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Summary
Visiopharm currently uses Bayesian classification and K-means clustering for pixel
classification in their software. The purpose of this project was to investigate if Sup-
port Vector Machines (SVMs) would be a good additional classifier. It will be shown
that a quantitative improvement (increase in accuracy) is indeed possible compared
to existing methods, but that this is not the only thing to take into consideration.
Overall SVMs does seem like a good addition to Visiopharms software, but more
projects should follow this, to answer some of the new questions which this project
has raised.
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CHAPTER 1
Introduction

1.1 Motivation
At some point, everyone has probably fantasized of a robot or computer, taking over
the trivial tasks of their job. This is likely also the case when it comes to highly
educated specialists who spend hours looking into a microscope (or at a computer
monitor), in order to perform manual analysis of a tissue sample. Fortunately this
is one trivial task which can actually be performed by a computer, though making a
computer performing the task is anything but trivial.

One of the non-trivial parts, is the pixel classification, which acts as a simplification
of the image, to ease the remaining of the automation. Hence to improve the outcome
of this step will impact the analysis from beginning to end, making this small task, a
task of great importance.

Figure 1.1: Specialists are very skilful when it comes to manual analysis. However
these specialists are often very busy, so any task of theirs which can be automated,
will free their time for other assignments.
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1.2 Problem Description

Current standpoint
Visopmorph is a module in Visiopharm Integrator System (VIS), a software which is
used in both hospitals and laboratories for automatic analysis of microscopy images.
One of the tasks, and the first step in the automatic image analysis, is a pixelwise
classification, where each pixel in the image is assigned to a class. This simplifies
the image tremendously, making further image analysis possible (morphology and
calculations [25]). Currently this classification is done primarily using Bayesian clas-
sification or K-Means clustering [25]. Despite being rather effective, these methods
are often beaten by more flexible classifiers, such as Support Vector Machine (SVM)
classification. This to a degree which has lead to Bayesian classification being re-
ferred to as the “favourite punching bag of new classification techniques” [15]. In Fig.
1.2 an example is shown of an image, which has been classified using Visiomorph’s
K-Means clustering.

(a) Before Classification (b) After Classification

Figure 1.2: An example of classification, where the two different nuclei has been
separated from the background. The reduction to only three colors (classes), eases
the remaining process.

The First Step Towards SVM
While the term “favourite punching bag” might not be completely fair, it is a reason-
able hypothesis, that SVMs (at least in certain areas) can be an improvement over the
existing methods. It is the purpose of this project to act as a proof of concept study,
exploring the viability of implementing an SVM classifier in Visiomorph. Hence the
primary question to be answered is if the implementation is possible. Only to a lesser
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degree will the question of how to implement it, be answered. In other words this
project can be considered the first in a series of steps, towards the use of SVM in
Visiomorph. Depending on the outcome of the project, Visiopharm may chose to take
additional steps in the shape of follow-up projects, or not to.

1.3 Focus Areas
SVMs is a broad topic, with many subtopics. Some subtopics are general, but most
are to some degree dependant on the subject of classification, or the choice of settings
for the SVM. For this project, focus will be on the subtopics which is of relevance to
the implementation in Visiomorph.

Implementation with LibSVM
LibSVM is an open source library for SVMs. It is written and maintained by Chih-
Chung Chang and Chih-Jen Lin from National Taiwan University [4]. LibSVM was
created back in the year 2000, so it is a very well tested library. This should make it
ideal for a quick implementation of an SVM classifier in Visiomorph. The first task
of this project will be to make a basic SVM classifier in MATLAB, which uses the
LibSVM library.

Radial Basis Function Parameters
The kernel trick is what makes it possible to do non-linear classification with SVMs,
depending on the choice of kernel. For this project is the Radial Basis Function (RBF)
is used. This is the most widely used kernel in field of SVMs. This kernel has two
free variables (hyper parameters), often notated as γ and C. These will be described
in greater details in the theory chapter, but briefly γ can be described as the kernel
width whereas C as the penalty term for the error [3]. The value for γ and C can
have great influence on the accuracy of the SVM. But as they are often calculated by
the use of brute force, it is advantageous to obtain some sort of prior knowledge of
their influence. This may in best case lead to a fixed value of the γ and C. But even
a reduction of the 2-dimensional space they form can be valuable.

Viability of Implementation
Even if it turns out that the use of SVMs can improve the accuracy, this is no
guarantee for success. There are variables which should be examined, to determine
if implementation in Visiomorph, is viable. Besides an improvement in accuracy,
for at least some data, it also requires reasonable computation time as well as the
implementation should be possible with the resources available to Visiopharm. The
latter can be difficult to prove until tested (which is not a part of this project), but
an estimate of the resource requirements should be made.
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CHAPTER 2
Theory of Support
Vector Machines

As mentioned this project is using an existing implementation of SVMs (LibSVM),
which means that strictly speaking only little knowledge of SVMs are required. How-
ever a basic understanding of the SVM theory, will increase the chances of achieving
this goal. Much like having a basic knowledge of car mechanics, will increase a race
drivers chance of winning the race.

The theory in this report will cover the basics of SVMs. For a greater insight in
the theory, it is recommended to read Pattern Recognition and Machine Learning by
Christopher M. Bishop [1].

2.1 The Classification Problem - Separable Classes
SVMs are so called maximum margin classifiers [1]. To explain this we will consider
a simple example of two linearly separable clusters in a two-dimensional space, as
shown in Fig. 2.1. While there exists an infinite amount of decision boundaries which
will correctly classify the data, most people would agree that the solution in Fig. 2.1c
intuitively is the most correct.

(a) (b) (c)

Figure 2.1: While all three classification boundaries are valid, only the boundary in
(c) will maximize the margin (illustration of the margin is shown in Fig. 2.2). This
is what SVMs does.

