
Jacob Bølling Hansen

Kongens Lyngby 2014

IMM-M.Sc-2014-

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc-2014-

Summary (English)

The goal of this thesis is to construct a tool to support the analysis of models by
size metrics. This is achieved by devising and analysing application scenarios,
implementing a tool to support them, and validating the scenarios with the tool.

The two main aspects of usage application for such a tool are identi�ed as
the exploration of potential metrics and the exploration of models using these
metrics.

Our approach is based on the metaphor of an oscilloscope: imagine an electrical
engineer trying to understand a circuit by probing its parts, measuring di�erent
dimensions on various scales and units, juxtaposing and dynamically visualising
di�erent channels. In analogy to this, imagine a software engineer trying to un-
derstand a model applying our tool, �ModelScope�: we o�er a variety of base and
derived metrics, �exible options for units and scales, interactive visualisations
with a choice of graph types in a graphical user interface designed to reduce the
entry barrier and invite exploratory behaviour, making ModelScope suitable for
class room usage by students. With regards to researchers, ModelScope provides
a metrics exploration perspective, and its modular and extensible architecture
allows to easily add and modify metrics as needed.

ii

Summary (Danish)

Målet for denne afhandling er at konstruere et værktøj til at assistere analyse af
software modeller med størrelsesmetrikker. Dette opnås ved at opstille og ana-
lysere en række anvendelsesscenarier, implementere et værktøj til at supportere
dem og validere scenarierne med værktøjet.

De to vigtigste aspekter af anvendelsesscenarier for et sådant tool, er identi�ceret
som værende udforskningen af potentielle metrikker og udforskning af modeller
ved hjælp af disse metrikker.

Vores tilgang er baseret på metaforen om et oscilloskop: man kan forestille sig
en elektro-ingeniør der forsøger at forstå et kredsløb ved at sondre dens dele,
måle forskellige dimensioner på forskellige skalaer og enheder samt sammeligne
og dynamisk visualisere alt dette via forskellige kanaler. Med dette som analogi
kan vi forestille os en softwareingeniør der analyserer en software model med
værktøjet �ModelScope�: vi tilbyder en bred vifte af direkte og indirekte metrik-
ker, �eksible muligheder for enheder og skalaer, interaktive visualiseringer med
et udvalg af diagramtyper i en gra�sk brugergrænse�ade, designet til at invitere
til udforskende brug, hvilket f.eks. gør ModelScope brugbar i undervisningssi-
tuationer for studerende. Med hensyn til forskere, giver ModelScope forskellige
perspektiver til at udforske nye metrikker og den modulære arkitektur gør det
muligt og nemt at tilføge og ændre metrikker og visualiseringer efter behov.

iv

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial ful�lment of the requirements for acquiring
the MSc degree of Science. This thesis was prepared by me between September
2013 and January 2014 under the supervision of Prof. Dr. Harald Störrle. This
thesis is worth 30 ECTS credit points.

Lyngby, 24-January-2014

Jacob Bølling Hansen

vi

Acknowledgements

I want to thank my supervisor Harald Störrle for his support, help and guidance
both regarding the particular topic and the process of writing a thesis in general.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Scope and limitation . 3
1.4 Related Work . 4

1.4.1 Manually investigating metrics through counting and spread-
sheets . 4

1.4.2 MagicDraw Metrics and other UML tools 5

2 Domain Analysis 7
2.1 Application Scenarios . 7

2.1.1 Detailed Scenarios . 7
2.2 Terminology . 15

3 Requirements Analysis 17
3.1 Context . 17

3.1.1 Neighbouring Systems . 17
3.1.2 Users . 19

3.2 Goals and Qualities . 22
3.2.1 Exploring Metrics . 22
3.2.2 Exploring Models . 23

x CONTENTS

3.3 Features . 24
3.4 Information Models . 28

3.4.1 Models and Model Elements 28
3.4.2 Visualisations . 30
3.4.3 Probes . 33

4 Design 37
4.1 User Interface . 37
4.2 Architecture . 39

5 Implementation 41
5.1 Technology . 41

5.1.1 Platform and programming languages 41
5.1.2 Version control . 42

5.2 Libraries and Components . 42
5.2.1 Libraries for Visualisations 43
5.2.2 Libraries for Parsing . 45
5.2.3 Libraries for Exporting 46
5.2.4 Libraries for Graph Visualisation (�Exploration Mode�) . 46

5.3 Parsing . 47
5.3.1 Parsing MagicDraw �les 47
5.3.2 Parsing PL �les . 50

5.4 Test . 50
5.4.1 Results of Unit Testing 51
5.4.2 Code Coverage . 51
5.4.3 Performance . 52

6 Validation 53
6.1 Model Research . 53
6.2 Metric Exploration . 58

7 Conclusion 63
7.1 Summary and Contributions . 63
7.2 Discussion . 64
7.3 Future Work . 64

A Manual 67
A.1 Prerequisites . 67
A.2 Using ModelScope . 68

A.2.1 Importing models . 68
A.2.2 Using Visualisations with Probes and Readings 69
A.2.3 Exporting . 69

A.3 Extending ModelScope . 70
A.3.1 Set-up IDE and Environment 70

CONTENTS xi

A.3.2 Making a New Probe . 70
A.3.3 Making a New Reading 72

Bibliography 73

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation

Fenton writes in �Software Metrics - a Rigorous & Practical Approach� [FP98]
that �Measurement is the process by which numbers or symbols are assigned to

attributes of entities in the real world in such a way as to describe them accord-

ing to clearly de�ned rules�. What this means is that to make a measurement we
need to identify the attributes of something hitherto abstract and �nd appropri-
ate metrics of quanti�cations to make them comparable. Thus, measurements
are one of the foundations of empirical science. Most important it enables us to
make comparisons. It makes us take something abstract like the statement �I
am taller than you� and concretise it to �My height in centimetres is a higher

number than your height in centimetres�.

How do we for instance measure a carton of milk? We would �rst have to identify
attributes of the milk carton to measure. Quantity as volume or as weight?
Quality? Genesis and organic properties? Colour of carton? Colour of milk?
Taste? Freshness as time? Viscosity? Nutrition properties such as amount of
vitamins, fat percentage, energy etc. Some of these are directly measurable by
existing agreed-upon metrics such as volume in litres and freshness in time, but
other attributes such as taste or quality is harder to quantify directly.

2 Introduction

Fenton distinguishes between �direct� measurements and �indirect� or �calcu-
lated� measurements. �Direct� measurements has easily quanti�able properties
such as length or weight. �Indirect� measurements are somehow derived from
direct measurements. The quality of the milk would be an example of an in-
direct measurement and would thus be a product of many other (measurable)
attributes of the milk, such as freshness, organic parts, viscosity etc. Eventually
it might be possible to come up with some sort of weighted quanti�able measure
for quality of milk, but it would have to be based on a rigid de�nition which
again might not be universally accepted.

In software engineering, attributes such as quality or maintainability may not be
directly quanti�able but trying to de�ne metrics for these attributes is advanc-
ing our understanding of them. Direct measurements regarding for instance size
of software projects enables us to make necessary assessments regarding cost,
time frame, maintainability and complexity among many other indirect mea-
surements. Well known metrics for the size of software project are for example
number of lines of code and function points.

The amount of interesting things we can assess about software increases as we
�nd new ways to measure it.

Model-Driven Architecture is a software design approach with guidelines for
structuring software speci�cations through models. According to [CL07] A stan-

dardized method for determining sizing concepts for software models that allows

the e�ective base lining and comparison of model concepts is a crucial need

within the MODELS community.

