
Multi-Agent Programming in
Jason

Rasmus Jensen and Bastian Buch

Kongens Lyngby 2014

Compute-B.Sc.-2014

Technical University of Denmark

DTU Compute, Technical University of Denmark, Matematiktorvet, building 303B

2800 Kongens Lyngby, Denmark

Phone +45 4525 3351

compute@compute.dtu.dk

www.compute.dtu.dk Compute-B.Sc.-2014

Summary (English)

The goal of the thesis is to learn the Jason programming language and use our
learned knowledge to successfully analyse and evaluate the strategies used by
the UFSCTeam2013 Jason code in relation to the Multi-agent contest scenario
in 2013. Once we have analysed both the UFSCTeam2013's program and the
scenario we will discus possible additions to the program that would increase its
performance. These improvements will then be implemented in our own version
which we call JABARA.

To either prove or disprove the e�ectiveness of our improvements we will run a
series of tests to determine whether or not our implementations has improved the
UFSCTeam2013's program. These tests will be simulations where our version
competes against the UFSCTeam2013's version.

Our results show that we have indeed managed to improve the program, al-
beit only slightly. Our improved version deals with some scenarios better than
UFSCTeam2013. Speci�cally, in maps with a high number of edges our agents
survey more edges and gain more achievement points faster as a result.

ii

Summary (Danish)

Målet med dette projekt er at lære Jason programmeringssproget og bruge den
erhvervede viden til succesfuldt at analysere og evaluere strategierne som bliver
brugt af UFSCTeam2013 i Jason-koden i relation til multi-agent konkurrencen
i 2013. Når vi har analyseret både UFSCTeam2013 programmet og scenariet så
vil vi diskutere mulige tilføjelser som vil øge e�ektiviteten. Disse tilføjelser vil
så blive implementeret i vores egen version som vi har valgt at kalde JABARA

For enten at bevise eller afvise e�ektiviteten af vores forbedringer så vil vi lave
en serie af tests for at kunne afklare om vores implementation har forbedret pro-
grammet af UFSCTeam2013. Testene wil bestå af simulationer hvor JABARA
konkurerer mod UFSCTeam2013.

Vores resultater viser at det har lykkedes os at forbedre programmet, dog kun
en smule. Vores forbedrede version håndterer nogle scenarier bedre en UF-
SCTeam2013. Specielt i baner med et højt nummer af veje, vores agenter får
søgt �ere edges og får derfor som resultat af dette hurtigere nået milepæle.

iv

Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in partial ful�lment of
the requirements for acquiring a B.Sc. in Software Technology.

This project was started at February 3th 2014 lasting until July 1st 2014 under
the supervision of Jørgen Villadsen.

The thesis deals with multi-agent systems, the Jason agent-oriented program-
ming language and the multi-agent programming contest from 2013.

Lyngby, 1-Juli-2014

Rasmus Jensen and Bastian Buch

vi

Acknowledgements

We would like to thank our supervisor Jørgen Villadsen for great supervising
and always being able to answer his E-mails should need be.

We would also like the thank the MAPC-team for their involvement in this
project.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Project . 1
1.2 Learning objectives . 2
1.3 Motivation and goals . 3
1.4 Areas of responsibility . 3

2 Multi Agent Systems 5
2.1 Agents . 5
2.2 Multi-agent systems . 6

3 BDI and The Jason Programming Language 7
3.1 BDI - Belief, desire and intention 7
3.2 Jason programming . 8

3.2.1 Belief base . 8
3.2.2 Goals . 9
3.2.3 Plans . 9

4 The multi-agent contest 11
4.1 The scenario . 11

4.1.1 The ATPV's . 12
4.2 The MAPC system . 14

x CONTENTS

5 UFSCTeam2013 Analysis 17

5.1 Start of simulation . 17

5.2 Step beginning . 18

5.3 Agent actions . 18

5.4 Tokens . 19

5.5 End of step . 19

5.6 Agent classes . 20

5.6.1 Saboteur . 20

5.6.2 Repairer . 20

5.6.3 Sentinel . 20

5.6.4 Explorer . 21

5.6.5 Inspector . 21

5.7 Description of non-agent classes 21

5.8 Internal actions . 23

6 Analysis of the scenario and MAPC system 27

6.1 Agent improvements . 27

6.1.1 Saboteurs . 27

6.1.2 Explorers . 28

6.1.3 Inspectors . 28

6.1.4 Sentinels . 29

6.1.5 Region segregation . 29

6.2 Strategies . 29

6.2.1 Buy strategy . 30

6.2.2 O�ensive vs. defensive saboteurs 31

7 The implementation 33

7.1 Edge selection . 33

7.1.1 Java additions . 34

7.1.2 Internal actions . 36

7.1.3 Common survey rules . 39

7.1.4 Surveyall . 40

7.1.5 Edge selection implementation 41

7.2 Buy strategy . 43

7.2.1 Java additions . 43

7.2.2 Internal actions . 43

7.2.3 Buy strategy implementation 44

8 Testing 45

8.1 Sentinel improvements . 45

8.2 Saboteur improvements . 46

9 Results 47

CONTENTS xi

10 Discussion 51
10.1 The project . 51
10.2 The jason language . 52
10.3 Strategy . 52
10.4 Possible extensions . 52

11 Conclusion 53
11.1 The project . 53
11.2 The multi-agent system . 54

A Test run 1 55

B Test run 2 61

C Test run 3 67

D Test run 4 73

E Test run 5 79

F Test run 6 85

Bibliography 91

xii CONTENTS

Chapter 1

Introduction

This report was written by group BaR and consists of the following group mem-
bers: s113432 Bastian Buch, s113416 Rasmus Jensen. The thesis consists of
theory about multi agent systems, Jason and the multi-agent programming con-
test. We discuss the implementation of the UFSCTeam2013 and how to improve
it. Our own implementation of the improvements will then be tested to see if it
was improved.

1.1 Project

Project 118: Multi-Agent Programming in Jason. In this project we have to
create a multi agent system which is able to carry out assignments in the envi-
ronment described at http://multiagentcontest.org/ (the 2013 version). In the
beginning we hope to create a clean rebuild of the smadasUFSC but, despite
what we hoped to accomplish in the beginning of the project, we had to reduce
our goals. The reason for this was making an entirely new program with new
agents seemed too much to do in the time we had available when we achieved
a greater understanding of the program and challenge. So we chose to try and
improve the Jason multi agent system that the MAPC team competed with in
2013 and see how much better we could make their agents and program. The
main improvements that we'll try to make will be improvements that the MAPC

2 Introduction

team has suggested to take a look at. The MAPC team came with the following
suggestions:

• Improving the sentinels to look for non-surveyed edges in a clever way
during the exploration phase and in that way might help the explorers to
walk faster through the vertices.

• Making 1 or more inspectors inspect enemies that are far away to gain
achievement points earlier. Enemies that are far away are enemies that
can be seen by other agents and therefore might not be in the area of the
inspector.

• Improving the explorers such that they will explore the map faster and
can therefore join in the other agents earlier in forming the areas and as
a consequence gain more points.

When these improvements has been implemented we will make a series of tests
such that we can hopefully show an AI, which has an increased performance
in some of the jobs that the agents are given. Hence making the improved AI
better at the given scenario. We have chosen to name our program JABARA.

1.2 Learning objectives

The point of this report is to demonstrate that we have understood and are able
to carry out the things speci�ed in the learning objectives. We have to show
that:

• we individually are capable of structuring a bigger project, keep a timed
schedule and organise and plan the work which is to come.

• are able to summarize and understand technical information and can uti-
lize technical problem solving through project work

• are capable to work with all phases of a project,including the drafting of
a suggestion, solution and documentation.

• are capable of acquiring new knowledge in a way that is relevant, while
maintaining a critical mind set towards the newly acquired knowledge.
with this we should show that we can bring light on the present problem.

• are capable of conveying technical information, theory and results in a
written format, visually, graphical and vocally.

1.3 Motivation and goals 3

1.3 Motivation and goals

We thought this project sounded interesting from the beginning and working
with a new language �Jason� also sounded like a challenging way to increase our
programming experience. The language also works together with Java which
we have experience with, so this gives a more soft transition in contrary to if
we had to use a new language to the entire agent system. We hope to improve
the AI which has been given to us by implementing the suggestions given to us
by the MAPC team mentioned earlier. If we spot any other improvements this
will naturally be discussed and possibly implemented and become a part of the
report.

1.4 Areas of responsibility

In this project the work has almost constantly been done together and in cooper-
ation with each other so we can't say that one has a speci�c area of responsibility
since we have both participated in every part of the project. But if we were to
give ourselves some main areas we have been responsible for it would be Rasmus
for the report and for Bastian it would be the code. We both did equal work
analyzing and �nding implementations/strategies that we could use to improve
UFSCTeam2013's system.

4 Introduction

Chapter 2

Multi Agent Systems

In this chapter we will present the concept of a rational agent and the basic
theory behind agents. The idea of a multi agent system and how the systems
work will also be presented.

2.1 Agents

To understand agents we have to understand their properties. An agent needs
a goal and a plan to get there. Furthermore it must have a belief base, this is
obtained by sensors. These sensors has to be able to sense the environment in
which it is present. The agent should also have a list of di�erent actions that
can be performed in the environment to change its current state, these actions
are performed through e�ectors or actuators. Creating good agents depend on
how well an agent determines what to do, these choices of actions are made
from what it believes and knows from the sensor input. This is illustrated on
the �gure 2.1.

