
Multi-Agent Programming in
Jason

Pawel Drozdowski s103460
Niels Beuschau s103471

Kongens Lyngby 2014
Compute-B.Sc.-2014

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk Compute-B.Sc.-2014

Summary (English)

The primary goal of this thesis was to gain extensive knowledge about multi-
agent programming - the underlying models and theory, as well as applications in
practice. The main point of interest was the Jason programming platform, which
is used in practice for multi-agent system implementations. The focus was put on
a system developed for the multi-agent programming contest by the UFSC team
from Federal University of Santa Catarina in Brazil. The main objectives were
to analyse that system, identify possible improvements and implement them.
After that was accomplished, series of quantifiable tests against the original
version of the system were performed, in order to establish the effects of the
changes. The tests showed a significant improvement in the specific parameters,
which were aimed to be enhanced. Moreover, a measurable positive change in
the overall system performance was seen.

ii

Summary (Danish)

Det grundlæggende mål for denne afhandling var at opnå bred viden indenfor
multiagentprogrammering - de underliggende modeller, teori, praktiske anven-
delser, samt at analysere forbedringsmuligheder. Specielt interessant var Jason
programmeringsplatformen, som benyttes til udvikling af multiagent systemer
i praksis. Fokus var lagt på et system lavet til en multiagentprogrammerings
konkurrence af holdet UFSC fra Federal University of Santa Catarina i Brazili-
en. Hovedmålet var at analysere dette system, identificere mulige forbedringer
og implementere disse. Dette opdaterede system blev efterfølgende testet mod
det oprindelige system for at vurdere effekten af de implementerede ændringer.
Resultaterne viste betydelige forbedringer i de specifikke parametre, der var ar-
bejdet på, samt en generel positiv indflydelse på systemets samlede ydeevne.

iv

Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the re-
quirements for acquiring a B.Sc. in Software Technology.

The thesis deals with multi-agent programming, the Jason platform, the multi-
agent programming contest and the system developed by its winners - the UFSC
team from Federal University of Santa Catarina in Brazil.

Lyngby, 01-July-2014

Pawel Drozdowski s103460 Niels Beuschau s103471

vi

Acknowledgements

We would like to thank our supervisor Jørgen Villadsen for the guidance and
help throughout the course of this project. We are also grateful to the entire
UFSC team from Federal University of Santa Catarina in Brazil for allowing
us to work with their system, and especially to Jomi Fred Hübner and Maicon
Rafael Zatelli from that team for providing us with suggestions and advice for
our work with the aforementioned system.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Learning objectives and report structure 1
1.2 Artificial intelligence - a historic perspective 2

2 Multi-agent programming 5
2.1 Agent - definition . 6
2.2 The BDI model . 6

2.2.1 Beliefs . 7
2.2.2 Desires . 7
2.2.3 Intentions . 7

2.3 Environments . 7
2.4 Communication . 8

3 Multi-agent programming contest 9
3.1 Scenario . 9

3.1.1 Agents and actions . 11
3.1.2 Controlling vertices . 13
3.1.3 Score . 14
3.1.4 The simulation . 14

3.2 Future contests . 15

x CONTENTS

4 Jason 17
4.1 Jason basics . 17

4.1.1 Beliefs and rules . 18
4.1.2 Goals and plans . 18
4.1.3 Agent communication . 20

4.2 Jason interpreter . 20
4.2.1 Reasoning cycle . 21
4.2.2 Interpreter modifications 23

4.3 JaCaMo . 24
4.4 Jason IDE . 25

5 The UFSC system 27
5.1 Plan selection . 27
5.2 Discovering the map structure and rival team 28

5.2.1 Surveying . 28
5.2.2 Probing . 28
5.2.3 Inspecting enemies . 28

5.3 Other strategies . 29

6 Changing the UFSC system 31
6.1 Surveying . 31
6.2 Inspecting . 33
6.3 Exploring . 35
6.4 Miscellaneous . 37

6.4.1 Reaching higher inspect achievements 37
6.4.2 Reducing the number of inspect actions 37
6.4.3 Purchasing upgrades . 39

7 Testing the changed system 41
7.1 Testing process . 41
7.2 Simulation statistics . 42
7.3 Test results . 43

7.3.1 The base results . 43
7.3.2 Sentinel . 44
7.3.3 Inspector . 46
7.3.4 Explorer . 47
7.3.5 Upgrades . 47
7.3.6 Final results . 48

8 Discussion 51
8.1 Pseudocode . 51
8.2 Number of simulations and result reliability 52
8.3 Test results . 53

8.3.1 Choosing best configurations for the strategies 53

CONTENTS xi

8.3.2 The overall results . 54
8.4 Experiences working with Jason and UFSC system 55

8.4.1 Jason . 55
8.4.2 UFSC system . 56

9 Future perspectives 57
9.1 MAPC and the UFSC system . 57
9.2 AI and multi-agent systems . 59

10 Conclusions 63
10.1 The project . 63
10.2 The implementations and test results 64

A UFSC Code 65
A.1 Sentinel . 65
A.2 Inspector . 70
A.3 Explorer . 74
A.4 Common rules . 83
A.5 New step . 87
A.6 Graph . 90

B Changes to the UFSC code 101
B.1 Sentinel . 101
B.2 Inspector . 106
B.3 Explorer . 113
B.4 Other . 126

C Test results 127
C.1 Sentinel . 127
C.2 Inspector . 130
C.3 Explorer . 134
C.4 Buying strategies . 136
C.5 Final system . 137

D Other code files 145
D.1 Parser for raw statistics text files 145
D.2 Parser for agent simulation logs 156
D.3 R statistics script . 159
D.4 Script for starting simulations . 166

Bibliography 167

xii CONTENTS

Chapter 1

Introduction

In this chapter, the main goals and the structure of this project are described.
Furthermore, the section of computer science called ’artificial intelligence’ is
introduced.

1.1 Learning objectives and report structure

This projects aim is to obtain a deep insight into the world of artificial intelli-
gence and, more specifically, multi-agent systems. The goal here is to understand
the underlying theoretical models, as well as gain experience with practical im-
plementations. Work will be carried out with the Jason programming platform
and the multi-agent programming contest in order to achieve these objectives.
The system developed by the winners of this contest will be examined. Once
the inner workings of that system have been grasped, alterations will be made
to some of the strategies it employs; new strategies will be developed as well.
The ambition here is to increase the systems overall performance. A rigorous
testing process will be used in order to assess the quality of the changes. Nat-
urally, at the end of the report, perspectives and conclusions about the results
and multi-agent systems in general will be presented and discussed.

Chapters 2 and 4 introduce the basic theory behind multi-agent systems and the

2 Introduction

Jason platform, while chapter 3 outlines the multi-agent programming contest.
Chapters 5 and 6 explain how the UFSC system works and what strategies it
employs, as well as the details and reasoning behind the implemented changes.
Chapter 7 contains the specifics of the testing process, along with its results.
Chapter 8 is devoted to discussing the results, multi-agent systems, our experi-
ences throughout the course of the project and more. Finally, chapter 9 gives a
broad perspective view upon the project and artificial intelligence/multi-agent
systems in general, while chapter 10 provides concluding remarks for this thesis.

1.2 Artificial intelligence - a historic perspective

The term ’artificial intelligence’ (AI) was first used in the 1950s, describing it
as ’the science and engineering of making intelligent machines’. Since then,
research has been conducted consistently, resulting in a significant optimism,
development and growth of this part of computer science; although, several
severe stagnation and disillusionment periods have occurred as well.

An assertion stating that creating a machine with general intelligence, i.e.
human-like intelligence, is feasible, is often considered the basis of early AI re-
search. An excerpt from the Dartmouth Conference proposal from 1955 states:

"The study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle
be so precisely described that a machine can be made to simulate
it." [SMRM55]

The Dartmouth Conference participants discussed many of the central questions
and aspects of AI. The premise and proceedings of this conference are considered
to have laid basic foundations for AI as a field within computer science.

Today, over half a century since the aforementioned conference, an artificial
general intelligence (AGI), also referred to as ’strong AI’, is, yet to be created.
Regardless, specific applications of ’weak AI’ in systems are nowadays commonly
used for a wide range of problem solving purposes.

The ongoing research within artificial intelligence has spawned a substantial
number of approaches and paradigms for solving specific problems and in the
end, ideally, achieving the ultimate goal of creating the AGI. On the other
hand, a multitude of questions of philosophical and ethical nature have come
up. These, along with a precise description of AI research history and advances,

1.2 Artificial intelligence - a historic perspective 3

are all beyond the scope of this thesis. This thesis pertains to a general field
called the agent-oriented programming (AOP) [Sho93] and more specifically –
multi-agent programming (MAP).

4 Introduction

Chapter 2

Multi-agent programming

This chapter introduces the basic theory behind multi-agent systems (MAS).
A multi-agent system is defined to contain a number of agents (see section 2.1)
placed in an environment (see section 2.3). These agents are able to communi-
cate (see section 2.4), interact with each other and perform actions that affect
and/or change the environment.

Figure 2.1: Structure of a multi-agent system (from [Jen00]).

6 Multi-agent programming

2.1 Agent - definition

For purposes of this thesis, a precise definition of the term ’Agent’ is indispens-
able. The continuous usage of this term in various contexts inside and outside
of the AI field has caused the term to become ambiguous at best. In this case,
an agent must be a software based entity, placed in a simulated, virtual environ-
ment, preferably along with other agents. An agent must also have the following
properties, as defined by Michael Wooldridge, in [Woo95]:

Autonomy
It is not necessary for humans to monitor the agent; it carries out its
actions and makes decisions independently.

Social ability
The agent is capable of communicating and interacting with other agents
and/or humans.

Reactivity
The agent is capable of perceiving its environment and reacting to the
changes and events taking place in it.

Pro-activeness
Instead of merely passively reacting to events (see previous item in the
list), the agent can initiate actions by itself and thus actively pursue any
number of goals.

Additionally, to make the definition of an agent stronger, it shall be extended
by using one of the many existing models for expressing mentalistic notions.

2.2 The BDI model

The Belief-Desire-Intention (BDI) [RG91, RG95] was chosen as the underlying
model for the agents in this thesis. Initially, the model was developed to de-
scribe parts of human behaviour 1; however, its main parts have quickly become
adopted for work with rational agents within software.

1In 1987, under the name "Intention, Plans, and Practical Reason" [Bra87] by Michael
Bratman, a philosophy professor at the Stanford University.

2.3 Environments 7

2.2.1 Beliefs

An agent has a set of beliefs about itself, the environment it is placed in, about
other agents and anything else of relevance. The agent can be given in code a set
of initial beliefs by the programmer. The possible ways of obtaining more beliefs
during runtime are twofold: by perceiving the environment and by receiving
information from other agents. It is important to note, that the beliefs an
agent holds are not necessarily true; for example, the agents perception may
be faulty or a piece of information another agent has sent may be wrong -
either voluntarily (a malicious agent) or involuntarily (the agent had wrong
information, but believed it to be true).

2.2.2 Desires

The desires represent the goals (i.e. the states of matters) an agent would like
to achieve. The desires do not have to be mutually exclusive; the agent may
wish for conflicting, or even outright opposite outcomes. In essence, having a
desire only means that it will have an influence on the agents decisions and not
that an agent has decided to actively work towards achieving it. The desires
can be given to the agent initially by the programmer or later obtained by the
agent itself.

2.2.3 Intentions

The set of intentions consists of goals an agent is currently working on to achieve.
In other words, the intentions represent what the agent has decided to commit
to do. The intentions are created by an agent deciding to act upon its desires.

2.3 Environments

The agents are usually placed in an environment of some sort. It can be a
real world, physical application, such as automated manufacturing, sorting or
packaging plants; a slightly more abstract, but still real application, such as
the Internet; or finally, a completely virtual one - simply a simulation. Despite
the immense diversity of possible environments, there are a few key similarities,
which apply to them all in agent-environment relations. The agents are capa-
ble of performing actions and changing the state of the environment in some,

8 Multi-agent programming

most often limited, way. The agents desires are usually associated with the
environment. Thus, an agent will typically commit to a course of action which
will (hopefully) bring about a desirable state of the environment. Since in the
MAS, as the name implies, multiple agents are placed in the same environment,
their respective actions may counteract or assist each other. That is why coop-
eration and communication between agents are extremely important aspects of
multi-agent systems.

2.4 Communication

Agent communication languages such as KQML (Knowledge Query and Ma-
nipulation Language) 2 and FIPA (proposed by the Foundation for Intelligent
Physical Agents) 3 enable the agents to communicate with each other by ex-
changing messages with a predefined format. The messages can be used for
information sharing, requesting actions, declaring intentions and commitments.
The messages usually include following elements:

• the intended receiver(s)

• the message type (a request, an information etc.)

• the message contents

The subsection 4.1.3 describes how the agent communication is implemented on
the Jason platform.

2http://www.csee.umbc.edu/csee/research/kqml/
3http://www.fipa.org/repository/aclspecs.html

http://www.csee.umbc.edu/csee/research/kqml/
http://www.fipa.org/repository/aclspecs.html

Chapter 3

Multi-agent programming
contest

The Multi-Agent Programming Contest (MAPC) 1 has since 2005 provided
an opportunity for teams from around the world to develop complex multi-
agent systems and to test their performance against each other in a beforehand
specified, competitive scenario.

3.1 Scenario

The current contest scenario is entitled ’Agents on Mars’. The area the compe-
tition takes place in is represented as a weighted graph. Each vertex represents
a water well, where the weight of the vertex determines how good the water
source is. The edges between the vertices are weighted as well - they represent
the cost of travelling between the two vertices. The graphical interface of the
contest platform can be seen in figure 3.1.

Two teams are set to compete against each other in achieving the highest score
possible. For details on how the scores are calculated, see subsection 3.1.3.

1https://multiagentcontest.org/

https://multiagentcontest.org/

10 Multi-agent programming contest

When the game begins, the teams posses no knowledge of the graph or the
opposing team. The structure of the graph, as well as all values of vertices and
edges have to be discovered; the same applies to the specifics of the opponent
agents.

Figure 3.1: The graphical interface for the contest.

3.1 Scenario 11

3.1.1 Agents and actions

A team consists of 28 agents. There are 5 agent types with unique features:

Agent Energy Health Strength Visibility Available actions

Explorer 12 4 0 2 skip, goto, probe,
buy, survey, recharge

Inspector 8 6 0 1 skip, goto, inspect,
buy, survey, recharge

Saboteur 7 3 4 1
skip, goto, parry,
buy, survey, attack,
recharge

Repairer 8 6 0 1
skip, goto, parry,
buy, survey, repair,
recharge

Sentinel 10 1 0 3 skip, goto, parry, buy,
survey, recharge

Table 3.1: Agents and their attributes.

Both teams start with 6 agents of every type, except for saboteurs, of which
there are 4. The agents have following attributes:

Energy
Necessary for being able to perform most actions.

Health
Used to endure attacks; when fully depleted, an agent becomes disabled.

Strength
Defines how powerful an attack of the agent is (only applicable to sabo-
teurs).

Visibility range
Defines how large the field of view of the agent is. It is also used when
calculating the chance of success and effect of ranged actions.

The action functions are as follows:

Skip
As the name implies, simply skips the turn; doing nothing.

Recharge
Replenishes some of the agents energy.

12 Multi-agent programming contest

Goto
Moves the agent to a chosen neighbouring vertex. The energy cost equals
the value of the traversed edge.

Probe
Used to discover the value of a given vertex. Costs 1 energy point to use.

Survey
Reveals weights of edges close to the agent 2. Costs 1 energy point to use.

Inspect
Used to obtain knowledge about the attributes of a rival agent. Costs 2
energy points to use.

Attack
Attacks a chosen rival agent. Costs 2 energy points to use.

Parry
Defends the agent against an enemy attack. Costs 2 energy points to use.

Repair
Restores health of a friendly agent; it is not possible for an agent to repair
itself, though. Costs 2 energy points to use. If the agent is disabled, then
the energy cost is 3 points.

Buy
Allows to purchase upgrades for the agents attributes. Costs 2 energy
points and 2 achievement points to use.

Skip and recharge actions do not cost anything to use. If an agent becomes
disabled, it loses ability to perform most actions until it is reactivated by a
repairer agent. The actions available to a disabled agent are: skip, recharge
(albeit with a reduced effect), goto and repair 3.
Some actions are ranged, i.e. the target does not need to be on the same
vertex as the agent performing the action. However, as the range from the
agent increases, the actions failure probability grows, while the effects decline.
The ranged actions are: probe, inspect, attack and repair. In addition to failure
possibility due to range, any action can fail with 1% probability.

2Depending on the visibility range attribute, the chance of revealing more edges further
away from the agents position is increased.

3Repairer agents only.

3.1 Scenario 13

3.1.2 Controlling vertices

Control over vertices is determined by the ’graph colouring algorithm’ incorpo-
rated in the scenario - see figure 3.2 a), b) and c). The algorithm proceeds as
follows, considering only agents that are not disabled:

1. The control over vertices with agents on them is distributed. A vertex is
under control, if one of the teams has placed a larger number of agents than
the opposing team on it; in case of equality, the vertex remains unclaimed.

2. The control is extended to empty vertices which have at least two neigh-
bouring vertices already under control by a team. In case of an empty
vertex being a neighbour to vertices controlled by both teams, the control
is granted to the team with the larger number of these.

3. If the vertices controlled by one of the teams create an enclosed area of
the graph without rival agents inside, then control over this entire area
(called a ’zone’ or a ’frontier’) is granted to that team.

4. If none of the above applies to a vertex, it remains unclaimed.

Figure 3.2: The ’graph colouring algorithm’ (from [DKS13]).

14 Multi-agent programming contest

Controlling frontiers may be challenging. Figure 3.2 d) shows such a situation.
The green team no longer encloses a sub-graph without any rival agents inside,
as one of the red agents has placed itself very cleverly and thus ’broken’ the
frontier.

3.1.3 Score

Two factors contribute to a teams score - the controlled zones and the money
holdings. The final score is calculated by summing the values of these two factors
for each turn of the simulation. The mathematical representation of the score
formula looks as follows (from [DKS13]):

score =

steps∑
s=1

(zoness +moneys) (3.1)

Money is earned by completing pre-specified achievements. These achievements
include surveying and exploring the map, inspecting enemy agents, successful at-
tacks, successful parrying, and more. For a complete list of the available achieve-
ments, the reader is referred to the scenario specification [DKS13]. Money can
be used to buy upgrades for the agents, or saved in order to contribute to the
teams score.

3.1.4 The simulation

The simulation is turn based and handled by a dedicated server. A simulation
consists of 750 steps/turns. The opposing teams connect to the server and
for each turn are obligated, in a timely manner, to upload the actions their
agents decided to perform. The server then processes the actions and sends the
updated state of the environment, in form of agent percepts, back to the teams.
Formally, the algorithm for each turn proceeds as follows (defined in [DKS13]):

1. Receive the action choices from all agents.

2. Apply the random failure chance to each action.

3. The attack and parry actions are executed.

4. Find out which agents have become disabled.

3.2 Future contests 15

5. All remaining actions are executed.

6. The percepts are prepared.

7. The percepts are delivered to the agents.

Starting a simulation requires opening several terminal emulator windows in
separate directories and invoking appropriate commands to run the server, GUI
(optional) and both teams. A simple shell script has been written by us, in
order to automate this process (see appendix D.4).

3.2 Future contests

In a recent announcement, a brand new scenario for the future contests has been
unveiled. As of this writing, little is known about it - other than that it shall
be entitled ’Policemen and Robbers’ and take place in a fictional urban envi-
ronment. The scenarios début is planned for the 2015 multi-agent programming
contest, while the 2014 contest will only be held for entertainment purposes and
use the ’Agents on Mars’ scenario, with only very small changes.

16 Multi-agent programming contest

Chapter 4

Jason

This chapter provides a brief introduction to the Jason programming language,
along with the platform it operates on.
Jason is used for programming rational agents and multi-agent systems. Systems
developed for the multi-agent programming contest (see chapter 3) in Jason
have participated on numerous occasions and won the competition twice in the
’Agents on Mars’ scenario, in 2012 and 2013 [BJV10, HB10, ZBS+13].
Jason uses a Java-based interpreter for an implementation and extension of the
Agent Speak(L) abstract agent programming language, which was introduced in
1996 by Anand S. Rao [Rao96]. AgentSpeak(L) is based on logic-programming
and the BDI architecture.
The recurring work of reference for descriptions given in this chapter is the
book [BHW07].

4.1 Jason basics

The basis of any Jason project is a .mas2j configuration file, which specifies the
infrastructure, environment, participating agents, graphical user interface and
other settings pertaining to the given project. While some components, such as
the GUI are optional, a project has to include the agents, whose code is written

18 Jason

in the Jason programming language itself, often supported by code written in
Java. The Jason code consists of the agents initial beliefs, rules, goals and plans.

4.1.1 Beliefs and rules

The beliefs are represented by Prolog-like facts, for example: capital(Denmark,
Copenhagen) or animal(cat). The rules are predicate expressions used to describe
a relationship among facts by using logical implication (:-) 1.

1 student (N) :− at tends_un ive r s i ty (N) & owns (N, books) &
2 has (N, beer) .
3 a f f o r d ab l e (I ,P) :− P < 50 .

Listing 4.1: Example rules.

i.e. N is a student, if he/she attends university, owns some books and has beer.
Item I is affordable if its price P is less than 50.

4.1.2 Goals and plans

The goals, initially given to the agent by the programmer, are present in the
code. The agent may later on adopt or be delegated new goals, but these do
not appear in the code.
The plans represent the possible courses of action an agent may undertake in
response to an event or in order to achieve a goal. The plans intend to pre-
pare the agent for the situations it may find itself in. In a simulated scenario,
such as the multi-agent programming contest, the number of possible events is
finite and thus the agents can be programmed precisely. An agent can only
operate and solve problems within its capabilities, as defined by the plans. The
agents can, in fact, exchange knowledge about plans between each other; how-
ever, ultimately, the scope of the plans available to a collection of agents in an
environment consists of plans supplied by the programmer. This is the main
limitation and a principal problem with constructing multi-agent systems for the
truly complicated practical applications which are inherently non-deterministic
and the possible number of events and contexts is infinite.

1http://www.cs.trincoll.edu/~ram/cpsc352/notes/prolog/factsrules.html

http://www.cs.trincoll.edu/~ram/cpsc352/notes/prolog/factsrules.html

4.1 Jason basics 19

1 +!no_money : has (job ,Me) <− +work_more .
2 +!no_money : not has (job ,Me) <− ! ! f ind_job ; ! ! do_budget .
3 −!no_money : t rue <− +panic ; ! c a l l (parents) .
4 +! f ind_job : t rue <− ! ! search_jobs ; ! write_CV ; ! apply .
5 +!do_budget : t rue <− ? spendings (Me, S) ; +reduce (S) .

Listing 4.2: Example plans.

A plan consists of following components:

• The triggering event (when is the plan relevant?)

• The context (in which situations is the plan applicable?)

• The contents (what to do when the plan is employed?)

In the listing 4.2, there are three plans for the lack of money situation, a plan on
how to find a job and a plan on how to make a budget. Suppose a +no_money
event occurs; there are two plans relevant for handling it (the first two plans in
the listing). The context defines in which situations a given plan is applicable,
e.g. the first plan is only when the agent has a job, while the second plan only
if it does not have one. The plans where context is ’true’ are applicable in any
situation (as long as they also are relevant in the first place).
The contents of the plan (the part after the <-) consist of steps required for
completing the given plan. So, in the first example, the recipe for solving the
lack of money situation is to add a mental note to work more, while the second
plan calls for employing additional plans - to find a job and to create a bud-
get. Finding a job and creating a budget may in turn require additional actions
and/or plans to be employed. For instance, finding a job will require browsing
through available offers and writing a CV (not necessarily one after another;
these tasks are compatible as side-by-side intentions). Only when these tasks
are finished, the application process may begin.
The ?spendings(Me, S) is a test goal, which retrieves desired information from
the belief base - in this case, the figure for the spendings, S. Subsequently, a
mental note of reducing the S value is added to the belief base with the +re-
duce(S) event.
Finally, -!no_money plan is a failure handler; in case the other plans for that
event fail, it is used. In this example, the failure handler calls for the agent
to employ a dubious strategy of panicking and calling its parents to resolve its
financial problems.

An advantage of the Java implementation is that certain tasks do not have

20 Jason

to be handled by the AgentSpeak(L) based architecture, but can instead be del-
egated to be resolved with Java code. This feature allows to make use of Java
and object-oriented programming to implement parts of system, which AgentS-
peak(L) is not well equipped for. This includes, but is not limited to the inter-
preter, environments, graphical user interfaces, more complex algorithms (such
as Dijkstra) and the agents internal actions. Jason includes a number of built-in
standard actions for the most common purposes, such as communication be-
tween the agents, list and string manipulation, plan library manipulation, BDI,
term type identification, as well as some miscellaneous ones. It is also possible
for the programmers to write internal actions of their own.

4.1.3 Agent communication

The agents communicate with each other by using .send and .broadcast internal
actions. Both actions contain as parameters the illocutionary force and some
content, such as a string or a literal. The .send action must also include the
intended receiver, while the .broadcast action simply sends the message to all
agents in the environment. The illocutionary force defines the objective of the
message. Jason allows for a number of possibilities, as listed below (the illocu-
tionary forces are written with bold text).

Tell and Untell are used to share and remove beliefs, respectively.
Achieve and Unachieve delegate and ask to abandon goals, respectively.
AskOne provides a statement in the messages content and expects the receiver
to reply as to whether it is true or false, according to the receivers belief base.
AskAll inquires for all answers a receiver can provide to a given statement.
TellHow shares a plan with the receiver, while UntellHow asks for a plan to
be ignored. Finally, AskHow inquires for plans suitable for handling a given
event.

4.2 Jason interpreter

The Jason interpreter is implemented in Java. Advantages thereof are twofold:
it makes it possible to use Jason on any operating system/platform and also
makes it easier to understand and modify the interpreters code.

4.2 Jason interpreter 21

4.2.1 Reasoning cycle

The agents repeatedly undergo a reasoning cycle, in which beliefs are updated
and considerations for further actions are made. The cycle broken down into
principal steps looks as follows (as listed in [BHW07]):

1. Perception
The process of collecting the available information about the environment.

2. Belief update
The old perceptual information gets deleted and the new data (from step
1) is added to the belief base.

3. Receiving communication
Checks the agents ’mailbox’ for incoming messages.

4. Selecting acceptable messages
The process of making decisions on whether or not the messages are ’so-
cially acceptable’, for example based on the level of trustworthiness of the
sender. By default, however, all messages are accepted.

5. Selecting an event
The process of choosing an event, such as a change in the environment,
which is to be handled in the current reasoning cycle. One event is chosen
in every cycle.

6. Retrieving relevant plans
The process of looking through the plan base in order to find plans relevant
to the event chosen in step 5.

7. Determining the applicable plans
From the set of relevant plans found in step 6, only plans applicable to
the current situation and/or the state of the environment are found.

8. Selecting one applicable plan
One of the applicable plans found in step 7 is selected using the selection
function (see description 4.2.2).

9. Selecting an intention for further execution
From the set of intentions, which is merely a stack of partially instantiated
plans, one intention is chosen for the current cycle.

10. Executing one step of an intention
One action from the chosen intention is executed.

22 Jason

Figure 4.1: The Jason Interpreter (from [BHW07]).

4.2 Jason interpreter 23

4.2.2 Interpreter modifications

The figure 4.1 visualizes the steps listed in description 4.2.1 and provides a
’whole picture’ abstract graphical view of the interpreter. It is important to
note, that the interpreter is implemented in such a way that allows numerous
customizations by the programmer. Below is a list of the interpreter parts which
can be altered, with some examples of possible and common changes (as shown
in [BHW07]):

Perception
It is possible to change the way an agent perceives its environment. For
example, by simulating faulty percepts or limiting the number of perceived
elements/parts of the environment.

Belief update and revision
It is possible to change how the percepts are added to the belief base and
how the beliefs in the base are revised. For example, some beliefs may be
discarded based on certain criteria, the base may or may not be allowed
to hold conflicting beliefs, or the frequency of belief base revision may be
changed.

Communication
It is possible to change all functions related to agent communication.
For example, messages may be prioritized by their importance, messages
from certain agents can be discarded, messages can be deemed socially
(un)acceptable based on arbitrarily specified factors, or the agent may be
disallowed to communicate with certain agents, or its communication op-
tions could be impaired, e.g. by only allowing certain message types to be
sent.

Selecting events, plans and intentions
It is possible to change functions concerning selection of events and inten-
tions. For example, events can be prioritized arbitrarily or even ignored
completely. By default, if given several applicable plans, the interpreter
chooses one based solely on its location in the code (i.e. first one gets
picked). For some applications it could be beneficial to employ additional
considerations in such situation. Intentions can be prioritized, similarly
to events. Also, commitment to intentions can be simulated; for example,
the agent could be forced to pick the same intention in every cycle, until
that intention has been brought to completion.

It should now be clear that the Jason interpreter gives vast possibilities for highly
customized and specialized agents in multi-agent systems. Making changes to

24 Jason

the specific parts of the interpreter is fairly straightforward. The whole pro-
cess consists of creating a Java class, which extends the default version and
then overriding the unwanted standard procedures or implementing additional
functions.

4.3 JaCaMo

Multi-agent programming paradigm consists of four distinct dimensions, as de-
fined in [BBH+13]:

• Agent-oriented programming languages

• Interaction languages and protocols

• Environment architectures, frameworks and infrastructures

• Organisation management systems

Plenty platforms based on each of these dimensions exist, however, systems com-
prising multiple or all of them are scarce. JaCaMo puts three projects together:
Jason, CArtAgO and Moise+, effectively covering three of the four dimensions
(agents, environments and organisation). Incorporating the interaction dimen-
sion, which is currently handled by Jason communication features (see subsec-
tion 4.1.3), is being worked on by the developers of the JaCaMo platform.
CArtAgo [RPVO09] is designed for programming environments and artefacts,
while Moise+ [HSB07] is used for programming organisations. Since the agents
in MAS almost always are situated in different sorts of environments and of-
ten are organized in some way (teams, sub-teams, missions/goals), the unified
platform provides extremely valuable resources; programming a complicated
environment in a general purpose, object-oriented language (such as Java for
the Jason platform alone) or a sophisticated organisation in an agent-oriented
language (such as Jason) is, at best, cumbersome. The multi-agent system de-
scribed in chapter 5 is written using JaCaMo. However, as the main subject of
this thesis is programming using Jason alone, going into details about Moise+

and CArtAgO is refrained from.

4.4 Jason IDE 25

4.4 Jason IDE

A Jason distribution comes with its own integrated development environment
(see figure 4.2), which is implemented in jEdit 2; a plug-in for Eclipse 3 is also
available. These come with all tools necessary for creating multi-agent systems,
agents themselves and simple environments. An extremely useful tool is the
mind inspector (see figure 4.3), which is used for debugging; it allows to run
agents cycle by cycle and to check their mental states at any given time during
execution. The mental state encompasses the agents current beliefs, desires,
intentions, rules, plans and mailbox.

Figure 4.2: The Jason IDE.

2http://sourceforge.net/projects/jason/files/
3http://jason.sourceforge.net/eclipseplugin/juno/

http://sourceforge.net/projects/jason/files/
http://jason.sourceforge.net/eclipseplugin/juno/

26 Jason

Figure 4.3: The Jason mind inspector.

Chapter 5

The UFSC system

In this chapter, the strategies employed by the UFSC team and its agents are
outlined. The descriptions consist of our own analysis of the code and contest
scenario, supported by the information from UFSC teams article published after
the multi-agent programming contest. In this article, some of the thoughts and
considerations behind the system are conveyed [ZBS+13].

5.1 Plan selection

An important matter to address first, is how the agents choose the plans in
each step of the simulation. In the UFSC system, the selection of action plans
is somewhat simplified. All such plans are relevant, since the triggering event
for them all is the same: +select_goal. The decision is solely dependent on
the applicability of the plans, as defined by the specified rules (see listing 4.1
for examples of rules). Often, more than one plan will be applicable. In such
cases, it is possible to write a user-defined selection function and prioritize plans.
However, in the UFSC system, a neat solution was employed - simply coding
the plans in the order of their priority, knowing that the default action of the
Jason interpreter in cases of multiple applicable plans is to pick the one situated
earliest in the source code.

28 The UFSC system

5.2 Discovering the map structure and rival team

In the beginning of each round, the agents posses no knowledge of the map.
Therefore, they have to discover the values of vertices and edges as a team.
Furthermore, the agents have to obtain information about rival agents to begin
with, since they are not given any details about agent types and their attributes
(health, strength etc.).

5.2.1 Surveying

Surveying the edges between the vertices is very important in the beginning of
each contest round. Every agent has the capability to perform the survey action;
however, depending on the agent type, the contribution differs. The explorers
do not survey at all, since they are committed to another crucial task, which
is probing the vertex values. All other agents can choose to survey if they do
not have anything more important to do. Generally, the survey action has a
low to middle priority amongst the agents. Additionally, no agent type has an
actual commitment to surveying the map, which is hence performed in an ad
hoc manner.

