

MSc Thesis
Sanam Ali (s114657), 24.2.2012

Weaving Requirements Fragments:

An empirical investigation

Department of Applied Mathematics and Computer Science

Technical University of Denmark

DTU Compute

Department of Applied Mathematics and Computer Science

Building 303 B,DK-2800 Kongens Lyngby, Denmark

Telephone: +45 45253031, Fax: +45 45881399

compute@compute.dtu.dk

mailto:compute@compute.dtu.dk

Abstract

In requirements engineering the process of converting textual requirements into formal models

is a very intricate process which has attracted the interest of many researchers. This thesis

proposes the method of transforming requirements stated in natural language into formal

models (UML representations have been used in this thesis) by adding model fragments. These

small model fragments can then be woven through iterative fragment weaving to obtain formal

models. The goal of the thesis is to 1) formalize rules for the creating model fragments, 2) to

explore whether model fragments can be created for a large number of requirements (case

study) and 3) to conduct an experiment to validate the transformation rules.

The model fragments not only supports the forward process of transforming textual

requirements into formal models but also have push back on the requirements. Model

fragment creation modifies the textual requirements and also helps in adding new

requirements. The case study and the experiment provided the author with various empirical

insights concerning model fragments.

Acknowledgments

This is the Master's Thesis for Sanam Ali presented to the Technical University of Denmark as

partial fulfillment of the requirements for obtaining the Master's Degree in Computer Science

and Engineering at the Department of Applied Mathematics and Computer Science. This thesis

has been written during the period of September 29th 2013 to February 24th 2014, under the

supervision of Prof. Dr. Harald Störrle, and is worth 30 ECTS credits.

Foremost I would like to thank my supervisor Harald Störrle for not only being a helpful

supervisor but a great mentor as well. Your patience, time, knowledge and enthusiasm towards

my work have always motivated me to do my best. I hope this thesis will be helpful to you in

your future work.

I would also like to thank Henrik Meilby, Associate Professor at University of Copenhagen for his

time and help. His advice and insights regarding statistical concepts proved very helpful.

Last but not the least I would like to thank my family, without their support and prayers I would

not have been able to complete this thesis. My sisters who have always believed in me and

supported in whatever I have chosen to do.

Conpute, DTU, February 24th, 2014

Sanam Ali (s114657)

Table of Contents

Chapter 1 Introduction .. 2

1.1 Motivation ... 3

1.2 Related work ... 5

1.3 Approach ... 8

Chapter 2 Model Fragments for Requirement Engineering .. 11

2.1 Model fragments... 11

2.2 Properties of Model fragments ... 11

2.3 Selection of Model Fragments Types .. 12

2.4 Illustration of the Various Types of Model Fragments ... 14

2.4.1 Activity Model Fragment... 14

2.4.2 Class Model Fragment ... 15

2.4.3 Interaction Model Fragment ... 15

2.4.4 State machine Model Fragment ... 16

2.4.5 Use case Model Fragment: ... 17

2.5 Applying Rules to derive Model Fragments from Textual Requirements 18

Chapter 3 Case study ... 21

3.1 Research Question .. 21

3.2 Case Selection ... 21

3.3 Data Collection Procedure .. 22

3.4 Results ... 24

3.4.1 Distribution of various requirement types ... 24

3.4.2 Distribution of various type of model fragments ... 25

3.4.3 Distribution of number of model fragments per requirement ... 25

3.4.4 Frequency distribution of model fragment size .. 27

3.4.5 Distinction in model types with respect to fragment size. ... 27

3.4.6 Guidelines for reinforcing natural languages .. 29

3.4.7 Individual guidelines assessment .. 32

3.5 Interpretation.. 33

3.5.1 Distribution of various requirement types ... 33

3.5.2 Distribution of various model fragments .. 34

3.5.3 Relationship between model fragment type and requirement type 35

3.5.4 Requirements with no model fragments .. 36

3.5.5 Model fragment size ... 38

3.5.6 Push back of model creation ... 39

Chapter 4 Experiment .. 43

4.1 Experiment Goal & Hypothesis ... 43

4.2 Methods and Materials ... 43

4.3 Observation ... 45

4.3.1 Distribution of model fragment type .. 45

4.3.2 Number of Model Fragments per Requirement ... 45

4.3.3 Model diagrams created against the different requirements .. 46

4.3.4 Model Fragment Size of the different model diagrams .. 47

4.3.5 Difficulty level of the different model diagrams ... 48

4.4 Interpretation.. 51

4.4.1 Distribution of model fragment type .. 51

4.4.2 Relation between effort and size of model fragments ... 54

4.5 Threats to Validity ... 57

Chapter 5 Discussion .. 58

5.1 Deriving model fragments from requirements ... 58

5.2 Tracing from models to requirements .. 59

Chapter 6 Conclusion ... 60

6.1 Future Work and Limitations .. 61

Chapter 7 Bibliography ... 62

Appendix ... 65

1 Introduction

2 Introduction

Chapter 1 Introduction

A picture is worth a thousand words. Arthur Brisbane (1911).

This phrase emerged in the early part of the 20th century and has been widely used ever since.

It means that a complex idea which can be told in thousand words could easily be depicted in a

single picture. A similar concept is being discussed in this thesis. This thesis focuses on adding

model fragments in order to transform natural language requirements into formal models.

These model fragments will not only prove beneficial for the developing team, but will

hopefully reduce the communication gap between clients and requirement engineer.

At present there are no definite rules in the Requirements Engineering field, which can be used

to create with model fragments for a set of requirements. The first part of the thesis attempts

at formulating with some basic rules for doing so. Using the transformation rules model

fragments are created against the pre stated requirements of a case study in the second part of

the thesis. The rules are tried to be validated by carrying out a controlled experiment on the

students of the course 02264 Requirements Engineering at the Technical University of

Denmark. The results and observations from the experiment have been analyzed to obtain

various insights.

For this thesis existing requirements from three different case studies have been worked upon.

These three case studies have been taught during the course of 02264 Requirements

Engineering at the Technical University of Denmark. These are Library Management System

(LMS) (2011), Sjællands Banken Customer Kiosk (SBK) (2012) and Mobile Match Maker System

(MMM) (2012). For the second part of the thesis only the LMS case study has been considered

while the experiment conducted considers all the three case studies.

The remaining thesis has been divided into the following sections chapter 1 includes motivation

for the thesis, the previous work done by others and describes the concept of fragment

weaving and traceability (presents the big picture). In chapter 2 the various concepts associated

with model fragments are discussed including how the transformation rules can be applied on

requirements to create model fragments. Chapter 3 focuses on a case study, its results and the

interpretation of the various results. Chapter 4 is dedicated to the experiment, methods and

3 Introduction

materials, observations and interpretation of the different observation. Chapter 5 is the

discussion and Chapter 6 proposes some future work and conclusion.

1.1 Motivation

For the development of any type of system, Requirements engineering is undoubtedly a crucial

part of the developments process. And in order to collect complete and real requirements, it is

important to communicate with all the various stakeholders of the system.

The definition of stakeholders in the PMBOK® Guide (2008) is given as:

Stakeholder: An individual, group or organization who may affect, be affected by,

or perceive itself to be affected by a decision, activity or outcome of the project.

There are different types of stakeholders with different type and levels of academic knowledge.

Not all the stakeholders are able to understand the syntax and semantics of UML and other

visual models (Arlow & Neustadt, 2004). For example the developers, programmers, managers

may be familiar with the requirement engineering terms and concepts while others like the

customer, clients, suppliers etc. may not familiar to these concepts. For the latter group

understanding the formal models and complex concepts of requirement engineering would be

an endeavor in itself, hence the validation of the requirements from formal models not

possible. Therefore the addition of simple, small uncomplicated model fragments to the

requirements would help them in understanding and tracing their requirement in the complex

large formal models. This problem has also been talked about by Al-Rawas and Easterbrook

(1996, p. 5) where it is stated:

“Regardless of the chosen notations, most users express their requirements in

natural language. Then it is the job of the analyst to translate requirements

statements into some kind of representational objects in a domain model. Once

the requirements are modelled, they are presented to end users for validation. At

this stage the analysts are faced with another communication problem when end

users are not familiar with the notations used to model their requirements."

This shows that the stakeholders are not able to validate the requirements as they do not have

the knowledge to comprehend the complex and large models presented by the designers.

According to Davis (2005) the requirement management process can be improved by using

both the models and the requirements written down in natural language. The advantage of

4 Introduction

having modeling techniques is that they are precise, expressive and helps the developing team

to understand the requirements. Whereas the benefit of text is that it can act as a contract

between the clients and the developers. Designers have the tendency to make model

fragments without including them to the requirement specification document. As Lange et al.

(2006) pointed out that one of the problems of using UML is its informal use

“Architects sometimes use UML in a very sketchy manner. For example, to obtain

a better understanding of a system or to explain the architecture, they might use

generic drawing software or even just make sketched on paper. These diagram

deviate from official UML syntax, making their meaning ambiguous”.

The advantages and disadvantages of UML is out of scope of this thesis but Christian et al.,

statement shows that the initial step for a designer is usually a sketch of the system on a paper

or a generic drawing tool. Adding to this Fowler (2003) goes so far as to say that UML could be

used as a sketch, blue print and as a programming language again suggesting that the initial

step for a designer to create a UML is usually a rough sketch. Thus an intermediate phase

between translating the requirements expressed in natural language directly into UML models

should be introduced to allow the clients to verify the requirements, at the same time allows

the designers with initial phase of creating the formal models.

An important aspect in the development process is requirement traceability. According to

Ramesh and Jarke (2001), requirement traceability allows the systems’ requirements to be

unmistakably linked to its source and the derived artifacts of these requirements during the

entire development life cycle. Thus a person can view how his/her requirement described in

natural language is modeled into some high language model and then programmed into a

feature of the system.

As stated earlier this traceability can be a bit tricky if the stakeholders are not familiar with the

high language models and thus introducing small and simple model fragments to the

requirements will help the stakeholders in tracing their requirement. Traceability also helps in

giving information about justification, important decisions and assumptions behind

requirements (Ramesh & Jarke, 2001). Thus tracing a requirement back to the right source and

the stakeholder being able to validate the requirement is important.

5 Introduction

1.2 Related work

In this section the previous work of some researchers and scholars will be discussed and

compared to get an idea of what has been done in the field of requirements engineering to

automate/semi automate the process of transforming textual requirements into formal models.

This transformation can be carried out by two different methods (Fatwanto A. , 2012).

1. Artificial intelligence (rule based approach)
2. Grammatical analysis (natural language processing approach)

In the rule based approach, artificial intelligence is used in the transformation of informal

specification to formal specification. Some common examples of using rule based approach are

Specification Acquisition from Expert (1978), the Requirement Apprentice (1991) and Specifier

(1991)

The second type uses linguistic analysis i.e. grammatical knowledge to transform textual

requirements into formal Specification. Examples are Conceptual Model Builder (2000),

Language Extended Lexicon (2004) and Natural Language Processing (NLP) (2008).

Moreno and van de Riet (1997) represents an approach for comparing linguistic world (i.e.

requirements in textual format) to conceptual world (i.e. class models). The requirements in

natural language are converted into First Order Logic and conceptual models are converted into

Set theory representation. Then using mathematical theories and concepts the two are

compared. Moreno and van de Riet work does not discuss forward or backward traceability in

any way. Fatwanto (2012) present an approach of translating textual requirements in CARE

(Fatwanto A. , 2011) framework into class and state machines. His work does not support the

concepts of forward or backward traceability and even though the transformation from

requirements to models has been implemented, his work has not been validated in any way.

