.
Therefore, the total number of observations contained in the three images, corre-
sponding to the three di�erent sized objects, is divided into three sets: training,
validation and test set. The food pixels of the training set are used for �tting
the food models, the pixels from the validation set are used to tune the param-
eters of the models and the test set is used to compare the performance of the
di�erent models.

3.1.1 Gaussian Models

The following Gaussian models with varying dimensions are subsequently �tted
to the food product.

Model nr. Nr. features Absorption Phase contrast Dark-�eld BIF
1 1 Yes No No No
2 1 No Yes No No
3 1 No No Yes No
4 2 Yes Yes No No
5 2 Yes No Yes No
6 2 No Yes Yes No
7 3 Yes Yes Yes No
8 22 Yes No No Yes
9 22 No Yes No Yes
10 22 No No Yes Yes
11 44 Yes Yes No Yes
12 44 Yes No Yes Yes
13 44 No Yes Yes Yes
14 66 Yes Yes Yes Yes

Table 3.1: Di�erent Gaussian models including a varying number of features
and imaging modalities.
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The parameters that need to be optimized when using Gaussian models are:

1. D, the number of Gaussians which are going to be �tted to the food
training data.

2. Th, the hard threshold which is going to be applied to the Mahalanobis
distance in order to decide whether a pixel belongs to the food or the
foreign body class.

For the seven models with texture features, the Ridge regression parameter
kridge also needs to be speci�ed.

First order statistics, such as the histograms in Figure 3.1, are useful to deter-
mine how many Gaussians should be �tted to a certain food product, as they
provide an idea of how the data is distributed in intensity. Simple 2D scatter
plots, as in Figure 3.2 also provide information on how many Gaussians should
be �tted to the data.
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(a) Absorption.

(b) Phase contrast.

(c) Dark-�eld.

Figure 3.1: Histograms and �tted Gaussians for turkey intensities in the dif-
ferent modalities.



3.1 Primary Dataset: Turkey 27

(a) Absorption and phase contrast.

(b) Absorption and dark-�eld.

(c) Phase contrast and dark-�eld.

Figure 3.2: 2D scatter plots for turkey intensities.
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By observing Figures 3.1 and 3.2, it is decided to �t one multidimensional Gaus-
sian to the food training data, which means that the parameter D is chosen to
be one because the distribution of the intensities seems to follow one single
Gaussian. For simplicity, D = 1 will be used for each of the fourteen models,
even though some of the models include more features, than just the spectral
features related to the intensity. Additionally, in Figures 3.1 and 3.2 it can be
seen that the food data looks approximately Gaussian, with a higher density of
observations towards the middle of the distribution and a lower density as the
observations move out from the centre of the distribution.

The parameter kridge is optimized using the validation set, the optimal kridge is
selected to be the one which minimizes the validation error de�ned as

error =

√(
FN

N

)2

+

(
FP

P

)2

(3.1)

where

1. FN is the number of false negative pixels in the validation set, i.e. the
number of pixels which are classi�ed as belonging to the false class (food),
but are actually from the positive class (foreign bodies).

2. FP is the number of false positives, i.e. the number of pixels that are
classi�ed as true (foreign bodies), but actually pertain to the false class
(food).

3. N is the number of pixels which actually belong to the negative class, that
is to say, the number of food pixels in the validation data.

4. P is the number of pixels that are part of the positive class, the number
of foreign body pixels in the validation data.
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In Figure 3.3, the validation and training errors are displayed for one of the
models, the one including all the possible features.

Figure 3.3: Training and validation error for turkey model number 14.

As can be seen in the Figure 3.3, the validation error is not very sensitive to
changes in kridge. This can be better evaluated by looking at the ROC curves.
A receiver operating characteristic (ROC curve) illustrates the performance of
a two class (binary) classi�er and it is created by plotting the sensitivity or true
positive rate (TPR) against the 1-speci�city or false positive rate (FPR) for
varying discrimination thresholds (value from which we decide that a certain
pixel belongs to the true class, i.e. that it is a foreign body).

In Figure 3.4, the ROC curves are illustrated for the worst and best value of
kridge, those that correspond to the highest and the smallest validation error,
respectively. The euclidean distance, d, from the perfect classi�er (TPR=1,
FPR=0) to the ROC curve is used to calculate the optimal point of the ROC
curve, corresponding to the optimal hard threshold applied to the Mahalanobis
distance. In addition, this distance is used to evaluate how well di�erent models
perform.
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(a) Best case, optimized (kridge = 10−21), TPR = 0.9437, FPR =
0.0337 and d = 0.0656.

(b) Worst case (kridge = 10−12), TPR = 0.9447, FPR = 0.0468 and
d = 0.0725.