Actions made by the Agent is determined by the available actions it has been
given. To prevent random actions to be executed, each action has a set of
preconditions that has to be met before the agent can execute the action. And

6 Multi Agent Systems

Figure 2.1: Agent in an environment [1], page 3

postconditions to determine what the belief base should changed to after the
execution of the speci�c action. These are the basic needs for an agent to be
functional.

To create what's called a rational agent more properties will have to be added.
An rational agent will need the following properties: autonomy, proactiveness,
reactivity and social ability 1. Autonomy is needed so that the agent can act
by itself and is not controlled by something else, acting to achieve its desig-
nated goals on its own. Proactiveness is needed to avoid passive agents - we
expect that if an agent has been given a goal it will try to achieve it with its
actions. Reactiveness is needed such that if the environment changes the agent
will consider the changes and alter its actions accordingly. Lastly a rational
agent will need social ability which makes it able to communicate its beliefs,
goals and plans to other agents, so that they may cooperate and coordinate
actions, bene�ting from the enhanced perceptions of the environment.

2.2 Multi-agent systems

A multi-agent system (MAS) is a system where a group of di�erent agents, who
each has their own beliefs, plans and goals act towards a solution to their own
goals. This means that the agents can either cooperate or compete to achieve
their goals.

1bibliography item [1] page 4-5

Chapter 3

BDI and The Jason
Programming Language

In this chapter we'll explain the BDI model and how it is used in the Jason
programming language. Furthermore we'll also explain the basics of the Jason
programming language and how the programs are structured.

3.1 BDI - Belief, desire and intention

The BDI model is a simple but useful model to use when programming agents to
a multi agent system. The BDI model is based on a model of human behaviour
which has been developed philosophers. The model is based on the fact that
each agent has a belief, desire and an intention.

The Belief is what the agent knows about its current situation. This knowledge
can of course be both correct and incorrect since it only knows what it is told
and percieves. If an agent was in charge of a vending machine and had 5 cola's
left we could think is the amount of cola's to be a part of the vending machines
belief.
The Desire is what the agent wishes to do. However if an agent has a desire,

8 BDI and The Jason Programming Language

then it isn't obligated to do anything about it. The desire can therefore be
looked upon as a series of options which the agent can choose to pursue.
The Intention is what the agent aspires towards. These intentions can come
from given goals or as a consequence of a chosen option(desire). The agent will
then work towards its intention in hope of reaching it. it might be necessary for
the agent to go through several sub-intentions before it reaches its goal-intention.

If we were to apply this model to the needed functions of an agent we can
look at �gure 2.1. Here, the belief would be the input from the sensors, the
desire would be the legs representing the e�ectors/actors and the actions on the
environment would serve the purpose of realizing its intentions.

3.2 Jason programming

The Jason programming language is an extension to the agent language called
AgentSpeak for Java and is based upon the BDI model. The language has 3
main factors, its belief base, plans and goals, which is representing the Belief, the
intention and the desire, in the same order. Furthermore the language has been
made in Java, which makes it easy to make small functions to aid the agents
in their functioning. This section gives a brief explanation of the terms. A
more detailed explanation can be found in the book Programming Multi-Agent
Systems in AgentSpeak using Jason 1.

3.2.1 Belief base

The Belief base is composed of literals, these are used to show an agents be-
lief. A very simple literal could be TV(on), which means the TV is turned
on. Now lets say the TV should not be powered after 8 pm then one might
write TV_until(on,Eight_pm) in the belief base. In Jason however we use an-
notations which is represented by square brackets after the literal such that
the previous example would look like TV(on)[expires(Eight_pm)]. There are
many di�erent annotations in Jason - one of the most important and useful
ones is the source annotation. This annotation lets us know where the in-
formation which the agent believes comes from, whether it is the environment
(perceptual information), other agents (communication) or itself (mental notes).
Finally nested annotations is also a possibility. This may happen if an agent

1[1]

3.2 Jason programming 9

concludes something about a belief obtained by an agent which got the infor-
mation from another agent. Agent Lis might believe the ball is blue because
Max told her, but Max was told by Jonas. The literal would then look like
this Lis(Ball,blue)[source(max)[source(Jonas)]].2 Another part of AgentSpeak
is rules, these rules can be set up in such a way that if an agent is told 2 di�erent
things it will know which one to believe, usually you would set up rules so that
if knowledge is granted via perception, but contradictory knowledge is in the
knowledge base, the agent will always trust its perception and believe what it
sees. But if an agent does not know, for example, the color of a box, and is told
the color of a box by 2 di�erent agents, it will trust the agent which the rules
say it should trust. This could be implemented by adding trust to agents such
that the agent could chose to acquire knowledge from the agent with the most
credibility.

3.2.2 Goals

For an agent to have a direction, it needs goals. If an agent has a goal it will
work towards a state where the agent believes the goal is ful�lled. In AgentSpeak
and also in Jason there are 2 di�erent kinds of goals achivements goals and test
goals. The achievements goals is denoted by the ' !' operator and is used to set
the goal for the agent. If we set a goal for the agent !drive(car) it will work
towards a state in which it is driving a car. The test goals, denoted by the '?'
operator, is use more to retrieve information from the belief base. Say the agent
wants to archive its previous goal (driving a car) then it might use the test goal
?owns(car) to test if a car is available before executing a command to tell the
agent to go drive it.

3.2.3 Plans

Another essential part of the AgentSpeak language is plans. Plans are what
the agents use to react to the circumstance that they �nd themselves in while
trying to achieve their given goals. Every plan consists of 3 parts triggering
event, context and body. For a plan to be followed by an agent it has to be able
to evaluate a trigger event as true. An agent might be able to evaluate several
trigger events to true at the same time, this is where the context comes into
play. The context is used to determine which plan �ts the situation the best,
several plans contexts might be evaluated and determined to be proper for the
given situation, in that case its either a random or whatever comes �rst the

2[1], page 35-39

10 BDI and The Jason Programming Language

agent chooses. Next is the body, this is simply just a sequence of actions which
should be performed to archive the goal of the plan, thus introducing sub-goals.
The sub-goals are needed to ensure that an agent handles an event correctly.

Chapter 4

The multi-agent contest

The contest scenario which our multi-agent system is competing in is presented
and explained in this chapter. Furthermore we will have a brief look at some
of the systems in the MAPC system such as the map colouring and how you
control water sections. A more detailed description can be found in the original
description 1

4.1 The scenario

In our given scenario we are a group of colonists situated on Mars. Water
was found on the planet and the colonists developed the so-called "All Terrain
PLanetary Vehicles" (ATPV) to search for the water. Water has become a
precious resource and colonists started sabotaging other colonists. This resulted
in 2 factions battling each other for the best water sources on the planet.
Our agents are supposed to take control of these ATPV's roaming the surface
of Mars trying to �nd the best water sources. In some situations they should
sabotage and in other situations they should defend. both teams has acquired a
speci�c amount of vehicles of di�erent types, each di�erent type has a special job
and therefore has a unique action. This will force the agents to work together

1Bibliography item [4]

12 The multi-agent contest

to get the best performance possible.
As the scenario progress each team will earn achievement points, which acts
as a currency, these are given to a team every time they reach a mile stone of
some sort. As example when you have successfully attacked 5 times you earn 2
achievement pts. and after that you have to had successfully attacked 10 and
then 20 and in this way to increases up until the upper limit of 640 is reached.
There are other achievements these can be seen in the multi agent programming
contest scenario description 2 page 22. When a faction have these the factions
agents will have the option to upgrade themselves.

4.1.1 The ATPV's

There are 5 di�erent ATVP's Repairers, Sentinels, Inspectors, Saboteurs and
Explorers, both factions will be given 6 of each except the saboteurs of which
they get 4. Common to all of them is that they can all perform some standard
actions and has the attributes energy, health, strength and visibility range.
Energy is used to perform actions which has a speci�ed cost. Health is used
to determine when an agent has been sabotaged and needs repairs. Strength is
applied to the saboteur and determines how much of an impact the sabotage
e�ect has. �nally the viability range determines how far an agent can see. The
common actions to all agents are skip, goto, survey, buy and recharge. These
actions allow each ATVP to do the basics. Skip and goto are for movement
purposes, survey checks the cost of moving across an edge, buy allows a ATVP
to upgrade itself and if a unit runs out of energy it can recharge. Every action
except Skip and recharge costs energy to perform. Each ATVP also has its own
unique ability which determines what role it will have in the �ght for water.

Repairers
This unit had its unique ability revealed in the name it is able to repair damaged
units such that they remain able to stay in the battle. should a unit be totally
destroyed it cant perform any actions apart from move and recharge. Repairers
can also parry if it believes its going be attacked.

Sentinels
Sentinels is the scouting unit of this game. it can also parry, but other then that
its greatest power is the increased viability range that allows it to spot enemies
from afar.

Inspectors
Inspectors has the ability to inspect and will reveal the information about the

2Bibliography item [4]

4.1 The scenario 13

enemy ATVP which it has inspected, such that the agents know which ATVP
to keep an eye out for.

Saboteurs
Saboteurs are the attacking unit of this scenario and has the unique ability to
sabotage. This ability can be used to reduce the enemy's vehicles health to 0
and with that reduce the e�ciency of the enemy agents. The saboteurs can also
parry.

Explorers
The Explorers can perform the action Probe this tells the agents what the value
of the targeted node is and only when this is done can the team get the full
value of the controlled nodes.

A chart it here presented to give a quick overview of the di�erent Roles, actions
and attributes.

