
Interaction in Multi-Agent Systems

Thomas Kjærgaard Malowanczyk

Kongens Lyngby 2014
Compute-BSc-2014

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk Compute-BSc-2014

Summary (English)

The goal of the thesis is to implement emotion in a multi-agent system to im-
prove the interaction between human and computer. This is done through ex-
amining existing theories and models of emotions used to produce a logical
formalisation of emotion for the basis in creating a framework used in the agent-
programming language in GOAL. This framework gives an agent the capabilities
to experience 22 emotions and express them both through visual representation
and natural language. An agent is produced with the framework implemented
along with an environment with the focus on interaction with a user in order to
test the framework. The new agent is able to experience 18 of 22 emotions pos-
sible in the framework and can express these emotions both through language
and visual expression.

ii

Summary (Danish)

Målet for denne afhandling er at implementere følelser i et multi-agent system
for at forbedre interaktion mellem menneske og maskine. Dette er gjort ved at
eksaminere eksisterende teorier og modeller for følelser. Disse er brugt til at lave
en logisk formalisering af følelser og til at udvikle et framework som er brugt i
agent-programmeringssproget GOAL. Dette framework giver en agent mulighed
for at opleve 22 følelser og er i stand til at udtrykke disse følelser b̊ade igennem
visuelle repræsentationer og naturligt sprog. En agent er produceret med dette
framework samt med et environment med fokus p̊a interaktion mellem agent og
bruger for at teste frameworket og er i stand til at oplever 18 af de 22 mulige
følelser samt udtrykke dem.

iv

Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the re-
quirements for acquiring an BSc in Software Technology.

The main subject for this thesis is artificial intelligence but it is however not my
first time working with AI. At my third semester I had the course ’Introduction
to Software Technology’ where we had 3 projects during the course and one of
the projects was to make a simple tic-tac-toe game, and after it was made I spend
large amount of hours programming an AI for the game. The AI was very simple
but it did provide some challenge to the player, however if the player was a bit
smart the AI could be tricked into a situation where the player would always
win. The next AI I made was last year in a project where a larger software
program was to be produced. My group was given the task to produce an AI for
a strategy game which was intended to compete against 2 other groups. Sadly
the competition never took place but we did manage to develop an AI capable of
dealing with multiple goals and analysing its surroundings. However these AIs
was not that advance or intelligent and simply consisted a series of algorithms
and conditions.

I have since taken the courses ’Introduction to Artificial Intelligence’ and ’Logical
Systems and Logical Programming’, and in parallel to this thesis I also had a
course for learning to program in GOAL, an agent-programming language used
to make multi-agent systems with intelligent agents. With these three courses I
had the basis for developing more intelligent and rational AI’s.

Emotions, however, was not determined to be the focus at the beginning of
the thesis as all I received at the start was the title; ”Interaction in Multi-

vi

Agent System” and the master thesis [Spu13] as inspiration. The master thesis
examined interaction in organized-oriented multi-agent system and focused on
modelling a theatrical performance. In this thesis the agents was implemented
to show simple emotions but it was a very small part of the thesis and not
explored fully. It was here that I got the inspiration to implement emotions in
agents used for interaction in multi-agent systems.

Lyngby, 01-July-2014

Thomas Kjærgaard Malowanczyk

Acknowledgements

I would like to thank my supervisor Jørgen Villadsen for accepting me as one
of his many bachelor student projects on such a short notice and his support
through the project. He has provided me with material in order to establish
what this thesis should be about and assisted in finding relevant material for
the subject.

I would like to thank Salvador Jacobi in the time we spent understanding and
learning to program in GOAL and his input and contribution at the initial part
of the project.

I send my thanks to Drude Hargbøl Hundevadt for proofreading the thesis and
contribute with inputs for improvements.

Finally I want to thank all the people who have listened and shown interest in
the project which has maintained my motivation and interest in the subject.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Multi-Agent System 5
2.1 GOAL . 6

2.1.1 Agent . 8
2.1.2 Environment . 12

3 Emotions 15
3.1 Existing work . 15

3.1.1 Appraisal theory . 16
3.2 The OCC model . 17

3.2.1 Revisited model . 22

4 Modelling Emotions 25
4.1 Formalizing the OCC model . 26
4.2 Logical Formalization . 28

4.2.1 Basic Emotions . 30
4.2.2 Complex Emotions . 32
4.2.3 Relation . 35
4.2.4 Intensity . 36
4.2.5 Expression . 39

x CONTENTS

5 Implementing Formalization 41
5.1 Emotions in GOAL . 41

5.1.1 Realizations of Emotions 42
5.1.2 Decay . 50
5.1.3 Mood . 52

5.2 Expressing feelings . 54

6 Emotional Agent 57
6.1 SimpleJim . 57

6.1.1 Environment . 59
6.1.2 Agent . 62

7 Discussion 73

8 Conclusion 77

A Appendix 79
A.1 emotions.mod2g . 79
A.2 Agent . 91

A.2.1 Jim.goal . 91
A.2.2 planner.mod2g . 95

A.3 Environment . 96
A.3.1 EnvironmentInterface.java 96
A.3.2 EnvironmentWindow.java 102
A.3.3 Environment.java . 106
A.3.4 Agent.java . 110

Bibliography 115

Chapter 1

Introduction

In today’s world we see that an ever increasing focus in the development of
software has been in the area of human-computer interaction (HCI). Especially
since smartphones have been developed, where the interaction between the user
and the software has grown. Especially since the user interaction more directly
with the software instead of through real world interfaces such as buttons. The
next step in HCI is already starting to emerge as it starts to merge with the
field of artificial intelligence (AI) or what appears to be AI.

Apple launched Siri in 2011, which is a personal assistance for the Iphone that
is operated through conversational interface as Siri is able to understand nat-
ural language. This means that request or commands can be given to Siri to
operate the device such as make phone calls, set reminders and navigations to
a desired destination. This form of personal assistance is not exclusively found
in Apple products as android devices now has the same functionalities as Siri.
Microsoft has recently come out with their version of Siri called Cortana and
their personal assistance avatar is taken from the their game ”Halo” where in
Cortana is a portrayed as a human like AI, assisting the protagonist/player on
his quest. Unlike Siri, Google’s and Microsoft’s versions has improved the aspect
of ”personal assistance” as they are able to learn the users habits and interests
in order to provide relevant information to the user. The idea of having an AI
personal assistance is starting to be an reality and the movie ”Her” released in
2013 gives an image of where this is taking us. In this movie the protagonist,

2 Introduction

Theodore, acquires a new talking operation system equipped with a human-like
AI with feelings designed to adapt and evolve to its user. Theodore and his
new OS develops a romantic relationships and the movie centralize about the
possibility of human-AI relationships.

In the gaming industry the idea of giving AI emotions is also part of the future.
The gaming industry has grown tremendously the last decade and with it the
demand for better graphics and more immersive gameplay[Cho]. One of the
aspect to make more immersive gameplay is in the AI and as the computation
power on the new generation of console has increased, the option to make more
complex AI has also increased. The game ”The Last of Us”released in 2013 relies
heavily on complex AI as the player is followed by an AI named Ellie throughout
the game and one of the key things for this AI was to make it believable in the
way it acted in the environment in order to not break immersion[Dyc]. However
the direct interaction with the player is not in focus as most of the interaction
is scripted, so when a condition is reached an interaction is played out. Besides
interaction, emotion can also be used in the AI’s decision making which will
remove it from the cold rational thinking and give it a more human touch. It
is believed that to improve the immersion in games the next step is to improve
the AI’s behaviour and one way is to simulate emotions[Lyn].

Complex AI able to show emotions is not just useful to improve immersion in
game but also in e-learning. With the overflow of devices such as tables we see
that the these devices are becoming entertainment for kids but they are also
used as a learning tool. Most e-learning tools consist of a tutor that interacts
with the user and making a believable AI that is able to recognize and respond
with emotions desired as it can improve the users emotions and in turn increase
the users learning capabilities. This is evident as emotions plays a large role in
human learning and decision and are closely tied to a person decision making
[ME12].

In order to implement emotions in AI it is important that we understand how
emotion in human works and this has been a subject for many year. Already
back in the 1950 have there been effort to understand emotion and through the
year multiple theories have been proposed, some of them with wild differences
of what emotions are. However these theory are made from a psychological
approach and does not align with any form of computational approach. But
the last few decades models have been proposed using cognitive psychology of
appraisal wherein emotions are extracted from the evaluations of events, ac-
tions and objects but still far from the conventional AI consisting of complex
algorithms but demands more human like structured intelligence.

An agent is considered intelligent if it is able to sense its environment and
act upon it, yet it does not define human-like intelligence. In order to make

3

more sophisticated intelligence, formal logic has been proposed that provide
ways to handle data through knowledge representation and reasoning which
uses natural language. Formal logic uses inference to derive a logical conclusion
and provides ways for computers to reason about existing information. Besides
logical formalization an agent can be build with the BDI-model which is a model
of human practical reasoning. This is designed for programming intelligent
agents wherein the agent is equipped with beliefs, desires and intention. The
agent then has beliefs about it’s environment, desires of what it wants to obtain
and from these two it can derive intention or action to act upon the environment.
This type of agents provides a good foundation of implementing emotions as it
give the agent capabilities to evaluate events, actions and objects.

The BDI-model has been the basis for new areas of artificial programming
and especially in the field of agents and multi-agent systems where new agent-
programming language has surfaced such as Jason and GOAL. These language
makes a perfect candidate for emotions but the next is to translate emotions
into logical formalization that agents can understand and use. But how close
will the agents emotion be to a humans emotions and is it able to express the
same variety as a human?

The thesis deals with;
understanding theories and models of emotion and create a logical formalization
that can be applied to agent-programming language.
Develop and evaluate an agent with the capabilities of showing emotions, em-
pathising on the interaction between human and computer.

The thesis begin with two sections on how to program in multi-agent system
in the agent-programming language GOAL and establishing the theories and
models of emotions. These are followed by two sections where a logical formal-
ization of emotion is produced and used to program a framework made in the
agent-programming language GOAL. Lastly, an agent along with an environ-
ment is made from the framework in order to test the framework. The thesis
ends with a discussion of the implementation of emotion along with the agent
and environment and a conclusion of the thesis.

4 Introduction

Chapter 2

Multi-Agent System

Multi-agent system also known as MAS is a computational system wherein mul-
tiple agents are connected to an environment. These agents work together in
order to solve problems faster than a single agent can or even solve problems
that requires more that one agent.

But what is an agent?
In [RNC+10] an agent is defined as anything that can perceive in its environment
through sensors and act in this environment through actuators. However it is a
very loose definition that doesn’t tell much as anything that can sense and act
can be seen as an agent. In the article [WJ95] the term agent is distinguished
by two notions, a weak notion and a stronger notion.

The weak notion of an agent is defined by the following four properties.

• autonomy ; meaning that the agent acts without any intervention from
outside

• reactivity ; the agent perceive the environment and responds to the changes
that may occur in this environment

• pro-reactivity ; which means that the agent take the initiative to perform
action instead of just responding to the environment

6 Multi-Agent System

• social ability ; simply meaning that the agent interacts with other agents
in the environment

With this, the previous definition is expanded as it simply consisted of the term
reactivity. The new definition fits much better within MAS as the property of
social ability is a key element for multiple agents.

The stronger notion of an agent is used mainly in the field of AI where an
agent is defined as a computer system containing the same four properties as
the weaker notion but is also implemented using human-like concepts. These
concepts can for example be emotional agents using affective computing or an
agent programmed with the the BDI-model.

It should be noted that neither the weak or strong notion of an agent exclude
humans for being defined as an agent since they follow the four properties. This
means that when developing an MAS it could just as easily be agent to agent
interaction as agent to human interaction.

Another well used concept is the BDI-model as mentioned before, which will be
the basis of the agents used in this paper. In this model the agent has three
mental attitudes; beliefs, desire, and intention, hence the name BDI.

• Beliefs represents the agents beliefs about how the world is.

• Desires represents the agent desires describing states that the agent would
like to reach.

• Intention is the agents commitment to follow a plan to obtain its desires.
These plans are derived from the agents beliefs and desires

The big advantage of the BDI-model is that the beliefs and desires of the agent
can easily be written in first-order logic suited for declarative programming
language such as GOAL.

2.1 GOAL

Currently there exists a large amount of agent based modelling softwares. Some
of these are focused on multi-agent systems. Some are mentioned in [SD02],
but only a few have agents implemented after the BDI-model, e.g. Jason, Jadex

2.1 GOAL 7

environment {
env = "environment.jar".
init = [variable1 = 5, variable2 = true].

}

agentfiles{
"agent1.goal".
"agent2.goal".

}

launchpolicy{
when [type = agentType, max = 1]@env do launch agent1:Agent1.
launch agent2:Agent2.

}

Figure 2.1: Example of a mas2g file

and GOAL. In this paper the agent programming language that will be used is
GOAL.

GOALs main feature is that it uses the logical language Prolog so the agent has
both declarative beliefs and goals which makes it an intuitive language to write
in and easy to develop in. This paper will not go in depth with how to program
in GOAL but it will go through the very basic of GOAL and for a more detailed
guide the reader is referred to [Hin14].

A GOAL Program is defined in a MAS module file with the extension .mas2g.
This file is very basic and defines the environment that the system uses and
what agents that are connected to it. An example of a MAS module can be seen
in 2.1.

In the .mas2g example we can see that it consist of three blocks.
The first block environment defines what environment that is loaded from a
.jar file the system are to use and also defines some initial variable that the
environment will start up with. It is however not necessary to have an environ-
ment in order to develop a MAS in GOAL.

The second block agentfiles defines what agent files with the extension .goal,
are to be used in the system and in the example we see that there are two agent
files that are going to be used in the system.

The third block is launcpolicy that defines a policy between the the agent and
the environment in the system. These policies consists of conditions for how the
agent should be connected to the environment and its entities, however an agent
can be launched without being connected to an environment. In the example we

8 Multi-Agent System

see that the MAS file launches the two agents, the first is to be connected to the
environment with the condition that if the environment has an entity with the
type agentType, then there can be a maximum of 1 of that agent type. The
second are launched in the system without being connected to the system. It is
also possible to connect multiple agents to a single entity in the environment,
this is well suited for an entity composing of multiple independent systems that
can communicate with each other such as a robot.

2.1.1 Agent

Agents in GOAL are implemented after the BDI-model as mentioned previously,
this means that the agent has a set of beliefs and desires it uses to define in-
tentions to obtain these desires. In GOAL an agent’s mental state is composed
of a knowledge base, belief base, and a goal base which will be discussed fur-
ther on. With the previous definition of an agent in chapter 2 it should be
able to react to the environment it is situated in and in so should be able to
percepts it’s surrounding. For that the agent is equipped with a percept base
that contains informations received from the environment the agent is connected
to. The agent is also required to have social abilities and in GOAL agents can
send messages to each other and to receive or send these messages the agents is
equipped with a mail-box.

An agent should be able to react to the environment by executing actions and
to derive what action to perform which requires the ability to check the agent’s
mental state. GOAL gives the mean in the form of action rules that uses a
mental state condition in order to decide what action to perform. To be able to
inspect the agent’s mental state GOAL has some inbuilt predicate that queries
the agent mental state using mental atoms. There are two type of mental atoms
and one is bel(ϕ) that queries the agents belief base and knowledge base and
checks if the condition ϕ is in either of these bases. The second mental atom is
goal(ϕ) that queries the agents goal base. It should be noted as GOAL uses
Prolog the contents of the mental atoms must be a valid Prolog query. To be
able to inspect the percept base the predicate bel is also used, the only change
is that a the query is written as percept(ϕ) (e.i bel(percept(ϕ))) specifying
to GOAL that the percept base it be to inspected. It is also possible to check if
a condition ϕ is not in the base by negating the query using the predicate not
like not(bel(ϕ)).
These mental atoms can be used to build a mental state condition that are a
conjunction of mental literals.

In GOAL there are three forms of action rules.

2.1 GOAL 9

if <mental state condition> then <action>.

This action rule is the most basic and and simply says that if the mental state
condition is true then perform the action.

forall <mental state condition> do <action>.

This action rule is similar to the first but instead of executing the action rule
once, the action is executed for every instances where the mental condition
succeeds. This rule is mainly used when updating the belief base with received
percepts from the environment as the agent can receive multiple percepts with
the same predicate.

listall <Listvar> ← <mental state condition> then <action>.

This action rule is somewhat similar with forall but instead of executing the
action rule for every time the mental state condition succeeds, it instead stores
all variables in the mental state condition for which it succeeded in a list that
can be used in <action>

Nesting these action rules is possible as the <action> can just be a block
containing new actions rules.

forall <mental_state_condition> do {
if <mental_state_condition> then <action>.

}

To update the agents belief base, GOAL as two built-in actions; insert for
inserting new information into the belief base and delete for removing infor-
mation from the belief base. The same can be done with the goal base where the
action adopt insert a goal to the goal base and drop to remove a goal from the
goal base. Yet the drop action is not used that often as goals are automatically
removed from the goal base when they are achieved which happens only when
both the belief and goal base has the same literal. This is called blind commit-
ment strategy as the agent is committed to achieving their goals and should not
drop goals if there aren’t a valid reason.

An agent file .goal can consist of modules, which are used for sectioning the
agent file. An agent is composed of at least three modules; init, main, and
event module. The init module is the first module that is executed when the
environment starts and it is here that initial beliefs and goals are set. After
that, a cycle starts where each cycle where the event section is executed first
followed by the program section. The main module is where the agent decides
what action to perform from it’s knowledge, beliefs, and goals and the event

10 Multi-Agent System

module is where mostly beliefs are updated.

Each module may contain the following five sections;

knowledge
Here the agent is given the domain logic, e.i. facts, it has of the environment it
is situated in. This section is written in pure Prolog syntax and the rules are
static and cannot be changed at run time.

beliefs
This section gives the agents its initial facts of how the world is and unlike the
knowledge sections these facts can be changed at run time.

goals
This section is designed to give the agent initial goals but is mainly used in the
init module as it is only executed once.

actionspec
This section specifies what action the agent can perform, each action has a pre-
and post-condition where the pre-condition are a mental state condition of the
belief base that has to succeed before the agent can perform that action. The
post-condition contains a conjunction of literals and are facts that are inserted
into the belief base.

program
Here a set of action rules is defined, governing the strategy of the agent and
executing action from the actionspec section based on this strategy.

In 2.2 an example of how an agent file looks is given and this agent has the
simple task of going to work. From the example it can be seen that the agent
has the modules init, main, and event module and in the init module, all of the
5 modules are present.

A program section can follow a specific rule evaluation order deciding how the
rules are to be evaluated and executed as more than one action rule may be
applicable to be performed. In the main module where the agent decides what
action to perform only one action should be executed, however in the event
module, multiple action rules should be performed as it is desired to update the
belief base with all the received percepts and messages in the same cycle.

This paper will only be using the following two of the rule evaluations that is
possible in GOAL:

Linear; With this order the action rules are evaluated in the order they are

2.1 GOAL 11

init module{

knowledge {
weekend(saturday).
weekend(sunday).

}

beliefs{
home.
day(tuesday).

}

goals{
work.

}

program{
if bel(percept(day)) then insert(day).

}

actionspec{
gotowork{
pre{home}
post{not(home), work}

}
}

}

main module{
program{
if bel(day(D), \+weekend(D)) then gotowork.

}
}

event moduel{
if bel(percept(day), day) then delete(day) + insert(day).

}

Figure 2.2: Example of module

12 Multi-Agent System

written and the first rules in which the mental state condition is true the action
is performed and no further evaluation is performed and exits the program
section. This order is default for the main module.

Linearall; Much like the linear order this order goes through each action rules
in the order they are written but instead of only executing one action, all action
rules where the mental state condition succeeds is executed. This order is default
for the init and event module.

Beside the three mentioned modules that are default additional modules can
be made, either in the agent file or in a new file called module file with the
extension .mod2g. Unlike the default modules these new modules needs to be
called from the agent file in one of the default modules and are simply called as
an action in an action rule using the modules name.

if true then NewModule

To use a module file in the agent file the module first needs to be import which
is done with the command #import NewModule at the top of the agent file.

GOAL also provides a way to easier define mental state conditions with the use
of macros. An macro is a function defined at the top of the program section with
the command #macro and is used to define conjunction of mental literals into
easier understandable commands. Using the example in 2.2 the mental state
condition in the event module can instead be made with a macro.

program{
#macro workday(D) bel(day(D), \+weekend(D))

if workday(D) then NewModule
}

A macro should not be confused with a knowledge function as a macro can only
contain queries to the agents belief base and can’t contain prolog functions and
a macro function is used outside a mental atoms, e.i bel and goal.

2.1.2 Environment

As mentioned before the system the agent is situated in can be an environment
which is defined in the .mas2g file and is provided by a .jar file. GOAL
uses a environment interface standard (EIS) to connect between GOAL and
the environment and has a set of requirements in order for the environment to
work with the interface. The proposed EIS and it’s requirements to develop an

2.1 GOAL 13

environment using EIS can be read in [BHD11] and [BHD].

The EIS has the task of linking the agent in the agent-programming language
(APL) with free controllable entities in the environment, but it’s main task
is to act as a medium in which the APL and the environment communicates.
The EIS also has the job of connecting the Environment Management System
(EMS) which provide actions to control the environment between the APL and
environment. This controller can either be in the environment or the APL
but in this case GOAL controls the EMS. These controls could be initializing
the environment using initial configurations as mentioned before or be able to
start, pause, or end the environment along with pausing individual entities and
killing the connection between agent and entity. As mentioned the environment
contains the representation of the state of the world and provides the APL with
ways to interact with the world and sense it. It is the environment task of
regulating what each agent can perceive in the environment and providing the
correct information when responding to a percept request.

The advantage with the EIS is that there is no general rule for how the envi-
ronment is developed, the only thing that is required is implementing methods
defined by the EIS interface. This means that how the environment looks and
works is up to the developer. The methods that is required for EIS to be con-
nected are the following;

public void init(Map<String, Parameter> parameters)

This method is used by the EMS to initialize the environment with the param-
eters given in .mas2g as mentioned previously.