A tool called TESSI (Kroha, 2000) supports iterative RE processes. In TESSI the analyst specifies

the roles of words in text. In complete roles will lead to incomplete UML models. Thus this tool

has the limitation that the analysts have to consider every role of every word during the

modeling process. Also the generation of requirements specification from a modified model,

will result in a new set of requirements specification instead of updating the original one.

There are many different criteria’s on the basis of which the existing methods, approaches and

tools for textual requirement transformation can be compared. But for the purpose of this

thesis, some tools and methods have been considered and categorized as shown in Table 1.

6 Introduction

The Table 1 shows which methods supports forward and backward traceability, in what format

or framework the initial textual requirements are in and to what extent is the model generation

process automated. It also includes a column on how the various methods have been validated.

As it can be seen there are many approaches that attempt to fully automate this process, but

the very idea of automation in the context of RE is somewhat unintuitive to us. Indeed, some of

the approaches mentioned, has been validated by experiments or case studies. But, most of

them have not been validated at all. In contrast to this work, we pursue an approach that relies

on human understanding and insight, guided by rules and examples.

7 Introduction

Table 1 Comparison of Previous Work on the Basis of Certain Parameters

Author &
Year

Scope textual
requirements

Automation
(from

requirements
to model)

Forward
traceability

Automation
(from models

to
requirements)

Backward
traceability

Validated

Moreno &
van de Riet

(1997)

Class
models

Restricted to
some extend

Manual
(transformation

rules applied)

No No No Mathematical
reasoning

 Kroha
(2000)

- - Automated Yes Yes Yes -

 Overmyer
et al. (2001)

Class
models

Not restricted Semi-automatic Yes Yes Yes No

Kealey and
Amyot
(2006)

Use case UCEd
framework

Automated
(jUCMNav tool)

Yes
(Telelogic
DOORS)

No No No

 Gelhausen
& Tichy
(2007)

Not stated
but

example of
class model

given

Transformed
into SENSE

representation

Manual
(automation
proposed as
future work)

Not
mentioned

No No One case
study

Montes et
al. (2008)

Class
models

Considers only
use case
scenarios

Manual No No No No

 Hasegawa
et al. (2009)

OO model
+ feature

model

Not restricted Automated No No No Experiment to
validate tool

Agung
Fatwanto

(2012)

Class+
state

machine

Follows CARE
framework

Transformation
rules

(implemented)

No No No No

 Landhäußer
(2014)

All models
supported
by SALe mx

(model
generator)

Complies with
RESI

Fully automated Yes Yes Yes Several case
study

8 Introduction

1.3 Approach

The idea behind adding model fragments to a requirement is to automate/semi-automate the

process of transforming textual requirements into formal models while incorporating

traceability. In this section the definition of requirement traceability along with related

concepts is given. Also the process of forward and backward traceability from textual

requirements to formal Models using model fragments is discussed. According to Gotel and

Finkelstein (1994) requirement traceability can be defined as

“The requirement traceability is the ability to describe and follow the life of a

requirement, in both forward and backward direction, i.e. from its origins,

through its development and specification, to its subsequent deployment and

use, and through periods of ongoing refinement and iteration in any of these

phases.”

As stated from the definition of requirement traceability there are two different types of

traceability, backward and forward traceability. According to Wieringa (1995) they can be

defined as

Forward traceability of a requirement is the ability to trace components of a

requirements specification to components of a design or of an implementation.

Backward traceability of a requirement is the ability to trace a requirement to its

source i.e. to a person, institution, law, argument, etc. that demands the

requirement to be present.

The process of transforming textual requirements into formal models starts with a set of

requirements described in natural language. These requirements are not restricted to any

particular format like the UCEd (Cockburn, 2000) , RESI (körner & Brumm, 2010) or CARE

Framework (Fatwanto A. , 2011) rather considers the requirements as text specified by the

client and Analyst together. Against these requirements as many model fragments as possible

are generated using the transformation rules (Appendix A). These model fragments can be of

various different types like class, state machine, use case, sequence (interaction) and activity

models. It should be noted that not all the requirements will generate equal number or types of

model fragments. Some requirements may generate 3, others 1 while some requirements

might not have any model fragments associated with it.

9 Introduction

The next step is the transformation of these small sized model fragments into larger models

and eventually formal models (for example UML models). This can be done by doing a series of

fragment weaving. The small fragments of the same type are woven into slightly larger

fragments until the formal models are achieved.

This phenomenon is illustrated in Figure 1 which shows a set of requirements req1, req2… reqn.

These requirements generate different number and type of model fragments. The models

fragments of the same type are woven together through successive fragment weaving that

results in one overall model file comprising of the different types of formal models. Fragment

weaving is out of scope of this thesis, but Jakob’s Master thesis (2012) describes fragment

weaving in the RED tool to some extent.

Figure 1 Transforming Textual Requirements to Formal Models by Creating Model Fragments (Forward Tracing)

10 Introduction

The push back of creating model fragments is also very interesting to see. The creation of

model fragments may require modification of the original requirement text. These

modifications can enhance, decrease or have no impact on the quality of the requirements. This

will be determined and discussed later on in Chapter 3. Often it has been seen that while

specifying requirements, both the client and analyst miss writing the simple and obvious

requirements. It may happen because both the parties consider them to be trivial. But ideally

this should not happen. Thus in addition to modifying the textual requirements, the creation of

model fragments can be used to visualize the missing trivial requirements. This is a very

important push back of the model fragments and will help analysts in creating a complete SS

document of a system. In Figure 2 the push back phenomenon of model fragments have been

visualized. The red color model fragment represents the source of modification for its

corresponding requirement. Another model fragment (green color) represents a model

fragment that has been added, due to which its corresponding requirement has been added to

the SS document of the developing system.

Figure 2 The Push Back of Model Fragments on the Textual Requirements (Backward Tracing)

11 Model Fragments for Requirement Engineering

Chapter 2 Model Fragments for

Requirement Engineering

2.1 Model fragments

According to Siikarla et al., (2006) the concept of model fragment is undefined, hence there

does not exist a proper, correct definition of model fragments, yet they have tried to define

model fragment to some extent. According to which a model fragment can be defined as “a

copy of a piece of a model. A model fragment is a concrete entity distinct from the model and in

that way different from a view.” Siikarla et al., (2006) work comprised of splitting a given

complex and large model to smaller pieces. Hence the definition is derived in that context.

For this thesis the model Fragments can be defined as a simple, small, less detailed and

incomplete graphical representation of a requirement. The concrete entity part described by

Siikarla et al., (2006) still holds for this definition. The need and importance of model fragments

have been discussed in section 1.1.

2.2 Properties of Model fragments

The concept behind including these model fragments to convert textual requirements into

formal models supporting forward and backward traceability. For this purpose the model

fragments should correspond to a number of properties, which are

 Model fragments should be small. Requirements generating large model fragments

should be split up if possible.

 Model fragments should be simple and easy to understand.

 The constraints and limitations of UML modeling should not be applicable to generating

model fragments.

 Model fragments should appear like they hand sketched. This will allow designers to

make changes/addition to the models as they appear incomplete.

 A model fragment should only represent the requirement it is drawn against.

These properties have been kept in mind by the author when selecting a tool for recording the

model fragments (section 3.3).

12 Model Fragments for Requirement Engineering

2.3 Selection of Model Fragments Types

For the purpose of this thesis, the UML modeling notations are used. Just as in UML there are

many different models (use case, component, state machine, classes and many others), various

types of model fragments can also be created. In order to make the scope of the thesis realistic,

findings of Dobing and Parsons (2006) will be used to select different types of model fragments

for this thesis.

Figure 3 Use and Perceived Information Added of UML Components, Source (Dobing & Parsons, 2006)

13 Model Fragments for Requirement Engineering

Figure 4 Client involvement, Source (Dobing & Parsons, 2006)

As it can be seen from Figure 3 and Figure 4 the usage and client involvement for the model

types use case, class, sequence (interaction), state machine and activity is the highest, thus

these model types will be considered for this thesis. Even though the client involvement for use

case narrative is high, it is not being considered because the RED tool does not support it

(selection of tool for recording model fragments has been discussed in section 3.3). Similarly

the collaboration diagram usage is very low as shown in Figure 3; hence it is not given a priority

at the moment. Future work can be done by considering various other model types.

14 Model Fragments for Requirement Engineering

2.4 Illustration of the Various Types of Model Fragments

This section includes examples for the different types of model fragments with its associated

requirement. It is to show how the different requirements and their associated model

fragments look like. For this section each requirement will only have one type of model

fragment created against it, but it should be remembered that a single requirement can

generate more than one type of model fragment.

These examples have been taken from the LMS case study, introduction to the LMS case study

is given in Chapter 3 discussed in. Examples of the various different types of model fragments

with their respective requirement is given below

2.4.1 Activity Model Fragment

The example given below represents a simple activity model consisting of swim lanes, activities

and control flow. Other model elements like case distinction, decision node and objects can

also be generated as part of the model fragment using the rules described in Appendix A.

Requirement
ID

Text

REI5 If a librarian initiates reader actions on behalf of a reader, the reader receives
notification.

Model Fragment:

Figure 5 Example of Activity Model Fragment

15 Model Fragments for Requirement Engineering

2.4.2 Class Model Fragment

The class model fragment supports the creation of a number of model elements like classes,

properties, methods, associations, generalization and to some extent multiplicity. The below

example represent a simple class model fragment consisting of class and properties.

Requirement
ID

Text

REI1 All actions are recorded with the action type, a time stamp, the person issuing
the action and changes to the balance and account status.

Model Fragment:

Figure 6 Example of Class Model Fragment

2.4.3 Interaction Model Fragment

The interaction/sequence model fragment consists of the model elements life lines, message

transfer and time constraints. Below is shown an example of a requirement generating an

interaction model fragment.

16 Model Fragments for Requirement Engineering

Requirement
ID

Text

RET2 If the user returns an overdue copy to the library, the LMS displays the
overdue days are to the user within 2s.

Model Fragment:

Figure 7 Example of Interaction Model Fragment

2.4.4 State machine Model Fragment

The model fragment of the type state machine consists of the following elements; states, state

transition and guards. The example given below illustrates a state machine model fragment

consisting of states and transitions created against the requirement.

Requirement
ID

Text

ESM5 The expert search queries can be saved, then loaded and executed later to
perform various actions of them.

17 Model Fragments for Requirement Engineering

Model Fragment:

Figure 8 Example of State machine Model Fragment

2.4.5 Use case Model Fragment:

The use case model fragment consists of the model elements actor, use case, system boundary,

association, extends and includes relations. An example of a use case model fragment created

for a requirement is given below

Requirement ID Text

MLC2 Librarians may add, update, and delete corpus items manually.

Model Fragment:

Figure 9 Example of Use case Model Fragment

18 Model Fragments for Requirement Engineering

2.5 Applying Rules to derive Model Fragments from Textual Requirements

This section describes how to apply the rules to create model fragments from textual

requirements. The complete rules along with examples can be found in Appendix A. All the

examples used to illustrate the rules have been taken from the LMS case study.