Explorer Actions skip, goto, probe, survey, buy, recharge
Energy 12
Health 4
Strength 0
Visibility range 2

Repairer Actions skip, goto, parry, survey, buy, repair, recharge
Energy 8
Health 6
Strength 0
Visibility range 1

Saboteur Actions skip, goto, parry, survey, buy, attack, recharge
Energy 7
Health 3
Strength 4
Visibility range 1

Sentinel Actions skip, goto, parry, survey, buy, recharge
Energy 10
Health 1
Visibility range 3

Inspector Actions skip, goto, inspect, survey, buy, recharge
Energy 8
Health 6
Strength 0
Visibility range 1

Table 4.1: Roles, actions and attributes [4], page 14

14 The multi-agent contest

The next table 4.2 show the actions and the costs of the di�erent actions in the
scenario.

4.2 The MAPC system

The MAPC system is run on a server to which you connect the agents. On this
server the match is played. When playing in the match the agents are positioned
on a map consisting of a lot of nodes connected by edges. The nodes has a value
which is the value of water you can collect there and the edges also has a value
which symbolises the cost of transporting a unit across. An example of the map
can be seen below.

Figure 4.1: Example of the map

The graph colouring algorithm is also run on the server an is sent back to the
agents each turn such that they know how they impact the environment by their

4.2 The MAPC system 15

movement. When the server enters the colouring phase, it ventures through 4
steps that can be quickly explained like this. (A more detailed explanation can
be found in bibliography item [4], page 11-13).

1. colouring all the nodes at which is dominated my only one team. A node
is dominated if the team had the most agents on it.

2. Colouring the neighbours of dominated nodes. This will only happen if
the neighbour is empty and the team wishing to control it, dominates 2
neighbouring nodes to the empty one.

3. If a team manages to create an closed of area in the form of a chain
connecting one end to the other, in which there are no enemy agents, then
it is perceived as a protected area and the team that has closed this area
o� are then controlling it.

4. Finally the fourth step is to not colour any remaining nodes.

examples of all the 4 di�erent cases can be seen in �gure 4.1.

16 The multi-agent contest

skip Parameter: -
Status: any
Cost: -
Potential Failure causes -

recharge Parameter: -
Status: any
Cost: -
Potential Failure causes -

goto Parameter: Vertex (required)
Status: any
Cost: edge value
Potential Failure causes energy shortage, attacked, unreachable,

wrong param
probe Parameter: Vertex (optional)

Status: enabled
Cost: 1 energy pt.
Potential Failure causes energy shortage, attacked, out of range,

in range, wrong param, role, status
survey Parameter: -

Status: enabled
Cost: 1 energy pt.
Potential Failure causes energy shortage, attacked, status

inspect Parameter: Agent (opponent - optional)
Status: enabled
Cost: 2 energy pts.
Potential Failure causes energy shortage, attacked, out of range,

in range, wrong param, role, status
attack Parameter: Agent (opponent - optional)

Status: enabled
Cost: 2 energy pts.
Potential Failure causes energy shortage, parried, out of range,

in range, wrong param, role, status
parry Parameter: -

Status: enabled
Cost: 2 energy pts.
Potential Failure causes energy shortage, role, status

repair Parameter: Agent (teammate - required)
Status: any
Cost: 2 energy pts. if enabled, 3 energy pts.

if disabled
Potential Failure causes energy shortage, out of range, in range,

wrong param, role
Buy Parameter: Attribute (Battery, sensor, shield or

sabotageDevice)
Status: enabled
Cost: 2 energy pts. 2 achievement pts.
Potential Failure causes energy shortage, wrong param, status,

limit

Table 4.2: Action properties [4], page 17

Chapter 5

UFSCTeam2013 Analysis

In this chapter we will look on the relevant code which we believe can be im-
proved to perform better in the scenario presented in 2013. The overall struc-
ture of the program is based on the JaCaMo platform, using Jason for agents,
Cartago for artifacts and Moise for organizations. Since Cartago and Moise are
beyond the scope of this project we will be primarily focusing on analysis of the
Jason code.

5.1 Start of simulation

The UFSCteam2013 strategy starts o� by splitting their agents into subgroups
while assigning a leader for each agent type (a saboteur leader, explorer leader,
and so on), as well as initializing beliefs and goals. Some additional groups are
also de�ned, namely Main for leaders, and Alpha and Beta containing half of
all agents each, as well as Special Exploration and Special Operations. Each
group receives their own artifact, and an artifact is de�ned for the environment.
An artifact in this case is part of the CArtAgO code which de�nes artifacts
"as resources and tools dynamically constructed, used, manipulated by agents to
support/ realise their individual and collective activities (like artifacts in human

18 UFSCTeam2013 Analysis

contexts)." 1. All rules apply to values within the artifacts or knowledge received
from the contest server, thus the agents have both a knowledge base and a visual
perception of their environment. Beliefs are also initialized for hills, pivots and
islands. A hill is de�ned as "a zone formed by several vertices that have a good
value and are in the same region of the map." 2. A pivot is de�ned as "regions
of the map that can be conquered by just two agents."3. An islands is de�ned
as "a region of a map that can be conquered by a single agent."4.

5.2 Step beginning

In the beginning of each step of the simulation, each agent has a chance to
process some information before the step proper in the processBeforeStep(S)
goal. Repairers use this to check for disabled friendly agents nearby. After
this, a test is run to check if there are enemies inside the constructed islands
and pivots. (testCleanIsland and testCleanPivot), and if there are the saboteur
leader receives a message with the enemy position, and a belief is established that
a saboteur has been called to the vertex, so that no duplicate calls are issued.
If this is not the case the island/pivot is reported as clean and a eventual call
is abolished, as per the Jason internal action.

5.3 Agent actions

After this, each agent runs the wait_and_select_goal plan, which regulates
when agents act in order to enforce a order of priority among agents. In sabo-
teurs, explorers and repairers a check is made to see if all saboteurs with higher
priority have taken their actions before the acting agent selects a goal. This is
used along with beliefs to ensure that no duplicate calls are made (for example,
calledSaboteur(V), where V is a vertex). Inspectors and sentinels do not have
this implemented, as they select their actions randomly from a list of options
and there is less harm in assigning duplicates than with repairers, saboteurs and
explorers. In either case, the wait_and_select_goal executes its body, which is
the select_goal plan.

The select_goal plan examines the belief base to select the goal for each agent
to execute. The plans for each goal are listed with individual contexts, so as to

1Bibliography item [3]
2Bibliography item [5]
3Bibliography item [5]
4Bibliography item [5]

5.4 Tokens 19

best evaluate which action is appopriate to pursue. It then runs a goal called
"Init_Goal(G)", which prints information to the console about the state of the
agent and simulation, and then adds the goal G to the list of goals for the
agent. While the action that happens next is often dependent on a plan for
the particular goal, it results in a call to the "do(Act)" goal, the plan for which
prints to console and runs the !commitAction goal, marking the step as done for
the agent and then uses the act method of the CentralizedEnvrionment package
in Jason to execute the speci�ed action.

5.4 Tokens

The next part of the step consists of sending a token for the step S+1 to the next
agent with highest priority. Possession of a token (the belief token(s)) is used
to regulate some beliefs where several agents of di�erent classes works together,
so as to ensure atomic actions among these agents. The token contains the step
(used to ensure the agent acts only once per turn) and is incremented once all
agents that will act (have not passed the token) have acted. An agent can pass
the token if they are disabled. Saboteurs always pass the token as they act
outside of the swarm. Repairers that are in the process of attending to an agent
also always pass the token. The forward_token goal is recursively added by the
plan, and as such each agent that receives the token will forward it as long as an
applicable agent can receive it (as this is a condition for the plan). Forwarding
of the token happens while in the same step as the token, therefore once the
token S+1 is sent the token is no longer forwarded among the agents until the
next step begins.

5.5 End of step

A belief is then added called lastStep(S) with S being the current step. a goal is
then added called processAfterStep(S), which similarly to processBeforeStep(S)
allows the agents to process some information after all steps have been taken.

• Explorer leader uses this step to calculate the total sum of held vertices
with an internal action and update the belief (calculateTotalSumVertices)
and then builds the area of the hill for the step using the internal actions
buildBestCoverage and buildBestCoverageTwo(buildArea(S)).

• Sentinel Leader uses this step to determine pivots and islands with inter-
nal actions depending on position and best coverage (buildPivots(S) and

20 UFSCTeam2013 Analysis

buildIslands(S)).

• Saboteur leader and helper updates the most desirable known island ex-
cluding the one currently held and forwards it to the helper saboteur
(updateEnemyIsland).

• Repairers ask if the agent they are scheduled to repair have already been
repaired (testAppointmentWithDisabledAgent).

Finally, goals are run to recover the system (if the system has lost held infor-
mation on edges, vertices or steps) from the coach, the current step is added to
the log and the graph system is updated.

5.6 Agent classes

5.6.1 Saboteur

The Saboteur class contains a large set of beliefs regarding what agents to attack,
as well as beliefs for obtaining paths to valuable islands with, whether or not a
given saboteur is the chaser, and paths to attack enemy agents. The saboteur
has goals for recharging and scheduling repairs with a repairer, attacking a target
and going to and holding a vertex or hill.

5.6.2 Repairer

The Repairer class contains a set of beliefs regarding when to repair a nearby or
adjacent (same vertex) ally for each class of ally. It also has a goal for going to
a vertex where such an appointment might be scheduled (so that if an ally calls
a repairer it will know how to go there.) Note that the repairers will cease to
repair allied Explorer agents after step 200. The repairer has goals for recharging
and scheduling repairs with another repairer, as well as going to and holding a
vertex or hill.