Percept performEntityAction(String entity, Action action)

This method is when the agent has performed an action. The environment
should then alter the current state by the received action. The environment
may also provide a respond to the action in the form of a percept. The received
action can contain Parameters that can be of four types defined by EIS,
Identifier which is the same as strings, Numeral says it self, Function
that can have the form ”name(arg1,arg2)” and last ParameterList that is
simply a list of parameters.

LinkedList<Percept> getAllPerceptsFromEntity(String entity)

Here an entity has requested a percept and the environment responds with a
list of percepts that the agent can perceive in the current state. The percepts,
defined in a class called Percept provided by EIS, holds the name of the
percepts in the form of a string and may contains any number of Parameters.

14 Multi-Agent System

boolean isSupportedByEnvironment(Action action)

boolean isSupportedByType(Action action, String type)

boolean isSupportedByEntity(Action action, String entity)

As action are defined in the environment the EIS should be able to tell if the
received action from an agent is supported by the environment. This is where
these functions comes in, the first is all the actions that is in the environment,
the second is the actions that entities of certain type can perform and the last
is what a specific entity can perform. This gives the ability to provide different
entity types and individual entities with their own set of actions.

Chapter 3

Emotions

This chapter will first review existing work and theories of emotions along with
proposed models for emotions in order to find the most suited for modelling
emotions in GOAL.

3.1 Existing work

In the field of computational modelling of emotion there have been multiple and
widely different approaches as there are currently no generally accepted theory
of emotions, however, there is an acceptance that such emotional states as joy
and fear are normal reaction to perceived events and prospect of events [RHD+].
This means that even though the approaches are different the final product is
somewhat similar in the emotional states that are expressed. Another reason
for the different approaches is the multitude of intended function in the emotion
in an agent, these functions can generally be classified into three categories
[RHD+].

Informational or epistemic function of emotions
Here the emotions are seen as informational such as changes in the agent or
information related to an object or an event that is shared between agents.

16 Emotions

Attention or resource-allocation function of emotions
Here the agent uses the emotion to focusing on relevant events currently affecting
the agent in order to use more resources to process and deal with these events.

Motivational function of emotions
Here the agent uses the emotions in its decision making by having maybe a
hedonistic desire to avoid negative and only produce positive feelings.

As this thesis focus on the human-computer interaction, then it will only deal
with informational function of emotions but it should be possible to extend it
further to one of the other categories.

The different theories about how emotions functions can also be divided and
has the following three disciplinary groups;

Physiological theory of emotions which states that activities within the body
that responds to events will elicit emotions e.g. the event of immediate danger
result in the physiological responds of elevated heart rate which in turn elicit
the emotion fear.

Neurological theory of emotions defines emotions as hard-wired in the brain and
that it is the activity within the brain that elicit emotions.

And lastly cognitive theory of emotions states that it is the thoughts, memory
and mental activity that elicit emotions.

Since the thesis works with artificial intelligence in MAS and the agents are
modelled after the BDI-model that follows the cognitive theory of emotions.

3.1.1 Appraisal theory

An aspect of cognitive theory is the appraisal theory that has the theory in
which it is the evaluations of events that causes specific reactions in people. An
example of this is a student who is taking an exam and if the event is perceived
as positive then the student may feel joy, happiness, or even anticipation as
the event may be long term such as the student receiving top grade, finishing
his education with high remarks and potentially landing a great job. Appraisal
theory has two basic approaches which gives an explanation for the appraisal of
emotions and how these emotions can develop.

One of these basic approaches is structural model of appraisal which splits the
appraisal process up in to two categories, primary and secondary appraisal. In

3.2 The OCC model 17

the primary appraisal the person is to evaluate an event by the motivational
relevance and its congruence to ones goals. The former is how relevance the
event is to the persons needs and is shown to influence the intensity of emotions
and the latter being the how these events align with the persons goals [SK09].
The secondary appraisal focus on the person evaluations of their resources such
as who is to blame, as a person may blame himself or another or a group of
people. Another focus is the person’s ability to cope with emotions or problem-
focused coping which refers to that person ability to take action and change the
situations to align with ones goals [SK09].

Besides using appraisal as an approach other uses arousal as an approach to
emotion as stated before with the physiological theory of emotion where the
bodily function are a key element. Other theory states that arousal and emotions
are interchanged and are both equally part of emotions [Onl].

3.2 The OCC model

In 1988 a book titled The Cognitive Structure of Emotions written by Ortony,
Clore and Collins [OCC88], explored if the cognitive psychology could provide
a foundation for the analysis of emotions. A model of emotions was proposed
defining three aspect to which humans react emotionally; consequence of event,
action of agents and aspects of object. This model was named OCC model taken
from the first letters of each author and is a widely accepted cognitive appraisal
model for emotions. In this model 22 emotions was defined into 6 groups, that
are systematically structured as seen in figure 3.2.

Beside structuring the emotions the OCC model also defines intensity of the emo-
tions in order to make a computational tractable motions. Each emotions has a
set of variables that defines the intensity of emotions such as the desirability or
likelihood of an event, the effort in attaining an event or the praiseworthiness
of an action.

Emotions in the OCC model are structured after an affective reaction being
either positive or negative so each emotion has a related opposite reaction. This
can be seen in figure 3.1 where in the aspect consequence of event, the agent can
either have a pleasing or displeasing reaction to an event, in actions of agents
the agent can have an approving or a disapproving reaction to an action and in
aspects of objects the agent either likes or dislike an object.

Consequence of events can then be split up in to two branches where the event
is either focused on the agent itself, consequence of self, or another agent and

18 Emotions

Figure 3.1: Structure of emotions in the OCC model. [OCC88, p. 19]

consequence of other. Consequence of others give rise to the first group of
emotions called fortunes of others where an event can either be seen as desirable
or undesirable and this group contains four emotions.

The aspect, consequence of self, is a bit different as it also deals with the
prospects of an event and this give rise to two branches as the prospect of
an event is either seen as relevant or irrelevant for the agent. The branch for a
irrelevant prospect contains the group called well being which only contains two
emotions and these emotion are the default case of being pleased or displeased
about an event and does not consider prospect as part of the emotion. The
other branch regarding relevant prospects leads to the group prospect based and
deals with events that the agents looks forward to and contains six emotions.
The first two are hope and fear, these can then be confirmed or dis-confirmed
leading to four new emotions.

Going back to the branch, action of agents, the agent can either approve or
disapprove an action. This aspect leads to two new branches where the agent in
focus is either the agent it self or another agent but both of these branches leads
to the same group called attribution which contains four emotions. However two
of the emotions are relating to the the agents action and the other two relates
to the action of another agent.

3.2 The OCC model 19

These emotion can be combined with the emotions in the well-being group to
produce a new group well-being/attribution compounds where an example would
be that if the agents performs an approving action leading to the the agent
having the emotion pride and that action produces a pleasing event resulting in
the agent feeling joy, these emotion will then elicit the agent feeling gratification.

The last aspects, aspects of objects, is very simple, the agent can either like or
dislike an object and that leads to the last group attraction that contains two
emotions, love and hate.

Implementing these emotions also requires an intensity as as themselves they
will only produce an agent where each emotions has an equal value which is
not suitable as agent should feel a more prominent feeling of joy by winning
1 million dollars than finding 10 dollars on the street. To implement intensity
each emotion has a set of variables affecting the intensity of emotions, some of
them are global and affects all emotions and others a local.

Global variables
The OCC model introduces four global variables, sense of reality, proximity,
unexpectedness and arousal , where the first defines how the agents feels that
the event, action or objects seems real. Example of this is that an event can
seem unreal to an agent at first which will not produce an action, but it is first
when the agent has come to terms with reality that an emotion is produced.
The second variable, proximity, is the proximity of time which says how close
to the present an event, action or object are. If an agent is first told of an event
years latter then it should not give rise to a large intensity of emotions compared
than an event that is happing in the present.
Unexpectedness defines if an event, action or object was unexpected meaning
that the agent has never considered and event or action to happen at all.
The last variable is arousal and unlike the others that are mainly cognitive, this
variable deals with the agents physiology. If an agent experience negative events
such as burning the toast for it’s morning breakfast and forgetting to make coffee,
these events will most likely increase the agents arousal and give rise to a feeling
of frustration. This frustration and increased arousal may produce more intense
action and emotions where the agent may pour it’s frustration on objects or
other agents.

Local variables
Turning to the local variables each of the three aspects discussed before (e.i.
event, action, object) has a central variable used in all the relating groups. For
event based emotions the central variable is desirability which defines how much
the event is considered desired or undesired for the agent. For the aspects of
actions the central variable is praiseworthiness that tells if the action is to be
praised or not. The last aspect regarding objects has the central variable is

20 Emotions

appealingness which is straightforward and defines if a object is appealing or
not.

Continuing in the event based emotion the intensity of the emotions in the group
fortunes of others are affected by the variables desirability for other, deserving-
ness, and liking. For example if an agent feels sorry for another agent failing
an exam, the intensity is determined by the desirability for the other agent to
succeed, if the agent deserves to succeed depending on how much effort he has
put in to it or if the agent likes the other agent. Or it may simply be if the
agent is concerned with the other agents well being the agent has a desirability
for the agent to succeed.

Looking at the prospect based group the two first emotions, hope and fear, the
likelihood of an event to happen is the only variable besides the desirability of
an event to affect these emotions. Looking at the more specialised emotion
resulting from hope and fear, such as satisfaction and relief, the two variables,
effort and realization along with the intensity of the relating original emotion
will affect the new emotion. Effort is simply the effort the agent has spend on
realizing the event, so an agent spending a large amount of effort in making
a event happen should feel a an intense emotion than if no effort is spend.
The other is realization which defines the degree of which the event is realized
meaning that if an event is only partially realized a lesser intensity should arise
than if the event is fully realized. An example could be for an agent to clean the
house before his quest arrives but does not manage do complete the task fully.
Then the he should not have the same intense feeling of satisfaction than if he
completed the task fully. This variable, however demands that the event can be
partially realized.

The well-being group has only one variable that affect the related emotions
which is the central variable desirability.

The emotions in the attribution group has the central variable praiseworthiness
and the two variables, expectation deviation and strength of unit. When dealing
with such emotions it is not necessarily emotion that arise from the agents own
action. it could very well be from the action from an agent or organization that
the agent has a strong association with. A mother can be proud of it’s child
for accomplishing a great goal or a worker in a company may feel shame if the
division he works makes a mistake but he is not directly to blame, however,
he has a strong affiliation with his division. It is the strength of unit that
determines if the the action of an agent should be seen as part of on self and in
so feel pride/shame. The expectation deviation variable is when an agents action
deviate from what was expected of an agent, or an agent in a specific role. For
example a person would most likely admire another stranger for performing
CPR on a person experiencing cardiac arrest more than if it was a paramedic.

3.2 The OCC model 21

For the well-being and attribution compound group no new variable is intro-
duced as the intensity is simply derived by the attending emotions from the
well-being and attribution group.

The last group attraction has a single local variable that defines the intensity
of its emotion besides the central variable appealingness called familiarity. The
idea is that if an agent has an increased exposure to an objects the more familiar
it would become and in so the intensity of the liking or disliking are increased.

Each variable also have assigned a weight to them as an emotion with multiple
variable then each variable is not sure to have the same precedence yet the
model does not go into detail how these weights are determined. These variables
and their weight is not the only deciding factor for emotions as the model also
introduces a threshold. Each emotion has a context sensitive thresholds to
ensure that emotions are only experienced if they exceeds this threshold and
can be used to introduce the concept of moods in the agent. An example would
be when a person is in good mood due to previous positive emotions, it’s most
likely that lesser negative events or action would not give rise to a negative
respond in that person. Using threshold we can lower or increase the threshold
value to visualize emotions depending on the emotion the agent is feeling, so a
series of positive emotion can increase the value of some negative thresholds and
reduce the value of some positive thresholds and vice versa. Besides filtering out
low intensity emotions, the thresholds also impact the intensity so the actual
intensity value is the amount that an emotions intensity exceeds the threshold.

Example from the OCC model of calculating the intensity value of the emotion
joy would be the following pseudo-code where the potential intensity of the
emotion is computed first.

if DESIRE(p, t, e) > 0 then
set JOY-POTENTIAL(p, e, t) = fj [|DESIRE(p, e, t)|,Ig(p, e,)]

end if

Where DESIRE(p, t, e) returns the value of desire a person p, assigns to a per-
ceived event e, at the time t. Ig is the function that returns the value of the
combined global variables. fj is the function that returns the intensity value for
the emotion joy.

Next the potential intensity is checked against the related threshold.

if JOY-POTENTIAL(p, e, t) > JOY-THRESHOLD(p, t) then
set JOY-INTENSITY(p, e, t) = JOY-POTENTIAL(p, e, t)− JOY-THRESHOLD(p, t)

else
set JOY-INTENSITY(p, e, t) = 0

end if

22 Emotions

Here we see that if the potential intensity does not exceed the thresholds then
the intensity it set to zero in order to indicate for the system that an emotion
of joy is existing but the agent didn’t experience it.

Another usefulness for the intensity is in the case of the agent expressing its
emotion in a language as each emotion can have a token that reflects the current
intensity of an emotion. So if the agent is feeling low intensity of joy it may use
the token ”pleased” or ”glad” but if it was a high intensity it could use ”ecstatic”.

3.2.1 Revisited model

However hard they tried to make the OCC model computational it did contain
ambiguities and the lack of logical approach has made it harder to implement.
Looking at 3.1 we see that the model is a flow diagram of how the emotions
are constructed but from a computer science perspective the figure could be
formed as a inheritance diagram, especially since that joy and distress are default
emotions for the branch ”consequence of self”.

Through out the book they use ”desirable event” but looking at it we are not
interested in the event but rather the consequence or outcome of an event. An
earthquake in it self is not of relevance but rather the consequence it produce
has such as the damage it carries or lost of life.

Another problem is in the Prospect-based emotions where fear can lead to dis-
appointment and satisfaction but neither of these two emotions spawns from
fear as both arise from a desirable event. The same can be said about hope as
neither relief or fear-confirmed has anything to do with hope.

The fortunes of other emotions can be related to the well-being emotions since
”happy-for” is when an outcome is considered desirable for others and in so must
also to some degree be desirable for on self and the thus the feeling of ”joy” is
experienced. For example, being happy for another for completing a difficult
task since they desired it also means that it was desired that they succeeded
an happy that they did. This means that the term focusing on and prospect
irrelevant is not suitable any more and logical incorrect, since ”happy-for”implies
”joy” then the focus is also on oneself.

The aspect of objects is also considered to be in need of improvements as there
are no conditions to distinguish love/hate from the generalized liking/disliking.
For approving/disapproving, pride/shame and admiration/approach is differen-
tiated by who performed the action and for pleased/displeased the emotions
hope/fear and joy/distress is differentiated by the one being a prospect and the

3.2 The OCC model 23

other an actual consequence. love/hate does use familiarity but is only used
to further the intensity where the more familiar an agent is with an appealing
object the more it is loved and the more familiar a unappealing object the more
it is hated.

In 2009 a revisited model of the OCC model was proposed by three computer
scientist in order to create a standardized interpretation of the psychological
OCC model for other computer scientist wishing to formalize or implement
emotions [SDM09]. This revisited model removed and clarified the ambiguities
mentioned above along with other ambiguities and restructured the model to a
more logical structure in order to make the model easier to implement and work
with.

Figure 3.2: Revisited structure of emotion in the OCC model. [?]

The new inheritance model of the OCC model seen in figure 3.2 have removed

24 Emotions

the idea of groups and many of the emotions are now split up. All of the men-
tioned ambiguities are solved so now the emotions such as satisfaction and relief
along with happy-for and resentment or now specializations of the feelings joy
and distress. With that, hope and fear are now for themselves but as it is an
inheritance diagram then hope is still not excluded as logical part of satisfaction.
The aspect of objects are also more defined with the aspect of familiarity intro-
duces which give rise to two new emotions interest/disgust where familiarity is
used to distinguish between love/hate.

Chapter 4

Modelling Emotions

Multiple articles have constructed a logical formalized emotions for BDI-agents
using the OCC model as a basis. All of these framework establish a syntax with
a language containing predicates similar to the predicates in a BDI-agent and
GOAL-agent such as Bel for beliefs and Goal for goals of an agent.

Meyer who also proposed the revisited OCC model had formalized emotions
before using the original OCC model along with an existing an framework called
KARO in 2 different papers [Mey06, SDM07]. In both papers the formalization
was focused heavily on the agents planning and action as the formalization has
definition for the agents commitment to a plan along intention of accomplishing
a goal through execution of a plan. However the formalizations was made with
the OCC model in mind yet the only defined emotions in the article [Mey06]
were Happines, Sadness, Anger and Fear. The [SDM07] formalization had
even less as it only dealt with 2 emotions, Hope and Fear.

Another formalization was made by Herzig and Longin based on the original
OCC model in 2006 ([AGHL06]) and refined in 2009 ([AHL09]). Both paper
defines operators with temporal logic such as (Hϕ) that reads ”ϕ has always
been true” and (Gϕ) that read ”Henceforth ϕ is going to be true” in order to
define all the 22 emotions in the OCC model. A unique operator is also defined
called Expect which simply defines if an agents expects an event and is used
to in the logic for prospect based emotions e.i. hope and fear.

26 Modelling Emotions

Another paper, [GLL+11], formalized emotions with very few operators unlike
the other two formulations. It is also based on the OCC model but only imple-
ments 12 emotions with only a few of them the same as the OCC model, besides
formalizing emotions a wide variety of expressions between agents are made. In
this paper three operators deviate from the other formalizations: Ideal defining
the moral state of the agent, Cd defining the the agents action and choices and
Exp defining that an agent express a formula to another agent. The operator
Cd is used to define a new operator called Resp which states that an agent is
responsible for an outcome.

4.1 Formalizing the OCC model

Based on the OCC model and the different proposed formalization of the OCC
model, a new logical framework will be proposed in trying to formulate emotions
in the revisited OCC model. However, as the formalization will be used to
implement emotions in agents in GOAL it has to be compatible with GOAL. But
some of the proposed intensity variables in the OCC model can’t be implemented
in GOAL in it’s current form as GOAL lack the function needed to define the
some of the variables.

There are generally two approaches the OCC model can be implemented in a
BDI-agent, one is a form of interpretor for the agent state of mind in to emotions.
Implemented in GOAL means that the agents state of mind is interpreted each
cycle and the emotions intensity are calculated each time and checked with the
threshold in order to determine if they are still relevant. However has GOAL
removes goals when they are achieved then the agent will only be able to feel
emotions such as satisfaction and relief as it is possible to see an prospected event
has been realized but any recurring cycle will not be able to see this making it
an unsuitable approach for GOAL. The other way is to use the state of mind to
create persistent emotions in the agents state of mind where the emotions are
given a intensity when they are realized and will slowly decay until they are not
relevant any more.

Emotions regarding appraisal of agents action make use of the variable ”Strength
of unit”and this variable requires that the agents has some sort of model between
the agent it self and others defining social groups or organizations such as family,
workplace, friendships. This model does not exist in GOAL and implementing
it in GOAL is out of this scope, however previous work has been done in this
area such as [Spu13] which could be used in order to implement this variable.

Another variable that cannot be realized in GOAL is the variable ”Deviations of

4.1 Formalizing the OCC model 27

the agent’s action from person/role-based expectation”, i.e the unexpectedness
of an agent. In order to have this variable the agent is required to have a model
of other agents or place it self in another agents position and attempt to predict
what that agent would do in its given position and be able to compare it with
what the agent actually did and be able to quantify it

The same is the problem with the global variable ”Unexpectedness”. It is possible
if it was just used to decide if something was expected or not but as it used as
a variable the agent should be able to quantify the unexpectedness.

The ”proximity”variable is somewhat possible to implement with linear temporal
logic but it requires that the outcome of events has a timestamp so it is possible
to determine the proximity to the agent but the added information will make it
difficult to store in GOAL as it needs to store the timestamp as well as info of
the event.

Additionally it was proposed in the OCC model that the variables for emotions
should be weighted as they don’t have the same impact on an emotion but never
stated what this distribution should be, so in an attempt to limit the amount
of work in this thesis all variables are weighted equally.

Love and hate along with interest and disgust is not going to be part of the
logical formalization as these emotions requires first order modal logic to be
implemented as stated in [AHL09], however an alternative implementation for
love and hate will be proposed later.

The last variable that will not be present in the framework is the global variable
”arousal” as this is a physiological state of a person and as the agent is purely
cognitive. Such a physiological state can be simulated in the agent but is out of
the scope of the thesis.

Removing these variables from the framework would reduce the correctness of
the intensity but will not render the intensity for the affected emotions obsolete
as these emotions has other variables that factor in to their respectively intensity.

Finally, as neither GOAL or Prolog support temporal logic then the logical
formalization will refrain from using these.

Based on these limitation a new inheritance model for the emotions for this
thesis can be seen in figure 4.1.

28 Modelling Emotions

pleased
displeased

Valence Reaction

Approving
Disapprobing

Action
(of Agent)

pleased
displeased

Outcome
(of Event)

Prospective
Outcome

hope
fear

joy
distress

Actual
Outcome

Self
Agent

pride
shame

admiration
reproach

Other
Agent

Related
Outcome

and Action

gratification
remorse

gratitude
anger

Related
Outcome

and Action

Outcome
Confirms

Prospective
Desireable
Outcome

satisfaction

fears-confirmed

Outcome
Confirms

Prospective
Undesireable

Outcome

Outcome
Disconfirms
Prospective

Undesireable
Outcome

relief

dissapointment

Outcome
Disconfirms
Prospective
Desireable
Outcome

Consequence
Presumed

to be
Desireable
for Other

happy-for
resentment

gloating
pityv

Consequence
Presumed

to be
Undesireable

for Other

Figure 4.1: The structure of emotion for the framework

4.2 Logical Formalization

The logical formalization will be based mostly on the formalization proposed in
[GLL+11] as it avoids most of the limitation in GOAL as it doesn’t uses temporal
logic. So the formalization will be using the operators Ideal and Resp besides
the operators Bel and Des which are standard for all formalizations. Another
predicate will be used in order to implement prospect based emotions which is
the operator Expect defined in the papers [AGHL06, AHL09].

It should be noted that the formalization uses the notion consequence or outcome
instead of event as mentioned in section 3.2.1 as it is not the event that is
interesting for the agent but the consequence/outcome.