5.2.2 Probing

The explorers are the only agents capable of probing and it is therefore their
duty to discover the values of all vertices as soon as possible. It is essential to do
so, in order to calculate the best zones to conquer and to receive full points for
the controlled vertices. Four explorers are allowed to wander around, with focus
on actively seeking out unprobed vertices and uncovering their values, while the
remaining two have a special assignment, which is probing the already controlled
zones, in order to start receiving full points for these zones quickly. From the
organizational point of view, the Moise+ specification obliges the explorers to
commit to the mission of probing all vertices in the graph (see section 3.1).

5.2.3 Inspecting enemies

The only agents capable of inspecting enemies are the inspectors. Any non-
inspected rival agent is considered dangerous (same as a known saboteur), which
disrupts allied agents, as they will typically parry or run from such an agent,

5.3 Other strategies 29

sometimes unnecessarily. Additionally, the UFSC teams saboteurs have a pref-
erence in choosing the targets based on their type. Thus, it is vital that enemy
agents get inspected as quickly as possible, so that the saboteurs can harass
the correct enemies and so that the rest of the teams agents know whether a
nearby rival agent endangers them or not. According to the UFSC team, the
strategy is to inspect each agent only once, mostly in order to determine the
agent type. The UFSC team has decided not to concern itself with possible
upgrades purchased by the enemies after they have been inspected. The UFSC
teams inspectors will typically perform the inspect action when they are stand-
ing on the same vertex as an uninspected enemy. They may also semi-actively
pursue targets to inspect; for example, if an enemy agent comes into the inspec-
tors field of view, it may decide to go towards the agent and inspect it when
possible. The UFSC team uses a CArTagO artefact, which keeps track of the
inspected agents. From the organizational point of view, the Moise+ specifica-
tion additionally obliges the inspectors to commit to a mission of discovering all
rival saboteurs.

5.3 Other strategies

The UFSC team employs a number of other strategies for a range of purposes.
The preceding sections described the strategies relevant to the work carried out
during this project (implementing changes in these strategies and creating new
ones). This section provides a quick overview of the most important of the
remaining strategies.

Attacking
The saboteur agents never use the parry action; they attack enemy agents
regardless of the risk to themselves. They prioritize targets in the following
order (most important first): saboteurs, explorers, inspectors, repairers,
sentinels. The saboteurs are also organized with separate roles: the ’leader’
and ’helper’ tend to stay close to own zones and defend them, while a
’chaser’ saboteur tends to go around harassing enemies.

Repairing
The ’repairer leader’ agent coordinates the entire process. A disabled
agent has to contact the ’repairer leader’, who then delegates the task of
repairing this agent to the nearest repairer agent. After that is done, the
chosen repairer and the disabled agent start to move towards each other.

30 The UFSC system

Buying upgrades
The UFSC team does not use the possibility of purchasing upgrades for
its agents at all.

Controlling map zones
The UFSC team distinguishes between three types of zones: islands (zones
that can be controlled by one agent), pivots (zones that can be controlled
by two agents) and hills (zones requiring more agents to control). The
agents employ sophisticated calculations and communication protocols in
order to take and maintain control of the best zones possible. The UFSC
team generally concentrates on controlling small, high value zones that
are easier to protect, apart from the beginning of the simulation, where
not all vertices have been probed and the hills are more profitable.

For more details about all these strategies, the reader is referred to the UFSC
systems code and the article in which the UFSC team itself describes the im-
plementations [HZB+13, ZBS+13].

Chapter 6

Changing the UFSC system

This chapter describes the alterations made to the UFSC system, as well as the
reasoning behind them. Furthermore, implementation details of these changes
are discussed. The first three sections (6.1, 6.2, 6.3) consist of changes whose
implementation marks the minimal goal of this thesis, while the section 6.4
describes additional implementations. The statistical results of the implemen-
tations performance in tests are shown in chapter 7.

6.1 Surveying

In the preceding chapters, it has been established that quickly gaining knowledge
of the graph is extremely important. Doing so benefits the team as a whole,
since the agents ought to be able to use the shortest paths between vertices
in the graph, thereby reducing the time and energy consumption for reaching
their targets. This part of the UFSC teams strategy was the first matter looked
into. The agents do not have a strict surveying scheme, and merely perform
the surveys as needed - usually in the early stages of the simulation, where the
agents have nothing better (i.e. the agents respective responsibilities, such as
inspecting, attacking and repairing) to do. Additionally, the explorers do not
perform surveys at all, while for all other agents except sentinels it is an action

32 Changing the UFSC system

of a middle to low priority, which can occur only if an agent is standing on a
vertex with some unsurveyed edges to it and has nothing more important to do;
in other words, the agents do not actively look for edges to survey. In-
stantly, an opportunity of possible change presented itself. It could be beneficial
to allow some agents to actively pursue the task of discovering the unsurveyed
edges, at least in the early phase of the simulation. Natural candidates for such
task are the sentinels, as they have the largest field of view (see table 3.1). Fur-
thermore, the sentinels do not have an unique role to play (e.g. only explores
can probe etc.), unlike all other agents. It must be remembered that the agents
are autonomous, i.e. they choose courses of action to commit to by themselves.
Therefore, changing their behaviour consists of adding some rules and plans to
their code, in such a way that the selection function (see description 4.2.1) of
the agent will pick the desired plan when appropriate.
The idea is a two-step procedure, in which the agent first finds out whether
the neighbouring vertices are in need of a survey action, finds the best one
(i.e. the one with most unsurveyed edges), goes there and in the next turn per-
forms a survey, unless it becomes disabled, needs to recharge or parry an attack.
The procedure is employed only in the early stages of the contest, meaning no
later than the 133rd step of the simulation (explanation in subsections 7.3.2
and 8.3.1). At this point, it becomes more important to use sentinels for de-
fending the controlled zones. The listings 6.1 and 6.2 outline this strategy.

1 begin
2 l i s t ne ighbour ing v e r t i c e s
3 for each ver tex do
4 find number of outgoing unsurveyed edges
5 choose ver tex with most unsurveyed edges
6 end

Listing 6.1: Rule for finding the best vertex with unsurveyed edges to go to.

1 begin
2 step 1 :
3 i f found the best ver tex and turn < 133 then
4 goto ver tex
5 else
6 plan not app l i c ab l e
7 step 2 :
8 i f not has other more important ta sk s then
9 survey the edges

10 else
11 choose the more important task
12 end

Listing 6.2: The procedure for active surveying.

6.2 Inspecting 33

As the new surveying strategy has a quite high priority, the corresponding plan
has been placed directly beneath the highest priority plans. These plans are:

• Recharging

• Waiting for, or going to a repairer

• Parrying

• Surveying

The chosen placement is obvious. The plan cannot be executed if the agent
is lacking energy or is disabled. Executing the plan when under risk of being
attacked may be ill-advised, while doing so when already standing on a vertex
in need of edge surveying would be a waste of time.
The Jason code for the strategy can be found in appendix B.1.

6.2 Inspecting

Similarly to discovering the graph structure, gaining knowledge about the en-
emy entities is important (see subsection 5.2.3). The UFSC team generally
manages to inspect enemy agents quite quickly; however, occasionally, some of
the enemies elude the inspectors for a long time into the simulation, effectively
delaying the team in reaching the achievement for inspecting 20 enemies and/or
in inspecting all 28 enemy agents.
The possible reason for some of the enemies avoiding inspection may be the
decentralized inspecting strategy. In the original system, the inspectors only
inspect the enemies once they come in sight, i.e. place themselves on the same
vertex as the inspector or on a vertex adjacent to it. Hence, it is clear that
inspecting all enemies is, at least to some degree, luck dependent, e.g. if an
enemy stays out of all inspectors’ sight, it consequently will avoid inspection.
The current strategy seems to work out well in the beginning of the simula-
tion, when there are many not inspected enemies, though sometimes it does not
perform too well in the later stages of the simulation. Therefore, it may be ben-
eficial to centralize the inspecting strategy in the later stages of the simulation
somewhat. It has been decided to employ such an approach after the 50th step
of the simulation (explanation in subsections 7.3.3 and 8.3.1). The idea is to
have all friendly agents on lookout for not inspected enemies. At the begin-
ning of each turn, the agents send a message informing the ’inspector leader’
about not inspected enemies they spotted. The ’inspector leader’ then holds
auctions [BFPW03] for all the other (available) inspectors. During an auction,

34 Changing the UFSC system

the agents ’bid’ against each other in order to get assigned to a given task. In
this simplified case, the inspector agents simply bid with their distance from
the entity which needs to be inspected. Thus, perhaps counter-intuitively to an
actual auction, the lowest bidder is chosen and delegated the task by the ’lead
inspector’. This strategy could ensure quicker inspection of the last few elusive
enemies. The process of agents informing the ’lead inspector’ about entities (see
listing 6.3) and the auctions themselves (see listings 6.4 and 6.5) do not collide
with the agents actual plans and actions; they are simply performed ’in the
background’. The only agent actually undertaking an action is the winner of an
auction, when it commits to go to inspect the enemy entity (see listing 6.6).

1 begin
2 when can s ee unknown en t i t y and turn > 50 do
3 t e l l l o c a t i o n of en t i t y to l ead i n sp e c t o r
4 end

Listing 6.3: Informing the ’lead inspector’ about an entity.

1 begin
2 when got r epo r t s about enemies from a l l agents do
3 l i s t a l l e n t i t y r epo r t s and remove dup l i c a t e s
4 for each r epor t do
5 start auct ion and col lect bids from i n s p e c t o r s
6 find the lowest b idder (winner)
7 inform the winner
8 end

Listing 6.4: Auction by the ’lead inspector’.

1 begin
2 when auct ion do
3 i f has other more important ta sk s then
4 skip auct ion − place bid (max)
5 e l s e i f a l ready won an auct ion in t h i s turn then
6 i f cur rent auct ion i s be t t e r
7 find s h o r t e s t path to en t i t y
8 place bid (l ength of path) and await r e s u l t
9 else

10 skip auct ion − place bid (max)
11 else
12 find s h o r t e s t path to en t i t y
13 place bid (l ength of path) and await r e s u l t
14 end

Listing 6.5: Participating in auction for inspectors.

6.3 Exploring 35

1 begin
2 i f won auct ion for en t i t y at de s t i n a t i on ver tex then
3 goto next ver tex on path to de s t i n a t i on ver tex
4 else
5 choose some other plan to employ
6 end

Listing 6.6: Inspectors using a plan after auctions.

As with the sentinels (see bullet point listing 6.1), the strategy must be appro-
priately prioritized. There is a number of more important plans:

• Recharging

• Waiting for, or going to a repairer

• Inspecting an enemy in immediate vicinity

• Protecting an island

The plan for delegated inspecting is prioritized lower than the plans mentioned
above. The chosen priority is entirely natural - the strategy could not be em-
ployed when the agent lacks energy or is disabled; doing so instead of inspecting
an enemy within an immediate vicinity is illogical. The island protection has
been given a high priority by the UFSC team itself and it has been decided not
to alter on that.
The Jason code for the strategy is located in the appendix B.2.

6.3 Exploring

Probing vertex values quickly is one of the most important tasks in the simu-
lation. Only once a vertex gets probed, the team begins to receive full points
when it is under the teams control. In general, the explorers manage to probe
the entire map quite efficiently; however, sometimes they tend to follow each
other into same areas of the map, instead of spreading out more. Ensuring that
the explorers always spread and thus all probe different regions of the map could
help them with the task of probing the entire map faster. After that goal is ac-
complished, the explorers obviously would not need to be forced to spread out
any more. The strategy would simply be deactivated after a certain number of
steps into the simulation or once the map is fully explored. It has been decided

36 Changing the UFSC system

to employ such an approach until the 50th (explanation in subsections 7.3.4
and 8.3.1) step of the simulation. Afterwards, the explorers can move freely
when exploring or pursuing other tasks, such as helping to control the zones.
The listing 6.7 outlines this strategy.

1 begin
2 when not v i t a l goa l and want to move and turn < 50
3 choose de s t i n a t i on ver tex
4 find number of e xp l o r e r s in given range to ver tex
5 i f number >= 1 then
6 try d i f f e r e n t ver tex
7 else
8 goto ver tex
9 end

Listing 6.7: Forcing the explorers to spread out.

The plan is simple: when an explorer does not have an important task to per-
form, such as recharging or walking towards a repairer and wants to move to
a vertex, it checks the number of other explorers in the immediate vicinity of
that vertex. If there are some other explorers, then the agent is forced to pick
another vertex to check. It was decided to force explorers to keep a distance of
at least two vertices from each other. In order to do so, the agents utilize a BFS
implementation. When checking a vertex, it is easy to perform such a search
until the given depth and find any other explorer agents lurking nearby.
Effectively, this strategy prevents the explorers from going to same areas of the
map, but notably, only in the early stages of the simulation. Later on, the agents
may have to position themselves relatively close to each other, for example when
probing the last few remaining vertices, or defending the zones. It is also impor-
tant to note, that the strategy does not apply to the ’special explorers’. Agents
with this role have the task of probing the already controlled zones early on in
the simulation. In order to do so quickly, they may have to move side-by-side
throughout such zones, not at all far away from each other - forcefully spreading
these agents out would be counter-productive.
The rules for finding and listing nearby vertices until given depth have been
implemented in Jason to begin with. Later, the Java BFS implementation of
the UFSC system got looked into and modified to suit the needs of the new
strategy (it needed a list of nearby vertices instead of a path from one vertex to
another). The agents can call this algorithm via an internal action. The Java
implementation is much more versatile than the Jason one, as it allows to select
any depth for the algorithm to run, whereas the Jason rules are hard-coded for
given depths. While, strictly speaking, it is enough for the purposes of the new
strategy, it is prudent to provide a more complete implementation. Creating
a BFS in Jason is perfectly feasible (after all, one would only have to employ

6.4 Miscellaneous 37

logic programming); however, it has been decided against, because it would be
cumbersome to integrate with the way information about the graph is stored
by the UFSC system. The code for the implementation of exploring strategy is
available in appendix B.3.

6.4 Miscellaneous

In this section, a number of smaller UFSC system changes is described. The
successful ones made it to the final version of the changed system, while others,
albeit ineffective, are listed in order to show all the investigated possibilities.

6.4.1 Reaching higher inspect achievements

From the equation 3.1, it can be inferred that reaching more achievements faster
than the rival team gives an advantage in the contest.
The highest inspect achievement the UFSC team reaches is for inspecting 20
agents. It may be beneficial for the total score to try to get the next achievement
- for 40 agents, thus earning free points throughout the simulation at a low cost
of using a few actions on extra inspections. Two possibilities, for when the
inspectors had no important tasks to accomplish and an agent appeared nearby,
were explored:

• Inspecting already inspected rival agents

• Inspecting own agents

It turned out, however, that one does not receive achievement credits for these
kinds of inspections. The effort was not at all useless, though - it was a catalyst
for a realization described in subsection 6.4.2.

6.4.2 Reducing the number of inspect actions

In subsection 5.2.3, it is stated that the UFSC teams strategy is to inspect every
enemy agent only once (not counting failed inspect actions). It is not strictly
true, though. It turns out that the agents sometimes happen to inspect same
rival agents several times, which is unnecessary, since the team is only concerned

38 Changing the UFSC system

with the type (e.g. saboteur, explorer etc.) of the inspected opponents. Follow-
ing situations, where an enemy agent gets inspected more than once, have been
identified:

Failed actions
If an inspect action fails, either due to being attacked or at random, the
team naturally does not get the desired information, and the enemy agent
has to be inspected again. These situations are unavoidable, though not
very numerous.

Simultaneous inspections
Referring to a situation where two or more inspectors choose to inspect
the same agent in the same turn.

Inexplicable
An already inspected agent being inspected again for some reason.

Nothing can be done about the first item on the list - the inspector just has to
try again, until it succeeds.
The simultaneous inspections do not occur very frequently. Notwithstanding, an
addition to the code, which should reduce the number of such occurrences, was
devised. The method is straightforward: Once an inspector chooses to inspect
an enemy at a given vertex, it informs other inspectors about it. This vertex
effectively becomes locked down for other inspectors that should wish to inspect
it. If that is the case, the other inspector(s) must perform a different action.
The listing 6.8 outlines this strategy.

1 begin
2 i f want to i n sp e c t ver tex and not ver tex has l o ck
3 t e l l other i n s p e c t o r s about l o ck on ver tex
4 do i n sp e c t
5 else
6 choose some other plan to employ
7 end

Listing 6.8: Plan for the inspect action.

The third item on the list has been the most interesting one. For a while, it
was speculated that the UFSC code specification was inaccurate and the al-
ready inspected rival agents are deliberately being inspected again by the teams
agents. Upon closer look at the code and some debugging, however, it turned
out that the implemented rules are sound. With that cleared, a re-examination

6.4 Miscellaneous 39

of the server and simulation specifications was needed. In the scenario descrip-
tion [DKS13] on page 15, where all actions the agents can perform are described,
a minor detail in the description of the inspect action was spotted:

"This action is used to inspect the internal attributes of an opponent
agent, given as a parameter. (...) If no parameter is given, all
opponent agents standing on the same node are inspected."

In the UFSC code, the inspect action is always performed without the optional
parameter mentioned above. Subsequently, the simulation output logs from the
agents were investigated. Sometimes, the following situation occurs: The agent
is standing on a vertex with two or more enemy agents, at least one of which has
not been inspected yet. The agent then performs the inspect action; this not only
inspects the targeted unknown agent, but also all enemy agents on the vertex,
despite of them having already been inspected beforehand. In this situation,
instead of counting the action as one inspection only, the server counts it as
several ones (the number of opponent agents on the vertex). Later, the statistics
give a false impression of the agents performing unnecessary inspections, when
in fact, these extra inspections are merely by-products of legitimate actions.
These situations could be easily eliminated with a minor change to the UFSC
code - adding the optional parameter to every inspect action. This, however,
would produce an unwanted effect; if two or more not inspected enemy agents
were standing on the same vertex, the agent would only inspect one of them,
instead of all at once. Bearing this in mind, the code was left unaltered in this
case.

6.4.3 Purchasing upgrades

The UFSC team does not purchase any upgrades for its agents, instead saving
the money from achievements in order to improve the overall score.
Two purchasing strategies were tried out: acquiring attack upgrades for sabo-
teurs and health upgrades for explorers. The necessary code was already written
in the UFSC system, but it was deactivated and never tested. All that had to
be done, was to adjust the parameters (which and how many upgrades to buy)
in the relevant code bits and run some tests.

40 Changing the UFSC system

6.4.3.1 Saboteurs

If enough (two for each of the agents) attack upgrades were bought, the sabo-
teurs would have enough strength to disable any rival agent by just one successful
attack. It would be interesting to check, if the benefits of being able to disable
enemies quicker would be enough to compensate the used achievement points.

6.4.3.2 Explorers

The explorers initial health is 4, exactly the same as the power of a standard
saboteur attack, i.e. only one successful attack is needed to disable an explorer.
Moreover, the explorers are one of the preferred targets for the enemy saboteurs.
Purchasing just a single health upgrade for each explorer agent would mean that
the enemy saboteurs would have to use two successful attacks in order to disable
an explorer. Analogically to the purchasing strategy for the saboteurs, the main
point of interest here was whether or not the benefits of such approach would be
able to counterbalance the decrease in the final score due to use of achievement
points.

Chapter 7

Testing the changed system

This chapter describes the process of testing the changes made to the UFSC
system, and presents the test results.

7.1 Testing process

The tests were performed by running contest simulations, where the original
and changed systems were set to play against each other. A decision was made
to evaluate each of the implemented changes (i.e. the surveying, inspecting,
exploring and buying strategies) separately and then test the system with all
those changes active. For each of these cases, a large number of simulations
against the original system was run and the results were analysed. Doing so
made it possible to evaluate the impact of each change by itself, as well as the
overall system impact. In order to establish baseline results, simulations where
the original system was set to play against itself were run, thus providing basic
scores to compare the changed system with.

42 Testing the changed system

7.2 Simulation statistics

After a single simulation is run, the contest system automatically outputs statis-
tics, which include scores, the numbers of actions performed by the agents, when
all the achievements have been reached and more. These statistics are the back-
ground for the test evaluation. They are output in a threefold manner:

• Visual data: graphs and plots, saved in an image format

• Raw data: long sequences of logging data, saved in .log and .txt files

• Text files: small formatted text files written in LaTeX

While the visual data appears great for the human observer, it is hardly made
use of in the assessments, chiefly due to the sheer number of the simulation
runs. Instead, simple programs making use of regular expressions, which ex-
tract the relevant data from the raw text and log files, have been written by us.
The extracted and formatted data is then run through a R script, which pro-
duces comprehensible statistical results. Albeit unrelated to the UFSC system
implementation itself, the code for these programs is available in appendix D.

Below is a list of factors deemed relevant in the testing process:

Scores
The number of matches won, as well as the average scores are the ultimate
indicators of the quality of the system.

Survey achievements
Crucial for the changes to the sentinel and surveying strategy. They should
ensure a quicker completion of these achievements.

Probe achievements
Relevant to the changes in explorers. They should make the system reach
these achievements faster. Aside from the achievements themselves, it is
interesting to look at the precise turn in which the last vertex gets probed.
It is also conceivable that the surveying strategy may help the explorers to
get around the map quicker. Therefore, the probe achievements are also
looked at in context of the surveying strategy.

Inspect achievements
Analogous to the probe achievements, merely concerning the inspectors
and their respective achievements instead. Aside from the achievements
themselves, an interesting factor is the precise turn in which the last, 28th
enemy entity gets inspected.

7.3 Test results 43

Number of survey actions
An indicator for the surveying strategy - the number of survey actions
performed by the sentinels.

Number of inspect actions
An indicator of the strategy for reducing thereof - the number of inspect
actions performed by the inspectors.

The aforementioned statistics were gathered for each version of the system and
compared in order to assess whether the implemented changes had a positive
impact on the performance of the system.

7.3 Test results

In this section, the test results obtained with the process described in section 7.1
are presented. Team A denotes the system where the changes have been imple-
mented, while team B denotes the original system. In the base results subsec-
tion, both team A and B use the original system code.

7.3.1 The base results

The simulations between unaltered versions of the UFSC system form the base
results and foundation for evaluation of the subsequent changes made to the
system. Since in this case two identical systems were competing, it was expected
that the statistics for scores and achievements were evenly distributed, with
only small deviations from a 50-50 split in match victories and swiftness of
achievement completion. The figures in tables 7.1, 7.2 and 7.3 are based on 500
simulations.

44 Testing the changed system

Achievement Average turn A Average turn B
survey320 25.778 25.892
survey640 210.51 218.00
probe160 71.52 71.504
probe320 160.35 159.22
probeAll 295.13 294.86
inspect10 36.528 35.546
inspect20 90.64 89.24
inspect28 309.95 309.8

Table 7.1: Average turns for reaching certain achievements.

Action Average number A Average number B
survey 52.97 53.81
inspect 76.568 76.464

Table 7.2: Average number of certain actions performed in a simulation.

Indicator Number A Number B
Wins 252 248

Average score 118652.70 118665.66
survey640 reached 237 246
inspect28 reached 232 238

Table 7.3: Total number of wins, average scores in a simulation and total num-
ber of simulations where the survey640 achievement was reached.

Unsurprisingly, the statistics for simulations between two unaltered instances
of the system were almost identical. Nonetheless, running these tests was
paramount, as the process of testing the changes required consistent base figures
to compare results against.

7.3.2 Sentinel

A crucial detail to consider regarding the surveying strategy (see section 6.1)
was when to stop using it (i.e. which step of the simulation). It is important
to uncover the graph quickly in the beginning. Furthermore, the survey action
is most effective in the early stages of the game, when all/most edge values are
unknown - then, each survey will probably uncover multiple edges at a time,

7.3 Test results 45

while later on, when most edges have been surveyed, the chance of uncovering
multiple edges simultaneously declines. Tests were performed for a few configu-
rations: where the active surveying strategy was used in the first 25, 50, 75, 100
and 133 turns, in order to find out how long it is feasible to be using sentinels
for active surveying instead of other tasks, such as protecting the zones.
In any case, it was expected that the survey achievements for 320 and 640 edges 1

to be achieved much faster by the changed system. Although the 640 achieve-
ment is not always reached, it was expected that the changed system would
reach it more often than the original one. Other achievements were looked at,
in order to determine if uncovering the edges faster had an impact on other
agents performance (e.g. helping them achieve their goals faster), as well as on
the overall simulation scores.

The statistics gathered from the test runs revealed that the active surveying
strategy performs well. A large improvement in the swiftness of reaching the
survey320 and survey640 achievements is noticeable (ergo, the surveying process
is faster). The table C.4 shows this very clearly - on average, the changed
system was a few turns ahead of the original one in reaching survey320, while
the differences became truly significant with the survey640 achievement. It was
also interesting to look at the number of simulations in which the survey640 was
reached at all (since this not always is the case). Table C.2 shows these numbers.
Again, not only did the changed system reach the achievements faster, but also
more often in comparison to the original one.

One of the concerns was that the sentinels using too much time on surveying
would diminish the overall score of the team, since the sentinels would not be
able to protect zones as often in the early stages of the simulation. Indeed,
the number of survey actions performed by the sentinels was much higher than
in the original system (see figure C.3); however, it turned out that these losses
were being fully made up for by receiving more achievement points and generally
allowing the team as a whole to traverse the graph faster. The table C.3 proves
this point - the average score differences between the systems were slightly in the
favour of the changed one. As for the number of won simulations, the changes
had slightly improved on that too; instead of a near 50-50 split, configurations
where the strategy is employed until the 50th, 100th or 133rd step, gave a 2.5-7%
improvement. The configurations employing the strategy until the 25th and 75th
step were not as successful (see table C.3). Lastly, no change was recorded in the
speed of reaching probe and inspect achievements with the strategy activated.
It seems that the strategy had a very limited or no impact at all in this matter.

The detailed results, as well as visual representation of the relevant data in form

1160 and earlier achievements are reached almost immediately in the first few turns of the
simulation.

46 Testing the changed system

of boxplots for each of the 5 configurations are available in appendix C.1.

7.3.3 Inspector

Similarly to the surveying strategy, it was important to decide when the in-
specting strategy should be used (see section 6.2). The natural stopping point
would be inspecting all 28 enemy agents, but deciding a starting point was not
obvious. In the very beginning of the simulation, the strategy could simply
confuse the inspectors, especially due to the large number of auctions, since to
begin with, all enemies are uninspected. Examining the results from original
systems (see section 7.1) shows that, in the original system, 10 enemies were
inspected on average at step 36, while 20 were inspected on average at step
90. Similarly to the case of sentinels strategy, it was decided to run tests with
several configurations and then choose the best one. 4 tests were settled for:
with the strategy being used after steps 25, 50, 75 and 100. The goal of these
tests was to check whether the achievement for inspecting 20 enemies would be
reached faster on average, finding the number of simulations in which all enemy
agents were inspected, the average turn of inspecting the last enemy agent, and
the possible impact on the average scores and wins. Lastly, the average number
of inspect actions was looked at in order to check the effect of the change (see
subsection 6.4.2) which aimed to reduce the number of these actions.

Analysing the test results showed that the active inspecting strategy was suc-
cessful. Analogically to the sentinels, the respective achievements (inspect10,
inspect20) and inspecting all enemy agents were completed faster than in the
original system. Likewise, it was more often the case that the team managed to
inspect all enemy agents (inspect20 achievement is always reached in any case).
The data in tables C.6 and C.8 supports these assertions. Furthermore, the
minor change in attempt of reducing the number of redundant inspect actions
was successful, as clearly visible on figure C.7.

The strategy, although it forced the inspectors to pursue enemy targets instead
of holding the zones, had no negative impact on the average scores. In fact, the
average score differences were slightly in favour of the changed system, but it
did not seem to have a direct influence on the number of won simulations in
case of the strategy being employed after the 50th and 75th step. Employing
the strategy after the 25th and 100th step had a slightly negative impact on the
number of victories (see table C.7).

The detailed results, as well as visual representation of the relevant data in form
of boxplots for each of the 4 configurations are available in appendix C.2.

7.3 Test results 47

7.3.4 Explorer

For the strategy in which the explorers spread out more in order to always
probe different areas of the map, it was interesting to check the effect on the
swiftness of reaching the achievements for probing 160 and 320 vertices, as well
as the turn in which all vertices had been probed. Furthermore, the average
scores were looked upon, in order to check if the strategy had any impact on
the systems performance as a whole.

The strategy was tested in two configurations - employed until the 50th and
133rd step of the simulation. The reason for this was, that it is desirable for
the explorers to stay spread out only in the beginning of the simulation. After
the majority of vertices had been probed, the explorers may have to move closer
together in order to get the remaining ones probed efficiently. Thus, restricting
their movements at that point would be aimless.

The results were quite surprising: both configurations had actually increased the
time for reaching the probe achievements, as well as for probing all vertices. The
data in table C.11 shows that the increase was marginal in case of the strategy
being employed until step 50, while in the case of the strategy being used until
the 133rd step, the increase was rather significant. Even more interesting was
the data from the table C.10: regardless of the probing process taking more time
and thereby the achievements being reached later, the changed system actually
won more often and got a higher average score in both cases. This matter is
discussed in subsection 8.3.1.

The detailed results, as well as visual representation of the relevant data in form
of boxplots for each of the 2 configurations are available in appendix C.3.

7.3.5 Upgrades

As it turns out, purchasing upgrades had a vastly negative impact on the system.
Regardless of the two strategies (see subsection 6.4.3) being conservative in the
number of upgrades bought (in total, either 6 for explorers or 12 for saboteurs
per simulation), the average scores and the number of simulation wins were
staggeringly lowered. In fact, the results were perfectly clear after a mere 100
simulation runs for each of the two strategies: with the average scores diminished
by 5-10% and the percentage of won simulations as low as 15-20%, further testing
was deemed redundant.
Section C.4 contains the precise results of the test runs for the buying strategies.

48 Testing the changed system

7.3.6 Final results

This section describes the final series of tests - with all the implemented changes
activated (except for the inferior purchasing strategies).
It was especially interesting to see whether the quicker and more exhaustive
surveying ensured by the sentinels (see subsection 7.3.2) would support the new
strategy employed by the inspectors. Specifically, by having the knowledge of
graph structure early on and having surveyed a larger number of edges, the
inspectors could be able to find the paths to far enemies more often, and also
to have a higher level of certainty that the chosen path actually is the shortest
one 2. The figures in tables 7.4, 7.5 and 7.6 are based on 500 simulations.

Achievement Average turn A Average turn B Difference
survey320 21.398 26.023 -4.625
survey640 140.277 213.383 -73.106
probe160 71.702 71.554 +0.148
probe320 159.644 159.783 -0.139
probeAll 294.624 293.112 +1.512
inspect10 33.688 35.064 -1.376
inspect20 78.05 88.098 -10.048
inspect28 271.73 309.86 -38.13

Table 7.4: Average turns for reaching certain achievements.

Action Average number A Average number B Difference
survey 71.872 53.89 +17.982
inspect 69.86 79.422 -9.562

Table 7.5: Average number of certain actions performed in a simulation.

Indicator Number A Number B Difference
Wins 259 241 +9 3

Average score 119879.322 118663.466 +1215.856
survey640 reached 286 243 +43
inspect28 reached 391 247 +144

Table 7.6: Total number of wins, average scores in a simulation and total num-
ber of simulations where survey640 achievements was reached.

2More knowledge about the graph structure implies lower probability of that an unknown
shortest path between two vertices exists.

7.3 Test results 49

The final results confirmed the previous findings for the respective changes.
The changed system visibly outperformed the original one in the surveying and
inspecting strategies. All the major surveying and inspecting achievements were
reached faster. The speed of exploring was barely affected, albeit with a minor
tendency to probe slower (see table 7.4). Inspecting all 28 enemy agents and
surveying 640 edges does not happen in every simulation. The new strategies did
have an impact on this as well: the changed system achieved these milestones
more often and faster than the original one. (see table 7.6) As a consequence
of the new strategies, the number of survey actions performed had increased
(since the sentinels are bound to survey more often), while the number of inspect
actions had decreased (see table 7.5). The implemented strategies had a positive
impact on the final results as well. The average score and win frequency for the
changed system had increased (see table 7.6).
The visual representation of the relevant data in form of boxplots is available in
appendix C.5.

3The difference between the two numbers is, of course, 18, but here the point of interest is
the number of simulations won above the equilibrium situation (250 victories each).

50 Testing the changed system

Chapter 8

Discussion

This chapter contains a discussion of the obtained test results, as well as other
matters pertaining to this project, which were thought-provoking.