This also happens to be the solution, which maximizes the margin. The margin is
the distance distance between the black and the gray lines in Fig. 2.2. To understand
how this is done, consider the equation for a hyperplane which is given as [19]
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w · x+ b = 0 (2.1)
Where w is a non-zero vector normal to the hyperplane, x is any point in the same

space as the hyperplane and b is a scalar. This means that the equation remains
identical, no matter the dimensionality. Now consider two additional hyperplanes,
which are canonical (normalized), given as

w · x+ b = ±1 (2.2)
These hyperplanes are shown in Fig. 2.2 as the dashed gray lines. The distance

from any given point xi is known to be

d(w, b;xi) =
|w · xi + b|

||w||
(2.3)

The support vectors are defined as the points on the canonical hyper plane de-
scribed in Eq. 2.2, which means that the numerator in Eq. 2.3 can be set to 1. Points
which are not support vectors have no influence on the classification. This means
that the expression in Eq. 2.3 can be simplified to

d(w, b; |w · x+ b| = 1) =
1

||w||
(2.4)

Remembering that this distance is the margin, we need to maximize this term, in
order to maximize the distance.

Margin

w x + b = 1

w x + b = -1

w x + b = 0

Figure 2.2: The hyperplane separating two classes, and its equation. Additionally two
canonical hyperplanes are showed (the dashed lines) with equations. The distance
from these hyperplanes to the separating hyperplane, is the margin.

Maximizing the term in Eq. 2.4 is not a very friendly optimization problem. How-
ever maximizing ||w||−1 is the same as minimizing ||w||2 [1]. So the new optimization
problem becomes
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min
w,b

(
1

2
||w||2

)
(2.5)

The constant 1/2 is added for later convenience [1], when the optimization problem
is to be solved. Being a constant scalar it does not affect the optimization problem.
Furthermore the optimization problem is subject to the constraint [19]

y(w · xi + b) ≥ 1, ∀i ∈ [1,m] (2.6)
Or in other words, the distance from any given point xi to the hyperplane, must

be equal to or greater than one. This makes sense, as without constraints w → 0
would always be the optimal solution.

The margin hyper planes are defined only by the few point which lie on them (the
support sectors). Only a change in the support vectors will lead to a change in the
classification, all other points are indifferent to the classification.

2.2 Overlapping Classes
The above method for solving the classification problem, only works if the classes are
perfectly separable. An example of classes than cannot be completely separated, can
be seen in Fig. 2.3, where four points are outside their respective margin boundaries.
In this case no hyperplane would be able to separate the classes completely.

Figure 2.3: Classes can, for many reasons, not always be completely separated. In
SVMs, this issue is dealt with by adding slack. The slack allows certain points to lie
outside their classes margin hyperplane. These points are marked by a gray circle
and a line connecting them to their respective hyperplane. As two of the points are
on the “wrong” side of the hyperplane, these points will be classified incorrectly.

For points outside their margin boundary, there are two options. If they are
still on the correct side of the separating hyperplane, they will be classified correctly,
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but still increase the penalty term. If they are on the wrong side of the separating
hyperplane (e.g. a blue point in the red class) they will be classified incorrectly and
add to the penalty term as well. The penalty term, is a term added to Eq. 2.5,
allowing some slack for non-separable classification problems. With the penalty term
the optimization problem becomes [19]

min
w,b

(
1

2
||w||2 + C

m∑
i=1

ξi

)
(2.7)

Where C is a constant which controls the trade-off between margin maximization
and error minimization [5], and ξi ≥ 0 is a function of the the distance from the
margin hyperplane to the points which has slack. If the points are between their
margin hyperplane and the separating hyperplane then 0 < ξi ≤ 1. If the points are
on the incorrect side of the separating hyperplane then 1 < ξi [1]. The function that
ξi describes is sometimes referred to as the hinge loss function. The type of function
which is used for hinge loss may vary [19], but common for all of them is, that ξi
increases with the slack, and that ξi = 0 when there is no slack (i.e. the points are
inside their margin boundary).

The hyper parameter C is a variable scalar which has a large influence on the
model. For very large values of C, any error will have a dramatic effect on Eq. 2.7,
and for the extreme case of C → ∞ we will end up with the term in Eq. 2.5 as no
error will be tolerated. For very low values of C, errors are almost ignored causing
the model to be very prone to misclassification.

2.3 The Kernel Trick
Sometimes linear classification is not a possibility, not even with a fair amount of
slack. This issue can be handled with something called a kernel trick [1]. The kernel
trick basically takes all the points and map them into a higher dimensional space. To
do so, a kernel K is defined such that points x and x′ have a kernel value K(x,x′)
which is equal to an inner product of Φ(x) and Φ(x′) [19]. That is

K(x,x′) = (Φ(x),Φ(x′)) (2.8)
In practice this means that instead of using x in Eq. 2.7, we will use Φ(x). In this

project we will use a RBF kernel, sometimes also known as a Gaussian kernel. It is
described in greater details in the next section, but it can be thought of simply as a
transformation of x into an infinite dimensional space, allowing the linear classification
which is the basis of SVMs.

2.4 The Radial Basis Function
Whilst there theoretically exists infinitely many kernels which can be used in SVMs,
we will only be using the RBF in this project. It a very commonly used kernel and
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resembles a Gaussian function [19]. It is given as

K(x,x′) = e−
||x′−x||2

2σ2 (2.9)
However in some cases, including LibSVM, the 1/2σ2 is referred to as γ which is

then inversely proportional to σ2 [4]. This will change the kernel equation to be

K(x,x′) = e−γ||x′−x||2 (2.10)
The value of γ is inversely proportional to the squared width of the Gaussian

function, as it is seen if Fig. 2.4. We will use this knowledge later, when we have to
select the value range, in which we search for the optimal value of γ.

−10 0 10
0

0.2

0.4

0.6

0.8

1
γ = 2−4

−10 0 10
0

0.2

0.4

0.6

0.8

1
γ = 20

−10 0 10
0

0.2

0.4

0.6

0.8

1
γ = 24

Figure 2.4: The RBF shown in one dimension, for three different values of γ. The
larger the value of γ, the narrower the RBF becomes.