The framework will then consist of the following language L defined in by the

4.2 Logical Formalization 29

BNF;

ϕ ::= p|¬ϕ|ϕ ∧ ϕ|Beliϕ|Desiϕ|Undesiϕ|Idealiϕ|Respiϕ|Expectiϕ

where p ranges a set of propositions, i,j ranges over a finite non-empty set of
agents.

The operators Beli represent agent i ’s beliefs

Desi, Undesi represent agent i ’s desires. Others such as [GLL+11, AHL09] uses
the operator Goal or Desi and simply write Goaliϕ when something is desired
by agent i and Goali¬ϕ when something is undesired but the way GOAL works
this will lead to problems.

Say that an agent in GOAL has the goal Goal¬stealing then when queried with
the goal base with

Goal(goal(neg(X)))

which would return the value X = stealing, however making the query where
without negation

Goal(goal(X))

would return X = neg(stealing) which was not the intention. In order to avoid
this the formalization will simply refrain from using negation when queering the
goal base and instead use the two predicate Undes and Des.

Ideali represent the moral state of agent i ’s, so for the formula Idealiϕ expresses
that agent i wants to achieve or maintain ϕ. This moral is different from agent
to agent as their moral attitude may differ so an agent may see it as morally
wrong to steal and prefer to maintain that neither him nor other steals. But
another agent has no moral about stealing so if that agent performs or sees
another agent stealing it will not be affected by it.

The operator Respi represent the responsibility of an agent has ie. the formula
Respiϕ states that agent i is responsible for ϕ. Responsibility can be have
two notions, a weak and a strong notion. The weak notion is that the agent
responsible for an outcome of an event is the one whose action lead to it as
seen in [AHL09]. In short if agent i views another agent j performing an action
that leads to an event which consequence inflict i then i believes that j is
responsible for the consequence. The problem with this view is that an agent is

30 Modelling Emotions

not necessarily responsible for his action as his hands could have been forced as
he had no other choice. This is where the strong view comes in as an agent is
only responsible for the consequence of an outcome if and only if he could have
prevented it as seen in [GLL+11]. The problem with the strong view is that it
requires the agent to know that no matter what it does the consequence will
always happen which can only be expressed in first-order modal logic which is not
part of GOAL or Prolog. This means that only the weak view of responsibility
can be implemented.

Expect simply state that an i expect an outcome from an event so the formula
Expectiϕ says that agent i expects ϕ to happen. A simple example would
be an agent that plans to go shopping for food then that agent expects that
he would obtain food. This operator is a key element to define prospect based
emotion and to be able to distinguish between prospect based and well-being
emotion emotion as you will see in the next section.

Next is the logic of the formalization and will follow the structured model defined
in the revisited model.

4.2.1 Basic Emotions

The emotion are structured after a inheritance model so the emotions can be
split into two, basic emotions and complex emotions. Basic emotions are defined
mainly from the language L while complex emotion are defined as compounds
of the basic emotions and from L. The only deviation is the fortunes of others
as these are not compounds of other emotions but still demands complex logic
and as specified by the revisited OCC model is specialisations of the emotions
joy and distress.

4.2.1.1 Outcome of event

The first basic emotions that will be defined are the outconme of event.

First a outconme of event can be defined with the following relevance to the
agent.

Pleasediϕ = Desiϕ (4.1)

Displeasediϕ = Undesi¬ϕ (4.2)

4.2 Logical Formalization 31

Here the agent i is either pleased or displeased about a desired outcome of an
event.

Prospective Consequence

If an event has not yet happened then agent i hope for the event to happen only
if the outcome is pleasing for i else i fear the outcome of an event only if that
outcome is displeasing.

Hopeiϕ = Desiϕ ∧ not(Beliϕ) ∧Expectiϕ (4.3)

Feariϕ = Undesiϕ ∧ not(Beliϕ) ∧Expectiϕ (4.4)

Actual Consequence

If an event does happen and it is pleasing to agent i then i feels joy, however if
the outcome is displeasing then i feels distress.

Joyiϕ = Desiϕ ∧Beliϕ (4.5)

Distressiϕ = Undesiϕ ∧Beliϕ (4.6)

4.2.1.2 Action of agent

Next is the action of the agent and here the outcome of an event is defined
relevant by;

Approvingiϕ = Idealiϕ ∧Beliϕ (4.7)

Disapprovingiϕ = Ideali¬ϕ ∧Beliϕ (4.8)

Agent i either approves or disapproves of an action based on i ’s moral norms
towards ϕ defined by the predicate Ideal.

Action of Self Agent

If agent i belief it is responsible for that action then i either feels pride but if
it’s an approving action or shame if it’s a disapproving action.

32 Modelling Emotions

Prideiϕ = Idealiϕ ∧BeliRespiϕ (4.9)

Shameiϕ = Ideali¬ϕ ∧BeliRespiϕ (4.10)

Action of Other Agent

However if agent i belief an other agent j is responsible for an approving action
then i admire j, if it is a disapproving action then i reproach j.

Admirationi,jϕ = Idealiϕ ∧BeliRespjϕ (4.11)

Reproachi,jϕ = Ideali¬ϕ ∧BeliRespjϕ (4.12)

As mentioned before the formalization will not contain the emotions love/hate/in-
terest/disgust and so all necessary basic emotions have been defined.

4.2.2 Complex Emotions

Complex emotions are defined using both the language L and basic emotions.
The first complex emotions that will be defined are emotions where an action
leads to a consequence. Do note that the eliciting emotions are replaced with
the new realized emotion.

Related Consequence and Action

Self Agent

If an agent i performs an action that it approves (Pride) and leads to a conse-
quence that is pleasing (Joy) then i feels gratification. However if i disapproves
of it’s own action (Shame) and the consequence is displeasing (Distress) then i
feels remorse.

Joyiϕ ∧Prideiϕ→ Gratificationiϕ (4.13)

Distressi¬ϕ ∧ Shameiϕ→ Remorseiϕ (4.14)

Other Agent

4.2 Logical Formalization 33

If an agent j perform an approving action (Admiration) that leads to a conse-
quence that is pleasing to agent i (Joy) then i feels gratitude towards j. If i
disapproves of agent j s action (Reproach) and that action leads to a displeasing
consequence for i (Distress), then i is angry with agent j.

Joyiϕ ∧Admirationi,jϕ→ Gratitudei,jϕ (4.15)

Distressi¬ϕ ∧Reproachi,jϕ→ Angeri,jϕ (4.16)

Consequence Confirms Prospect Desirable Consequence

If agent i has the prospect of a desirable outcome ϕ and it’s confirmed then
the feeling of hope is replaced with the feeling of satisfaction that the desired
consequence was achieved.

Hopeiϕ ∧Beliϕ ∧ desiϕ→ Satisfactioniϕ ∧Beli (4.17)

Do note that Beliϕ∧desiϕ is the same as the emotion joy and could be replaced
with Joyiϕ, given the new formula;

Hopeiϕ ∧ Joyi → Satisfactioniϕ ∧Beli (4.18)

However this does give rise to problems as the emotion joy could have been
realized before hope which is not possible so in order to solve this problem
temporal logic is needed. As the formalization refrains from using temporal
logic the first formula is the one used later on.

Consequence Disconfirms Prospect Desirable Consequence

However if a prospect of a desirable outcome is disconfirmed then the feeling of
hope is replaced with the feeling of disappointment as the desired consequence
was not achieved.

Hopeiϕ ∧Beli¬ϕ ∧ desiϕ→ Dissappointmentiϕ ∧Beli (4.19)

34 Modelling Emotions

Consequence Disconfirms Prospect Undesirable Consequence

If agent i fears ϕ will happen and it is disconfirmed then the feeling of fear is
replaced with the feeling of relief.

Feariϕ ∧Beli¬ϕ ∧ undesiϕ→ Reliefiiϕ ∧Beli (4.20)

(4.21)

Consequence Confirms Prospect Undesirable Consequence

However if it is confirmed that the prospect of a undesired consequence has
happened then feeling of fear is confirmed.

Feariϕ ∧Beliϕ ∧Undesiϕ→ FearsConfirmediϕ ∧Beli (4.22)

(4.23)

Do note that Beliϕ ∧Undesiϕ is the same as the emotion distress and could
be replaced with distressiϕ. But the same problem as before arises where the
distress may have been realized before the emotion fear.

As mentioned before the Expect operator is important for these emotions as
without this the agent would hope/fear every thing that it desire/undesire. This
will lead to the agent never feeling joy as each time it felt joy there would always
exist a related hope which would lead to satisfaction. The same would happen
for the emotion fear confirmed.

The next four emotions are a bit different as they are about the fortune of
other agents, so here the agents beliefs about another agents beliefs and goals
are relevant. These emotions focus on the concept of an agent believing that
another agent desire the outcome of an event or that another agent deserves the
outcome of an event.

Deservingness is defined by the following;

Deservingi,jϕ = DesiBeljϕ (4.24)

where agent i desire that agent j beliefs ϕ.

4.2 Logical Formalization 35

Desirability of other is defined as such;

Desiredi,jϕ = BeliDesjϕ (4.25)

here agent i beliefs agent j desires ϕ. This can also be defined as agent i beliefs
that agent j hopes or fear ϕ of happening.

Consequence presumed to be desirable for other

If agent i beliefs event ϕ has happened and that agent j desires and deserves ϕ,
then i is happy for j, however if i does not belief j deserves ϕ then i resents j.

HappyFori,jϕ = Beliϕ ∧BeliGoaljϕ ∧GoaliBeljϕ (4.26)

Resentmenti,jϕ = Beliϕ ∧BeliGoaljϕ ∧GoaliBelj¬ϕ (4.27)

(4.28)

Consequence presumed to be Undesirable of other

There is not a big difference when the agent beliefs an event is undesirable for
another agent.

If agent i beliefs event ϕ has happened and that agent j does not desires but i
beliefs j deserves ϕ, then i is gloating j, however if i does not belief j deserves
ϕ then i pities j.

Gloatingi,jϕ = Beliϕ ∧BeliGoalj¬ϕ ∧GoaliBeljϕ (4.29)

Pityi,jϕ = Beliϕ ∧BeliGoalj¬ϕ ∧GoaliBelj¬ϕ (4.30)

4.2.3 Relation

As stated before this framework will not deal with love and hate the way it is
done in the OCC model due to to GOAL being unfit to implement them the
way they are defined through appealingness and familiarity.

Some say that action defines who we are which provides a possibility to introduce
something to define relations between agents as they can perform action that can
influence others. This is a slight combination of familiarity and appealinngness

36 Modelling Emotions

as the action of an agent tells a bit about it’s attitude and repeatedly exposure
an agent has to another agents action the more familiar that agent becomes.
The emotions dealing with action of others agents can be used for this purpose
as when an agent realize emotions such as admiration or gratitude the agent
must begin to like the other agent or if it is reproach or anger the agent may
begin to dislike that agent. This can be done by keeping a relation value of each
agent updated the value of an agent when an emotion related to that agent is
realized. This value can then determine how much an agent likes or dislike a
person depending on the value.

4.2.4 Intensity

Now that the logical formalization of emotions is defined the next is to go
through how the intensity of the emotions is computed. These variable will
consist of the variables defined in the OCC model and used the same way as
only few other formalization has dealt with intensity and does who have only
uses the variable likelihood. So the variables used for intensity are the following
from the OCC model excluding the ones in section 4.1 that was not possible to
implement in GOAL;

Desirability: The desirability will be much the same as the OCC model, an
agent will have a set of desires of a given event and a related value of how much
the event is either desired or undesired.

Ideal(Praiseworthiness): Praiseworthiness is subjective to each agent and is
defined by what the agents beliefs is normal so an agent performing an ideal
action would be praised while an agent performing unideal action would not be
praised. The value of the variable will be part of the predicate Ideal so an agent
will have a set of ideals for action and a value associated with this ideal relating
to how big a moral impact it has on the agent.

Probability(Likelihood): Much the same as the OCC model or any other imple-
mentation of the OCC model this variable is simply the likelihood or probability
of an event happening.

Desirability of other Much like the desirability variable but in this case it is the
presumed desirability of another agent.

Derservingness This simply state how much the agent thinks that another agent
deserves an outcome of an event.

Next is how the intensity of emotion are computed and looking at the basic

4.2 Logical Formalization 37

emotions the first emotion are hope and fear that are influenced by the desir-
ability and probability of an event. In [GM04] the intensity for these are defined
as such:

Intenisty(p)hope,fear = Desirability(p)× Probability(p)

where Probability(p) ranges between [0,1] and Desirability(d) ∈ R and .

When dealing with emotions in actual consequence such as joy and distress the
same formula can be used for intensity, however here Probability(p) is 1 since
the event has happened so the intensity is only affected by the desirability.

Intenisty(p)joy,distress = Desirability(p)× 1

For action it is only influenced by the agent ideals just as desirability.

Intenisty(p)shame,pride,admiration,reproach = Ideal(p)

For complex emotions based on existing basic emotions in the agent the inten-
sity is calculated from the average intensity of the eliciting emotions. Using
gratification as an example the intensity is calculated by

Intenisty(p)gratification =
Intenisty(p)pride + Intenisty(p)joy

2
(4.31)

(4.32)

The intensity of other compound emotion are computed the same way.

Next is the emotions for expected outcome and unlike the compound emotions
these only have a single eliciting emotion but as these are specializations of
joy/distress then the desirability should also affect these emotions. The intensity
can then be computed using the average value between the intensity of the
eliciting emotion and the desirability of the outcome. Using satisfaction as an
example the intensity is computed as so;

Intenisty(p)satisfaction =
Intenisty(p)pride + Desirability(p)

2
(4.33)

(4.34)

The intensity of the other fortunes of other emotions are computed the same
way.

38 Modelling Emotions

4.2.4.1 Emotion Decay

As it was decided that emotion are implemented as persistent then a decay
function is needed in order to reduce the emotions valence in the agent as a
person experience an emotion it never exist forever but they do linger for a while
before they disappear. The question however is how long should an emotion
linger, do some emotions stay longer than other, is the decay linear, or does
it follow another function? Only few that have implemented emotions have
discussed decay and those who does simply talk of a function applied to decrease
the intensity of each emotion. In [Vel97] a decay function is mentioned but the
function it follows is not defined and in [DP05] the function mentioned is a
simple linear function which is applied to all emotions.

Then there is the question, should all emotions have the same decay function
and should all have one? Some emotion has more valence than other and as
time goes on some still has valence while others don’t, which means the decay
should work on the valence of an emotion.
Looking at hope that is prospect based and has valence until the event is realized
in which case it is turned into either satisfaction or disappointment, so hope
should not disappear unless the agent forgets about the event or the event is
not relevant any more. If the event has a deadline where it is realized, the
valence of that emotion can increase the closer the event is which is defined
in the OCC model as global variable proximity, however not all events has a
deadline so it is hard to generalize.

This means that the best solution would be a generalized linear decay function
that reduce the intensity each cycle of all emotions until they reach a lower
bound in which they are removed. The only exception are the prospect based
emotions which should not disappear without valid reason so a different function
could be used were the lower bound is reached but the emotion is not deleted.

4.2.4.2 Threshold and Mood

Not all emotions that the agent can potential feel should be realized as some of
the potential emotions could have a very low intensity so it’s not worth dealing
with and not that emotions are quantifiable it is possible to filter out these
emotions.

This can simply be done with a threshold which was mentioned in the OCC in the
previous chapter which was is to filter out these low intensity emotions but also
to define moods in an agent. When the agent experience a positive emotions it

4.2 Logical Formalization 39

should affect the thresholds of negative emotions simulating a good mood and is
more prone to experience positive emotion and less likely to experience negative
emotions so that only higher intensity of negative emotions should be able affect
the agent and vice versa. This will result in the emotion having an effect on
the agent and other emotions instead of simply be a interpretation of the agents
state of mind. However a change in the mood should not be permanent so if
a agent is in a good mood the mood should at some point return to neutral
mood without the need for the agent to experience negative emotions. To fix
this the decay of emotion can be implemented where the it slowly decays toward
a default value.

4.2.5 Expression

Implementing these emotions for an interactive agent is obsolete if the agent
can’t express them, and is one of the most important aspects. There are gener-
ally two ways to express feelings:

• Verbal expression which can be through language or it may be non-
language sounds such as a grunt or laughter.

• Visual expression is done through either facial expression or body
language.

The verbal expression through language is able to express the 22 emotions in
the framework, however the feeling conveyed this way will most likely have a
reduced potency when implemented in a computer agent as language are not
perfect at conveying emotions. Combining this with a visual expression can
increase the effect of expressing emotions. Implementing visual expression can
be done by imitating human facial expression but unlike verbal, facial expression
cannot express the 22 emotions independently.

In [EO79] 6 facial expression are defined as distinctive and universal, anger,
disgust, happiness, sadness, fear and surprise. This means that each of the 22
emotions in the framework needs to be be mapped as mentioned in the article
[Bar02], but as pointed out in the same article there are only one positive ex-
pression for the 11 positive emotions in the OCC model and non of the emotions
can be linked to surprise as surprise is not an emotions in the OCC model as it
is not considered a surprise but a cognitive state. This means that the remain-
ing 11 negative emotions needs to be mapped to 4 facial expressions. Looking
at the facial expression for fear it is clear that there is only the emotion fear
that can be mapped to this facial expression as no other emotions deals with

40 Modelling Emotions

a negative prospect. Disgust might be hard to link to any of the emotions but
disgust can very well arise from the experience of an offensive moral sense, where
the emotions reproach and shame can be placed as it is defined by the agents
moral norms. The emotions anger and dislike can immediately be placed in the
anger expression, additionally the emotion resentment can also be placed in this
expression since the agent may hate another agent for achieving something that
was not deserved. Since the emotion anger is mapped this way then one could
think that remorse should also be linked to the same expression, but that is not
the case as remorse is rather regret in ones own action than anger towards one-
self. The last expression is sadness and this is where the remaining 5 emotions,
distress, fearConfirmed, dissapointement, remorse and pity are mapped to.

Of course the agent can have multiple emotions and only one type of facial
expression is to be shown. One way would be to show that expression where
the sum of the intensity of all the mapped emotions is greatest thereby showing
the agents general feeling. But since the emotions are not equally split amongst
the 5 type of emotions, and happy dominating with most emotions, the agent
would most likely show a happy expression. Going in the other direction the
emotions with the highest intensity can be the one defining that expression the
agent should show, but this means even if the agent is experience mostly positive
emotions a single negative emotions can change the agents expression resulting
in a bi-polar agent. A solution would then instead be to find the sum of the
2 or 3 highest emotions in each expression types and show the expression with
the highest intensity.

Chapter 5

Implementing Formalization

Next is to figure out how to implement the formalization defined in the previous
section into GOAL and make it into a usable framework. The first thing that will
be discussed is the emotions themselves where after their logic is implemented,
thereafter the decay and mood of the emotions followed by expressing emotions.
This will all be implemented in the module called emotions.mod2g as seen in
the appendix A.1.

5.1 Emotions in GOAL

When the agent experience an emotion then there are no doubt that these should
be stored in the belief base of the agent and to make it easier to generalize and
get emotions it is simply store with the predicate emo. Besides the predicate
the emotions has the following information to store;

• Name of the the emotion

• Agents that are involved with the emotion

• Subject that gave rise to the emotion

42 Implementing Formalization

• Intensity of the emotion in the range [0,100]

This give a declarative structure of the emotion and can be easily read with
out further information needed. With the emotion joy as an example, it would
defined in GOAL as;

emo(joy,A,X,I).

and read as ”Agent A feels joy about X with an intensity of I”.

Gratitude deals with multiple agents and the relation would instead be repre-
sented by a touple with the relevant agents like so;

emo(gratitude,(A,B),X,I).

read as ”Agent A feels gratitude towards agent B for X with an intensity of I”.

The emotions like and dislike are a bit different as the subject is another agent
rather than an outcome.

emo(like,A,X,I).

read as ”Agent A likes B with an intensity of I”.

5.1.1 Realizations of Emotions

In order for the agent to realize the emotions it needs to be able to handle the
predicate defined in the language L in section 4.2. The first operator Bel defines
the agent’s beliefs and should be stored in the agents belief base, however since
goal is a declarative it give rise to a problem here as it is not possible to query
with bel(X). A workaround is to simply add the predicate bel(bel(X)
) in the query. An example of mental condition using this predicate would then
be written in GOAL as.

bel(bel(X)).

This workaround does give some benefits as it makes it possible to distinguish
between the agents belief base and beliefs used for emotions. As mentioned
before the beliefs used for emotions are the outcome of events or action so the
additional predicate bel(bel(X)) can then be defined as the agents beliefs
of experienced outcome and deleted when that beliefs has been handled. This

5.1 Emotions in GOAL 43

solve some problems as some desires are persistent even after an emotion for the
desire is realized. For example an agent can have the desire of finding money and
happens to find money on the street which gives rise to the emotion joy, then
the desire for money should still persist as he still wants to find money so the
desire should be inserted in the goal base again. But if the belief is reinserted as
he previously did found money then the feeling of joy would be realized again,
so it is important that the belief of the outcome is only inserted once.

The next operator is Des and Undes but the same problem appears as with
the belief operator nevertheless the same workaround can be used where the
predicates des and undes is used and stored in the agents goal. This give the
ability to define the desires differently from the goals as goals are states the agent
strive to obtain but desires have a weaker definition and simply define what the
agent would like should happen. These predicates also have the related variable
desirability which will also be defined along with the predicate. An example of
mental condition using either of these predicates would be.

goal(des(X,D)).

goal(undes(X,D)).

where D are the desirability the agent has to for the outcome X.

As both the belief and goals for emotions are different from GOALs then the
term emotional beliefs and emotional desires can be used to distinguish between
them.

As mentioned in section 2.1, GOAL removes goals when they are reached but
since emotional desires and beliefs are used then they aren’t removed by GOAL.
As the emotions are structured as inheritance then it is important to not delete
the emotional desires and beliefs when an emotion has used them in it’s realiza-
tion as other potential emotions may still need them, so after all the potential
emotions have been computed then reached emotional goals are to be removed.