5.6.3 Sentinel

The Sentinel class contains goals for recharging and scheduling repairs with
another repairer, as well as going to and holding a vertex, island or hill.

5.7 Description of non-agent classes 21

5.6.4 Explorer

The explorer class contains beliefs on whether or not to expand a vertex it is
standing on (a condition of which is that it is unprobed) and whether or not an
adjacent vertex is unprobed. It also contains beliefs for special explorers that
probe only inside the designated hill. Aside from this, the class contains goals
for recharging and scheduling repairs with another repairer, as well as going to
and holding a vertex, island or hill.

5.6.5 Inspector

The Inspector class contains beliefs and plans on when to inspect a nearby
enemy. It also contains goals for recharging and scheduling repairs with another
repairer, as well as going to and holding a vertex, island or hill.

5.7 Description of non-agent classes

A short description of each .asl class that is not an agent class in the program
follows. These classes contain core goals, beliefs and plans as well as most of
the common beliefs held by agents. Note that the program does not halt on
exception throws.

• mod.aimVertex - Contains rules and goals for distributing orders among
agents to take pivots and islands.

• mod.common - Contains common beliefs and plans for agents that causes
internal actions and adds goals if implemented, typically by an attribute
change (such as position and HP). For example, when position changes, a
goal is added to evaluate enemy positions with the new knowledge gained
from visibility. Also contains rules for what to do when health is lost or
at zero, which the agent perceives from its environment.

• mod.commonRules - Contains a list of common rules for agents.

• mod.commonWalkRules - Contains a list of common rules for movement.
If the destination is good then the agent random-walks there otherwise it
recharges. When heading for a speci�c path, it will walk through the path
using tail recursion.

• mod.EISactions - Contains goals which execute EIS actions.

22 UFSCTeam2013 Analysis

• mod.environment - Contains goals for switching focus among artifacts.

• mod.expanding - Contains rules related to expansion of own vertexes and
entering uncontrolled vertexes.

• mod.�nishRound - Contains rules and goals for resetting and terminating
the program.

• mod.hill - Contains the rules and goals for de�ning a hill and the optimal
coverage of that hill. This is mostly done using internal actions regarding
the environment, which use CArtAgO.

• mod.initialization - Contains goals for initializing the program.

• mod.islands - Contains rules for defending and determining the state of
islands, as well as goals for determining and moving to islands. The path
to get to the islands is composed by an internal action usingDjikstra's
algorithm to �nd the path with the lowest cost.

• mod.loadAgents - Contains the goal to load agents names, details, role
and priority (used in mod.Token). This is changed depending on whether
the agent is used in slot A or slot B.

• mod.newStep - Contains the plans and actions taken for each step(turn)
of the competition. Functions as a BDI interpreter for the program.

• mod.organization - Contains the rules and plans for organizing agents
into groups. Also contains all the overall goals for the program during the
competition, and the rules and plans determine the mechanics as to which
groups receive the individual goals.

• mod.pivot - Contains plans and beliefs for determining pivots and asserting
the ownerships of pivots.

• mod.repair - Contains plans for evaluating health and sending repair re-
quests to the repair leader, as well as plans for if the agent can come to
the repairer.

• mod.startRound - Contains plans for handling initialization of edges, ver-
tices, steps and the simulation start in the �rst round.

• mod.swarm - Contains rules for handling movement inside the hill for the
swarm, that is to say all non-saboteurs.

• mod.swarm.expanding - Contains rules for expanding the swarm from
within the hill, in order to maximize the frontier area beyond the de�ned
hill area.

5.8 Internal actions 23

• mod.token - Contains rules and plans for handling, generating and passing
tokens among the swarm.

• mod.walking - Contains plans for random walking and planned walking.

5.8 Internal actions

The Java code can generally be divided into the following categories:

• classes governing implementation of the CaRTagO artifacts (artifacts pack-
age),

• the agent architecture class implementation, logging events and agent lis-
teners(env package)

• classes that handle translation of Environment Interface Standard to Jason
for communication between Jason, Moise and Cartago(jason.eis package)

• classes that contain the graph implementation and interaction functions
and algorithms used for path�nding (Djikstra, BFS) and determining piv-
ots, islands and hills (graphLib package)

• classes that contain internal actions to be executed by the Java code as a
condition in plans in the Jason code (ia package)

Of these packages, the internal actions (ia) package is of particular interest since
it is the primary way in which the Jason code interacts with the graph library,
path�nding functions and logging systems. A list of the internal actions follow:

• addEdge - takes atomic arguments vertex U, vertex V and integer weight.
Executes the addEdge function of the Graph class, adding an edge between
the two vertices with the speci�ed weight. Returns true.

• addEnemyPosition - takes arguments integer id, and strings enemy and
vertex. Executes the addEnemyPosition function of the Graph class,
adding the enemy to the position vertex in the graph, correcting the older
position if such exists. Returns true.

• addLastAction - takes arguments integer agentId and step, and string
arguments action and result. Adds an entry of the action to the active
instance of ContestLogger. Returns true.

24 UFSCTeam2013 Analysis

• bestCoverage - takes arguments integer depth and variable terms bestVer-
tex and bestValue. Executes the internal action getBestCoverage of the
Graph class, getting the best possible coverage for the listed depth, unify-
ing the bestVertex argument with the best found vertex and the bestValue
argument with the value of the vertex. Returns true if a result is found,
otherwise throws exception.

• bestCoverageIgnoringVertex - Same as bestCoverage, except adds a string
argument ignoreVertex. Returns same as bestCoverage except it will not
return the ignored vertex.

• cleanBeliefBase - Gets the belief system of an agent in the transition sys-
tem as an iterator, then iterates through it and removes a belief if it is a
rule. Returns true.

• cleanPostion - takes argument integer id. Gets the active instance of the
graph then removes the listed position of the entity with the listed id.
Returns true.

• copyOfVisibleEnemy - takes argument terms termEnemy and termVertex.
Iterates through the active instance of the graph then uni�es all visible
enemies with termEnemy and their vertices with termVertex. The result
is kept as a uni�er and returns true if the uni�er is not empty.

• edge - Same as copyOfVisibleEnemy except takes atomic argument ver-
texU and terms vertexV and weight. Uni�es all connecting vertices and
the weight of their connecting edges.

• getAgentPosition - takes argument integer id and an unspeci�ed second
argument. Uses the getPosition function of the Graph class to get the
vertex assigned to the id and uni�es it with the second argument as a new
atomic term named vertexTerm. Returns false if no such vertex exists.

• getDistance - takes string arguments vertexS and vertexD, and variable
term lenght[sic]. Uses the getDistance function from the Graph class to
calculate the distance in vertices between vertexS and vertexD and uni�es
it with lenght. Returns true.

• getIslands - takes arguments integer amount and variable term island-
sTerm. Uses the getAllIslands function from the Graph class to get the
list of known islands, then adds them as vertices to a list and binds the
list with islandsTerm. Returns true.

• getPivots - Same as getIslands, but gets all pivots instead using the getAllPiv-
ots function of the Graph class. Returns true.

• getPivotsIgnoringVertices - Same as getPivots, except ignores vertices in
the list term verticesIgnore. Returns true.

5.8 Internal actions 25

• getPivotsJustSomeVertices - Same as getPivots, except only returns pivots
connected to vertices in the list term vertices. Returns true.

• getVertexGrade - Same as getAgentPosition, except returns vertex grade
instead.

• isIsland - takes string argument vertexV. Returns true if the getIsland
function of the graph class does not return null with vertexV as argument.

• neighborhood - takes string argument vertexS, integer depth and list term
listOfNeighbors as arguments. Uses the getNeighborhood function of the
Graph class to return the list of neighbors connected to vertexS in the
given depth, bound to the listOfNeighbors term. Returns true if the list
of neighbors is not null, throws exception otherwise.

• probedVertex - takes argument term vertex and number term implemen-
tation result. If the vertex is an atom, the function binds the result of the
getVertexValue function of the Graph class to result and returns false.
Otherwise, the second term is renamed probedValue and the function
getVertexByValue of the Graph class is called with the value as argument.
It returns a list of vertices with the probed value then iterates through it
and if a vertice uni�es with the vertex term the iterator adds it. Returns
true if the result of the iterator is not null.

• remEnemyPosition - same as getEnemyPosition, except removes it. Re-
turns true.

• resetGrapth - Creates a new graph and resets the current graph and logger
instance. Returns true.

• setAgentPosition - takes integer argument id and string argument vertex.
Uses the setPosition function of the Graph class to create a position in the
graph for the given id on the given vertex. Returns true.

• setMaxEdges - takes unspeci�ed integer argument. Sets this argument as
max edges using the setMaxEdges function of the Graph class. Returns
true.

• setMaxVertices - Same as setMaxEdges, only vertices.

• setVertexValue - Same as setMaxEdges, only sets a value for a vertex that
is given as an atomic term.

• setVertexVisited - Same as setVertexVisite, only sets the visited boolean
property in the graph instance to true.

26 UFSCTeam2013 Analysis

• shortestPath - takes string arguments vertexS and vertexD and variable
term arguments path and lenght. Uses the getShortestPath function of
the Graph class to get the shortest path between vertexS and vertexD as
a list of vertices, binding the path to list and unifying lenght with the size
of the shortest path list. Returns true if a path exists that is not null and
has size >0.

• shortestPathBFSTwo - same as shortestPath, except returns the �rst re-
sult from a list of possible destination vertices in vertexD using the BFS
getShortestPathBFSComplete function from the Graph class. Returns
true under same conditions.