8.1 Pseudocode

A few sections in chapter 6 included several pseudocode listings.
The pseudocode is a very useful tool for any programmer, as it allows to convey
complex ideas, in programs or algorithms in a way which closely resembles a
natural language.
In this project, a simple pseudocode style is used: it shows the algorithms in a
step by step manner, only including the key directives (e.g. ’find best vertex to
go to’), without showing their implementation details. While the psuedocode
style closely resembles an imperative programming language, such as C, the
actual Jason code often looks quite different and correspondence between lines
of pseudocode and code may not be apparent. Although seemingly a counter-
intuitive ambiguity, this has actually been done deliberately: the reasoning cycle
of an agent (see subsection 4.2.1) is fundamentally similar to a human one.
An if-then-else construct can be used as an example. When considered from a
human logic point of view, the way it works is obvious: "if a given event occurs
under certain conditions, then take some action, otherwise take a different course

52 Discussion

of action". Jason agents do not per se use if-then-else statements, but a very
similar mechanism is in place (see listing 4.2). An agent can have a number of
relevant plans (courses of action analogous to an if-elseif-...-else construct) for
a given event. Amongst these it then selects applicable plans, i.e. plans that
can be employed under certain general circumstances. If the chosen plan fails,
an agent may have a rescue plan for such an occasion; likewise, a human being
would have 1 an alternative course of action, if the original one has failed.

Effectively, despite the differences in how the pseudocode and real code look
like, the underlying ideas and thoughts are equivalent, thus rendering the chosen
pseudocode style a valid way of describing parts of the implementation.

8.2 Number of simulations and result reliability

Since the agents are autonomous (see description 2.1), the simulations and re-
sults described in chapter 7 are non-deterministic. Effectively, two consecutive
simulation runs on the same map will undoubtedly yield different results.
Obviously, a higher number of simulations implies a higher degree of the sta-
tistical accuracy and consistency of the results. As stated at the beginning of
section 7.1, a substantial number of simulation runs was completed, although
not without some inconvenience: the original simulation server configuration
allows to run at most 3 simulations in sequence at a time, requiring a constant
presence of a person at the computer in order to keep restarting the simulations
approximately every 15 minutes (a single simulation takes around 5 minutes).
Therefore, the server configuration was changed by us, in order to allow running
a higher number of simulations one after another, without needing to restart.
The simulations were run in batches of 100 at a time, totalling at around 8 hours
per such run. In the beginning, it was assumed that these 100 simulation runs
for each system configuration would be sufficient to produce precise results, but
later it was decided to increase that number to 500. Naturally, one can never be
fully sure when dealing with inherently non-deterministic systems. Bearing the
time constraints in mind, as well as the fact of having only 1 computer capable
of running the tests, the total number of 6700 simulations 2, as well as the
extracted statistical results, were deemed satisfactory.

1Or seamlessly come up with/create one by himself; this, incidentally, is one of the
few things that humans are capable of, but AI, as of yet, is not.

2Equivalent to running the simulations constantly for a little over 23 full days. The total
number of simulations does not include the ones run for debugging purposes when refining the
code, but only the ones run once the code for the respective implementations was completed.

8.3 Test results 53

8.3 Test results

Regrettably, the laborious testing process seems to be the only possible way of
quantifying and objectively judging the impact of changes made to the system.
It is simply not be possible for a human to go through all the test data (see
section 7.2) and draw conclusions, despite some of the results being presented
in a friendly, graphical manner. Furthermore, even if some conclusions could
be made that way, they would be entirely subjective to the humans perception
of the data plots, or, even worse, the animation of the simulations in the GUI.
The raw data is fully relied on, as it is easily quantifiable (e.g. ’on average,
achievement X is reached Y turns faster’) and allows for a much more objective
assessment. In section 8.2 it was stated, that a 100% certainty is not achievable
and also explained why it is so. We are, nevertheless, confident in asserting that
a large number of simulations, is at very least able to provide a sound indication
of whether the changes made to the system have been beneficial or not.

8.3.1 Choosing best configurations for the strategies

Based on the extensive testing (see chapter 7), it was possible to ascertain which
specific configurations of the implemented strategies perform best on their own.
Subsequently, they were put to work together in the testing of the overall per-
formance of the changed system.
For sentinels, it was decided to employ the active surveying strategy (see sec-
tion 6.1) until the 133rd step of the simulation, since it performed best in general
and accumulated the highest number of simulation victories.
For inspectors, it was decided for the active inspecting strategy (see section 6.2)
to begin after the 50th step of the simulation, due to the swiftness of reaching
the achievements, while not affecting the scores and the number of wins nega-
tively.
The tests of exploring strategy (see section 6.3) proved interesting. Although
the probing process became slightly slower, the scores and number of wins ac-
tually increased. It is uncertain why this was the case. We theorize that in
some cases the explorers had ’locked up’ (i.e. were mutually prevented from
moving towards a desired spot on path to a vertex to probe) and instead chose
to perform another action, such as helping to defend zones. Doing so multiple
times during the course of a simulation would contribute to the final score in
some degree, hence explaining the higher average scores. Naturally, it could also
be the case that the score and number of wins increase was purely coincidental,
based on the non-determinism of the systems and simulations. We are reluctant
to assign the ’blame’ to pure chance in this case. After all, two batches of 500
simulations for the explorer strategy were run and in both cases, the changed

54 Discussion

system was victorious more often and reached a higher average score.
Of the two possibilities, the strategy being employed until the 50th step was
deemed a better option, as it only increased the probe time marginally (in con-
trast to employing the strategy until the 133rd step, where the increase was
significant), while still giving the benefits of winning more and scoring higher.
Ultimately, the goal of the contest is to score as many points and win as many
simulations as possible. Bearing that in mind, it was decided to include the
modified explorers in the final version of the system.
Finally, the strategies for purchasing upgrades (see subsection 6.4.3) were a total
fiasco - the benefits of having stronger agents were insufficient to compensate
scores decline due to use of achievement points.
During the last contest, all the teams either did not use the upgrades at all,
or only purchased very few of them. It seems that the upgrade system is not
properly balanced, as the costs of purchasing upgrades clearly are much higher
than any obtained benefits. Hopefully, in the upcoming contest, the parameters
will be adjusted in order to make the upgrades more attractive, e.g. by lowering
their costs or increasing their benefits. It could also be interesting to, instead
of charging achievement points, give the teams a set, small number of upgrades
they may distribute amongst their agents, thus possibly resulting in diversified
choices throughout the teams.

8.3.2 The overall results

The test results showed that the implemented strategies were sound.
The better performance in reaching achievements was fully expected, based on
the results of testing the new strategies separately (see chapter 7). It was, how-
ever, dismaying that the changed system had not achieved a higher number of
simulation victories. It was assumed, that the combined advantages of reach-
ing certain achievements, as well as general benefits of discovering the graph
edges and enemy agent details, faster, would be reflected in more numerous
simulation wins, especially since the average score had also been higher. Nev-
ertheless, it is clear that the changes had a principally positive effect on the
overall performance of the system (see subsection 7.3.6). The changes appear
to have a compelling impact within their respective areas, but the influence
on the final results and scores seems to be limited. This could be because the
changes did not per se concentrate on improving the scores directly. Instead,
they improved some other strategies, which in turn affected the scores indirectly.
Making changes to a strategy such as zone control, would probably have a larger
impact on the scores. However, the goals of this project were to improve the
strategies which were either incomplete or non-existent, instead of working with
a well established and refined strategy, such as the zone control.

8.4 Experiences working with Jason and UFSC system 55

8.4 Experiences working with Jason and UFSC
system

Generally, working with the Jason platform and the UFSC system was an ex-
cellent experience. The two subsections below list and explain what the good
and bad things have been, in our opinion.

8.4.1 Jason

Working with the Jason platform and multi-agent programming paradigm has
been a singular experience, despite a few minor flaws.

Language and syntax
The Jason syntax is very appealing and expressive. It allows for writing
of succinct programs, which nonetheless are able to perform complicated
tasks. Since some of it is largely based on logic programming, it has
been relatively easy to comprehend and get the general understanding of
the basics quickly. The way the plans are handled is particularly clever,
since it resembles human reasoning and thus one can almost seamlessly
convey ideas in the code. Another great feature is, that an agent can have
multiple plans for a single event, discern between contexts these plans can
be applied in, and finally also have failure handling mechanisms for when
the plans do not succeed (see subsection 4.1.2 for more about plans).

The platform
From the practical point of view, the Jason platform is a pleasant envi-
ronment to work in. The language and IDE (see chapter 4) are simple to
install, set up and understand. An extremely useful tool for the debugging
process when learning the language has been the mind inspector (see fig-
ures 4.2 and 4.3). Lastly, the combination of the three different platforms
into a unified platform (JaCaMo) is a phenomenal idea. Doing so allows to
encompass several dimensions of the multi-agent programming paradigm
(see section 4.3 for more about JaCaMo).

Interaction with Java
Supporting the Jason agent programming language with Java is an inter-
esting approach. It has been beneficial when delegating parts of program
to be handled by Java (such as data storage, algorithms and GUI), since
Jason itself is not very well suited for dealing with these.

56 Discussion

Documentation
The documentation was scarce. The basics were easy to grasp quickly,
but much time was spent on understanding the more complicated parts of
the platform. In some cases, the trial-and-error approach was resorted to
in order to comprehend the code. This was exclusively the case with the
Java part of the platform.

Other
Debugging programs running in the contest was difficult, as it was not
possible to make use of the mind inspector and step-by-step runs of the
programs due to the way the simulation server operates. The error and
exception messages, which sometimes were not clear at all, had to be relied
on. This made it troublesome to pinpoint the faults in the code. Lastly,
Jason could use some more standard library functions for operating on
lists and strings, similarly to what Prolog has to offer.

8.4.2 UFSC system

In general, working with the UFSC system was a pleasant experience. In the
beginning, it was demanding and time consuming to understand the inner work-
ings and interactions of the system, but once that was accomplished, making
changes was relatively straightforward.

Assistance from Brazil
Upon contacting the team behind the system, they provided some excellent
suggestions for the project. Notably, the team shared excerpts of their TO-
DO list. Subsequently, some of the items from the list were implemented.
Additionally, some original ideas of our own were implemented.

Jason code
The Jason code was very well written. The variable names were often self-
explanatory and the commentary was decent as well. This made it easier
to fathom how the system works and to write new code for it.

Java code
Working with the Java part of the system was something of a challenge.
Code commentary was almost non-existent and the implementation was
spread out over many small classes, whose functions and responsibilities
were not always clear.

Chapter 9

Future perspectives

This chapter briefly describes the future of the multi-agent programming contest
and provides examples of additional work that may be done with the UFSC
system in order to try to improve its performance. Furthermore, the future of
artificial intelligence and multi-agent systems in general is considered.

9.1 MAPC and the UFSC system

As mentioned in section 3.2, this year will be the last when the ’Agents on Mars’
scenario is going to be used in the MAPC. Although the UFSC system will not
partake in the future contests after this one (since a completely new scenario
will be used), it may be of great use for educational purposes in multi-agent
programming, as it has been for us during the course of this project. There still
exists a number of changes that could be made and tested, for example:

Inspecting
As a proof of concept, the inspecting strategy was implemented in such a
way that the ’leader inspector’ coordinates it, but this made it impossible
for the coordinator to participate in the auctions. Delegating the task of

58 Future perspectives

auctioneer to another agent (say, a sentinel) or changing the implementa-
tion, would most likely make the strategy a little more effective, since all
6 instead of 5 inspectors could participate.

Surveying
One could use the sentinels active surveying strategy for other agents, as
a very low priority item, for example just above ’random walk’, which is
the lowest priority action. Instead of moving randomly, the agent could
go to a neighbouring vertex, which has some unsurveyed edges. In the
next turn, if the agent still has nothing better to do, it could perform
a survey. On the other hand, it could also be beneficial to completely
stop using the survey action after having surveyed 640 edges and having
received achievement for doing so. At that point, most edges will have
been surveyed and the agents would typically use survey action in order
to discover value of a single edge, which may be considered a waste of time
at that point.

Surveying and inspecting
Although a quite precise window for when these strategies are effective
has been established, it may still be interesting to collect test data for
other factors - for example depending on the type of the map, number of
vertices/edges and thinning of the graph.

Exploring
A more sophisticated version of the explorers spreading strategy could be
implemented, taking in consideration more variables and special cases -
thus ensuring that the explorers spread out properly and do not mutually
lock themselves up.

Testing against other systems
Testing against the original system has provided some excellent statistical
data. Nonetheless, it may be beneficial to test against completely different
systems of other MAPC participants, for example GOAL-DTU. This is
because the changed system still mostly consists of the original strategies,
with the few additions and changes. Testing against a system utilizing
utterly different strategies would therefore be interesting.

Repairers
Having own repairers follow enemy saboteurs around (at a certain close
distance, so they are not easily disabled) could be implemented. By doing
so, one could ensure the repairers are very close when a friendly agent be-
comes disabled and can put it back into operation quickly. A disadvantage
of this strategy is that the repairers are unlikely to participate in defending
the zones, since they would be on the move constantly. It would be inter-
esting to see if benefits of being able to repair friendly agents faster would

9.2 AI and multi-agent systems 59

counterbalance the loss of points from the times when repairers cannot
participate in controlling larger zones.

Strategies for saboteurs
An example strategy to exploit could be to make the saboteurs seek out
the corners of the map and deliberately disturb enemies there. Corners of
the map are good places to conquer, as they require a smaller number of
agents to do so. Another option is to try organizing the saboteurs better,
for example by making sure they do not all stay in the same area of the
map, unless it is necessary.

Dijkstra vs BFS
Checking whether it is better to choose shortest paths (Dijkstra) and thus
consume least energy possible in moving to a destination, or to use BFS
and instead choose paths that are not necessarily cheapest, but consist of
fewest steps.

Admittedly, the whole contest platform and the multi-agent systems participat-
ing in it encompass a completely virtual and simulated environment scenario,
without any apparent practical use (apart from deepening the knowledge about
MAS etc.). This could give an impression that MAS are not suited for more
serious applications, but it is definitely not the case. The possibilities for us-
ing multi-agent programming in actual, useful applications are vast and have
already been utilized in many areas.

9.2 AI and multi-agent systems

Despite the notions of intelligent agents and multi-agent systems being relatively
new (compared to the age of computer science or AI research), numerous highly
diversified real world applications have been created. A few examples are 1:

Medical applications
A range of applications in medical care, for example helping the doctors to
produce a diagnosis, managing resource allocation and providing remote
healthcare [ISM10]. The remote healthcare seems particularly interesting.
The project Confidence 2 has developed a prototype of a system for mon-
itoring elderly patients living alone, both short-term (i.e. the patient falls

1This list does not aim to describe the systems’ specifics, but merely to illustrate that these
practical systems indeed do exist. For details, the reader is referred to the respective articles.

2http://www.confidence-eu.org/

http://www.confidence-eu.org/

60 Future perspectives

- the relatives/medical staff are alerted) and long term (i.e. changes in the
patients physical condition over a period of time) [KDM+11]. Another in-
teresting application is analysis of images in order to detect retinal blood
vessels and microaneurysms. It is based on agents ’exploring’ the images
pixel by pixel, communicating and being able to distinguish common pat-
terns [PMG+12, PVM+14].

Mass spectrometry
A mass spectrometry experiment consists of making several subsequent
test samples in order to achieve greater precision. The system is capa-
ble of performing an analysis of these independent samples of data and
combining them into a unified result [RJGPnS+10].

Portfolio management
Creating an optimal asset investment portfolio. It is based on agents
using different investment strategies, communicating with each other and
projecting the most desirable course of actions, which ensures the best
payoff-to-risk ratio [LAAM10].

Electric power systems management
Control, maintenance and management of large area electric power sys-
tems. Used for example in analysis of systems yet to be employed, in order
to identify hidden errors in the infrastructure and thus prevent possible
future mishaps. Also used in real time monitoring of the systems and
restoring them after a fault has happened [CDM12].

Extreme programming
A development environment that enforces use of good programming tech-
niques such as unit testing and supervises the entire process of version
control, submitting updates to the code and cooperation between devel-
opers [LHC06].

An international conference dedicated to practical applications of multi-agent
systems (PAAMS) is held on yearly basis. Some of the applications described
above have (amongst many others) been presented at the PAAMS conferences 3.
Another large, yearly conference in this field is the international conference on
autonomous agents and multi-agent systems (AAMAS) 4.
The presented examples support the assertion (see section 9.1) about possibili-
ties for using MAS in practice. They also show a general trend in the advances
within AI: the computers being able to perform increasingly difficult tasks, only
recently feasible to be done exclusively by humans. More and more tasks are
being computerised. While this is very often beneficial for the performance and

3http://www.paams.net/
4http://www.aamas-conference.org/

http://www.paams.net/
http://www.aamas-conference.org/

9.2 AI and multi-agent systems 61

cost-effectivity of the tasks themselves, it also has an arguably negative impact
on the society and its citizens. In a recent working paper [FO13], it is estimated
that up to almost 50% of jobs in the USA are at risk of being computerised in
the upcoming decades. The social impact of such occurrence would be immense.
Naturally, one ought to be very cautious with making any precise estimates and
assertions about the progress of technology (see quote 1.2). The tendency is,
nonetheless, clear - the technology progresses quickly and still more tasks are
subjected to computerisation.
The ability to express ideas in mentalistic notions (see section 2.2), as well as the
properties of agents (see section 2.1) make it possible to convey complex ideas
and perform complicated thought processes in a way not dissimilar to human
reasoning. Such approach appears to have an immense potential. The human-
ity is still far from fully simulating (or even completely comprehending) human
intelligence, but the artificial intelligence systems, regardless of technology and
programming paradigms used, become increasingly sophisticated. Multi-agent
programming is a growing and extremely promising area of AI research and is
bound to continue being subjected to a lot of work and development in the
upcoming years.

62 Future perspectives

Chapter 10

Conclusions

This chapter contains concluding remarks for the thesis.

10.1 The project

During the course of this project, our goals and expectations were fulfilled. We
gained a broad knowledge about artificial intelligence and multi-agent systems,
as well as the Jason programming platform. In the first few chapters of this
thesis, the theory and models pertaining to these subjects were laid out. This
theoretical knowledge had subsequently been applied to a practical implemen-
tation of a multi-agent system. The project had dealt with the multi-agent
programming contest and the system developed by its winners. By analysing
the code, we understood how this system works and what strategies it employs.
Possible improvements were identified and code was written to implement them.
Lastly, exhaustive testing, in order to ascertain the quality of the changes, was
performed.

64 Conclusions

10.2 The implementations and test results

The vigilant testing process provided conclusive data about the validity of the
new implementations. Some of the newly implemented strategies had several
versions. By visualizing and analysing their individual results, we believe that
the best ones were chosen for the final version of the system, which contained
all the successful new strategies. It turned out that the final version of the
system improved a number of specific system performance parameters; most
importantly, however, the overall performance and win rate had increased as
well.
Bearing the time constraints in mind, we are fully satisfied with the number of
tests performed for each version of the implementations and the quality of the
attained statistical data. An important matter was automating the process of
extracting the relevant data from simulation server output. A few scripts to
do just that, as well as visualize and present the data in a clear format, were
written by us. Finally, a number of further potential changes that could be
made in order to make the system even better, was determined and described.

Appendix A

UFSC Code

In this appendix, attached are some of the original UFSC system code files.
Since the full system consists of almost 100 separate files, totalling around 8500
lines of code, it was decided not include them all here; instead, only files in which
changes were made during the course of this project are listed. These changes
are shown in appendix B, while the full original code of the UFSC system is
available online [HZB+13].

A.1 Sentinel

The original code for the sentinel agents.

1 { inc lude ("mod . common . a s l ") }
2
3 +!wait_and_select_goal <− ! s e l e c t_goa l .
4 −!wait_and_select_goal [e r r o r (deadl ine_reached)] <− . p r i n t ("

Deadl ine reached ") ; ! s e l e c t_goa l .
5
6 +! s e l e c t_goa l : is_energy_goal
7 <− ! i n i t_goa l (r echarge) .
8 +! s e l e c t_goa l : i s_wait_repair_goal (V)
9 <− . p r i n t (" Waiting to be r epa i r ed . Recharging . . . ") ;

66 UFSC Code

10 ! i n i t_goa l (r echarge) .
11 +! s e l e c t_goa l : not canCome(ComeT) &

is_wait_repair_goal_nearby (V, Repairer)
12 <− . p r i n t (" Waiting to be r epa i r ed (nearby) . " , V , "

" , Repairer , " . Recharging . . . ") ;
13 ! i n i t_goa l (r echarge) .
14 +! s e l e c t_goa l : is_goto_repair_goal_nearby (V)
15 <− . p r i n t ("Goto to be r epa i r ed (nearby) . . . ") ;
16 ! i n i t_goa l (goto (V)) .
17
18 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment (D, Path)
19 <−
20 . p r i n t (" I have an appointment with some r e p a i r e r .

I ’m going to " , D, " us ing path : " , Path) ;
21 ! i n i t_goa l (gotoPath (Path)) .
22 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment_self (D, Path)
23 <−
24 . p r i n t (" I have an s e l f appointment with some

r e p a i r e r . I ’m going to " , D, " us ing path : " ,
Path) ;

25 ! i n i t_goa l (gotoPath (Path)) .
26 +! s e l e c t_goa l : i s_d i sab l ed & get_vertex_to_go_repair (D, Path)
27 <−
28 . p r i n t (" I ’m f o r e v e r a lone . I ’m going to " , D, "

us ing path : " , Path) ;
29 ! i n i t_goa l (gotoPath (Path)) .
30
31 +! s e l e c t_goa l : is_parry_goal
32 <− ! i n i t_goa l (parry) .
33 +! s e l e c t_goa l : is_survey_goal
34 <− ! i n i t_goa l (survey) .
35
36 +! s e l e c t_goa l : is_good_map_conquered <−
37 . p r i n t ("Good map conquered ! Stopped ! ") ;
38 ! i n i t_goa l (r echarge) .
39
40 /∗ Protect I s l and ∗/
41 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) <−
42 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here " ,

Ent ity) ;
43 ! i n i t_goa l (r echarge) .
44 +! s e l e c t_goa l : there_is_enemy_nearby_island_geral (Op) <−
45 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , Op, " to

f i nd some enemy i n s i d e ") ;
46 ! i n i t_goa l (goto (Op)) .

A.1 Sentinel 67

47 +! s e l e c t_goa l : get_vertex_to_go_attack_search_island_geral (D,
Path) <−

48 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , D, " us ing
" , Path , " to f i nd some enemy there ") ;

49 ! i n i t_goa l (gotoPath (Path)) .
50 /∗ End Protect I s l and ∗/
51
52 +! s e l e c t_goa l : going_to_outside_goal (V) <−
53 . p r i n t (" I ’m i n s i d e a r eg i on . I can expand to " , V) ;
54 ! i n i t_goa l (goto (V)) .
55
56 +! s e l e c t_goa l : can_expand_to (V) <−
57 . p r i n t (" I can expand to " , V) ;
58 ! i n i t_goa l (goto (V)) .
59
60 +! s e l e c t_goa l : is_goal_keep_aim_vertex
61 <−
62 . p r i n t (" I ’m at a p ivot ver tex . Recharging . . . ") ;
63 ! i n i t_goa l (r echarge) .
64
65 +! s e l e c t_goa l : is_goal_aim_vertex (Op)
66 <−
67 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , Op) ;
68 ! i n i t_goa l (goto (Op)) .
69
70 +! s e l e c t_goa l : is_goal_aim_vertex (D, Path)
71 <−
72 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
73 ! i n i t_goa l (gotoPath (Path)) .
74
75 // H i l l s
76 +! s e l e c t_goa l : can_expand_to_hill (V) <−
77 . p r i n t (" I ’m at a h i l l and I can expand to " , V) ;
78 ! i n i t_goa l (goto (V)) .
79
80 +! s e l e c t_goa l : i s_at_aim_posit ion_hi l l <−
81 . p r i n t (" Stop ! Stand s t i l l ! I ’m s e t t l e d at the h i l l ! ") ;
82 ! i n i t_goa l (r echarge) .
83
84 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (Op)
85 <−
86 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , Op) ;
87 ! i n i t_goa l (goto (Op)) .
88 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (D, Path)

68 UFSC Code

89 <−
90 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
91 ! i n i t_goa l (gotoPath (Path)) .
92
93
94
95 +! s e l e c t_goa l
96 <− ! i n i t_goa l (random_walk) .
97
98 /∗
99 ∗ These f unc t i on s must be dependent o f each kind o f agent

because they w i l l
100 ∗ need to share some in fo rmat ion with the other f r i e n d s o f

the same kind
101 ∗/
102 @do0 [atomic]
103 +!do (Act) :
104 step (S) & stepDone (S)
105 <−
106 . p r i n t ("ERROR! I a l r eady performed an ac t i on f o r t h i s s tep

! " , S) .
107
108 @do1 [atomic]
109 +!do (Act) :
110 true
111 <−
112 ! commitAction (Act) .
113
114 +! i n i t S p e c i f i c .
115 +! proce s sBe fo reStep (S) .
116 +! proce s sAf t e rS t ep (S) <−
117 ! bu i ldP ivo t s (S) ;
118 ! bu i l d I s l a nd s (S) .
119
120 /∗
121 ∗ CALCULATE THE BEST PLACES
122 ∗/
123 +! bu i ldP ivo t s (S) :
124 (not l a s tCa l cP ivo t (_) & S >= 17 | l a s tCa l cP ivo t (N) & S − N

>= 17) & .my_name(MyName) & play (MyName,
s ent ine lLeade r , " grMain ")

125 <−
126 ! determinePivots ;
127 −+la s tCa l cP ivo t (S) .
128 +! bu i ldP ivo t s (S) .
129

A.1 Sentinel 69

130 +! bu i l d I s l a nd s (S) :
131 not h i l l (_) & goa lS ta t e (_, d e f i n e I n i t i a l P i v o t s ,_,_,

s a t i s f i e d) & (not l a s tCa l c I s l a nd (_) & S >= 23 |
l a s tCa l c I s l a nd (N) & S − N >= 23) & .my_name(MyName) &
play (MyName, s ent ine lLeade r , " grMain ")

132 <−
133 ! de t e rmine I s l ands ;
134 −+la s tCa l c I s l a nd (S) .
135 −! b u i l d I s l a nd s [e r r o r (ErrorCode) , error_msg (MsgError)] <−
136 . p r i n t (" Error occurred to bu i ld i s l a nd s ! " , ErrorCode , "

−> " , MsgError) .
137 +! bu i l d I s l a nd s (S) .

70 UFSC Code

A.2 Inspector

The original code for the inspector agents.

1 { inc lude ("mod . common . a s l ") }
2
3 //There i s no p r i o r i t y because one o f them can f a i l
4 i s_inspect_goa l (V, Entity) :− not i s_d i sab l ed & po s i t i o n (MyV)

& myTeam(MyTeam) & v i s i b l eEn t i t y (Entity , V, Team, _) &
Team \== MyTeam & ia . edge (MyV,V,_)

5 & not entityType (Entity , _, _, _, _) .
6
7 i s_inspect_goa l (Ent ity) :− not i s_d i sab l ed & po s i t i o n (MyV) &

myTeam(MyTeam) & v i s i b l eEn t i t y (Entity , MyV, Team, _) &
Team \== MyTeam

8 & not entityType (Entity , _, _, _, _) .
9

10 +!wait_and_select_goal <− ! s e l e c t_goa l .
11 −!wait_and_select_goal [e r r o r (deadl ine_reached)] <− . p r i n t ("

Deadl ine reached ") ; ! s e l e c t_goa l .
12
13 +! s e l e c t_goa l : is_energy_goal
14 <− ! i n i t_goa l (r echarge) .
15 +! s e l e c t_goa l : i s_wait_repair_goal (V)
16 <− . p r i n t (" Waiting to be r epa i r ed . Recharging . . . ") ;
17 ! i n i t_goa l (r echarge) .
18 +! s e l e c t_goa l : not canCome(ComeT) &

is_wait_repair_goal_nearby (V, Repairer)
19 <− . p r i n t (" Waiting to be r epa i r ed (nearby) . " , V , "

" , Repairer , " . Recharging . . . ") ;
20 ! i n i t_goa l (r echarge) .
21 +! s e l e c t_goa l : is_goto_repair_goal_nearby (V)
22 <− . p r i n t ("Goto to be r epa i r ed (nearby) . . . ") ;
23 ! i n i t_goa l (goto (V)) .
24
25 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment (D, Path)
26 <−
27 . p r i n t (" I have an appointment with some r e p a i r e r .

I ’m going to " , D, " us ing path : " , Path) ;
28 ! i n i t_goa l (gotoPath (Path)) .
29 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment_self (D, Path)
30 <−
31 . p r i n t (" I have an s e l f appointment with some

r e p a i r e r . I ’m going to " , D, " us ing path : " ,
Path) ;

A.2 Inspector 71

32 ! i n i t_goa l (gotoPath (Path)) .
33 +! s e l e c t_goa l : i s_d i sab l ed & get_vertex_to_go_repair (D, Path)
34 <−
35 . p r i n t (" I ’m f o r e v e r a lone . I ’m going to " , D, "

us ing path : " , Path) ;
36 ! i n i t_goa l (gotoPath (Path)) .
37
38 +! s e l e c t_goa l : i s_inspect_goa l (Ent ity)
39 <−
40 . p r i n t (" I ’m going to i n sp e c t " , Ent ity) ;
41 ! i n i t_goa l (i n sp e c t) .
42
43 +! s e l e c t_goa l : is_good_map_conquered <−
44 . p r i n t ("Good map conquered ! Stopped ! ") ;
45 ! i n i t_goa l (r echarge) .
46
47 /∗ Protect I s l and ∗/
48 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) &

is_survey_goal <−
49 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here (

survey) " , Entity) ;
50 ! i n i t_goa l (survey) .
51 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) <−
52 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here " ,

Ent ity) ;
53 ! i n i t_goa l (r echarge) .
54 +! s e l e c t_goa l : there_is_enemy_nearby_island_geral (Op) <−
55 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , Op, " to

f i nd some enemy i n s i d e ") ;
56 ! i n i t_goa l (goto (Op)) .
57 +! s e l e c t_goa l : get_vertex_to_go_attack_search_island_geral (D,

Path) <−
58 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , D, " us ing

" , Path , " to f i nd some enemy there ") ;
59 ! i n i t_goa l (gotoPath (Path)) .
60 /∗ End Protect I s l and ∗/
61
62 +! s e l e c t_goa l : i s_inspect_goa l (Op, Entity)
63 <−
64 . p r i n t (" I ’m going to " , Op, " to i n sp e c t " , Entity) ;
65 ! i n i t_goa l (goto (Op)) .
66 +! s e l e c t_goa l : is_survey_goal & not i s_leave_goal
67 <− ! i n i t_goa l (survey) .
68
69 +! s e l e c t_goa l : going_to_outside_goal (V) <−
70 . p r i n t (" I ’m i n s i d e a r eg i on . I can expand to " , V) ;
71 ! i n i t_goa l (goto (V)) .

72 UFSC Code

72
73 +! s e l e c t_goa l : can_expand_to (V) <−
74 . p r i n t (" I can expand to " , V) ;
75 ! i n i t_goa l (goto (V)) .
76
77 +! s e l e c t_goa l : is_goal_keep_aim_vertex
78 <−
79 . p r i n t (" I ’m at a p ivot ver tex . Recharging . . . ") ;
80 ! i n i t_goa l (r echarge) .
81
82 +! s e l e c t_goa l : is_goal_aim_vertex (Op)
83 <−
84 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , Op) ;
85 ! i n i t_goa l (goto (Op)) .
86 +! s e l e c t_goa l : is_goal_aim_vertex (D, Path)
87 <−
88 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
89 ! i n i t_goa l (gotoPath (Path)) .
90 // H i l l s
91 +! s e l e c t_goa l : can_expand_to_hill (V) <−
92 . p r i n t (" I ’m at a h i l l and I can expand to " , V) ;
93 ! i n i t_goa l (goto (V)) .
94
95 +! s e l e c t_goa l : i s_at_aim_posit ion_hi l l <−
96 . p r i n t (" Stop ! Stand s t i l l ! I ’m s e t t l e d at the h i l l ! ") ;
97 ! i n i t_goa l (r echarge) .
98
99 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (Op)

100 <−
101 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , Op) ;
102 ! i n i t_goa l (goto (Op)) .
103 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (D, Path)
104 <−
105 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
106 ! i n i t_goa l (gotoPath (Path)) .
107
108 +! s e l e c t_goa l
109 <− ! i n i t_goa l (random_walk) .
110
111 +inspec t edEnt i ty (Entity , Team, Type , V, Energy , MaxEnergy ,

Health , MaxHealth , Strength , VisRange) :
112 step (S) & not myTeam(Team) & a r t i f a c t (i n s p e c tA r t i f a c t ,

I d I n s p e c tA r t i f a c t)

A.2 Inspector 73

113 <−
114 addEntity (Entity , Type , MaxHealth , Strength , VisRange) [

a r t i f a c t_ i d (I d I n sp e c tA r t i f a c t)] ;
115 . p r i n t ("The en t i t y " , Entity , " was in spec t ed Energy (" ,

Energy , " ," , MaxEnergy , ") Health (" , Health , " ," ,
MaxHealth , ") Strength " , Strength) .