For confirmed and uncomfirmed desires the code then as followed;

forall goal(des(X,D)) do {
% confirmed
if bel(bel(X)) then delete(bel(X)) + drop(des(X,D))
% disconfirmed
if bel(bel(neg(X))) then delete(bel(neg(X))) + drop(des(X,D))

}

and for undesires it is;

forall goal(undes(X,D)) do {
% disconfirmed

44 Implementing Formalization

if bel(bel(X)) then delete(bel(X)) + drop(des(X,D))
% confirmed
if bel(bel(neg(X))) then delete(bel(neg(X))) + drop(des(X,D))

}

Since emotional beliefs should only exist in the cycle they where they where
inserted all emotional beliefs that was not used is then deleted with the code;

bel(bel(X)) do delete(bel(X)) .

The next predicate Ideal is a personal believed norm the agent has, so it should
be expressed in the belief base. As the predicates Des and Undes, Ideal has
a related variable, this case the variable ideal. An example of mental condition
using this predicates would be;

bel(ideal(X,D)).

here D is how ideal the agent beliefs the consequence X is.

The predicate Resp was defined with a weak view mentioned in section 4.2
and requires the agent to perceive other’s actions which means it is up to the
environment to tell the agent who has performed what and from there it is up to
the agent to deduce if an agent is responsible for the consequence of the action
he performed. Example of this on GOAL would be;

bel(resp(A,X)).

where agent A is responsible for the consequence X.

The last percept to handle is Expect and is defined as the agent expect a
consequence to happen. One clear way that the agent expects something is
when it has a plan of a series of action in order to reach a certain state. Then
it is easy to see what to expect, however it is not certain that it will happen
as other agents can interrupt this plan. Expectation could also be related to
probability as the agent can come to expect an event if there is a high enough
probability of it happening. The environment or another agent could also inform
the agent of events that will happen in the future and it is up the agent to decide
what to expect. Example of expectation in GOAL would be;

bel(expect(X)).

where the outcome X is expected.

Besides these predicates, in order to handle emotions the agent should also be

5.1 Emotions in GOAL 45

able to handle the variables defined in the formalization. Some of these variables
is already implemented along with the predicates as just seen.

The variable probability state what the likelihood of a consequence happening.
In GOAL this would be implemented like so;

bel(prob(X,R)).

where R is the probability of the consequence X to happen.

To implement these the agent has to keep track of any event that may be quan-
tifiable. One way would be to use time to keep track of how many times a
particular event has happened during the start of the environment. Another
would be for the environment to give the agent information regarding the max-
imum numbers of time an action would lead to an event e.g. how many items
that could be found when searching through a finite number of boxes.

Deservingness is the same as the implementation of desires with the only differ-
ent being that instead it is what outcome another agent should experience at
some point. In GOAL this would be;

goal(des(bel(A,X),D)). goal(undes(bel(A,X),D)).

where D is how much the agent think that another agent A deserves the outcome
X.

Desirability of others is not much different from deservingness, here the agent
simply has a belief of what the other agent desires. An example would be;

bel(bel(des(A,X,D))). bel(bel(undes(A,X,D))).

where the agent beliefs that another agent A has a desirability of D for the
consequence X.

Now with the predicate defined along with the variable the agent can show
emotion. Following the formalization, the realizations of emotions in can be set
up in GOAL. Since multiple emotions can potential be realized in one cycle the
module will use the rule evaluation order ”linearall” so all action rules will be
evaluated. The module will mainly use the ”forall”action rule when evaluating if
emotions should be realized as multiple realizations of the same type of emotion
can happen in a single cycle.

The framework have some defined logics such as pleased and disapproving that
can be defined as macros to make it easier to read the action rules for the

46 Implementing Formalization

emotions.

pleased and displeased will be defined by the macros;

#define pleased(X,D) goal(des(X,D)).
#define displeased(X,D) goal(undes(X,D)).

Approving and disapproving has the macros;

#define approving(X,Id) bel(ideal(X,Id), bel(X)).
#define disapproving(X,Id) bel(ideal(neg(X),Id), bel(X)).

Do note that the disapproving action is defined with a negated outcome of event
in the ideal predicate.

Beside these the deservingness and desire of other agents can also be defined
by macros, however these need to be defined with both positive and negative
macros as emotional desires are defined by des and undes.

#define deserving(A,X,D) goal(des(bel(A,X),D)).
#define undeserving(A,X,D) goal(undes(bel(A,X),D)).
#define otherDesire(A,X,D) bel(bel(des(A,X,D))).
#define otherUndesire(A,X,D) bel(bel(undes(A,X,D))).

In section 4.2.4, functions was defined to calculate the intensity of some emo-
tions, function for prospect based emotions and on for complex emotions finding
the average of the eliciting emotions. These can be written in the knowledge
base of the agent with the following Prolog code;

prospectInten(Des, Prob, Int) :- Int is min(abs(Des * Prob),100).
averageInten(Int1, Int2, Int3) :- Int3 is (Int1 + Int2)/2.

Well being

Looking at the basic emotions the realization of joy can be implemented in
GOAL with the action rule

forall pleased(X,D), bel(bel(X), me(A)) do insert(emo(joy,A,X,D)) .

As the intensity of the emotions is only defined by how desired the outcome is
then it is simply the desirability. Distress will be implemented in the same way
but uses the displeased macro instead.

5.1 Emotions in GOAL 47

Prospect

The next emotion to look at is the prospect based emotions such as hope and
fear, and the action rule would be;

forall pleased(X,D),not(bel(bel(X))), bel(expect(X), prob(X,R),
prospectInten(D,R,I), me(A)) do insert(emo(hope,A,X,I)).

For both hope and fear it is important to perform the query not(bel(bel(X)
)) checking that the outcome of the event has not yet arisen. Calculating the
intensity requires the desirability and the probability for the event to happen
and these are calculated using the function prospectInten defined previously.
However probability is the only variable that can be omitted and the emotion
can still be realized since it only affects the intensity of the emotions. To make
it easier to program with this module the action rule can be altered so that it
is not required to provide the responsibility variable. If it is not provided it can
be assumed that the probability is 1, that is that it is assumed that the event
will happen and resulting in the following code

forall pleased(X,D), not(bel(bel(X))), bel(expect(X), me(A)) do {
if not(bel(emo(hope,A,X,_))) then {
% No probability exist
if not(bel(prob(X,_))), bel(prospectInten(D,1,I)) then
insert(emo(hope,A,X,I)).

% Probability exist
if bel(prob(X,R), prospectInten(D,R,I)) then
insert(emo(hope,A,X,I)).

}
}

After the emotions is know to be realized the existing of a probability variable
is checked, if no variable exist the intensity is computed with the probability of
1, if there is a probability variable then that is used instead.

As with the well being emotions, realizing fear is much the same but uses
displeased macro instead.

Actions

The last basic sets of emotions is the actions based and as defined in the for-
malization the action rule would contain the predicate ideal and responsibility
and for the agent self the responsibility should state that it is the agent itself.

48 Implementing Formalization

forall approving(X,Id), (resp(A,X), me(A)) do insert(emo(pride,A,X,Id)

) .

If the emotions is focused on another agents action then is not that different
as it is the responsibility predicate that simply states that another agent is
responsible for the outcome.

forall approving(X,Id), (resp(B,X), me(A)) do insert(
emo(admiration,(A,B),X,Id)) .

For all cases it is only the ideal that is used to calculate the variable so just as
for the well being emotion it is simply how ideal the action is that is used for
the intensity.

Compound emotions

Now that the realization of basic emotions are defined the next step is the
complex emotions and first up is the compound emotions made of an eliciting
basic action and well-being emotion.

These are fairly simple as the action rules checks if the two emotions eliciting
emotions required for the compound emotions exist and then calculates the
intensity.

forall bel(emo(pride,A,X,Ip), emo(joy,A,X,Ij), me(A),
averageInten(Ip,Ij,I)) do insert(emo(gratification,A,X,I)) .

It is much the same with the three other emotions just with different eliciting
emotions and the function is also simple the function for finding the average
between the eliciting emotions.

Prospect Outcome

Next is when a prospect based emotion is either confirmed or dis-confirmed,
these emotions has a single eliciting emotions which is either hope or fear. Beside
the eliciting prospect based emotion the query bel(bel(X)) or bel(neg(bel(X)))
is also needed to check if the outcome has happened. For satisfaction the action
rule is;

forall goal(des(X,D), bel(emo(hope,A,X,Ip), bel(X) me(A), averageInten(D,Ip,I)

) do insert(emo(satisfaction,A,X,I)) .

5.1 Emotions in GOAL 49

Additionally it is required to check the goal base in order to get the desire or
undesire the agent had for the consequence to be able to calculate the intensity
as the intensity is the average of the eliciting emotion and the desire for the
outcome.

For the other tree emotions the reader is referred to appendix A.1.

Fortunes of Others

Last is the emotions for the fortunes of others.

Here the two terms the deserving and desire of another agent are used to realize
the emotion. The first emotion is when the agent beliefs that the other agent
deserves the outcome of an event and beliefs the agent desires that outcome
then the emotion happpy-for is elicited.

forall deserving(A,X,Deserv), otherDesire(A,X,Desire) (bel(bel(X), me(Me),

function(Deserv,Desire,I)) do insert(emo(happyFor,(Me,A),X,I)) .

Here the intensity is computed from how much the agent thinks the other agent
deserves the outcome and how it desired by the other agent and is the average
of the two variables. Looking at the other three emotions it is the same but uses
different combination of deservingness and desire of other.

5.1.1.1 Relations

As mentioned in section 4.2.3 the emotions such as admiration and anger can be
used to define the relations between agents. This can be done fairly easy where
a predicate is kept with the relation value for each agent in the system beside
the agent it self. The relation value is in this case in the range [-100,100] where
positive defines when an agent is liked and negative is when an agent is hated.
This can be done in the initial module of the emotion module like so;

forall bel(agent(X) , me(A), X \== A) do
insert(relation(X,0)).

Then each time one of the emotion relating to other agents the relation is up-
dated where the intensity of the emotion is used and the average is found between
emotion intensity and the relation intensity. For positive emotions the code is

if bel(relation(A,Rel), average(Rel,NegI,NewRel)) then
delete(relation(A,Rel)) + insert(relation(A,NewRel)).

50 Implementing Formalization

and for negative emotions the update code is

if bel(relation(A,Rel), NegI is -1*Id, average(Rel,NegI,NewRel)) then
delete(relation(A,Rel)) + insert(relation(A,NewRel)).

The reason there are two different update methods is that the relations value is
in the range of [-100,100] so when reducing the relation the intensity needs to
be negated first.

With the relation and it’s value in place the next part is to turn it into emotions
and as discussed these emotion can surface when when they reach a lower bound.
In order to increase the intensity of where an agent is neither hated or liked a
lower bound can be set for both hated and liked, in this case the value 20 will
be used for the lower bound of the positive relation and -20 for the negative
relation. This will result in the following code where that if there is a potential
like emotion, then it checks if there is a existing like emotion and update it if
the intensity is different, else if there aren’t any existing like emotion then a new
is inserted. The same is done with the hate emotion, but if the relation value is
not above the threshold then existing like or dislike are removed.

forall bel(relation(A,NewI), me(Me)) do {
if bel(NewI > 20) then{
if bel(emo(like,(Me,A),OldI), NewI \= OldI) then
delete(emo(like,(Me,A),OldI)) + insert(emo(like,(Me,A),NewI)).

if not(bel(emo(like,(Me,A),_))) then insert(emo(like,(Me,A),NewI)
).

}
if bel(NewI < -20, PosI is abs(NewI)) then {
if bel(emo(hate,(Me,A),OldI), PosI \= OldI) then
delete(emo(hate,(Me,A),OldI)) + insert(emo(hate,(Me,A),PosI)).

if not(bel(emo(hate,(Me,A),_))) then
insert(emo(hate,(Me,A),PosI)).

}
if bel(NewI < 20, NewI > -20) then{
if bel(emo(hate,(Me,A),OldI)) then delete(emo(hate,(Me,A),OldI)).
if bel(emo(love,(Me,A),OldI)) then delete(emo(hate,(Me,A),OldI)).

}
}

5.1.2 Decay

Now that emotions can be realized and the intensity calculated they need to
dissipate as time goes on and be removed when they don’t have any valence for
the agent. As they are implemented with the structure

emo(Name,Agents,Subject,Intensity)

5.1 Emotions in GOAL 51

It is easy to generalize and make a simple action rule to decay all of the emotions
in the agents belief base.

forall bel(emo(E,A,X,I)) do {
if bel(I =< 1) then
delete(emo(E,A,X,I)).

if bel(I > 1 , decayEmotion(I,NewI)) then
delete(emo(E,A,X,I)) + insert(emo(E,A,X,NewI)).

}

Every emotion intensities in the agents belief base is reduced with the function
decayEmotion that reduced the intensity by 10% and the emotions is updated
with the new intensity. A lower bound is set to 1 so when the intensity is 1 or
lower then it is considered of no valence to the agent and is deleted. The function
can be changed to make emotions have a slower or faster decay time and the
lower bound can be raised to reduce the time before a emotion is deleted.

One problem with the current implementation is how to handle recurring emo-
tions. Currently a recurring emotion will be realized as long as the existing
emotions doesn’t have the same intensity. This can potentially clutter the belief
base and if the agent expresses these feelings it is not ideal for it to express the
same feeling for the same outcome multiple time. Instead it would be better
to simply update the existing with the new intensity, but if the new emotions
intensity is lower than the existing emotions then it would be weird for the agent
to have a reduced feeling so in this case the new emotions should be overlooked.
To do this it is necessary to check if an existing emotion exist in the agent belief
base, if so then it is necessary to check which emotion has the highest intensity,
so if the new instance of the emotion has a higher intensity then replace the old
emotions but if not then the old emotions is kept.

For the emotion joy the code will now look like this;

forall pleased(X,D), bel(bel(X), me(A)) do {
if bel(emo(joy,A,X,OtherI), OtherI =< I) then

delete(emo(joy,A,X,OtherI)) + insert(emo(joy,A,X,I)).
if not(bel(emo(joy,A,X,_))) then insert(emo(joy,A,X,I)).

This goes with an exceptions for the prospect based emotions, hope and fear.
Unlike the other emotions that are influenced by a related emotional goal and
desire that only happens in one cycle where after they are removed, hope and
fear are influenced by an emotional goal and expectation which exist in each
cycle until the emotional goal is confirmed or disconfirmed. Implementing the
this update function will result in the emotion being realized in every cycle and
have the same intensity and making the decay obsolete for these two emotions.

52 Implementing Formalization

5.1.3 Mood

The last thing that needs to be implemented from the formalization in order
for the emotions to functions as intended is threshold and mood mentioned in
section 4.2.4.2.

Given that the mood is defined as either positive or negative then there are mul-
tiple ways to implement mood in GOAL. One way would be to have a variable
in the belief base, ranging from .100 to 100 following the intensity range where
-100 is bad mood and 100 is good mood. A positive emotion will then provide
an increase in the mood and a negative emotions will decrease it. However this
cannot be used as a threshold to filter out low intensity so additional variables
would be needed to define what the threshold is for positive and negative emo-
tions. Another way would be to have two variables, one for the threshold of
positive emotions and one for negative emotions. These two variables would
then be linked so when the agent experiences a positive emotion the positive
threshold would decrease and the negative threshold would increase. Thereby
also working as a mood since a low positive threshold and a high negative thresh-
old would imply positive mood and would filter out more negative emotions and
vice versa. When the agent has a neutral mood the threshold should still contain
a default value where they still filter out low intensity emotions.

Implementing this require that the the positive and negative moods are inserted
with the default in the agent at the init module. The default value of the
threshold is set to 20 so only emotion in the range [20, 100] is perceived by the
agent.

if true then insert(mood(20,20)).

Then when an emotion is realized, both the negative and the positive mood is
update. The code for updating the positive and negative mood would then be;

if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

if bel(incnegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

Inserting this in what is made so far we get that an emotion such as joy would
now have the code;

forall pleased(X,D), bel(bel(X), me(A), abovePositiveMood(D)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(joy,A,X,OtherI)) then {
if bel(OtherI =< D) then delete(emo(joy,A,X,OtherI)) + insert(

emo(joy,A,X,D)).

5.1 Emotions in GOAL 53

}
if not(bel(emo(joy,A,X,_))) then insert(emo(joy,A,X,D)).
%% update mood
if bel(incPosMood(D,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}

where the mood is increased in the positive direction as joy is a positive emotion
and the agent is then in a positive mood.

As mentioned in the previous chapter the mood of the agent should not stay at
this value and should decay as time goes on just as the decay of the emotions,
however the moods should slowly regress back to their default value which in
this case is 20. This can be defined by a quadratic function where the minimum
value is 20 and where the X-axis is the current value and Y-axis is the new
decayed value. This means that if the current mood value is above or below 20
then the decay would slowly return the value back to 20, however it will never
reach 20 so for that the decay value can be set to 20 if the current value is close
enough. An example of such a function can be seen in the following prolog code;

decayMood(X,Y) :-
X = 21 ->
Y = 20 ;
Y is 1/100*(X-40)*X+24.

The GOAL code for decay of the mood would then be;

if bel(mood(M), decayMood(M,NewM)) then
delete(mood(M)) + insert(mood(NewM)).

With the functionalities, realization of emotion, decay, and mood in place the
order of which they are executed has importance as the decay function should
only be applied to existing emotions and not include the emotions that have just
been realized in the same cycle. The decay of the mood is irrelevant as placing it
before the realization of emotions will not affect them as in the very first cycle
the mood is the default value and the decay will not change that. Then the
following cycles would be the same as if it was placed after the realization but
since the decay of the mood is much the same as the decay of the emotions then
it will be placed the same place. To increase the readability of the code both
the decay for the emotions and mood is placed in their own module inside the
emotion file and is then called before the emotions are realized.

54 Implementing Formalization

5.2 Expressing feelings

After the agent is done with realizing new emotions the agent needs to be able
to express its emotions but agents in GOAL neither has a face or a voice to use
these expression types. However the entity it is connected to in the environment
can be made to express emotions and with GOAL being declarative it should
be easy to create a sentence from the emotions that can be written out in the
environment. The only way the information can be passed from the agent to
the environment is through action with the information given as parameters,
but there is a potential problem with the way information is formatted by EIS.

The expressions will be implemented in a new module called ”mapping” inside
the emotions.mod2g and called from the main module.

Visual Expression

The first type of expression is the visual and as discussed before all the emotions
that needs to be mapped to the expression types and the type with the 2 or 3
highest intensity of emotions should be shown. The GOAL code is fairly simple
as the heavy duty will be done in the knowledge base

if bel(highestExpression(P,V), V > 0) then emotiondisplay(P).

The function highestExpression is a function which is written in Prolog and
can be seen in appendix A.1. The function finds and computes the highest two
emotions of each expression and finds the expression with the highest value, the
value and name of that expression is returned and if the expression value is above
0 the expression is sent to the environment. It is then up to the environment to
display that expression.

Verbal Expression

Next is the verbal Expression and as mentioned this is easy to implement because
of the declarative language and example of how these emotions are can be written
by the environment is already shown at the start of this chapter. However
there are some problem with the way the parameters of an action is send to
the environment that needs to be solved first. As defined in section 2.1.2 the
environment can receive 4 different types of parameters, and when sending the
name of the emotion it is received as an Identifier. But the agents related to

5.2 Expressing feelings 55

an emotion can either be a single agent, e.i. ”agent1” or a tuple of agents, e.i.
”(agent1,agent2)” which means that when the environment receives an emotion
with a single agent it is received as an Identifier but for multiple agents the tuple
is received as a Function. The same problem is with the subject, it can either
an an atom, e.i. ”money”, or it can be a term, e.i. ”money(5)”, the former will
be received as an Identifier and the latter will be received as a Function.

The first problem can easily be solved by just having two different actions defined
in the actionspec in the agent with the same name. One of them will then
consist of an action with four parameters for emotions with a single agent and the
second with five parameters for emotion with two agents where the additional
parameter is the second agent;

emotionverbal(Name,Agent,Subject,Intensity)
emotionverbal(Name,Agent1,Agent2,Subject,Intensity)

Thereby avoiding sending a tuple.

The other problem is also fairly easy to solve as Prolog has a function to make a
term into a string and thereby the term will be received as a Identifier instead,
sadly GOAL does not support all Prolog function and this particular function
is not supported. A similar function can be defined in the knowledge base made
with the other Prolog functions that are supported by GOAL;

term_to_string(T,S) :-
=..(T,[Name,X]),
string_concat(Name,"(",S1),
string_concat(S1,X,S2),
string_concat(S2,")",S).

This however only support terms with one argument.

With these problems out of the way the agent can send the emotions to the
environment but the agent needs to send each emotion to the environment each
cycle as some emotions may be deleted and new emotions realized along with
changes to the intensity. The resulting code is then;

forall bel(emo(P,A,X,I)) do {
if bel(atom(X)) then {
if bel(A = (A1,A2)) then emotionverbal(P,A1,A2,X,I).
if bel(A \= (A1,A2)) then emotionverbal(P,A,X,I).

}
if bel(\+ atom(X), term_to_string(X,NewX)) then {
if bel(A = (A1,A2)) then emotionverbal(P,A1,A2,NewX,I).
if bel(A \= (A1,A2)) then emotionverbal(P,A,NewX,I).

}
}

56 Implementing Formalization

Here it can be seen the subject is checked to be an atom or a term with Prolog
function atom, additional, the emotion is checked to be either one or two agents
and use the relevant action.

Chapter 6

Emotional Agent

With the framework done it is time to put it to the test. To test the framework
an environment along with an agent has been developed called SimpleJim which
has the focus of human-computer interaction where the agent is equipped with
displaying emotions and intended to display most of the emotions defined in
chapter 4. The idea is that an agent called Jim follows his simple life style or
working, shopping, enjoying his food and going to sleep. Through the daily cycle
Jim will show his emotions but without any interference he will have a happy
life and a form of hedonistic life style. The interaction then lies in that a user of
the system can interfere with Jims daily life by giving him food or money out of
good will or to take them instead. Jim will then respond with emotions about
the interference and express his gratitude or anger against the user.