Figure 3.4: ROC curves for turkey model 14 with Ridge regression.
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The di�erence between the model with the optimized kridge and the worst case
of kridge is so small that it is not worthwhile optimizing this parameter, because
it takes excessively long. It might not be worthy to use Ridge regression at all.
In Figure 3.5, the ROC curve is represented for the turkey model number 14,
but without including Ridge regression.

Figure 3.5: ROC curve for turkey model 14 without Ridge regression.
TPR = 0.9448, FPR = 0.0393 and d = 0.0678.

From Figure 3.5 it can be inferred that Ridge regression does not add signi�cant
bene�ts, as the distance from the optimized threshold to the ideal classi�er is
0.0656 when using Ridge, compared to 0.0678 when Ridge is not used. These
distances are very similar, so Ridge regression will not be used from here onwards
so as to avoid a time-consuming optimization study.

In Figure 3.6, the thresholds have been optimized for each of the 14 food models,
the optimal points are the closest points from each ROC curve to the ideal
classi�er (TPR=1, FPR=0), and are marked in the graphs.
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(a) Turkey models without BIF features.

(b) Turkey models including BIF features.

Figure 3.6: ROC curves for turkey models.
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By looking at the ROC curves, the qualitative performance of each model can
be assessed. However, to present the quantitative performance of the di�erent
models, the distances from each of the optimal 14 models to the ideal classi�er
are displayed in the following Table, starting with the best performance model
to the worst performance model (pixel-wise classi�cation).

Distance d Model Nr.
0.0664 13
0.0720 10
0.0739 14
0.0811 12
0.1113 6
0.1135 7
0.1205 5
0.1260 3
0.1976 9
0.2003 11
0.3437 4
0.3741 2
0.4116 8
0.5723 1

Table 3.2: Distances from the optimized turkey models to the ideal classi�er.

Improved performance of the models is observed when texture analysis is in-
cluded, so it is advantageous to add these extra spatial features. Moreover,
the optimal model for turkey is the one which includes the phase contrast and
dark-�eld modalities, and the worst model is the one that only contains the
absorption intensity.

However, the performance of the models should be measured using the set of
observations/pixels that belong to the test set. In Table 3.3 the confusion matrix
(CM) is displayed for the model number 13 and for the absorption model which
performs best, number 8, as well as the values for the precision and accuracy
measures. These measures a de�ned as follows

precision = TP/P (3.2)

accuracy =
TP + TN

P +N
(3.3)
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Model nr. Nr. feat. TP FP TN FN Precision Accuracy
13 44 3569 1211 38806 225 0.9407 0.9672
8 22 2624 10183 29834 1170 0.6916 0.7409

Table 3.3: Turkey models performance on test set.

In Figure 3.7, the distance maps can be observed for two models. First, the
turkey model which performs the best out of the two models that only include
the absorption modality information, i.e. the best classi�er out of the models
number 1 and 8. Second, the turkey model that performs best out of the 14
models. In Figure 3.8, the corresponding �nal classi�cation decisions for each
pixel are portrayed.

(a) Best absorption turkey model, model number 8.

(b) Best turkey model, model number 13.

Figure 3.7: Distance maps.
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(a) Best absorption turkey model, model number 8.

(b) Best turkey model, model number 13.

Figure 3.8: Thresholded images, �nal classi�cation.

3.1.2 Gaussian Model VS Support Vector Machine

As in GMM, the data set is divided into training, validation and test set. In
contrast to GMM, not only the food pixels, but also the foreign bodies, are
represented in the training set.

The performance of the Gaussian model is going to be compared to the per-
formance of SVM for the turkey model number 10, the one which includes the
dark-�eld modality, with its spectral and texture features.
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(a) Turkey SVM model, d = 0.0468.

(b) Turkey GMM model, d = 0.0712.

Figure 3.9: ROCs for turkey dark-�eld models, including texture features.
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SVM's performance is better, as can be perceived qualitatively from Figure
3.9 and quantitatively from the distance d values (d = 0.0468 for SVM and
d = 0.0712 for GMM), but it has to be taken into account that Support Vector
Machines performance will rapidly decrease when the foreign bodies in the test
set di�er from those represented in the training set. Moreover, another reason
for choosing GMM against SVM, is that the latter takes much longer to be
trained.

3.2 Extended Dataset: Cheese, Salami and Rye

Bread.

The next three products will be analysed using Gaussian Models and no Ridge
regression, because of the reasons stated above.

The following results are obtained for cheese (Figure 3.10), salami (Figure 3.11)
and rye bread (Figure 3.12). Thanks to the ROC curves, the performance of
the di�erent models can be compared visually.
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(a) Cheese models without BIF features.