116 /∗
117 ∗ These f unc t i on s must be dependent o f each kind o f agent

because they w i l l
118 ∗ need to share some in fo rmat ion with the other f r i e n d s o f

the same kind
119 ∗/
120 @do0 [atomic]
121 +!do (Act) :
122 step (S) & stepDone (S)
123 <−. p r i n t ("ERROR! I a l r eady performed an ac t i on f o r t h i s s tep !

" , S) .
124
125 @do1 [atomic]
126 +!do (Act) :
127 true
128 <− ! commitAction (Act) .
129
130 +! i n i t S p e c i f i c .
131 +! proce s sBe fo reStep (S) .
132 +! proce s sAf t e rS t ep (S) .

74 UFSC Code

A.3 Explorer

The original code for the explorer agents.

1 { inc lude ("mod . common . a s l ") }
2
3 // Ver i fy i f the exp l o r e r i s at an unprobed vertex , and he i s

the exp l o r e r with the h i ghe s t p r i o r i t y when there are
other e xp l o r e r s at the same ver tex

4 is_probe_goal :− not i s_d i sab l ed & po s i t i o n (MyV) & not i a .
probedVertex (MyV,_) &

5 myTeam(MyTeam) & myNameInContest (MyName) &
6 .my_name(MyAgentName) &
7 not (
8 v i s i b l eEn t i t y (Entity , MyV, MyTeam, normal) &
9 f r i e nd (AgentName , Entity , exp lo re r , _) &

10 Entity \== MyName &
11 p r i o r i t yEn t i t y (AgentName , MyAgentName)
12) .
13 is_probe_goal (Op) :− not i s_d i sab l ed &

there_is_unprobed_vertex_next_to_mine (Op) .
14
15
16 /∗
17 ∗ Probe i n s i d e h i l l j u s t s p e c i a l e xp l o r e r s
18 ∗/
19 there_is_unprobed_vertex_next_to_mine_special (Op) :− .my_name(

MyName) & play (MyName, spe c i a lExp l o r e r , "
g rSpec i a lExp l o ra t i on ") &

20 not i s_d i sab l ed & step (S) & po s i t i o n (MyV) & myTeam(
MyTeam) & h i l l (Neighborhood) &

21 . s e t o f (V,
22 i a . edge (MyV,V,_) &
23 . member(V, Neighborhood) &
24 not i a . probedVertex (V, _) &
25 not (v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
26 f r i e nd (_, Entity , exp lo re r , _))
27 & not nextStepExplorer (_, V, S) , Options)
28 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
29 . nth (math . random(TotalOptions) , Options , Op) .
30
31 get_path_to_unprobed_probe_special (D, Path) :−
32 .my_name(MyName) & play (MyName, spe c i a lExp l o r e r , "

g rSpec i a lExp l o ra t i on ") &
33 not i s_d i sab l ed &
34 po s i t i o n (MyV) &
35 h i l l (Neighborhood) &

A.3 Explorer 75

36 . s e t o f (Vertex ,
37 . member(Vertex , Neighborhood) &
38 i a . probedVertex (Vertex ,−1) &
39 not nextStepExplorer (_, Vertex , _)
40 , L i s t) &
41 not . empty (L i s t) &
42 i a . shortestPathDijkstraCompleteTwo (MyV, List , D, Path ,

Lenght) &
43 Lenght > 2 .
44 /∗
45 ∗ End s p e c i a l e xp l o r e r s
46 ∗/
47
48
49
50 /∗
51 ∗ ##
52 ∗ Check i f the re i s some unprobed ver tex around mine
53 ∗ ##
54 ∗/
55 //Test i f the ver tex i s not probed and there i s other

exp l o r e r the re and a l s o no one o f the other e xp l o r e r s
w i l l go there in t h i s s tep

56 // F i r s t t ry the v e r t i c e s at the h i l l
57 there_is_unprobed_vertex_next_to_mine (Op) :− s tep (S) &

po s i t i o n (MyV) & maxWeight (INF) & myTeam(MyTeam) & h i l l (
Neighborhood) &

58 . s e t o f (V,
59 i a . edge (MyV,V,W) & W \== INF &
60 . member(V, Neighborhood) &
61 not i a . probedVertex (V, _) &
62 not (v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
63 f r i e nd (_, Entity , exp lo re r , _))
64 & not nextStepExplorer (_, V, S) , Options)
65 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
66 . nth (math . random(TotalOptions) , Options , Op) .
67 there_is_unprobed_vertex_next_to_mine (Op) :− po s i t i o n (MyV) &

i n f i n i t e (INF) & myTeam(MyTeam) & h i l l (Neighborhood) &
68 . s e t o f (V,
69 i a . edge (MyV,V,W) & W \== INF &
70 . member(V, Neighborhood) &
71 not i a . probedVertex (V, _) &
72 not (v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
73 f r i e nd (_, Entity , exp lo re r , _))
74 & not nextStepExplorer (_, V, S) , Options)
75 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
76 . nth (math . random(TotalOptions) , Options , Op) .

76 UFSC Code

77
78 //Test i f the ver tex i s not probed and there i s other exp l o r e r

the re and a l s o no one o f the other e xp l o r e r s w i l l go
the re in t h i s s tep

79 there_is_unprobed_vertex_next_to_mine (Op) :− s tep (S) &
po s i t i o n (MyV) & maxWeight (INF) & myTeam(MyTeam) &

80 . s e t o f (V,
81 i a . edge (MyV,V,W) & W \== INF &
82 not i a . probedVertex (V, _) &
83 not (v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
84 f r i e nd (_, Entity , exp lo re r , _))
85 & not nextStepExplorer (_, V, S) , Options)
86 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
87 . nth (math . random(TotalOptions) , Options , Op) .
88 there_is_unprobed_vertex_next_to_mine (Op) :− po s i t i o n (MyV) &

i n f i n i t e (INF) & myTeam(MyTeam) &
89 . s e t o f (V,
90 i a . edge (MyV,V,W) & W \== INF &
91 not i a . probedVertex (V, _) &
92 not (v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
93 f r i e nd (_, Entity , exp lo re r , _)) &
94 not nextStepExplorer (_, V, S) , Options)
95 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
96 . nth (math . random(TotalOptions) , Options , Op) .
97
98 //Probe h i l l s f i r s t
99 get_path_to_unprobed_probe (D, Path) :−

100 not i s_d i sab l ed &
101 po s i t i o n (MyV) &
102 h i l l (Neighborhood) &
103 . s e t o f (Vertex , . member(Vertex , Neighborhood) & ia .

probedVertex (Vertex ,−1) &
104 not nextStepExplorer (_, Vertex , _) , L i s t) &
105 not . empty (L i s t) &
106 i a . shortestPathDijkstraCompleteTwo (MyV, List , D, Path ,

Lenght) &
107 Lenght > 2 .
108
109 //Try to probe some f a r vertex , i t i s b e t t e r
110 get_path_to_unprobed_probe (D, Path) :−
111 not i s_d i sab l ed & po s i t i o n (MyV) &
112 . s e t o f (Vertex , i a . probedVertex (Vertex ,−1) &
113 not nextStepExplorer (_, Vertex , _) , L i s t) &
114 not . empty (L i s t) &
115 i a . shortestPathDijkstraCompleteTwo (MyV, Lis t , D, Path ,

Lenght) &
116 Lenght > 2 .

A.3 Explorer 77

117
118
119 +!wait_and_select_goal :
120 not numberWaits (_)
121 <−
122 +numberWaits (0) ;
123 ! wait_and_select_goal .
124
125 +!wait_and_select_goal :
126 (numberWaits (K) & K >= 15) | s tep (0)
127 <−
128 . p r i n t (" I can ’ t wait anymore ! ") ;
129 −+numberWaits (0) ;
130 ! s e l e c t_goa l .
131
132 +!wait_and_select_goal :
133 .my_name(MyName) & number_agents_higher_priority_same_type

(MyName, NumberRequired) &
134 step (S) & . count (nextStepExplorer (_, _, S) , Number) &
135 Number < NumberRequired &
136 numberWaits (K)
137 <−
138 . wait (50) ;
139 −+numberWaits (K+1) ;
140 ! wait_and_select_goal .
141 +!wait_and_select_goal <− ! s e l e c t_goa l .
142
143 +! s e l e c t_goa l : is_energy_goal
144 <− ! i n i t_goa l (r echarge) .
145 +! s e l e c t_goa l : i s_wait_repair_goal (V)
146 <− . p r i n t (" Waiting to be r epa i r ed . Recharging . . . ") ;
147 ! i n i t_goa l (r echarge) .
148 +! s e l e c t_goa l : not canCome(ComeT) &

is_wait_repair_goal_nearby (V, Repairer)
149 <− . p r i n t (" Waiting to be r epa i r ed (nearby) . " , V , "

" , Repairer , " . Recharging . . . ") ;
150 ! i n i t_goa l (r echarge) .
151 +! s e l e c t_goa l : is_goto_repair_goal_nearby (V)
152 <− . p r i n t ("Goto to be r epa i r ed (nearby) . . . ") ;
153 ! i n i t_goa l (goto (V)) .
154
155 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment (D, Path)
156 <−
157 . p r i n t (" I have an appointment with some r e p a i r e r .

I ’m going to " , D, " us ing path : " , Path) ;
158 ! i n i t_goa l (gotoPath (Path)) .

78 UFSC Code

159 +! s e l e c t_goa l : i s_d i sab l ed &
get_vertex_to_go_be_repaired_appointment_self (D, Path)

160 <−
161 . p r i n t (" I have an s e l f appointment with some

r e p a i r e r . I ’m going to " , D, " us ing path : " ,
Path) ;

162 ! i n i t_goa l (gotoPath (Path)) .
163 +! s e l e c t_goa l : i s_d i sab l ed & get_vertex_to_go_repair (D, Path)
164 <−
165 . p r i n t (" I ’m f o r e v e r a lone . I ’m going to " , D, "

us ing path : " , Path) ;
166 ! i n i t_goa l (gotoPath (Path)) .
167
168 +! s e l e c t_goa l : is_probe_goal & not i s_leave_goal
169 <− ! i n i t_goa l (probe) .
170
171 +! s e l e c t_goa l : is_good_map_conquered <−
172 . p r i n t ("Good map conquered ! Stopped ! ") ;
173 ! i n i t_goa l (r echarge) .
174
175 /∗ Spe c i a l e xp l o r e r s ∗/
176 +! s e l e c t_goa l : there_is_unprobed_vertex_next_to_mine_special (

Op) <−
177 . p r i n t (" I ’m a s p e c i a l e xp l o r e r and I ’m going to probe " ,

Op) ;
178 ! i n i t_goa l (goto (Op)) .
179 +! s e l e c t_goa l : get_path_to_unprobed_probe_special (D, Path) <−
180 . p r i n t (" I ’m a s p e c i a l e xp l o r e r and I ’m going to probe " , D

, " us ing " , Path) ;
181 ! i n i t_goa l (gotoPath (Path)) .
182 /∗ End s p e c i a l e xp l o r e r s ∗/
183
184 +! s e l e c t_goa l : is_probe_goal (Op)
185 <− ! i n i t_goa l (goto (Op)) .
186 +! s e l e c t_goa l : get_path_to_unprobed_probe (D, Path)
187 <− ! i n i t_goa l (gotoPath (Path)) .
188 +! s e l e c t_goa l : is_probe_goal //Probe even i f I need to l eave
189 <− ! i n i t_goa l (probe) .
190
191
192 /∗ Protect I s l and ∗/
193 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) &

is_survey_goal <−
194 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here (

survey) " , Entity) ;
195 ! i n i t_goa l (survey) .
196 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) <−

A.3 Explorer 79

197 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here " ,
Ent ity) ;

198 ! i n i t_goa l (r echarge) .
199 +! s e l e c t_goa l : there_is_enemy_nearby_island_geral (Op) <−
200 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , Op, " to

f i nd some enemy i n s i d e ") ;
201 ! i n i t_goa l (goto (Op)) .
202 +! s e l e c t_goa l : get_vertex_to_go_attack_search_island_geral (D,

Path) <−
203 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , D, " us ing

" , Path , " to f i nd some enemy there ") ;
204 ! i n i t_goa l (gotoPath (Path)) .
205 /∗ End Protect I s l and ∗/
206
207 +! s e l e c t_goa l : going_to_outside_goal (V) <−
208 . p r i n t (" I ’m i n s i d e a r eg i on . I can expand to " , V) ;
209 ! i n i t_goa l (goto (V)) .
210
211 +! s e l e c t_goa l : can_expand_to (V) <−
212 . p r i n t (" I can expand to " , V) ;
213 ! i n i t_goa l (goto (V)) .
214
215 +! s e l e c t_goa l : is_goal_keep_aim_vertex
216 <−
217 . p r i n t (" I ’m at a p ivot ver tex . Recharging . . . ") ;
218 ! i n i t_goa l (r echarge) .
219
220 +! s e l e c t_goa l : is_goal_aim_vertex (Op)
221 <−
222 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , Op) ;
223 ! i n i t_goa l (goto (Op)) .
224 +! s e l e c t_goa l : is_goal_aim_vertex (D, Path)
225 <−
226 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
227 ! i n i t_goa l (gotoPath (Path)) .
228
229 // H i l l s
230 +! s e l e c t_goa l : can_expand_to_hill (V) <−
231 . p r i n t (" I ’m at a h i l l and I can expand to " , V) ;
232 ! i n i t_goa l (goto (V)) .
233
234 +! s e l e c t_goa l : i s_at_aim_posit ion_hi l l <−
235 . p r i n t (" Stop ! Stand s t i l l ! I ’m s e t t l e d at the h i l l ! ") ;
236 ! i n i t_goa l (r echarge) .
237

80 UFSC Code

238 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (Op)
239 <−
240 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , Op) ;
241 ! i n i t_goa l (goto (Op)) .
242 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (D, Path)
243 <−
244 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
245 ! i n i t_goa l (gotoPath (Path)) .
246
247 +! s e l e c t_goa l
248 <− ! i n i t_goa l (random_walk) .
249
250 /∗
251 ∗ Percept a new probed ver tex and share with f r i e n d s
252 ∗/
253 +probedVertex (V, Value) [source (percept)] :
254 t rue
255 <−
256 . p r i n t (" Vertex probed : " , V, " with value " , Value) ;
257 i a . setVertexValue (V, Value) ;
258 ! broadcastProbe (V, Value) .
259 +probedVertex (V, Value) [source (s e l f)] : t rue <− . a bo l i s h (

probedVertex (V, Value)) .
260
261 +! broadcastProbe (V, Value) :
262 . f i n d a l l (Agent , f r i e nd (Agent , _, _, _) , SetAgents)
263 <−
264 . p r i n t (" Sending probed ver tex in broadcast " , V, " " ,

Value) ;
265 . send (SetAgents , t e l l , probedVertex (V, Value)) .
266 +! broadcastProbe (V, Value) .
267
268 /∗
269 ∗ These f unc t i on s must be dependent o f each kind o f agent

because they w i l l
270 ∗ need to share some in fo rmat ion with the other f r i e n d s o f

the same kind
271 ∗/
272 +!do (Act) :
273 step (S) & stepDone (S)
274 <−
275 . p r i n t ("ERROR! I a l r eady performed an ac t i on f o r t h i s s tep

! " , S) .
276
277 +!do (Act) :

A.3 Explorer 81

278 step (S) & .my_name(MyName) &
get_agents_lower_priority_same_type (MyName, SetAgents)

279 & i s_d i sab l ed
280 <−
281 . p r i n t (" Sending ac t i on to " , S , " " , SetAgents) ;
282 . send (SetAgents , t e l l , nextStepExplorer (MyName, none , S)) ;
283 ! commitAction (Act) ;
284 ! ! c l earNextStepExplorer .
285
286 +!do (goto (V)) :
287 step (S) & .my_name(MyName) &

get_agents_lower_priority_same_type (MyName, SetAgents)
288 <−
289 . p r i n t (" Sending ac t i on to " , S , " " , SetAgents) ;
290 . send (SetAgents , t e l l , nextStepExplorer (MyName, V, S)) ;
291 ! commitAction (goto (V)) ;
292 ! ! c l earNextStepExplorer .
293
294 +!do (Act) :
295 step (S) & po s i t i o n (V) & .my_name(MyName) &

get_agents_lower_priority_same_type (MyName, SetAgents)
296 <−
297 . p r i n t (" Sending ac t i on to " , S , " " , SetAgents) ;
298 . send (SetAgents , t e l l , nextStepExplorer (MyName, V, S)) ;
299 ! commitAction (Act) ;
300 ! ! c l earNextStepExplorer .
301
302 +! c l earNextStepExplorer <−
303 . abo l i s h (nextStepExplorer (_, _, _)) .
304
305 +! i n i t S p e c i f i c .
306 +! proce s sBe fo reStep (S) .
307 +! proce s sAf t e rS t ep (S) <−
308 ! ! ca l cu la teTota lSumVert i c e s ;
309 ! bui ldAreas (S) .
310
311 /∗
312 ∗ CALCULATE THE BEST PLACES
313 ∗/
314 +! bui ldAreas (S) :
315 goa lS ta t e (_, conc ludeFirstPhase ,_,_, enabled) & ob l i g a t i o n (

MyName,_Norm, achieved (_Scheme , conc ludeFirstPhase ,_) ,_)
&

316 (not las tCalcCoverage (_) & S >= 7 | las tCa lcCoverage (N) &
S − N >= 13) & .my_name(MyName)

317 <−
318 ! d e t e rm ineH i l l s ;

82 UFSC Code

319 −+lastCalcCoverage (S) .
320 +! bui ldAreas (S) .
321
322 /∗ Update the sum of a l l v e r t i c e s ∗/
323 +! ca l cu la teTota lSumVert i ce s :
324 .my_name(MyName) & play (MyName, exp lorerLeader , " grMain ") &

ia . sumVertices (Total) &
325 . f i n d a l l (Agent , f r i e nd (Agent , _, _, _) , SetAgents)
326 <−
327 . p r i n t (" Ca l cu l a t ing the sum of a l l v e r t i c e s : " , Total) ;
328 ! updateTotalSumVertices (Total) ;
329 . send (SetAgents , achieve , updateTotalSumVertices (Total)) .
330 +! ca l cu la teTota lSumVert i ce s .

A.4 Common rules 83

A.4 Common rules

Prolog-like rules shared by all agents are located in this file.

1 // Test i f I need energy
2 is_energy_goal :− energy (MyE) & minEnergy (Min) & MyE < Min
3 |
4 .my_name(MyName) & f r i e nd (MyName, _, r epa i r e r , _) &

i s_d i sab l ed & energy (MyE) & MyE < 3
5 |
6 .my_name(MyName) & f r i e nd (MyName, _, saboteur , _) & energy (

MyE) & minEnergy (Min) & visRange (Vis) & Vis > 1 & MyE <
5 . //4 i s the max d i s t anc e that saboteur s attack

7
8 // Some edge to adjacent ver tex i s not surveyed
9 is_survey_goal :− not i s_d i sab l ed & po s i t i o n (MyV) &

10 (
11 i n f i n i t e (INF) & ia . edge (MyV,_, INF)
12 |
13 maxWeight (MAXWEIGHT) & ia . edge (MyV,_,MAXWEIGHT)
14) .
15
16 // Test i f the agent i s d i s ab l ed
17 i s_d i sab l ed :− (hea l th (MyHealth) [source (percept)] | hea l th (

MyHealth) [source (s e l f)]) & MyHealth <= 0 .
18
19 // Check i f Agent1 has h igher p r i o r i t y than Agent2
20 p r i o r i t yEn t i t y (Agent1 , Agent2) :− f r i e nd (Agent1 , _, _,

P r i o r i t y 1) &
21 f r i e nd (Agent2 , _, _, P r i o r i t y 2) &
22 Pr i o r i t y 1 > Pr i o r i t y 2 .
23
24
25 // Number o f agents h igher p r i o r i t y
26 number_agents_higher_priority_same_type (Agent , C) :−
27 . count (f r i e nd (Agent , _, Type , P r i o r i t y) &
28 f r i e nd (Agent2 , _, Type , P r i o r i t y 2) &
29 P r i o r i t y > Pr io r i ty2 , C) .
30
31 // Get the s e t o f agents with lower p r i o r i t y
32 get_agents_lower_priority_same_type (Agent , SetAgents) :−
33 . f i n d a l l (Agent2 , f r i e nd (Agent , _, Type , P r i o r i t y) &
34 f r i e nd (Agent2 , _, Type , P r i o r i t y 2) &
35 P r i o r i t y < Pr io r i ty2 , SetAgents) .
36
37 // Test i f the re i s no more v e r t i c e s to probe
38 noMoreVertexToProbe :− not i a . thereIsUnprobedVertex .

84 UFSC Code

39
40 /∗
41 ∗ I f I ’m at some ver tex with an enemy saboteur , so I count

how many f r i e n d s are the re too .
42 ∗ I choose to l eave or to parry us ing p r obab i l i t y .
43 ∗ The p r obab i l i t y to execute parry i s : 1 . 0 / N, where N i s

the amount o f f r i e n d s
44 ∗/
45 is_parry_goal :− not i s_d i sab l ed & po s i t i o n (MyV) & myTeam(

MyTeam)
46 & v i s i b l eEn t i t y (Entity , MyV, Team, normal) &
47 Team \== MyTeam & entityType (Entity , " Saboteur " , _, _, _)

&
48 there_is_more_enemies_than_friends (MyV) &
49 . count (v i s i b l eEn t i t y (_, MyV, MyTeam, normal) , N) &
50 . random(K) & K <= (1 . 0 / N) .
51 there_is_more_enemies_than_friends (V) :−
52 myTeam(MyTeam) &
53 . count ((v i s i b l eEn t i t y (Entity , V, MyTeam, normal)
54 & f r i e nd (_, Entity , saboteur , _)) , NFriend) &
55 . count ((v i s i b l eEn t i t y (EntityEnemy , V, Team, normal)
56 & Team \== MyTeam & entityType (EntityEnemy , "Saboteur " , _, _

, _)) , NEnemy) &
57 NEnemy > NFriend .
58 //That ’ s the same idea f o r agents who can ’ t parry , but they

need to l eave
59 is_leave_goal :− not i s_d i sab l ed & po s i t i o n (MyV) & myTeam(

MyTeam)
60 & v i s i b l eEn t i t y (Entity , MyV, Team, normal) &
61 Team \== MyTeam & entityType (Entity , " Saboteur " , _, _,

_) &
62 there_is_more_enemies_than_friends (MyV) .
63
64 //Check i f the re are v i s i b l e saboteur s at some ver tex
65 there_are_fr iends_saboteurs_at (V) :−
66 myTeam(MyTeam) &
67 myNameInContest (MyName) &
68 v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
69 MyName \== Entity &
70 f r i e nd (_, Entity , saboteur , _) .
71
72 there_are_fr iends_saboteurs_at (V) :−
73 .my_name(MyAgentName) &
74 f r i e nd (AgentName , _, saboteur , Id) & MyAgentName

\== AgentName & ia . getAgentPos i t ion (Id , V) .
75
76 //Check i f the re are v i s i b l e saboteur s near at some ver tex

A.4 Common rules 85

77 there_are_fr iends_saboteurs_near (U) :−
78 .my_name(MyAgentName) &
79 myNameInContest (MyName) &
80 myTeam(MyTeam) &
81 (
82 (
83 v i s i b l eEn t i t y (Entity , U, MyTeam, _) & MyName \==

Entity & f r i e nd (_, Entity , saboteur , _)
84 |
85 f r i e nd (AgentName , _, saboteur , Id) & MyAgentName

\== AgentName & ia . getAgentPos i t ion (Id , U)
86)
87 |
88 i a . edge (U,V,_) &
89 (
90 v i s i b l eEn t i t y (Entity , V, MyTeam, _) & MyName \==

Entity & f r i e nd (_, Entity , saboteur , _)
91 |
92 f r i e nd (AgentName , _, saboteur , Id) & MyAgentName

\== AgentName & ia . getAgentPos i t ion (Id , V)
93)
94) .
95
96 // Ver i fy i f the re i s some dangerous enemies at ver tex Op. A

dangerous enemy i s an unknown enemy or a Saboteur
97 there_is_enemy_at (Op) :−
98 myTeam(MyTeam) &
99 v i s i b l eEn t i t y (Entity , Op, Team, normal) &

100 Team \== MyTeam &
101 (entityType (Entity , " Saboteur " , _, _, _) | not entityType (

Entity , _, _, _, _)) .
102
103 // Ver i fy i f the re i s any kind o f enemy at ver tex Op
104 there_is_any_enemy_at (Op) :−
105 myTeam(MyTeam) &
106 v i s i b l eEn t i t y (Entity , Op, Team, normal) &
107 Team \== MyTeam.
108 there_is_any_enemy_at (Op) :−
109 i a . vis ib leEnemy (Entity , Op) .
110
111 // Ver i fy i f the re i s some f r i e nd at ver tex Op
112 there_is_fr iend_at (Op) :− myTeam(MyTeam) & v i s i b l eEn t i t y (

Entity , Op, MyTeam, normal) .
113 there_is_fr iend_at (Op) :−
114 .my_name(MyAgentName) &
115 f r i e nd (AgentName , _, _, Id) &
116 MyAgentName \== AgentName &

86 UFSC Code

117 i a . getAgentPos i t ion (Id , Op) .
118
119 is_good_map_conquered :− s tep (S) & S > 300 & is_free_to_walk &

sumVertices (Total) & zonesScore (Score) & Score >= Total ∗
0 .45 & at_some_good_zone_score (0 . 3 4) .

120 is_good_map_conquered :− s tep (S) & S > 150 & is_free_to_walk &
sumVertices (Total) & zonesScore (Score) & Score >= Total ∗
0 .47 & at_some_good_zone_score (0 . 3 5) .

121 is_good_map_conquered :− s tep (S) & S > 80 & is_free_to_walk &
sumVertices (Total) & zonesScore (Score) & Score >= Total ∗
0 .49 & at_some_good_zone_score (0 . 3 5) .

122 is_good_map_conquered :− s tep (S) & S > 25 & is_free_to_walk &
sumVertices (Total) & zonesScore (Score) & Score >= Total ∗
0 .55 & at_some_good_zone_score (0 . 3 5) .

123
124 at_some_good_zone_score (Perc) :− not i s_d i sab l ed & zonesScore (

Score) & zoneScore (MyZoneScore) & (MyZoneScore / Score) >=
Perc .

125
126 there_are_enemies_saboteurs_near (U) :−
127 .my_name(MyAgentName) &
128 myNameInContest (MyName) &
129 myTeam(MyTeam) &
130 (
131 (
132 v i s i b l eEn t i t y (Entity , U, Team, _) & Team \==

MyTeam & entityType (Entity , " Saboteur " , _, _,
_)

133 |
134 i a . vis ib leEnemy (Entity , U) & entityType (Entity , "

Saboteur " , _, _, _)
135)
136 |
137 i a . edge (U,V,_) &
138 (
139 v i s i b l eEn t i t y (Entity , V, Team, _) & Team \==

MyTeam & entityType (Entity , " Saboteur " , _, _,
_)

140 |
141 i a . vis ib leEnemy (Entity , V) & entityType (Entity , "

Saboteur " , _, _, _)
142)
143) .

A.5 New step 87

A.5 New step

Code in this file is responsible for handling each new step of the simulation.

1 +step (S) :
2 s t ep s (S+1) & .my_name(i n sp e c t o r 1)
3 <−
4 . p r i n t (" Current s tep i s " , S , " the l a s t one ! I ’m

in spe c t o r 1 and I ’m doing noAction on the l a s t s tep ! ") ;
5 ! f i n i s hS imu l a t i on .
6
7 +step (S) :
8 s t ep s (S+1) | (l a s t S t ep (LastS) & LastS > S)
9 <−

10 . p r i n t (" Current s tep i s " , S , " the l a s t one ! ") ;
11 . wait (100) ; // wait a b i t because I can r e c e i v e more

in fo rmat ion about the other agents
12 ! wait_and_select_goal ;
13 ! f i n i s hS imu l a t i on .
14
15 +step (S) :
16 t rue
17 <−
18 . p r i n t (" Current s tep i s " , S) ;
19 ! p roce s sBe fo reStep (S) ;
20 ! ! t e s tC l e an I s l and ;
21 ! ! t e s tC leanPivot ;
22 . wait (100) ; // wait a b i t because I can r e c e i v e more

in fo rmat ion about the other agents
23 ! wait_and_select_goal ;
24 ! sendToken (S) ;
25 ! eva luateHea l th (S) ;
26 −+la s tS t ep (S) ;
27 ! p roce s sAf t e rS t ep (S) ;
28 ! evaluateCanCome (S) ;
29 ! ! recoverySystem ;
30 ! ! addLineLog (S) ;
31 ! ! synchronizeGraph .
32
33 @commitAction [atomic]
34 +!commitAction (Act) :
35 s tep (S)
36 <−
37 −+stepDone (S) ;
38 Act .
39
40 /∗ Which goa l I ’m going to f o l l ow ∗/

88 UFSC Code

41 +! in i t_goa l (G) :
42 money(M) & step (S) & po s i t i o n (V) & energy (E) & maxEnergy (

Max) & la s tAc t i onResu l t (Result) & sco r e (Score) &
hea l th (Health) & la s tAc t i on (LastAction) &
la s tS t epSco r e (LastScore) & zonesScore (ZoneScore) &
zoneScore (MyZoneScore)

43 <−
44 . p r i n t (" I am at " ,V, " (" ,E, "/" ,Max, ") , my hea l th i s " ,

Health , " the goa l f o r s tep " ,S , " i s " ,G, " and I have
" , M, " o f money . My l a s t r e s u l t was " , Result , " . My
l a s t ac t i on was " , LastAction , " . The s co r e i s " ,

Score , " and my l a s t s co r e was " , LastScore , " with
zones " , ZoneScore , " and my zone i s " , MyZoneScore) ;

45 !G.
46
47 +! in i t_goa l (G) :
48 s tep (S) & po s i t i o n (V) & energy (E) & maxEnergy (Max)
49 <−
50 . p r i n t (" Something wrong . . . I ’ go ing try to don ’ t l o s e the

s tep . I ’m at " ,V, " (" ,E,"/" ,Max, ") . My ac t i on f o r s tep
" ,S , " i s " , G) ;

51 !G.
52
53 +! in i t_goa l (_)
54 <−
55 . p r i n t ("No step yet . . . wait a b i t ") ;
56 . wait (500) ;
57 ! wait_and_select_goal .
58
59 /∗ Log System ∗/
60 +!addLineLog (S) :
61 l a s tAc t i onResu l t (Result) & la s tAc t i on (LastAction) & .

my_name(MyName) & f r i e nd (MyName, _, _, AgentId) &
myTeam(MyTeam)

62 <−
63 i a . addLastAction (MyTeam, AgentId , S , LastAction , Result) .
64 +!addLineLog (S) :
65 .my_name(MyName) & f r i e nd (MyName, _, _, AgentId) & myTeam(

MyTeam)
66 <−
67 i a . addLastAction (MyTeam, AgentId , S , e r ror , e r r o r) .
68 +!addLineLog (_) .
69
70 /∗ Graph synchron i za t i on ∗/
71 +! synchronizeGraph :
72 step (S) & las tSync (Last) & S − Last > 2
73 <−

A.5 New step 89

74 . p r i n t (" Synchroniz ing . . . ") ;
75 −+las tSync (S) ;
76 i a . synchronizeGraph .
77 +! synchronizeGraph :
78 not la s tSync (_)
79 <−
80 +las tSync (0) .
81 +! synchronizeGraph .
82
83 +! recoverySystem :
84 not s t ep s (_) | not edges (_) | not v e r t i c e s (_)
85 <−
86 . send (coach , askOne , s t ep s (_)) ;
87 . send (coach , askOne , edges (_)) ;
88 . send (coach , askOne , v e r t i c e s (_)) .
89 +! recoverySystem .

90 UFSC Code

A.6 Graph

Code in this file has the main responsibilities of the systems graph library.