• getShortesPathDjikstraComplete - same as shortestPath except using the
Djikstra complete path. Returns true under same conditions.

• getShortesPathDjikstraComplete - same as shortestPathBFSTwo except
using the Djikstra complete path. Returns true under same conditions.

• sumVertices - Returns the sum of vertices in the unspeci�ed term. Returns
true.

• synchronizeGraph - Synchronizes the number of edges between the graphs
in the agent architecture and the global graph. Returns true.

• thereIsUnprobedVertex - returns the result of the boolean function thereIsUn-
probedVertex in the Graph class.

• vertex - same as ProbedVertex, except the �rst condition returns the team
controlling the vertex instead of the vertex value.

• visibleEnemy - same as probedVertex, except the �rst condition returns
the speci�c position if an enemy term and vertex is speci�ed. If enemy
term is speci�ed but no vertex, all vertices with the enemy term is returned
(by iterator) in termEnemy and termVertex lists. If neither are speci�ed,
all known enemy positions are returned(by iterator) in termEnemy and
termVertex lists.

• vertexVisited - takes term argument vertex. Returns true if the vertex
is recorded visited by the getVertexVisited function of the Graph class,
returns false otherwise.

Chapter 6

Analysis of the scenario and
MAPC system

In this chapter we will re�ect upon the scenario and the MAPC system described
in the previous chapter and from that discuss the possible ways of improving
the agents in the MAPC system to preform better in this scenario and what
strategies that might be useful following to archive the highest score.

6.1 Agent improvements

The di�erent ideas of improvements for our agents are listed here.

6.1.1 Saboteurs

There is not much room for improvement as we can see in the saboteurs. We
thought that a small but useful addition could be made, which is if an inspector
sees the opposite team buying health for more than 1 of their saboteurs, then
our saboteurs should upgrade their attack such that they would still be able
to sabotage them in 1 shot instead of 2 and from there on of whenever they

28 Analysis of the scenario and MAPC system

buy health we buy damage. The key value in this strategy is that if the enemy
starts upgrading their health they will have to spend 4 achievement points to
upgrade it above the one shot health limit. But we wont have to spend more
than 2 achievement points to make ourselves able to one shot it again. this will
give us a little advantage in the beginning if the opponent chooses to upgrade
its health. If the upgrades has been made within turn 100 then there is 700
turns where we may get 5600 victory points more than the other team, alone
on this improvement, since they spend an overall 8 points more upgrading their
saboteurs.

6.1.2 Explorers

Sometimes the explorers are gathered in one or more sections of the map with
a part of the map without any explorers. This is an ine�cient way to explore
all the nodes. Instead the map should be divided into regions where each region
would get an explorer associated with it and in that way remove movement time
for the explorers since the regions would be of approximately same size. This
could gain us an advantage in the following ways. We would probe the map
earlier and therefore have better knowledge of the best water sources, This will
reduce the time we spent �nding the best place to gather water. Additionally
the �nished explorers can join up with the others in forming the control area
earlier which also reduced the time spend. To appoint the explorers to the
given regions of the map the program would have to calculate the best way of
appointing the explorers to have the shortest way in total for all the explorers
to the region they would be given.

6.1.3 Inspectors

One of the suggestions we got from the MAPC team was the make the inspectors
inspect far enemies, maybe not all of them but just the leader inspector. where
far enemies are enemies that could be seen by other agents, but this wont work
since an inspector can inspect them. The only way an inspection will work is
if the e�ective range is grater or equal to the range at which the target is from
the inspector and because the effectiveRange = V isRange ∗ rand2 we can
never succeed in inspecting enemy agents that is beyond the Vision range of the
inspector. Since this vision range is 1 and improving it will cost achievement
points which will reduce the overall points gained throughout the match we have
concluded that this strategy is suboptimal and should not be implemented in
JABARA.

6.2 Strategies 29

6.1.4 Sentinels

A way to improve the sentinels - Instead of them walking randomly around
surveying edges that haven't been surveyed, we would make the sentinels move
to the node with the most unsurveyed edges, and implement prioitized goal
selection like the explorers, so that no two sentinels act at the same time and
end up surveying the same node. This way we would gain maximum knowledge
about the map each time a sentinel used its ability survey. Once we reach turn
130 enough knowledge of the map has been found and then the main force of the
sentinels joins in controlling an area. We leave one sentinel in charge of walking
around surveying the rest of the map to hopefully �nd more optimal routes and
once that is done it will join the rest in controlling a big part of the map.

6.1.5 Region segregation

A way to implement segregation of the map into regions would be using the
sentinels to map a series of interconnected vertices that would be saved as a
set. A Sentinel and an Explorer could then go through the regions vertices one
by one. Whenever a sentinel then moves to another vertex to survey its edges
it would in most cases increase its known part of the map by discovering new
vertices because of its vision range. These vertices should then be added to the
region belonging to the sentinel that were able to see them if and only if the
vertex hasn't already been given a region or the path to the island is blocked
by another region. Should it happen that a sentinel surveys its entire region we
categorize it as region completed and the sentinel should then go and survey in
another region. Should it discover new islands while surveying the new region it
will then expand the region which it has been assigned to and not the original
one.

6.2 Strategies

This section will discuss di�erent strategies that has been considered to be viable
as a strategy that might have in�uence on the outcome of who the winner is
going to be.

30 Analysis of the scenario and MAPC system

6.2.1 Buy strategy

The idea of this strategy is to use the achievement points early on and hence lose
score early on, but in the overall match archive the achievement points earlier. In
this way it might increase the achievement points pool earlier than usually and
then ending up with more points in the end than what you lost on using them in
the early stages of the game. This was mainly an idea we had for the sentinels.
The idea was to increase their visual range than with that increase the number
of edges it could survey and then reach the achievements goals for amount
of surveyed edges faster. We later realized that this was not a strategy that
could work, since the needed amount of edges you have to survey between each
achievement milestone is doubled for every time you get one with the exception
of the jump at 320. For surveyed edges the achievement milestones are 10, 20,
40, 80, 160, 320, 320, 640 and �nally 1280. An upgrade to the sentinel can
therefore only gain more victory points than it loses, if the upgrade more than
quadruples edges searched per turn and we do not gain all achievement points for
surveying. The e�ective range in which we survey edges is EffectiveRange =
(V isualrange − 1) ∗ rand2 + 1, this means that the numerical value of the
e�ective range to increase by upgrading from 3 to 4 gives a 0.11 extra chance
of surveying nodes within 2 range instead of 1. Assuming that the sentinel
surveys constantly on the map, recharges once a while and doesn't move then
average number of surveys for one Sentinel would be 533 surveys which results
in 533 ∗ 4 edges surveyed assuming that there are approximately 4 edges for
each node. Of course you cannot survey the same edges constantly, but this is
a best-case example. With a range at 3 we have for our four adjacent edges
a 0.18 probability of surveying the edges on the other side of an edge (which
will total out to 12 edges), we can therefore multiply by 12 ∗ 0.18, for a total of
533 ∗ 4 + 533 ∗ (12 ∗ 0.18) + 1 edges surveyed. With a range at 4 we have for
our four adjacent edges a 0.29 probability of surveying the edges on the other
side of an edge (which will total out to 12 edges), we can therefore multiply by
12 ∗ 0.29, for a total of 533 ∗ 4 + 533 ∗ (12 ∗ 0.29) + 1 edges surveyed. Since
we have six sentinels, we will gain all achievement points for surveying edges.
as even assuming the sentinels have other things to do, we would have to lose
more than 90 percent of our potential surveys at range 3 to not get the last two
achievement points, which will de�nitely happen if the sentinels keep moving
around The only other possibility for a gain by improving range is if the upgrade
quadruples the number of edges seen per survey, which it does not do as the math
above demonstrates. Even though the smadasUFSC implementation e�ectively
stops surveying after turn 133, the gain per survey is still too small to justify
such an upgrade.

Buying other advantages to hurry the achievement unlocking are not present so
the buying strategy is therefore not a viable strategy to follow in this scenario.

6.2 Strategies 31

6.2.2 O�ensive vs. defensive saboteurs

We also considered what would be most e�ective, to use an o�ensive or defensive
strategy for the saboteurs. Our conclusion was that defensive will never be as
good as o�ensive since if you position yourself defensively you will simply just
allow the enemy to come to you and then they can do what they want while
you stay somewhere at the map. This means it will never be pro�table to try
and hold your ground you should always attack and try to destroy the opposing
faction by making the front lines be positioned at their position and then by
that, ruin the amount of water sources they can control.

These are the ideas of improvement and strategies that we thought of. Regarding
the implementation of the ones that we believe will improve the UFSCTeam2013
system. We do not need to implement an aggressive play-style since the sys-
tem is already programmed aggressively. We have implemented the improved
saboteurs, such that we can counter players that might upgrade health. We
implemented the improved sentinels such that we survey faster. This can be
seen in the next chapter.

32 Analysis of the scenario and MAPC system

Chapter 7

The implementation

The implementation of the improvements of the agents and how they work is
presented in this chapter.

7.1 Edge selection

The original implementation of the smadasUFSC multi-agent system did not
assign any one agent type or instance the task of surveying the map. Instead, if
inspectors, sentinels and repairers had no other assignments, they would check
if surveying was a good idea by checking if an unsurveyed edge is connected to
their position. Sentinels, since they had few other assignments, would usually
survey their position. If left with no immediate goals to accomplish, the agents
would all random walk, thus implementing an entirely randomized surveying
strategy. We believe that a more coordinated, less randomized way of surveying
the edges will improve the strategy, as the agents will be more capable of �nding
the optimal path to a given vertex and the achievement points for surveying
edges will be given earlier, resulting in more points overall. Since the original
implementation of sentinels left them with no particular role except a higher
priority on the surveying goal, we decided to implement edge selection on the
sentinels.