The use of the radial basis function also means that we will have another free
variable, γ, in addition to C. So the SVM used in this project will be a function of
(C, γ) [4].
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2.5 Accuracy Estimation

One method of testing accuracy (or error) in machine learning, is cross-validation [1].
It is the method used in this project, and it is important to the understanding of
the accuracy estimates, which will be presented in chapter 5. Cross-validation is an
enhanced version of validation, so in order to understand cross-validation, one must
first understand basic validation.

Validation
In order to do validation, some data is needed for which the correct result is known.
This is also what defines training data, which means that the training data can be
used for the validation. Let us denote the full set of training data D. We then split D
into two smaller sets, DTrain and DV alidate. Now only DTrain is used for the training
(the process of using labelled data to create a model used to classify the unlabelled
data), which gives a model f−. The minus indicates that the model is not complete,
as it is made with only part of the training data. This model, f−, is then used to
classify the remaining data, DV alidate. This classification is then compared to the
true result, to create a measure of the accuracy. This process is also shown in Fig.
2.5.

Figure 2.5: The complete known data denoted D is split into two smaller sets denoted
DTrain and DV alidate. The training set DTrain, is used to train the model f−, and
the remaining data DV alidate, is then classified using that model. As the result is
already known for this data, an estimate of the accuracy can be made. Only the
accuracy of f− can be calculated, so this is used as an estimate of the accuracy of
the full model f .

The accuracy is given as the fraction of points which have been correctly classified.
Hence if the accuracy is denoted A(f−), it is given as

A(f−) =
Ncorrect

Ntotal
(2.11)
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Where A(f−) is the accuracy of the reduced model, Ncorrect is the number of
correctly classified points in the validation set and Ntotal is the total number of
points in the validation set. It is important to notice that A(f−) is only an estimate
of the accuracy, since only a partial model, f− is used. This means that a leap of
faith is taken, when returning from the validation and back to using the full data set
(D) to train the full model f .

Besides having a reasonable training set, a ratio between the data used for training
and validation also has to be decided. A good rule of thumb, is that this ratio should
be approximately 80/20. I.e. the part of the data used for validation, should be
around one fifth of the total training data [8].

Cross-Validation
Intuitively a good argument against the validation process discussed in chapter 2.5,
would be the risk of getting an unlucky split of D. Cross-validation can solve this,
with the small cost of additional computation time. In cross-validation the data is
split into M equally sized subsets [1]. One of the subsets acts as the validation set,
DV alidate, while the remaining subsets are used as one set, equivalent of DTrain. In
the next iteration a different subset is used as DV alidate, and the rest as DTrain. This
process continues until M accuracy estimates have been calculated. The mean value
of these estimates is then used as the combined estimate (cross-validation estimate).

Validation Training Training Training Training

Figure 2.6: An example of 5-fold cross-validation. The complete data is split into five
equally sized subsets. Four of the subsets (red) are used as training, while the last
subset (green) is used for validation. This is done five times, such that all five subsets
are eventually used as validation set. The mean value of the individual accuracy
estimates, is the cross-validation estimate of the accuracy.

In Fig. 2.6 the split of the data is shown, where M = 5. Since each of the subsets
has to be used for validation, the training has to be done equally many times. This
means that the computation time for the cross-validation is slightly less1 than M
times longer than the basic validation (five times longer in Fig. 2.6).

1Since each training set is only 4/5 of the total data, each training will be slightly faster.
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2.6 State of the Art

Similar Experiments
The most common methods for pixel classification in microscopy images, is probably
Bayesian classification and K-Means clustering. The same methods which already
exists in Visiomorph. The reason for this could be that these are very decent classifier,
as it has been shown by Khutlang et al. in 2010. Reaching close to 90% accuracy on
the pixel classification proved sufficient for the further process of automatic screening
for mycobacterial tuberculosis [11]. Furthermore there are ways to improve these
simple classifiers, which might be quicker than implementing a new type of classifier.
An example of this is proven by Lezoray and Cardot back in 2002. By simply changing
the colorspace (i.e. changing the features) they noticeably increased the accuracy of
both the Bayesian classifier and the K-Means clustering [16].

Despite not be the most commonly used method in pixel classification, SVMs have
been used for the purpose. For example in 2007 an article was written by Lenseigne
et al. on SVMs for automatic detection of tuberculosis [14]. Using a very simple
approach, only the green band is used as a feature and the final result is given as the
percentage of pixels classified as bacilli. If the percentage reaches a certain threshold,
then tuberculosis is considered present. The conclusion of the article is, that even
the simple approach used, outperformed existing methods such as direct fluorescence
measure.

In another article from 2013, Giannakeas et al. describes how SVMs can be used
for segmentation of microarray images [7]. While this is a slightly different issue than
the one in this project, it is not irrelevant as Visiopharm also work with microarray
images. In the article they use a three class SVM to separate background, signal
and artefacts. Besides concluding that SVMs can indeed be used for the desired
segmentation, the results from the article also indicates that SVM is a more accurate
and more stable classifier than both Bayesian classification and K-Means clustering,
which are the methods currently used in Visiomorph [25].

Semi-supervised Classification
Another possible use of SVM is for semi-supervised classification, sometimes also
referred to as S3VM (Semi-Supervised Support Vector Macine). One way of doing
this is by selecting the classes by unsupervised clustering, rather than manually. This
approach has been used in an article from 2010 on color image segmentation [26]. The
training data is selected all together, after which it is clustered using Fuzzy C-Means
Clustering (FCM). FCM is a clustering method very similar to K-Means, with the
main difference being that FCM provides a membership value (a scalar indicating how
likely it is that the data point belongs to a certain class) to each data point, whereas
K-Means only provides the class a data point belongs to [17]. The data points with
high membership (those close to the cluster center) is then used as training for the
SVM. Being a maximum margin classifier, the decision boundary will be placed with



2.6 State of the Art 13

maximum margin between the cluster centres. A flow diagram of the semi-supervised
process is shown in Fig. 2.7.