If we want to measure a software model we can look at several more or less direct
measurements. Some examples could be �le size, number of model elements,
canvas space, number of pages when printed and others - some more easily
quanti�able than others and some again more re�ned than others. These are
some of the more or less direct measurements of software models. The indirect
measurements of software models are not that easily de�ned. As stated earlier,
indirect measurements are combinations of direct measurements and a way of
�nding good indirect measures could be to visualise the direct measures. Right
now, such good agreed-upon measures do not exist [CL07], and that is why we
want to construct a tool that can aid the research on the topic.

1.2 Problem Statement 3

1.2 Problem Statement

Software models contains a range of attributes that may be used as metrics for
productivity, quality etc. but little research exists on the topic. It is the thesis
of this project that a tool could help explore these aspects of software model
metrics and therefore sets out to analyse the needs and usage scenarios of such
a tool before developing it and testing it accordingly.

1.3 Scope and limitation

The approach of this thesis is to go through the following steps:

De�ne application scenarios A number of application scenarios are con-
sidered and two are selected for a more thorough investigation. These are then
textually described as scenarios and reviewed later in the Validation (section 6)
with regards to the constructed tool. The application scenarios are to be found
in section 2.1.

Elicitate goals, features and information models Based on the above
mentioned scenarios, goals, features and information models are extracted to
serve as requirements for the software development process of ModelScope.
Goals, features and information models can be found in the Requirement Anal-
ysis of section 3.

Create and explore prototypes Di�erent prototypes are constructed and
tested out to decide on a graphical user interface as discussed in section 4.1.

Decide on technological basis for implementation Section 5.1 reviews
choices for technology for the implementation of ModelScope.

Implement tool ModelScope is implemented using the requirements de�ned
in the above mentioned sections. The implementation is described in section 5.

4 Introduction

Validate tool through revision of the application scenarios and fea-
tures Lastly, ModelScope is tested with regards to the identi�ed qualities and
features, especially the application scenarios of section 2.1. Unit Testing and
performance tests are to be found in section 5.4 while the application scenarios
are validated in section 6.

This thesis will only focus on the structural parts of software models. I.e. Mod-
elScope in the current version will not look at the graphical representations of
the models such as canvas space, colours, connectors, placement of diagram el-
ements etc. It should however be a doable task to implement such probes and
modi�cations to the parsers, but this will have to be in future work.

The thesis will not try to give any qualitative answers about good metrics, nor
will the tool hold any automated data mining facilities.

Regarding probes and visualisations The scope of this thesis does not in-
clude to implementations of a vast number of di�erent probes and visualisations
but rather to provide an expandable architecture that allows models researchers
to come up with new probes, readings and visualisations and implementing them
into ModelScope's framework.

1.4 Related Work

The area of software model metrics is not greatly covered by literature and
few tools exists that addresses the issue. Fenton describes a range of software
metrics in [FP98] but measurements of models seems to be a neglected area.
In regards to tool support for model metrics, it seems that only some of the
various UML editors provides a small degree of metric capabilities. All these
are of course limited to models constructed within the respective tools.

1.4.1 Manually investigating metrics through counting and
spreadsheets

The most obvious way to investigate models and their metrics, is simply to
manually count the model elements and put them into structure via. spreadsheet
tools like Microsoft Excel. This, however, is obviously not practical for all but
the smallest models.

1.4 Related Work 5

1.4.2 MagicDraw Metrics and other UML tools

Some UML tools like MagicDraw has metric (counting) features that allows for
basic counting of elements and exports of the results. The tools are vendor
speci�c and very limited in functionality.

One of the goals of ModelScope is to be able to come up with new probes
progressively. MagicDraw actually allows for extensions, so it is possible that
new metric-implementations would be doable. Unfortunately this would still be
limited to only MagicDraw models, and maintaining the tool would depend on
MagicDraw and their continuous support of the functionality.

6 Introduction

Chapter 2

Domain Analysis

2.1 Application Scenarios

To get an idea of uses of software model metrics a number of application sce-
narios will be described. Some of them has basis in real life cases while others
are hypothesised on basis of brainstorming. Each scenario explains a case where
model metrics are used to achieve some result. The scenarios will be revisited
in section 6 where they will be analysed with the tool support of ModelScope
in mind.

The application scenarios listed in table 2.1 are a result of brainstorms and
the scenario of section 2.1.1.1 is inspired by [Sto10]. A few select application
scenarios will be discussed in detail in section 2.1.1.

2.1.1 Detailed Scenarios

Following the list of application scenarios in table 2.1, this section explores some
scenarios in greater detail. The scenarios will serve as inspiration for goal and
feature extraction in section 3.2 and 3.3.

8 Domain Analysis

Usage Short description

Compare to other
known size metrics of
software

Compare software model based metrics to other
known software size metrics such as lines of code.

Comparing sizes of soft-
ware models

Simply compare the scale of two or more models.
�Scale� or �Size� may be subjective and di�erent
metrics should be tested. Reasons for exploring
model sizes of software models could be to proof a
point in related research. The researcher may want
to argue that a project is of a certain magnitude,
but lack the appropriate metrics to claim such a
thing. In that case, she may already have an idea
of what de�nes her models as �large� and simply
wants to illustrate a point using model size metrics.
She may also have some other projects in mind, and
use model size metrics to compare di�erent models
to use their relative size as an argument.

�Edit distance� How di�erent is this model from last version I
looked at? Domain: Business, Research, Teaching

Explore direct and indi-
rect metrics

Analyse combinations of direct measurements to
inspire new indirect measures of software models.
Examples could be

• Use Cases pr. actor

• Number of elements pr. diagram

• Average number of references pr. class

Fingerprinting Is it possible to come up with a measurement based
metric which would work as a ��ngerprint� for a
software model? Maybe something that could be
visualised as a DNA �ngerprint or perhaps even
a single metric or �hash� uniquely identifying the
model with regards to its structure. Could be used
in conjunction with �Plagiarism Detection�.

Plagiarism Detection It could be useful to utilize a �ngerprinting metric
for plagiarism detection in a teaching situation.

Table 2.1: Non-exhaustive list of possible application scenarios from brain-
storm

2.1 Application Scenarios 9

Usage Short description

Productivity analysis To analyse the progress of several versions of the
same model over time, could give information about
productivity and e�ciency as well as the evolution
of complexity of the model involved.

Quality metrics Attempt to �nd correlations between direct mea-
surements, indirect measurements and known ret-
rospective facts about software models.

• Cost

• Number of versions

• Time to make (e.g. man hours)

• Error rate

Software Model Re-
search

Analyse structures in software models. Probe dif-
ferent models to examine where they resemble and
where they di�er.

Table 2.2: Non-exhaustive list of possible application scenarios from brain-
storm (continued from table 2.1)

10 Domain Analysis

2.1.1.1 Model Research

This application scenario is based on the real life case that is the genesis of
part of the paper �Towards clone detection in UML domain models� [Sto10]. In
this paper Störrle investigates methods of de�ning similarities in models with
heuristics for clone detection in mind. This is done by analysing the structure
of four models. Data is collected by a program written speci�cally for that
purpose from the models and then compared in tables (as in Figure 2.1) and
visualisations (Figure 2.2).

Figure 2.1: Table from clone detection paper. Shows various metrics from
the four models, such as number of elements, number of links and
average number of attributes pr. element.

The measurements and comparisons allows the researcher to make observations
regarding the four models structures. In this particular case, Störrle uses these
observations to assess that the structure of models resembles that of a tree
rather than that of a full graph. A lot of other observations about the models
comprehensiveness in general can also be extracted from these visualisations of
measurements.

Probing models like this is cumbersome work. It is time consuming and the
degree of freedom with the metrics is therefore restricted.

The obvious case is the study of UML models, but it may be interesting to
investigate other types of abstract models that �ts the structure.

2.1 Application Scenarios 11

Figure 2.2: Visualisation of the metrics of the four models. See Figure 6.4 for
a replication of this using ModelScope.