34 The implementation

7.1.1 Java additions

We have added new global variables to the Graph java class to allow the use of
our functions. These are:

• short unsurveyedEdges[] - The number of unsurveyed edges are stored in
an array of shorts, each index corresponding to a vertex, incremetned for
both connected vertices when an unsurveyed edge is added and decreased
when an edge is surveyed.

• boolean allEdgesSurveyed - Used to stop the thereIsUnsurveyedEdge func-
tion early if it has already returned false once.

• int lastCheckForUnsurveyedEdges - Used to store the last vertex that had
an unsurveyed edge, so as to prevent unnecessary repetition of the edge
scanning of thereIsUnsurveyedEdge.

We have added several functions to the Graph java class in order to facilitate
the discovery and handling of unsurveyed edges. These functions are:

• thereIsUnsurveyedEdge - Returns true if an edge on the graph has been
recorded as having more than or equal to the max observed weight as-
signed, and not in�nite weight. Any observed edge that has not yet been
surveyed will ful�l these conditions as although maxWeight may decrease
as a result of agent actions it will never increase. This function have
a worst-case runtime of i*(i-1) but will only run through the entire set
of edges once in total and it will start from the last vertex that had an
unsurveyed edge. Returns true if an unsurveyed edge is found.

• getUnsurveyedEdgesOfVertex - Returns the number of unsurveyed edges
of the vertex as a short.

• getVertexWithMostUnsurveyedEdges(List<String> vertexList) - Returns
a list of vertices with the highest observed number of unsurveyed edges
from among the vertex list. Uses a for- loop to iterate through the ver-
texList, examining the index in unsurveyedEdges. If a vertex with higher
edge count than stored is found, the list is cleaned and the new entry is
added. If it has the same edge count, it is added to the list. Returns the
list.

• getVerticesWithUnsurveyedEdges - Returns a list of all vertices with un-
surveyed edges.

7.1 Edge selection 35

// Added by BaR

// If an isolated vertex exists in the graph database then

// clearly an edge connecting to this vertex has not been

surveyed yet. This

// assumes that all vertices have at least one edge.

@SuppressWarnings("unused")

public boolean thereIsUnsurveyedEdge() {

if (allEdgesSurveyed)

return true;

if (getSize() <= 1)

return true;

// Assuming no isolated vertices this is the bare minimum

of edges

if (MAXVERTICES > (edgeCounter - 1))

return true;

for (int i = lastCheckForUnsurveyedEdges; i < getSize();

i++) {

for (int j = MAXVERTICES; j < getSize(); j++) {

// We know this vertex exists, so at least

one edge connects

// here.

if (w[i][j] <= MAXWEIGHT && w[i][j] != INF)

{

// Since the number of vertices and

position of vertices in

// the array never change, we can

continue from where we

// left off when we check again

lastCheckForUnsurveyedEdges = i;

return true;

}

}

}

allEdgesSurveyed = true;

return false;

}

//Returns the amount of unsurveyed edges at the vertex

public short getUnsurveyedEdgesOfVertex(String vertexV){

return unsurveyedEdges[getVertexValue(vertexV)];

}

//Returns the vertices with the most unsurveyed edges

36 The implementation

public List<String>

getVerticesWithMostUnsurveyedEdges(List<String> vertexList){

short maxUnsurveyedEdges = 0;

List <String> targetList = new ArrayList<String>();

for (int i = 0; i < vertexList.size(); i++){

if

(unsurveyedEdges[vertex2Integer(vertexList.get(i))]>maxUnsurveyedEdges){

maxUnsurveyedEdges =

unsurveyedEdges[vertex2Integer(vertexList.get(i))];

targetList.clear();

} else if (unsurveyedEdges[i]==maxUnsurveyedEdges){

targetList.add(vertexList.get(i));

}

}

return targetList;

}

//Returns all unsurveyed vertices

public List<String> getVerticesWithUnsurveyedEdges(){

List <String> targetList = new ArrayList<String>();

for (int i = 0; i < MAXVERTICES; i++){

if (unsurveyedEdges[i]>0){

targetList.add(integer2vertex[i]);

}

}

return targetList;

}

7.1.2 Internal actions

We have added three internal actions that use our newly implemented functions:

• thereIsUnsurveyedEdge - Returns the result of graph.thereIsUnsurveyedEdge.

package ia;

import env.MixedAgentArch;

import graphLib.Graph;

import jason.asSemantics.*;

import jason.asSyntax.*;

//Added by BaR. Internal action handler for check for unsurveyed edges.

Functionally identical to ia.thereIsUnprobedVertex.

7.1 Edge selection 37

public class thereIsUnsurveyedEdge extends DefaultInternalAction {

@Override

public Object execute(TransitionSystem ts, Unifier un, Term[] args)

throws Exception {

MixedAgentArch arch = (MixedAgentArch)ts.getUserAgArch();

Graph graph = arch.getGraph();

return graph.thereIsUnsurveyedEdge();

}

}

• getUnsurveyedEdges - Binds the result of graph.getVerticesWithUnsurveyedEdges
as a list in a variable term nodes and the size of the list in a variable term
nodeCount.

package ia;

import java.util.List;

import env.MixedAgentArch;

import graphLib.Graph;

import jason.asSemantics.*;

import jason.asSyntax.*;

//Added by BaR: Returns a list in bar notation with all known nodes that

have unsurveyed edges, and the length of that list

public class getUnsurveyedEdges extends DefaultInternalAction {

@Override

public Object execute(TransitionSystem ts, Unifier un, Term[] terms)

throws Exception {

MixedAgentArch arch = (MixedAgentArch)ts.getUserAgArch();

Graph graph = arch.getGraph();

VarTerm nodes = ((VarTerm) terms[0]);

VarTerm nodeCount = ((VarTerm) terms[1]);

List<String> nodeList = graph.getVerticesWithUnsurveyedEdges();

if (nodeList != null && nodeList.size() > 0) {

ListTerm list = new ListTermImpl();

ListTerm tail = list;

for (String s : nodeList) {

38 The implementation

tail = tail.append(new Atom(s));

}

un.bind(nodes, list);

un.unifiesNoUndo(nodeCount, new

NumberTermImpl(nodeList.size()));

return true;

} else {

return false;

//throw new JasonException("No nodes with unsurveyed edges");

}

}

}

• getUnsurveyedEdgesTwo - Takes argument list term startNodes. Binds
a list of the nodes with the highest amount of edges as a variable term
highestNodes.

package ia;

import java.util.List;

import env.MixedAgentArch;

import graphLib.Graph;

import jason.asSemantics.*;

import jason.asSyntax.*;

//Added by BaR: Returns a list in bar notation with all known nodes that

have unsurveyed edges, and the length of that list

public class getUnsurveyedEdges extends DefaultInternalAction {

@Override

public Object execute(TransitionSystem ts, Unifier un, Term[] terms)

throws Exception {

MixedAgentArch arch = (MixedAgentArch)ts.getUserAgArch();

Graph graph = arch.getGraph();

VarTerm nodes = ((VarTerm) terms[0]);

VarTerm nodeCount = ((VarTerm) terms[1]);

List<String> nodeList = graph.getVerticesWithUnsurveyedEdges();

if (nodeList != null && nodeList.size() > 0) {

ListTerm list = new ListTermImpl();

7.1 Edge selection 39

ListTerm tail = list;

for (String s : nodeList) {

tail = tail.append(new Atom(s));

}

un.bind(nodes, list);

un.unifiesNoUndo(nodeCount, new

NumberTermImpl(nodeList.size()));

return true;

} else {

return false;

//throw new JasonException("No nodes with unsurveyed edges");

}

}

}

7.1.3 Common survey rules

We have added a list of beliefs called mod.commonSurveyRules to the Jason
implementation. These beliefs are called is_good_survey_destination(Op) and
is_good_survey_destination(D, Path) and can contain either a single vertex or
a destination vertex and a list of connecting vertices, as the gotoPath(D, path)
plan. These beliefs return true for their respective terms under the condition
that there is more than one unsurveyed node. This is deduced by the getUnsur-
veyedEdges and getUnsurveyedEdgesTwo internal actions, the latter being used
to �nd the vertices or vertex with the most unsurveyed edges. The beliefs are
prioritized towards the closest vertices, then vertices at a distance of two, three,
and afterwards any distance. If the target vertex is directly connected to the
vertex, the belief is for a single vertex. If there is distance between the vertices,
the belief contains the destination vertex and the path to the destination vertex
from the agents current vertex, using the shortestPath internal action.

/*

* Added by BaR. Contains common rules for determining survey locations.