 The rules are to be used in a top down manner meaning given the requirement, the type of the

model fragment to create shall be selected first (rules 1-5). This allows the creation of multiple

model fragments against a single rule. Afterwards depending on the model fragment type the

sub rules shall be applied to create the model elements.

Let us consider an example to illustrate this process.

Requirement
ID

Text

WEB5 An online registration guide might be used by the reader to set up a new
account

Given the requirement, we apply the rules starting from rule 1

1. If a requirement specifies a role with activities, create a use case diagram.

The given requirement does specify a role and some activities hence a use case model fragment

is to be created. Now apply the sub rules (1a-1f) of 1 to create the model elements.

1a Subjects and nouns indicated actors or components.

 Example

 An online registration guide might be used by the reader to set up a new account

19 Model Fragments for Requirement Engineering

1b Predicates (strong verbs) indicate use cases.

 Example

 An online registration guide might be used by the reader to set up an account.

1c If a predicate relates to a subject, the corresponding actor and use case shall be
connected by an association.

 Example

 An online registration guide might be used by the reader to set up an account.

20 Model Fragments for Requirement Engineering

1d Prepositions indicating location or ownership (“in”, “within”) indicate the container of

use cases

1e Relational prepositions (“from”, “to”, “via”, “by”) indicate relationships between use
cases.

Rules 1d and 1e are not applicable in this example, hence they can be ignored.

1f Unrestricted relations (“might”, “may”, “extends”) indicate “extends” relations.

 Example

 An online registration guide might be used by the reader to set up an account.

In a similar fashion first the model type is selected and then the corresponding sub rules are

applied to generate model fragments for state machine, interaction, activity and class model

fragments. Examples of which can be found in Appendix A.

21 Case study

Chapter 3 Case study

3.1 Research Question

The previous chapters indulged into the concepts of what model fragments are, how they can

be used in transforming textual requirements into formal models, and how to create model

fragments using the transformation rules. In this section, a case study will be considered to

answer the following research questions.

RQ1: Can model fragments be created for a large set of requirements?

RQ2: What are the various empirical insights to be collected from creating model fragments to a

case study?

RQ3: What is the pushback of model fragment creation on the requirements?

3.2 Case Selection

The Library management System (LMS) (2011) designed by Prof. Dr. Harald Störrle and used in

the course 02264 “Requirements Engineering” has been selected as a case study sample for this

thesis. LMS is a state of the art information system for a library, which offers a number of

facilities to both the users and staff of the library. The LMS provides the users with a self-service

kiosk and online access in addition to many other facilities.

The System Specification (SS) document for LMS was created in Sep 2010 and last updated in

Nov 2011. The SS document for LMS as any other SS document describes various aspects of the

developing system, including the classification of the stakeholders to determine their

importance to the system. This could potentially influence the process of adding model

fragments to requirements, as one could be tempted to add fragments to the requirements

concerning the more important stakeholder and neglecting the less important ones. Hence to

avoid this, the author has only considered the requirements specifications section of the SS

document of LMS.

The reason for selecting LMS is that as this thesis focuses on an empirical research for academic

students and lecturers, thus a case study familiar to both the author and the supervisor is

considered. The LMS example has been used in different context by different people over a

22 Case study

long period of time, hence it is time tested. The LMS is a fairly large system with substantial

amount of requirements stated in its specification document, thus providing the author with

well documented requirements.

3.3 Data Collection Procedure

In this section the process for collecting and recording data has been discussed. For the case

study the model fragments to add to the pre-stated requirements specified in the SS document

of LMS are the data points. Initially out of the 178 requirements, 24 requirements already had

model fragment associated with them.

In the beginning a single model fragment was developed against a requirement intuitively by

the author. The existing model fragments were also examined and modified where the author

saw fit. A model fragment was drawn on a piece of paper and then added to the already

existing RED file (2013) of the LMS. This was a very time consuming process as it required

drawing of the model fragments twice (once on paper and then in the RED tool. Also the model

fragments created varied greatly in size and range. Thus some kind of framework or rules to

develop model fragments in a systematic way was needed. After the rules were formalized the

author started adding model fragments to the requirements from the top again, modifying the

already created model fragments and requirements to better fit the rules. In addition to this it

was established to create as many model fragments against a single requirement as possible.

For selecting a tool to record the model fragments the following properties had to be taken into

consideration

 The tool must provide hand-drawn sketchy effect.

 The tool must be easy to use with user friendly interface.

 The time required in learning the tool and drawing model fragments with the tool

should be low.

 The tool should support drawing all the major model types.

Table 2 provides an evaluation of the different tools based on the author’s judgment after using

the various tools.

23 Case study

Table 2 Evaluation of Different Tools for Recording Model Fragments

Tool Effort Cost Sketching
Effect

Time Diagrams
Supported

MagicDraw High No High All

RED Medium Free Yes Medium Not all but
major ones

Yuml Low Free Yes Low 3

Paper & Pen Low Free Yes Low All

Other
drawing tools

Medium Free No Medium All

From Table 2 it is apparent that the Paper and pen is the best option to record the model

fragments against the various requirements. The model fragments are drawn by hands thus

giving the hand-sketch effect that is desired. This also allows for the model fragments to be

easily modified and all the various kinds of models can be drawn on paper. However when it

comes to adding model fragments to the report the best option would be RED or paint, because

they are neater and better looking than the hand drawn ones.

After model fragments have been added and recorded, the different quantitative attributes like

size, requirement type, model type were recorded in Microsoft Excel so as to perform various

statistical analysis and get results.

24 Case study

3.4 Results

This section includes the various empirical results obtained after adding model fragments to the

requirements in the LMS case study in order to get some answers for RQ1 and

RQ2. From this point onwards the remaining of the thesis document may include abbreviations

like id, cd, ud, ad and sd that stands for interaction (sequence) diagram, class diagram, use case

diagram, activity diagram and state machine diagram respectively. The data analysis and

various illustrations have been done using Microsoft Excel.

3.4.1 Distribution of various requirement types

The requirements stated in the System Specification document of the LMs can be classified in

to different requirement types. Given that the author has a good understanding of the different

requirement types, the author found that the 178 total requirements can be distributed as

shown below in Figure 10. The figure shows that a major portion (73%) of the requirements is

categorized as functional requirements while the remaining 27% make up for the quality

attributes. The quality attributes have been further classified as security, performance,

usability, maintainability and non-functional requirements.

Figure 10 Requirement Type Distribution (Case Study)

73%

10%

8% 4%
2%

3%
27%

Requirement Type Distribution

Functional

Security

Performance

Usability

Maintainability

Non-functional

25 Case study

3.4.2 Distribution of various type of model fragments

As many model fragments as possible have been created against each requirement according to

the rules specified in Appendix A. The model fragments could be of the following types class,

interaction, state machine, use case and activity model fragments. In total 203 model fragments

were created against the 178 requirements. The distribution of the different type of model

fragments is shown below in Figure 11.

Figure 11 Model Type Distribution (Case Study)

On the basis of this figure, use case model fragments have the highest percentage (32%)

followed by activity model fragments at 29%. The remaining three model fragment types make

up for 39% of the entire pie chart.

3.4.3 Distribution of number of model fragments per requirement

The objective of the author is to create as many model fragments as possible against a

requirement. The reason being that the next step after fragment addition (towards the

automation of requirements into formal models) is the weaving of these smaller fragments into

larger models and eventually into formal models (future work). It is expected that the more

model fragments we have the better the result of the merge will be.

11%

8%

32% 29%

20%

Model Type Distribution

Interactive

Class

usecase

activity

statemachine

26 Case study

Figure 12 Distribution of Model Fragments per requirement (Case Study)

Out of the 178 requirements only 4% requirements have 3 different model fragments created

against them. 15% of the requirements did not result in any model fragment. However a major

portion (60%) of the requirements resulted in having a single model fragment. For

requirements with 2 model fragments, the Table 3 below represents the requirement count in

the various model fragment combinations.

Table 3 Requirement count for the various Model Fragment combinations

 id cd ud ad sd

id 0 0 2 5 1

cd 0 0 0 0 0

ud 2 0 0 10 4

ad 5 0 10 0 16

sd 1 0 4 16 0

The Table 3 shows that out of the 38 requirements (with 2 model fragments), the highest

number of requirements fall in the combination ad & sd and ad & ud, with 16 and 10

60% 21%

4%
15%

Distribution of Model Fragment per
Requirement

1 Model

2 Model

3 Model

0 Model

27 Case study

requirements in each combination respectively. The other combinations i.e. (id, cd), (ud, sd),

(id, ud) and (id, sd) land 5, 4, 2 and 1 requirement respectively.

3.4.4 Frequency distribution of model fragment size

The fragment size corresponds to the number of elements in a model fragment. The different

types of model elements accounted for are actors, use cases, associations, system boundary,

extend/include relations, class, properties, life line, messages, swim lanes, decision nodes, time

constraints, objects, activities, methods, guards, states, generalization and relations. Figure 13

represents the frequency distribution of the model fragments on the basis of the fragment size.

Most of the model fragments conform to the fragment sizes between 3 and 7. The mean for the

fragments sizes of all the model fragments is 5.71 with a standard deviation of 3.71.

Figure 13 Frequency Distribution of Model Fragment size (Case Study)

3.4.5 Distinction in model types with respect to fragment size.

The previous section describes the frequency distribution of model fragments with respect to

fragment size over the entire set of model fragments. In this section the model size of the

different model fragment types will be discussed. Table 4 represents the different statistical

2
5

35
30

58

12

22

11 10

3 5
2 2 2 1 1 0

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

o

f
m

o
d

e
l f

ra
gm

e
n

ts

Fragment size

Frequency Distribution of Model
Fragment size

28 Case study

information about the different model types. From the Table 4 and Figure 14 it can be observed

that the different model fragments have not a very high variance with the exception of class

model.

Table 4 Statistical Information for the Different Model Fragment Types

Groups Count St.dev Average Variance

id 21 1.961535 5.380952381 3.847619048

cd 17 6.290165 7.235294118 39.56617647

ud 66 2.374937 4.742424242 5.64032634

ad 58 2.741759 7.517241379 7.517241379

sd 40 1.208676 4.225 1.460897436

Figure 14 Model Fragment Sizes of the Different Model Fragment Types

Let us elaborate one of the box plots shown in Figure 14. The minimum size of a model

fragment of the type ud is observed to be 1 (shown by the bottom whisker). The area of the box

corresponds to the 25th, median (black horizontal line in the middle of the box) and the 75th

percentile. The maximum size of a model fragment of the type ud is observed to be 16 (shown

29 Case study

by the top whisker). All the other model fragment types can be explained in a similar way. The

summary for Figure 14 in shown in Table 5.

Table 5 Summary Information for Figure 14

 id cd ud ad sd

Minimum 3 2 1 4 2

25th percentile 5 5 3 5 3

Median 5 5 4 7 4

75th percentile 5 7 6 9 5

Maximum 11 29 16 15 7

3.4.6 Guidelines for reinforcing natural languages

During the fragment formation, the requirements are to some extent modified to better suit a

particular set of transformation rules. It is interesting to see this push back from the model

fragments to the requirements and to observe whether the modification to a requirement

make the requirements to better fit with the guidelines.