Feature
Extraction

Fuzzy C-Means
Clustering

Training Sample
Selection

SVM
Classification

Figure 2.7: Fuzzy C-Means clustering can group unlabelled data, and score it depend-
ing on its membership to different groups. Points with high membership to groups
are used as training points for that group, training points which are then used in the
SVM. This can either be used as an addition to labelled points, or as the only training
data.

Another article from 2010 describes the use of S3VM for pixel classification in
remote sensing imagery [18]. Despite being a different type of imagery, than what
this project is about, the pixel classification problem is remarkably similar (without
spatial context the complexity of an image is greatly reduced). Furthermore the
article also describes how to use an ensemble approach, where multiple SVMs are
trained and majority voting is used to decide the class. They compare the results
with a conventional (supervised) SVM, with the conclusion that S3VM can provide
a noticeable increase in accuracy, and even greater increase when using the ensemble
approach.

Neighbourhood Pixels as Features
Besides good classification results, the article on automatic detection of tuberculo-
sis [14] also describes an interesting aspect of how to think of features. In Visiomorph
only values directly related to the pixel is being used as features (filters can add some
additional context). However in the article they present an approach where values
from the 8 nearest neighbour pixels are also used as features. This allows for some
spatial information, relative to the surrounding pixels and may help mitigate classifi-
cation errors caused by noise artefacts.
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CHAPTER 3
Data Acquisition &

Structure
This chapter deals with data acquisition. It will describe the process starting when
the data is still tissue on a glass plate, and all the way to the point where it is features
which can be used as input in the SVM (or any other machine learning method). The
data acquisition can be boiled down to a three step process, which is shown in Fig.
3.1.

Figure 3.1: Obtaining the data is a three step process. First the Tissue samples are
stained to enhance contrasts, second the data is digitalized as an image and finally
features are extracted from that image.

The data used in this project is already digital images, meaning that it has passed
the first two steps in Fig. 3.1. However it is still important to understand these steps,
as they are the foundation of the data dealt with in the project.

3.1 Staining

Tissue samples have to be stained, in order for microscopy images to be useful in
image analysis. In this project we will focus on images stained by three different
methods. Examples from the three methods are shown in Fig. 3.2. The next three
sections describes briefly how each method works and why the images looks so differ-
ent, depending on staining method.
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(a) Ki-67 Immunostaining (b) H&E Staining (c) Fluorescence lighting

Figure 3.2: The three different image staining techniques, used to generate the images
used in this project. While there is a large variation between the groups, images
stained using the same technique are very similar, from a machine learning point of
view.

Immunostaining with Ki-67

Immunostaining is often used (amongst other things) to enhance images of potential
tumours. One example, and the method used in this project, is Ki-671 which en-
hances cells with a high proliferation (growth) rate [20]. Antibodies targeting specific
antigens are added to the tissue sample [23]. Then an additive is added, which tar-
gets the antibodies, starting a series of chemical reactions resulting in the staining of
areas with high concentration of antibodies (and hence antigens) [29]. Or in other
words, potential cancer cells will shown as brown, when looking at the sample in a
microscope, as it can be seen in Fig. 3.2a. A simplified model of the immunostaining
process is illustrated in Fig. 3.3.

B BB A A

Stainer
Antibody

Antigens

CELL

Figure 3.3: Immunostaining is done by adding antibodies which targets antigens,
specific to the cell targeted for the staining. Another chemical is then added, which
binds to the antibody. All cells with a high amount of the antigens, will then become
a different color in the image.

1The name Ki-67 is derived from Kiel, the city in which it was discovered, and the fact that it was
found in the 67th well on the 96-well plate.
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Hematoxylin and Eosin Staining

Hematoxylin and Eosin staining in pathology (often referred to simply as H&E stain-
ing [2]) is likely the most common staining method. It uses two separate dyes, hema-
toxylin and eosin [2]. The hematoxylin will stain the nucleus material of the cell, to
become a dark blue color. The eosin will stain the cytoplasm material to become a
pink/red color. An example of a H&E staining can be seen in Fig. 3.2b.

Fluorescence Microscopy

The process of fluorescence microscopy starts like the other staining methods, by
applying an agent that binds to a certain component. An example could be 4’,6-
diamidino-2-phenylindole, more commonly known as DAPI, which attaches to DNA
in the cells [9].

Dichroic mirror

Excitation filter

Emission filter

Objective

Specimen

Detector

Light source

Ocular

Figure 3.4: The principles of a fluorescence microscope. Light with a single wavelength
is absorbed by the fluorescence agent, causing it to enter an excited state. After a
while the excitation wears off, releasing energy in form of photons (light). Image from
[28] with minor modifications.

But rather than staining the tissue sample, fluorescent stainers like DAPI, has
fluorescent abilities (i.e. they “ ‘glow in the dark”). Fluorescence agents works by
absorbing light from specific wavelengths (the absorption band), which causes the
electrons to become excited. After a while this excitement is released as photons
(light) with different wavelengths (the emission band) [13]. An example of how this
process is achieved in a microscope is shown in Fig. 3.4.
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3.2 Digitalization of Data
The stained tissue samples are digitalized, using a technique calledWhole Slide Imag-
ing (WSI), which scans the entire sample simulating the same view as a light micro-
scope [21]. WSI can create very high resolution images, which means that data in
Visiomorph often has to be split in smaller pieces, called Field of Views [25]. An
example of a typical image in this project, could be an image of the Tagged Image
File Format (TIFF) with a resolution of 1024× 1024 and a 24-bit RGB colorspace.

3.3 Classes
To continue the example from the previous section, let’s look at a small part of an
immunostained image, like the one in Fig. 3.2a. In Fig. 3.5 there are two different
colours of cell nuclei, a brown and a dark blue. The remaining image is considered
to be background, despite actually containing both cytoplasm (light blue) as well as
the actual background (white).