*/

//Choose the nearest vertex with the most unsurveyed edges within range

1, 2 or 3. After that we don't care about max

//path length and we just go for the best edge we can get to.

is_good_survey_destination(Op):- position(MyV) &

ia.getUnsurveyedEdges(TargetNodes, NodeNumber) &

.setOf(TargetNodes, ia.shortestPath(MyV,TargetNodes,_,Length) & Length

40 The implementation

= 1, EdgesInRange) &

ia.getUnsurveyedEdgesTwo(EdgesInRange,Options) &

.length(Options, TotalOptions) & TotalOptions > 0 &

.nth(math.random(TotalOptions), Options, Op).

is_good_survey_destination(D, Path):- position(MyV) &

ia.getUnsurveyedEdges(TargetNodes, NodeNumber) &

.setOf(TargetNodes, ia.shortestPath(MyV,TargetNodes,_,Length)& Length =

2, EdgesInRange) &

ia.getUnsurveyedEdgesTwo(EdgesInRange,Options) &

.length(Options, TotalOptions) & TotalOptions > 0 &

.nth(math.random(TotalOptions), Options, D) &

ia.shortestPath(MyV,D,Path,_).

is_good_survey_destination(D, Path):- position(MyV) &

ia.getUnsurveyedEdges(TargetNodes, NodeNumber) &

.setOf(TargetNodes, ia.shortestPath(MyV,TargetNodes,_,Length)& Length =

3, EdgesInRange) &

ia.getUnsurveyedEdgesTwo(EdgesInRange,Options) &

.length(Options, TotalOptions) & TotalOptions > 0 &

.nth(math.random(TotalOptions), Options, D) &

ia.shortestPath(MyV,D,Path,_).

is_good_survey_destination(D, Path):- position(MyV) &

ia.getUnsurveyedEdges(TargetNodes, NodeNumber) &

.setOf(TargetNodes, ia.shortestPath(MyV,TargetNodes,_,Length)& 3 <

Length, EdgesInRange) &

ia.getUnsurveyedEdgesTwo(EdgesInRange,Options) &

.length(Options, TotalOptions) & TotalOptions > 0 &

.nth(math.random(TotalOptions), Options, D) &

ia.shortestPath(MyV,D,Path,_).

7.1.4 Surveyall

In order to search all edges e�ectively we must know when to stop looking for
more edges, and thus we have implemented a goal called surveyAll in mod.organization.
This goal is an obligation to the Sentinel Leader. The goal is ful�lled when the
added internal action notAllEdgesSurveyed returns false. A belief is also added
to the sentinel agent class called is_survey_goal_active, de�ned as the result
of the internal action notAllEdgesSurveyed. This belief is used as a condition
in the implementation for edge selection.

/*

* Added by BaR: Goal: surveyAll

7.1 Edge selection 41

*/

+!surveyAll[artifact_name(Scheme)]:

.my_name(MyName) & play(MyName,sentinelLeader,"grMain") &

ia.thereIsUnsurveyedEdge

<-

.wait({+step(_)}, 1000);

!!surveyAll[artifact_name(Scheme)].

-!surveyAll[artifact_name(Scheme)]

<-

!!surveyAll[artifact_name(Scheme)].

+!surveyAll[artifact_name(Scheme)]:

.my_name(MyName) & play(MyName,sentinelLeader,"grMain")

<-

goalAchieved(surveyAll)[artifact_name(Scheme)];

.print("All edges surveyed!").

+!surveyAll[artifact_name(Scheme)].

7.1.5 Edge selection implementation

Several plans are added to the Sentinel agent class with select_goal as a trigger-
ing event, all having is is_survey_goal_active as a condition. Another belief,
is_�rst_phase_acitve is also used, this belief returns true when the step num-
ber is less than or equal to 133. While both these conditions are true, along
with one of the is_good_survey_destination beliefs, the sentinel will execute a
goto(Op) or gotoPath(D, path) plan. These plans are prioritized below survey
and parry plans as well as repair scheduling plans and recharge plans. After
is_�rst_phase_active becomes false, a second set of plans with select_goal as
triggering event can be triggered, but with the condition that the agent must
be sentinel one. This is so that all remaining sentinels will focus on defending
the hills and vertices.

//Added by BaR:

//Try using the survey rules to determine a good place to survey if

survey goal and first phase are still active

+!select_goal: is_survey_goal_active & is_first_phase_active &

is_good_survey_destination(Op)

<-

!init_goal(goto(Op)).

+!select_goal: is_survey_goal_active & is_first_phase_active &

is_good_survey_destination(D, Path)

<-

42 The implementation

!init_goal(gotoPath(Path)).

//Go survey an unvisited vertex if you are Sentinel One and the survey

goal is still active

+!select_goal: .my_Name(sentinel1) & friend(sentinel1, _, sentinel, _) &

is_survey_goal_active & is_good_survey_destination(Op)

<-

!init_goal(goto(Op)).

+!select_goal: .my_Name(sentinel1) & friend(sentinel1, _, sentinel, _) &

is_survey_goal_active & is_good_survey_destination(D, Path)

<-

!init_goal(gotoPath(Path)).

We have also implemented a code snippet in mod.token so that sentinel one will
pass the token when there are still edges to survey.

/*

* If I'm disabled I don't need to token.

* If I'm a explorer and there is still some vertices to probe, I also

don't need the token

* If I'm a repairer and I have an appointment with some agent, I also

don't need the token

* Added by BaR: If I'm Sentinel one and there are edges left to survey,

I don't need the token

*/

+token(S):

(

is_disabled

|

.my_name(MyName) & friend(MyName, _, explorer, _) & not

noMoreVertexToProbe

|

.my_name(MyName) & friend(MyName, _, repairer, _) & busy(_)

|

.my_Name(sentinel1) & friend(sentinel1, _, sentinel, _) & not

noMoreEdgesToSurvey

) & not lastToken(S)

<-

.abolish(lastToken(_));

+lastToken(S);

!forwardToken(S);

.print("Received token to step ", S, " but forwarding it because I'm

disabled").

7.2 Buy strategy 43

7.2 Buy strategy

The original implementation of smadasUFSC did not have a buy strategy. We
have implemented a reactive buy strategy for the saboteurs that will buy sab-
otageDevices if the enemy saboteurs are noticed to have more health than our
saboteurs have in attack strength.

7.2.1 Java additions

We added a single global variable and a function to the Java code in the in-
spectArtifact class, the variable higestObservedHealth, which is a static byte
containing the highest observed health of a saboteur, and an addition to the
addEntity function that checks if the observed health of a saboteur entity is
higher than higestObservedHealth, if so highestObservedHealth is set to that
value. The function added is getHighestObservedHealth() which returns the
highestObservedHealth variable.

// Added by BaR

public static byte highestObservedHealth = 4;

@OPERATION

void addEntity(String entity, String type, int maxHealth, int

strength, int visRange) {

// Added by BaR

if (maxHealth > highestObservedHealth &&

type.matches("(.*)aboteu(.*)")) highestObservedHealth =

(byte) maxHealth;

if (entityToObs.containsKey(entity)) return;

[...]

// Added by BaR

public static byte getHighestObservedHealth(){

return highestObservedHealth;

}

7.2.2 Internal actions

A single internal action has been added, getHighestObservedHealth, which takes
the number term implementaton argument health and uni�es it with the result

44 The implementation

of the getHighestObservedHealth() function.

package ia;

import jason.asSemantics.*;

import jason.asSyntax.*;

import artifacts.InspectArtifact;

//Added by BaR. Internal action handler for check for unsurveyed edges.

Functionally identical to ia.thereIsUnprobedVertex.

public class getHighestObservedHealth extends DefaultInternalAction {

@Override

public Object execute(TransitionSystem ts, Unifier un, Term[] terms)

throws Exception {

NumberTermImpl health = ((NumberTermImpl) terms[0]);

un.unifiesNoUndo(health, new

NumberTermImpl(InspectArtifact.getHighestObservedHealth()));

return true;

}

}

7.2.3 Buy strategy implementation

We simply added a plan for executing the buy action, using as conditions that
the health from getHighestObservedHealth is equal to or higher than the sabo-
teurs own attack strength.

// Added by BaR: Observe own strength and only buy if it is less than

highest observed health among enemy Saboteurs

is_buy_goal(sabotageDevice) :- not is_disabled & money(M) & M >= 8 &

strength(Str) &

ia.getHigestObservedHealth(Required) &

Str < Required.

Chapter 8

Testing

In this chapter we go through the di�erent tests that we have put our multi-agent
system through to test the improvements.

8.1 Sentinel improvements

For testing the improvements on the sentinels we ran around 30 simulations.
From these a pattern will begin to show and we can evaluate on the results of
these simulations. In the simulations or program will �ght the original such
that we will see the actual improvement compared to the old one. Every time a
simulation has been executed a folder with statistics is created �lled with data
which we can use to analyse the simulation. Examples of these statistics can
be seen in the appendix with test runs. In reality we should run 1000, maybe
10000 simulations to make any real judgement on our system, but these are time
consuming and we could see the pattern early on and it was consistent.

46 Testing

8.2 Saboteur improvements

For the inspector improvements we have no way of testing their e�ciency since
we have no program that actually utilizes a buy strategy. If we where to test it
we should have had access to an implementation using an o�ensive buy strategy,
for example HactarV2 1, as it had a buy strategy for which we could have tested
our strategy's e�ectiveness.

1Bibliography item [2]

Chapter 9

Results

The results of our improvements does not show a substantial di�erence in the
programs overall performance since the improvements doesn't improve the pro-
gram in all ways but only increases the e�ciency of the sentinels. Another
improvement that we made was for the saboteurs but since our added buy
strategy for those depends on the enemy to buy health then it wont ave any
e�ect because the UFSCTeam2013 doesn't buy health.

The improved sentinels in JABARA are able to survey much faster than the
sentinels in UFSCTeam2013 - this can be seen in the two examples below and
on the test runs in the appendix. The improvement show itself much more if
there are a lot of edges, more than 600, if the map only consists of around
300 there are few way to improve the surveying since the map will be mostly
connected by single connections and dead ends. An example of our improvement
on a map with more than 600 edges can be seen in test run number 1 on �gure
9.1.