(b) Cheese models including BIF features.

Figure 3.10: ROCs for cheese models.
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(a) Salami models without BIF features.

(b) Salami models including BIF features.

Figure 3.11: ROCs for salami models.
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(a) Rye bread models without BIF features.

(b) Rye bread models including BIF features.

Figure 3.12: ROCs for rye bread models.
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The performance of the di�erent models can be assessed quantitatively by com-
paring the euclidean distance d from the optimal point for each model to the
ideal classi�er. These distances are displayed in Table 3.4 for cheese, salami and
rye bread.

Cheese Salami Rye bread
Model nr. d Model nr. d Model nr. d

13 0.0563 13 0.0814 5 0.1936
14 0.0576 14 0.0820 7 0.2081
7 0.0632 12 0.0915 12 0.2146
12 0.0668 10 0.1054 14 0.2215
5 0.0678 7 0.1083 11 0.2353
6 0.0854 5 0.1119 13 0.2747
10 0.0892 6 0.1286 9 0.3026
9 0.0978 3 0.1362 4 0.3037
11 0.1021 11 0.1801 10 0.3143
3 0.1271 9 0.2078 3 0.3282
4 0.1381 4 0.2551 6 0.3388
1 0.1794 8 0.3335 8 0.3969
8 0.1882 1 0.3445 1 0.4011
2 0.2694 2 0.4209 2 0.5304

Table 3.4: Distances from the optimized models to the ideal classi�er.

Note how the di�erent models perform on di�erent food products. Model 13
outperforms the others for cheese and salami, however does not perform so well
on rye bread, where model 5 gives the best results.

Moreover, improved detection is observed when Basic Image Features are added
to the model, except for rye bread models, where BIF features do not add
signi�cant bene�t.

In fact, the detection rate is quite poor for rye bread, this could be due to the
fact that the seeds it contains look like foreign bodies. In order to add BIFs
for rye bread, an extensive optimization study on the scales and measure of
�atness used for the smoothing should be performed. Perhaps better results
can be obtained when these have been optimized. Nevertheless, including the
dark-�eld and phase-contrast modalities does improve the detection of foreign
bodies in rye bread.
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In Table 3.5 the performance of the models on the test set can be compared.

Product Model Nr. feat. TP FP TN FN Prec. Acc.

Cheese
13 44 7984 1268 32604 352 0.9578 0.9616
1 1 7129 3494 30379 1189 0.8571 0.8890

Salami
13 44 6834 2125 37484 449 0.9383 0.9451
8 22 5491 8682 30917 1803 0.7528 0.7764

Rye Bread
12 44 2319 4582 43245 541 0.8108 0.8989
8 22 1787 6934 40910 1056 0.6286 0.8424

Table 3.5: Models performance on test set.

Finally, the resulting pixel-based classi�cation can be compared for the best of
the two available absorption models against the model which performs the best
out of the 14 models. This provides a visual representation of the gain obtained
by adding these new imaging modalities: phase contrast and dark-�eld.

In Figures 3.13, 3.15 and 3.17 the distance maps can be observed for the model
that performs best for each food product compared to the product's absorp-
tion model out of the two absorption models, number 1 and 8, which provides
the better classi�cation. In Figure 3.14, 3.16 and 3.18 the corresponding �nal
classi�cation decisions for each pixel are portrayed.
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(a) Best absorption cheese model, model number 1.

(b) Best cheese model, model number 13.

Figure 3.13: Distance maps.

(a) Best absorption cheese model, model number 1.

(b) Best cheese model, model number 13.

Figure 3.14: Thresholded images, �nal classi�cation.
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(a) Best absorption salami model, model number 8.

(b) Best salami model, model number 13.

Figure 3.15: Distance maps.

(a) Best absorption salami model, model number 8.

(b) Best salami model, model number 13.

Figure 3.16: Thresholded images, �nal classi�cation.
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(a) Best absorption rye bread model, model number 8.

(b) Best rye bread model, model number 12.

Figure 3.17: Distance maps.

(a) Best absorption rye bread model, model number 8.

(b) Best rye bread model, model number 12.

Figure 3.18: Thresholded images, �nal classi�cation.
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Chapter 4

Conclusions and future work

The most important result of this thesis is the fact that it gives evidence towards
an improved and e�cient automatic foreign body detection when adding two
additional imaging modalities (phase contrast and dark-�eld) to the well-known
absorption contrast modality. These two modalities enable the detection of
organic matter, which is very di�cult to �nd with conventional X-rays.