1 package graphLib ;
2
3 import java . u t i l . ArrayList ;
4 import java . u t i l . L inkedLis t ;
5 import java . u t i l . L i s t ;
6
7 public class Graph {
8 public stat ic f ina l int INF = 10000;
9 public stat ic f ina l int MAXWEIGHT = 10 ;

10 public stat ic f ina l int NULL = −1;
11 public stat ic f ina l int MAXVERTICES = 1000 ;
12 public stat ic f ina l int MAXEDGES = 10000 ;
13 public stat ic f ina l int MAXVERTEXVALUE = 10 ;
14
15 private int edgeCounter = 0 ;
16
17 public int va lue s [] = new int [MAXVERTICES] ;
18 public int grade [] = new int [MAXVERTICES] ;
19 public int w [] [] = new int [MAXVERTICES] [MAXVERTICES] ;
20 public int adj [] [] = new int [MAXVERTICES] [MAXVERTICES] ;
21 public St r ing teams [] = new St r ing [MAXVERTICES] ;
22 public int v i s i t e d [] = new int [MAXVERTICES] ;
23 public boolean known [] = new boolean [MAXVERTICES] ;
24 public St r ing i n t e g e r 2v e r t e x [] = new St r ing [MAXVERTICES] ;
25
26 private int maxVerticesSim = MAXVERTICES−1;
27 private int maxEdgesSim = MAXEDGES−1;
28
29 private boolean sumVertexCalculated = fa l se ;
30 private int sumVertex = 1 ;
31 private int averageVertex = 1 ;
32 private boolean a l lVertexProbed = fa l se ;
33
34
35 public Graph () {
36 //Graph i n i t i a l i z a t i o n
37 for (int i = 0 ; i < MAXVERTICES; i++) {
38 va lue s [i] = NULL; //Every v e r t e x not probed has −1
39 grade [i] = 0 ; //The i n i t i a l grade o f each v e r t e x

i s 0
40 teams [i] = "none" ;
41 i n t e g e r 2v e r t e x [i] = "v" + i ;
42 v i s i t e d [i] = NULL;

A.6 Graph 91

43 known [i] = fa l se ;
44 for (int j = 0 ; j < MAXVERTICES; j++) {
45 w[i] [j] = INF ; //The i n i t i a l we igh t o f each

edge i f INFINITE
46 }
47 }
48 }
49
50 public int ve r t ex2 In t eg e r (S t r ing ver tex) {
51 return I n t eg e r . valueOf (ver tex . sub s t r i ng (1 , ver tex .

l ength ())) ;
52 }
53
54 public void addVertex (S t r ing vertexV , St r ing team) {
55 int v = ve r t ex2 In t eg e r (vertexV) ;
56
57 teams [v] = team ;
58 }
59
60 public void resetTeamsVert ice () {
61 for (int v = 0 ; v <= ge tS i z e () ; v++) {
62 teams [v] = "none" ;
63 }
64 }
65
66 public void addEdge (St r ing vertexU , St r ing vertexV , int

weight) {
67 //Get the id o f each v e r t e x
68 int u = ve r t ex2 In t eg e r (vertexU) ;
69 int v = ve r t ex2 In t eg e r (vertexV) ;
70
71 i f (w[u] [v] == INF && weight != INF) {
72 //Add the we igh t o f the edge
73 w[u] [v] = w[v] [u] = weight ;
74 //Add the edge in t o the graph and inc rea se the

grade o f each v e r t e x
75
76 adj [u] [grade [u]++] = v ;
77 adj [v] [grade [v]++] = u ;
78 edgeCounter++;
79
80 known [u] = true ;
81 known [v] = true ;
82 } else i f (weight < w[u] [v]) {
83 //Add the we igh t o f the edge
84 w[u] [v] = w[v] [u] = weight ;
85

92 UFSC Code

86 known [u] = true ;
87 known [v] = true ;
88 }
89 }
90
91 public void addEdgeSync (int u , int v , int weight) {
92 i f (w[u] [v] == INF && weight != INF) {
93 //Add the we igh t o f the edge
94 w[u] [v] = w[v] [u] = weight ;
95 //Add the edge in t o the graph and inc rea se the

grade o f each v e r t e x
96
97 adj [u] [grade [u]++] = v ;
98 adj [v] [grade [v]++] = u ;
99 edgeCounter++;

100
101 known [u] = true ;
102 known [v] = true ;
103 } else i f (weight < w[u] [v]) {
104 //Add the we igh t o f the edge
105 w[u] [v] = w[v] [u] = weight ;
106
107 known [u] = true ;
108 known [v] = true ;
109 }
110 }
111
112 public void setVertexValue (S t r ing vertexV , int value) {
113 //Get the id o f each v e r t e x
114 int v = ve r t ex2 In t eg e r (vertexV) ;
115
116 //Update the va lue o f the v e r t e x
117 va lue s [v] = value ;
118 }
119
120 public void s e tVe r t exV i s i t ed (S t r ing vertexV , int s tep) {
121 //Get the id o f each v e r t e x
122 int v = ve r t ex2 In t eg e r (vertexV) ;
123
124 //Update the va lue o f the v e r t e x
125 v i s i t e d [v] = step ;
126 }
127
128 public int g e tS i z e () {
129 return maxVerticesSim ;
130 }
131

A.6 Graph 93

132 public List<Str ing> getShortestPath (St r ing vertexS , S t r ing
vertexD) {

133 LinkedList<Str ing> r e s u l t = null ;
134 Di jkst raAlgor i thm d i j k s t r a = new Dijkst raAlgor i thm () ;
135
136 int s = ve r t ex2 In t eg e r (vertexS) ;
137 int d = ve r t ex2 In t eg e r (vertexD) ;
138
139 Lis t<Integer> r e s u l tD i j k s t r a = d i j k s t r a . execute (this ,

s , d) ;
140
141 r e s u l t = new LinkedList<Str ing >() ;
142
143 i f (r e s u l tD i j k s t r a != null) {
144 for (int i : r e s u l tD i j k s t r a) {
145 r e s u l t . addFirs t (i n t e g e r 2v e r t e x [i]) ;
146 }
147 }
148
149 return r e s u l t ;
150 }
151
152 public List<Str ing> getShortestPathDi jkst raComplete (S t r ing

vertexS , L i s t<Str ing> vertexD) {
153 LinkedList<Str ing> r e s u l t = null ;
154 DijkstraAlgor ithmComplete d i j k s t r a = new

DijkstraAlgor ithmComplete () ;
155
156 Lis t<Integer> l i s tD = new LinkedList<Integer >() ;
157
158 int s = ve r t ex2 In t eg e r (vertexS) ;
159
160 for (S t r ing v : vertexD) {
161 l i s tD . add (ve r t ex2 In t eg e r (v)) ;
162 }
163
164 Lis t<Integer> r e s u l tD i j k s t r a = d i j k s t r a . execute (this ,

s , l i s tD) ;
165
166 r e s u l t = new LinkedList<Str ing >() ;
167
168 i f (r e s u l tD i j k s t r a != null) {
169 for (int i : r e s u l tD i j k s t r a) {
170 r e s u l t . addFirs t (i n t e g e r 2v e r t e x [i]) ;
171 }
172 }
173

94 UFSC Code

174 return r e s u l t ;
175 }
176
177 public List<Str ing> getShortestPathBFSComplete (S t r ing

vertexS , L i s t<Str ing> vertexD) {
178 LinkedList<Str ing> r e s u l t = null ;
179 BFSAlgorithm b f s = new BFSAlgorithm () ;
180
181 Lis t<Integer> l i s tD = new LinkedList<Integer >() ;
182
183 int s = ve r t ex2 In t eg e r (vertexS) ;
184
185 for (S t r ing v : vertexD) {
186 l i s tD . add (ve r t ex2 In t eg e r (v)) ;
187 }
188
189 Lis t<Integer> resultBFS = bf s . execute (this , s , l i s tD) ;
190
191 r e s u l t = new LinkedList<Str ing >() ;
192
193 i f (resultBFS != null) {
194 for (int i : resultBFS) {
195 r e s u l t . addFirs t (i n t e g e r 2v e r t e x [i]) ;
196 }
197 }
198
199 return r e s u l t ;
200 }
201
202 public List<Str ing> getBestCoverage (int depth) {
203 Lis t<Str ing> r e s u l t = null ;
204 Bes tCoverage Inte r face bestCoverage ;
205 int paramInt ;
206 i f (getMaxEdges () / (double) getMaxVertices () > 2) {
207 bestCoverage = new BestCoverage () ;
208 paramInt = depth ;
209 } else {
210 bestCoverage = new BestCoverageFewEdges () ;
211 paramInt = depth ∗ 10 ;
212 }
213
214 Lis t<Integer> l i s t = bestCoverage . execute (this ,

paramInt) ;
215
216 i f (l i s t . s i z e () > 0) {
217 r e s u l t = new ArrayList<Str ing >() ;
218

A.6 Graph 95

219 r e s u l t . add (0 , i n t e g e r 2v e r t e x [l i s t . get (0)]) ;
220 r e s u l t . add (1 , S t r ing . valueOf (l i s t . get (1))) ;
221 }
222
223 return r e s u l t ;
224 }
225
226 public List<Str ing> getBestCoverage (int depth , S t r ing

ve r t ex Ignore) {
227 Lis t<Str ing> r e s u l t = null ;
228 Bes tCoverage Inte r face bestCoverage ;
229 int paramInt ;
230 i f (getMaxEdges () / (double) getMaxVertices () > 1) {
231 bestCoverage = new BestCoverage () ;
232 paramInt = depth ;
233 } else {
234 bestCoverage = new BestCoverageFewEdges () ;
235 paramInt = depth ∗ 10 ;
236 }
237
238 Lis t<Integer> l i s t = bestCoverage . execute (this ,

paramInt , v e r t ex2 In t eg e r (ve r t ex Ignore)) ;
239
240 i f (l i s t . s i z e () > 0) {
241 r e s u l t = new ArrayList<Str ing >() ;
242
243 r e s u l t . add (0 , i n t e g e r 2v e r t e x [l i s t . get (0)]) ;
244 r e s u l t . add (1 , S t r ing . valueOf (l i s t . get (1))) ;
245 }
246
247 return r e s u l t ;
248 }
249
250 public List<Str ing> getNeighborhood (St r ing vertex , int

depth) {
251 Lis t<Str ing> r e s u l t = null ;
252 Ne ighborhoodInter face bestCoverage ;
253
254 int paramInt ;
255 i f (getMaxEdges () / (double) getMaxVertices () > 1) {
256 bestCoverage = new Neighborhood () ;
257 paramInt = depth ;
258 } else {
259 bestCoverage = new NeighborhoodFewEdges () ;
260 paramInt = (depth + 1) ∗ 6 ;
261 }
262

96 UFSC Code

263
264 int s = ve r t ex2 In t eg e r (ver tex) ;
265 Lis t<Integer> l i s t = bestCoverage . execute (this , s ,

paramInt) ;
266
267 i f (l i s t . s i z e () > 0) {
268 r e s u l t = new LinkedList<Str ing >() ;
269 for (int i : l i s t) {
270 r e s u l t . add (i n t e g e r 2v e r t e x [i]) ;
271 }
272 }
273
274 return r e s u l t ;
275 }
276
277 public St r ing getTeamAtVertex (St r ing vertexV) {
278 //Get the id o f the v e r t e x
279 int v = ve r t ex2 In t eg e r (vertexV) ;
280
281 return teams [v] ;
282 }
283
284 public int getGrade (S t r ing vertexV) {
285 //Get the id o f the v e r t e x
286 int v = ve r t ex2 In t eg e r (vertexV) ;
287
288 return grade [v] ;
289 }
290
291 public int getVertexValue (S t r ing vertexV) {
292 //Get the id o f the v e r t e x
293 int v = ve r t ex2 In t eg e r (vertexV) ;
294
295 return va lue s [v] ;
296 }
297
298 public int ge tVer t exVi s i t ed (S t r ing vertexV) {
299 //Get the id o f the v e r t e x
300 int v = ve r t ex2 In t eg e r (vertexV) ;
301
302 return v i s i t e d [v] ;
303 }
304
305 public St r ing getAdj (S t r ing vertexU , int index) {
306 //Get the id o f the v e r t e x
307 int u = ve r t ex2 In t eg e r (vertexU) ;
308

A.6 Graph 97

309 int v = adj [u] [index] ;
310 return i n t e g e r 2v e r t e x [v] ;
311 }
312
313 public int getWeight (S t r ing vertexU , int index) {
314 //Get the id o f the v e r t e x
315 int u = ve r t ex2 In t eg e r (vertexU) ;
316
317 int v = adj [u] [index] ;
318 return w[u] [v] ;
319 }
320
321 public List<Str ing> getVertexByValue (int value) {
322 Lis t<Str ing> l i s t = new ArrayList<Str ing >() ;
323
324 for (int v = 0 ; v < ge tS i z e () ; v++) {
325 i f (va lue s [v] == value) {
326 l i s t . add (i n t e g e r 2v e r t e x [v]) ;
327 }
328 }
329
330 return l i s t ;
331 }
332
333 public void setMaxEdges (int maxEdges) {
334 this . maxEdgesSim = maxEdges ;
335 }
336
337 public void setMaxVert ices (int maxVertices) {
338 this . maxVerticesSim = maxVertices ;
339 }
340
341 public int getMaxVertices () {
342 return maxVerticesSim ;
343 }
344
345 public int getMaxEdges () {
346 return maxEdgesSim ;
347 }
348
349 public int getEdges () {
350 return edgeCounter ;
351 }
352
353 public boolean thereIsUnprobedVertex () {
354 i f (a l lVertexProbed)
355 return fa l se ;

98 UFSC Code

356
357 i f (edgeCounter == 0)
358 return true ;
359
360 for (int v = 0 ; v < ge tS i z e () ; v++) {
361 i f (va lue s [v] == Graph .NULL) {
362 return true ;
363 }
364 }
365
366 a l lVertexProbed = true ;
367 return fa l se ;
368 }
369
370 private void c a l c S t a tVe r t i c e s () {
371 i f (sumVertexCalculated)
372 return ;
373
374 int t o t a l = 0 ;
375 int qtde = 0 ;
376 for (int v = 0 ; v < ge tS i z e () ; v++) {
377 i f (va lue s [v] != Graph .NULL) {
378 t o t a l += va lues [v] ;
379 qtde++;
380 }
381 }
382
383 sumVertex = t o t a l ;
384 i f (qtde > 0)
385 averageVertex = t o t a l / qtde ;
386 i f (a l lVertexProbed | | ! thereIsUnprobedVertex ())
387 sumVertexCalculated = true ;
388 }
389
390 public int getSumVertices () {
391 c a l c S t a tVe r t i c e s () ;
392 return sumVertex ;
393 }
394
395 public int getAverageVertex () {
396 c a l c S t a tVe r t i c e s () ;
397 return averageVertex ;
398 }
399
400 public List<Str ing> ge tA l lVe r t i c e s () {
401 ArrayList<Str ing> ve r t e xL i s t = new ArrayList<Str ing >()

;

A.6 Graph 99

402
403 for (int v = 0 ; v < ge tS i z e () ; v++) {
404 i f (grade [v] > 0) {
405 v e r t e xL i s t . add (i n t e g e r 2v e r t e x [v]) ;
406 }
407 }
408
409 return ve r t e xL i s t ;
410 }
411
412 public List<PairPivot> ge tA l lP ivo t s (int amount) {
413 PivotAlgorithm p = new PivotAlgorithm () ;
414 return p . execute (this , amount) ;
415 }
416
417 public List<PairPivot> ge tA l lP i v o t s I gno r i n gVe r t i c e s (int

amount , L i s t<Str ing> l i s t V e r t i c e s I g n o r e) {
418 Lis t<Integer> l i s tV e r t i c e s I g n o r e I n t = new LinkedList<

Integer >() ;
419
420 for (S t r ing v : l i s tV e r t i c e s I g n o r e) {
421 l i s tV e r t i c e s I g n o r e I n t . add (ve r t ex2 In t eg e r (v)) ;
422 }
423
424 PivotAlgorithm p = new PivotAlgorithm () ;
425 p . s e tVer t i c e sToIgnore (l i s tV e r t i c e s I g n o r e I n t) ;
426 return p . execute (this , amount) ;
427 }
428
429 public List<PairPivot> getAl lP ivot sJus tSomeVert i ce s (int

amount , L i s t<Str ing> l i s t V e r t i c e s) {
430 Lis t<Integer> l i s t V e r t i c e s I n t = new LinkedList<Integer

>() ;
431
432 for (S t r ing v : l i s t V e r t i c e s) {
433 l i s t V e r t i c e s I n t . add (ve r t ex2 In t eg e r (v)) ;
434 }
435
436 PivotAlgorithm p = new PivotAlgorithm () ;
437 p . se tVert i cesToJustUse (l i s t V e r t i c e s I n t) ;
438 return p . execute (this , amount) ;
439 }
440
441 public List<Is land> ge tA l l I s l a nd s (int amount) {
442 Is landAlgor i thm p = new I s landAlgor i thm () ;
443 return p . execute (this , amount) ;
444 }

100 UFSC Code

445
446 public int getDis tance (S t r ing vertexS , S t r ing vertexD) {
447 DistanceAlgor ithm d i s t ance = new DistanceAlgor ithm () ;
448
449 int s = ve r t ex2 In t eg e r (vertexS) ;
450 int d = ve r t ex2 In t eg e r (vertexD) ;
451
452 return d i s t ance . execute (this , s , d) ;
453 }
454 }

Appendix B

Changes to the UFSC code

This appendix shows the changes made to the UFSC system code files listed in
appendix A.

B.1 Sentinel

The changed code for the sentinel agents. New code on line numbers: 3-17,
52-54, 133-135 and 140.

1 { inc lude ("mod . common . a s l ") }
2
3 /∗Test i f ne ighbour ing v e r t i c e s have unsurveyed edges
4 ∗ and pick the best one (the one with the h i ghe s t number o f

such edges) .
5 ∗/
6 unsurveyed_edge_nearby (Op) :− i n f i n i t e (INF) & maxWeight (

MAXWEIGHT) & po s i t i o n (MyV) & not i s_d i sab l ed & not
is_survey_goal

7 & . s e t o f (NearbyVertex , (i a . edge (MyV, NearbyVertex ,W) & W
\== INF & W \== MAXWEIGHT) , Nearby)

8 & . l ength (Nearby , Length) & Length > 0 & . member(Op,
Nearby) & t e s t (Nearby , 0 ,Op) .

102 Changes to the UFSC code

9
10 /∗Helper func t i on f o r unsurveyed_edge_nearby (Op) . Given a l i s t

o f v e r t i c e s , f i n d s one with most unsurveyed edges .∗/
11
12 t e s t ([] , L ,_) :− L > 0 .
13 t e s t ([H|T] , L ,H) :− i n f i n i t e (INF) & maxWeight (MAXWEIGHT) & .

s e t o f (W, (i a . edge (H,W, INF)
14 | i a . edge (H,W,MAXWEIGHT)) ,Unknowns) & . l ength (Unknowns , L1) &

L1 > L & t e s t (T, L1 ,H) .
15 t e s t ([H|T] , L , Res) :− i n f i n i t e (INF) & maxWeight (MAXWEIGHT) & .

s e t o f (W, (i a . edge (H,W, INF)
16 | i a . edge (H,W,MAXWEIGHT)) ,Unknowns) & . l ength (Unknowns , L1) &

L1 <= L & t e s t (T,L , Res) .
17
18
19 +!wait_and_select_goal <− ! s e l e c t_goa l .
20 −!wait_and_select_goal [e r r o r (deadl ine_reached)] <− . p r i n t ("

Deadl ine reached ") ; ! s e l e c t_goa l .
21
22 +! s e l e c t_goa l : is_energy_goal
23 <− ! i n i t_goa l (r echarge) .
24 +! s e l e c t_goa l : i s_wait_repair_goal (V)
25 <− . p r i n t (" Waiting to be r epa i r ed . Recharging . . . ") ;
26 ! i n i t_goa l (r echarge) .
27 +! s e l e c t_goa l : not canCome(ComeT) &

is_wait_repair_goal_nearby (V, Repairer)
28 <− . p r i n t (" Waiting to be r epa i r ed (nearby) . " , V , "

" , Repairer , " . Recharging . . . ") ;
29 ! i n i t_goa l (r echarge) .
30 +! s e l e c t_goa l : is_goto_repair_goal_nearby (V)
31 <− . p r i n t ("Goto to be r epa i r ed (nearby) . . . ") ;
32 ! i n i t_goa l (goto (V)) .
33
34 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment (D, Path)
35 <−
36 . p r i n t (" I have an appointment with some r e p a i r e r .

I ’m going to " , D, " us ing path : " , Path) ;
37 ! i n i t_goa l (gotoPath (Path)) .
38 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment_self (D, Path)
39 <−
40 . p r i n t (" I have an s e l f appointment with some

r e p a i r e r . I ’m going to " , D, " us ing path : " ,
Path) ;

41 ! i n i t_goa l (gotoPath (Path)) .
42 +! s e l e c t_goa l : i s_d i sab l ed & get_vertex_to_go_repair (D, Path)

B.1 Sentinel 103

43 <−
44 . p r i n t (" I ’m f o r e v e r a lone . I ’m going to " , D, "

us ing path : " , Path) ;
45 ! i n i t_goa l (gotoPath (Path)) .
46
47 +! s e l e c t_goa l : is_parry_goal
48 <− ! i n i t_goa l (parry) .
49 +! s e l e c t_goa l : is_survey_goal
50 <− ! i n i t_goa l (survey) .
51
52 +! s e l e c t_goa l : unsurveyed_edge_nearby (Op) & step (S) & S < 133
53 <− . p r i n t (" Vertex " , Op, " has some unsurveyed edges ! I ’m

going the re ") ;
54 ! i n i t_goa l (goto (Op)) .
55
56 +! s e l e c t_goa l : is_good_map_conquered <−
57 . p r i n t ("Good map conquered ! Stopped ! ") ;
58 ! i n i t_goa l (r echarge) .
59
60 /∗ Protect I s l and ∗/
61 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) <−
62 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here " ,

Ent ity) ;
63 ! i n i t_goa l (r echarge) .
64 +! s e l e c t_goa l : there_is_enemy_nearby_island_geral (Op) <−
65 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , Op, " to

f i nd some enemy i n s i d e ") ;
66 ! i n i t_goa l (goto (Op)) .
67 +! s e l e c t_goa l : get_vertex_to_go_attack_search_island_geral (D,

Path) <−
68 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , D, " us ing

" , Path , " to f i nd some enemy there ") ;
69 ! i n i t_goa l (gotoPath (Path)) .
70 /∗ End Protect I s l and ∗/
71
72 +! s e l e c t_goa l : going_to_outside_goal (V) <−
73 . p r i n t (" I ’m i n s i d e a r eg i on . I can expand to " , V) ;
74 ! i n i t_goa l (goto (V)) .
75
76 +! s e l e c t_goa l : can_expand_to (V) <−
77 . p r i n t (" I can expand to " , V) ;
78 ! i n i t_goa l (goto (V)) .
79
80 +! s e l e c t_goa l : is_goal_keep_aim_vertex
81 <−
82 . p r i n t (" I ’m at a p ivot ver tex . Recharging . . . ") ;
83 ! i n i t_goa l (r echarge) .

104 Changes to the UFSC code

84
85 +! s e l e c t_goa l : is_goal_aim_vertex (Op)
86 <−
87 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , Op) ;
88 ! i n i t_goa l (goto (Op)) .
89
90 +! s e l e c t_goa l : is_goal_aim_vertex (D, Path)
91 <−
92 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
93 ! i n i t_goa l (gotoPath (Path)) .
94
95 // H i l l s
96 +! s e l e c t_goa l : can_expand_to_hill (V) <−
97 . p r i n t (" I ’m at a h i l l and I can expand to " , V) ;
98 ! i n i t_goa l (goto (V)) .
99

100 +! s e l e c t_goa l : i s_at_aim_posit ion_hi l l <−
101 . p r i n t (" Stop ! Stand s t i l l ! I ’m s e t t l e d at the h i l l ! ") ;
102 ! i n i t_goa l (r echarge) .
103
104 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (Op)
105 <−
106 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , Op) ;
107 ! i n i t_goa l (goto (Op)) .
108 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (D, Path)
109 <−
110 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
111 ! i n i t_goa l (gotoPath (Path)) .
112
113 +! s e l e c t_goa l
114 <− ! i n i t_goa l (random_walk) .
115
116 /∗
117 ∗ These f unc t i on s must be dependent o f each kind o f agent

because they w i l l
118 ∗ need to share some in fo rmat ion with the other f r i e n d s o f

the same kind
119 ∗/
120 @do0 [atomic]
121 +!do (Act) :
122 step (S) & stepDone (S)
123 <−
124 . p r i n t ("ERROR! I a l r eady performed an ac t i on f o r t h i s s tep

B.1 Sentinel 105

! " , S) .
125
126 @do1 [atomic]
127 +!do (Act) :
128 true
129 <−
130 ! commitAction (Act) .
131
132 +! i n i t S p e c i f i c .
133 // Te l l l ead i n sp e c t o r about spotted uninspected e n t i t i e s
134 +! proce s sBe fo reStep (S) : S > 50 & unknown_enemy_visible (Op,

Entity)
135 <− . p r i n t (" Told lead i n sp e c t o r about en t i t y " , Entity , " at " ,

Op, " . ") ; . send (in spec to r6 , t e l l , enemy(Op, Entity)) .
136 +! proce s sBe fo reStep (S) .
137 +! proce s sAf t e rS t ep (S) <−
138 ! bu i ldP ivo t s (S) ;
139 ! bu i l d I s l a nd s (S) .
140 +! auct ion . // Ignore i n sp e c t o r auc t i ons
141 /∗
142 ∗ CALCULATE THE BEST PLACES
143 ∗/
144 +! bu i ldP ivo t s (S) :
145 (not l a s tCa l cP ivo t (_) & S >= 17 | l a s tCa l cP ivo t (N) & S − N

>= 17) & .my_name(MyName) & play (MyName,
s ent ine lLeade r , " grMain ")

146 <−
147 ! determinePivots ;
148 −+la s tCa l cP ivo t (S) .
149 +! bu i ldP ivo t s (S) .
150
151 +! bu i l d I s l a nd s (S) :
152 not h i l l (_) & goa lS ta t e (_, d e f i n e I n i t i a l P i v o t s ,_,_,

s a t i s f i e d) & (not l a s tCa l c I s l a nd (_) & S >= 23 |
l a s tCa l c I s l a nd (N) & S − N >= 23) & .my_name(MyName) &
play (MyName, s ent ine lLeade r , " grMain ")

153 <−
154 ! de t e rmine I s l ands ;
155 −+la s tCa l c I s l a nd (S) .
156 −! b u i l d I s l a nd s [e r r o r (ErrorCode) , error_msg (MsgError)] <−
157 . p r i n t (" Error occurred to bu i ld i s l a nd s ! " , ErrorCode , "

−> " , MsgError) .
158 +! bu i l d I s l a nd s (S) .

106 Changes to the UFSC code

B.2 Inspector

The changed code for the inspector agents. New code on line numbers: 11-103,
130-134, 160-163, 237-239.

1 { inc lude ("mod . common . a s l ") }
2
3 //There i s no p r i o r i t y because one o f them can f a i l
4 i s_inspect_goa l (V, Entity) :− not i s_d i sab l ed & po s i t i o n (MyV)

& myTeam(MyTeam) & v i s i b l eEn t i t y (Entity , V, Team, _) &
Team \== MyTeam & ia . edge (MyV,V,_)

5 & not entityType (Entity , _, _, _, _) .
6
7 i s_inspect_goa l (Ent ity) :− not i s_d i sab l ed & po s i t i o n (MyV) &

myTeam(MyTeam) & v i s i b l eEn t i t y (Entity , MyV, Team, _) &
Team \== MyTeam

8 & not entityType (Entity , _, _, _, _) .
9

10
11 //The auct ion a lgor i thm
12 @pb1 [atomic]
13 +place_bid (_) //Case 1 : a l l i n s p e c t o r s bid 99 − they are busy ,

too f a r or cannot f i nd a way . No winner f o r t h i s auct ion
14 : . f i n d a l l (b ids (Bid ,Ag) , (place_bid (Bid) [source (Ag)] & Bid

== 99) , L i s t) &
15 . l ength (Lis t , 5)
16 <− . p r i n t ("No winner f o r t h i s auct ion ! ") ;
17 . abo l i s h (place_bid (_)) ; +single_auction_done ; . abo l i s h (

s ingle_auction_done) .
18
19 @pb2 [atomic]
20 +place_bid (_) //Case 2 : at l e a s t one i n sp e c t o r has made a bid

− a winner can be dec ided
21 : . f i n d a l l (b ids (Bid ,Ag) , place_bid (Bid) [source (Ag)] , L i s t)

&
22 . l ength (Lis t , 5)
23 <− . min (Lis t , b ids (Bid , W)) ;
24 . p r i n t ("Winner i s " , W, " with " , Bid) ;
25 +winner (W) ;
26 . abo l i s h (place_bid (_)) ; +single_auction_done ; . abo l i s h (

s ingle_auction_done) .
27
28 //More important th ing s to do than the auct ion
29 cannot_part ic ipate_in_auct ion :− i s_energy_goal | i s_d i sab l ed

| i s_inspect_goa l (_) | is_good_map_conquered
30 | is_keep_goal_island_enemy (_) | i s_inspect_goa l (_, _) |

there_is_enemy_nearby_island_geral (_) |

B.2 Inspector 107

get_vertex_to_go_attack_search_island_geral (_, _) .
31
32 //More important th ing s to do , sk ip the auct ion
33 +auct ion (Op) [source (Ag)] : cannot_part ic ipate_in_auct ion
34 <− . p r i n t ("Not p a r t i c i p a t i n g in auct ion , important s t u f f to

do ! ") ; . send (Ag , t e l l , place_bid (99)) ; . abo l i s h (
auct ion (Op)) .

35
36 //Already won one auct ion , cur rent one i s f a r t h e r away
37 +auct ion (Op) [source (Ag)] : winner (_, Op1) & po s i t i o n (MyV) & ia

. shor te s tPath (MyV, Op, _, Length) & ia . shorte s tPath (MyV,
Op1 , _, Length1) & Length1 <= Length

38 <− . p r i n t (" I a l r eady won an auct ion and the path to cur rent
one i s l onge r than the one I won ! ") ; . send (Ag , t e l l ,

place_bid (99)) ; . abo l i s h (auct ion (Op)) .
39
40 //Already won one auct ion , but the cur rent one i s c l o s e r
41 +auct ion (Op) [source (Ag)] : winner (_, Op1) & po s i t i o n (MyV) & ia

. shor te s tPath (MyV, Op, _, Length) & ia . shorte s tPath (MyV,
Op1 , _, Length1) & Length1 > Length & Length > 1

42 <− . p r i n t (" Bidding " , Length , " ! ") ; . send (Ag , t e l l ,
place_bid (Length)) ; . abo l i s h (auct ion (Op)) .

43
44 // Plac ing a bid − the d i s t ance between me and the en t i t y which

needs to be in spec t ed
45 +auct ion (Op) [source (Ag)] : p o s i t i o n (MyV) & ia . shorte s tPath (MyV

, Op, _, Length) & Length < 6 & Length > 1 <− . p r i n t ("
Bidding " , Length , " ! ") ; . send (Ag , t e l l , place_bid (Length
)) ; . abo l i s h (auct ion (Op)) .

46
47 //Path too long , not p a r t i c i p a t i n g
48 +auct ion (Op) [source (Ag)] : p o s i t i o n (MyV) & ia . shorte s tPath (MyV

, Op, _, Length) & Length >= 6 <− . p r i n t ("Not
p a r t i c i p a t i n g in auct ion , path too long ! ") ; . send (Ag ,
t e l l , place_bid (99)) ; . abo l i s h (auct ion (Op)) .

49
50 //Could not f i nd path , not p a r t i c i p a t i n g
51 +auct ion (_) [source (Ag)] : t rue <− . p r i n t ("Not p a r t i c i p a t i n g in

auct ion , cannot f i nd way ! ") ; . send (Ag , t e l l , place_bid
(99)) ; . abo l i s h (auct ion (Op)) .

52
53 //Lead i n sp e c t o r : Gather a l l r e c e i v ed messages about unknown

e n t i t i e s and remove dup l i c a t e s
54 +! auct ion : s tep (S) & S > 50 & .my_name(MyName) & play (MyName,

inspectorLeader , _) <−
55 . s e t o f (Op, enemy(Op, _) , L i s t) ;
56 . p r i n t (" En t i t i e s to auct ion " , L i s t) ;

108 Changes to the UFSC code

57 . l ength (Lis t , L) ;
58 ! auct ion2 (L , L i s t) .
59
60 //Normal i n s p e c t o r s : Al l auc t i ons done , proceed
61 +! auct ion : s tep (S) & S > 50 & .my_name(MyName) & play (MyName,

in spec to r , _) & auction_done <− t rue .
62
63 //Normal i n s p e c t o r s : Auctions are being held , await

in fo rmat ion about the next one
64 +! auct ion : s tep (S) & S > 50 & .my_name(MyName) & play (MyName,

in spec to r , _) & auct i ons <− . wait ("+auct ion (_,_) " , 25) ; !
auct ion .