12 Domain Analysis

2.1.1.2 Metric Exploration

A model researcher could be working with the speci�c notion of model metrics
and qualities of models. As we do not have consensus of what de�nes quality in
a model, it could be interesting for a researcher to be able to compare di�erent
metrics of models and parts of models to investigate this aspect. These unknown
factors requires a dynamic and versatile approach where the researcher would
want to do all sorts of di�erent kinds of probings on the models. She will want
to explore and come up with di�erent kinds of probes and readings and di�erent
ways of visualising the results. The work will be an iterative process of going
back and forth between probing the models and visualising the results.

A typical process could look like this:

Firstly, the researchers sketches the model data and which parts to look at. The
process begins with the model elements as the abstract cloud �M� in Figure 2.3
and works its way through splits in the data. These �splits� could be analogous
to applying di�erent probes at the model mass; it is what de�nes which part of
the model to look at. At any level of this process, we can take a reading from
the probe result (bottom level of Figure 2.3) and get an actual number, a count,
or calculate a weighted result by some de�nition.

Secondly, the researcher will want to see the the results of the above visualised
in some way. The visualisations would function as some sort of preliminary
indirect measurements, or at least give indications of what those might be. Fen-
ton describes �indirect measurements� as calculated from direct measurements,
and in a way the visualisations does just this; they show correlations which is
combinations of direct measurements.

Such visualisations may be sketched out �rst as in Figure 2.4 or done in some
software. Likewise the di�erent probings would have to be done by hand; an er-
ror prone and tedious task. Not only that, but also not a very �exible approach.
As this process would be an iterative one it is likely (and hoped for) that each
iteration will give rise to ideas for new probes or calculated measurements.

Tool support for this scenario would greatly improve the �exibility of probing
and versatility of visualising.

2.1 Application Scenarios 13

Figure 2.3: Sketch of the probe exploration process

14 Domain Analysis

Figure 2.4: Sketch of a visualised result of probing

2.2 Terminology 15

2.2 Terminology

This section explains some of the terms used in the thesis. Some of the terms
are derived from the oscilloscope as a metaphor for a tool of visualising metric
analysis while others are speci�c to ModelScope. The purpose of this section is
to equip the reader with a basic understanding of what is meant by these terms.
They will be explained in greater detail later in the thesis where it is required.

• Model A software model. Typically a UML model. The terms �model�
and �software models� will be used interchangeably and considered syn-
onymous unless speci�cally stated otherwise.

• ModelScope The name of the tool that is constructed in this thesis.
Sometimes also referred to as just �the tool�.

• Visualisation is a visual representation of ProbeResults and their read-
ings. It could be a simple table, a bar chart or pie chart etc. A visualisation
has �Channels� in which the results are visualised.

• Channel A Channel is a part of a visualisation wherein results of a Probe
and it's corresponding Readings can be displayed. A Visualisation can
have 1 or more channels. A channels depth is determined by the number
of dimensions it can display. Each dimension will display a ProbeResult.

• Probe A Probe can be applied to a collection of model elements and
returns a number of subsets (�ProbeResult�) according to the rules pre-
scribed in the Probe. An example of this could be to group all currently
loaded model elements by element type i.e. �Use Case�, �Actor�, �Class�,
�Association� etc. Probes can be simple groupings or contain conditions
about the output, such as �only diagrams�. Note that the resulting subsets
of probes can in turn be subjected to probes again. The number of times
probes can be applied will be limited by the number of channels in the
output-visualisation.

• Probe Result A Probe Result is a resulting subset of a probe being
applied to a collection of model elements. Note that a Probe Result is
itself a collection of model elements.

• Reading A Reading is a quanti�able measure that can be imposed on a
subset of model elements (i.e. a �ProbeResult�) created by a Probe. It
could be �Number of elements� or something more advanced as �Average
number of references pr. element�.

16 Domain Analysis

Chapter 3

Requirements Analysis

3.1 Context

This section gives an overview of the neighbouring systems ModelScope will
have to work with and the type of users likely to be interacting with it.

3.1.1 Neighbouring Systems

ModelScope will be a stand-alone application, but will have to operate on data
from external applications. This section will give a brief introduction to some
of the most important neighbouring systems in regards to ModelScope.

Figure 3.1 gives an overview of ModelScope and the neighbouring systems.

3.1.1.1 MagicDraw

MagicDraw is a visual editor for UML and other modelling languages. This is
the primary tool ModelScope is expected to work with. ModelScope will focus

18 Requirements Analysis

Figure 3.1: Use cases regarding the neighbouring systems of ModelScope.

primarily on the UML part of MagicDraw's capabilities. MagicDraw provides
a variety of tools for UML support, such as code generation and reporting.
MagicDraw has some abilities in regards to model metrics as well, but these
comes down to counting and exporting counts. I.e. there is very little room for
an exploratory approach to these metrics within MagicDraw. Hence an external
tool such as Excel or other would be necessary to explore metrics exported from
MagicDraw.

MagicDraw exports to MDXML �le format, which is a XMI-document with
proprietary additions. These additions are version speci�c.

3.1.1.2 RED

RED is a stand-alone requirements engineering tool. It is used in courses and a
lot of development is going on as thesis projects and research work.

RED has certain modelling aspects that might be interesting to combine with
a tool such as ModelScope. RED exports models and model fragments to the
PL �le format.

3.1.1.3 Gourmand and other modelling tools

Gourmand is another thesis project of the Requirements, Models, Empirical SE
group on IMM. It allows for extraction of models and model fragments as UML

3.1 Context 19

from O�ce tools such as Microsoft Powerpoint, Word and Visio.

All tools in Working Group �Requirements, Models, Empirical SE� including
Gourmand will have the ability to export models in the PL �le format. Fur-
thermore, Gourmand will possibly also be able to export to XMI.

3.1.2 Users

This section describes speculations on potential users of ModelScope. The users
presented here are based on the brainstorms and application scenarios of the
domain analysis in section 2 and will then be summarized into a few concise
roles.

3.1.2.1 Teachers

Teachers in courses that involves UML modelling, could �nd ModelScope inter-
esting for analysing their student's assignment models. They may for instance
want to compare them to assess the average workload or use ModelScope as
plagiarism detection.

Tasks:

• Compare sizes of delivered assignment models.

• Use various model metrics as indicators of plagiarism.

3.1.2.2 Model Researchers

Researchers working with models in any context. The obvious case is the study
of UML models, but it may be interesting to investigate other types of abstract
models that �ts the structure.

Tasks:

• Model and Metric Exploration

• Bulk processing of models

20 Requirements Analysis

• Extending the system with new probes and readings

• Extending the system with new visualisations

• Maintain and further develop ModelScope

3.1.2.3 Students

Students could be given the tool as part of modelling courses to analyse size
metrics of their UML projects.

Tasks:

• Compare di�erent versions of model over time

• Compare size metrics in relation to other students models.

• Export their results for use in assignments etc.

3.1.2.4 Other Thesis Students

Future thesis students might use ModelScope as part of their own research and
analysis. It is entirely possible that other thesis projects might be derived from
ModelScope. This may be extensions looking at other parts of models, for
instance the visual representation of models and not just structural, or it may
be something completely di�erent, as long as the notion of probes and channels
can be applied to it.

Tasks:

• Model Metric Exploration

• Develop ModelScope with new probes

• Develop new visualisations and channels

• Extend data models

• Create new parsers

3.1 Context 21

3.1.2.5 Businesses

At some later point, the tool might be re-suited to operate in a business context.
If for instance a project manager is asked to review a new version of the model,
it could be very helpful to analyse it with a distance metric to see how much
the model has changed since the last review.

Tasks:

• Follow the progress of a projects development over time

• Compare size metrics of project to previous projects

• Use metrics as indicator for the extend and cost of a project.

• Use distance metrics to assess the amount of change from one version to
another.

3.1.2.6 Roles

The above described potential users fall in to two categories: those who uses
the tool �as-is� and those who requires to be able to modify and extend it.