When stating the requirements, a requirements engineer can follow a set of guidelines to help

them reduce the risks of misinterpreting the requirements. The requirements following the

guidelines do not ensure the deliverance of a better or effective product; rather it helps in

reducing the probability of delivering a bad one.

The guidelines for reinforcing the requirements expressed in natural language to be observed in

this thesis are

30 Case study

Table 6 Guidelines for Reinforcing Requirements in Natural Language

Guideline1 Use active tense only.

Guideline2 Avoid empty verbs; empty verbs function as a predicate of a clause together with
a noun, usually expressing a state or change of state.

Guideline3 Avoid incomplete verb forms; many verbs have implicit references to various
other objects. These objects can be detected by asking who, when, what, how.

Guideline4 Avoid negation wherever possible and avoid double negation completely.

Guideline5 Comparisons and all kinds of quantifications should be made complete and
precise. There should also be a consistent usage of keywords.

Guideline6 Explicitly state all branches of a condition. This commonly leads to the splitting
up of a requirement.

Guideline7 Use definite articles instead of indefinite articles. Do not let political correctness
get in your way and prefer singular, use plural only if it is essential.

Guideline8 Universal quantifiers should be used when intended.

Guideline9 Move conditions to the front.

Guideline10 Avoid complex terms and expressions to reduce complexity.

These guidelines have been used to check the quality of the requirements before and after the

model fragment creation. Each individual requirement has been accessed before and after the

model transformation, to record which of these 10 guidelines are violated by them. Before

modifying the requirements for the fragment creation, only 30% of the requirements

completely followed all the guidelines. After modifying 58% of the requirements complied with

all the guidelines of reinforcing the natural language. This can be seen in Figure 15.

31 Case study

Figure 15 Number of Requirements Violating Guidelines

0

20

40

60

80

100

120

140

160

180

200

Before fragment
trasformation

After fragment
transformation

Requirements Violating Guidelines

At least one

None

32 Case study

3.4.7 Individual guidelines assessment

In the previous section the push back of model fragment creation on the textual requirements

collectively was observed. Here in this section the individual guidelines will be accessed to

observe which guidelines are addressed by modifying the requirements.

Figure 16 Number of Requirements Violating the Individual Guidelines

The Figure 16 shows the number of requirements violating a particular guideline before and

after modifying the requirements for model fragment creation. The graph can be read as

initially 59 requirements were violating the guideline G3 and after the requirements were

modified due to the fragment creation rules 27 of the requirements were violating the

guideline G3. Guideline “R6” has been excluded as no requirement was found violating this

guideline before or after the modification. From the Figure 16 above it is visible that the

requirements violating the different guidelines vary differently before and after the translation

rules have been applied to the requirements. For example the modified requirements do not

address the guidelines G5, G7 and G8 and hence there is a very small difference in the before

and after count, whereas guidelines G1, G2, G3, G9 and G10 are shown to have a larger

difference in the before and after count.

29

4

59

1

12

5

25 26

12 11

1

27

1

11

4

22

10
4

0

10

20

30

40

50

60

70

G1 G2 G3 G4 G5 G6 G8 G9 G10

co
u

n
t

Requirements Violating Individual
Guidelines

Before model transformation

After model transformation

33 Case study

3.5 Interpretation

3.5.1 Distribution of various requirement types

The high percentage of functional requirements as compared to the quality requirements (see

Figure 10) can be contributed to the fact that the given LMS is an application system because of

which most of its requirements specified in the Specification document would reflect functional

aspects of the LMS. Also the developer of the LMS specification document might have focused

on just stating the functional requirements of the system. During the process of identifying the

type of the various requirements, the author observed that 16% of the total requirements can

be specified as having two different requirement types. For example consider the requirement

WEB1c which states;

“When a user enters the login/password in to the WebAccess, a one-time-tag is

sent to the user’s mobile phone within 10sec”.

 This requirement can be classified as both functional and performance requirement. It is

desired to have a 1-1 relation between the requirement text and requirement type, because it

forces the designer to state every requirement explicitly and not overlook otherwise trivial

requirements. Thus WEB1c can be split into two requirements WEB1’c and WEB1’d which

states;

 “When a user enters the login/password in to the WebAccess, a one-time-tag is

sent to the user’s mobile phone” and “Process WEB1’c should take less than 10

sec” respectively.

By doing so, the functional requirement is made separate from that of the performance aspect.

Under normal circumstances this is a better solution as it leads to more concrete and

unambiguous requirements. But In case of model fragment generation this is not suitable,

firstly because according to the translation rules (Appendix A) where the split functional

requirement (WEB1’c) can stand alone and generate fragment, no model fragment can be

generated against WEB1’d, which would lead to fewer fragments. One could argue that the

rules for model transformation are not correct because of which such a problem arises, but we

are assuming that these rules are the best possible model transformation rules out there. A

second reason for not splitting requirement WEB1c is that by doing so we explicitly state that

WEB1’d is dependent on WEB1’c. Dependency has not been dealt with in the transformation

rules. And the requirements are tried to make as independent of each other as possible.

34 Case study

3.5.2 Distribution of various model fragments

The distribution of the different model fragment types (see Figure 11) are mapped with the

findings of Dobing and Parsons (2006) which can be viewed in below.

Figure 17 LMS case study results with Dobing & Parsons results, Source (Dobing & Parsons, 2006)

The Figure 17 above maps the usage percentage of the various model types collected by 182

respondents by Dobing and Parsons (2006) and the percentage of the various model types

generated by the author for LMS. From the Figure 17 a visible difference is observed in class

and interaction (sequence) models. This can be contributed to the fact that a major portion of

the LMS requirements represents the behavior aspect of the system. The static relationship

between the various concepts of the system was not represented in great detail. Thus the

percentage of class diagram is less. For requirements generating 2 model fragments the highest

requirement count was found for ad&sd and ad&ud combinations (see Table 3). Use case

models describe the functional requirements of a system whereas an activity diagram is often

used to elaborate a use case. Thus an activity diagram often is associated with a use case

diagram. A similar result is viewed from Table 3 which depicts the highest requirement count

for activity and use case combination. Both activity and state machine models depict the

behavioral aspects of a system. It is observed that no requirement generate model fragments in

the combination of class diagram with any of the other models (id, ad, sd or ud). This indicates

that either the requirements worked upon does not include such a requirement or that the

static structure models cannot be created with behavioral models.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Various Model Types

Dobing and Parsons results

LMS case study results

35 Case study

3.5.3 Relationship between model fragment type and requirement type

It is interesting to see whether there exists a relation between the model fragment type and

requirement type. To find out if the model type and requirement type are dependent on each

other, a chi square test is performed. The chi test considers the expected and observed counts

and has the following formula

 ∑
()

Where O is the observed count and E is the expected count. The hypothesis for the chi square

test can be defined as

Figure 10 shows the different requirements types the LMS requirements can be classified into.

But instead of having all the different types, only two broad classifications of the requirements

will be considered namely functional and quality requirements. The reason for merging the

requirement types into these two main categories is that there would otherwise be too few

observations (low counts) for the test to be reliable (it is an approximate test and X2 is only

properly chi-square distributed if most of the expected counts (E in the formula above) are not

too low (one rule of thumb is: no more than 20% less than 5). This will make the calculations

easier and also will not neglect the ones with low values. Thus the count of the various model

fragment types against the functional and quality requirements have been observed and makes

up for our observed count that can be seen in Table 7.

Table 7 Observed Count of the Different Model Diagrams against Functional and Quality Requirements

Observed count id cd ud ad sd

Functional 16 17 62 57 40

Quality 15 2 14 13 10

The expected count for the given observed data has been calculated and shown in Table 8.

36 Case study

Table 8 Expected Count of the Different Model Diagrams against Functional and Quality Requirements

Expected Values id cd ud ad sd

Functional 24.19512 14.82927 59.31707 54.63415 39.02439024

Quality 6.804878 4.170732 16.68293 15.36585 10.97560976

With the above observed and expected count and α=0.05, the p-value for the chi-square test

turned out to be 0.00426. As the chi (p-value) < α, hence the can be rejected, implying that

there exists a relationship between the model fragment type and requirement type.

Table 9 Percentage Deviation Values between the Expected and Observed values

Percentage Deviation id cd ud ad sd

Functional -34% 15% 5% 4% 3%

Quality 120% -52% -16% -15% -9%

The percentage deviation between the observed and expected count gives us an idea about this

relationship. Table 9 represents the percentage deviation of the observed and expected values

for the various model types and requirement types. According to this table the probability of

having cd, ud, ad and sd against functional requirement is higher than that of having interaction

diagrams against functional requirements. But interaction diagrams shows to have the highest

probability against quality requirements compared to the other models. From these findings we

can formulate the following research question

Q1: “Which type of model fragment is created against which requirement type?”

3.5.4 Requirements with no model fragments

From Figure 12 it is noted that 60% of the requirements have 1 model fragment, 21% have 2

model fragments and only 4% of the requirements have 3 model fragments. The remaining 15%

do not have any type of model fragments at all. It will be interesting to know which types of

requirements do not create model fragments and whether a requirement of a particular type

will never have model fragments against it. On closer inspection it is found that 22% of the

37 Case study

requirements with no model fragment were security requirements. Example of a security

requirement with no model fragments is given below.

“All passwords must be strong.”

This requirement explains that the passwords used for logins/authentications should be strong,

so as to prevent reader’s profile from being misused. Such a requirement cannot generate

model fragments according to any of the transformation rules stated in the Appendix A. 22% of

the requirements with no model fragments were that of usability requirements. An example of

which is given below

“All functions of the LMS-GUI shall be accessible by keyboard.”

This infers that not all types of requirements can have model fragment against them. However

this does not mean that requirements of a particular type can never have model fragments

against it. This can be justified by considering another security requirement from the LMS.

Requirement ID Text + Model Fragment

AMDS3 Users of the AMDS must document consent in order to
access the AMDS

38 Case study

The above given example talks about no unauthorized personal accessing the AMDS, hence

relates to the security of the system. Where the first security requirement (“All passwords must

be strong”) did not result in any model fragment it can be seen that this second example

(“Users of the AMDS must document consent in order to access the AMDS”) has not a single but

two different types of model fragments created against it. It might also be possible that the

transformation rules for creating model fragments against requirements are not as effective as

we thought.

3.5.5 Model fragment size

From the frequency distribution graph of model fragment size (see Figure 13), it can be seen

that 78% of the model fragments conform to fragment sizes between 3 and 7, which indicates

that usually the fragment sizes are small. An anova test is performed on the fragment sizes of

the different types of model fragments with the null hypothesis: “there is no difference in the

average fragment sizes amongst the different model fragment types.” With α= 0.05, the p-

value for the anova test turned out to be 9.24413E-09, which suggest that the null hypothesis

can be rejected.

The variance for the different types of model fragments (see Table 4) does not show large

difference with the exception of class diagrams. This can be explained by considering the

outliers for the set of data points of the various model fragments. An outlier is a data point that

lies below Q1-(1.5*IQR) or above Q3 + (1.5*IQR) where Q1 and Q3 are the first and third quartile

respectively and IQR is the inter quartile range. In addition to this the extreme outlier values

have also been calculated. All this information is represented in a modified version of Figure 14,

such that the outliers for the various model types are illustrated by a black dot and the extreme

outliers by a red dot.