65
66 //Normal i n s p e c t o r s : Wait f o r in fo rmat ion from lead i n sp e c t o r
67 +! auct ion : s tep (S) & S > 50 & .my_name(MyName) & play (MyName,

in spec to r , _) <− . wait (25) ; ! auct ion .
68
69 +! auct ion .
70 −! auct ion .
71
72 //Lead i n sp e c t o r : No e n t i t i e s to be auct ioned , l e t the

i n s p e c t o r s know that they may proceed
73 +! auct ion2 (L , L i s t) : L == 0 <−
74 . p r i n t ("No auct i ons in t h i s s tep ") ;
75 . send ([in spec to r1 , in spec to r2 , in spec to r3 , in spec to r4 ,

i n sp e c t o r 5] , t e l l , auction_done) .
76
77 //Lead i n sp e c t o r : I n i t i a l i s e − t e l l o ther i n s p e c t o r s that some

auct i ons are going to be held
78 +! auct ion2 (L , L i s t) :
79 not number (_)
80 <−
81 . p r i n t (" Auctions in t h i s s tep " , L) ;
82 . send ([in spec to r1 , in spec to r2 , in spec to r3 , in spec to r4 ,

i n sp e c t o r 5] , t e l l , auc t i ons) ;
83 +number (0) ;
84 ! auct ion2 (L , L i s t) .
85
86 //Lead i n sp e c t o r : Al l auc t i ons completed , l e t the i n s p e c t o r s

know that they may proceed
87 +! auct ion2 (L , L i s t) :
88 number (K) & K >= L
89 <−
90 . abo l i s h (number (_)) ;
91 . p r i n t (" Al l auc t i ons f o r t h i s s tep f i n i s h e d ") ;
92 . send ([in spec to r1 , in spec to r2 , in spec to r3 , in spec to r4 ,

i n sp e c t o r 5] , t e l l , auction_done) .

B.2 Inspector 109

93
94 //Lead i n sp e c t o r : Pick the next en t i t y from the l i s t and s t a r t

an auct ion f o r i t
95 +! auct ion2 (L , L i s t) : number (K) <− . nth (K, Lis t , Op) ;
96 . send ([in spec to r1 , in spec to r2 , in spec to r3 , in spec to r4 ,

i n sp e c t o r 5] , t e l l , auct ion (Op)) ;
97 . p r i n t (" Current : " , Op, " . ") ; −+number (K+1) ; . wait ("+

single_auction_done ") ; ?winner (W) ; . send (W, t e l l , winner
(W,Op)) ; . abo l i s h (winner (W)) ; ! auct ion2 (L , L i s t) .

98
99 //Lead i n sp e c t o r : For when there i s no winner o f an auct ion −

the ?winner (W) c a l l then f a i l s
100 −! auct ion2 (L , L i s t) <− ! auct ion2 (L , L i s t) .
101
102 +!wait_and_select_goal : i s_inspect_goa l (_) <− . random(K) ; .

wait (K∗50) ; ! s e l e c t_goa l .
103 +!wait_and_select_goal <− ! s e l e c t_goa l .
104 −!wait_and_select_goal [e r r o r (deadl ine_reached)] <− . p r i n t ("

Deadl ine reached ") ; ! s e l e c t_goa l .
105
106 +! s e l e c t_goa l : is_energy_goal
107 <− ! i n i t_goa l (r echarge) .
108 +! s e l e c t_goa l : i s_wait_repair_goal (V)
109 <− . p r i n t (" Waiting to be r epa i r ed . Recharging . . . ") ;
110 ! i n i t_goa l (r echarge) .
111 +! s e l e c t_goa l : not canCome(ComeT) &

is_wait_repair_goal_nearby (V, Repairer)
112 <− . p r i n t (" Waiting to be r epa i r ed (nearby) . " , V , "

" , Repairer , " . Recharging . . . ") ;
113 ! i n i t_goa l (r echarge) .
114 +! s e l e c t_goa l : is_goto_repair_goal_nearby (V)
115 <− . p r i n t ("Goto to be r epa i r ed (nearby) . . . ") ;
116 ! i n i t_goa l (goto (V)) .
117
118 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment (D, Path)
119 <−
120 . p r i n t (" I have an appointment with some r e p a i r e r .

I ’m going to " , D, " us ing path : " , Path) ;
121 ! i n i t_goa l (gotoPath (Path)) .
122 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment_self (D, Path)
123 <−
124 . p r i n t (" I have an s e l f appointment with some

r e p a i r e r . I ’m going to " , D, " us ing path : " ,
Path) ;

125 ! i n i t_goa l (gotoPath (Path)) .

110 Changes to the UFSC code

126 +! s e l e c t_goa l : i s_d i sab l ed & get_vertex_to_go_repair (D, Path)
127 <−
128 . p r i n t (" I ’m f o r e v e r a lone . I ’m going to " , D, "

us ing path : " , Path) ;
129 ! i n i t_goa l (gotoPath (Path)) .
130 +! s e l e c t_goa l : i s_inspect_goa l (Ent ity) & po s i t i o n (MyV) & not

insp (MyV)
131 <−
132 . send ([in spec to r1 , in spec to r2 , in spec to r3 , in spec to r4 ,

in spec to r5 , i n sp e c t o r 6] , t e l l , in sp (MyV)) ;
133 . p r i n t (" I ’m going to i n sp e c t " , Ent ity) ;
134 ! i n i t_goa l (i n sp e c t) .
135
136 +! s e l e c t_goa l : is_good_map_conquered <−
137 . p r i n t ("Good map conquered ! Stopped ! ") ;
138 ! i n i t_goa l (r echarge) .
139
140 /∗ Protect I s l and ∗/
141 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) &

is_survey_goal <−
142 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here (

survey) " , Entity) ;
143 ! i n i t_goa l (survey) .
144 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) <−
145 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here " ,

Ent ity) ;
146 ! i n i t_goa l (r echarge) .
147 +! s e l e c t_goa l : there_is_enemy_nearby_island_geral (Op) <−
148 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , Op, " to

f i nd some enemy i n s i d e ") ;
149 ! i n i t_goa l (goto (Op)) .
150 +! s e l e c t_goa l : get_vertex_to_go_attack_search_island_geral (D,

Path) <−
151 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , D, " us ing

" , Path , " to f i nd some enemy there ") ;
152 ! i n i t_goa l (gotoPath (Path)) .
153 /∗ End Protect I s l and ∗/
154
155 +! s e l e c t_goa l : i s_inspect_goa l (Op, Entity)
156 <−
157 . p r i n t (" I ’m going to " , Op, " to i n sp e c t " , Entity) ;
158 ! i n i t_goa l (goto (Op)) .
159
160 //Plan f o r the a c t i v e i n sp e c t i n g s t r a t e gy
161 +! s e l e c t_goa l : winner (W,Op) & po s i t i o n (MyV) & ia . shor te s tPath (

MyV, Op, Path , _) <−
162 . p r i n t (" I won the auct ion f o r " , Op, " going the re us ing " ,

B.2 Inspector 111

Path) ;
163 ! i n i t_goa l (gotoPath (Path)) .
164
165 +! s e l e c t_goa l : is_survey_goal & not i s_leave_goal
166 <− ! i n i t_goa l (survey) .
167
168 +! s e l e c t_goa l : going_to_outside_goal (V) <−
169 . p r i n t (" I ’m i n s i d e a r eg i on . I can expand to " , V) ;
170 ! i n i t_goa l (goto (V)) .
171
172 +! s e l e c t_goa l : can_expand_to (V) <−
173 . p r i n t (" I can expand to " , V) ;
174 ! i n i t_goa l (goto (V)) .
175
176 +! s e l e c t_goa l : is_goal_keep_aim_vertex
177 <−
178 . p r i n t (" I ’m at a p ivot ver tex . Recharging . . . ") ;
179 ! i n i t_goa l (r echarge) .
180
181 +! s e l e c t_goa l : is_goal_aim_vertex (Op)
182 <−
183 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , Op) ;
184 ! i n i t_goa l (goto (Op)) .
185 +! s e l e c t_goa l : is_goal_aim_vertex (D, Path)
186 <−
187 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
188 ! i n i t_goa l (gotoPath (Path)) .
189 // H i l l s
190 +! s e l e c t_goa l : can_expand_to_hill (V) <−
191 . p r i n t (" I ’m at a h i l l and I can expand to " , V) ;
192 ! i n i t_goa l (goto (V)) .
193
194 +! s e l e c t_goa l : i s_at_aim_posit ion_hi l l <−
195 . p r i n t (" Stop ! Stand s t i l l ! I ’m s e t t l e d at the h i l l ! ") ;
196 ! i n i t_goa l (r echarge) .
197
198 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (Op)
199 <−
200 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , Op) ;
201 ! i n i t_goa l (goto (Op)) .
202 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (D, Path)
203 <−
204 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to

" , D, " us ing path : " , Path) ;

112 Changes to the UFSC code

205 ! i n i t_goa l (gotoPath (Path)) .
206
207 +! s e l e c t_goa l
208 <− ! i n i t_goa l (random_walk) .
209
210 +inspec t edEnt i ty (Entity , Team, Type , V, Energy , MaxEnergy ,

Health , MaxHealth , Strength , VisRange) :
211 step (S) & not myTeam(Team) & a r t i f a c t (i n s p e c tA r t i f a c t ,

I d I n s p e c tA r t i f a c t)
212 <−
213 addEntity (Entity , Type , MaxHealth , Strength , VisRange) [

a r t i f a c t_ i d (I d I n sp e c tA r t i f a c t)] ;
214 . p r i n t ("The en t i t y " , Type , " " , Entity , " was in spec t ed

at " , V, " Energy (" , Energy , " ," , MaxEnergy , ")
Health (" , Health , " ," , MaxHealth , ") Strength " ,
Strength) .

215
216 /∗
217 ∗ These f unc t i on s must be dependent o f each kind o f agent

because they w i l l
218 ∗ need to share some in fo rmat ion with the other f r i e n d s o f

the same kind
219 ∗/
220 @do0 [atomic]
221 +!do (Act) :
222 step (S) & stepDone (S)
223 <−
224 . p r i n t ("ERROR! I a l r eady performed an ac t i on f o r t h i s s tep

! " , S) .
225
226 @do1 [atomic]
227 +!do (Act) :
228 true
229 <−
230 ! commitAction (Act) .
231
232
233 +! i n i t S p e c i f i c .
234
235 +! proce s sBe fo reStep (S) .
236
237 +! proce s sAf t e rS t ep (S) : t rue <− // Clear a l l auct ion r e l a t e d

b e l i e f s b e f o r e proceed ing to next s tep
238 . abo l i s h (auct ion (_)) ; . abo l i s h (enemy(_,_)) ; . abo l i s h (

auction_done) ;
239 . abo l i s h (place_bid (_)) ; . abo l i s h (winner (_,_)) ; . abo l i s h (

auc t i ons) ; . abo l i s h (insp (_)) .

B.3 Explorer 113

B.3 Explorer

The changed code for the explorer agents. New code - the Java files and Jason
file on line numbers: 135-170, 242, 244 and 365-367.

1 { inc lude ("mod . common . a s l ") }
2
3
4 // Ver i f y i f the e x p l o r e r i s a t an unprobed ver tex , and he i s

the e xp l o r e r wi th the h i g h e s t p r i o r i t y when the r e are
o ther e x p l o r e r s at the same ve r t e x

5 is_probe_goal :− not i s_d i sab l ed & po s i t i o n (MyV) & not i a .
probedVertex (MyV,_) &

6 myTeam(MyTeam) & myNameInContest (MyName) &
7 .my_name(MyAgentName) &
8 not (
9 v i s i b l eEn t i t y (Entity , MyV, MyTeam, normal) &

10 f r i e nd (AgentName , Entity , exp lo re r , _) &
11 Entity \== MyName &
12 p r i o r i t yEn t i t y (AgentName , MyAgentName)
13) .
14 is_probe_goal (Op) :− not i s_d i sab l ed &

there_is_unprobed_vertex_next_to_mine (Op) .
15
16 /∗
17 ∗ Probe i n s i d e h i l l j u s t s p e c i a l e x p l o r e r s
18 ∗/
19 there_is_unprobed_vertex_next_to_mine_special (Op) :− .my_name(

MyName) & play (MyName, spe c i a lExp l o r e r , "
g rSpec i a lExp l o ra t i on ") &

20 not i s_d i sab l ed & step (S) & po s i t i o n (MyV) & myTeam(
MyTeam) & h i l l (Neighborhood) &

21 . s e t o f (V, i a . edge (MyV,V,_) & . member(V, Neighborhood) &
22 not i a . probedVertex (V, _) &
23 not (v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
24 f r i e nd (_, Entity , exp lo re r , _)
25) & not nextStepExplorer (_, V, S) , Options)
26 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
27 . nth (math . random(TotalOptions) , Options , Op) .
28
29 get_path_to_unprobed_probe_special (D, Path) :−
30 .my_name(MyName) & play (MyName, spe c i a lExp l o r e r , "

g rSpec i a lExp l o ra t i on ") &
31 not i s_d i sab l ed &
32 po s i t i o n (MyV) &
33 h i l l (Neighborhood) &
34 . s e t o f (Vertex , . member(Vertex , Neighborhood) &

114 Changes to the UFSC code

35 i a . probedVertex (Vertex ,−1) & not nextStepExplorer (_
, Vertex , _)

36 , L i s t) & not . empty (L i s t) &
37 i a . shortestPathDijkstraCompleteTwo (MyV, List , D, Path ,

Lenght) &
38 Lenght > 2 .
39 /∗
40 ∗ End s p e c i a l e x p l o r e r s
41 ∗/
42
43
44
45 /∗
46 ∗ ##
47 ∗ Check i f t h e r e i s some unprobed v e r t e x around mine
48 ∗ ##
49 ∗/
50 //Test i f the v e r t e x i s not probed and the r e i s o ther

e xp l o r e r t h e r e and a l s o no one o f the o ther e x p l o r e r s
w i l l go t he r e in t h i s s t ep

51 // F i r s t t r y the v e r t i c e s at the h i l l
52 there_is_unprobed_vertex_next_to_mine (Op) :− s tep (S) &

po s i t i o n (MyV) & maxWeight (INF) & myTeam(MyTeam) & h i l l (
Neighborhood) &

53 . s e t o f (V,
54 i a . edge (MyV,V,W) & W \== INF &
55 . member(V, Neighborhood) &
56 not i a . probedVertex (V, _) &
57 not (
58 v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
59 f r i e nd (_, Entity , exp lo re r , _)
60) &
61 not nextStepExplorer (_, V, S)
62 , Options
63)
64 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
65 . nth (math . random(TotalOptions) , Options , Op) .
66 there_is_unprobed_vertex_next_to_mine (Op) :− po s i t i o n (MyV) &

i n f i n i t e (INF) & myTeam(MyTeam) & h i l l (Neighborhood) &
67 . s e t o f (V,
68 i a . edge (MyV,V,W) & W \== INF &
69 . member(V, Neighborhood) &
70 not i a . probedVertex (V, _) &
71 not (
72 v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
73 f r i e nd (_, Entity , exp lo re r , _)
74) &

B.3 Explorer 115

75 not nextStepExplorer (_, V, S)
76 , Options
77)
78 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
79 . nth (math . random(TotalOptions) , Options , Op) .
80
81 //Test i f the v e r t e x i s not probed and the r e i s o ther e x p l o r e r

t h e r e and a l s o no one o f the o ther e x p l o r e r s w i l l go
t he r e in t h i s s t ep

82 there_is_unprobed_vertex_next_to_mine (Op) :− s tep (S) &
po s i t i o n (MyV) & maxWeight (INF) & myTeam(MyTeam) &

83 . s e t o f (V,
84 i a . edge (MyV,V,W) & W \== INF &
85 not i a . probedVertex (V, _) &
86 not (
87 v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
88 f r i e nd (_, Entity , exp lo re r , _)
89) &
90 not nextStepExplorer (_, V, S)
91 , Options
92)
93 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
94 . nth (math . random(TotalOptions) , Options , Op) .
95 there_is_unprobed_vertex_next_to_mine (Op) :− po s i t i o n (MyV) &

i n f i n i t e (INF) & myTeam(MyTeam) &
96 . s e t o f (V,
97 i a . edge (MyV,V,W) & W \== INF &
98 not i a . probedVertex (V, _) &
99 not (

100 v i s i b l eEn t i t y (Entity , V, MyTeam, normal) &
101 f r i e nd (_, Entity , exp lo re r , _)
102) &
103 not nextStepExplorer (_, V, S)
104 , Options
105)
106 & . l ength (Options , TotalOptions) & TotalOptions > 0 &
107 . nth (math . random(TotalOptions) , Options , Op) .
108
109 //Probe h i l l s f i r s t
110 get_path_to_unprobed_probe (D, Path) :−
111 not i s_d i sab l ed &
112 po s i t i o n (MyV) &
113 h i l l (Neighborhood) &
114 . s e t o f (Vertex ,
115 . member(Vertex , Neighborhood) &
116 i a . probedVertex (Vertex ,−1) &
117 not nextStepExplorer (_, Vertex , _)

116 Changes to the UFSC code

118 , L i s t) &
119 not . empty (L i s t) &
120 i a . shortestPathDijkstraCompleteTwo (MyV, List , D, Path ,

Lenght) &
121 Lenght > 2 .
122
123 //Try to probe some f a r ver tex , i t i s b e t t e r
124 get_path_to_unprobed_probe (D, Path) :−
125 not i s_d i sab l ed &
126 po s i t i o n (MyV) &
127 . s e t o f (Vertex ,
128 i a . probedVertex (Vertex ,−1) &
129 not nextStepExplorer (_, Vertex , _)
130 , L i s t) &
131 not . empty (L i s t) &
132 i a . shortestPathDijkstraCompleteTwo (MyV, List , D, Path ,

Lenght) &
133 Lenght > 2 .
134
135 // L i s t nearby v e r t i c e s up to depth 2 from po s i t i o n V
136 vertices_up_to_depth2 (V, L i s t) :− . s e t o f (D1Vertex , i a . edge (V,

D1Vertex ,_) , D1Nearby)
137 & . s e t o f (D2Vertex ,
138 (. member(X, D1Nearby) & ia . edge (X, D2Vertex ,_) & D2Vertex \==

V
139 & not . member(D2Vertex , D1Nearby)) , D2Nearby)
140 & . s e t o f (X, (. member(X, D1Nearby) | . member(X, D2Nearby)) ,

L i s t) .
141
142 // L i s t nearby v e r t i c e s up to depth 3 from po s i t i o n V
143 vertices_up_to_depth3 (V, L i s t) :− . s e t o f (D1Vertex , i a . edge (V,

D1Vertex ,_) , D1Nearby)
144 & . s e t o f (D2Vertex ,
145 (. member(X, D1Nearby) & ia . edge (X, D2Vertex ,_) & D2Vertex \==

V
146 & not . member(D2Vertex , D1Nearby)) , D2Nearby)
147 & . s e t o f (D3Vertex , (. member(X, D2Nearby) & ia . edge (X, D3Vertex ,

_)
148 & D3Vertex \== V & not (. member(D3Vertex , D2Nearby)
149 | . member(D3Vertex , D1Nearby))) , D3Nearby)
150 & . s e t o f (X, (. member(X, D1Nearby) | . member(X, D2Nearby) | .

member(X, D3Nearby)) , L i s t) .
151
152 //Check i f t h e r e are any f r i e n d l y e x p l o r e r s on one o f the

v e r t i c e s in the l i s t (t rue i f none are pre sen t)
153 check_for_other_explorers (Ve r t i c e s) :−
154 . s e t o f (X, (. member(X, Ve r t i c e s)

B.3 Explorer 117

155 & there_are_fr iends_explorers_at (X)) , L i s t) & . l ength (Lis t ,
L) & L == 0 .

156
157 //Check i f t h e r e i s a f r i e n d l y e x p l o r e r at the g iven v e r t e x
158 there_are_fr iends_explorers_at (V) :−
159 .my_name(MyAgentName) & f r i e nd (AgentName , _, exp lo re r , Id)
160 & MyAgentName \== AgentName & ia . getAgentPos i t ion (Id , V) .
161
162 // I can go to a v e r t e x i f I am a s p e c i a l e xp lo re r , or no o ther

f r i e n d l y e x p l o r e r s are nearby , or e a r l y phase has been
conc luded

163 // Ca l l to ia . shortestPathBFSTwo can be rep l aced wi th c a l l to
one o f the vert ices_up_to_depth r u l e s

164 can_go_to (V) :− po s i t i o n (MyV) & ia . edge (MyV, V, _) &
165 ((.my_name(Name) & play (Name, spe c i a lExp l o r e r ,_)) |
166 (i a . NewBFSAlgorithm(MyV,V, 2 , L i s t) & check_for_other_explorers (

L i s t)) |
167 not early_phase) .
168
169 //Early phase o f s imu la t i on d e f i n i t i o n
170 early_phase :− s tep (S) & S < 50 & ia . thereIsUnprobedVertex .
171
172 +!wait_and_select_goal :
173 not numberWaits (_)
174 <−
175 +numberWaits (0) ;
176 ! wait_and_select_goal .
177
178 +!wait_and_select_goal :
179 (numberWaits (K) & K >= 15) | s tep (0)
180 <−
181 . p r i n t (" I can ’ t wait anymore ! ") ;
182 −+numberWaits (0) ;
183 ! s e l e c t_goa l .
184
185 +!wait_and_select_goal :
186 .my_name(MyName) & number_agents_higher_priority_same_type

(MyName, NumberRequired) &
187 step (S) & . count (nextStepExplorer (_, _, S) , Number) &
188 Number < NumberRequired &
189 numberWaits (K)
190 <−
191 . wait (50) ;
192 −+numberWaits (K+1) ;
193 ! wait_and_select_goal .
194
195 +!wait_and_select_goal <− ! s e l e c t_goa l .

118 Changes to the UFSC code

196
197 +! s e l e c t_goa l : is_energy_goal
198 <− ! i n i t_goa l (r echarge) .
199 +! s e l e c t_goa l : i s_wait_repair_goal (V)
200 <− . p r i n t ("Waiting to be r epa i r ed . Recharging . . . ") ;
201 ! i n i t_goa l (r echarge) .
202 +! s e l e c t_goa l : not canCome(ComeT) &

is_wait_repair_goal_nearby (V, Repairer)
203 <− . p r i n t ("Waiting to be r epa i r ed (nearby) . " , V , " "

, Repairer , " . Recharging . . . ") ;
204 ! i n i t_goa l (r echarge) .
205 +! s e l e c t_goa l : is_goto_repair_goal_nearby (V)
206 <− . p r i n t ("Goto to be r epa i r ed (nearby) . . . ") ;
207 ! i n i t_goa l (goto (V)) .
208
209 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment (D, Path)
210 <−
211 . p r i n t (" I have an appointment with some r e p a i r e r .

I ’m going to " , D, " us ing path : " , Path) ;
212 ! i n i t_goa l (gotoPath (Path)) .
213 +! s e l e c t_goa l : i s_d i sab l ed &

get_vertex_to_go_be_repaired_appointment_self (D, Path)
214 <−
215 . p r i n t (" I have an s e l f appointment with some

r e p a i r e r . I ’m going to " , D, " us ing path : " ,
Path) ;

216 ! i n i t_goa l (gotoPath (Path)) .
217 +! s e l e c t_goa l : i s_d i sab l ed & get_vertex_to_go_repair (D, Path)
218 <−
219 . p r i n t (" I ’m f o r e v e r a lone . I ’m going to " , D, "

us ing path : " , Path) ;
220 ! i n i t_goa l (gotoPath (Path)) .
221
222 +! s e l e c t_goa l : is_probe_goal & not i s_leave_goal
223 <− ! i n i t_goa l (probe) .
224
225 /∗
226 +! s e l e c t_goa l : is_survey_goal & not is_probe_goal & s t ep (S) &

S < 50
227 <− ! i n i t_goa l (survey) .
228 ∗/
229 +! s e l e c t_goa l : is_good_map_conquered <−
230 . p r i n t ("Good map conquered ! Stopped ! ") ;
231 ! i n i t_goa l (r echarge) .
232
233 /∗ Spec i a l e x p l o r e r s ∗/

B.3 Explorer 119

234 +! s e l e c t_goa l : there_is_unprobed_vertex_next_to_mine_special (
Op) <−

235 . p r i n t (" I ’m a s p e c i a l e xp l o r e r and I ’m going MyV, V, _to
probe " , Op) ;

236 ! i n i t_goa l (goto (Op)) .
237 +! s e l e c t_goa l : get_path_to_unprobed_probe_special (D, Path) <−
238 . p r i n t (" I ’m a s p e c i a l e xp l o r e r and I ’m going to probe " , D

, " us ing " , Path) ;
239 ! i n i t_goa l (gotoPath (Path)) .
240 /∗ End s p e c i a l e x p l o r e r s ∗/
241
242 +! s e l e c t_goa l : is_probe_goal (Op) & can_go_to (V)
243 <− . p r i n t ("Going to " , Op, " to probe i t ") ; !

i n i t_goa l (goto (Op)) .
244 +! s e l e c t_goa l : get_path_to_unprobed_probe (D, Path) & . nth (1 ,

Path , V) & can_go_to (V)
245 <− . p r i n t ("Going to " , D, " us ing " , Path) ; !

i n i t_goa l (gotoPath (Path)) .
246
247 +! s e l e c t_goa l : is_probe_goal //Probe even i f I need to l e a v e
248 <− ! i n i t_goa l (probe) .
249
250 /∗ Protec t I s l and ∗/
251 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) &

is_survey_goal <−
252 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here (

survey) " , Entity) ;
253 ! i n i t_goa l (survey) .
254 +! s e l e c t_goa l : is_keep_goal_island_enemy (Entity) <−
255 . p r i n t (" I ’m at the i s l a nd and I ’m going to stay here " ,

Ent ity) ;
256 ! i n i t_goa l (r echarge) .
257 +! s e l e c t_goa l : there_is_enemy_nearby_island_geral (Op) <−
258 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , Op, " to

f i nd some enemy i n s i d e ") ;
259 ! i n i t_goa l (goto (Op)) .
260 +! s e l e c t_goa l : get_vertex_to_go_attack_search_island_geral (D,

Path) <−
261 . p r i n t (" I ’m at the i s l a nd and I ’m going to " , D, " us ing "

, Path , " to f i nd some enemy there ") ;
262 ! i n i t_goa l (gotoPath (Path)) .
263 /∗ End Protec t I s l and ∗/
264
265 +! s e l e c t_goa l : going_to_outside_goal (V) <−
266 . p r i n t (" I ’m i n s i d e a r eg i on . I can expand to " , V) ;
267 ! i n i t_goa l (goto (V)) .
268

120 Changes to the UFSC code

269 +! s e l e c t_goa l : can_expand_to (V) <−
270 . p r i n t (" I can expand to " , V) ;
271 ! i n i t_goa l (goto (V)) .
272
273 +! s e l e c t_goa l : is_goal_keep_aim_vertex
274 <−
275 . p r i n t (" I ’m at a p ivot ver tex . Recharging . . . ") ;
276 ! i n i t_goa l (r echarge) .
277
278 +! s e l e c t_goa l : is_goal_aim_vertex (Op)
279 <−
280 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , Op) ;
281 ! i n i t_goa l (goto (Op)) .
282 +! s e l e c t_goa l : is_goal_aim_vertex (D, Path)
283 <−
284 . p r i n t (" I have a p ivot ver tex to go . I ’m going to

" , D, " us ing path : " , Path) ;
285 ! i n i t_goa l (gotoPath (Path)) .
286
287 // H i l l s
288 +! s e l e c t_goa l : can_expand_to_hill (V) <−
289 . p r i n t (" I ’m at a h i l l and I can expand to " , V) ;
290 ! i n i t_goa l (goto (V)) .
291
292 +! s e l e c t_goa l : i s_at_aim_posit ion_hi l l <−
293 . p r i n t ("Stop ! Stand s t i l l ! I ’m s e t t l e d at the h i l l ! ") ;
294 ! i n i t_goa l (r echarge) .
295
296 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (Op)
297 <−
298 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to "

, Op) ;
299 ! i n i t_goa l (goto (Op)) .
300 +! s e l e c t_goa l : i s_goa l_hi l l_ver tex (D, Path)
301 <−
302 . p r i n t (" I have a h i l l ve r tex to go . I ’m going to "

, D, " us ing path : " , Path) ;
303 ! i n i t_goa l (gotoPath (Path)) .
304
305 +! s e l e c t_goa l
306 <− ! i n i t_goa l (random_walk) .
307
308 /∗
309 ∗ Percept a new probed v e r t e x and share wi th f r i e n d s
310 ∗/
311 +probedVertex (V, Value) [source (percept)] :

B.3 Explorer 121

312 true
313 <−
314 . p r i n t ("Vertex probed : " , V, " with value " , Value) ;
315 i a . setVertexValue (V, Value) ;
316 ! broadcastProbe (V, Value) .
317 +probedVertex (V, Value) [source (s e l f)] : true <− . a bo l i s h (

probedVertex (V, Value)) .
318
319 +! broadcastProbe (V, Value) :
320 . f i n d a l l (Agent , f r i e nd (Agent , _, _, _) , SetAgents)
321 <−
322 . p r i n t ("Sending probed ver tex in broadcast " , V, " " ,

Value) ;
323 . send (SetAgents , t e l l , probedVertex (V, Value)) .
324 +! broadcastProbe (V, Value) .
325
326 /∗
327 ∗ These f unc t i on s must be dependent o f each kind o f agent

because they w i l l
328 ∗ need to share some in format ion wi th the o ther f r i e n d s o f

the same kind
329 ∗/
330 +!do(Act) :
331 step (S) & stepDone (S)
332 <−
333 . p r i n t ("ERROR! I a l r eady performed an ac t i on f o r t h i s s tep

! " , S) .
334
335 +!do(Act) :
336 step (S) & .my_name(MyName) &

get_agents_lower_priority_same_type (MyName, SetAgents)
337 & i s_d i sab l ed
338 <−
339 . p r i n t ("Sending ac t i on to " , S , " " , SetAgents) ;
340 . send (SetAgents , t e l l , nextStepExplorer (MyName, none , S)) ;
341 ! commitAction (Act) ;
342 ! ! c l earNextStepExplorer .
343
344 +!do(goto (V)) :
345 step (S) & .my_name(MyName) &

get_agents_lower_priority_same_type (MyName, SetAgents)
346 <−
347 . p r i n t ("Sending ac t i on to " , S , " " , SetAgents) ;
348 . send (SetAgents , t e l l , nextStepExplorer (MyName, V, S)) ;
349 ! commitAction (goto (V)) ;
350 ! ! c l earNextStepExplorer .
351

122 Changes to the UFSC code

352 +!do(Act) :
353 step (S) & po s i t i o n (V) & .my_name(MyName) &

get_agents_lower_priority_same_type (MyName, SetAgents)
354 <−
355 . p r i n t ("Sending ac t i on to " , S , " " , SetAgents) ;
356 . send (SetAgents , t e l l , nextStepExplorer (MyName, V, S)) ;
357 ! commitAction (Act) ;
358 ! ! c l earNextStepExplorer .
359
360 +! c l earNextStepExplorer <−
361 . abo l i s h (nextStepExplorer (_, _, _)) .
362
363 +! i n i t S p e c i f i c .
364
365 +! proce s sBe fo reStep (S) : S > 50 & unknown_enemy_visible (Op,

Entity) <−
366 . p r i n t ("Told lead i n sp e c t o r about en t i t y " , Entity , " at " , Op

, " . ") ;
367 . send (in spec to r6 , t e l l , enemy(Op, Entity)) .
368
369 +! proce s sBe fo reStep (S) .
370 +! proce s sAf t e rS t ep (S) <−
371 ! ! ca l cu la teTota lSumVert i c e s ;
372 ! bui ldAreas (S) .
373 +! auct ion .
374 /∗
375 ∗ CALCULATE THE BEST PLACES
376 ∗/
377 +! bui ldAreas (S) :
378 goa lS ta t e (_, conc ludeFirstPhase ,_,_, enabled) & ob l i g a t i o n (

MyName,_Norm, achieved (_Scheme , conc ludeFirstPhase ,_) ,_)
&

379 (not las tCalcCoverage (_) & S >= 7 | las tCa lcCoverage (N) &
S − N >= 13) & .my_name(MyName)

380 <−
381 ! d e t e rm ineH i l l s ;
382 −+lastCalcCoverage (S) .
383 +! bui ldAreas (S) .
384
385 /∗ Update the sum of a l l v e r t i c e s ∗/
386 +! ca l cu la teTota lSumVert i ce s :
387 .my_name(MyName) & play (MyName, exp lorerLeader , "grMain") &

ia . sumVertices (Total) &
388 . f i n d a l l (Agent , f r i e nd (Agent , _, _, _) , SetAgents)
389 <−
390 . p r i n t (" Ca l cu l a t ing the sum of a l l v e r t i c e s : " , Total) ;
391 ! updateTotalSumVertices (Total) ;

B.3 Explorer 123

392 . send (SetAgents , achieve , updateTotalSumVertices (Total)) .
393 +! ca l cu la teTota lSumVert i ce s .