• Model Researcher

• Metric Developer

Note that the roles can overlap in some usage scenarios, e.g. the Model Re-
searcher will often have to assume both roles to accommodate his work.

22 Requirements Analysis

3.2 Goals and Qualities

Based on the context (section 3.1) and scenarios (section 2.1), the following two
main goals have been derived:

• Exploring Metrics

• Exploring Models

Figure 3.2: Overview of the most important goals and qualities

3.2.1 Exploring Metrics

This goal is not concerned with the actual discreet models, but only with how
to measure them and compare these measurements. It is concerned with the
process of �nding and exploring good metrics for model sizes. It is inspired by
the application scenarios of quality metrics in section 2.1.

This involves the following sub-goals and -qualities.

• Extensibility

� Ability to implement new metrics

� Ability to implement new visualisations

• Comparability (the visual and test result aspect)

� Visualising metrics for comparisons

3.2 Goals and Qualities 23

� Comparing and testing metrics

� Assistance in coming up with new metrics

3.2.2 Exploring Models

In contrast to �Exploring Metrics�, this goal is about investigating the actual
model elements and exploring them using the de�ned metrics of ModelScope. In
that sense, this goal is of a more static character, whereas �Exploring Metrics�
is primarily about iteratively extending ModelScope. It can be derived from
section 3.1.1 on page 17 on neighbouring systems and the application scenarios
of section 2.1 on page 7 that ModelScope will have to be working with a range
of di�erent systems, and that it should not be constricted to those systems
alone. Hence, what we could call �Interoperability� seems to be an important
quality of �Exploring Models�. As exempli�ed in the scenario of section 2.1.1.1,
�Comparability� is also a required quality of this goal.

Sub-goals and qualities of �Exploring Models�:

• Interoperability

� Freedom in source of models

• Comparability

� Visualising results

� Using results outside ModelScope

24 Requirements Analysis

Feature 1 Alter settings of visualisations dynamically

Description Provide a way to alter settings of visualisations such
as scaling, switching of axes etc. When using a vi-
sualisation to visualise metrics, it should be possible
to change the visualisations settings while keeping
the visualisation on screen to see the e�ects of the
changes. Settings may include

• Scale

• Switch axes

• Colours

• Margins

• Other visual properties

Table 3.1: Feature 1

Feature 2 Analyse metrics of one model

Description It should be possible to import a single model and
analyse its di�erent metrics. The di�erent metrics
should be comparable within one model as di�erent
metrics could be compared across of models.

Table 3.2: Feature 2

3.3 Features

The features described in this section are derived from brainstorms on the sce-
narios of section 2.1, the neighbouring systems and users �Metric Developers�
and �Model Researchers� of the Context analysis of section 3.1. This background
illustrates the typical expected uses of ModelScope and should give an idea of
what features are required for the �nal tool. Features are not in prioritized
order.

Each use case is brie�y described in the tables below:

3.3 Features 25

Feature 3 Analyse and compare metrics of two or more
models

Description It should be possible to import a two or more mod-
els models and analyse their di�erent metrics. The
di�erent metrics should be comparable across mod-
els but also within. I.e. it should be possible to look
at the properties and metrics of all model elements
as one mass regardless of which model they origin
from.

Table 3.3: Feature 3

Feature 4 Analyse and compare metrics for bulk set of
models (i.e. load > 50 models)

Description It should be possible to import a large set of models
for examination without having to add each model
manually and while maintaining a reasonable per-
formance. Models of all supported formats should
be imported in the same way. Once loaded they
should be analysable as the use case in table 3.3.

Table 3.4: Feature 4

Feature 5 Calculate metrics

Description It should be possible to quantify di�erence metrics,
both direct and indirect. Metrics are de�ned as
probes and readings.

Table 3.5: Feature 5

Feature 6 Change visualisations dynamically

Description It should be possible to try out di�erent visuali-
sations dynamically while maintaining the setup of
probes, channels and model elements such as only
the visualisations change but the structure remains.

Table 3.6: Feature 6

26 Requirements Analysis

Feature 7 Export CSV

Description It should be possible to export the results of model
probing to CSV for import in other tools such as
Microsoft Excel.

Table 3.7: Feature 7

Feature 8 Export PDF

Description It should be possible to export the graphical results
of model probing and visualisations to PDF for use
in report, research work, presentations etc.

Table 3.8: Feature 8

Feature 9 Import from MagicDraw

Description It should be possible to import models created in
MagicDraw in particular the �le format MDXML
which is a proprietary version of XMI.

Table 3.9: Feature 9

Feature 10 Import RED and Gourmand models

Description It should be possible to import models extracted or
created in tools such as RED and Gourmand which
both uses the format PL.

Table 3.10: Feature 10

Feature 11 Model Exploration like sketching

Description It should be possible for ModelScope to support the
work�ow sketched in the application scenario in sec-
tion 2.1.1.1 especially Figure 2.4.

Table 3.11: Feature 11

Feature 12 Scaling

Description It should be possible to scale visualisations to a user
de�ned scale.

Table 3.12: Feature 12

3.3 Features 27

Feature 13 Visualise in a versatile range of charts

Description It should be possible to visualise probes and read-
ings in a wide variety of visualisations. Examples:

• Bar chart

• Column chart

• Pie chart

• Line chart

• Scatter plot

• Gauge

Table 3.13: Feature 13

Feature 14 Zoom

Description It should be possible to zoom in on selected parts
of the visualisations as to reveal details otherwise
hard to see. This may be when sizes varies greatly
in size and the proportions makes it di�cult to see
the nuances in the smaller values.

• Bar chart

• Column chart

• Pie chart

• Line chart

• Scatter plot

• Gauge

Table 3.14: Feature 14

28 Requirements Analysis

3.4 Information Models

The data models in this section are identi�ed from the scenarios of section
2.1, the features of section 3.3 and brainstorming on these. The controls and
outputs of an oscilloscope has been used as a metaphor and the class names
and structures described here are heavily inspired by this analogy. The actual
implementation is modelled after the diagrams shown here, but does deviate in
certain places. An overview can be seen in Figure 3.3.

Figure 3.3: Overview of classes and associations

3.4.1 Models and Model Elements

The data structure of models and their elements can be seen in Figure 3.4.

A model is represented as a ModelElementCollection and holds a number of
ModelElements which in turn can have any number of Attributes, some of
which may be references to other ModelElements. This rather simple and �at
data structure is perfectly able to hold the necessary data and using LINQ1

it is easy to query and output the �at structure as tree-like temporary virtual
structures when needed.

1.NET declarative query syntax

3.4 Information Models 29

Figure 3.4: Class diagram of the data structure for models and model elements

30 Requirements Analysis

3.4.2 Visualisations

The data structures of visualisations can be seen in Figure 3.5. The visualisa-
tions are visual representations of probe results in any way. Typically it would
be a bar chart, pie chart or something similar, but it could also be graphs, tables
or text in di�erent font sizes. A visualisation results in a list of UIElements,
which is just any kind of graphical element.

The visualisation may have some general settings available to the user. These
can be attached in the form of a SettingsControl which will contain both the
UI part and the data part of the settings. Settings could be colours, change of
axes, scales etc.

Figure 3.5: Class diagram for visualisations

A visualisation will show measurements in Channels. Figure 3.6 shows an ex-
ample of a visualisation in the form of a column chart with two output channels:
R1 and R2. The primary probe shows as the �rst grouping on the X axis i.e.

3.4 Information Models 31

�A� and �B�. The channel R1 is just any reading of that probe and the result
is the height of the column on the Y axis. The channel R2 has a depth of two
and holds a secondary probe which splits it into R2.1 and R2.2. The results of
that probe is displayed as a stacked column with the reading as height on axis
Y. The readings of a channel with depth two does not have to be stacked, but
it simpli�es the distinction of channels in the diagram.