Class 1 - Brown nuclei

Class 2 - Blue nuclei

Class 3 - Background

Figure 3.5: The different classes are selected by manually drawing the training areas
on to a microscopy image. Different colors represent different classes. In this example
three different classes are present: Brown nuclei (dark green), blue nuclei (teal) and
background (yellow)

There is no clear answer to exactly whether something is considered a class of its
own, or not. This is decided by the user, and depends on the purpose of the analysis.
This means that areas that would be considered different classes in machine learning,
could be considered a single class in a real life use case. This is not necessarily a
problem, but it is worth to remember when designing new classification algorithms.
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3.4 Feature Selection
Any information from a pixel which can be quantified, can be used as a feature. In
this project however, focus will be on features which already exist in the Visiomorph.
While there are many different features, we will try to simplify and consider only three
different groups of features. These groups actually covers all the different features
used in Visiomorph.

Basic Features
As the microscopy images uses the RGB colorspace, the basic features are simply the
intensities for red, green and blue. If all three basic features are used, then the data
points (pixels) are simply points in the 3-dimensional RGB space.

(a)
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Figure 3.6: Areas to be used for training are drawn on a microscopy image (a).
Different colors represent different classes. Data points from each class are plotted in
RGB-space (b) which is the most basic feature space in pixel classification.

In Fig.3.6 an example data using RGB features is shown. Each class is located
around an area according to the color of the class. The dark pixels of the brown nuclei
are located close to (0, 0, 0), while the bright background is in the opposite corner,
close to (255, 255, 255). The variety in the clusters are equivalent of the variety in
pixel colors. Pixels from the same class does not have the exact same color. We will,
unless otherwise mentioned, treat this phenomenon as noise.
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Combined Basic Features
The second group of features which are used in VIS, is mathematical combinations
of the basic features (red, green and blue). An example of such a combination could
be the red chromaticity, which is included in VIS [25]. It is the value of the red color
intensity of a pixel, compared to the total intensity of the pixel. Mathematically it is
defined as:

r(x, y) =
R(x, y)

R(x, y) +G(x, y) +B(x, y)
(3.1)

Where r(x, y) is the red chromaticity of the pixel and R(x, y), G(x, y) and B(x, y)
is the red, green and blue color intensities of the pixel. In Fig. 3.7 the red chromaticity
of an Ki-67 immunostained microscopy image is shown.

(a) Original image (b) Red chromaticity

Figure 3.7: An example of combinations of basic features. The red, green and blue
intensities of the original image, has been combined into the red chromaticity, using
Eq. 3.1.

Mathematical transformations of existing values do not provide any new informa-
tion, they are simply transformations of existing informations. These transformations
do however have their place in machine learning, transforming complex data to sim-
pler data. Transformations therefore only have an effect on the result, if the data are
complex, and the transformation can add simplicity. If not, the transformation may
have no effect, or in some cases even make the result worse. Later on, we will take a
look at how transformations affects the result of the SVM in this project.
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Filtering Features
The last group of features, are features which are calculated by using multiple pixel
values. This is done by the use of filtering [25]. A kernel of size M ×N is convoluted
with one of the basic features, resulting in a value which depends on all the values
covered by the kernel. A simple example of a filtering operation is median filtering.
It is used to reduce noise, and works by taking the median value of the pixels inside
the kernel area. In Fig. 3.8 an example of a 3 × 3 median filter is shown. This also
illustrates why the output value is dependant on every value inside the kernel area.

2 5 4
4 15 3

631

2 5 4
4 4 3

631

[1, 2, 3, 3, 4, 4, 5, 6, 15]

Original Filtered

Figure 3.8: A simple example of how a median filter works. All the values covered by
the 3× 3 kernel is listed, and the median value is the output value.

Using filter values to include values from neighbouring pixels, should not be con-
fused with using the neighbouring pixel values as separate features. Filtered pixel
values are a calculated on the values of all pixel values covered by the filter, however
it does not provide much information regarding how each pixel affected the result.
Hence a lot of information is lost in the calculation.
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CHAPTER 4
Design of Experiments

In the determination of whether or not SVMs would be an improvement to Vi-
siomorph, there are two key aspects to consider. First of all it should give a higher
accuracy than the existing methods. If not always, then at least in some cases, for
instance for images stained by a specific method. Secondly it also needs to be consid-
ered, if SVMs are even viable for implementation. For example, even a great increase
in accuracy cannot be justified, if the training time is several minutes. To address
these two aspects in a systematic way, the experiments are sorted in two sections.
The “Stand-alone Experiments” section contains all experiments regarding the viabil-
ity of the implementation, while the “Comparison to Visiomorph” section considers
the aspect of comparison to the existing methods.

4.1 Stand-alone Experiments

Hyper Parameter Values
As described in chapter 2, the value of the hyper parameters C and γ can have a large
impact on the accuracy of the model. We also learned that there are no values of C
and γ which are always the best. It depends on the problem that is to be solved, and
should therefore be optimized for every problem. This is done by brute force, testing
each combination of values for C and γ within a certain range. However this is a very
slow process and not viable for implementation, as it would cause the SVM method
to be much slower than any existing methods.
Instead we will try to find fixed values of C and γ, which delivers satisfying results
for one of two options:

1. Images can be grouped by type, each group will have the same fixed values.

2. All images uses the same fixed values.

While option 2 is the most desirable, option 1 might be a more realistic. This also
allows for ignoring some of the groups. As described in the introduction, the SVM
classification do not have to be the best for all image types, in order to be an im-
provement. Superiority in only certain image types might also be acceptable.

From a strictly theoretical point of view, there is no reason that the choice of C
and γ should affect the training time. However as we are using LibSVM as a black
box tool, we will test both the accuracy and training time for each combination of C



24 4 Design of Experiments

Variable Value
Minimum value of C 2−2

Maximum value of C 212

Minimum value of γ 2−12

Maximum value of γ 20

Step size (resolution) 6.02 dB
Repetitions of each step 3

Table 4.1: The parameter values used in the test of the variables C and γ.

and γ. The parameters used in the test can be seen in Tab. 4.1. This will be done for
a series of different images, and for each image two maps will be generated. One map
with the accuracy as a function of every combination of C and γ, which we denote
A(C, γ), and a second map with the training time as a function of C and γ, which we
denote T (C, γ). Finally for each value of C and γ we will find the minimum accuracy
and maximum time for across all the maps. These values will be stored in two new
maps, Amin(C, γ) and Tmax(C, γ). These maps will be used to determine the fixed
values of C and γ.