39 Case study

Figure 18 Box plot illustrating the Fragment Sizes of the Various Model Diagrams with their Outliers

By ignoring the outliers, the variance for the different model fragment types is calculated to be

not so large. This is represented in Table 10. From these findings another research question can

be formulated

Q2: Does a particular model diagram always create model fragments in a specific size range?

Table 10 Variance values for the Different Model Types (excluding the outliers)

Model Fragment Type Variance

Interaction 3.847619

Class 1.917582

Use case 3.717788

Activity 7.324675

State machine 1.330159

3.5.6 Push back of model creation

One of the research questions RQ3 stated in section 3.1was “what is the push back of model

fragment creation on the requirements?”. It has already been stated in section 3.4.6 that during

the model fragment creation some of the requirements were modified so as to better fit the

transformation rules. The requirements have been checked (before and after modification)

40 Case study

against 10 guidelines used for reinforcing the requirements in natural language. The LMS case

study has 178 requirements in total, 85 out of which have been modified to better suit the

fragment formulation rules. And due to this modification a 47% decrease in requirements

violating the guidelines is seen (see Figure 19). This means that the model fragment creation

rules pushes the requirements to better fit with guidelines.

Figure 19 Variation in Reinforced Natural Language Requirements

An example from the LMS case study can be considered to demonstrate how the requirement is

modified so that it better fits with a guideline. Let us consider requirement CDAT6 which states

that “The catalog may be updated by a librarian manually.” According to the transformation

rules, such a requirement would result in the generation of use case model. It was found with a

slight modification this requirement could better fit with the rules of use case model fragment.

Hence the requirement CDAT6 was modified to “A librarian can manually update the catalog.”

It can be seen that the initial requirement (The catalog may be updated by a librarian manually)

violates Guideline 1, which states that the requirements should be in active tense rather than

passive. But the modified text i.e. a librarian can manually update the catalog, does not violate

this rule. This however does not imply that all the requirements violating Guideline 1 will

always be corrected. Let us consider another requirement LCP8 which says “Librarians may

manually modify the state of a lease, prolongation, or reservation.” This requirement will result

in the generation of a use case fragment without modifying the original text. However it is seen

that this requirement violates Guideline 8. According to this guideline universal quantifiers

should be explicitly stated when intended. But the model fragment rules do not enforce such a

change and hence the requirement text remains the same, with Guideline 8 still being violated.

0

20

40

60

80

100

120

140

160

180

200

Before fragment transformation After fragment transformation

o

f
gu

id
e

lin
e

s
vi

o
la

te
d

 f
o

r
al

l t
h

e

re
q

u
ir

e
m

e
n

ts

Variation in reinforced natural language

decrease of 47 %

41 Case study

The percentage change for each of the individual guideline before and after model fragment

creation is shown in the Table 11 below. The negative value of the percentage change indicates

a decrease in violating guidelines, thus implying an improvement in the requirements.

Table 11 Percentage Change for the Individual Guidelines

 Guidelines %change

Guideline1 Use Active tense -62%

Guideline2 Avoid empty words -75%

Guideline3 Avoid incomplete verb forms -54%

Guideline4 Avoid negation & double negation 0%

Guideline5 Explicitly state all branches of a condition -8%

Guideline7 Use definite articles -20%

Guideline8 Specify Universal quantifiers -12%

Guideline9 Move conditions to the front -62%

Guideline10 Avoid complex terms -67%

The push back of model creation is not only the modification of the textual requirements but it

also helps in recognition of the missing trivial requirements. Usually during the requirements

gathering phase, the client or the requirement engineer overlooks the trivial requirements and

do not include them in the system specification document. This neglect may happen on behalf

of either of the parties. These requirements can be trivial but that does not make them any less

significant compared to other ones and should therefore be explicitly stated in the specification

document of the developing system. The model fragments can help in identifying these trivial

requirements. For example the model fragment for a requirement (RAC10) “a reader can sign

in, update, reserve medium, prolong medium from a reader account” will look something like

42 Experiment

Figure 20 Use case Model Fragment for Requirement RAC10

This model fragment indicates that a reader can sign in to a reader account, update his/her

account and send a request for a medium or prolong the lease of a medium. An obvious activity

of the reader should be to sign out from the account. This activity is not mentioned in the

textual requirement and can be overlooked, but creating the model fragment helps in

identifying this otherwise obvious activity and hence leading to the addition of a new

requirement stating “the reader should be able to sign out of the reader account at any given

time”.

43 Experiment

Chapter 4 Experiment

4.1 Experiment Goal & Hypothesis

The goal for conducting an experiment is to basically confirm that the transformation rules to

create model fragments are understandable, applicable and simple for other students to use.

This can formally be expressed by using a Goal Question Metric (Koziolek, 2008) format.

According to which the goal of the experiment can be stated as

Table 12 Goal of the Experiment by Using Goal Question Metric Approach

Purpose To validate

Issue The transformation rules

Object Of requirement specified in natural language
to model fragments

Viewpoint From researcher viewpoint.

In addition to validating the transformation rules, other empirical insights will also be gathered

from the experiment. One research question to answer is

RQ4: Does model fragment size contribute to the effort put in creating a model fragment?

4.2 Methods and Materials

40 students from the 02264 “Requirements Engineering” course taught at DTU Lyngby

participated in the experiment. The experiment was conducted at the end of the term and no

incentive was given to the students. The students were also informed that their participation in

this experiment will have no effect on their final grade. 3 students were female while the

remaining 37 students were male. 90% of the participants were up to 30 years of age, 8%

students were in the range of 31 to 50 and 1% above the age of 51.

All the participants were asked to rate their different capabilities and skills at the beginning of

the experiment from a scale of 0 to 4 (0 being very low and 4 being very high). According to

44 Experiment

which the average skill level of the participants in English, Requirements Engineering, Unified

Modeling Language (UML), practical modeling and computer programming turned out to 3.15,

2.57, 2.39, 2.17 and 2.72 respectively.

The questionnaires included of a textual requirement, blank space (where the students were to

add model fragments), two subjective questions and a space to record the time after

completing the task (Appendix B) .There were two different types of questionnaires. The layout,

basic format and level of the requirements were similar however the content varied. One set of

questionnaires had requirements 1-8 and the other set had requirements 9-15 (Appendix B).

Half of the students were given the questionnaire with requirements 1-8 in it while the other

half were given the questionnaire with requirements 9-15. The distribution of the questionnaire

amongst the students was done randomly.

For this experiment each student was provided with an instruction set, stating the rules for

creating model fragments from textual requirements. Each student was also provided with a

questionnaire stating the requirements against which model fragments were to be created. No

electronic device (i.e. computers, tablets or scientific calculators) were required for the

experiment. A pen/pencil and open mind on behalf of the students was required.

Before starting the experiment the participants were informed about why the experiment was

being conducted and advised to read the instruction sheet carefully as it included crucial

information about how to apply the various rules. They were also asked to sign a consent form

to allow the researchers to use the findings from the experiment for academic purpose. The

students were asked to create model fragments for as many of the requirements as possible

with no time limit, but the participants were requested to note down the time in the

questionnaire after creating a model fragment for a requirement, before moving on to the next

requirement. Not all the participants were able to complete the entire questionnaire, others

opted to skip some of the requirements maybe because they found those requirements difficult

or confusing. Therefor the requirements against which model fragments were created by the

participants are only considered during data analysis. The quantitative data of the experiment

was then transcribed by the author into Microsoft Excel.

45 Experiment

4.3 Observation

This section includes the observations and results found after conducting the experiment. The

various data analysis and illustrations presented in the coming sections are done using

Microsoft Excel.

4.3.1 Distribution of model fragment type

Rules for creating model fragments of the type activity, class, interaction, state machine and

use case models were given to the participants. Thus the participants were restricted to create

model fragment of the above mentioned types. The distribution of the different type of model

fragments can be viewed in Figure 21. From the distribution chart it can be seen that activity

model fragments has the highest count with a percentage of 34% followed by interaction

diagrams with a percentage of 22%. Use case, State machine and Class model fragments are

found to be in the percentage 20%, 16% and 8% respectively.

Figure 21 Model Type Distribution (Experiment)

4.3.2 Number of Model Fragments per Requirement

The model fragment generated per requirement is interesting to observe and it can be seen

from Figure 22 that 96% of the requirements have only 1 model fragment associated to it. 4%

22%

8%

20%

34%

16%

Model Type Distribution

Interaction

Class

Usecase

Activity

Statemachine

46 Experiment

of the requirements results in the creation of 2 different types of model fragments. No

participant generated more than 2 model fragments for a single requirement.

Figure 22 Distribution of Model Fragments per requirement (Experiment)

4.3.3 Model diagrams created against the different requirements

Figure 23 Distribution of the Model Type against the Various Requirements

96%

4%

Distribution of Model Fragment per
Requirement

1 Model Fragment

2 Model Fragments

0

2

4

6

8

10

12

14

16

18

20

o

f
P

ar
ti

ci
p

an
ts

Distribution of the Model Fragment Type
to the various Requirements

ad

cd

id

sd

ud

47 Experiment

The Figure 23 represents the distribution of different type of model fragments the participants

were able to create against each requirement given in the questionnaire. It should be

remembered that a single participant did not create these model fragments against a

requirement rather multiple participants worked on the same requirement (independently). For

one out of the fifteen requirements (req10) the participants have created all the five types of

model diagrams. For four out of fifteen requirements (req1, req5, req9, req12) the participants

were able to create four different types of model diagrams. Four out of fifteen requirements

(req4, req11, req13 and req14) the participants were able to create three types of model

diagrams. Five requirements (req2, req3, req7, req8 and req15) have two different model

diagrams created against them. Req6 is the only requirement with a single type of model

diagram created against it by the participants.

4.3.4 Model Fragment Size of the different model diagrams

The fragment size corresponds to the number of elements in a model fragment. The fragment

size for all the model fragments created by the participants has been manually calculated by

the author. The mean model fragment size is 8.7 with a standard deviation of 4.22. Table 13

represents the statistical information for the fragments sizes of the different model diagrams. It

can be seen from this table that the variances between the various model diagrams vary

slightly. Activity and class diagrams depict the highest variance Figure 24

Table 13 Various Statistical Information for the Different Model Diagrams

Groups Count Sum Average Variance

Interaction 51 278 5.450980392 1.09254902

Class 20 176 8.8 13.11578947

Use case 47 339 7.212765957 6.997224792

Activity 81 1022 12.61728395 15.16419753

State machine 36 229 6.361111111 7.723015873

From Table 14 it can be seen that the 75th and median values of class and State machine is the

same, thus the box plot (Figure 24) only visualizes the median by the horizontal black line. For

interaction diagrams the 25th percentile and median has the same values. This is also illustrated

in the box plot (Figure 24) as a horizontal black line. The right most box plot labeled “Average”

represents the average of the different values (minimum, 25th percentile, median, 75th

percentile and maximum) for all the different model diagrams.

48 Experiment

Table 14 Summary Table for Figure 24

 Interaction Class Use case Activity State Machine Average

Minimum 4 5 3 5 3 4

25th Percentile 5 6.75 5 10 4.75 6.3

Median 5 9 6 12 7 7.8

75th Percentile 6 9 8.5 15 7 9.1

Maximum 9 22 16 27 16 18

Figure 24 Model Fragment Size for the Different Model Fragment Types (Experiment)

4.3.5 Difficulty level of the different model diagrams

The questionnaire included two questions that were to be answered by the participants; one of

the questions was how difficult they found the process of creating that model fragment. They

were asked to rate the effort put in creating a model fragment on a scale of 0-4 (0 being easy

and 4 being very difficult). With the help of that data, the author has made use of box plot to

visualize the effort put in creating the different model fragments according to the participants.