6.1 SimpleJim

Since Jim need to be able to go to work, go shopping and sleep, most of these
action will lead Jim to different locations. But as the focus is not on where Jim
is then it doesn’t need to be visible locations that can be occupied so where Jim
is not important, but rather what is he doing. Jim has currently seven states
he can be in each having a related action that leads to the states;

58 Emotional Agent

Working, stealing money, stealing food and shopping for when he is out of his
house.
Eating and sleeping which are action that are performed in his home.
Home which is the neutral state for Jim as he will return to his house after each
of the previous state with the action Return.

Since the user is to interact with Jim an additional state is needed between
when he is home and when he is performing one of the actions in order to see
the effect of the interaction. For example if Jim has just earned money it should
be possible to take his money before he goes out to spend them. This state
can simply be a waiting state has he will wait before performing an action,
additionally the environment will not continue before both the user and Jim
has performed an action. Jim will go through following procedure between each
action;

Home− > Waiting− > Action− > Return− > Home

where action Action ∈ work, shop, eat, sleep, stealmoney, stealfood, return.

The user is able to perform five actions in the environment, give money or food
and take money or food along with the option to do nothing. These action can
be performed at any time but their timing can be a factor for what emotions
are shown. If the action to take money is done when Jim is aware of it he will
know the user is responsible for it and express the disapproval of the action, but
if it is done when he is sleeping then he won’t know who took it and can’t blame
anyone.

To make SimpleJim go around his daily cycle he needs some motivation and not
follow a scripted cycle, and since he sleeps and eat Jim can be equipped with
energy and hunger as motivation for his actions. Most of the actions that Jim
performs will slowly deplete his energy and increase is hunger and the only way
to replenish energy is by sleeping and to reduce hunger by eating. But in order
to eat he needs food which can only be obtained through shopping or stealing.
To buy food he needs money which requires that he works and to do any of
these action he needs enough energy or hunger. Jim’s energy is set to max 5
and will reduce to 0 and he’s hunger will start at 0 and rise to 5. Some of these
action has a larger demand than others such as going to work demands more
energy than stealing money and the cost of each action can be seen in table 6.1.
The cost of each of these action will first be realized when Jim returns to his
home.

As it can be seen from the table 6.1 it is more demanding to work than steal but

6.1 SimpleJim 59

Action Energy Hunger Obtained/Spend

Working -2 +2 +Money
Shopping -1 +1 +Food/-Money

Eating -1 Set to 0 -Food
Sleeping Set to 5 -2

Stealing food 0 0 +Food
Stealing Money 0 0 +Money

Figure 6.1: The cost and benefits of Jim’s actions

since Jim has moral norms about stealing he will not perform these action, that
is unless he does not have any other alternative. Given that the user interferes
enough with Jim’s daily life he can end up with no money to buy food and too
hungry and tired to work that his only option is to steal food. An important part
is that the environment also keeps track of time and one time unit is when both
the user and Jim has performed an action. This time is needed to synchronize
between the agent and the environment as they run independently of each other
and without the synchronization the agent would not know when to update
the emotions resulting in the emotions being updated each cycle of the agent
resulting in a rapid decay of emotions.

Looking at what is possible with this setup Jim should be able to express a large
number of emotions.

6.1.1 Environment

As already described the environment is where Jim express his emotions and
where the interaction between the user and Jim takes place. However this
environment is not the main focus of the thesis so several optimizations and
good practice has been neglected. The environment was only developed for
testing emotions with SimpleJim and cannot be reused to other kind of agent
systems, but this is expected as the focus is on the agent showing emotions.
Only the concepts of the environment along with connecting the environment
with EIS to make it communicate with GOAL is discussed. For more detail read
appendix A.3.

The environment is constructed by four classes, EnvironmentInterface,
Environment, EnvironmentWindow and Agent with related java files. Agent
is where the entity Jim is defined and keeps track of the variables such as energy,
hunger and what Jim is doing. The environment that Jim occupies is defined in
Environment and it is here the actions that both Jim and the user performs

60 Emotional Agent

are handled and the changes they make to the system is applied.

The display of Jim and the interaction between Jim and the user is done in
EnvironmentWindow and can be seen in figure 6.2. The communication be-
tween GOAL and the environment is done in the EnvironmentInterface
and it is here the EIS discussed in section 2.1.2 along with its methods is imple-
mented. This means that the received action from GOAL is received and the
percepts that Jim receives is sent from here.

Figure 6.2: Environment for SimpleJim

The first method is public void init(Map<String, Parameter> parameters)
which is called when the MAS is started in GOAL. This method goes through
the parameters in the Map and apply these to the environment. This method
can handle the following variables

• energy = X: is how much energy Jim has in the range X ∈ [0, 5]

• hunger = X: is how hungry Jim is in the range X ∈ [0, 5]

• money: Jim has money

• food: Jim has food

• debug: debug is activated

Money, food and debug are simple boolean values and are set to true when
written in the init parameter of the MAS file in GOAL and false when not
present.

6.1 SimpleJim 61

The agent may request percepts at any given time and each time a request is send
the method LinkedList<Percept> getAllPerceptsFromEntity(String
entity) is invoked. As discussed in section 2.1.2 these percepts can contain
Parameters in order to apply value to percepts.

The following percepts can be received:

• energy(X)

• hunger(X)

• food

• money

• state(X)

• time(X)

• userPerformed(X)

• given(X)

• lost(X)

Besides percepts about Jim’s state and the time of the environment, three new
percepts are introduced which are userPerformed, given and lost. These
are all part of the user interaction with the agent as the agent will receive the
percept given then the user has given Jim anything and lost when the user
has taken anything from Jim. The percept userPerformed is used when the
agent can see what action the user has perform, but is only received if Jim was
there to see the action. The agent can only witness an action when at home,
eating or waiting. Unlike the other percepts which are send at each request,
these three are only send once. Because these are not states of the agent,
but information that should only be received a single time after the user has
performed an action.

The last thing is to manage action from the agent which is done by the method
Percept performEntityAction(String entity, Action action) which
is invoked when the agent performs an action. The method simply matches the
received action name with the know action and apply these action to the envi-
ronment. The know actions are the following nine;

• work

62 Emotional Agent

• sleep

• eat

• stealmoney

• stealfood

• wait

• return

• emotiondisplay

• emotionverbal

Most of these actions has already been discussed and the last two are the action
needed for the agent to display the emotions both verbal and visual to the
environment. Examples of these displays can be seen in figure 6.3, where all 5
visual expression shown with color instead of a face.

6.1.2 Agent

After the environment has been created it is possible to develop an agent in
GOAL that is to take control of the entity Jim in the environment. This agent
should in the end be able to express emotion by using the defined framework
developed in chapter 5. The agent consist of an agent file called Jim.goal and
3 modules file with different tasks; emotionHandler.mod2g that deals with a
lot of the predicate and variable for emotions and planner.mod2g that deals
with planning of the agents action, along with emotion.mod2g which was
defined in precious chapter. All of these files can be seen in appendix A.2. This
section will mostly focus on implementing the predicates and variables needed
for making the agent expressing emotions. The approach will be to first make
the agent able to handle the percepts from the environment and make the agent
capable of executing action where after each group of emotions can be added to
the system

The first thing that is executed when the MAS starts is the init module of the
agent and this is where the first percepts can be received and dealt with, and
since there are nothing in the beliefs base then they are simply inserted.

init module{
program{
%% handle initial percepts
if bel(percept(energy(X))) then insert(energy(X)).

6.1 SimpleJim 63

if bel(percept(hunger(X))) then insert(hunger(X)).
if bel(percept(state(X))) then insert(state(X)).
if bel(percept(food)) then insert(food).
if bel(percept(money)) then insert(money).
if bel(percept(time(Time))) then insert(time(Time)).

}
}

After that the percepts will only be updated in the event module of the agent.

event module{
program{
%% update percepts
%% handle boolean percepts
if bel(percept(food)), not(bel(food)) then insert(food,

bel(food)).
if bel(food), not(bel(percept(food))) then delete(food).
if bel(percept(money)), not(bel(money)) then insert(money,

bel(money)).
if bel(money), not(bel(percept(money))) then delete(money).
if bel(percept(time(T)), time(OldT), T \= OldT) then delete(

time(OldT)) + insert(time(T)).

%% handle always percepts
if bel(percept(energy(E)), energy(OldE), E \= OldE) then delete(

energy(OldE)) + insert(energy(E) ,bel(energy(E))).
if bel(percept(hunger(H)), hunger(OldH), H \= OldH) then delete(

hunger(OldH)) + insert(hunger(H), bel(hunger(H))).
if bel(percept(state(S)), state(OldS), S \= OldS) then delete(

state(OldS)) + insert(state(S)).
}

}

The agent is now able to handle most of the percepts, however some are omitted
as they are mainly used for emotions and will be implemented later.

Next on the agenda is to make the agent plan in order to perform action but
this will only be touched lightly as it is not in the scope of the thesis. The agent
will make use of the module planner.mod2g which will produce the predicate
plan() that will contain a list of the actions; eat, sleep, getmoney and getfood.
Getmoney and getfood are action that can either be acquiring the item through
honest ways or through stealing and it is up to the agent an the state of the
energy and hunger to decide the specific action to perform. Besides these action
the agent can return or wait but the will always be executed in between each of
the previous action in the plan so there is no reason to fill the plan with these
actions. The planner also checks if the actions are still feasible and if not then
they are removed and the agent re-plans. The planning step will be performed
the first time in the initial module after the initial percepts has been handled.

if true then planner.

64 Emotional Agent

Any consecutive planning will be done in the event module, but the planning
step should only happen when important changes are made to the environment
and not at every cycle of the agent. This is where the time predicate can be
used as the time is incremented when both the user and the agent as performed
an action and it is here when changes to the environment are executed. So when
a new time step is detected the planing step should be executed:

if bel(percept(time(T)), time(OldT), T \= OldT) then{
if true then delete(time(OldT)) + insert(time(T)).

%%perform planning
if true then planner.

}

With the agent able to plan it should act upon this plan but these action should
only occur when the agent is in the waiting state, Additionally, all actions
should only be executed when a new time step is detected. For this a predicate
doneAction is implemented which is inserted in the belief base through the
actions post-condition.

work{
pre{ true }
post{ doneAction, bel(working) }

}

Then each time the agent has performed an action the doneAction is inserted
and is first removed when a new time step is detected as so;

if bel(percept(time(T)), time(OldT), T \= OldT) then{
if true then delete(time(OldT)) + insert(time(T)).
%% delete action
if bel(doneAction) then delete(doneAction).
if bel(state(’HOME’), plan([X|Tail])) then delete(plan([X|Tail]))

+ insert(plan(Tail)).

%%perform planning
if true then planner.

}

The code for performing an action is made in the main module ;

main module{
program{
if not(bel(doneAction)) then {
if bel(state(’WAITING’)) then {

if bel(plan([X|T])) then {
if bel(plan([X|T])) then {
if bel(X = eat) then eat.
if bel(X = sleep) then sleep.

6.1 SimpleJim 65

if bel(X = getfood) then{
%% buy
if bel(energy(E), E > 0, money) then buyfood.
%% steal
if not(bel(money)) then stealfood.

}
if bel(X = getmoney) then{
%% buy
if bel(energy(E), E > 1, hunger(H), H < 4) then work.
%% steal
if true then stealmoney.

}
}

}
if bel(state(’HOME’)) then wait.
if not(bel(state(’WAITING’) ; state(’HOME’))) then return.

}
}

}

With this the agent is now fully able to interact with the environment, and next
is to make it able to interact with the user through emotions. The approach will
be to add the framework from the file emotion.mod2g to the agent followed
by implement the basic emotions which are the only emotion required to be
managed in order to show emotions.

As described in chapter 5 the emotion.mod2g consist of multiple modules but
to use the framework the modules initEmotion module and emotionUpdate
module are the only one needed and should be called from the agent file. The
first module is called in the init module of the agent file

if true then initEmotion.

and the second module is called in the event module when a new time step is
detected.

if true then emotionsUpdate.

Most of the predicate and variables needed for showing emotions are handled
in the module file emotionHandler.mod2g with the only exception being
emotional beliefs that is received through percepts and handled in the event
module. The calls to this module will be done before the emotionsUpdate call
to insure that all the predicates and variables are up to date before handling
emotions.

if true then emotionHandling.
if true then emotionsUpdate.

66 Emotional Agent

Joy and fear are the first emotions to be implemented and these emotions require
that the agent has desires and beliefs about the outcomes that can happen.
When focusing on the outcome that the agent can cause the agent can desire to
obtain food or money, replenish energy and eliminate hunger.

The emotionHandler module will then have the following code for imple-
menting the desire for food;

% food
if not(bel(food)), bel(plan(X)) then {
if bel(member(getfood,X)) then {

if goal(des(food,50)) then drop(des(food,50)) + adopt(
des(food,75)).

if not(goal(des(food,_))) then adopt(des(food,75)).
}
if bel(\+member(getfood,X)) then adopt(des(food,50)).

}

Money is implemented in the same way as above. For hunger it is;

% hunger
if bel(hunger(X), X > 0, NewD is (50/5*X)) then {
if goal(des(hunger(0),D)) then drop(des(hunger(0),D)) + adopt(

des(hunger(0),NewD)).
if not(goal(des(hunger(0),D))) then adopt(des(hunger(0),NewD)).

}

where energy is the same.

The desire for eliminating hunger is constructed so that the desire is increased
the hungrier the agent is and much the same with energy where the desire
increases as the energy is depleted.

Now that the emotional desires are in place, next is the emotional beliefs. These
are managed in the event module along with the percepts, when a change to
the beliefs are received the emotional beliefs are insert. The changes for food or
money is simply that the agent goes from not having the item to having it and
for energy or hunger it when a change in the level is detected.

if bel(percept(food)), not(bel(food)) then insert(food,
bel(food)).

if bel(percept(energy(E)), energy(OldE), E \= OldE) then delete(
energy(OldE)) + insert(energy(E) ,bel(energy(E))).

However these are only positive outcomes so only joy is realized, but for negative
outcome the interference by the user needs to be managed.

When the user interfere it can cause the agent to lose money or food but they

6.1 SimpleJim 67

can also be given and these emotional desires should be present in the agents
mind at all time.

% Desires for beeing given food and money
if not(goal(des(given(food),_))) then adopt(des(given(money),50)).
if not(goal(des(given(money),_))) then adopt(des(given(food),50)).

%% update undesires for loosing food and money
if not(goal(undes(lost(food),_))) then adopt(undes(lost(food),100)

).
if not(goal(undes(lost(money),_))) then adopt(

undes(lost(money),100)).

For the related beliefs the agent will receive a percept if money or food has
either been given or lost.

% Percept for not witnessed action
if bel(percept(lost(food))) then insert(bel(lost(food))).
if bel(percept(given(food))) then insert(bel(given(food))).
if bel(percept(lost(money))) then insert(bel(lost(money))).
if bel(percept(given(money))) then insert(bel(given(money))).

The agent is now able to express both joy and distress.

Next is action based emotions and these emotions requires that the agent has
morals about the actions that can be performed by both the agent and the user.
The agent should know who is responsible for an action and at least know if
the outcome has taken place through beliefs. These ideals are such as stealing,
loosing or given food/money. These ideals are never deleted by the framework
and should only be inserted once in the init module of the agent. The agent
has the following morals inserted in its belief base;

% Morals
%% The agent
ideal(working,10).
ideal(neg(stealing),100).
%% The user
ideal(neg(lost(food)),100).
ideal(neg(lost(money)),100).
ideal(given(food),50).
ideal(given(money),50).

The agent should be able to feel some pride so for that the positive moral
attitude of going to work is inserted, but with a low value.

Next is responsibility and for actions that the agent is responsible for is inserted
when the agent performs an action so the init module is updated with changes
for acquiring money and food.

68 Emotional Agent

if bel(X = getfood) then{
%% buy
if bel(energy(E), E > 0, money) then buyfood.
%% steal
if not(bel(money)) {
if bel(me(Me)) then insert(resp(Me,stealing)) + then stealfood.

}
}
if bel(X = getmoney) then{
%% buy
if bel(energy(E), E > 1, hunger(H), H < 4, me(Me))
then insert(resp(Me,working)) + work.

%% steal
if bel(me(Me)) then insert(resp(Me,stealing)) + stealmoney.

}

For dealing with responsibility of the user, the agent receive percept from the
environment if it witnessed the user performing one of four actions; took money
or food and gave money or food. These percepts are dealt with in the event
module along with all other percepts and an example of one of these percepts
would be;

% Percepts about the user actions.
if bel(percept(userPerformed("TAKEFOOD"))) then
insert(resp(user,lost(food))).

Next is the beliefs of the consequence of action, the beliefs about lost or given
food or money are already dealt with but the agents own actions, working and
stealing, are not. These, however, are fairly easy to implement as they can be
inserted in the actions post-condition.

work{
pre{ true }
post{ doneAction, bel(working) }

}
stealmoney{
pre{ true }
post{ doneAction, bel(stealing) }

}
stealfood{
pre{ true }
post{ doneAction, bel(stealing) }

}

Both the emotion pride and shame along with reproach and gratitude is now
part of the agents emotions, but a slight improvement can be made. Some action
by the user can lead the agent to stealing so instead of blaming itself, the agent
could blame the user for being responsible for his actions. When the agent is
about to steal food a simple check to see if an existing emotion exist about the

6.1 SimpleJim 69

user stealing its money can make the agent blame the user. This can be done
for both food or money and the updated action rules for stealing money in the
main module is then;

%% steal money
if not(bel(money)) then {
%% if an existing emotion toward another agent that resulted in

stealing then he is responsible
if bel(emo(_,(_,A),lost(money),_)) then insert(resp(A,stealing)) +

stealfood.
%% if no other is to blame then the agent itself is to blame
if bel(me(Me)) then insert(resp(Me,stealing)) + stealfood.

}

The action rule for stealing food is altered the same way.

Now that both well-being and action based emotions are implemented the agent
is also able to feel more complex emotions such as anger or gratification.

Next is hope and fear and these emotions requires that the agent expects an
outcome and may have a know probability of that outcome. Since the agent has
a plan it is easy to insert what the agent expects by adding the following code
in emotionHandler.mod2g;

%%update expected outcome
if bel(plan(X)) then {
% insert expected outcomes for actions in the plan
if bel(member(getfood,X)) then insert(expect(food)).
if bel(member(getmoney,X)) then insert(expect(money)).
if bel(member(sleep,X)) then insert(expect(energy(5))).
if bel(member(eat,X)) then insert(expect(hunger(0))).
% Delete expect outcomes that are not in the plan
forall bel(expect(E), member(E,X)) do delete(expect(X)).

}

It is also important to delete expectations that are no longer in the plan as the
agent can re-plan.

In this implementation there are no probability for these expectations in order
to reduce overhead but these could be done by keeping track of how many time
each action has succeeded.

The agent can express hope and fear, but this is only for the agents own action
and not for the users potential actions. Expecting what the user would do is
hard but can be done with first calculating the probability of the users actions
in order to predict the user. At first the agent has not experienced any action
from the user so it does not expect any of them to happen, but if the user starts
to perform actions then a probability of the actions can be computed and if

70 Emotional Agent

the chance is high enough then the agent may start to expect the users actions.
Using the time and counting the amount of time an user have performed an
action can be used to find the probability, so first the agent needs to keep track
of the users actions. In the init module variables about the amount of time
the user has performed and action is initialized;

% Variables for computing probability
stolenFood(0).
stolenMoney(0).
givenFood(0).
givenMoney(0).

These are then updated when the agent receives percepts about the user actions
and an example of the updated percepts are;

if bel(percept(userPerformed("TAKEFOOD")), stolenFood(OldV), NewV is
OldV+1) then

delete(stolenFood(OldV)) + insert(resp(user,lost(food)),
stolenFood(NewV)).

With the agent keeping track of the users actions the responsibility can be
computed in emotionHandler.mod2g using the counter and time and if the
probability is above a threshold then the expectation is inserted. For stolen food
the code is;

%% update probablilty
if bel(stolenFood(X), X > 0, time(T), P is X/T, prob(OldP,lost(food)),

OldP \= P) then
delete(prob(OldP,lost(food))) + insert(prob(P,lost(food))).

if bel(stolenFood(X), X > 0, time(T), P is X/T), not(bel(
prob(OldP,lost(food)))) then insert(prob(P,lost(food))).

if bel(prob(X,lost(food)), X >= 0.3) then insert(expect(lost(food))).

In this case the agent is a little paranoid so when there is a 30% or higher chance
of the user stealing food then the agent will expect the user to steal its food.
The same is done for stolen money and given food or money.

With hope and fear implemented the agent is also able to feel emotions such as
satisfaction and disappointment without additional implementation.

The last emotions is like and hate but all of the computation is done in emotion.mod2g,
the only thing that is missing is an initial relation value between the agent and
the user which can inserted in the belief base in the init module.

% Relations
relation(user,0).

6.1 SimpleJim 71

(a) Happy agent (b) Sad agent (c) Fearful agent

(d) Disgusted agent (e) Angry agent

Figure 6.3: Expression of Jim in the environment

The only emotions that the agent is not able to experience are the emotions
fortune of others, this require that the agent knows what other agents desires
and knows but in this case the only other agent is the user which is a human-
being that simply press some buttons and his desires and beliefs are not know,
almost as a form of deity. The agent is now able to experience 18 of the 22
emotions that are possible from the framework.

72 Emotional Agent

Chapter 7

Discussion

At the start of this paper the the following question was asked: ”How close will
the agents emotion be to a humans emotions and is it able to express the same
variety as a human?”Looking at SimpleJim the agent is able to show 18 of the 22
emotions of the framework where the missing 4 are fortunes of other. However
these emotions can still be implemented in a case with agent-to-agent interaction
where they can communicate their desires and there by resent or be happy for
each other in reaching their desire. But this is still far from the potential of
these emotions as most of such desires are not directly communicated between
each other but derived from the context of the situations.

For example, if a person is entering a marathon without much practice we know
that they desire to finish the race with out being directly told. Another example
is done trough indirect communication such as facial expression, if we see a
person who is disappointed in the outcome of an event we may feel pity in
that person, as by the context of the facial expression and situation it can be
derived that person desired a different outcome. This also means that fortunes
of others emotions, the same with prospect-based emotion, does not follow a
linear temporal logic, it is first when a person knows about the outcome that a
emotions is realized even though the event has passed some time ago.