Dark-�eld is the modality where organic foreign bodies best show up, also non-
organic foreign bodies can be seen in this modality, so absorption does not add
that much information once the dark-�eld modality is available. Nevertheless,
phase contrast and absorption modalities can add to the model some extra
information that the dark-�eld modality does not capture. For cheese, the
absorption modality adds more information than the phase contrast modality,
whereas for the other three products, the models that include phase contrast
perform better than those that include the absorption modality. If no texture
features have been added, models that include only the absorption modality
usually perform better than those including only the phase contrast modality.
Regarding texture analysis, the calculation of the BIFs is worthwhile as an
improved detection is observed when these features are added to the model.
However, if the texture of the food product is complex, such as rye bread's
texture, then an extensive study should be performed in order to select the
parameters that give the most information.
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It should be pointed out that, although constructing the food models is time
consuming, the classi�cation of new data is easy because only the BIF features
and the Mahalanobis distance (or the SVM result) need to be calculated. These
calculations are fast and mainly pixel-wise operations (apart from the BIFs).
Therefore, they can be easily parallelized and implemented to run fast on, for
example, a GPU. This is very important when considering a conveyor belt so-
lution.

SVM will not perform adequately if 'new' foreign bodies (di�erent from those
in the training set) appear in the food products. It is not possible to create a
perfect training set, one which represents all possible foreign bodies, so future
work should focus on GMM.

The number of Gaussians, D, was chosen by just looking at the intensity fea-
tures. However, this parameter could be optimized by splitting the data in
more than one validation set, as there are many more features than just inten-
sity features. Moreover, object-based detection should be performed for a more
robust classi�cation, as well as to provide an estimation of the sizes that could
be detected.

What is more, the models could be tested with unseen data, such as bones or
other foreign bodies which have not been included in the development of the
models. Actually, a test set of this nature, which contains foreign bodies which
have not been used for training nor tuning these models, was also acquired at
TUM.

Ridge does not introduce gain in this speci�c case study, but more complex
models could be created with a higher number of spatial features in order to
analyse complex textures, such as rye bread's texture. By adding more �atness
parameters and more scales to the texture analysis, the dimensionality quickly
increases. Then, elastic net could be probed to eliminate irrelevant scales and/or
�atness parameters in order to decrease the computational time of the BIF
features because, due to speed restrictions, BIF features cannot be calculated
for a high number of scales and �atness parameters in a conveyor belt solution.

All in all, grating-based interferometry (GBI) allows detection of organic matter
and performs much better than typical X-ray when there is a mix of organic and
non-organic foreign bodies. As a consequence, a quality assurance conveyor belt
solution with GBI would be much more e�cient than one with typical X-rays
for industries where organic materials are potential foreign bodies.
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Data set

A.1 Turkey

In Figures A.1, A.2 and A.3 the three images for turkey, corresponding to the
three di�erent sized foreign bodies can be observed. Each image consists of three
modalities with pixel correspondence: absorption, phase contrast and dark-�eld.

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.1: Turkey containing foreign bodies of approximately 2x2x2 mm.
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(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.2: Turkey containing foreign bodies of approximately 3x3x3 mm.

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.3: Turkey containing foreign bodies of approximately 4x4x4 mm.
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A.2 Cheese

In Figures A.4, A.5 and A.6 the three images for cheese, corresponding to the
three di�erent sized foreign bodies can be observed. Each image consists of three
modalities with pixel correspondence: absorption, phase contrast and dark-�eld.

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.4: Cheese containing foreign bodies of approximately 2x2x2 mm.

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.5: Cheese containing foreign bodies of approximately 3x3x3 mm.
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(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.6: Cheese containing foreign bodies of approximately 4x4x4 mm.

A.3 Salami

In Figures A.7, A.8 and A.9 the three images for salami, corresponding to the
three di�erent sized foreign bodies can be observed. Each image consists of three
modalities with pixel correspondence: absorption, phase contrast and dark-�eld.

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.7: Salami containing foreign bodies of approximately 2x2x2 mm.
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(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.8: Salami containing foreign bodies of approximately 3x3x3 mm.

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.9: Salami containing foreign bodies of approximately 4x4x4 mm.
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A.4 Rye bread

In Figures A.10, A.11 and A.12 the three images for rye bread, corresponding
to the three di�erent sized foreign bodies can be observed. Each image consists
of three modalities with pixel correspondence: absorption, phase contrast and
dark-�eld.

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.10: Rye bread containing foreign bodies of approximately 2x2x2 mm

(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.11: Rye bread containing foreign bodies of approximately 3x3x3 mm
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(a) Absorption (b) Phase contrast (c) Dark-�eld

Figure A.12: Rye bread containing foreign bodies of approximately 4x4x4 mm
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