49 Experiment

The Table 16 represents a summary of the box plot shown in Figure 25. The variance and other

statistical information for the different model diagrams are shown in Table 15 which depicts a

low difference in variance.

Table 15 Statistical Information of the Perceived Effort for the Different Model Diagrams

Groups Count Sum Average Variance

id 50 83 1.656 0.61924898

cd 20 30 1.485 0.676078947

ud 47 76 1.610638298 0.720101758

ad 81 166 2.043209877 0.594234568

sd 35 73 2.071428571 0.537394958

The area of a box plot not only corresponds to the 25th percentile, median and 75th percentile

for the difficulty level of a model diagram, but also depicts the number/count of data points for

that model diagram.

Figure 25 Difficulty Level for the Different Model Fragments (Experiment)

50 Experiment

Table 16 Summary Table for Figure 25

 Interaction Class Use case Activity State machine Average

minimum 0 0 0 0 0 0

25th percentile 1 1 1 1.5 1.7 1.24

median 1.7 1.2 1.5 2 2 1.68

75th percentile 2 2.125 2 2.5 2.5 2.225

maximum 3.3 3 4 4 3.5 3.56

51 Experiment

4.4 Interpretation

4.4.1 Distribution of model fragment type

The high percentage of activity, use case and interaction model fragments suggest one of the

two things. Either the transformation rules for these model diagrams are easier to apply or the

participants of the experiment are more familiar with these types of model diagrams. Both of

these propositions are possible, but given that all the participants of the experiment were

students of the course “Requirements Engineering” and had worked with such models

throughout the semester, it would be justifiable to accept the latter proposition. The author

selected all the requirements to be worked on in the experiment keeping in mind the different

model fragments it would generate. Even though the distribution of the model diagrams is not

exactly equal it is close to what the author had expected.

Figure 26 Percentage Distribution of Model Diagrams for Proposed Solution with Percentage Distribution of Model Diagrams
for Experiment results

As seen from Figure 22 the participants were only able to create at most 2 model fragments for

a single requirement. Also the ration of a single model fragment to two model fragments

against a requirement is very high (25:1). The percentage of 2 fragments per requirements is

very small almost negligible. This suggests that the students were not able to use the

transformation rules correctly. But if we consider the information shown in Figure 23 it depicts

that for 53% of the requirements at least three different model diagrams can be created against

0%
5%

10%
15%
20%
25%
30%
35%
40%

P
e

rc
e

n
ta

ge

Model Diagrams

Percentage Distribution of Different
Model Diagrams

Experiment

Proposed Solution

52 Experiment

them. This implies that the fragment creation rules for the different model diagrams are

applicable to a single requirement and there must be another reason as to why a single student

was not able to create more fragments. One possible explanation as to why 96% of the students

created only a single fragment per requirement could be that the students had not read the

instruction set carefully and were not aware to create as many fragments as possible for a

requirement. Another reason could be that the layout of the questionnaire did not allow for

more than one fragment to be drawn against a requirement. The questionnaire for the

experiment can be found in Appendix B from where it can be seen that a single empty box is

given under a requirement. If the questionnaire had multiple empty boxes under a single

requirement, it might have been clearer for the students as to what needs to be done. The third

reason could be that the students did not care to perform well and created a single fragment

thinking it was enough.

How close were the participant’s answers to the solutions?

The author created model fragments for the requirements given in the experiment which will

be considered as the correct/proposed solutions. The list of the different type of model

fragments created by the author against a requirement can be seen in Table 17. According to

this table a requirement can at max have 4 different types of model fragments associated to it

and at minimum 1 model fragment.

Table 17 Solution Proposed by the Author

Requirement ID Fragment Type 1 Fragment Type 2 Fragment Type 3 Fragment Type 4

req1 sd ad

req2 ud sd id ad

req3 ud

req4 sd ad

req5 sd cd

req6 ud

req7 sd ad

req8 sd id ad

53 Experiment

req9 ud

req10 ud sd ad

req11 sd ad

req12 ud ad

req13 cd

req14 ud sd ad

req15 id ad

Now with the proposed solution given, the work of the participants can be evaluated to see

how correct they were in creating the right type of model fragment. This will give an idea about

how effectively the participants were able to apply the fragment creation rules. For this

purpose a correctness score is given to the participants against the individual requirements

they have worked on. The correctness score checks the model type of a fragment (created by

the participant) against the model type(s) of the proposed solution for a given requirement.

 The participant is given a correctness score of 0 if none of the participants’ model type

matches the model type in the proposed solution. If n number of fragments matches, then the

correctness score will be n/k where n is the number of matched model fragments by the

participant and k is the total number model fragments in the proposed solution. The

correctness score will be 1 if the model fragment of the participant and proposed solution is

exactly the same both in type and number. For example let us consider the req8 from Table 17.

The proposed solution has 3 model fragments of type sd, id and ad (k=3). For the same

requirement let us say Participant 1 creates a model fragment of type cd. This would result in a

correctness score of 0. Participant 2 creates fragments sd and id. As both the model fragments

created by Participant 2 are matched with the proposed solution model diagrams, thus the

participant will get a correctness score of 2/3=0.67 against req8. Participant 3 creates three

model fragments of the type sd, id and ad and hence will have a correctness score of 1. A

complete table for the values of correctness score for the participants can be found in Appendix

C.

The distribution of the participants on the basis of correctness score recorded is depicted in

Figure 27. If we assume correctness score of 0.5 as the threshold value then participants with

54 Experiment

correctness score of greater than or equal to 0.5 can be gathered into one group and

participants with correctness score less than 0.5 into another group. According to this grouping

56% of the participants have been successful in effectively understanding and applying the

transformation rules while 44% of the participants have not been quite successful. Such a small

difference in percentages suggests that the transformation rules are not as effective as

anticipated.

Figure 27 Distribution of Participants on the Basis of Correctness Score

4.4.2 Relation between effort and size of model fragments

A regression analysis can be used to present the relationship between a dependent and an

independent variable. In this section the effort executed by the students in creating a model

fragment is considered to be the dependent variable whereas the fragment size is the

independent variable. This will assist the author in drawing some conclusions for the research

question QR2: Does model fragment size contribute to the effort put in creating a model

fragment?

A simple linear regression equation is , in which Y is the dependent variable, and x

represents the independent variable. The author has modified this equation to better explain

her work. The equation for linear regression becomes

16%

21%

41%

22%

Participants Distribution on the basis of
Correctness score

Exactly similar

Completely different

Correctness score >= 0.5

Correctness score < 0.5

55 Experiment

 ()

Equation 1 Linear regression equation

Where α represents the intercept value, β is the model size co-efficient and ()

represents the co-efficient for model type. This latter co-efficient has been introduced so as to

represent the different model types (which are class, interaction, activity, use case and state

machine). For each model diagram, the effort is calculated twice (once for the minimum value

of fragment size and then for the maximum value of fragment size) according to Equation 1.

These values are represented in Table 18 for all the model diagrams.

Table 18 The values of Effort against the Minimum and Maximum Fragment Size for the Different Model Diagrams

 Fragment size Activity Class Interaction State machine Use case

Min 5 1.95

Max 27 2.21

Min 5 1.44

Max 22 1.64

Min 4 1.64

Max 9 1.70

Min 3 2.05

Max 16 2.20

Min 3 1.56

Max 16 1.71

56 Experiment

Figure 28 Relationship between the Effort in Creating a Model Fragment against the Size of a Model Fragment (for all the
model diagrams)

In Figure 28 the fragment size values are shown on the x-axis. The effort is represented on the

y-axis. The length of a line corresponds to the difference between maximum and minimum

fragment sizes for a model diagram. The author expected to see an increase in the effort as the

model size increased. But according to Figure 28 none of the model diagrams depict an increase

in effort as the model size increased. It appears as if the effort does not depend on the

fragment size rather the model type. According to the figure the participants found state

machine models to be the most difficult model diagram to create as compared to the others.

The class model fragments turned out to be the easiest to create for the participants.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 5 10 15 20 25 30

Ef
fo

rt

Fragment size

The relation of Effort with Size of a Model
Fragment

Activity

Class

Interaction

State machine

Use case

57 Discussion

4.5 Threats to Validity

Three case studies representing different software systems are chosen to collect requirements

to be used in the questionnaires of the experiment. Two sets of questionnaires are made in

which the textual requirements are of equal quantity and at the same abstraction level. The

two sets of questionnaires have been randomly distributed amongst the 40 students. Students

are used as subjects for the experiment. Most of them are master students except for 5

students which are at bachelor level, but with a good knowledge of requirements engineering

concepts. Using students as subjects is acceptable as the experiment was designed for

academic students and not working professionals. According to Kitchenham et al. (2002)

“Using students as subjects is not a major issue as long as you are interested in

evaluating the use of a technique by novice or non-expert software engineers.

Students are the next generation of software professionals so, are relatively close

to the population of interest.”

The experiment to validate the transformation rules has been conducted once, thus

does not have a rich history for data comparisons. The effort level specified by the

students is subjective to individual students.

58 Discussion

Chapter 5 Discussion

5.1 Deriving model fragments from requirements

In this section the individual observations and results from the case study or experiment are not

discussed rather the general impact of model fragment creation in translation of requirements

to formal models is described. The idea behind this thesis was to explore the possibility of

transforming textual requirements into formal models by adding model fragments. A set of

rules for creating model fragments from requirements in natural language has been proposed.

At present these transformation rules appear to work well for creating model fragments, but

expanding these transformation rules might increase the quantity of model fragments against

requirements.

The transformation rules proposed in this thesis considers both static and dynamic aspects of a

system creating both structure and behavioral model diagrams (fragments), whereas most of

the previous related work ((Moreno & van de Riet, 1997), (Overmyer, Lavoie, & Rambow,

2001), (Gelhausen & Tichy, 2007)) deals with the transformation of requirements into class

models. Another conclusion to be drawn from this thesis is that the textual requirements are

not restricted to any framework for transformation in contrast to some of the previous related

work ((Kealey & Amyot, 2006), (Fatwanto A. , 2012)). The proposed method of transformation

(textual requirements to formal models by adding model fragments) is exploited on a case

study to determine if it is applicable on a large set of requirements. Figure 12 and Figure 22

show that majority of the requirements generates at least one model fragments, suggesting

that the transformation rules (to create model fragments from requirements) are applicable on

a large set of requirements. According to the author the transformation rules are simple and

easy to use, but the process of manual fragment creation is time consuming. Thus the

automation of this method can be suggested as future work. The notion of the type of model

fragment to be created against a requirement type was inspected. It was observed that a

dependency relation does exist between model type and requirement type. This observation

leads to a research question (“Which type of model fragment is created against which

requirement type?”) which can be interesting to work on in the future. One of the results from

the case study showed that the different model diagrams depict variation in fragment sizes

which lead the author to the formulation of another research question “Does a particular

model diagram always create model fragments in a specific size range?”