124 Changes to the UFSC code

1 package i a ;
2
3 import java . u t i l . L inkedLis t ;
4 import java . u t i l . L i s t ;
5
6 import env . MixedAgentArch ;
7 import graphLib . Graph ;
8 import j a son . asSemantics . ∗ ;
9 import j a son . asSyntax . ∗ ;

10
11 public class newBFSAlgorithm extends Defau l t In t e rna lAc t i on {
12
13 @Override
14 public Object execute (Trans it ionSystem ts , Un i f i e r un ,

Term [] terms) throws Exception {
15 MixedAgentArch arch = (MixedAgentArch) t s . getUserAgArch

() ;
16 Graph graph = arch . getGraph () ;
17
18 St r ing vertexS = ((Atom) terms [0]) . getFunctor () ;
19 int maxDist = (int) ((NumberTerm) terms [2]) . s o l v e () ;
20 VarTerm b f s L i s t = ((VarTerm) terms [3]) ;
21
22 St r ing vertexD = ((Atom) terms [1]) . getFunctor () ;
23
24 List<Str ing> b f s = graph . getNewBFS(vertexS , vertexD ,

maxDist) ;
25
26 i f (b f s != null && bf s . s i z e () > 0) {
27 ListTerm l i s t = new ListTermImpl () ;
28 ListTerm t a i l = l i s t ;
29 for (S t r ing s : b f s) {
30 t a i l = t a i l . append (new Atom(s)) ;
31 }
32
33 un . bind (b f sL i s t , l i s t) ;
34
35 return true ;
36 } else {
37 return fa l se ;
38 }
39 }
40 }

B.3 Explorer 125

1 package graphLib ;
2
3 import java . u t i l . L inkedLis t ;
4 import java . u t i l . L i s t ;
5
6 public class newBFSAlgorithm {
7 private int pred [] = new int [Graph .MAXVERTICES] ;
8 private int d i s t [] = new int [Graph .MAXVERTICES] ;
9 private int queue [] = new int [Graph .MAXVERTICES] ;

10
11 public List<Integer> execute (Graph g , int s , int maxDist) {
12 Lis t<Integer> path = new LinkedList<Integer >() ;
13 for (int i = 0 ; i <= g . g e tS i z e () ; i++) {
14 pred [i] = Graph .NULL;
15 d i s t [i] = Graph . INF ;
16 }
17 d i s t [s] = 0 ;
18 pred [s] = Graph .NULL;
19 int f b eg in = 0 ;
20 int fend = 0 ;
21 int u ;
22 int v ;
23 int i ;
24 queue [fend++] = s ;
25 path . add (s) ;
26 while (f b eg in < fend) {
27 u = queue [f b eg in ++];
28 i f (! (d i s t [u] >= maxDist))
29 {
30 for (i = 0 ; i < g . grade [u] ; i++) {
31 v = g . adj [u] [i] ;
32 i f (d i s t [v] == Graph . INF) {
33 d i s t [v] = d i s t [u] + 1 ;
34 pred [v] = u ;
35 queue [fend++] = v ;
36 path . add (v) ;
37 }
38 }
39 }
40 }
41
42 return path ;
43 }
44 }

126 Changes to the UFSC code

B.4 Other

A few more minor (albeit important) changes to a couple files have been made;
instead of listing the whole files again, the code below is shown with explanations
as to where each code snippet has been added.

1 //Added to code f o r each agent , other than i n s p e c t o r s ; can be
seen in s e n t i n e l code in appendix B1 at l i n e s 133−135 and
140

2 +! proce s sBe fo reStep (S) : S > 50 & unknown_enemy_visible (Op,
Entity)

3 <− . p r i n t (" Told lead i n sp e c t o r about en t i t y " , Entity , " at " ,
Op, " . ") ;

4 . send (in spec to r6 , t e l l , enemy(Op, Entity)) .
5 +! auct ion .
6
7 //Added as a separa t e r u l e in the common ru l e s f i l e (appendix

A3) . Used in the s i t u a t i o n s in which an agent s e e s an
uninspected enemy agent nearby

8 unknown_enemy_visible (Op, Entity) :− myTeam(MyTeam) &
v i s i b l eEn t i t y (Entity , Op, Team, _)

9 & Team \== MyTeam & not entityType (Entity , _, _, _,
_) .

10
11 //Added in new step f i l e (appendix A4) , l i n e 22 . Adds the goa l

o f complet ing an auct ion ; a l l agents s imply succeed t h i s
goal , whi l e i n s p e c t o r s engage in auc t i ons when appropr ia t e

12 ! auct ion .
13
14 //Added as a method in the Graph l i b r a r y (appendix A6)
15 pub l i c L i s t<Str ing> getNewBFS(St r ing vertexS , S t r ing vertexD ,

i n t maxDist) {
16 LinkedList<Str ing> r e s u l t = nu l l ;
17 newBFSAlgorithm b f s = new newBFSAlgorithm () ;
18 Lis t<Integer> l i s tD = new LinkedList<Integer >() ;
19 i n t s = ve r t ex2 In t eg e r (vertexS) ;
20 i n t d = ve r t ex2 In t eg e r (vertexD) ;
21 Lis t<Integer> resultBFS = bf s . execute (th i s , d , maxDist) ;
22 r e s u l t = new LinkedList<Str ing >() ;
23 i f (resultBFS != nu l l) {
24 f o r (i n t i : resultBFS) {
25 r e s u l t . addFirs t (i n t e g e r 2v e r t e x [i]) ;
26 }
27 }
28 return r e s u l t ;
29 }

Appendix C

Test results

In this appendix, all the test results are attached. The first three sections contain
tests where each strategy is tested separately, while the last section shows results
where all strategies are used.

C.1 Sentinel

The results of simulations with original system against the system with the
sentinel surveying strategy implemented. The results are shown for 5 configu-
rations, where the strategy is employed until a given turn into the simulation.
Each of the 5 configurations was subjected to 500 simulation runs against the
original system.

configuration survey320 survey640
sentinel25 21.516 180.9
sentinel50 20.136 157.3
sentinel75 20.476 146.5
sentinel100 20.452 142.1
sentinel133 20.476 141.5

Table C.1: Average turns for reaching certain achievements.

128 Test results

configuration survey640 number survey640 faster survey320 faster
sentinel25 252 154 323
sentinel50 270 202 312
sentinel75 277 201 309
sentinel100 279 212 287
sentinel133 302 229 321

Table C.2: Number of simulations in which survey640 achievement was
reached, how many were reached faster and number of simulations
where it and survey320 were reached faster than the opposing (orig-
inal system) team.

configuration wins av. score av. score
difference

sentinel25 240 119199.55 +540
sentinel50 265 119248.21 +589
sentinel75 228 118475.092 -184
sentinel100 256 119123.34 +470
sentinel133 268 118948.49 +290

Table C.3: Number of won simulations, average scores and differences between
average scores of the changed and original team.

configuration survey320 survey640
sentinel25 -4.319 -33.355
sentinel50 -5.699 -56.955
sentinel75 -5.359 -67.755
sentinel100 -5.383 -72.155
sentinel133 -5.359 -72.755

Table C.4: Differences between average turns of reaching survey achievements
for the changed and original system.

C.1 Sentinel 129

Figure C.1: Reaching the survey320 achievement.

Figure C.2: Reaching the survey640 achievement.

130 Test results

Figure C.3: The number of survey actions.

C.2 Inspector

The results of simulations with original system against the system with the
inspecting strategies implemented. The results are shown for 4 configurations,
where the strategy is employed starting from a given turn into the simulation.
Each of the 4 configurations was subjected to 500 simulation runs against the
original system.

configuration inspect10 inspect20 inspect28
inspector25 33.28 73.52 260.44
inspector50 33.0 78.8 275.75
inspector75 35.69 85.206 280.123
inspector100 35.542 89.08 284.5

Table C.5: Average turns for reaching certain achievements and milestones.

C.2 Inspector 131

configuration inspected all inspected all faster inspected 20 faster
inspector25 407 306 318
inspector50 405 310 272
inspector75 405 297 256
inspector100 367 272 250

Table C.6: Number of simulations in which all 28 enemy agents were inspected
and number of simulations in which all and 20 enemies were in-
spected faster than the opposing (original system) team.

configuration wins av. score av. score
difference

inspector25 243 119168.578 +510
inspector50 251 119263.696 +605
inspector75 252 119594.75 +935
inspector100 236 119103.286 +445

Table C.7: Number of won simulations, average scores and differences between
average scores of the changed and original team.

configuration inspect10 inspect20 inspect28
inspector25 -2.757 -16.42 -49.435
inspector50 -3.037 -11.14 -34.125
inspector75 -0.347 -4.734 -29.752
inspector100 -0.495 -0.86 -25.375

Table C.8: Differences between average turns for reaching inspect achieve-
ments and milestones for the changed and original system.

132 Test results

Figure C.4: Reaching the inspect10 achievement.

Figure C.5: Reaching the inspect20 achievement.

C.2 Inspector 133

Figure C.6: Inspecting all 28 enemy agents.

Figure C.7: The number of inspect actions.

134 Test results

C.3 Explorer

The results of simulations with original system against the system with the
explorer spreading strategy implemented. The results are shown for 2 configu-
rations, where the strategy is employed until a given turn into the simulation.
Each of the 2 configurations was subjected to 500 simulation runs against the
original system.

configuration probe160 probe320 probeAll
explorer50 72.07 159.946 295.856
explorer133 72.97 163.20 297.19

Table C.9: Average turns for reaching certain achievements and milestones.

configuration wins av. score av. score
difference

explorer50 254 119787.1 +1128
explorer133 258 119362.7 +703.5

Table C.10: Number of won simulations, average scores and differences be-
tween average scores of the changed and original team.

configuration probe160 probe320 probeAll
explorer50 +0.558 +0.761 +0.861
explorer133 +1.46 +3.415 +2.195

Table C.11: Differences between average turns of reaching probe achievements
and milestones for the changed and original system.

C.3 Explorer 135

Figure C.8: Reaching the probe160 achievement.

Figure C.9: Reaching the probe320 achievement.

136 Test results

Figure C.10: Probing all vertices.

C.4 Buying strategies

The results of simulations for the two buying strategies - attack for saboteurs
and health for explorers. Each one was subjected to 100 test runs - the results
had already become abundantly clear by then and further testing was deemed
irrelevant.

upgrade wins av. score av. score
difference

attack 15 102730.6 -15929
health 20 111170.2 -7489

Table C.12: Number of won simulations, average scores and differences be-
tween average scores of the changed and original team.

C.5 Final system 137

Figure C.11: The scores.

C.5 Final system

The results of simulations with all implemented strategies active (not the buy-
ing strategies, though - as they were unsuccessful). For sentinel, inspector and
explorer strategies, where there are multiple possibilities (the step from/until
which they are employed) the best performing ones were chosen - sentinel un-
til the 133rd, inspector from the 50th and explorer until the 50th step of the
simulation.

138 Test results

Figure C.12: The scores.

Figure C.13: Reaching the survey320 achievement.

C.5 Final system 139

Figure C.14: Reaching the survey640 achievement.

Figure C.15: The number of survey actions.

140 Test results

Figure C.16: Reaching the inspect10 achievement.

Figure C.17: Reaching the inspect20 achievement.

C.5 Final system 141

Figure C.18: Inspecting all 28 enemy agents.

Figure C.19: The number of inspect actions.

142 Test results

Figure C.20: Reaching the probe160 achievement.

Figure C.21: Reaching the probe320 achievement.

C.5 Final system 143

Figure C.22: Probing all vertices.

144 Test results

Appendix D

Other code files

This appendix lists other code files, which were used during the course of this
project.

D.1 Parser for raw statistics text files

1 package t e s t i n g ;
2
3 import java . i o . BufferedOutputStream ;
4 import java . i o . F i l e ;
5 import java . i o . FileNotFoundException ;
6 import java . i o . FileOutputStream ;
7 import java . i o . IOException ;
8 import java . u t i l . ArrayList ;
9 import java . u t i l .Map. Entry ;

10 import java . u t i l . Scanner ;
11 import java . u t i l . TreeMap ;
12 import java . u t i l . regex . Matcher ;
13 import java . u t i l . regex . Pattern ;
14
15 //Used to e x t r a c t r e l e v an t r e s u l t s from MAPC s t a t i s t i c s f i l e s
16 class par s e r {

146 Other code files

17 private f ina l stat ic St r ing s1 = " surveyed320 " ;
18 private f ina l stat ic St r ing s2 = " surveyed640 " ;
19 private f ina l stat ic St r ing p1 = "proved160" ;
20 private f ina l stat ic St r ing p2 = "proved320" ;
21 private f ina l stat ic St r ing i 1 = " inspec ted10 " ;
22 private f ina l stat ic St r ing i 2 = " inspec ted20 " ;
23 private f ina l stat ic Pattern matchTurnNr = Pattern . compi le ("

^[\\d]{1 ,3} ") ;
24 private f ina l stat ic Pattern matchScore = Pattern . compi le ("^

Score : [\\ d]∗ Ranking : −1$") ;
25 private f ina l stat ic Pattern ex t ra c tSco r e = Pattern . compi le (

"^[\\d]∗ ") ;
26 private f ina l stat ic Pattern matchSent ine l s = Pattern .

compi le ("^ S t a t i s t i c s f o r Agent [a−b] [1] [7 − 9] | [2] [0 − 2] o f
Team [A−B] : $") ;

27 private f ina l stat ic Pattern matchInspectors = Pattern .
compi le ("^ S t a t i s t i c s f o r Agent [a−b] [2] [3 − 8] o f Team [A−
B] : $") ;

28 private f ina l stat ic Pattern patternAsurvey320 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ "+s1) ;

29 private f ina l stat ic Pattern patternAsurvey640 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ "+s2) ;

30 private f ina l stat ic Pattern patternAprobe160 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ "+p1) ;

31 private f ina l stat ic Pattern patternAprobe320 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ "+p2) ;

32 private f ina l stat ic Pattern patternAinspect10 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ "+i1) ;

33 private f ina l stat ic Pattern patternAinspect20 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ "+i2) ;

34 private f ina l stat ic Pattern patternBsurvey320 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ [&] { 1 } [\ \w\\s ,] ∗ "+s1
) ;

35 private f ina l stat ic Pattern patternBsurvey640 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ [&] { 1 } [\ \w\\s ,] ∗ "+s2
) ;

36 private f ina l stat ic Pattern patternBprobe160 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ [&] { 1 } [\ \w\\s ,] ∗ "+p1
) ;

37 private f ina l stat ic Pattern patternBprobe320 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ [&] { 1 } [\ \w\\s ,] ∗ "+p2
) ;

38 private f ina l stat ic Pattern patternBinspect10 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ [&] { 1 } [\ \w\\s ,] ∗ "+i1
) ;

39 private f ina l stat ic Pattern patternBinspect20 = Pattern .
compi le ("^[\\d] {1 , 3} [&]{1} [\\w\\s ,] ∗ [&] { 1 } [\ \w\\s ,] ∗ "+i2

D.1 Parser for raw statistics text files 147

) ;
40 private f ina l stat ic Pattern [] patternsA = {

patternAsurvey320 , patternAsurvey640 , patternAprobe160 ,
patternAprobe320 , patternAinspect10 , patternAinspect20 } ;

41 private f ina l stat ic Pattern [] patternsB = {
patternBsurvey320 , patternBsurvey640 , patternBprobe160 ,
patternBprobe320 , patternBinspect10 , patternBinspect20 } ;

42 private f ina l stat ic St r ing achievementsTex = "
achievementsTable . tex " ;

43 private f ina l stat ic St r ing scoresTxt = " t x t f i l e " ;
44 private f ina l stat ic St r ing testName = " Inspec to r50 " ;
45 private f ina l stat ic St r ing d i r e c t o r y = "/home/admin/

workspace/Test ing /"+testName+"/" ;
46 private stat ic ArrayList<Str ing> f i l e sT e x = new ArrayList

<>() ;
47 private stat ic ArrayList<Str ing> f i l e sTx t = new ArrayList

<>() ;
48 private stat ic int counterTex = 0 ;
49 private stat ic int counterTxt = 0 ;
50 private stat ic int counter = 0 ;
51 private stat ic int l i n e I npu t = 0 ;
52 private stat ic int l ineOutput = 0 ;
53 private stat ic int except i on s = 0 ;
54 private stat ic TreeMap<Str ing , Integer >[] mapsA = null ;
55 private stat ic TreeMap<Str ing , Integer >[] mapsB = null ;
56
57 public stat ic void main (f ina l St r ing [] a rgs) {
58 TreeMap<Str ing , Integer> achievA = new TreeMap<>() ;
59 TreeMap<Str ing , Integer> achievB = new TreeMap<>() ;
60 t r av e r s e (new F i l e (d i r e c t o r y)) ;
61 a s s e r t (counterTxt == counterTex) ;
62 mapsA = new TreeMap [counterTex] ;
63 mapsB = new TreeMap [counterTex] ;
64 for (int i = 0 ; i < counterTex ; i++) {
65 parseTxtFi l e (f i l e sT x t . get (i) , achievA , achievB) ;
66 parseTexFi l e (f i l e sT e x . get (i) , achievA , achievB) ;
67 }
68 a s s e r t (except i on s == 0) ;
69 wr i t eRe su l t sToF i l e s () ;
70 System . out . p r i n t l n (" Success . ") ;
71 System . out . p r i n t l n ("Parsed f i l e s : " + counter) ;
72 System . out . p r i n t l n (" Input l i n e s : " + l i n e Inpu t) ;
73 System . out . p r i n t l n ("Output l i n e s : " + l ineOutput) ;
74 System . out . p r i n t l n ("Except ions : " + except i on s) ;
75 }
76

148 Other code files

77 //Go through the score s t x t f i l e and save r e l e v an t
in format ion

78 private stat ic void parseTxtFi l e (S t r ing path , TreeMap<Str ing
, Integer> achievA , TreeMap<Str ing , Integer> achievB) {

79 boolean found1 = fa l se ;
80 int s ent ine l sCounted = 0 ;
81 int inspectorsCounted = 0 ;
82 F i l e f i l e = new F i l e (path) ;
83 Scanner reader = null ;
84 St r ing l i n e = null ;
85 St r ing agent = null ;
86 int s co r e1 = 0 ;
87 int s co r e2 = 0 ;
88 int surveys1 = 0 ;
89 int surveys2 = 0 ;
90 int i n sp e c t s 1 = 0 ;
91 int i n sp e c t s 2 = 0 ;
92 try {
93 reader = new Scanner (f i l e) ;
94 while (reader . hasNext ()) {
95 l i n e = reader . nextLine () ;
96 l i n e Inpu t++;
97 i f (match (matchScore , l i n e)) {
98 Matcher match = ext ra c tSco r e . matcher (l i n e . sub s t r i ng

(7 , 13)) ;
99 while (match . f i nd ()) {

100 i f (! found1) {
101 sco r e1 = In t eg e r . pa r s e In t (match . group ()) ;
102 found1 = true ;
103 } else {
104 sco r e2 = In t eg e r . pa r s e In t (match . group ()) ;
105 break ;
106 }
107 }
108 }
109 }
110 i f (Math . abs (s co r e1 − s co r e2) > 50000) {
111 System . e r r . p r i n t l n (" Score d i f f e r e n c e more than 50 .000

− i n v e s t i g a t e : " + path) ;
112 }
113 achievA . put (" Score : " , s co r e1) ;
114 achievB . put (" Score : " , s co r e2) ;
115 reader . c l o s e () ;
116 reader = new Scanner (f i l e) ;
117 while (reader . hasNext ()) {
118 agent = reader . nextLine () ;
119 l i n e Inpu t++;

D.1 Parser for raw statistics text files 149

120 i f (match (matchSent ine ls , agent)) {
121 do {
122 l i n e = reader . nextLine () ;
123 l i n e Inpu t++;
124 } while (! l i n e . s tartsWith (" survey : ")) ;
125 Matcher match = ext ra c tSco r e . matcher (l i n e . sub s t r i ng

(14 , 17)) ;
126 while (match . f i nd ()) {
127 i f (s ent ine l sCounted < 6) {
128 sent ine l sCounted++;
129 surveys1 = surveys1 + In t eg e r . pa r s e In t (match .

group ()) ;
130 } else {
131 sent ine l sCounted++;
132 surveys2 = surveys2 + In t eg e r . pa r s e In t (match .

group ()) ;
133 }
134 }
135 }
136 i f (match (matchInspectors , agent)) {
137 do {
138 l i n e = reader . nextLine () ;
139 l i n e Inpu t++;
140 } while (! l i n e . s tartsWith (" i n sp e c t : ")) ;
141 Matcher match = ext ra c tSco r e . matcher (l i n e . sub s t r i ng

(15 , 18)) ;
142 while (match . f i nd ()) {
143 i f (inspectorsCounted < 6) {
144 inspectorsCounted++;
145 i n sp e c t s 1 = in sp e c t s 1 + In t eg e r . pa r s e In t (match .

group ()) ;
146 } else {
147 inspectorsCounted++;
148 i n sp e c t s 2 = in sp e c t s 2 + In t eg e r . pa r s e In t (match .

group ()) ;
149 }
150 }
151 }
152 }
153 achievA . put (" surveys " , surveys1) ;
154 achievB . put (" surveys " , surveys2) ;
155 achievA . put (" i n s p e c t s " , i n sp e c t s 1) ;
156 achievB . put (" i n s p e c t s " , i n sp e c t s 2) ;
157 } catch (Exception e) {
158 except i on s++;
159 System . e r r . p r i n t l n (path) ;
160 System . e r r . p r i n t l n (agent) ;

150 Other code files

161 System . e r r . p r i n t l n (l i n e) ;
162 e . pr intStackTrace () ;
163 } f ina l ly {
164 reader . c l o s e () ;
165 }
166 }
167
168 //Go through the achievements t e x f i l e and save r e l e v an t

in format ion to maps
169 private stat ic void parseTexFi l e (S t r ing path , TreeMap<Str ing

, Integer> achievA , TreeMap<Str ing , Integer> achievB) {
170 F i l e f i l e = new F i l e (path) ;
171 Scanner reader = null ;
172 Matcher match = null ;
173 try {
174 reader = new Scanner (f i l e) ;
175 St r ing l i n e = null ;
176 while (reader . hasNext ()) {
177 l i n e = reader . nextLine () ;
178 l i n e Inpu t++;
179 for (int i = 0 ; i < patternsA . l ength ; i++) {
180 i f (match (patternsA [i] , l i n e)) {
181 match = matchTurnNr . matcher (l i n e) ;
182 i f (match . f i nd ()) {
183 int turn = In t eg e r . pa r s e In t (match . group ()) ;
184 switch (i) {
185 case 0 :
186 achievA . put (s1 , turn) ;
187 break ;
188 case 1 :
189 achievA . put (s2 , turn) ;
190 break ;
191 case 2 :
192 achievA . put (p1 , turn) ;
193 break ;
194 case 3 :
195 achievA . put (p2 , turn) ;
196 break ;
197 case 4 :
198 achievA . put (i1 , turn) ;
199 break ;
200 case 5 :
201 achievA . put (i2 , turn) ;
202 break ;
203 default :
204 System . e r r . p r i n t l n ("Something went wrong in

switch A! ") ;

D.1 Parser for raw statistics text files 151

205 break ;
206 }
207 }
208 }
209 }
210 for (int i = 0 ; i < patternsB . l ength ; i++) {
211 i f (match (patternsB [i] , l i n e)) {
212 match = matchTurnNr . matcher (l i n e) ;
213 i f (match . f i nd ()) {
214 int turn = In t eg e r . pa r s e In t (match . group ()) ;
215 switch (i) {
216 case 0 :
217 achievB . put (s1 , turn) ;
218 break ;
219 case 1 :
220 achievB . put (s2 , turn) ;
221 break ;
222 case 2 :
223 achievB . put (p1 , turn) ;
224 break ;
225 case 3 :
226 achievB . put (p2 , turn) ;
227 break ;
228 case 4 :
229 achievB . put (i1 , turn) ;
230 break ;
231 case 5 :
232 achievB . put (i2 , turn) ;
233 break ;
234 default :
235 System . e r r . p r i n t l n ("Something went wrong in

switch B! ") ;
236 break ;
237 }
238 }
239 }
240 }
241 }
242 TreeMap<Str ing , Integer> tempA = (TreeMap<Str ing ,

Integer >) achievA . c l one () ;
243 TreeMap<Str ing , Integer> tempB = (TreeMap<Str ing ,

Integer >) achievB . c l one () ;
244 tempA . putAl l (achievA) ;
245 tempB . putAl l (achievB) ;
246 mapsA [counter] = tempA ;
247 mapsB [counter] = tempB ;
248 counter++;

152 Other code files

249 achievA . c l e a r () ;
250 achievB . c l e a r () ;
251 } catch (Exception e) {
252 except i on s++;
253 e . pr intStackTrace () ;
254 } f ina l ly {
255 reader . c l o s e () ;
256 }
257 }
258
259 //Match a regex pa t t e rn to a l i n e o f t e x t
260 private stat ic boolean match (Pattern pattern , S t r ing l i n e) {
261 Matcher matcher = pattern . matcher (l i n e) ;
262 boolean found = fa l se ;
263 while (matcher . f i nd ()) {
264 found = true ;
265 }
266 return found ;
267 }
268
269 //Traverse a d i r e c t o r y and save paths to achievements and

score s t e x t f i l e s
270 private stat ic void t r a v e r s e (F i l e f i l e) {
271 i f (f i l e . i sD i r e c t o r y ()) {
272 St r ing e n t r i e s [] = f i l e . l i s t () ;
273 i f (e n t r i e s != null) {
274 for (S t r ing entry : e n t r i e s) {
275 t r av e r s e (new F i l e (f i l e , entry)) ;
276 }
277 }
278 }
279 i f (f i l e . getName () . equa l s (achievementsTex)) {
280 f i l e sT e x . add (f i l e . getAbsolutePath ()) ;
281 counterTex++;
282 }
283 i f (f i l e . getName () . equa l s (scoresTxt)) {
284 f i l e sT x t . add (f i l e . getAbsolutePath ()) ;
285 counterTxt++;
286 }
287 }
288
289 //Go through the array wi th r e s u l t s and e x t r a c t in format ion

about achievements to f i l e
290 private stat ic void wr i t eRe su l t sToF i l e s () {
291 F i l e survey320A = new F i l e (d i r e c t o r y+"survey320A . txt ") ;
292 F i l e survey640A = new F i l e (d i r e c t o r y+"survey640A . txt ") ;
293 F i l e probe160A = new F i l e (d i r e c t o r y+"probe160A . txt ") ;

D.1 Parser for raw statistics text files 153

294 F i l e probe320A = new F i l e (d i r e c t o r y+"probe320A . txt ") ;
295 F i l e inspect10A = new F i l e (d i r e c t o r y+" inspect10A . txt ") ;
296 F i l e inspect20A = new F i l e (d i r e c t o r y+" inspect20A . txt ") ;
297 F i l e survey320B = new F i l e (d i r e c t o r y+"survey320B . txt ") ;
298 F i l e survey640B = new F i l e (d i r e c t o r y+"survey640B . txt ") ;
299 F i l e probe160B = new F i l e (d i r e c t o r y+"probe160B . txt ") ;
300 F i l e probe320B = new F i l e (d i r e c t o r y+"probe320B . txt ") ;
301 F i l e inspect10B = new F i l e (d i r e c t o r y+" inspect10B . txt ") ;
302 F i l e inspect20B = new F i l e (d i r e c t o r y+" inspect20B . txt ") ;
303 F i l e re su l tA = new F i l e (d i r e c t o r y+" resu l tA . txt ") ;
304 F i l e r e su l tB = new F i l e (d i r e c t o r y+" re su l tB . txt ") ;
305 F i l e surveysA = new F i l e (d i r e c t o r y+"surveysA . txt ") ;
306 F i l e surveysB = new F i l e (d i r e c t o r y+" surveysB . txt ") ;
307 F i l e inspectsA = new F i l e (d i r e c t o r y+" inspectsA . txt ") ;
308 F i l e inspect sB = new F i l e (d i r e c t o r y+" inspect sB . txt ") ;
309 for (int i = 0 ; i < mapsA . l ength ; i++) {
310 for (Entry<Str ing , Integer> entry : mapsA [i] . ent rySet ())

{
311 St r ing key = entry . getKey () ;
312 In t eg e r va lue = entry . getValue () ;
313 switch (key) {
314 case " inspec ted10 " :
315 wr i t eToFi l e (inspect10A , va lue . t oS t r i ng () , true) ;
316 break ;
317 case " inspec ted20 " :
318 wr i t eToFi l e (inspect20A , va lue . t oS t r i ng () , true) ;
319 break ;
320 case "proved160" :
321 wr i t eToFi l e (probe160A , value . t oS t r i ng () , true) ;
322 break ;
323 case "proved320" :
324 wr i t eToFi l e (probe320A , value . t oS t r i ng () , true) ;
325 break ;
326 case " Score : " :
327 wr i t eToFi l e (resultA , va lue . t oS t r i ng () , true) ;
328 break ;
329 case " surveyed320 " :
330 wr i t eToFi l e (survey320A , value . t oS t r i ng () , true) ;
331 break ;
332 case " surveyed640 " :
333 wr i t eToFi l e (survey640A , value . t oS t r i ng () , true) ;
334 break ;
335 case " surveys " :
336 wr i t eToFi l e (surveysA , va lue . t oS t r i ng () , true) ;
337 break ;
338 case " i n s p e c t s " :
339 wr i t eToFi l e (inspectsA , va lue . t oS t r i ng () , true) ;

154 Other code files

340 break ;
341 default :
342 System . e r r . p r i n t l n ("Something went wrong in switch A

! ") ;
343 break ;
344 }
345 }
346 }
347 for (int i = 0 ; i < mapsB . l ength ; i++) {
348 for (Entry<Str ing , Integer> entry : mapsB [i] . ent rySet ())

{
349 St r ing key = entry . getKey () ;
350 In t eg e r va lue = entry . getValue () ;
351 switch (key) {
352 case " inspec ted10 " :
353 wr i t eToFi l e (inspect10B , va lue . t oS t r i ng () , true) ;
354 break ;
355 case " inspec ted20 " :
356 wr i t eToFi l e (inspect20B , va lue . t oS t r i ng () , true) ;
357 break ;
358 case "proved160" :
359 wr i t eToFi l e (probe160B , va lue . t oS t r i ng () , true) ;
360 break ;
361 case "proved320" :
362 wr i t eToFi l e (probe320B , va lue . t oS t r i ng () , true) ;
363 break ;
364 case " Score : " :
365 wr i t eToFi l e (resu l tB , va lue . t oS t r i ng () , true) ;
366 break ;
367 case " surveyed320 " :
368 wr i t eToFi l e (survey320B , va lue . t oS t r i ng () , true) ;
369 break ;
370 case " surveyed640 " :
371 wr i t eToFi l e (survey640B , va lue . t oS t r i ng () , true) ;
372 break ;
373 case " surveys " :
374 wr i t eToFi l e (surveysB , va lue . t oS t r i ng () , true) ;
375 break ;
376 case " i n s p e c t s " :
377 wr i t eToFi l e (inspectsB , va lue . t oS t r i ng () , true) ;
378 break ;
379 default :
380 System . e r r . p r i n t l n ("Something went wrong in switch B

! ") ;
381 break ;
382 }
383 }

D.1 Parser for raw statistics text files 155

384 }
385 }
386
387 //Standard method f o r wr i t i n g t e x t to f i l e
388 private stat ic void wr i teToFi l e (F i l e f i l e , S t r ing text ,

boolean append) {
389 BufferedOutputStream output = null ;
390 try{
391 output = new BufferedOutputStream (new FileOutputStream (

f i l e , append)) ;
392 l ineOutput++;
393 output . wr i t e (t ex t . getBytes ()) ;
394 output . wr i t e ("\n" . getBytes ()) ;
395 }catch (FileNotFoundException e) {
396 except i on s++;
397 e . pr intStackTrace () ;
398 }catch (IOException e) {
399 except i on s++;
400 e . pr intStackTrace () ;
401 } f ina l ly {
402 try{
403 i f (output != null) {
404 output . f l u s h () ;
405 output . c l o s e () ;
406 }
407 }catch (IOException e) {
408 except i on s++;
409 e . pr intStackTrace () ;
410 }
411 }
412 }
413 }

156 Other code files

D.2 Parser for agent simulation logs

The program used to extract the turn in which all 28 enemy agents were suc-
cessfully inspected.