Here we can see that our improvement make it possible for JABARA to reach
the 640 edges surveyed achievement around 100 turns earlier than the UF-
SCTeam2013. Also in the beginning we get a small advantage since JABARA
get to some of the earlier achievement positions earlier. Now if the map has a
few edges we wont see such a great improvement since our algorithm wont have
a lot of edges to choose from and will therefore have a hard time improving itself

48 Results

Figure 9.1: Survey Achievement goals

since it is more or less forced to go in one direction. an example of this can be
seen in test run 4 on �gure 9.2.

In these cases it it more or less luck that determines which way will be the
best for the agents to go. we see that we are very equal in those instances,
so in case of a few edges our algorithm still works as well as the one used by
UFSCTeam2013. Some maps JABARA also makes it survey more of the map
than UFSCTeam2013 before turn 133 which is where it start giving other orders
than surveying. an example of this is test run 2 in �gure 9.3. In this �gure we
see that UFSCTeam2013 never reaches the 640 edges surveyed goal while our
JABARA does.

Finally as one can see in the test runs if there is a few edges it is equally dis-
tributed who wins (random), but at the maps with many edges, the gained
advantage by our increased knowledge about of edges makes JABARA win al-
most all the maps. There are still situations where UFSCTeam2013 win, but
there is a consistency that allows us to say that our algorithm has increased the
performance of the program.

49

Figure 9.2: Survey Achievement goals

Figure 9.3: Survey Achievement goals

50 Results

Chapter 10

Discussion

In this chapter we'll discuss the solutions and di�culties we've encountered
during this project.

10.1 The project

In the beginning of this project we wanted to make our own clean build of
smadasUFSC for the given scenario, but this quickly changed when we saw the
extent of knowledge we would need about Jason and time necessary to do that,
as well as knowledge of CArtAgO and Moise which is outside the scope of this
project. Therefore we chose to improve the already made program smadasUFSC.
With that decision came some other di�culties. Except from the suggestions
that were given by the MAPC-team there weren't many improvements that we
where able to �nd, and those we did �nd was not improvements that would
increase its general performance but rather make it able to fend o� di�erent
tactics. Because it was di�cult to �nd ways of improving it we used a lot of time
analysing and looking at the code trying to understand what it did and when.
With the understanding that it gave us, we came up with the improvements
mentioned in our Scenario analysis.

52 Discussion

10.2 The jason language

The Jason language was actually fairly simple, reminding us a lot about Prolog
which we worked with last semester. The biggest problem we had was that
there wasn't that many exercises to get familiar with Jason and we couldn't
�nd much in the internet most of the time it would just refer to the Jason
book which we had already. So with the little knowledge we had to started to
analyse the smadasUFSC Jason code. The only major problem we had with it
was the initial understanding of how it was connected together and how data
was transferred between them since it was a big program with a lot of methods
entangled into each other from di�erent �les. The use of Moise and CArtAgO
made it a little di�cult to know how they did some of the things in their code,
but thanks to their description we knew what they did.

10.3 Strategy

We believe that we have found the best ways of improving the strategy since
the scenario rewards the player that waits other that the player that initiates
when it comes to buying upgrades for your achievement points since every turn
with achievements points spend is a turn with less victory points. Our strategy
can be countered, but for it to happen the enemy would need a very speci�c
strategy (upgrading only one saboteur with health). But that is the case with
every strategy there is no strategy that cant be exploited with another, but one
can make a strategy that can beat the majority of the strategies and that is
what we believe we have made.

10.4 Possible extensions

If we where to further increase the performance of our program it would obvi-
ously be the the segregation of regions on the map. If this was implemented we
would not only be able to use it for our explorers but also enhance our current
solution for our improved sentinels, so that the sentinels would also be given a
region to survey. We believe that the region segregation would be bene�cial for
the sentinels because it might run into the same problem as the dummy sentinels
does. They may be surveying up into a corner and then have to move all the
way down to another section of the map before they can survey a new part of
the map, as well as remaining at a distance in which they will not interfere with
each other.

Chapter 11

Conclusion

Here we make a conclusion on our multi-agent system and on our project.

11.1 The project

In this project we believe that we have done an overall good job. We have
managed to structure our work hours in such a way that the workload was
spread out in the best way possible, though we did get a little stressed at the
end of it. Additionally we have learned a new language Jason and explained
the key features and used it to implement improvements into the smadasUFSC
program. This shows that we are able to summarize, understand and utilize
technical information. This would never have been accomplished if we where not
able to work with every phase of a project and where capable of acquiring new
knowledge in a relevant way to shine light upon problems that we met along the
way. Furthermore this report is a proof of our capability of conveying technical
information, theory and results in a written format as well as presenting it
visually and graphically.

54 Conclusion

11.2 The multi-agent system

Our improved smadasUFSC system which we named JABARA works. The
implemented new strategies for sentinels makes it a better system then the
previous since it is able to win in scenarios with a high number of edges and
make it a 1:1 win ratio in maps with low edge count. The improved saboteurs
should also work, but we didn't get to test them, since we did not have a
program to test it against in a series of simulations. We are a little sad that we
didn't have su�cient understanding of the program and language to make the
improved explorers and the region segregation, since we could have applied this
to the sentinels also to further improve the speed of the surveying being done
on the map.

Appendix A

Test run 1

In these test runs the original program is displayed by A (green) and our pro-
gram by B (blue)

56 Test run 1

57

58 Test run 1

59

60 Test run 1

Appendix B

Test run 2

In these test runs the original program is displayed by A (green) and our pro-
gram by B (blue)

62 Test run 2

63

64 Test run 2

65

66 Test run 2

Appendix C

Test run 3

In these test runs the original program is displayed by A (green) and our pro-
gram by B (blue)

68 Test run 3

69

70 Test run 3

71

72 Test run 3

Appendix D

Test run 4

In these test runs the original program is displayed by A (green) and our pro-
gram by B (blue)

74 Test run 4

75

76 Test run 4

77

78 Test run 4

Appendix E

Test run 5

In these test runs the original program is displayed by A (green) and our pro-
gram by B (blue)

80 Test run 5

81

82 Test run 5

83

84 Test run 5

Appendix F

Test run 6

In these test runs the original program is displayed by A (green) and our pro-
gram by B (blue)

86 Test run 6

87

88 Test run 6

89

90 Test run 6

Bibliography

[1] Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Program-
ming Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[2] Andreas Viktor Hess and Øyvind Grønland Woller. Multi-agent systems and
agent-oriented programming, 2013.

[3] Jomi F. Hübner Oliver Boissier, Rafael H. Bordini, Alessandro Ricci, and
Andrea Santi. The jacamo project, http://jacamo.sourceforge.net/.

[4] Federico Schlesinger Tobias Ahlbrecht, Jürgen Dix. Multi agent pro-
gramming contest scenario, https://multiagentcontest.org/downloads/
func-startdown/1663/.

[5] Maicon Rafael Zatelli, Daniela Maria Uez, Maiquel De Brito, Jomi Fred
Hübner, Tiago Luiz Schmitz, Kaio Siqueira De Souza, and Marcelo Menezes
Morato. Smadas: A team for mapc considering the organization and the en-
vironment as �rst-class abstractions. Lecture Notes in Computer Science (in-
cluding Subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes
in Bioinformatics), 8245:319�328, 2013.

http://jacamo.sourceforge.net/
https://multiagentcontest.org/downloads/func-startdown/1663/
https://multiagentcontest.org/downloads/func-startdown/1663/

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Project
	1.2 Learning objectives
	1.3 Motivation and goals
	1.4 Areas of responsibility

	2 Multi Agent Systems
	2.1 Agents
	2.2 Multi-agent systems

	3 BDI and The Jason Programming Language
	3.1 BDI - Belief, desire and intention
	3.2 Jason programming
	3.2.1 Belief base
	3.2.2 Goals
	3.2.3 Plans

	4 The multi-agent contest
	4.1 The scenario
	4.1.1 The ATPV's

	4.2 The MAPC system

	5 UFSCTeam2013 Analysis
	5.1 Start of simulation
	5.2 Step beginning
	5.3 Agent actions
	5.4 Tokens
	5.5 End of step
	5.6 Agent classes
	5.6.1 Saboteur
	5.6.2 Repairer
	5.6.3 Sentinel
	5.6.4 Explorer
	5.6.5 Inspector

	5.7 Description of non-agent classes
	5.8 Internal actions

	6 Analysis of the scenario and MAPC system
	6.1 Agent improvements
	6.1.1 Saboteurs
	6.1.2 Explorers
	6.1.3 Inspectors
	6.1.4 Sentinels
	6.1.5 Region segregation

	6.2 Strategies
	6.2.1 Buy strategy
	6.2.2 Offensive vs. defensive saboteurs

	7 The implementation
	7.1 Edge selection
	7.1.1 Java additions
	7.1.2 Internal actions
	7.1.3 Common survey rules
	7.1.4 Surveyall
	7.1.5 Edge selection implementation

	7.2 Buy strategy
	7.2.1 Java additions
	7.2.2 Internal actions
	7.2.3 Buy strategy implementation

	8 Testing
	8.1 Sentinel improvements
	8.2 Saboteur improvements

	9 Results
	10 Discussion
	10.1 The project
	10.2 The jason language
	10.3 Strategy
	10.4 Possible extensions

	11 Conclusion
	11.1 The project
	11.2 The multi-agent system

	A Test run 1
	B Test run 2
	C Test run 3
	D Test run 4
	E Test run 5
	F Test run 6
	Bibliography