Minimum and Maximum Values

The larger the range of values to search is, the longer the optimization will take.
While the time this experiment takes is not all that important (it will be a one time
experiment), it is not completely without influence. Obviously there is a maximum
number of runs which can be done, lets call this number N . Hence if we increase the
maximum and minimum values of γ and/or C, we will have to increase the step size
in order to fit the value range in N runs. In other words, an increase in range will
mean a decrease in resolution, lowering out chances of finding the sweet spot where
the accuracy is highest. In Fig. 4.2 this has been illustrated by having two grids with
the same number of runs. The black grid will search a large range of values, but with
a low resolution. The green grid will search a narrower range of value, but with a
higher resolution. As long as we make sure that the maximum is inside the grid, the
high resolution (green grid) is the better choice.

So how to decide the value range for γ and C? Starting with a huge range and
then narrowing in, is an obvious approach. However at least for γ there is a less
random approach. Since γ is inversely proportional to the width of the Gaussian
distributions in the radial basis function [4], the maximum and minimum value of γ
should relate to the maximum and minimum distance between the points that are to
be classified. The data type used in Visiomorph is unsigned 8-bit integers, meaning
every integer from 0 to 255. Hence the smallest distance possible is 1, independent of
dimensionality. The largest possible distance is 255

√
D, where D is the dimensionality

(number of features). Looking at Fig. 2.4 we can see that at γ = 24 the width of the
Gaussian distribution is ≈ 1, equivalent of the minimum possible distance between
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γ

C

Figure 4.2: Two grids different ways to search for the optimal values of γ and C.
Either have a large range of values and a low resolution (black grid) or have a lower
range of values, but a high resolution (green grid).

two data points. In the other end at γ = 2−12 the width is slightly less than 400
which is approximately the maximum distance in three dimensions. While the range
of γ should be found in this interval, initial experiments suggested that lower values
of γ usually results in the highest accuracy, so we will limit the range to be γ = 2−12

as minimum, and γ = 20 as maximum.
For the range of C there is no intuitive answer to what the range should be. Often

a rather large value is used [10], an approach that will also be used in this project. We
will still keep a relatively broad range, with a minimum of C = 2−2 and a maximum
of C = 212.

Number of Training Data Points
Often the data available for training is a limited resource in machine learning. This
is not the case in this project (as described in the chapter 3). Instead there is a risk
of having too much training data, which makes the training slow. On the other hand,
using too few data for training, may reduce the accuracy. This was discussed in the
chapter 2, but how do we decide exactly how much data to use for the training?

To investigate the optimal number of data points for training, we will test the
accuracy and training time as a function of the number of training data points. The
parameter values used in the test can be seen in Tab. 4.3. The values of C and γ will
be a fixed number, equivalent to the optimal value found in the first experiment.

Accuracy by Features
The accuracy as a function of features, will be evaluated using a practical approach.
Visiopharm has selected 13 features which is used for the test, these features are
shown in Tab. 4.4, listed by the order in which they were selected by Visiopharm.

Using one feature at a time, a model will be trained and accuracy estimated by
5-fold cross-validation. This accuracy will be used as a score for each feature, to
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Variable Value
Value of γ 2−11

Value of C 29

Minimum number of data points 500
Maximum number of data points 10, 000
Step size (resolution) 500
Repetitions of each step 3

Table 4.3: The parameter values for the test of the impact of the number of training
data points. The values of γ and C has been determined in the previous experiment.

Feature number Feature name Notation
1 Red channel I(r)
2 Green channel I(g)
3 Blue channel I(b)
4 Intensity 1

3 (I(r) + I(g) + I(b))

5 Red chromaticity I(r)
I(r)+I(g)+I(b)

6 Green chromaticity I(g)
I(r)+I(g)+I(b)

7 Blue chromaticity I(b)
I(r)+I(g)+I(b)

8 Red-Green contrast I(r)− I(g)
9 Red-Blue contrast I(r)− I(b)
10 Green-Blue contrast I(g)− I(b)
11 HDAB - DAB Colour de-convolution
12 HDAB - Haematoxylin Colour de-convolution
13 Intensity gradient (polynomial) Not available

Table 4.4: A list of all the features used in the experiment of testing accuracy by
features. Colour de-convolution is described in [12].

estimate the importance of the feature. The higher the score, the more important the
feature is considered (though strictly speaking this is not necessarily the case). The
features are then sorted descending (from high to low), by their score. Once again
a model is trained and accuracy is estimated, for the first feature on the sorted list.
Next this is done for using the two best features, then the three best feature, and so
on. This is done until all 13 models have been made, and the accuracy for each model
estimated.

This method is based on the assumption that inter-relationships between features
has only little effect. This is a quite rough assumption, but it is a necessary one, since
it reduced the number of experiments from 213 = 8192 to 2 · 13 = 26, or more than
a factor of 300. This is what makes this approach viable for real-time software, and
not just as a one-time experiment. Depending on the results, further investigation of
automatic feature selection, might be advantageous as a follow-up project.
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4.2 Comparison to Visiomorph

While LibSVM has a built-in method for cross-validation, this is not the case for
Visiomorph. Instead, we will use a custom made cross-validation algorithm, using
2-fold cross-validation. In order to simplify the explanation of how it works, let us
forget for a second that we are working with images. Instead we will just just consider
a data set containing all the data. From this set, two subsets are selected. In Fig. 4.5
those two subsets are labelled “Training Set A” and “Training Set B”.