1 package t e s t i n g ;
2
3 import java . i o . BufferedOutputStream ;
4 import java . i o . F i l e ;
5 import java . i o . FileNotFoundException ;
6 import java . i o . FileOutputStream ;
7 import java . i o . IOException ;
8 import java . u t i l . Scanner ;
9 import java . u t i l . regex . Matcher ;

10 import java . u t i l . regex . Pattern ;
11
12 //Used to e x t r a c t data from agent output l o g f i l e
13 class parse r2 {
14 private stat ic int except i on s = 0 ;
15 public stat ic void main (f ina l St r ing [] a rgs) {
16 f ina l Pattern patternStep = Pattern . compi le ("Current s tep

i s [\\ s] [\ \ d] ") ;
17 f ina l Pattern pat te rn Inspec ted28 = Pattern . compi le ("Number

o f e n t i t i e s in a r t e f a c t : [\ \ s] 28 ") ;
18 f ina l Pattern p = Pattern . compi le ("\\d{2 ,3} ") ;
19 F i l e f = new F i l e ("outputA . l og ") ;
20 F i l e f 2 = new F i l e ("outputB . l og ") ;
21 F i l e resA = new F i l e (" inspected28A . txt ") ;
22 F i l e resB = new F i l e (" inspected28B . txt ") ;
23 Scanner s = null ;
24 St r ing l i n e = null ;
25 try {
26 s = new Scanner (f) ;
27 while (s . hasNextLine ()) {
28 l i n e = s . nextLine () ;
29 i f (match (patternInspected28 , l i n e)) {
30 do{
31 l i n e = s . nextLine () ;
32 }while (! match (patternStep , l i n e)) ;
33 Matcher m = p . matcher (l i n e) ;
34 i f (m. f i nd ()) {
35 wr i t eToFi l e (resA , m. group () , true) ;
36 }
37 }
38 }
39 } catch (FileNotFoundException e) {
40 except i on s++;

D.2 Parser for agent simulation logs 157

41 e . pr intStackTrace () ;
42 } f ina l ly {
43 s . c l o s e () ;
44 }
45 try {
46 s = new Scanner (f 2) ;
47 while (s . hasNextLine ()) {
48 l i n e = s . nextLine () ;
49 i f (match (patternInspected28 , l i n e)) {
50 do{
51 l i n e = s . nextLine () ;
52 }while (! match (patternStep , l i n e)) ;
53 Matcher m = p . matcher (l i n e) ;
54 i f (m. f i nd ()) {
55 wr i t eToFi l e (resB , m. group () , true) ;
56 }
57 }
58 }
59 } catch (FileNotFoundException e) {
60 except i on s++;
61 e . pr intStackTrace () ;
62 } f ina l ly {
63 s . c l o s e () ;
64 }
65 a s s e r t (except i on s == 0) ;
66 System . out . p r i n t l n (" Success . ") ;
67 }
68
69 //Match a regex pa t t e rn to a l i n e o f t e x t
70 private stat ic boolean match (Pattern pattern , S t r ing l i n e) {
71 Matcher matcher = pattern . matcher (l i n e) ;
72 boolean found = fa l se ;
73 while (matcher . f i nd ()) {
74 found = true ;
75 }
76 return found ;
77 }
78
79 //Standard method f o r wr i t i n g t e x t to f i l e
80 private stat ic void wr i teToFi l e (F i l e f i l e , S t r ing text ,

boolean append) {
81 BufferedOutputStream output = null ;
82 try{
83 output = new BufferedOutputStream (new FileOutputStream (

f i l e , append)) ;
84 output . wr i t e (t ex t . getBytes ()) ;
85 output . wr i t e ("\n" . getBytes ()) ;

158 Other code files

86 }catch (FileNotFoundException e) {
87 except i on s++;
88 e . pr intStackTrace () ;
89 }catch (IOException e) {
90 except i on s++;
91 e . pr intStackTrace () ;
92 } f ina l ly {
93 try{
94 i f (output != null) {
95 output . f l u s h () ;
96 output . c l o s e () ;
97 }
98 }catch (IOException e) {
99 except i on s++;

100 e . pr intStackTrace () ;
101 }
102 }
103 }
104 }

D.3 R statistics script 159

D.3 R statistics script

The program used to read output text files from D.1 and D.2 and subsequently
generate box plots and other statistics.

1 #Direc tory wi th t e x t f i l e s
2 setwd (’/home/admin/workspace/ t e s t s / ’) #Add name o f

c on f i g u r a t i on a f t e r / t e s t s / ; e . g . Inspec tor25
3
4 #Extrac t data from t e x t f i l e s
5 ins10A=as . vector (as . matrix (read . table (" inspect10A . txt ")))
6 ins10B=as . vector (as . matrix (read . table (" inspect10B . txt ")))
7 ins20A=as . vector (as . matrix (read . table (" inspect20A . txt ")))
8 ins20B=as . vector (as . matrix (read . table (" inspect20B . txt ")))
9 ins28A=as . vector (as . matrix (read . table (" inspected28A . txt ")))

10 ins28B=as . vector (as . matrix (read . table (" inspected28B . txt ")))
11 probe160A=as . vector (as . matrix (read . table ("probe160A . txt ")))
12 probe160B=as . vector (as . matrix (read . table ("probe160B . txt ")))
13 probe320A=as . vector (as . matrix (read . table ("probe320A . txt ")))
14 probe320B=as . vector (as . matrix (read . table ("probe320B . txt ")))
15 survey320A=as . vector (as . matrix (read . table (" survey320A . txt ")))
16 survey320B=as . vector (as . matrix (read . table (" survey320B . txt ")))
17 survey640A=as . vector (as . matrix (read . table (" survey640A . txt ")))
18 survey640B=as . vector (as . matrix (read . table (" survey640B . txt ")))
19 surveysA=as . vector (as . matrix (read . table (" surveysA . txt ")))
20 surveysB=as . vector (as . matrix (read . table (" surveysB . txt ")))
21 inspectsA=as . vector (as . matrix (read . table (" inspectsA . txt ")))
22 inspect sB=as . vector (as . matrix (read . table (" inspect sB . txt ")))
23 resu l tA=as . vector (as . matrix (read . table (" re su l tA . txt ")))
24 re su l tB=as . vector (as . matrix (read . table (" r e su l tB . txt ")))
25
26 #Extrac t number o f s imu la t i on s
27 simulationsNumber=length (re su l tA)
28
29 #Draw bo x p l o t s f o r each pa i r o f data
30 boxplot (ins10A , ins10B ,names=c ("Changed" , " Or i g i na l ") , h o r i z on t a l

=TRUE, xlab="Turn" , ylab="Team" ,main=" Inspect10 achievement "
)

31 boxplot (ins20A , ins20B ,names=c ("Changed" , " Or i g i na l ") , h o r i z on t a l
=TRUE, xlab="Turn" , ylab="Team" ,main=" Inspect20 achievement "
)

32 boxplot (ins28A , ins28B ,names=c ("Changed" , " Or i g i na l ") , h o r i z on t a l
=TRUE, xlab="Turn" , ylab="Team" ,main=" Inspect28 mi l e s tone ")

33 boxplot (probe160A , probe160B ,names=c ("Changed" , " Or i g i na l ") ,
h o r i z on t a l=TRUE, xlab="Turn" , ylab="Team" ,main="Probe160
achievement ")

34 boxplot (probe320A , probe320B ,names=c ("Changed" , " Or i g i na l ") ,

160 Other code files

ho r i z on t a l=TRUE, xlab="Turn" , ylab="Team" ,main="Probe320
achievement ")

35 boxplot (survey320A , survey320B ,names=c ("Changed" , " Or i g i na l ") ,
h o r i z on t a l=TRUE, xlab="Turn" , ylab="Team" ,main="Survey320
achievement ")

36 boxplot (survey640A , survey640B ,names=c ("Changed" , " Or i g i na l ") ,
h o r i z on t a l=TRUE, xlab="Turn" , ylab="Team" ,main="Survey640
achievement ")

37 boxplot (surveysA , surveysB ,names=c ("Changed" , " Or i g i na l ") ,
h o r i z on t a l=TRUE, xlab="Number" , ylab="Team" ,main="Survey
a c t i on s ")

38 boxplot (inspectsA , inspectsB ,names=c ("Changed" , " Or i g i na l ") ,
h o r i z on t a l=TRUE, xlab="Number" , ylab="Team" ,main=" Inspec t
a c t i on s ")

39 boxplot (resultA , resu ltB ,names=c ("Changed" , " Or i g i na l ") ,
h o r i z on t a l=TRUE, xlab="Score " , ylab="Team" ,main=" Resu l t s ")

40
41 #Extrac t average va l u e s
42 averageIns10A=mean(ins10A)
43 averageIns10B=mean(ins10B)
44 averageIns20A=mean(ins20A)
45 averageIns20B=mean(ins20B)
46 averageIns28A=mean(ins28A)
47 averageIns28B=mean(ins28B)
48 averageProbe160A=mean(probe160A)
49 averageProbe160B=mean(probe160B)
50 averageProbe320A=mean(probe320A)
51 averageProbe320B=mean(probe320B)
52 averageSurvey320A=mean(survey320A)
53 averageSurvey320B=mean(survey320B)
54 averageSurvey640A=mean(survey640A)
55 averageSurvey640B=mean(survey640B)
56 averageSurveysA=mean(surveysA)
57 averageSurveysB=mean(surveysB)
58 averageInspectsA=mean(inspectsA)
59 averageInspectsB=mean(inspect sB)
60 averageScoreA=mean(re su l tA)
61 averageScoreB=mean(r e su l tB)
62
63 #Extrac t median va l u e s
64 medianIns10A=median(ins10A)
65 medianIns10B=median(ins10B)
66 medianIns20A=median(ins20A)
67 medianIns20B=median(ins20B)
68 medianIns28A=median(ins28A)
69 medianIns28B=median(ins28B)
70 medianProbe160A=median(probe160A)

D.3 R statistics script 161

71 medianProbe160B=median(probe160B)
72 medianProbe320A=median(probe320A)
73 medianProbe320B=median(probe320B)
74 medianSurvey320A=median(survey320A)
75 medianSurvey320B=median(survey320B)
76 medianSurvey640A=median(survey640A)
77 medianSurvey640B=median(survey640B)
78 medianSurveysA=median(surveysA)
79 medianSurveysB=median(surveysB)
80 medianInspectsA=median(inspectsA)
81 medianInspectsB=median(inspect sB)
82 medianScoreA=median(re su l tA)
83 medianScoreB=median(r e su l tB)
84
85 #Extrac t number o f survey640 and inspec t28 reached
86 survey640NumberA=length (survey640A)
87 survey640NumberB=length (survey640B)
88 inspect28NumberA=length (ins28A)
89 inspect28NumberB=length (ins28B)
90
91 #Extrac t number o f v i c t o r i e s in each pa i r
92 insFaster10A=length (which(ins10A<ins10B))
93 insFaster10B=length (which(ins10A>ins10B))
94 insFaster10Draw=length (which(ins10A==ins10B))
95 insFaster20A=length (which(ins20A<ins20B))
96 insFaster20B=length (which(ins20A>ins20B))
97 insFaster20Draw=length (which(ins20A==ins20B))
98 t=length (ins28A)
99 t1=length (ins28B)

100 i f (t>t1) {
101 t2=t−t1
102 for (i in 1 : t2) { ins28B <− c (ins28B ,750) }
103 } else i f (t<t1) {
104 t2=t1−t
105 for (i in 1 : t2) { ins28A <− c (ins28A ,750) }
106 }
107 insFaster28A=length (which(ins28A<ins28B))
108 insFaster28B=length (which(ins28A>ins28B))
109 insFaster28Draw=length (which(ins28A==ins28B))
110 inspect sLessA=length (which(inspectsA<inspect sB))
111 inspec t sLes sB=length (which(inspectsA>inspect sB))
112 inspectsLessDraw=length (which(inspectsA==inspect sB))
113 probeFaster160A=length (which(probe160A<probe160B))
114 probeFaster160B=length (which(probe160A>probe160B))
115 probeFaster160Draw=length (which(probe160A==probe160B))
116 probeFaster320A=length (which(probe320A<probe320B))
117 probeFaster320B=length (which(probe320A>probe320B))

162 Other code files

118 probeFaster320Draw=length (which(probe320A==probe320B))
119 surveyFaster320A=length (which(survey320A<survey320B))
120 surveyFaster320B=length (which(survey320A>survey320B))
121 surveyFaser320Draw=length (which(survey320A==survey320B))
122 t=length (survey640A)
123 t1=length (survey640B)
124 i f (t>t1) {
125 t2=t−t1
126 for (i in 1 : t2) { survey640B <− c (survey640B ,750) }
127 } else i f (t<t1) {
128 t2=t1−t
129 for (i in 1 : t2) { survey640A <− c (survey640A ,750) }
130 }
131 surveyFaster640A=length (which(survey640A<survey640B))
132 surveyFaster640B=length (which(survey640A>survey640B))
133 surveyFaster640Draw=length (which(survey640A==survey640B))
134 surveysLessA=length (which(surveysA<surveysB))
135 surveysLessB=length (which(surveysA>surveysB))
136 surveysLessDraw=length (which(surveysA==surveysB))
137 resultWinA=length (which(resultA>resu l tB))
138 resultWinB=length (which(resultA<resu l tB))
139 resultDraw=length (which(re su l tA==resu l tB))
140
141 #Clear unnecessary va l u e s
142 remove(t , t1 , t2 , i , ins10A , ins10B , ins20A , ins20B , ins28A , ins28B ,

probe160A , probe160B , probe320A , probe320B ,
143 survey320A , survey320B , survey640A , survey640B , inspectsA ,

inspectsB , surveysA , surveysB , resultA , r e su l tB)
144
145 #Draw s e v e r a l b o x p l o t s in one graph f o r comparison
146 setwd (’/home/admin/workspace/ t e s t s / In spec to r25 ’)
147 ins10A1=as . vector (as . matrix (read . table (" inspect10A . txt ")))
148 ins20A1=as . vector (as . matrix (read . table (" inspect20A . txt ")))
149 ins28A1=as . vector (as . matrix (read . table (" inspected28A . txt ")))
150 inspectsA1=as . vector (as . matrix (read . table (" inspectsA . txt ")))
151
152 setwd (’/home/admin/workspace/ t e s t s / In spec to r50 ’)
153 ins10A2=as . vector (as . matrix (read . table (" inspect10A . txt ")))
154 ins20A2=as . vector (as . matrix (read . table (" inspect20A . txt ")))
155 ins28A2=as . vector (as . matrix (read . table (" inspected28A . txt ")))
156 inspectsA2=as . vector (as . matrix (read . table (" inspectsA . txt ")))
157
158 setwd (’/home/admin/workspace/ t e s t s / In spec to r75 ’)
159 ins10A3=as . vector (as . matrix (read . table (" inspect10A . txt ")))
160 ins20A3=as . vector (as . matrix (read . table (" inspect20A . txt ")))
161 ins28A3=as . vector (as . matrix (read . table (" inspected28A . txt ")))
162 inspectsA3=as . vector (as . matrix (read . table (" inspectsA . txt ")))

D.3 R statistics script 163

163
164 setwd (’/home/admin/workspace/ t e s t s / Inspec tor100 ’)
165 ins10A4=as . vector (as . matrix (read . table (" inspect10A . txt ")))
166 ins20A4=as . vector (as . matrix (read . table (" inspect20A . txt ")))
167 ins28A4=as . vector (as . matrix (read . table (" inspected28A . txt ")))
168 inspectsA4=as . vector (as . matrix (read . table (" inspectsA . txt ")))
169
170 setwd (’/home/admin/workspace/ t e s t s /Sent in e l 25 ’)
171 survey320A1=as . vector (as . matrix (read . table (" survey320 . txt ")))
172 survey640A1=as . vector (as . matrix (read . table (" survey640 . txt ")))
173 surveysA1=as . vector (as . matrix (read . table (" surveys . txt ")))
174
175 setwd (’/home/admin/workspace/ t e s t s /Sent in e l 50 ’)
176 survey320A2=as . vector (as . matrix (read . table (" survey320 . txt ")))
177 survey640A2=as . vector (as . matrix (read . table (" survey640 . txt ")))
178 surveysA2=as . vector (as . matrix (read . table (" surveys . txt ")))
179
180 setwd (’/home/admin/workspace/ t e s t s /Sent in e l 75 ’)
181 survey320A3=as . vector (as . matrix (read . table (" survey320 . txt ")))
182 survey640A3=as . vector (as . matrix (read . table (" survey640 . txt ")))
183 surveysA3=as . vector (as . matrix (read . table (" surveys . txt ")))
184
185 setwd (’/home/admin/workspace/ t e s t s /Sent ine l 100 ’)
186 survey320A4=as . vector (as . matrix (read . table (" survey320 . txt ")))
187 survey640A4=as . vector (as . matrix (read . table (" survey640 . txt ")))
188 surveysA4=as . vector (as . matrix (read . table (" surveys . txt ")))
189
190 setwd (’/home/admin/workspace/ t e s t s /Sent ine l 133 ’)
191 survey320A5=as . vector (as . matrix (read . table (" survey320 . txt ")))
192 survey640A5=as . vector (as . matrix (read . table (" survey640 . txt ")))
193 surveysA5=as . vector (as . matrix (read . table (" surveys . txt ")))
194
195 setwd (’/home/admin/workspace/ t e s t s /Buying Explorer ’)
196 resu l tA2=as . vector (as . matrix (read . table (" re su l tA . txt ")))
197
198 setwd (’/home/admin/workspace/ t e s t s /Buying Saboteur ’)
199 resu l tA3=as . vector (as . matrix (read . table (" re su l tA . txt ")))
200
201 setwd (’/home/admin/workspace/ t e s t s /Explorer50 ’)
202 probe160A13=as . vector (as . matrix (read . table ("probe160A . txt ")))
203 probe320A13=as . vector (as . matrix (read . table ("probe320A . txt ")))
204 probeAllA13=as . vector (as . matrix (read . table ("probeAllA . txt ")))
205
206 setwd (’/home/admin/workspace/ t e s t s /Explorer133 ’)
207 probe160A14=as . vector (as . matrix (read . table ("probe160A . txt ")))
208 probe320A14=as . vector (as . matrix (read . table ("probe320A . txt ")))
209 probeAllA14=as . vector (as . matrix (read . table ("probeAllA . txt ")))

164 Other code files

210
211 setwd (’/home/admin/workspace/ t e s t s /Or ig ina l ’)
212 ins10A5=as . vector (as . matrix (read . table (" inspect10A . txt ")))
213 ins20A5=as . vector (as . matrix (read . table (" inspect20A . txt ")))
214 inspectsA5=as . vector (as . matrix (read . table (" inspectsA . txt ")))
215 ins28A5=as . vector (as . matrix (read . table (" inspected28A . txt ")))
216 survey320A6=as . vector (as . matrix (read . table (" survey320 . txt ")))
217 survey640A6=as . vector (as . matrix (read . table (" survey640 . txt ")))
218 surveysA6=as . vector (as . matrix (read . table (" surveys . txt ")))
219 probe160A5=as . vector (as . matrix (read . table ("probe160A . txt ")))
220 probe320A5=as . vector (as . matrix (read . table ("probe320A . txt ")))
221 probeAllA5=as . vector (as . matrix (read . table ("probeAllA . txt ")))
222 resu l tA1=as . vector (as . matrix (read . table (" re su l tA . txt ")))
223
224 boxplot (ins10A1 , ins10A2 , ins10A3 , ins10A4 , ins10A5 ,names=c (" in s25

" , " in s50 " , " in s75 " , " ins100 " , " o r i g i n a l ") , h o r i z on t a l=TRUE,
ylab=" Conf igurat ion " , xlab="Turn" ,main=" Inspect10
achievement ")

225 boxplot (ins20A1 , ins20A2 , ins20A3 , ins20A4 , ins20A5 ,names=c (" in s25
" , " in s50 " , " in s75 " , " ins100 " , " o r i g i n a l ") , h o r i z on t a l=TRUE,
ylab=" Conf igurat ion " , xlab="Turn" ,main=" Inspect20
achievement ")

226 boxplot (ins28A1 , ins28A2 , ins28A3 , ins28A4 , ins28A5 ,names=c (" in s25
" , " in s50 " , " in s75 " , " ins100 " , " o r i g i n a l ") , h o r i z on t a l=TRUE,
ylab=" Conf igurat ion " , xlab="Turn" ,main=" Inspect28 mi l e s tone
")

227 boxplot (inspectsA1 , inspectsA2 , inspectsA3 , inspectsA4 , inspectsA5
,names=c (" in s25 " , " in s50 " , " in s75 " , " ins100 " , " o r i g i n a l ") ,
h o r i z on t a l=TRUE, ylab=" Conf igurat ion " , xlab="Number" ,main="
Inspec t a c t i on s ")

228
229 boxplot (survey320A1 , survey320A2 , survey320A3 , survey320A4 ,

survey320A5 , survey320A6 ,names=c (" sent25 " , " sent50 " , " sent75 "
, " sent100 " , " sent133 " , " o r i g i n a l ") , h o r i z on t a l=TRUE, ylab="
Conf igurat ion " , xlab="Turn" ,main="Survey320 achievement ")

230 boxplot (survey640A1 , survey640A2 , survey640A3 , survey640A4 ,
survey640A5 , survey640A6 ,names=c (" sent25 " , " sent50 " , " sent75 "
, " sent100 " , " sent133 " , " o r i g i n a l ") , h o r i z on t a l=TRUE, ylab="
Conf igurat ion " , xlab="Turn" ,main="Survey640 achievement ")

231 boxplot (surveysA1 , surveysA2 , surveysA3 , surveysA4 , surveysA5 ,
surveysA6 ,names=c (" sent25 " , " sent50 " , " sent75 " , " sent100 " , "
sent133 " , " o r i g i n a l ") , h o r i z on t a l=TRUE, ylab=" Conf igurat ion " ,
xlab="Turn" ,main="Survey a c t i on s ")

232
233 boxplot (resultA2 , resultA3 , resultA1 ,names=c (" exp l o r e r upgr" , "

saboteur upgr" , " o r i g i n a l ") , h o r i z on t a l=TRUE, ylab="
Conf igurat ion " , xlab="Score " ,main=" Resu l t s ")

D.3 R statistics script 165

234
235 boxplot (probe160A13 , probe160A14 , probe160A5 ,names=c (" exp lo r e r50

" , " exp lo r e r133 " , " o r i g i n a l ") , h o r i z on t a l=TRUE, ylab="
Conf igurat ion " , xlab="Turn" ,main="Probe160 achievement ")

236 boxplot (probe320A13 , probe320A14 , probe320A5 ,names=c (" exp lo r e r50
" , " exp lo r e r133 " , " o r i g i n a l ") , h o r i z on t a l=TRUE, ylab="
Conf igurat ion " , xlab="Turn" ,main="Probe320 achievement ")

237 boxplot (probeAllA13 , probeAllA14 , probeAllA5 ,names=c (" exp lo r e r50
" , " exp lo r e r133 " , " o r i g i n a l ") , h o r i z on t a l=TRUE, ylab="
Conf igurat ion " , xlab="Turn" ,main="ProbeAll mi l e s tone ")

166 Other code files

D.4 Script for starting simulations

The small shell script used for starting up the simulation server, GUI and both
the teams, as well as redirecting the agents output from console to log files.

1 #!/bin /bash
2
3 gnome−t e rmina l \
4 −−tab−with−p r o f i l e=Defau l t −−working−d i r e c t o r y="/home/admin/

workspace/massim−2013−1.4/massim/ s c r i p t s " −e "bash −c ’
s l e e p 5 ; . / startMarsMonitor . sh ; exec $SHELL’" \

5 −−tab−with−p r o f i l e=Defau l t −−working−d i r e c t o r y="/home/admin/
workspace/MAPC−UFSCTeam2013changed" −e "bash −c ’ s l e e p
5 ; ant runA > "/home/admin/workspace/massim−2013−1.4/
massim/ s c r i p t s /backup/outputA . l og " ; exec $SHELL’" \

6 −−tab−with−p r o f i l e=Defau l t −−working−d i r e c t o r y="/home/admin/
workspace/MAPC−UFSCTeam2013original" −e "bash −c ’ s l e e p
5 ; ant runB > "/home/admin/workspace/massim−2013−1.4/
massim/ s c r i p t s /backup/outputB . l og " ; exec $SHELL’" \

7 −−tab−with−p r o f i l e=Defau l t −−working−d i r e c t o r y="/home/admin/
workspace/massim−2013−1.4/massim/ s c r i p t s " −e "bash −c
’ . / s t a r t S e r v e r . sh ; exec $SHELL’" \

Bibliography

[BBH+13] Olivier Boissier, Rafael Bordini, Jomi Fred Hübner, Alessan-
dro Ricci, and Andrea Santi. Multi-agent oriented programming
with JaCaMo. In Science of Computer Programming, volume 78,
pages 747–761. Elsevier, 2013.

[BFPW03] Rafael Bordini, Michael Fisher, Carmen Pardavila, and Michael
Wooldridge. Model checking AgentSpeak. In Proceedings of the
Second International Joint Conference on Autonomous Agents
and Multi-Agent Systems, pages 409–416. ACM Press, 2003.

[BHW07] Rafael Bordini, Jomi Fred Hübner, and Michael Wooldridge. Pro-
gramming multi-agent systems in AgentSpeak using Jason. Wiley,
2007.

[BJV10] Niklas Skamriis Boss, Andreas Schmidt Jensen, and Jørgen Vil-
ladsen. Building multi-agent systems using Jason. In Annals of
Mathematics and Artificial Intelligence, volume 59, pages 373–
388. Springer, 2010.

[Bra87] Michael Bratman. Intention, plans, and practical reason. Har-
vard University Press, 1987.

[CDM12] Victoria Catterson, Euan Davidson, and Stephen McArthur.
Practical applications of multi-agent systems in electric power
systems. In European Transactions on Electrical Power, vol-
ume 22, pages 235–252. Wiley, 2012.

168 BIBLIOGRAPHY

[DKS13] Jürgen Dix, Michael Köster, and Federico Schlesinger. Sce-
nario description for the multiagent contest. https://
multiagentcontest.org/scenario, 2013.

[FO13] Carl Frey and Michael Osborne. The Future of Employment:
How Susceptible are Jobs to Computerisation? Oxford Uiversity
Press, 2013.

[HB10] Jomi Fred Hübner and Rafael Bordini. Using agent- and
organisation-oriented programming to develop a team of agents
for a competitive game. In Annals of Mathematics and Artificial
Intelligence, volume 59, pages 351–372. Springer, 2010.

[HSB07] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier.
Developing organised multiagent systems using the MOISE+
model: programming issues at the system and agent levels. In
International Journal of Agent-Oriented Software Engineering,
volume 1, pages 370–395. InderScience Publishers, 2007.

[HZB+13] Jomi Fred Hübner, Maicon Rafael Zatelli, Michael de Brito,
Tiago Luiz Schmitz, Daniela Maria Uez, Marcelo Menezes
Morato, and Kaio Siqueira de Souza. UFSC system
code. https://multiagentcontest.org/downloads/
Multi-Agent-Programming-Contest-2013/Sources/UFSC/,
2013.

[ISM10] David Isern, David Sánchez, and Antonio Moreno. Agents ap-
plied in health care: A review. In International journal of medical
informatics, volume 79, pages 145–166. Elsevier, 2010.

[Jen00] Nicholas Jennings. On agent-based software engineering. In Ar-
tificial Intelligence, volume 117, pages 277–296. Elsevier, 2000.

[KDM+11] Boštjan Kaluža, Erik Dovgan, Violeta Mirchevska, Božidara
Cvetkovic, Mitja Lušterek, and Matjaž Gams. A Multi-Agent
System for Remote Eldercare. In Trends in Practical Applica-
tions of Agents and Multiagent Systems, volume 90, pages 33–40.
Springer, 2011.

[LAAM10] Vivian López, Noel Alonso, Luis Alonso, and María Moreno. A
Multiagent System for Efficient Portfolio Management. In Trends
in Practical Applications of Agents and Multiagent Systems, vol-
ume 71, pages 53–60. Springer, 2010.

[LHC06] Yong-Feng Lin, Ming-Wei Huang, and Jason Jen-Yen Chen.
Agent-based unit testing environment for extreme programming.
In Journal of Computational Methods in Sciences and Engineer-
ing, volume 6, pages 1–8. IOS Press, 2006.

https://multiagentcontest.org/scenario
https://multiagentcontest.org/scenario
https://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/Sources/UFSC/
https://multiagentcontest.org/downloads/Multi-Agent-Programming-Contest-2013/Sources/UFSC/

BIBLIOGRAPHY 169

[PMG+12] Carla Pereira, Jason Mahdjoub, Zahia Guessoum, Luís
Gonçalves, and Manuel Ferreira. Using MAS to Detect Retinal
Blood Vessels. In Highlights on practical applications of agents
and multi-agent systems, volume 156, pages 239–246. Springer,
2012.

[PVM+14] Carla Pereira, Diana Veiga, Jason Mahdjoub, Zahia Guessoum,
Luís Gonçalves, Manuel Ferreira, and João Monteiro. Using a
multi-agent system approach for microaneurysm detection in fun-
dus images. In Artificial intelligence in medicine, volume 60,
pages 179–188. Elsevier, 2014.

[Rao96] Anand Rao. AgentSpeak (L): BDI agents speak out in a logical
computable language. In Lecture Notes in Computer Science,
volume 1038, pages 42–55. Springer, 1996.

[RG91] Anand Rao and Michael Georgeff. Modeling rational agents
within a BDI-architecture. In Principles of Knowledge Represen-
tation and Reasoning (KR), pages 473–484. Morgan Kaufmann
Publishers, 1991.

[RG95] Anand Rao and Michael Georgeff. BDI Agents: From Theory
to Practice. In Proceedings of the First International Conference
on Multiagent Systems, pages 312–319. AAAI Press, 1995.

[RJGPnS+10] Miguel Reboiro-Jato, Daniel Glez-Peña, Hugo Santos, Mário Di-
niz, Carlos Lodeiro, José Capelo, and Florentino Fdez-Riverola.
Multi-agent System for Mass Spectrometry Analysis. In Trends
in Practical Applications of Agents and Multiagent Systems, vol-
ume 71, pages 87–95. Springer, 2010.

[RPVO09] Alessandro Ricci, Michele Piunti, Mirko Vireli, and Andrea
Omicin. Environment Programming in CArtAgO. InMulti-agent
programming : languages, platforms and applications, pages 259–
288. Springer, 2009.

[Sho93] Yoav Shoham. Agent-oriented programming. In Artificial Intel-
ligence, volume 60, pages 51–92. Elsevier, 1993.

[SMRM55] Claude Elwood Shannon, Marvin Lee Minsky, Nathaniel
Rochester, and John McCarthy. A Proposal for the
Dartmouth Summer Research Project on Artificial Intel-
ligence. http://www.formal.stanford.edu/jmc/history/
dartmouth/dartmouth.html, 1955.

[Woo95] Michael Wooldridge. Intelligent agent: theory and practice. In
Knowledge Engineering Review, volume 10, pages 115–152. Cam-
bridge University Press, 1995.

http://www.formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www.formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

170 BIBLIOGRAPHY

[ZBS+13] Maicon Rafael Zatelli, Maiquel de Brito, Tiago Luiz Schmitz,
Marcelo Menezes Morato, Kaio Siqueira de Souza, Daniela Maria
Uez, and Jomi Fred Hübner. SMADAS: A Team for MAPC
Considering the Organization and the Environment as First-class
Abstractions. In Engineering Multi-Agent Systems, pages 319–
328. Springer, 2013.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Learning objectives and report structure
	1.2 Artificial intelligence - a historic perspective

	2 Multi-agent programming
	2.1 Agent - definition
	2.2 The BDI model
	2.2.1 Beliefs
	2.2.2 Desires
	2.2.3 Intentions

	2.3 Environments
	2.4 Communication

	3 Multi-agent programming contest
	3.1 Scenario
	3.1.1 Agents and actions
	3.1.2 Controlling vertices
	3.1.3 Score
	3.1.4 The simulation

	3.2 Future contests

	4 Jason
	4.1 Jason basics
	4.1.1 Beliefs and rules
	4.1.2 Goals and plans
	4.1.3 Agent communication

	4.2 Jason interpreter
	4.2.1 Reasoning cycle
	4.2.2 Interpreter modifications

	4.3 JaCaMo
	4.4 Jason IDE

	5 The UFSC system
	5.1 Plan selection
	5.2 Discovering the map structure and rival team
	5.2.1 Surveying
	5.2.2 Probing
	5.2.3 Inspecting enemies

	5.3 Other strategies

	6 Changing the UFSC system
	6.1 Surveying
	6.2 Inspecting
	6.3 Exploring
	6.4 Miscellaneous
	6.4.1 Reaching higher inspect achievements
	6.4.2 Reducing the number of inspect actions
	6.4.3 Purchasing upgrades

	7 Testing the changed system
	7.1 Testing process
	7.2 Simulation statistics
	7.3 Test results
	7.3.1 The base results
	7.3.2 Sentinel
	7.3.3 Inspector
	7.3.4 Explorer
	7.3.5 Upgrades
	7.3.6 Final results

	8 Discussion
	8.1 Pseudocode
	8.2 Number of simulations and result reliability
	8.3 Test results
	8.3.1 Choosing best configurations for the strategies
	8.3.2 The overall results

	8.4 Experiences working with Jason and UFSC system
	8.4.1 Jason
	8.4.2 UFSC system

	9 Future perspectives
	9.1 MAPC and the UFSC system
	9.2 AI and multi-agent systems

	10 Conclusions
	10.1 The project
	10.2 The implementations and test results

	A UFSC Code
	A.1 Sentinel
	A.2 Inspector
	A.3 Explorer
	A.4 Common rules
	A.5 New step
	A.6 Graph

	B Changes to the UFSC code
	B.1 Sentinel
	B.2 Inspector
	B.3 Explorer
	B.4 Other

	C Test results
	C.1 Sentinel
	C.2 Inspector
	C.3 Explorer
	C.4 Buying strategies
	C.5 Final system

	D Other code files
	D.1 Parser for raw statistics text files
	D.2 Parser for agent simulation logs
	D.3 R statistics script
	D.4 Script for starting simulations

	Bibliography