Figure 3.6: A sketch of how probe results can be grouped and displayed in a
column chart. This chart contains two channels: R1 and R2. R2.1
and R2.2 are both part of channel R2, even though it contains
another probe. I.e. R1 is of depth one R2 is of depth two.

As Figure 3.6 shows, a column charts can have a minimum of one channels
and a maximum of ∞ (though that may clutter the readability of the diagram
somewhat). The channels has a maximum depth of two. A pie chart as in Figure
3.7 can only have one channel with depth one i.e. only one probe can be applied
and to only one channel. It can however be repeated to show multiple channels.

When thinking up a new visualisation, these are considerations to make before
the implementation:

• Minimum number of channels (some may require more than one channel
to function properly e.g. a scatter plot)

• Maximum number of channels

32 Requirements Analysis

Figure 3.7: A pie chart with only one channel of depth one i.e. only one probe.
The probe determines the grouping and the reading is displayed
as percentage of the pie.

3.4 Information Models 33

• Depth of channels

• What kind of settings and variations of the visualisation should be avail-
able to the user.

• Can the maximum number of channels be expanded by repetition of the
visualisation.

3.4.3 Probes

Figure 3.8 shows the information model for probes and probe results. A probe is
applied to a set of model elements and will itself result in a list of probe results
which each holds a set of model elements. An illustration of this process can be
seen in Figure 3.9 which is inspired by the scenario in section 2.1.1.1.

Note that the probe results does not need to be subsets of their parent nodes in
a strict sense. Probes can result in any set of model elements; larger or smaller
than their parents. A Reading is a quanti�able measure of a ProbeResult and
can thus be retrieved from any level of the tree in Figure 3.9.

Examples of readings could be:

• Count the number of elements

• Count the number of references

• Count the number of attributes

• The average number of references pr. attribute

• Any indirect measure calculated on the basis of the probe result.

34 Requirements Analysis

Figure 3.8: Class diagram of Probes and ProbeResults

3.4 Information Models 35

Figure 3.9: Illustration of how probes are applied to sets of model elements.
The height of the tree constitutes the number of probes and also
the depth needed of the channels to display the readings. Readings
can be made at any level of the tree. In the illustration the readings
are displayed as integers in the bottom leafs.

36 Requirements Analysis

Chapter 4

Design

4.1 User Interface

Our metaphor for the ModelScope project is the oscilloscope and that also serves
as a basis for the initial sketches of the user interface. The idea is to have a
tangible user interface that encourages exploration of the di�erent probes and
visualisations as exempli�ed in 2.1.1.2.

Hand-drawn sketches has been used for initial much-ups. Microsoft Blend has
been used for prototyping and testing prototypes.

The �rst prototypes were wizard-based. I.e. they directed the user through a
number of screens beginning with the selection of models to be imported, on
to choose which probes to use (see Figure 4.1) and ended in an interface with
visualisations displayed along with oscilloscope-like options.

The sketch on Figure 4.2 shows some of the components identi�ed in the in-
formation models of section 3.4. The screenshot of Figure 4.3 shows an early
screenshot of ModelScope with an actual implementation. Some of the elements
has changed places but the essentials are still there: possibility of changing vi-
sualisation type, selection of probes and channels to the left, the visualisation
to the right and a settings panel for altering settings regarding the selected vi-

38 Design

Figure 4.1: The initial screen in the �rst prototype

Figure 4.2: One of the initial hand drawn sketches of a possible UI for Mod-
elScope

4.2 Architecture 39

sualisation. The wizard-idea was scrapped during prototyping to give the user
the ability to import or remove new models gradually while working with the
visualisations.

Figure 4.3: An early screenshot of ModelScope with a stacked bar chart as
visualisation

4.2 Architecture

The overall internal structure of ModelScope can be seen in the diagram of
Figure 4.4.

Firstly, the design choice of building a stand-alone application and not a plugin
for existing software was based on the goal of �Interoperability� identi�ed in
section 3.2.

One of the other main concerns of the architecture is the goal of section 3.2;
�Extensibility�. Modularity has therefore been a priority and it is especially
important that Probes, Parsers and Visualisations are exchangeable and
extendible.

The architecture of the individual modules follows that of the described informa-
tion models in section 3.4 and other details about implementation are provided
in section 5.

40 Design

Figure 4.4: Composite-Structure Diagram of the internal structure of Mod-
elScope

Chapter 5

Implementation

5.1 Technology

5.1.1 Platform and programming languages

The technological basis for the development of ModelScope is Microsoft Visual
C# and the .NET platform. The IDE used is Microsoft Visual Studio 2012.
Visual Studio provides a range of helpful features including code completion,
3rd-party plug-in handling and updating, test-facilities and source control with
integrated task management. C# was chosen as primary programming language
because of familiarity and availability of help and online documentation.

Because of the choice of platform, ModelScope will currently only operate on the
Microsoft Windows platform. One possibility of cross-platform behaviour could
be achieved by using a remote-desktop set-up (e.g. Citrix) to allow clients on
other operating systems to connect. Another possibility is to port ModelScope to
Linux using cross-platform open-source development frameworks such as Mono.
Ports to other operating systems has not been considered further.

42 Implementation

5.1.2 Version control

Visual Studio 2012 provides for several options with regards to version control,
most notably Team Foundation Server and GIT. In this case, Team Foundation
Server has been chosen for versioning. Version control with Team Foundation
Server provides options for branching which can be extremely useful for making
changes to large parts of the code, without having to worry about role-back.
Another useful feature of Team Foundation Server is the close connection with
task-management which can be operated both online and from within Visual
Studio. This makes it more manageable to track changes to the code over time.

5.2 Libraries and Components

Microsoft .NET 4.5 includes libraries and components in abundance and Mod-
elScope takes advantage of these wherever possible. This goes for data struc-
tures like enumerable List<T> and hash maps like Dictionary<key,value> as
well as graphical frameworks as Windows Presentation Foundation and all the
components that follows this suite.

There are not as many free 3rd party libraries for .NET as is the case with
for instance Java. The chosen libraries for ModelScope are picked according to
functionality, but also with license in mind. Open-Source has been considered
a plus as it opens up for the possibility of changing or expanding the libraries
as well to �t ModelScope's need in future work.

Visual Studio 2012 (and later editions) has a feature called �Nuget Packages�
which is essentially a feature that resembles that of a package manager in Unix-
systems. It allows developers of .NET libraries and components to make them
available through a package managing interface (a console) from within the IDE.
The �Nuget� system then handles dependencies and updates of the libraries.

All libraries used in ModelScope utilizes this �Nuget� functionality which makes
it very easy to make sure all libraries are up to date and dependencies are taken
care of. This is important, since because of the goal �Extensibility� (see section
3.2), it must be assumed that Metric Developers will be developing and updating
the code of ModelScope regularly.

5.2 Libraries and Components 43

5.2.1 Libraries for Visualisations

It is of course possible to implement visualisations manually, and it may even
be a good idea if they are simple enough. That could for instance be text-based
visualisations as tables or just numbers of various types. But as soon as it gets
more complicated and graphical than that it may be a good idea to be able to
rely on a library constructed for the purpose.

The main requirements for visualisation libraries were:

• Open license (preferably open source) with active development

• Variety of visualisations within the same library, for consistent style as
well as ease of implementation

• Has to have at least these basic diagram types:

� Bar Chart

� Column Chart

� Pie Chart

� Line Chart

5.2.1.1 Investigated Libraries

Below are the libraries considered for ModelScope. Only free libraries have been
considered. Note that the architecture allows for use of multiple libraries for
visualisations. Each visualisation could use its own library but this particular
implementation will rely on the same library for all visualisations.