A lot of the proposed variables in the OCC model is not implemented in the
framework as most of them are not possible in GOAL. This does influence the

74 Discussion

precision of the intensity of the emotions and can make an agent overreact in
some cases compared to what a human would do in same situation. As proximity
is not part of the framework the agent will not be able to different between how
old the information of an outcome is. If a person is first told about a relatives
death months after the event happened then the elicited emotion is not as strong
compared if the the event happened few minutes ago. As stated in section 4.1
it is possible to implement however it demands a more information regarding
outcomes and could be an improvement to the framework. Though the agent
can experience pride or shame for itself but the lack of the variable strength of
unit inhibits the agent from feeling pride or shame on the behalf of others or as
an organization of agents. But as mentioned in section 4.1 this could be done
through organization model as proposed by [Spu13] where the agent is able to
create organization between each other. These organization can then be used
to determine the variable strengh of unit to know what type of emotion to use
for actions.

The global variable arousal is not part of the framework and in section 3.1 it was
mentioned that there are multiple theories of emotion and some of these believes
that arousal is a large part of a person emotions. This is however somewhat
implemented through the mood of the agent as it is similar, since a series of
positive outcome makes it more likely to experience positive emotions but they
do not affect the intensity of positive emotions so this does distance the agents
emotion from what a human may experience.

The OCC model was decided to be implemented with persistent emotions rather
than interpret the agents state of mind to emotions which resulted in the need
of a decay function to reduce the emotions relevance. With the current decay
implementation all emotion decay with the same linear function and all but
prospect based emotions are deleted when they reach a lower threshold. Beside
the linear decay this thesis does not deal with differentiating between the emo-
tional impact emotion has on the agent as the interpretation approach would
have been able to, so emotion such as joy is assumed to have the same impact
as disappointment. When an agent is angry with another agent the relation
between them could have a factor of how the emotion anger is decaying so if
the agents relation improves, the decay of the emotion can increase but if the
relation is worsened then it may be haltered. Along with the relation the vari-
able strength of unit can also be part of it as the anger between two agents
with strong unity could decay slower. So all emotion with the same intensity
will have the same lifespan even though they should have a different emotional
impact and solving this problem demands complex decay function that takes
variables for each emotion into account.

The same problem exist in the mood of the agent as each emotion affects the
mood the same way, such as hope will affect the mood with the same effect as joy

75

will. However, hope would probably not have the same effect as joy. Say that a
person hopes five different outcomes, his mood would not be quite as positive as
if he felt joy for five different outcomes, but unlike decay this problem cannot be
solved with the interpretation approach. That is unless the intensity is designed
from the start so the intensity of hope never reaches the same level of intensity
of joy. But this is not the case for the current implementation however one way
to solve it would be to apply a weight to each emotion in order to adjust how
much they will impact the mood in the agent.

The agent is also able to show five facial expression based on the emotions that
the agent is experiencing. So the agent is able to experience and express a large
variety of emotions but there is still missing a lot before it can compete with a
human being.

Amongst the expressed emotions proposed by Ekmann in [EO79] the agent is
not able to experience surprise as it is not part of the OCC model.

As stated in section 4.2.5 surprise is not considered an emotion but a cognitive
state and is part of the variable unexpectedness, however this does not neces-
sarily mean that it cannot be part of the agents expression. If an outcome is
considered unexpected then it is a surprise to the agent then it could give rise to
a surprised expression and then transition over to the show a relevant emotions
related the outcome that elicited the surprise. Sadly as unexpectedness is not
part of the framework the implementation of the facial expression is still not
feasible.

As it is implemented now it is only the two most intense emotion in each of
the five expression categories that is used to compute what expression the agent
should make, yet the distribution of the emotion across these five expression is
not equal as ’happy’ contains 11 different emotions where ’fear’ only contains a
single emotions. In order to solve this, the emotions should be weighted much
the same way as discussed with mood as hope does not carry that big of a
positive impact on the agent as joy does.

Since GOAL is declarative it is easy to read the emotions. However the intensity
could be used to express that emotion better verbally instead of reading it from
the value of the intensity directly. As stated in the OCC model each emotion has
a set of tokens related to that emotion, joy has the tokens; contented, cheerful,
delighted, glad, joyful and excited etc. Each of these token can be used to
express joy with different intensity as each of these token are loaded differently,
so if the intensity of joy low the token ’delighted’ could be used an if it was high
intensity the token ’ecstatic’ could be used.

The thesis mention that emotions are an integrated part of the human deci-

76 Discussion

sion making but the agent SimpleJim does not use these emotion in its decision
making as stated in section 1. These emotion are only meant to be used as in-
formation about the agent state of mind, yet the framework could easily be used
for one of the other categories. It was described in section 3.1.1 that appraisal
structure also has a coping mechanic where the agent used these emotions to
cope with the situation. In this case for the emotions can be used to decide what
problem to engage first by looking at what emotion that affects the agent the
most thereby moving the usage to the attention function category. Instead of
using emotions as coping mechanic the agent can also use the knowledge of how
emotion work to avoid or to seek certain emotions being realized and by that
using it as a motivational function. An example of such a function can be seen
in [MC04] where the emotions are used as a motivational factor for exploring
unknown dynamic environments.

The agent SimpleJim could also be made better as currently the agent can steal
money but it is redundant as the money are only used for food which Jim also
is able to steal so there are no reason for stealing money. A solution would be
to insert something that Jim desires but is not obtainable. This could be that
Jim should pay his bills before the end of the month which will also give the
possibility to have an event that Jim can expect.

It is evident that there a multiple things that can be improved and one of the
first thing would be to use the interpretation approach which would have been
a more suitable solution for implementing emotion as it avoids a lot of problems
when dealing with intensity of emotions. The wish to avoid temporal logic has
also made some things harder such as not having the proximity variable.

Chapter 8

Conclusion

Existing theories of emotion have been examined where the theory of appraisal
has been chosen. A model called The OCC Model based on appraisal theory
has been examined as a model for emotion which have proven most optimal for
implementing in the agent-programming language GOAL. Based on this model a
logical formalization has been developed to fit with GOAL and contains logic for
22 emotions ranging from both positive to negative emotions and focus on both
the agent and other agents interaction. A framework has been created in GOAL
with the formalization and given an agent the capabilities of experiencing the 22
emotions and is implemented with mood to enhance the effects of emotions. The
framework also gives an agent the option to express these emotions both trough
visual and verbal representations. Finally an agent is developed implemented
with this framework and made to interact with a user trough emotional reaction
to the user’s actions.

78 Conclusion

Appendix A

Appendix

A.1 emotions.mod2g

module initEmotion{
%% initial predicates are inserted here.
%% should be called in the inital module of the agent.

program[order=linearall]{

%% initial value for emotion threshold
if true then insert(mood(20,20)).

%% setup initial relations to other agents
forall bel(agent(X) , me(A), X \== A) do
insert(relation(X,0)).

%% dummies that are never reached so that the program can run
without complaining

if bel(false) then {
if not(bel(expect(_))) then insert(expect(dummy)).
if not(bel(bel(_))) then insert(bel(dummy)).
if not(bel(prob(_,_))) then insert(prob(dummy,unknown)).
if not(bel(ideal(_,_))) then insert(ideal(dummy,unknown)).
if not(goal(des(_,_))) then adopt(des(dummy,unknown)).
if not(goal(undes(_,_))) then adopt(undes(dummy,unknown)).

}

}

80 Appendix

}

module emotionsUpdate{
%% Main module for handling emotions

knowledge{
% term_to_string(+Term,String)
term_to_string(T,S) :-
=..(T,[Name,X]),
string_concat(Name,"(",S1),
string_concat(S1,X,S2),
string_concat(S2,")",S).

}

program[order=linearall]{

%% decay %%
if true then decay.

%% Realizations of emotions &&
if true then realization.

%% map the emotions and finds the highest emotion along with
updateing the emotionalstate %%

if true then mapping.

%% Tells the environment what it feels
forall bel(emo(P,A,X,I)) do {
if bel(atom(X)) then {
if bel(A = (A1,A2)) then emotionverbal(P,A1,A2,X,I).
if bel(A \= (A1,A2)) then emotionverbal(P,A,X,I).

}
if bel(\+ atom(X), term_to_string(X,NewX)) then {
if bel(A = (A1,A2)) then emotionverbal(P,A1,A2,NewX,I).
if bel(A \= (A1,A2)) then emotionverbal(P,A,NewX,I).

}
}

}
}

module realization {
%% realizes emotions in the agent defined from emotional desires and

beliefs along with
%% other predicates and variables

knowledge{

% function to calculate new intensity

%prospectInten(+Des,+Prob,?Int)
prospectInten(Des, Prob, Int) :- Int is min(abs(Des * Prob),100).
% averageInten(+Des,+Int1,?Int2)
averageInten(Int1, Int2, Int3) :- Int3 is (Int1 + Int2)/2.

incNegMood(Intensity, OldPM, OldNM, NewPM, NewNM) :-

A.1 emotions.mod2g 81

mood(OldPM,OldNM),
Intensity > OldPM,
NewPM is (Intensity+OldPM)/2,
NewNM is (OldPM/Intensity)*OldNM.

incPosMood(Intensity, OldPM, OldNM, NewPM, NewNM) :-
mood(OldPM,OldNM),
Intensity > OldNM,
NewNM is (Intensity+OldNM)/2,
NewPM is (OldNM/Intensity)*OldPM.

abovePositiveMood(I) :-
mood(P,_), I >= P.

aboveNegativeMood(I) :-
mood(_,N), I >= N.

}

program[order=linearall]{
%% macroes
#define pleased(X,D) goal(des(X,D)).
#define displeased(X,D) goal(undes(X,D)).
#define approving(X,Id) bel(ideal(X,Id), bel(X)).
#define disapproving(X,Id) bel(ideal(neg(X),Id), bel(X)).
#define deserving(A,X,D) goal(des(bel(A,X),D)).
#define undeserving(A,X,D) goal(undes(bel(A,X),D)).
#define otherDesire(A,X,D) bel(bel(des(A,X,D))).
#define otherUndesire(A,X,D) bel(bel(undes(A,X,D))).

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% Basic Emotions
%%%

%%%% Prospective Consequence %%%%
%% Hope %%
forall pleased(X,D), not(bel(bel(X))), bel(expect(X), me(A)) do

{
if not(bel(emo(hope,A,X,_))) then {
if not(bel(prob(X,_))), bel(prospectInten(D,1,I),

abovePositiveMood(I)) then {
if true then insert(emo(hope,A,X,I)).
%% update mood
if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}
if bel(prob(X,R), prospectInten(D,R,I), abovePositiveMood(I))

then {
if true then insert(emo(hope,A,X,I)).
%% update mood
if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}
}

}

82 Appendix

%% Fear %%
forall displeased(X,D), not(bel(bel(X))), bel(expect(X), me(A))

do {
if not(bel(emo(fear,A,X,_))) then {
if not(bel(prob(X,_))), bel(prospectInten(D,1,I),

aboveNegativeMood(I)) then {
if true then insert(emo(fear,A,X,I)).
%% update mood
if bel(incNegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}
if bel(prob(X,R), prospectInten(D,R,I), aboveNegativeMood(I))

then {
if true then insert(emo(fear,A,X,I)).
%% update mood
if bel(incNegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}
}

}

%%%% Actual unexpected Consequence %%%%

%% Joy %%
forall pleased(X,D), bel(bel(X), me(A), abovePositiveMood(D)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(joy,A,X,OtherI)) then {
if bel(OtherI =< D) then delete(emo(joy,A,X,OtherI)) +

insert(emo(joy,A,X,D)).
}
if not(bel(emo(joy,A,X,_))) then insert(emo(joy,A,X,D)).
%% update mood
if bel(incPosMood(D,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}

%% Distress %%
forall displeased(X,D), bel(bel(X), me(A), aboveNegativeMood(D))

do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(distress,A,X,OtherI)) then {
if bel(OtherI =< D) then delete(emo(distress,A,X,OtherI)) +

insert(emo(distress,A,X,D)).
}
if not(bel(emo(distress,A,X,_))) then insert(

emo(distress,A,X,D)).
%% update mood
if bel(incNegMood(D,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}

%%%% Action of the agent it self %%%%

%% Pride %%

A.1 emotions.mod2g 83

forall approving(X,Id), bel(resp(A,X), me(A),
abovePositiveMood(Id)) do {

%% if the emotion for the same thing exist then replace it with
if bel(emo(pride,A,X,OtherI)) then {
if bel(OtherI =< Id) then delete(emo(pride,A,X,OtherI)) +

insert(emo(pride,A,X,Id)).
}
if not(bel(emo(pride,A,X,_))) then insert(emo(pride,A,X,Id)).
%% delete used variables
if true then delete(resp(A,X)).
%% update mood
if bel(incPosMood(Id,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}

%% Shame %%
forall disapproving(X,Id), bel(resp(A,X), me(A),

aboveNegativeMood(Id)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(shame,A,X,OtherI)) then {
if bel(OtherI =< Id) then delete(emo(shame,A,X,OtherI)) +

insert(emo(shame,A,X,Id)).
}
if not(bel(emo(shame,A,X,_))) then insert(emo(shame,A,X,Id)).
%% update mood
if bel(incNegMood(Id,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% delete used variables
if true then delete(resp(A,X)).

}

%%%% Action of another agent %%%%

%% Admiration %%
forall approving(X,Id), bel(resp(A,X), me(Me), Me \= A,

abovePositiveMood(Id)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(admiration,(Me,A),X,OtherI)) then {
if bel(OtherI =< Id) then delete(

emo(admiration,(Me,A),X,OtherI)) + insert(
emo(admiration,(Me,A),X,Id)).

}
if not(bel(emo(admiration,(Me,A),X,_))) then insert(

emo(admiration,(Me,A),X,Id)).
%%update relationship
if bel(relation(A,Rel), averageInten(Rel,Id,NewRel)) then
delete(relation(A,Rel)) + insert(relation(A,NewRel)).

%% delete used variables
if true then delete(resp(A,X)).
%% update mood
if bel(incPosMood(Id,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}

%% Reproach %%

84 Appendix

forall disapproving(X,Id), bel(resp(A,X), me(Me), Me \= A,
aboveNegativeMood(Id)) do {

%% if the emotion for the same thing exist then replace it with
if bel(emo(reproach,(Me,A),X,OtherI)) then {
if bel(OtherI =< Id) then delete(

emo(reproach,(Me,A),X,OtherI)) + insert(
emo(reproach,(Me,A),X,Id)).

}
if not(bel(emo(reproach,(Me,A),X,_))) then insert(

emo(reproach,(Me,A),X,Id)).
%% update relationship
if bel(relation(A,Rel), NegI is -1*Id,

averageInten(Rel,NegI,NewRel)) then
delete(relation(A,Rel)) + insert(relation(A,NewRel)).

%% update mood
if bel(incNegMood(Id,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% delete used variables
if true then delete(resp(A,X)).

}

%%
%%%%%%%%%%%%%%%%%%%%% Complex Emotions
%%

%%%% Related Consequence and Action %%%%
%%% against the agent itself %%%

%% Gratification %%
forall bel(emo(pride,A,X,Ip), emo(joy,A,X,Ij) , me(A),

averageInten(Ip,Ij,I), abovePositiveMood(I)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(gratification,A,X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(gratification,A,X,OtherI)

) + insert(emo(gratification,A,X,I)).
}
if not(bel(emo(gratification,A,X,_))) then insert(

emo(gratification,A,X,I)).
%% update mood
if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then delete(emo(pride,A,X,Ip), emo(joy,A,X,Ij)).

}

%% Remorse %%
forall bel(emo(shame,A,X,Is), emo(distress,A,X,Id), me(A),

averageInten(Is,Id,I), aboveNegativeMood(I)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(remorse,A,X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(remorse,A,X,OtherI)) +

insert(emo(remorse,A,X,I)).
}
if not(bel(emo(remorse,A,X,_))) then insert(emo(remorse,A,X,I)

).

A.1 emotions.mod2g 85

%% update mood
if bel(incNegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then delete(emo(shame,A,X,Is), emo(distress,A,X,Id)).

}

%%%%% against another agent %%%%%

%% Gratitude %%
forall bel(emo(admiration,(Me,A),X,Ia), emo(joy,Me,X,Ij), me(Me),

averageInten(Ia,Ij,I), abovePositiveMood(I)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(gratitude,(Me,A),X,OtherI)) then {
if bel(OtherI =< I) then delete(

emo(gratitude,(Me,A),X,OtherI)) + insert(
emo(gratitude,(Me,A),X,I)).

}
if not(bel(emo(gratitude,(Me,A),X,_))) then insert(

emo(gratitude,(Me,A),X,I)).
%% update relation
if bel(relation(A,Rel), averageInten(Rel,I,NewRel)) then
delete(relation(A,Rel)) + insert(relation(A,NewRel)).

%% update mood
if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then delete(emo(admiration,(Me,A),X,Ia),

emo(joy,Me,X,Ij)).
}

%% Anger %%
forall bel(emo(reproach,(Me,A),X,Ir), emo(distress,Me,X,Id),

me(Me), averageInten(Ir,Id,I), aboveNegativeMood(I)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(anger,(Me,A),X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(anger,(Me,A),X,OtherI))

+ insert(emo(anger,(Me,A),X,I)).
}
if not(bel(emo(anger,(Me,A),X,_))) then insert(

emo(anger,(Me,A),X,I)).
%% update relation
if bel(relation(A,Rel), NegI is -1*I,

averageInten(Rel,NegI,NewRel)) then
delete(relation(A,Rel)) + insert(relation(A,NewRel)).

%% update mood
if bel(incNegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then delete(emo(reproach,(Me,A),X,Ir),

emo(distress,Me,X,Id)).
}

%%%%% Expected Outcome %%%%%

86 Appendix

%% Satisfaction %%
forall goal(des(X,D)), bel(emo(hope,A,X,Ih), bel(X), me(A),

averageInten(Ih,D,I), abovePositiveMood(I)) do{
%% if the emotion for the same thing exist then replace it with
if bel(emo(satisfaction,A,X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(satisfaction,A,X,OtherI)

) + insert(emo(satisfaction,A,X,I)).
}
if not(bel(emo(satisfaction,A,X,_))) then insert(

emo(satisfaction,A,X,I)).
%% update mood
if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then delete(emo(hope,A,X,Ih)).
if bel(expect(X)) then delete(expect(X)).
if bel(emo(joy,A,X,Ij)) then delete(emo(joy,A,X,Ij)).

}

%% Dissapointment %%
forall goal(des(X,D)), bel(emo(hope,A,X,Ih), bel(neg(X)), me(A),

averageInten(Ih,D,I), aboveNegativeMood(I)) do{
%% if the emotion for the same thing eexist then replace it with
if bel(emo(dissapointment,A,X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(dissapointment,A,X,OtherI)

) + insert(emo(dissapointment,A,X,I)).
}
if not(bel(emo(dissapointment,A,X,_))) then insert(

emo(dissapointment,A,X,I)).
%% update mood
if bel(incNegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then delete(emo(hope,A,X,Ih)).
if bel(expect(X)) then delete(expect(X)).

}
%% Relief %%
forall goal(undes(X,D)), bel(emo(fear,A,X,I), bel(neg(X)), me(A),

averageInten(If,D,I), abovePositiveMood(I)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(relief,A,X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(relief,A,X,OtherI)) +

insert(emo(relief,A,X,I)).
}
if not(bel(emo(relief,A,X,_))) then insert(emo(relief,A,X,I)).
%% update mood
if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then delete(emo(fear,A,X,I)).
if bel(expect(X)) then delete(expect(X)).

}

%% FearConfirmed %%

A.1 emotions.mod2g 87

forall goal(undes(X,D)), bel(emo(fear,A,X,If), bel(X), me(A),
averageInten(If,D,I), aboveNegativeMood(I)) do {

%% if the emotion for the same thing exist then replace it with
if bel(emo(fearConfirmed,A,X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(fearConfirmed,A,X,OtherI)

) + insert(emo(fearConfirmed,A,X,I)).
}
if not(bel(emo(fearConfirmed,A,X,_))) then insert(

emo(fearConfirmed,A,X,I)).
%% update mood
if bel(incNegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then delete(emo(fear,A,X,If)).
if bel(emo(distress,A,X,Ij)) then delete(emo(distress,A,X,Ij)).
if bel(expect(X)) then delete(expect(X)).

}

%%%%% Fortune of others %%%%%

%% Happy For %%
forall deserving(A,X,D), otherDesire(A,X,OtherD), bel(bel(X),

me(Me), averageInten(D,OtherD,I), abovePositiveMood(I)) do {
%% if the emotion for the same thing exist then replace it with
if bel(emo(happyFor,(Me,A),X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(happyFor,(Me,A),X,OtherI)

) + insert(emo(happyFor,(Me,A),X,I)).
}
if not(bel(emo(happyFor,(Me,A),X,_))) then insert(

emo(happyFor,(Me,A),X,I)).
%% update mood
if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then drop(des(bel(A,X),D)).

}

%% Resentment %%
forall undeserving(A,X,D), otherDesire(A,X,OtherD), bel(bel(X),

me(Me), averageInten(D,OtherD,I), aboveNegativeMood(I)) do {
%% if the emotion for the same thing eexist then replace it with
if bel(emo(resentment,(Me,A),X,OtherI)) then {
if bel(OtherI =< I) then delete(

emo(resentment,(Me,A),X,OtherI)) + insert(
emo(resentment,(Me,A),X,I)).

}
if not(bel(emo(resentment,(Me,A),X,_))) then insert(

emo(resentment,(Me,A),X,I)).
%% update mood
if bel(incNegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then drop(undes(bel(A,X),D)).

}

88 Appendix

%% Gloating %%
forall deserving(A,X,D), otherUndesire(A,X,OtherD), bel(bel(X),

me(Me), averageInten(D,OtherD,I), abovePositiveMood(I)) do {
%% if the emotion for the same thing eexist then replace it with
if bel(emo(gloating,(Me,A),X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(gloating,(Me,A),X,OtherI)

) + insert(emo(gloating,(Me,A),X,I)).
}
if not(bel(emo(gloating,(Me,A),X,_))) then insert(

emo(gloating,(Me,A),X,I)).
%% update mood
if bel(incPosMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then drop(des(bel(A,X),D)).