Figure 4.5: From the original data set two subsets are selected, “Training set A” and
“Training Set B”. From those two models, “Model A” and “Model B”, are created.
These models are used to classify the original data. The two different classification
are now compared to the opposite training set, so classified data A is compared to
training set B, and vice versa. The accuracy is estimated as the percentage of data
points which are the same in the classified data and the compared training set.

From each training set, a model is created. Similarly these are named “Model A”
and “Model B” in Fig. 4.5. Using each models to classify the full data set will give two
slightly different classifications. Now to estimate the accuracy, each of the training
sets are now used as a test set for the data classified using the opposite model. That
means that the data classified using model A, will be compared to training set B,
and vice versa. Obviously the training sets contains less data than the full set (which
is the meaning of subset), so comparison will only happen for the data points that
exists in the training sets. All other data points are simply ignored.

In Fig. 4.6 an example of the training set selection is shown. The brightly coloured
areas are the pixels (data points) which will be used for training, each color, represents
a class. When inspected carefully it is clear that while the areas selected for training
are similar, they are not identical. In fact there is no overlap in the two different
selections of training data.
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(a) First set of training data (b) Second set of training data

Figure 4.6: The two sets of training data. The classification done with a training set
(a), will be matched with the opposite training data (b), and vice versa.

In Visiomorph the user often select classification method (Bayes, K-means, etc.)
depending on the input data. Therefore it makes sense to test the accuracy of each
method on images stained with different methods, rather than considering all images
similar. This test is however very resource dependant when it comes to manual
work time. So the test set will be limited to six different images. Two from each of
the three most common groups: Ki-67 immunostained, H&E stained and fluorescent
microscopy. This way we will be able to estimate how big the potential of SVM’s are,
as well as where that potential lies when it comes to image groups.



CHAPTER 5
Experiment Results

This chapter summarizes the results of the experiments described in chapter 4. Some
of the results may have been used to decide the set up of other experiments, or to
re-design the experiment that generated the results.

5.1 Stand-alone Results

Hyper Parameter Values
In Fig. 5.1 the minimum accuracy, estimated by cross-validation, for each combination
of γ and C is shown in a contour plot.
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Figure 5.1: The accuracy found using values of γ ranging from 2−12 to 20 and C
ranging from 2−2 to 212. The maximum value is indicated by the red cross.
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As it shows in Fig. 5.1, there is only one maximum of 97.2%, found at (γ,C) =
(2−11, 29). However a large area of the map has accuracies above 97%, and an even
larger area with accuracies above 96.5%.
Another factor which has to be considered is the training times. In Fig. 5.2 a contour
plot shows the time it took to run the cross-validation for each of the combinations of
γ and C. While this is not necessarily identical to the actual training time, it is rea-
sonable to assume that the cross-validation time and training times are proportional.
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Figure 5.2: The time it took to run the cross-validations, shown in seconds. Cross-
validation is proportional (but not identical) to training time, so the numbers should
be considered a relative measurement of how long the training time will take.

The point of training time is not to find a single (or a few) optimal values, like
it is for the accuracy. The training time acts in the way of a constraint to γ and C,
limiting the potential choice of value, for the hyper parameters.
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Number of Training Data Points
The impact of the training set, on training time and accuracy, is tested on a H&E
stained image, with four different classes. The image is shown in Fig. 5.3.

Figure 5.3: The image used to test the scaling with data size has up to 10.000 data
points available for training.

The training time and accuracy is plotted as a graph in Fig. 5.4 (left), where a
polynomial estimation is also done (right). The polynomial estimation indicates that
the training time scaled somewhere between linear and quadratic, which can be noted
as O(Np) with 1 < p < 2.
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Figure 5.4: Both training time and accuracy increases with the number of data points
used in the training (left). The training time scales somewhere between linear and
quadratic (right).
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This scaling fits well with the fact that LibSVM makes use of Sequential Minimum
Optimization (SMO) for solving the quadratic problem [4]. SMO is an algorithm
which decreases the computation time of the SVM, causing the scaling with data size
to be somewhere in between linear and quadratic [22].

Accuracy by Features
The first part of the results is the accuracy of the model, using single features only.
The result of this experiment is shown in Fig. 5.5, first in numerical order (left), and
then sorted by accuracy (right). The order in which the features are sorted is also
the order in which they are added in Fig. 5.6.
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Figure 5.5: The chart shows the accuracy, estimated by cross-validation, when train-
ing is made with a single feature. The accuracy is used as a score, used to sort the
features (high score is considered a more important feature).

In Fig. 5.6 the accuracy is shown depending on the number of features used.
Features are added one at a time, in the order in which they are shown in the sorted
plot in Fig. 5.5 (right). The best combination of features is that with the highest
accuracy.
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Figure 5.6: Using the sorted list from Fig. 5.5, features are added one at a time, to
the model training. The accuracy is then estimated, and shown as a function of the
number of features which has been used.

.
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5.2 Comparison to Visiomorph
Due to the rather small number of pictures which have been tested, the results will
be shown for each picture, before looking at the overall score. For each image the
cross-validation accuracy A, is shown for Bayes, K-Means and SVM classification.
The methods are sorted from best to worst, based on the accuracy. Finally the
improvement is calculated by

Aimprove =
Asvm −Aprev

1−Aprev
· 100% (5.1)

Where Aimprove is the improvement in accuracy, Asvm is the accuracy with SVM
classification and Aprev is the best non-SVM accuracy. The scores are listed for each
of the six images, and summarized in Tab. 5.7, where Aimprove is also shown. Since
the maximum theoretical accuracy is 100% (equivalent of all points being correctly
classified), the maximum improvement is

Aimprove =
1−Aprev

1−Aprev
· 100% = 100% (5.2)

This improvement is however only achievable if the data is perfectly separable.
However, this is rarely the case in real life problems. The more overlap there are
between classes, the lower the maximum improvement will become.

In this chapter only the original image is shown along with its result. The classified
images, along with their original, can be found in Appendix A - Full Result Set.