WPF Toolkit Data Visualization The WPF Toolkit was originally made
as a supplement to the Microsoft WPF framework, which at that time was
scarce of controls and components. The toolkit has visualisation part that �ts
ModelScope's requirements and the license is open as well. Since Microsoft WPF
has grown substantially since its release, WPF Toolkit has not been updated
since February 2010.

44 Implementation

Figure 5.1: Some of the visualisations available in WPF Toolkit

WPF Chart Control With Pan, Zoom and More 1 This library is a part
of a WPF tutorial. It provides a lot of details but only includes one �nished
type of visualisation. It is unsupported but public domain licensed.

OxyPlot OxyPlot is by far the most comprehensible library examined, and
contains a vast number of visualisations.2 It is Open-Source and open-licensed.
It is currently in active development with the last stable version being from
January 2014.

Modern UI (Metro) Charts for Windows 8, WPF, Silverlight Modern
UI Charts is an open-source library for WPF in the style of Windows 8 Apps
(formerly known as �Metro�). It is visually very appealing (see Figure 5.2) and
contains �ve di�erent types of charts.

1From http://www.codeproject.com/Articles/17097/WPF-Chart-Control-With-Pan-
Zoom-and-More

2See http://www.objo.net/oxyplot/ExampleBrowser/ for a demonstration of all available
visualisations.

5.2 Libraries and Components 45

Figure 5.2: Examples of Modern UI Charts

5.2.1.2 Choice of Primary Visualisation Library

OxyPlot has been chosen for the primary visualisation library. It has by far
the greatest number of di�erent visualisations and this will make it easier to
implement new visualisations into ModelScope with code of similar syntax. It
will also make the visualisations more even in visual appearance.

The choice of OxyPlot as primary library does not limit the use of other libraries
in visualisations.

5.2.2 Libraries for Parsing

As can be seen in section 5.3, the only two parsers implemented are for XMI
(MDXML) and PL.

Microsoft .NET has a comprehensive build-in library (LINQ-to-XML) for han-
dling XML structures via the declarative syntax of LINQ, and this library is
utilized excessively when parsing XMI.

The very simple structure of the PL �les are dissected through the use of .NET's
build-in Regular Expression library.

46 Implementation

5.2.3 Libraries for Exporting

Exporting is divided into two parts:

• Exporting visualisations

• Exporting data of visualisation

Exploring visualisations uses OxyPlot's PDF Report Generator Library.
This means that visualisations using other libraries than OxyPlot for visual
output, would have to implement their own export functionality as well.

Exporting data of visualisation uses the open-source library CSVHelper.
It currently exports in up-till-two dimensions with any number of channels.

5.2.4 Libraries for Graph Visualisation (�Exploration Mode�)

The library used for �Model Exploration Mode� is called GraphSharp and is
an open-source .NET library. It allows for other structures than trees to be
visualised as well, and is generally very �exible. An illustration of �Model Ex-
ploration Mode� using a graph algorithm instead of the default tree algorithm
(see Figure 6.5 on page 59) can be seen in Figure 5.3.

5.3 Parsing 47

Figure 5.3: "Model Exploration Mode" displayed with GraphSharp library us-
ing a graph-visualisation. Zooming and panning is of course pos-
sible.

5.3 Parsing

Parsers are created by implementing the ModelScope.Parsing.Parser interface.
The method Parse() returns a ModelElementCollection with the parsed models
and model elements.

5.3.1 Parsing MagicDraw �les

MagicDraw stores its models in the MDXML �le format. MDXML �les from
MagicDraw contains a vendor speci�c XMI document in which all model data
is stored.

XML Metadata Interchange (XMI) is a standard for exchanging meta-data in-
formation via XML. It is widely used for storing models such as UML. Mag-
icDraw uses XMI for this speci�c purpose, and this parser implementation is
assuming the XMI-document to hold just UML models. This implementation
handles output from MagicDraw version 16.9. It will parse other versions as
well, but be aware that there could be version speci�c features which will not
be accommodated.

48 Implementation

Figure 5.4: An illustration of the relevant parts of the XMI structure of an
MDXML document

5.3 Parsing 49

5.3.1.1 Identifying relevant parts of MDXML document

The MDXML document contains vast amounts of information about the Mag-
icDraw UML model, not all of those relevant to ModelScope. Since ModelScope
focuses on structure, all information regarding the visual composition of the
models is discarded.

The main interesting part of the MDXML document is the xmi.XMI.uml:Model

node which contains the primary model elements, associations and properties.

Example of packagedElement:

<packagedElement xmi:type='uml:Model' xmi:id='

_16_9_877027b_1351843403926_946141_2123' name='eMenu'

visibility='public'>

<packagedElement xmi:type='uml:Use Case' xmi:id='

_16_9_877027b_1351843554050_694351_2197' name='list

items' visibility='public'/>

</packagedElement>

Model elements are stored in <packagedElement> nodes which has the following
structure: Attributes:

• xmi:type='uml:[Type]'

• xmi:id='[String ID]'

• name='[Name of model element]'

• visibility='public'

References are done as nested child elements of <packagedElement> or in <ownedAttribute>
with the following attributes:

• xmi:type='uml:[Property]'

• xmi:id

• type='[ID of referenced model element]'

• association='[ID of association element]'

50 Implementation

5.3.1.2 Diagrams

Diagrams are handled substantially di�erently than other model elements in
MDXML. As can be seen in Figure 5.4, diagrams reside in �<mdOwnedDiagrams>�
which is a part of a proprietary MagicDraw extension to XMI. �<mdElements>�
have children that refers to ID± of model elements, and this is how it is deter-
mined which model elements are held by a diagram.

When parsing diagrams to ModelScope's data model, the diagram itself is trans-
lated to a ModelElement and all model elements contained within that diagram
will be linked to the diagram via Attributes with References.

5.3.2 Parsing PL �les

PL �les contain a prolog data structure describing a model. Each line contains
a model element (me(...)) with various attributes and references.

Example of PL �le content:

:-module('Sample1',[]).

me(model-0,[annotation-id(1),ownedMember-ids([1,2,3]),name-'Data'

,visibility- (public)]).

me(comment-1,[body-'Author:Jacob.\nCreated:08-11-13 18:31.\nTitle

:.\nComment:.\n',annotatedElement-id(0)]).

me(package-2,[referentType-'Package',referentPath-'UML Standard

Profile',href-'UML_Standard_Profile.xml#

magicdraw_uml_standard_profile_v_0001']).

me(package-3,[ownedMember-ids([4,5,8]),name-'Classes',visibility-

(public)]).

Each line is interpreted as a ModelElement and ownedMember-ids are used for
references.

Note that PL does not currently support diagrams.

5.4 Test

The implementation has been subjected to regular unit testing via Visual Stu-
dios Test Suite.

5.4 Test 51

UI functionality is not tested automatically.

Unit Testing is divided into four areas of the code:

• Parsing

• Plots

• Probing

• Readings

All tests involving calculations and manipulation with a model set, uses the
function SetupTestModels() to ensure a uniform setup.

5.4.1 Results of Unit Testing

All test completes successfully.

Figure 5.5: Test results from Visual Studio

5.4.2 Code Coverage

According to Visual Studio the unit test code coverage is 51.33 %. What
this means is that 51.33 % is reached through testing; not the 51.33 % of the
functions are tested rigorously.

52 Implementation

5.4.3 Performance

The performance of ModelScope has been tested manually to assess responsive-
ness of the GUI. Using ModelScope with < 5000 model elements seams com-
pletely �uent, so a stress test was devised. The test was conducted as follows:
First, the parser was modi�ed to import all given �les 10 times instead of one.
Then 11 models with a collective size of approximately 25 MB where loaded
into ModelScope, resulting in a total of 111 models with 250 MB of model data,
66390 model elements and 129980 attributes.

The result was that ModelScope responded with a signi�cant lag in responsive-
ness; 0.5-1.0 seconds whenever changing the visualisation either by probes or
visualisation-settings. The lag did not in any way make the tool unusable, how-
ever, and the amount of model elements treated in this test must be considered
unusual.