}

%% Sorry for %%
forall undeserving(A,X,D), otherUndesire(A,X,OtherD), bel(bel(X),

me(Me), averageInten(D,OtherD,I), aboveNegativeMood(I)) do {
%% if the emotion for the same thing eexist then replace it with
if bel(emo(sorryFor,(Me,A),X,OtherI)) then {
if bel(OtherI =< I) then delete(emo(sorryFor,(Me,A),X,OtherI)

) + insert(emo(sorryFor,(Me,A),X,I)).
}
if not(bel(emo(sorryFor,(Me,A),X,_))) then insert(

emo(sorryFor,(Me,A),X,I)).
%% update mood
if bel(incNegMood(I,PM,NM,NewPM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

%% remove eliciting emotions and redundant variables
if true then drop(undes(bel(A,X),D)).

}

%%%%% update the dislike and like of a person %%%%%%
%% add new emotion of know releations %%
forall bel(relation(A,NewI), me(Me)) do {
% Like
if bel(NewI > 20) then{
if bel(emo(like,Me,A,OldI), NewI \= OldI) then
delete(emo(like,Me,A,OldI)) + insert(emo(like,Me,A,NewI)).

if not(bel(emo(like,Me,A,_))) then insert(emo(like,Me,A,NewI)
).

}
% dislike
if bel(NewI < -20, PosI is abs(NewI)) then {
if bel(emo(dislike,Me,A,OldI), PosI \= OldI) then
delete(emo(dislike,Me,A,OldI)) + insert(

emo(dislike,Me,A,PosI)).
if not(bel(emo(dislike,Me,A,_))) then insert(

emo(dislike,Me,A,PosI)).
}
% delete unneeded like or dislike
if bel(NewI < 20, NewI > -20) then{

A.1 emotions.mod2g 89

if bel(emo(dislike,Me,A,OldI)) then delete(
emo(dislike,Me,A,OldI)).

if bel(emo(like,Me,A,OldI)) then delete(emo(like,Me,A,OldI)).
}

}

%% update optained emotional goals and beliefs
%desire
forall goal(des(X,D)) do {
% confirmed
if bel(bel(X)) then drop(des(X,D)) + delete(bel(X)).
% disconfirmed
if bel(bel(neg(X))) then drop(des(X,D)) + delete(bel(neg(X))

).
}
%undesire
forall goal(undes(X,D)) do {
% disconfirmed
if bel(bel(X)) then drop(undes(X,D)) + delete(bel(X)).
% confirmed
if bel(bel(neg(X))) then drop(des(X,D)) + delete(bel(neg(X))

).
}

%% delete unused outcomes
forall bel(bel(X)) do delete(bel(X)).

%% Delete prospect based emotions if they are no longer expected
forall not(bel(expect(X))), bel(emo(E,A,X,I),

member(E,[fear,hope])) do delete(emo(E,A,X,I)).

}
}

module decay{
% Decay the intensity and threshold of emotions

knowledge{

% decay(+OldInt,?NewInt)
decayEmotion(OldInt,NewInt) :- NewInt is OldInt*0.90.

% decayMood(+X,?NewX)
decayMood(X,Y) :-
Y is 1/100*(X-40)*X+24.

}

program[order=linearall]{

%% Decay emotion %%
forall bel(emo(E,A,X,I), \+ member(E,[hope,fear])) do {
if bel(I =< 1) then
delete(emo(E,A,X,I)).

if bel(I > 1 , decayEmotion(I,NewI)) then
delete(emo(E,A,X,I)) +

90 Appendix

insert(emo(E,A,X,NewI)).
}

%% Decay emotion %%
forall bel(emo(E,A,X,I) , member(E,[hope,fear])) do {
if bel(I > 1 , decayEmotion(I,NewI)) then
delete(emo(E,A,X,I)) +
insert(emo(E,A,X,NewI)).

}

%% Decay mood%%
if bel(mood(PM,NM), decayMood(PM,NewPM), decayMood(NM,NewNM)) then
delete(mood(PM,NM)) + insert(mood(NewPM,NewNM)).

}
}

module mapping{
% Maps all the agents emotion to five type of emotions that can be

visualized
% happy, sad, fear, disgust and angry

knowledge{

% cutList2(+List1,?List2)
cutList2([One,Two|_],[One,Two]).
cutList2(L,L).

% listSum(+List,?Sum).
listSum([Item], Item).
listSum([Item1,Item2 | Tail], Sum) :- Item is Item1 + Item2,

listSum([Item|Tail], Sum).

%% mapping of the 22 emotions i have implemented into 5 emotions %%
happyEmotions([hope,joy,pride,admiration,gratitude,

gratification,satisfaction,relief,happyFor,gloating]).
sadEmotions([distress,fearConfirmed,dissapointment,remorse,pity]).
fearEmotions([fear]).
disgustEmotions([reproach,shame]).
angryEmotions([anger,resentment]).

% calcEmotion(+List,?X)
calcEmotion(List,X) :-
findall(Int,(emo(Predicate,_,_,Int),

member(Predicate,List)),List1),
sort(List1,List2),
cutList2(List2,FinalList),
listSum(FinalList,X),!.

calcEmotion(List,0).

% descending(_,+Elem1,+Elem2)
descending(’<’, (C1,_),(C2,_)) :- C1>=C2.
descending(’>’, (C1,_),(C2,_)) :- C1<C2.

A.2 Agent 91

% highestExpression(?Predicate,?X)
highestExpression(Predicate,X) :-
happyEmotions(HappyEmotion),calcEmotion(HappyEmotion,H),
sadEmotions(SadEmotion), calcEmotion(SadEmotion,S),
fearEmotions(FearEmotion), calcEmotion(FearEmotion,F),
disgustEmotions(DisgustEmotion), calcEmotion(DisgustEmotion,D),
angryEmotions(AngryEmotion), calcEmotion(AngryEmotion,A),
predsort(descending,[(H,happy),(S,sadness),(F,fear

),(D,disgust),(A,anger)],List),
List = [(X,Predicate)|_].

}

program[order=linearall]{

%% Maps the emotion to 5 facial expressions and
%% send the highest expression to the environment
if bel(highestExpression(P,V), V > 0) then emotiondisplay(P).

}
}

A.2 Agent

A.2.1 Jim.goal

#import "planner.mod2g".
#import "emotion.mod2g".
#import "emotionHandler.mod2g".

init module{
beliefs{
% initial plan
plan([]).
% Moral
%% The agent
ideal(working,10).
ideal(neg(stealing),100).
%% The user
ideal(neg(lost(food)),100).
ideal(neg(lost(money)),100).
ideal(given(food),50).
ideal(given(money),50).

% Variables for computing probability
stolenFood(0).
stolenMoney(0).
givenFood(0).
givenMoney(0).

% Relations
relation(user,0).

}

92 Appendix

program{

%% handle initial percepts
if bel(percept(energy(X))) then insert(energy(X)).
if bel(percept(hunger(X))) then insert(hunger(X)).
if bel(percept(state(X))) then insert(state(X)).
if bel(percept(food)) then insert(food).
if bel(percept(money)) then insert(money).
if bel(percept(time(Time))) then insert(time(Time)).

%% Perform planning
if true then planner.
if true then initEmotion.
if true then emotionHandling.

}

actionspec{
work{
pre{ true }
post{ doneAction, bel(working) }

}
stealmoney{
pre{ true }
post{ doneAction, bel(stealing) }

}
stealfood{
pre{ true }
post{ doneAction, bel(stealing) }

}
eat{
pre{ food }
post{ doneAction }

}
buyfood{
pre{ money }
post{ doneAction }

}
sleep{
pre{ true }
post{ doneAction }

}
return{
pre{ true }
post{ doneAction }

}
wait{
pre{ true }
post{ doneAction }

}
emotionverbal(P,A,X,I){
pre{ true }
post{ true }

}

A.2 Agent 93

emotionverbal(P,A1,A2,X,I){
pre{ true }
post{ true }

}
emotiondisplay(X){
pre{ true }
post{ true }

}
}

}

main module{
program{
if not(bel(doneAction)) then {
if bel(state(’WAITING’)) then {
if bel(plan([X|T])) then {
if bel(X = eat) then eat.
if bel(X = sleep) then sleep.
if bel(X = getfood) then{
%% buy
if bel(energy(E), E > 0, money) then buyfood.
%% steal
if not(bel(money)) then {
%% if an existing emotion toward another person that

resulted in stealing then he is responsible
if bel(emo(_,(_,A),lost(money),_)) then

insert(resp(A,stealing)) + stealfood.
%% if no other is to blame then the agent itself is to blame
if bel(me(Me)) then insert(resp(Me,stealing)) + stealfood.

}
}
if bel(X = getmoney) then{
%% buy
if bel(energy(E), E > 1, hunger(H), H < 4, me(Me)) then

insert(resp(Me,working)) + work.
%% steal
%% if an existing emotion toward another person that resulted

in stealing then he is responsible
if bel(emo(_,(_,A),lost(money),_)) then

insert(resp(A,stealing)) + stealmoney.
%% if no other is to blame then the agent itself is to blame
if bel(me(Me)) then insert(resp(Me,stealing)) + stealmoney.

}
}

}
%Inbetween actions
if bel(state(’HOME’)) then wait.
if not(bel(state(’WAITING’) ; state(’HOME’))) then return.

}
}

}

event module{

94 Appendix

program{

%% update percepts
%% handle boolean percepts
if bel(percept(food)), not(bel(food)) then insert(food,

bel(food)).
if bel(food), not(bel(percept(food))) then delete(food).
if bel(percept(money)), not(bel(money)) then insert(money,

bel(money)).
if bel(money), not(bel(percept(money))) then delete(money).

%% handle always percepts
if bel(percept(energy(E)), energy(OldE), E \= OldE) then delete(

energy(OldE)) + insert(energy(E) ,bel(energy(E))).
if bel(percept(hunger(H)), hunger(OldH), H \= OldH) then delete(

hunger(OldH)) + insert(hunger(H), bel(hunger(H))).
if bel(percept(state(S)), state(OldS), S \= OldS) then delete(

state(OldS)) + insert(state(S)).

% Emotional beliefs about given or lost
if bel(percept(lost(food))) then insert(bel(lost(food))).
if bel(percept(given(food))) then insert(bel(given(food))).
if bel(percept(lost(money))) then insert(bel(lost(money))).
if bel(percept(given(money))) then insert(bel(given(money))).

% Percepts about the user actions.
if bel(percept(userPerformed("TAKEFOOD")), stolenFood(OldV), NewV

is OldV+1) then
delete(stolenFood(OldV)) + insert(resp(user,lost(food)),

stolenFood(NewV)).
if bel(percept(userPerformed("TAKEMONEY")), stolenMoney(OldV),

NewV is OldV+1) then
delete(stolenMoney(OldV)) + insert(resp(user,lost(money)),

stolenMoney(NewV)).
if bel(percept(userPerformed("GIVEFOOD")), givenFood(OldV), NewV

is OldV+1) then
delete(givenFood(OldV)) + insert(resp(user,given(food)),

givenFood(NewV)).
if bel(percept(userPerformed("GIVEMONEY")), givenMoney(OldV), NewV

is OldV+1) then
delete(givenMoney(OldV)) + insert(resp(user,given(money)),

givenMoney(NewV)).

% new timestep
if bel(percept(time(T)), time(OldT), T \= OldT) then{
if true then delete(time(OldT)) + insert(time(T)).
%% delete action
if bel(doneAction) then delete(doneAction).
if bel(state(’HOME’), plan([X|Tail])) then
delete(plan([X|Tail])) + insert(plan(Tail)).

%%perform planning
if true then planner.
%% update emotions
if true then emotionHandling.

A.2 Agent 95

if true then emotionsUpdate.
}

}
}

A.2.2 planner.mod2g

module NewPlan{
%% plan action based on the agents energy and hunger along with what

is in its inventory.
knowledge{
notPlanned(Action, Plan) :- \+ member(Action,Plan), !.

}

program[order = linearall]{
%% eating
if bel(hunger(X), X > 0) then{
if bel(plan([C|T]), notPlanned(eat,[C|T])) then delete(

plan([C|T])) + insert(plan([eat,C|T])).
if bel(plan([])) then delete(plan([])) + insert(plan([eat])).

}
%% aquireing food
if bel(plan([eat|T]), notPlanned(getfood,[T])), not(bel(food))

then delete(plan([eat|T])) + insert(plan([getfood,eat|T])).
%% aquring money
if bel(plan([getfood|T]), hunger(H), H < 5,

notPlanned(getmoney,[T])), not(bel(money)) then delete(
plan([getfood|T])) + insert(plan([getmoney,getfood|T])).

%% restoring energy
if bel(energy(E), E < 2, hunger(X), X < 4) then {
if bel(plan([C|T]), notPlanned(sleep,[C|T])) then

delete(plan([C|T])) + insert(plan([sleep,C|T])).
if bel(plan([])) then delete(plan([])) + insert(plan([sleep])).

}

%% if nothing in the plan then try to obtain wither money or food
if bel(plan([])), not(bel(money)) then delete(plan([])) +

insert(plan([getmoney])).
if bel(plan([])), not(bel(food)) then delete(plan([])) +

insert(plan([getfood])).
}

}

module planner{
%% checks the plan
program[order=linearall]{
% checks if the next action cen be performed
if bel(plan([X|T])) then {
if bel(X = eat, expect(hunger(0))), not(bel(food)) then delete(

plan([X|T]), expect(hunger(0))) + insert(plan([])).
if bel(X = sleep, expect(energy(5)), hunger(H), H < 4) then

delete(plan([X|T]), expect(energy(5))) + insert(plan([])).

96 Appendix

if bel(X = work, expect(money), hunger(H), H < 4, energy(E), E >
2) then delete(plan([X|T]), expect(money)) +
insert(plan([])).

}
%% if no plan then replan
if true then NewPlan.

}
}

A.3 Environment

A.3.1 EnvironmentInterface.java

package SimpleJim;

import java.util.LinkedList;
import java.util.Map;
import eis.EIDefaultImpl;
import eis.exceptions.*;
import eis.iilang.*;

public class EnvironmentInterface extends EIDefaultImpl {

private static final long serialVersionUID = 1L;
private Environment environment;
LinkedList<Parameter> p = null;

// enumerator for initial variables received from GOAL
enum InitKey {
MONEY, FOOD, ENERGY, DEBUG, UNKNOWN, HUNGER;

static InitKey toEnum(String string) {
try {
return valueOf(string.replaceAll("([A-Z])",

"_$1").toUpperCase());
} catch (Exception e) {
return UNKNOWN;

}
}

static String toString(InitKey key) {
String[] strings = key.toString().split("_");
StringBuilder sb = new StringBuilder(strings[0].toLowerCase());
for (int i = 1; i < strings.length; i++) {
sb.append(strings[i].substring(0, 1));
sb.append(strings[i].substring(1).toLowerCase());

}
return sb.toString();

}
}

A.3 Environment 97

enum AgentAction {
WORK, STEALMONEY, EAT, BUYFOOD, STEALFOOD, SLEEP, RETURN, WAIT,

EMOTIONVERBAL, EMOTIONDISPLAY, UNKNOWN;

static AgentAction toEnum(String string) {
try {
return valueOf(string.replaceAll("([A-Z])",

"_$1").toUpperCase());
} catch (Exception e) {
return UNKNOWN;

}
}

static String toString(AgentAction action) {
String[] strings = action.toString().split("_");
StringBuilder sb = new StringBuilder(strings[0].toLowerCase());
for (int i = 1; i < strings.length; i++) {
sb.append(strings[i].substring(0, 1));
sb.append(strings[i].substring(1).toLowerCase());

}
return sb.toString();

}
}

enum UserAction {
GIVEMONEY, TAKEMONEY, GIVEFOOD, TAKEFOOD, NOTHING, UNKNOWN;

static UserAction toEnum(String string) {
try {
return valueOf(string.replaceAll("([A-Z])",

"_$1").toUpperCase());
} catch (Exception e) {
return UNKNOWN;

}
}

static String toString(AgentAction action) {
String[] strings = action.toString().split("_");
StringBuilder sb = new StringBuilder(strings[0].toLowerCase());
for (int i = 1; i < strings.length; i++) {
sb.append(strings[i].substring(0, 1));
sb.append(strings[i].substring(1).toLowerCase());

}
return sb.toString();

}
}

public EnvironmentInterface() {
super();

}

public static void main(String[] args) {
}

public void addAgentEntity(String entity) {

98 Appendix

try {
addEntity(entity, "agent");

} catch (EntityException e) {
e.printStackTrace();

}
}

public void deleteAgentEntity(String entity) {

try {
deleteEntity(entity);

} catch (RelationException e) {
e.printStackTrace();

} catch (EntityException e) {
e.printStackTrace();

}
}

// Apply the initial variables received from GOAL to the environment
@Override
public void init(Map<String, Parameter> parameters) throws

ManagementException {
super.init(parameters);

// defaults
boolean food = false;
boolean money = false;
int energy = 5;
int hunger = 0;
boolean debug = false;

for (String key : parameters.keySet()) {
Parameter parameter = parameters.get(key);
switch (InitKey.toEnum(key)) {

case MONEY:
money = true;

case FOOD:
food = true;

case ENERGY:
if (!(parameter instanceof Numeral))
throw new ManagementException("Expected numeral");

energy = ((Numeral) parameter).getValue().intValue();
if (energy < 0)
throw new ManagementException("Expected positive value");

break;
case HUNGER:
if (!(parameter instanceof Numeral))
throw new ManagementException("Expected numeral");

hunger = ((Numeral) parameter).getValue().intValue();
if (hunger < 0)
throw new ManagementException("Expected positive value");

break;
case DEBUG:
debug = true;

A.3 Environment 99

break;
default:
throw new ManagementException("Unknown initialization key: " +

key);
}

}

environment = new Environment(this, money, food, energy, hunger,
debug);

pause();
start();

}

@Override
public String requiredVersion() {
return "0.3";

}

// manage percepts to agents
@Override
protected LinkedList<Percept> getAllPerceptsFromEntity(String entity)

throws PerceiveException, NoEnvironmentException {
LinkedList<Percept> percepts = new LinkedList<Percept>();

Agent a = environment.agent;

//global percepts

// current state
percepts.add(new Percept("state",

new Identifier(a.currentState.toString())
));
//food and money
if(a.food){
percepts.add(new Percept(

"food"
));

} else if (a.money)
percepts.add(new Percept(

"money"
));

// energy
percepts.add(new Percept(

"energy",
new Numeral(a.energy)

));

//hunger
percepts.add(new Percept(

"hunger",
new Numeral(a.hunger)

));

100 Appendix

percepts.add(new Percept(
"time",
new Numeral(environment.getTime())

));

// percepts for obtained or stolen items along with percepts if the
agent witnessed it.

switch(environment.lastUserAction){
case GIVEFOOD:
percepts.add(new Percept(

"given",
new Identifier("food")

));
if(environment.agentWitnessedAction){
percepts.add(new Percept(

"userPerformed",
new Identifier(environment.lastUserAction.toString())

));
}
break;

case GIVEMONEY:
percepts.add(new Percept(

"given",
new Identifier("money")

));
if(environment.agentWitnessedAction){
percepts.add(new Percept(

"userPerformed",
new Identifier(environment.lastUserAction.toString())

));
}
break;

case TAKEFOOD:
percepts.add(new Percept(

"lost",
new Identifier("food")

));
if(environment.agentWitnessedAction){
percepts.add(new Percept(

"userPerformed",
new Identifier(environment.lastUserAction.toString())

));
}
break;

case TAKEMONEY:
percepts.add(new Percept(

"lost",
new Identifier("money")

));
if(environment.agentWitnessedAction){
percepts.add(new Percept(

"userPerformed",
new Identifier(environment.lastUserAction.toString())

));
}

A.3 Environment 101

break;
default:
break;

}

// resets the users last action
if(environment.lastUserAction != UserAction.NOTHING)
environment.lastUserAction = UserAction.NOTHING;

return percepts;
}

@Override
protected boolean isSupportedByEnvironment(Action action) {
return AgentAction.toEnum(action.getName()) != AgentAction.UNKNOWN;

}

@Override
protected boolean isSupportedByType(Action action, String type) {
return AgentAction.toEnum(action.getName()) != AgentAction.UNKNOWN

&& type.equals("actor");
}

@Override
protected boolean isSupportedByEntity(Action action, String entity) {
return AgentAction.toEnum(action.getName()) != AgentAction.UNKNOWN

&& getEntities().contains(entity);
}

// manage action received from GOAL
@Override
protected Percept performEntityAction(String entity, Action action)

throws ActException {

AgentAction actorAction = AgentAction.toEnum(action.getName());

if(actorAction == AgentAction.EMOTIONDISPLAY) {
String emotion =

((Identifier)action.getParameters().get(0)).getValue();
environment.agent.displayEmotion(entity, actorAction, emotion);

}else if(actorAction == AgentAction.EMOTIONVERBAL) {

if (action.getParameters().size() == 5){

String predicate =
((Identifier)action.getParameters().get(0)).getValue();

String agent1 =
((Identifier)action.getParameters().get(1)).getValue();

String agent2 =
((Identifier)action.getParameters().get(2)).getValue();

String object =
((Identifier)action.getParameters().get(3)).getValue();

int intensity = ((Numeral)
action.getParameters().get(4)).getValue().intValue();

102 Appendix

environment.agent.sayEmotion(entity, actorAction, predicate,
agent1, agent2, object, intensity);

} else if (action.getParameters().size() == 4) {

String predicate =
((Identifier)action.getParameters().get(0)).getValue();

String agent =
((Identifier)action.getParameters().get(1)).getValue();

String object =
((Identifier)action.getParameters().get(2)).getValue();

int intensity = ((Numeral)
action.getParameters().get(3)).getValue().intValue();

environment.agent.sayEmotion(entity, actorAction, predicate,
agent, object, intensity);

} else{
throw new ActException(ActException.NOTSUPPORTEDBYENVIRONMENT);

}

}else if(actorAction != AgentAction.UNKNOWN) {
environment.performAction(entity, actorAction);

}else {
throw new ActException(ActException.NOTSUPPORTEDBYENVIRONMENT);

}

return null;
}

public Environment getEnvironment() {
return environment;