59 Discussion

Not all the requirements in the case study generate model fragments suggesting there are

some short comings to the transformation rules. The size of the model fragments turned out to

be relatively small, which was expected because the transformation rules considers

transforming the requirements into model fragments with a few basic model elements. The

small fragment size of the models was also observed for the model fragments created by the

students in the experiment. These small model fragments are woven together through

fragment weaving iteratively to obtain larger fragments which ultimately generate formal

models.

5.2 Tracing from models to requirements

Model fragments not only support the forward generation of formal models from requirements

but also supports the backward tracing from models to textual requirements. It is important to

have requirements validated by the clients before starting the development of the system. The

large complex UML diagrams are hard to understand by clients not familiar with these models

and notations. Thus small pieces of model fragments will assist the requirement engineer to

validate requirements from the clients by visually tracing a requirement from the UML model

through the smaller pieces of model fragments to the original requirement text.

The process of creating model fragments sometimes results in the modification of the original

requirement text. This modification does not change the scope of a requirement rather it

changes the structure of the text. Such a modification also pushes the designer to add

information to the text which might otherwise have been neglected. The requirements are

modified so that the transformation rules can easily be applied to the requirement. As a result

of which the requirements better fit with the guidelines of reinforcing natural language. Figure

15 show that 70% of the original requirements violate at least one of the guidelines. After

modifying the requirements (during fragment creation) 42% violates at least one of the

guidelines, which indicates an improvement in the quality of the textual requirements.

An unexpected result observed during the process of creating model fragments for the LMS

case study was the addition of new requirements as a result of model fragment creation. The

visual representation of a requirement assists the designer in identifying missing activities

which could otherwise have been overlooked if the requirements were only in textual form.

These missing requirements are often the trivial requirements, but nevertheless crucial for the

development of a good system.

60 Conclusion

Chapter 6 Conclusion

The purpose of this thesis is to exploit whether model fragments can be used as an

intermediate step in transforming textual requirements to formal models. The thesis briefly

discusses how model fragments can be woven together to obtain formal models. This approach

helps in bridging the communication gap between clients and Requirement Engineers and also

supports forward and backward traceability.

For the purpose of creating model fragments from textual requirements, transformation rules

are formalized and included in this thesis. A case study is selected to see whether or not model

fragments can be created against a large set of requirements. From the case study it was

observed that the transformation rules are easy and simple to use. Also model fragments can

be created for a large set of requirements, but the manual process of model creation is a very

time consuming process. Various empirical analyses are done on the model fragments to obtain

some insights. The first insight obtained was that there is not an even distribution of the various

model diagrams for a given set of requirements. Secondly the relationship between the

requirement type and model type was considered which led to the formulation of a research

question (Q1: “Does the requirement type determine the type of model fragment to be created

against it?”). Thirdly it was observed that on average the size (number of model elements) of

the fragments was small and most of the model fragments lied in the range of 3-15 model

elements.

The push back of the model fragments creation on the textural requirements was also observed

for the case study. It is interesting to see that some of the original requirements are modified

during the process of fragment creation. It was noted that after modifying the requirements (to

better fit the transformation rules) the textual requirements better fit with the guidelines of

reinforced natural language. The creation of model fragments also resulted in identifying some

of the trivial requirements that otherwise might have been neglected by the clients or

requirement engineer.

To validate the transformation rules an experiment was conducted on 40 students of the course

02264 “Requirements Engineering” at DTU Lyngby. The correctness score recorded for the

individual requirements showed that 55% of the participants were able to create the correct

model type fragment. This indicates that there is room for improving and expanding the

61 Conclusion

transformation rules. It was observed that according to the participants the effort put in

creating a model fragment did not depend on the fragment size rather it depends on the model

diagram.

6.1 Future Work and Limitations

In the previous section the major results and observations inferred from this thesis was

described. This section comprises of the various limitations this study has and proposes some

recommendation that can be done as future work. At present the process of creating model

fragments from textual requirements is done manually. Even though the author worked on a

single case study for this thesis, the process of model creation was a very time consuming one.

Hence as future work, the development of a tool to automate this process is suggested. Instead

of having a single case study to draw conclusions from, having more case studies would help in

comparing results to draw conclusions.

The experiment was conducted on students of Requirements Engineering, but the same

experiment can be performed on Professionals or Academic Scholars/Researchers of the

Software Engineering field to see whether the results deviate or not. For future experiments to

be performed, the layout of the questionnaire can be modified so as to encourage the subjects

to create more than one model fragment.

62 Bibliography

Chapter 7 Bibliography

A Guide to the Project Management Body of Knowledge. (2008). Pennsylvania: Project

Management Institute, Inc.

(2013). S2 Analysis Project Sample [LMS 3.1]. Lyngby.

Al-Rawas, A., & Easterbrook, S. (1996). Communication Problems In Requirements Engineering:

A Field Study. London: Proceedings of the First Westminister Conference on Professional

Awareness in Software Engineering, Royal Society.

Arlow, J., & Neustadt, I. (2004). Enterprise Patterns and MDA: Building Better Software with

Archetype Patterns and UML. Boston: The Addison-Wesley Object Technology Series.

Balzar, R., Goldman, N., & Wile, D. (1978). Informality in Program Specification. IEEE Trans. On

software Engineering, vol. 4, no. 2.

Cockburn, A. (2000). Writing Effective Use Cases. USA: Addison-Wesley Professional.

Cysneiros, L. M., & do Praito Leite, J. S. (2004). Non-Functional REquirements: From Elicitation

to Conceptual Models. IEEE Trans. On Software Engineering , vol. 30, no. 5, 328-350.

Davis, A. M. (2005). Just Enough Requirements Management: Where Software Development

Meets Marketing. New York: Dorset House Publishing.

Dobing, B., & Parsons, J. (2006). How UML is Used. Communication of the ACM, 109-113.

Ergorov, A., Hansen, K., Pol, A., Sukosd, A., Shan, L., & Kalmus, J.-L. (2012). Sjællands Banken

Customer Kiosk: System Analysis Document. Lyngby.

Fatwanto, A. (2011). A Concern-Aware Requirements Engineering Framework.Ph.D Thesis.

Canberra: The Australian NAtional University.

Fatwanto, A. (2012). Software Requirements Translation from Natural Language to Object-

Oriented Model. Control Systems & Industrial Informatics, 191-195.

63 Bibliography

Fowler, M. (2003). UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison Wesley.

Gelhausen, T., & Tichy, W. F. (2007). Thematic Role Based Generation of UML Models from

RealWorld. International Conference on Semantic Computing, 282-289.

Gotel, O., & Finkelstein, A. (1994). An Analysis of the Requirements Traceability Problem. Proc.

of First International Conference on Requirements Engineering, 94-101.

Haramain, H., & Gaizauskas, R. (2000). CM-Builder: An Automated NL-Based Case Tool.

Proceeding of the 15th International Conference on Automated Software Engineering,

IEEE Computer Society, 45-53.

Hasegawa, R., Kitamura, M., Kaiya, H., & Saeki, M. (2009). Extracting Conceptual Graphs from

Japanese Documents for Software Requirements Modeling. Asia-Pacific Conference on

Conceptual Modelling (APCCM). Australian Computer Society, 87-96.

Kealey, J., & Amyot, D. (2006). Towards the Automated Conversion of Natural-Language use

Cases to Graphical use Case Maps. Canadian Conference on Electrical and Computer

Engineering, 2377-2380.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., Emam, K. E., et al.

(2002). Preliminary Guidelines for Empirical Research in Software Engineering. IEEE

Trans. Softw. Eng., 721-734.

körner, S. J., & Brumm, T. (2010). Natural Language Specification Improvement with Ontologies.

International Journal of Semantic Computing (IJSC), 445-470.

Koziolek, H. (2008). Goal, Question, Metric. Lecture Notes in Computer Science, 39-42.

Kragelund, J. (2012). Advanced Tool Support for Requirements Engineering. Lyngby.

Kroha, P. (2000). Database and Expert Systems Applications. Berlin: Springer.

Landhäußer, M., körner, S. J., & Tichy, W. F. (2014). From Requirements to UML Models and

Back: How Automatic Processing of Text can Support Requirements Engineering.

Software Qual J, 121-149.

64 Bibliography

Lange, C. F., Chaudron, M. R., & Muskens, J. (2006). In Practice: UML Software Architecture and

Design Description. IEEE Computer Society, 40-46.

Miriala, K., & Harandi, M. T. (1991). Automatic Derivation of Formal Specification from Informal

Description. IEEE Trans. On software Engineering, vol. 17, no. 10.

Montes, A., Pacheco, H., Estrada, H., & Pastor, O. (2008). Conceptual Model Generation from

Requirements Model: A Natural Language Processing Approach. Preceeding of the 13th

International Conference on Application of Natural Language to Information Systems,

Lecture Notes in Computer Science, 325-326.

Montes, A., Pacheco, H., Estrada, H., & Pastor, O. (2008). Conceptual Model Generation from

Requirements Model: A Natural Language Processing Approach. Preceeding of the 13th

International Conference on Application of Natural Language to Information Systems,

Lecture Notes in Computer Science, 325-326.

Moreno, A. M., & van de Riet, R. P. (1997). Justification of the equivalence between linguistic

and conceptual patterns for the object model.

Overmyer, S. P., Lavoie, B., & Rambow, O. (2001). Conceptual Modeling through Linguistic

Analysis Using LIDA. Proceedings of the 23rd International Conference on Software

Engineering, 401-410.

Pedersen, J., Ali, S., Ellavarason, E., & Haamann, M. (2012). Mobile Match Maker System:

System Analysis Document. Lyngby.

Ramesh, B., & Jarke, M. (2001). Toward Reference Models for Requirements Traceability. IEEE

Transactions on Software Engineering, 58-93.

Reubenstein, H. B., & Waters, R. C. (1991). The Requirements Apprentice: Automatic Assistance

for Requirements Acquisition. IEEE Trans. On software Engineering, vol. 17, no. 3.

Siikarla, M., Peltonen, J., & Koskinen, J. (2006). Towards Unambiguous Model Fragments. Nordic

Jounal of Computing.

Störrle, H. (2011). Library Managment System: System Analysis Document. Lyngby.

Wieringa, R. (1995). An Introduction to Requirements Traceability. Technical Report IR-389

Faculty of Mathematics and Computer Science.

Appendix

 Appendix

A. Transformation Rules (from textual requirements to model

fragments.

1. If a requirement specifies a role with activities, create a use case diagram.

1a Subjects and nouns indicate actors or components.

Librarians may add, update, and delete
corpus items manually.

1b Predicates (strong verbs) indicate use cases.

1c If a predicate relates to a subject, the corresponding

actor and use case shall be connected by an

association.

1d Prepositions indicating location or ownership (“in”,

“within”) indicate the container of use cases.

The BookTip system will add data to the
result of a search in the catalog.

1e Relational prepositions (“from”, “to”, “via”, “by”)
indicate relationships between use cases.

1f Unrestricted relations (“might”, “may”, “extends”)
indicate “extends” relations.

Restricted relations (“must”, “includes”, “will”)
indicate “includes” relationships.

An online registration guide might be used
by the reader to set up a new account.

Appendix

1. If the requirement specifies one or more alternative situations,

create a state machine diagram

2a Adverbs, adjectives, and passive verbforms

indicate states.

A terminated account does not offer any actions.

2b Verbforms in active tense, progressive tense

and as nouns-forms indicate transitions.