It is therefore concluded that ModelScope does satisfy the quality of performance
in bulk computation of section 3.3.

Chapter 6

Validation

In this section the di�erent application scenarios described in section 2.1 are
examined again but this time with respect to the tool support of ModelScope.

6.1 Model Research

This section re-examines the application scenario of section 2.1.1.1. In the sce-
nario, four models are analysed for similarities in structure using manual pro-
cessing and visualising. Using ModelScope for tool support, the case is here
revisited.

The four models are created with MagicDraw and are therefore in the MDXML
format. The MDXML �les can be imported directly into ModelScope as can
be seen in Figure 6.1 which also shows an initial visualisation of the number of
model elements pr. model. ModelScope parses the �les at once into its internal
data structure on which all calculations are performed.

This gives a simple overview of how the models compare in size (i.e. number
of model elements). Following the path of scenario 2.1.1.1 we can choose to
apply another probe to each of the models. This is done by selecting a probe in

54 Validation

Figure 6.1: All four models imported to ModelScope. Initial screen shows
diagram of number of elements grouped by model

6.1 Model Research 55

the �Settings� panel of the channel. The result of the procedure can be seen in
Figure 6.2.

To inspect part of the diagram in more detail, zooming and scaling can be
applied as exempli�ed in Figure 6.3. This is achieved simply by holding down
the CTRL-key and dragging over the part of the diagram as it is partly done in
Figure 6.2.

Replicating the results of Figure 2.2 in the application scenario can be done
by simply switching the probes and the axes. Figure 6.4 gives an example of
this. Note that the results does not match completely as di�erent methods of
measurements was used. See section 5.3 for information on how the models are
parsed.

Figure 6.2: Number of model elements grouped by type. Yellow area indicates
intended zoom-section. Figure 6.3 shows the result of the zooming.

If we wanted to replicate the table views we could either use the export func-
tionality of ModelScope and export to CSV and then into a spreadsheet tool,
or we could write a simple extension visualisation to ModelScope that would
display data in a table instead of a chart.

If ModelScope does not support a certain probe or reading it can be added as
an extension. In [Sto10] the �number of elements without a name� is used as a
metric. All that is necessary to do to add such a new reading to ModelScope is to

56 Validation

Figure 6.3: Zoom on group B's model. Note that we are still looking at the
same diagram but zoomed to a part of it. Scaling adjusts auto-
matically.

implement the interface Reading and add the class to Readings.ReadingList:

public class NumberOfElementsWithoutName : Reading

{

public override string Name

{

get { return "Number of elements without name"; }

}

public override double GetReading(ProbeResult probeResult)

{

return probeResult.Elements.Where(element => element.Name ==

"").Count();

}

}

...

AddReading(new NumberOfElementsWithoutName());

Note how the use of declarative LINQ simpli�es the syntax and makes it easy

6.1 Model Research 57

Figure 6.4: Replication of Figure 2.2 using ModelScope. The Figure has been
exported from ModelScope using the �Export PDF� feature.

58 Validation

to both code and comprehend: ...Where(element => element.Name == "").

6.2 Metric Exploration

This section re-examines the scenario of section 2.1.1.2 about exploration of
metrics. Section 2.1.1.2 speculates on a model researcher trying out di�erent
types of probes and readings in an exploratory way. Here we try to utilize
ModelScope for the processes described in the scenario.

Firstly some models would be imported. This could be many or few and from
di�erent sources. It could also be fragments of models extracted via Gourmand
or from RED using the PL format. Once loaded into ModelScope, there are
no di�erence between the models with regards to their origin; only the abstract
structure is preserved.

�Model Exploration Mode� enables the researcher to explore the models element
in a fashion much like the sketch of Figure 2.3 on page 13. This can be seen in
Figure 6.5 where Model Exploration Mode is used to dynamically apply probes
in a nested way, just like it was done by hand in Figure 2.3. This way of exploring
the model data has shown in this study to be a good way to inspire new probes
and readings.

If Model Exploration Mode inspires the researcher to probe in a way not yet
supported by ModelScope, the researcher can implement the probe as an exten-
sion. This is done by making a new class implementing the interface Probe and
adding the probe to Probes.ProbeList

public class ElementsOfDiagrams : Probe

{

public override string Name

{

get { return "Elements of Diagrams"; }

}

public override string Description

{

get

{

return "Child-elements of diagrams, by diagram-type";

}

}

6.2 Metric Exploration 59

Figure 6.5: Model Exploration Mode resembling the work �ow of Figure 2.3

60 Validation

public override List<ProbeResult> ApplyProbe(ProbeResult

probeResult)

{

var results = from e in probeResult.Elements

where e.Type.ToLower().IndexOf("diagram") > -1

from a in e.Attributes.Where(a => a.Reference !=

null)

group a.Reference by e.Type into refs

select new ProbeResult { Elements = refs.ToList()

, Key = refs.Key };

return results.ToList();

}

}

See appendix A for a more hands-on manual on how to extend ModelScope.

ApplyProbe in the above example utilizes the declarative LINQ to �nd the
results to return, but an imperative solution would work just �ne as long as it
returns a list of ProbeResult. The code �nds all model elements with the string
�diagram� in its type and returns the collective set of child elements (references
of the diagrams) grouped by type of diagram. Figure 6.5 gives an illustration of
its application.

When a probe has been implemented it should be tested and visualised. After
rebuilding the code of ModelScope we can again load in models and �nd the
newly implemented probe in the probe-lists. An example of a visualisation can
be seen in Figure 6.6

6.2 Metric Exploration 61

Figure 6.6: Visualisation of the newly implemented probe

62 Validation

Chapter 7

Conclusion

This section summarises our achievements and results, discusses how they satisfy
the original vision and highlights possible future directions.

7.1 Summary and Contributions

This thesis has analysed di�erent application scenarios for exploring software
model metrics (section 2.1), has created a tool accommodating them (sections
2-5), and has validated the tool against the application scenarios (section 6).

Using the Microsoft .NET technology, we were able to provide a high degree
of stability and usability and utilizing C# and third party libraries helped to
increase productivity. We have made great e�ort to provide an architecturally
sound design, resulting in a highly modular and maintainable system structure.
Using Microsoft's LINQ technology, we provided a highly declarative way of
de�ning metrics so as to accommodate the expected need of more and di�erent
metrics in the future. We have researched and picked out libraries (section 5.2.1)
that will ease the process of implementing new visualisations in the future while
keeping consistency in both implementation and visual style. We have also
provided a manual that focuses on this aspect (appendix A).

64 Conclusion

7.2 Discussion

The project started out with two main application scenarios de�ned: on the
one hand, ModelScope should be a tool for directly exploring models as in for
instance allowing students to explore models in courses where models plays a
major part (e.g. the course taught by the thesis supervisor). This creates high
demands in terms of stability and usability. We believe we have met these
demands especially as a consequence of the underlying technology and sound
design principles. We have brie�y explored this application scenario ourselves
and with the help of fellow students, and preliminary evidence suggests we have
indeed met this objective. A decisive proof, however, is not provided and can
only be achieved in �eld test, e.g. in the upcoming course �Model Based Software
Development�.

On the other hand, ModelScope should be a tool for working scientists interested
in studying models. This creates demands on the available probes, readings and
visualisations and their extensibility. While a number of these have been imple-
mented already, we are convinced that the set provided is far from complete and
su�cient. Exactly which ones are the right ones is hard to determine up front,
and only practical usage over a sustained period of time will reveal this. We
excitedly expect what novel usage scenarios and measurement requirements will
arise as the tool is used �in the �eld�: will these fall outside the scenarios and
test cases we have de�ned? It is this consideration that led to the implementa-
tion of �Exploration Mode� - a perspective for de�ning metrics and conducting
measurements without visualisations. We believe this mode will prove useful in
coming up with new probes visualisations and serve as an important link in this
iterative creative process.