}
}

A.3.2 EnvironmentWindow.java

package SimpleJim;

import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.event.*;
import javax.swing.*;

import SimpleJim.EnvironmentInterface.UserAction;

public class EnvironmentWindow extends JFrame implements
WindowListener {

private static final long serialVersionUID = 1L;
private Environment env;
private ViewPanel viewPanel;

A.3 Environment 103

private JPanel mainFrame, control, agentVar, debugPanel, emotion;
private JLabel energy, money, food, agentState, hunger;
public JLabel expression;
public JTextArea emotionText;
public JLabel debugLabel = new JLabel("debug variable: ");;

//Setup the environment with the initial settings
public EnvironmentWindow(Environment environment) {

this.env = environment;

setTitle("SimpleJim Environment");
setSize(500, 500);
setResizable(false);
setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
addWindowListener(this);

viewPanel = new ViewPanel();
mainFrame = new JPanel();
control = new JPanel();
agentVar = new JPanel();
debugPanel = new JPanel();
emotion = new JPanel();
energy = new JLabel("Energy: " + env.agent.energy , JLabel.LEADING);
hunger = new JLabel("Hunger: " + env.agent.hunger , JLabel.LEADING);
money = new JLabel("Has money: " + env.agent.money ,

JLabel.LEADING);
food = new JLabel("Has food: " + env.agent.food , JLabel.LEADING);
expression = new JLabel(env.agent.disEmotion.toString(),

JLabel.LEADING);
agentState = new JLabel("State: " + env.agent.currentState ,

JLabel.LEADING);

emotionText = new JTextArea();
emotionText.setEditable(false);
JScrollPane sp = new

JScrollPane(emotionText,ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_ALWAYS);

sp.setPreferredSize(new Dimension(400, 150));
sp.setBounds(0, 0, 600, 500);
emotion.add(sp);

add(mainFrame);
viewPanel.setPreferredSize(new Dimension(200,200));
mainFrame.add(viewPanel);
mainFrame.add(agentVar);
mainFrame.add(control);
mainFrame.add(emotion);

if(env.debug){
mainFrame.add(debugPanel);
debugLabel = new JLabel("debug variable: ");
debugPanel.add(debugLabel);

}
showButton();

104 Appendix

agentVar.add(energy);
agentVar.add(hunger);
agentVar.add(money);
agentVar.add(food);
agentVar.add(agentState);
viewPanel.add(expression);

setVisible(true);

}

class ViewPanel extends JPanel {

@Override
public void paintComponent(Graphics g_) {
super.paintComponents(g_);

Graphics2D g = (Graphics2D) g_;
Graphics2D gg;

env.agent.draw(g, this);
updateAgentVar();

}
}

public void updateAgentVar(){

//Updates the text of the agents variables
energy.setText("Energy: " + env.agent.energy);
hunger.setText("Hunger: " + env.agent.hunger);
money.setText("Has money: " + env.agent.money);
food.setText("Has food: " + env.agent.food);
agentState.setText("State: " + env.agent.currentState);
expression.setText(env.agent.disEmotion.toString());

}

public void showButton(){

// add buttons to the window
JButton tmb = new JButton("Take Money");
tmb.setActionCommand("TAKEMONEY");

JButton doNothing = new JButton("Do Nothing");
doNothing.setActionCommand("NOTHING");

JButton gmb = new JButton("Give Money");
gmb.setActionCommand("GIVEMONEY");

JButton tfb = new JButton("Take food");
tfb.setActionCommand("TAKEFOOD");

JButton gfb = new JButton("Give food");
gfb.setActionCommand("GIVEFOOD");

A.3 Environment 105

doNothing.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
env.performUserAction(UserAction.NOTHING);

}
});

tmb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
env.performUserAction(UserAction.TAKEMONEY);
updateAgentVar();

}
});
gmb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
env.performUserAction(UserAction.GIVEMONEY);
updateAgentVar();

}
});
tfb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
env.performUserAction(UserAction.TAKEFOOD);
updateAgentVar();

}
});
gfb.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
env.performUserAction(UserAction.GIVEFOOD);
updateAgentVar();

}
});

control.add(tmb);
control.add(gmb);
control.add(tfb);
control.add(gfb);
control.add(doNothing);
this.setVisible(true);

}

@Override
public void windowActivated(WindowEvent e) {
}

@Override
public void windowClosed(WindowEvent e) {
}

@Override
public void windowClosing(WindowEvent e) {
env.terminate();

}

@Override

106 Appendix

public void windowDeactivated(WindowEvent e) {
}

@Override
public void windowDeiconified(WindowEvent e) {
}

@Override
public void windowIconified(WindowEvent e) {
}

@Override
public void windowOpened(WindowEvent e) {
}

}

A.3.3 Environment.java

package SimpleJim;

import SimpleJim.EnvironmentInterface.AgentAction;
import SimpleJim.EnvironmentInterface.UserAction;
import eis.exceptions.ManagementException;

public class Environment {

private EnvironmentInterface environmentInterface;
public boolean debug = false;
private EnvironmentWindow window;
public Agent agent;
UserAction lastUserAction = UserAction.NOTHING;
boolean userPerformedAction = false;
boolean agentPerformedAction = false;
boolean agentWitnessedAction = false;
AgentAction pendingUserAction;
AgentAction pendingAgentAction;
private long time = 0;

public Environment(EnvironmentInterface environmentInterface, boolean
money, boolean food, int energy, int hunger, boolean debug){

this.environmentInterface = environmentInterface;
this.debug = debug;

String entity = "agent";
agent = new Agent(this, money, food, energy, hunger);

environmentInterface.addAgentEntity(entity);
window = new EnvironmentWindow(this);

resetState();
}

A.3 Environment 107

public EnvironmentWindow getEnvWin(){
return window;

}

private void resetState() {
window.repaint();

}

public long getTime() {
return time;

}

public void performUserAction(UserAction action) {

// resets the text are for emotions
getEnvWin().emotionText.setText("");

//records the last user action
lastUserAction = action;

// Checks if the agent witnessed an user action or not
switch(agent.currentState){
case SHOPPING:
case SLEEPING:
case STEALINGFOOD:
case STEALINGMONEY:
case WORKING:
switch(action){
case GIVEFOOD:
case GIVEMONEY:
agentWitnessedAction = false;
break;

case TAKEFOOD:
if(agent.food)
agentWitnessedAction = false;

break;
case TAKEMONEY:
if(agent.money)
agentWitnessedAction = false;

default:
break;

}
break;

default:
switch(action){
case GIVEFOOD:
case GIVEMONEY:
agentWitnessedAction = true;
break;

case TAKEFOOD:
if(agent.food)
agentWitnessedAction = true;

break;
case TAKEMONEY:

108 Appendix

if(agent.money)
agentWitnessedAction = true;

default:
break;

}
break;

}

boolean noFood = false;

// apply changes to the environment
switch(action){
case GIVEFOOD:
agent.food = true;
break;

case GIVEMONEY:
agent.money = true;
break;

case TAKEFOOD:
if(agent.food && agent.currentState != Agent.State.EATING)
agent.food = false;

break;
case TAKEMONEY:
if(agent.money && agent.currentState != Agent.State.SHOPPING){
agent.money = false;

} else {
noFood = true;

}
break;

default:
break;

}

// perform agents action
if(agentPerformedAction) {
agentUpdateAction(pendingAgentAction);

}

if (noFood){
agent.food = false;

}
}

// manage the agents action
public void performAction(String entity, AgentAction action) {

pendingAgentAction = action;
agentPerformedAction = true;

if(agentPerformedAction && !userPerformedAction){
return;

} else {
agentUpdateAction(action);

}

A.3 Environment 109

}

public void agentUpdateAction(AgentAction action){

// apply agent action cost to the agent
if(action.equals(AgentAction.RETURN)){
switch(agent.currentState){
case EATING:
if(agent.food){
agent.food = false;
agent.hunger = 0;
agent.energy -= agent.energy == 0 ? 0 : 1;

}
break;

case SHOPPING:
if(agent.money){
agent.food = true;
agent.money = false;
agent.hunger += agent.hunger == 0 ? 0 : 1;
agent.energy -= agent.energy == 0 ? 0 : 1;

}
break;

case SLEEPING:
agent.energy = 5;
agent.hunger += agent.hunger >= 4 ? (agent.hunger == 4 ? 1 : 0)

: 2;
break;

case STEALINGFOOD:
agent.food = true;
break;

case STEALINGMONEY:
agent.money = true;
break;

case WORKING:
agent.money = true;
agent.hunger += agent.hunger >= 4 ? (agent.hunger == 4 ? 1 : 0)

: 2;
agent.energy -= agent.energy <= 1 ? (agent.energy == 1 ? 1 : 0)

: 2;
break;

case UNKNOWN:
break;

default:
break;

}
}

// update the state of the agent
agent.processAction(action);
userPerformedAction = false;
agentPerformedAction = false;

// increment time
time++;

110 Appendix

window.repaint();
}

public void terminate() {

environmentInterface.deleteAgentEntity("agent");

window.dispose();
window.setVisible(false);
window = null;
if (environmentInterface != null) {
try {
environmentInterface.kill();

} catch (ManagementException e) {
e.printStackTrace();

}
}

}

}

A.3.4 Agent.java

package SimpleJim;

import java.awt.Color;
import java.awt.Graphics2D;
import javax.swing.JTextArea;
import SimpleJim.EnvironmentInterface.AgentAction;
import SimpleJim.EnvironmentWindow.ViewPanel;

public class Agent {

public Environment env;
boolean food = false;
boolean money = false;
int energy = 5;
int hunger = 0;
State currentState = State.WAITING;
displayingEmotion disEmotion = displayingEmotion.NOTHING;

public Agent(Environment environment, boolean money2, boolean food2,
int energy2, int hunger2){

this.env = environment;
this.money = money2;
this.energy = energy2;
this.food = food2;
this.hunger = hunger2;

}

A.3 Environment 111

enum displayingEmotion {
HAPPY, SAD, FEAR, ANGRY, DISGUST, NOTHING, UNKNOWN;

static displayingEmotion toEnum(String string) {
try {
return valueOf(string.replaceAll("([A-Z])",

"_$1").toUpperCase());
} catch (Exception e) {
return UNKNOWN;

}
}

static String toString(AgentAction action) {
String[] strings = action.toString().split("_");
StringBuilder sb = new StringBuilder(strings[0].toLowerCase());
for (int i = 1; i < strings.length; i++) {
sb.append(strings[i].substring(0, 1));
sb.append(strings[i].substring(1).toLowerCase());

}
return sb.toString();

}
}

enum State {
HOME, EATING, SLEEPING, WORKING, SHOPPING, STEALINGFOOD,

STEALINGMONEY, WAITING, UNKNOWN;

static State toEnum(String string) {
try {
return valueOf(string.replaceAll("([A-Z])",

"_$1").toUpperCase());
} catch (Exception e) {
return UNKNOWN;

}
}

static String toString(AgentAction action) {
String[] strings = action.toString().split("_");
StringBuilder sb = new StringBuilder(strings[0].toLowerCase());
for (int i = 1; i < strings.length; i++) {
sb.append(strings[i].substring(0, 1));
sb.append(strings[i].substring(1).toLowerCase());

}
return sb.toString();

}
}

public void processAction(AgentAction action) {

// change the agent state
if(currentState.equals(State.WAITING)){
switch(action){
case BUYFOOD:
currentState = State.SHOPPING;
break;

112 Appendix

case STEALMONEY:
currentState = State.STEALINGMONEY;
break;

case STEALFOOD:
currentState = State.STEALINGFOOD;
break;

case EAT:
currentState = State.EATING;
break;

case SLEEP:
currentState = State.SLEEPING;
break;

case WORK:
currentState = State.WORKING;
break;

case UNKNOWN:
break;

default:
break;

}
}
else if(action.equals(AgentAction.RETURN)) {
currentState = State.HOME;

}
else if(action.equals(AgentAction.WAIT)) {
currentState = State.WAITING;

}
}

public void draw(Graphics2D create, ViewPanel viewPanel) {
// draw expression in the environment
switch(disEmotion){
case ANGRY:
create.setColor(Color.RED);
create.fillRect(0, 0, viewPanel.getWidth(), viewPanel.getHeight());
break;

case DISGUST:
create.setColor(Color.GREEN);
create.fillRect(0, 0, viewPanel.getWidth(), viewPanel.getHeight());
break;

case FEAR:
create.setColor(Color.BLACK);
create.fillRect(0, 0, viewPanel.getWidth(), viewPanel.getHeight());
break;

case HAPPY:
create.setColor(Color.YELLOW);
create.fillRect(0, 0, viewPanel.getWidth(), viewPanel.getHeight());
break;

case NOTHING:
create.setColor(Color.WHITE);
create.fillRect(0, 0, viewPanel.getWidth(), viewPanel.getHeight());
break;

case SAD:
create.setColor(Color.BLUE);
create.fillRect(0, 0, viewPanel.getWidth(), viewPanel.getHeight());

A.3 Environment 113

break;
case UNKNOWN:
break;

default:
break;

}
}

//set displaying emotion text
public void displayEmotion(String entity, AgentAction actorAction,

String emotion) {

env.getEnvWin().expression.setForeground(Color.BLACK);
switch(emotion){
case "happy":
disEmotion = displayingEmotion.HAPPY;
break;

case "anger":
disEmotion = displayingEmotion.ANGRY;
break;

case "sadness":
disEmotion = displayingEmotion.SAD;
break;

case "fear":
env.getEnvWin().expression.setForeground(Color.WHITE);
disEmotion = displayingEmotion.FEAR;
break;

case "disgust":
disEmotion = displayingEmotion.DISGUST;
break;

default:
disEmotion = displayingEmotion.NOTHING;
break;

}

env.getEnvWin().repaint();
}

//Translate the received emotion into natural language with multiple
agents

public void sayEmotion(String entity, AgentAction actorAction,
String predicate, String agent1, String agent2, String object,
int intensity) {

JTextArea ta = env.getEnvWin().emotionText;
String newText = ta.getText() + agent1+" is feeling " + predicate +

" towards " + agent2 + " about " + object + " with intensity "
+ intensity + "\n";

ta.setText(newText);
}

//Translate the received emotion in to natural language with one agent
public void sayEmotion(String entity, AgentAction actorAction,

String predicate, String agent, String object, int intensity) {
JTextArea ta = env.getEnvWin().emotionText;
String newText;

114 Appendix

if(predicate.equals("like") || predicate.equals("dislike"))
newText = ta.getText() + agent +" " + predicate +"s " + object + "

with intensity " + intensity+ "\n";
else
newText = ta.getText() + agent +" is feeling " + predicate + "

about " + object + " with intensity " + intensity+ "\n";
ta.setText(newText);

}

}

Bibliography

[AGHL06] Carole Adam, Benoit Gaudou, Andreas Herzig, and Dominique
Longin. OCC’s Emotions: A Formalization in a BDI Logic. In
Jérôme Euzenat and John Domingue, editors, Artificial Intelligence:
Methodology, Systems, and Applications, volume 4183 of Lecture
Notes in Computer Science, pages 24–32. Springer Berlin Heidelberg,
2006.

[AHL09] Carole Adam, Andreas Herzig, and Dominique Longin. A logical
formalization of the OCC theory of emotions. Synthese, 168(2):201–
248, 2009.

[Bar02] Christoph Bartneck. Integrating the OCC model of Emotions in
Embodied Characters. 2002.

[BHD] Tristan M Behrens, Koen V Hindriks, and Jürgen Dix. Towards an
environment interface standard for agent platforms.

[BHD11] TristanM. Behrens, KoenV. Hindriks, and Jürgen Dix. Towards an
environment interface standard for agent platforms. Annals of Math-
ematics and Artificial Intelligence, 61(4):261–295, 2011.

[Cho] Anurag Choudhari. Exploring the tech behind the
games industry. http://www.geekycube.com/
exploring-the-tech-behind-the-games-industry/
1329. Accessed June 26, 2014.

[DP05] João Dias and Ana Paiva. Feeling and reasoning: A computational
model for emotional characters. In Progress in artificial intelligence,
pages 127–140. Springer, 2005.

http://www.geekycube.com/exploring-the-tech-behind-the-games-industry/1329
http://www.geekycube.com/exploring-the-tech-behind-the-games-industry/1329
http://www.geekycube.com/exploring-the-tech-behind-the-games-industry/1329

116 BIBLIOGRAPHY

[Dyc] Max Dyckhoff. Naughty Dog - Ellie - Buddy AI in the
Last of Us. http://www.gdcvault.com/play/1020364/
Ellie-Buddy-AI-in-The. Accessed June 26, 2014.

[EO79] Paul Ekman and Harriet Oster. Facial expressions of emotion. An-
nual review of psychology, 30(1):527–554, 1979.

[GLL+11] Nadine Guiraud, Dominique Longin, Emiliano Lorini, Sylvie Pesty,
and Jérémy Rivière. The Face of Emotions: A Logical Formalization
of Expressive Speech Acts. In The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 3, AAMAS
’11, pages 1031–1038, Richland, SC, 2011. International Foundation
for Autonomous Agents and Multiagent Systems.

[GM04] Jonathan Gratch and Stacy Marsella. A domain-independent frame-
work for modeling emotion. Cognitive Systems Research, 5(4):269–
306, 2004.

[Hin14] Koen V. Hindriks. Programming Cognitive Agents in GOAL, March
2014.

[Lyn] David Lynch. Next-Gen: Complex AI Will Lead To ’Realistic
Behaviour’ & ’Simulated Emotions’. http://www.nowgamer.
com/news/1835868/nextgen_complex_ai_will_lead_
to_realistic_behaviour_simulated_emotions.html.
Accessed June 26, 2014.

[MC04] Luis Macedo and Amilcar Cardoso. Exploration of unknown envi-
ronments with motivational agents. In Proceedings of the Third In-
ternational Joint Conference on Autonomous Agents and Multiagent
Systems-Volume 1, AAMAS ’04, pages 328–335. IEEE Computer So-
ciety, IEEE Computer Society, July 2004.

[ME12] Christos N Moridis and Anastasios A Economides. Affective Agents
in E-Learning Platforms. pages 527–554, 2012.

[Mey06] John-Jules Ch Meyer. Reasoning about emotional agents. Interna-
tional journal of intelligent systems, 21(6):601–619, 2006.

[OCC88] Andrew. Ortony, Gearald L. Clore, and Allan Collins. The cognitive
structure of emotions. first edition, 1988.

[Onl] AllPsych Online. Physchologi 101 Chapter 7: Motivation and
Emotion. http://allpsych.com/psychology101/emotion.
html. Accessed June 25, 2014.

http://www.gdcvault.com/play/1020364/Ellie-Buddy-AI-in-The
http://www.gdcvault.com/play/1020364/Ellie-Buddy-AI-in-The
http://www.nowgamer.com/news/1835868/nextgen_complex_ai_will_lead_to_realistic_behaviour_simulated_emotions.html
http://www.nowgamer.com/news/1835868/nextgen_complex_ai_will_lead_to_realistic_behaviour_simulated_emotions.html
http://www.nowgamer.com/news/1835868/nextgen_complex_ai_will_lead_to_realistic_behaviour_simulated_emotions.html
http://allpsych.com/psychology101/emotion.html
http://allpsych.com/psychology101/emotion.html

BIBLIOGRAPHY 117

[RHD+] Rainer Reisenzein, Eva Hudlicka, Mehdi Dastani, Jonathan Gratch,
Koen Hindriks, Emiliano Lorini, and J Meyer. Computational Mod-
eling of Emotion: Towards Improving the Inter-and Intradisciplinary
Exchange. IEEE TRANSACTIONS ON AFFECTIVE COMPUT-
ING.

[RNC+10] Stuart J. Russell, Peter Norvig, John F. Candy, Jitendra M. Malik,
and Douglas D. Edwards. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall, Inc., third edition, 2010.

[SD02] Alexander Serenko and Brian Detlor. Agent toolkits: A general
overview of the market and an assessment of instructor satisfaction
with utilizing toolkits in the classroom, 2002 2002.

[SDM07] Bas R Steunebrink, Mehdi Dastani, and John-Jules Ch Meyer. A
logic of emotions for intelligent agents. In Proceedings of the Na-
tional Conference on Artificial Intelligence, volume 22, pages 142–
147. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 2007.

[SDM09] Bas R Steunebrink, Mehdi Dastani, and John-Jules Ch Meyer. The
OCC model revisited. In the 4th Workshop on Emotion and Com-
puting, 2009.

[SK09] Craig A Smith and Leslie D Kirby. Putting appraisal in context:
Toward a relational model of appraisal and emotion. Cognition and
Emotion, 23(7):1352–1372, 2009.

[Spu13] Johannes S Spurkeland. Interaction in Organization-Oriented Multi-
Agent Systems. Master’s thesis, Denmark Technical University, 2013.

[Vel97] Juan D. Velásquez. Modeling emotions and other motivations in syn-
thetic agents. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence and Ninth Conference on Innovative Ap-
plications of Artificial Intelligence, AAAI’97/IAAI’97, pages 10–15.
AAAI Press, 1997.

[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent Agents:
Theory and Practice. The Knowledge Engineering Review,
10(2):115–152, Octoober 1995.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Multi-Agent System
	2.1 GOAL
	2.1.1 Agent
	2.1.2 Environment

	3 Emotions
	3.1 Existing work
	3.1.1 Appraisal theory

	3.2 The OCC model
	3.2.1 Revisited model

	4 Modelling Emotions
	4.1 Formalizing the OCC model
	4.2 Logical Formalization
	4.2.1 Basic Emotions
	4.2.2 Complex Emotions
	4.2.3 Relation
	4.2.4 Intensity
	4.2.5 Expression

	5 Implementing Formalization
	5.1 Emotions in GOAL
	5.1.1 Realizations of Emotions
	5.1.2 Decay
	5.1.3 Mood

	5.2 Expressing feelings

	6 Emotional Agent
	6.1 SimpleJim
	6.1.1 Environment
	6.1.2 Agent

	7 Discussion
	8 Conclusion
	A Appendix
	A.1 emotions.mod2g
	A.2 Agent
	A.2.1 Jim.goal
	A.2.2 planner.mod2g

	A.3 Environment
	A.3.1 EnvironmentInterface.java
	A.3.2 EnvironmentWindow.java
	A.3.3 Environment.java
	A.3.4 Agent.java

	Bibliography