If a reader account expires, or violates policy, the
account is deactivated automatically.

 A deactivated reader account allows readers only
payment of fees, reading and printing the account
action trail, returning of copies, and termination
of the account.

Appendix

2c Restrictions and limitations (“only if”, “unless”,

“may not”) of transitions indicate guards.

 A reader may only lease or prolong a medium if
there are more copies available than there are
reservations for the medium.

2. If the requirement contains a temporal aspect, create a sequence

diagram. Keywords include contain concrete durations “5sec” or temporal prepositions

(“before”,” after”, “within”, “less than”).

3a Subjects and nouns in phrases

with active tense indicate

lifelines.

If an overdue copy is returned to the library, then the
LMS indicates the overdue days to the user within 2s.

3b Phrases in passive tense indicate

messages.

Appendix

3c Sequencing between sub-phrases

(“if/then”, “afterwards”, “next”)

+ directional prepositions

indicates sequential ordering

between messages.

3d Temporal specifications (“in”,

“within”, “after”, “2s”) indicate

time constraints.

LMS will provide the reader between 3 and 5 reading
suggestions from BookTip within 5s after issuing the
query to the Catalog.

3. If the requirement describes a sequence of steps and/or case

distinctions, create an activity diagram.

4a Subjects indicate lifelines.

If a librarian initiates reader actions on behalf of a reader,
the reader receives notification.

4b Action verbs indicate
actions.

The subject of a predicate
indicates the lifeline of an

Appendix

action.

4c Objects indicate data
stores or data entities.

If the search was successful, the results are returned to the
reader; otherwise, recent catalog items are shown.

4d Directional predicates
(“from”, “to”, “of”) and
specific verbs (“transmit”,
“return”, “send”) indicate
data flow.

4e Case distinctions (“if/else”,
“otherwise”) indicate
Decision/Merge nodes.

4f Control flow is indicated by
temporal expressions
(“then”, “afterwards”) or
past tense/present perfect.

Appendix

4. If the requirement uses expressions describing static relationships,

create a class diagram.

Keywords include “contains”, “has”, “consists”, “owns”.

5a Nouns not described as parts of other
nouns indicate classes.

Each reader can issue multiple copies of a
medium, with a copy consisting of a
name, classifier, cover photo and state
indicating its degree of damage.

5b Nouns described as parts of other nouns
indicate class properties.

5c Action verbs indicate class methods.

5d Structural verbs (“has”, “owns”, “contains”)
indicate composition relationships.

5e Existential or universal quantifiers indicate
general associations and a multiplicity.
Numeric values or quantity key words
(“each”, “many”, “several”, “multiple”, “a
single”) indicate a multiplicity.

5f Verb forms like “is a” or “kind of” and
concrete examples (“like”, “such as”)
indicate generalizations.

There are three kinds of MediumItems,
Books, DVDs, and Articles.

Appendix

Appendix

B. Questionnaire for the Experiment

Requirement 1

If a reservation defaults, it is removed from the list of reservations for the medium it refers to and
the medium enters the state available if no other reservations are pending.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Appendix

Requirement 2

When a copy is returned at the front desk, the librarian present there is notified within 1s if there is
currently a reservation for the medium of the copy.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 3

Librarians and Readers may post and inspect media they think should be acquired by the library to

Appendix

a public “wish list”.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 4

If a fee calculation yields a non-zero result; the reader is notified of the computation, its result and

provided with an explanation.

Appendix

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 5

A search yields a list of overview results which consists of the medium category, author, title and

publication year.

Model Fragment

Appendix

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 6

The personal user might also receive suggestions from the MMM (Mobile Match Maker) system in

addition to manually searching for restaurants/stores/attractions/hotels.

Model Fragment

Appendix

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 7

If the PMMD (Portable Medical Monitoring Device) of a personal user receives data exceeding the

safety threshold value then the EMT (Emergency Medical Technician) is notified.

Model Fragment

Appendix

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 8

With the violation of MMM (Mobile Match Maker) policies, an account is deactivated automatically

in less than 10secs.

Model Fragment

Appendix

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 9

The MMM (Mobile Match Maker) system suggests other users to a personal user on the basis of

common interests or at least one mutual friend.

Model Fragment

Appendix

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 10

When a personal user subscribes to a store, he/she gets notified about discounts and new arrivals.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

Appendix

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 11

When the money transaction is successful, the customer is notified through email or with a paper

receipt.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

Appendix

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Requirement 12

A customer can transact money by authenticating him/herself.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

Appendix

4. Time after completing this task

Requirement 13

Activated, deactivated or closed are the states of a bank account, of which a bank account can only

be in one state at any given time.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Appendix

Requirement 14

A bank employee should be able to review a loan request and offer a loan in case in case the loan

request amount is higher than €5000.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Appendix

Requirement 15

Scanning a valid customer id with the readable ID device should display name and photo of the

customer within 5 seconds.

Model Fragment

1. Which rules have you applied for deriving this
fragment?

2. How difficult was it to derive this fragment?

3. How sure are you, that the model fragment
really captures the requirement?

4. Time after completing this task

Appendix

Appendix

C. Table including Requirements with their Correctness Score

(Experiment)

Participant
ID

REQID Fragment
Type

Correctness
Score

Participant
ID

REQID Fragment
Type

Correctness
Score

6 1 ad 0.5 22 9 sd 0

7 1 ad 0.5 32 9 ud,cd 1

8 1 ad 0.5 23 9 ud 1

12 1 ad 0.5 30 9 ud 1

16 1 ad 0.5 37 9 ud 1

27 1 ad 0.5 39 9 ud 1

28 1 ad 0.5 40 9 ud 1

26 1 id 0.5 3 10 ad 0.33

13 1 sd, ad 1 4 10 ad 0.33

29 1 sd,cd 0.5 14 10 ad 0.33

11 1 sd 0.5 15 10 ad 0.33

17 1 sd 0.5 19 10 ad 0.33

18 1 sd 0.5 22 10 ad 0.33

24 1 sd 0.5 23 10 ad 0.33

25 1 sd 0.5 32 10 ad 0.33

31 1 sd 0.5 37 10 ad 0.33

33 1 sd 0.5 40 10 ad 0.33

35 1 sd 0.5 1 10 cd 0

31 2 ad 0.25 2 10 id 0

5 2 id 0.25 20 10 id 0

6 2 id 0.25 21 10 id 0

7 2 id 0.25 34 10 id 0

8 2 id 0.25 36 10 id 0

10 2 id 0.25 39 10 id 0

11 2 id 0.25 38 10 sd 0.33

12 2 id 0.25 9 10 ud 0.33

13 2 id 0.25 30 10 ud 0.33

16 2 id 0.25 1 11 ad 0.5

17 2 id 0.25 2 11 ad 0.5

18 2 id 0.25 3 11 ad 0.5

24 2 id 0.25 9 11 ad 0.5

25 2 id 0.25 20 11 ad 0.5

Appendix

Participant
ID

REQID Fragment
Type

Correctness
Score

Participant
ID

REQID Fragment
Type

Correctness
Score

26 2 id 0.25 21 11 ad 0.5

27 2 id 0.25 22 11 ad 0.5

28 2 id 0.25 23 11 ad 0.5

29 2 id 0.25 30 11 ad 0.5

33 2 id 0.25 32 11 ad 0.5

35 2 id 0.25 34 11 ad 0.5

13 3 ad 0 38 11 ad 0.5

27 3 ad 0 39 11 ad 0.5

5 3 ud 1 40 11 ad 0.5

6 3 ud 1 4 11 id 0

7 3 ud 1 14 11 id 0

8 3 ud 1 36 11 sd,id 0.5

11 3 ud 1 15 11 sd 0.5

12 3 ud 1 19 11 sd 0.5

16 3 ud 1 37 11 sd 0.5

17 3 ud 1 1 12 ad 0.5

18 3 ud 1 14 12 ad 0.5

24 3 ud 1 20 12 ad 0.5

25 3 ud 1 34 12 ad 0.5

26 3 ud 1 39 12 ad 0.5

28 3 ud 1 40 12 ad 0.5

29 3 ud 1 2 12 id 0

31 3 ud 1 9 12 id 0

33 3 ud 1 15 12 id 0

35 3 ud 1 21 12 id 0

12 4 ad 0.5 30 12 id 0

16 4 ad 0.5 36 12 id 0

17 4 ad 0.5 3 12 sd 0

24 4 ad 0.5 32 12 sd 0

25 4 ad 0.5 4 12 ud 0.5

26 4 ad 0.5 19 12 ud 0.5

27 4 ad 0.5 22 12 ud 0.5

28 4 ad 0.5 23 12 ud 0.5

29 4 ad 0.5 37 12 ud 0.5

31 4 ad 0.5 38 12 ud 0.5

33 4 ad 0.5 1 13 cd 1

35 4 ad 0.5 23 13 cd 1

13 4 id 0 32 13 cd 1

Appendix

Participant
ID

REQID Fragment
Type

Correctness
Score

Participant
ID

REQID Fragment
Type

Correctness
Score

18 4 id 0 39 13 cd 1

5 4 sd 0.5 9 13 sd 0

8 4 sd 0.5 14 13 sd 0

31 5 ad 0 15 13 sd 0

13 5 cd,ad 0.5 19 13 sd 0

5 5 cd 0.5 20 13 sd 0

8 5 cd 0.5 21 13 sd 0

10 5 cd 0.5 22 13 sd 0

16 5 cd 0.5 30 13 sd 0

17 5 cd 0.5 34 13 sd 0

25 5 cd 0.5 36 13 sd 0

26 5 cd 0.5 37 13 sd 0

27 5 cd 0.5 38 13 sd 0

28 5 cd 0.5 40 13 sd 0

33 5 cd 0.5 4 13 ud 0

35 5 cd 0.5 19 14 ad,ud 0.67

18 5 cd,id 0.5 1 14 ad 0.33

12 5 ud 0 4 14 ad 0.33

5 6 ud 1 9 14 ad 0.33

8 6 ud 1 22 14 ad 0.33

18 6 ud 1 36 14 ad 0.33

26 6 ud 1 37 14 ad 0.33

28 6 ud 1 38 14 ad 0.33

31 6 ud 1 39 14 ad 0.33

33 6 ud 1 40 14 ad 0.33

35 6 ud 1 20 14 ad,ud 0.67

8 7 ad 0.5 34 14 ad,ud 0.67

28 7 ad 0.5 23 14 sd 0.33

31 7 ad 0.5 30 14 sd 0.33

35 7 ad 0.5 14 14 ud 0.33

5 7 id 0 15 14 ud 0.33

28 8 id 0.33 21 14 ud 0.33

35 8 id 0.33 21 15 ad 0.5

8 8 sd 0.33 4 15 id 0.5

31 8 sd 0.33 9 15 id 0.5

1 9 ad 0 22 15 id 0.5

2 9 ad 0 23 15 id 0.5

3 9 ad 0 30 15 id 0.5

Appendix

Participant
ID

REQID Fragment
Type

Correctness
Score

Participant
ID

REQID Fragment
Type

Correctness
Score

4 9 ad 0 34 15 id 0.5

9 9 ad 0 36 15 id 0.5

14 9 ad 0 37 15 id 0.5

15 9 ad 0 38 15 id 0.5

19 9 ad 0 39 15 id 0.5

20 9 ad 0 40 15 id 0.5

34 9 ad 0