7.3 Future Work

Clearly, ModelScope needs a �eld test to detect shortcomings and weaknesses.
We believe that the usefulness of ModelScope as a research tool will primarily
rely on the repertoire of metrics and visualisations, and extending them per-
manently will be a perpetual requirement. Also, providing a richer and more
tactile user interface might support the research �ow. The modular architecture
of ModelScope should welcome such future e�orts in improving usability, even
by for example using tablets or other platforms for the front-end.

The exploration of qualitative metrics could also bene�t from a more dynamic
data structure, which could allow for extra contextual data to be measured along

7.3 Future Work 65

with regular model data. This could be retrospective data like the number of
people working on the model, hours spent, costs etc. Extending data structure
and user interface with these options should be a reasonably manageable task.

66 Conclusion

Appendix A

Manual

A.1 Prerequisites

ModelScope runs on Microsoft Windows with .NET Framework 4.5. It should
not be necessary to install framework manually if ModelScope are installed
through the provided installer. If it should fail, .NET 4.5 can be downloaded
from

http://www.microsoft.com/en-us/download/details.aspx?id=30653

68 Manual

A.2 Using ModelScope

Most features of ModelScope should be fairly self-explanatory once the user has
got accustomed to the terminology presented in this thesis. This section will
describe how to do some of the most basic tasks in ModelScope.

A.2.1 Importing models

The current version of ModelScope handles two �le formats:

• MagicDraw MDXML

• Prolog PL �les from tools such as RED and Gourmand

Importing can be done at once (�bulk�) or models can be added ad-hoc while
working with the tool. Figure A.1 shows the dialogue to import models. Note
that it is possible to add more models to ModelScope at any time in the work
�ow.

Figure A.1: Import models from .MDXML or .PL, one �le at a time or mul-
tiple �les at a time.

A.2 Using ModelScope 69

A.2.1.1 MagicDraw �le formats

MagicDraw will typically save models as �.MDZIP� and not �.MDXML�. Mod-
elScope only reads �.MDXML� so it may be necessary to unzip the �les before
importing. This can be done via a zip-tool such as the freeware 7-zip.1

A.2.2 Using Visualisations with Probes and Readings

A.2.2.1 Zooming and Scaling

To zoom in or out an a visualisation, simply hold down the CTRL-key on the
keyboard and use the scroll-wheel on the mouse.

To scale a certain part of the visualisation hold down CTRL and drag the mouse
over the desired are while holding down the right key on the mouse. See Figure
6.2 and 6.3 on page 55 for an example of this.

A.2.3 Exporting

ModelScope has two ways of exporting:

• Visualisations as PDF

• Data of visualisations as CSV

Select the �Export� tab of the ribbon and click on either �Export diagram as
PDF� or �Export diagram data as CSV� (Figure A.2). Note that it is the visu-
alised data that will be exported to CSV, not the results of �Model Exploration
Mode�.

17-zip can be downloaded from http://www.7-zip.org/download.html

70 Manual

Figure A.2: The "Export" tab

A.3 Extending ModelScope

A.3.1 Set-up IDE and Environment

ModelScope is developed in Microsoft Visual Studio 2012 with .NET 4.5 as
framework andWindows Presentation Foundation (WPF) as graphical interface.
It has not been tested in other environments such as Mono on Linux, though it
is possible that a port could be done.

To build and extend ModelScope locally, Visual Studio 2012 (or newer) needs
to be installed. When installed, the ModelScope solution is opened through
�ModelScope.sln�. Figure A.3 shows Visual Studio 2012 with ModelScope. To
build the solution, click on �Start� next to �Debug� as shown in Figure A.3.

A.3.2 Making a New Probe

To make a new probe, right click on the folder �Probes� and select �Add�, then
�Class...� (Figure A.4). Name the probe appropriately.

Make the new probe an implementation of the interface Probe by adding :

Probe to the class as seen in Figure A.5. Then click the little little arrow
on �Probe� and select �Implement abstract class Probe� to have Visual Studio
automatically stub the class.

Name the probe by overriding the string �Name�:

public override string Name

{

get { return "My new probe"; }

}

A.3 Extending ModelScope 71

Figure A.3: Visual Studio 2012 with ModelScope code base

Figure A.4: Add a new probe

72 Manual

Figure A.5: Visual Studio can automatically stub interfaces.

ApplyProbe has to return a List of ProbeResults:

public override List<ProbeResult> ApplyProbe(ProbeResult

probeResult)

{

var result = from element in probeResult.Elements

group element by element.Attributes.Count()

into numberOfAttributes

select new ProbeResult { Key =

numberOfAttributes.Key.ToString(),

Elements = numberOfAttributes.ToList() };

return result.ToList();

}

This can be done using the declarative LINQ as in the example above or imper-
atively if desired.

Lastly, the probe needs to be added to the global list of probes in ModelScope.
This is done in the static method Probes.InitProbes() by adding the following
code:

AddProbe(new NewProbe());

Breakpoints can be added anywhere using F9. Start debugging by clicking
�Start� as shown in Figure A.3.

A.3.3 Making a New Reading

To make a new reading, follow the instructions of how to make a new probe
in section A.3.2. The process is essentially the same. Instead of implementing
Probe, the new class should implement Reading.

Bibliography

[CL07] Michel R. V. Chaudron and Christian F. J. Lange. Second international
workshop on model size metrics. In MoDELS Workshops, pages 89�92,
2007.

[FP98] Norman E. Fenton and Shari Lawrence P�eeger. Software Metrics: A

Rigorous and Practical Approach. PWS Publishing Co., Boston, MA,
USA, 2nd edition, 1998.

[Sto10] Harald Storrle. Towards clone detection in uml domain models. In Pro-

ceedings of the Fourth European Conference on Software Architecture:

Companion Volume, ECSA '10, pages 285�293, New York, NY, USA,
2010. ACM.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Scope and limitation
	1.4 Related Work
	1.4.1 Manually investigating metrics through counting and spreadsheets
	1.4.2 MagicDraw Metrics and other UML tools

	2 Domain Analysis
	2.1 Application Scenarios
	2.1.1 Detailed Scenarios

	2.2 Terminology

	3 Requirements Analysis
	3.1 Context
	3.1.1 Neighbouring Systems
	3.1.2 Users

	3.2 Goals and Qualities
	3.2.1 Exploring Metrics
	3.2.2 Exploring Models

	3.3 Features
	3.4 Information Models
	3.4.1 Models and Model Elements
	3.4.2 Visualisations
	3.4.3 Probes

	4 Design
	4.1 User Interface
	4.2 Architecture

	5 Implementation
	5.1 Technology
	5.1.1 Platform and programming languages
	5.1.2 Version control

	5.2 Libraries and Components
	5.2.1 Libraries for Visualisations
	5.2.2 Libraries for Parsing
	5.2.3 Libraries for Exporting
	5.2.4 Libraries for Graph Visualisation (``Exploration Mode'')

	5.3 Parsing
	5.3.1 Parsing MagicDraw files
	5.3.2 Parsing PL files

	5.4 Test
	5.4.1 Results of Unit Testing
	5.4.2 Code Coverage
	5.4.3 Performance

	6 Validation
	6.1 Model Research
	6.2 Metric Exploration

	7 Conclusion
	7.1 Summary and Contributions
	7.2 Discussion
	7.3 Future Work

	A Manual
	A.1 Prerequisites
	A.2 Using ModelScope
	A.2.1 Importing models
	A.2.2 Using Visualisations with Probes and Readings
	A.2.3 Exporting

	A.3 Extending ModelScope
	A.3.1 Set-up IDE and Environment
	A.3.2 Making a New Probe
	A.3.3 Making a New Reading

	Bibliography