Confidence Interval
For each result the 95% confidence interval (CI) has been calculated using the Wald
method, which is a method estimating binomial confidence intervals [6]. The confi-
dence interval is calculated as

p̂± z0.025

√
p̂(1− p̂)

n
(5.3)

Where p̂ is the estimated accuracy of the classification method, z0.025 is the z-
value equivalent of a 95% confidence level and n = 3000 is the number of data points
(pixels) used in the test. It should be noticed that overlapping confidence intervals
does not mean that the confidence is less that 95%. Only if the estimated accuracy of
one classification method, is inside the interval of another classification method, will
the 95% confidence be violated.
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Ki67 - Image 1

Method Accuracy 95% confidence interval
Support Vector Machine 93.9% 93.0% < A < 95.8%
Bayesian 91.5% 90.5% < A < 92.5%
K-Means 91% 90% < A < 92%

Ki67 - Image 2

Method Accuracy 95% confidence interval
Support Vector Machine 98.2% 97.7% < A < 98.7%
Bayesian 95.8% 95.1% < A < 96.5%
K-Means 94.4% 93.6% < A < 95.2%
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H&E - Image 1

Method Accuracy 95% confidence interval
Support Vector Machine 98.7% 98.3% < A < 99.1%
K-Means 97.3% 96.7% < A < 97.9%
Bayesian 96.7% 96.1% < A < 97.3%

H&E - Image 2

Method Accuracy 95% confidence interval
Support Vector Machine 99.2% 98.9% < A < 99.5%
K-Means 98.6% 98.2% < A < 99.0%
Bayesian 98.6% 92.2% < A < 99.0%
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Fluorescence - Image 1

Method Accuracy 95% confidence interval
Support Vector Machine 99.8% 99.6% < A < 100%
K-Means 94.3% 93.5% < A < 95.1%
Bayesian 92% 91% < A < 93%

Fluorescence - Image 2

Method Accuracy 95% confidence interval
Support Vector Machine 98.7% 98.3% < A < 99.1%
Bayesian 97.9% 97.4% < A < 98.4%
K-Means 96.9% 96.3% < A < 97.5%
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Summary
A summary of the results from the six images, is shown in Tab. 5.7. Each method of
classification is a column, while each of the six images is a row. In the fourth row the
reduction in error AImprove (Eq. 5.1) is shown. For an easy comparison the mean
value of all four measurements is calculated.

LibSVM Bayesian K-Means AImprove

Immunostaining - Image 1 93.9% 91.4% 91.0% 28.2%
Immunostaining - Image 2 98.2% 95.8% 94.4% 56.3%
H&E Staining - Image 1 98.7% 96.7% 97.3% 51.3%
H&E Staining - Image 2 99.2% 98.6% 98.6% 41.1%
Fluorescence - Image 1 99.9% 91.7% 94.3% 95.7%
Fluorescence - Image 2 98.7% 97.9% 96.9% 39.1%
Mean value 98.1% 95.3% 95.4% 52%

Table 5.7: Summary of the accuracy estimate for the six test images. Though Baysian
and K-Means are very similar in mean accuracy, it still makes a difference which one
is used, depending on staining method.

Deviation in Accuracy
Another way of investigating the precision of the SVM is by brute force, an approach
that is not possible in Visiomorph. The accuracy is estimated by cross-validation,
this is repeated 40 times on the same data, containing ≈ 41, 000 data points and
using the three basic features (RGB-values). For each iteration a new random subset,
containing 3, 000 data points is selected, and accuracy is estimated by five-fold cross-
validation. The results for all 40 iterations is shown in Fig. 5.8.
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Figure 5.8: Accuracy estimated on 40 iterations of training with LibSVM. Only dif-
ference is that a new random subset of 3, 000 data points is selected for each iteration,
causing slightly different results.
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5.3 VisSVM - A Demo Tool
In order to get a feel of how the classification process is from beginning to end, a demo
software has been created in Matlab, including a graphical user interface for improved
usability. As the software makes use of the LibSVM library, the copyright terms from
appendix B applies. The software is found in an public folder on Dropbox.com.

Link to VisSVM Demo Tool

Please keep in mind that this software is made for demonstration purposes, which
means that there is no guard against user caused errors, such as choosing the wrong
file as input. For use of the software, please read the readme.txt, located in the same
folder.

https://www.dropbox.com/sh/qhgwcyce87asr6t/AAAtuR2hvJCKbCnt8fYX6xtpa


CHAPTER 6
Discussion

6.1 Accuracy Compared to Existing Methods

From a quantitative perspective (i.e. when comparing accuracy) the SVM is superior
in all six cases, as it can be seen in Tab. 5.7. On average the error has been reduced by
53%, compared to Bayesian classification and K-Means clustering currently available
in Visiomorph. By looking at the 95% confidence intervals for each result in chapter
5.2, it can also be seen that the SVM in all cases is a significant improvement.

However the question of if the SVM was superior is only part of the comparison
to Visiomorph. The other part is how the SVM differs from the existing methods.
Looking at Fig. 6.1 and 6.2, will help answering the latter question.
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Figure 6.1: The pixels which are differently classified illustrated as the red pixels in
the image (a) and in the RGB-space (b). The difference in the classification methods
are mainly on the borders between classes.

The differences in classification between SVM and Bayes, has been illustrated in
two different ways. In Fig.6.1a the differences are shown on the raw image, showing
that most of the difference is around the borders of the nuclei. The other way is
shown in Fig. 6.1b, where a subset of the different classified pixels are shown in as
red scatters in the RGB-space. It shows that most of the difference is found in the
regions where the classes overlap. This means that despite the rather large difference
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in classification accuracy, the impact of this difference should be investigated further
in a possible follow-up project.

Another thing which can be analysed is where the different methods misclassifies.
In Fig. 6.2 the first Ki-67 immunostained image has been analysed in this way. The
errors has been marked in such a way that errors made only by the SVM are shown
as pink, errors made only by the Bayesian classification are shown as dark green and
errors made by both classifiers are shown as red. This applies to both figures.
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Figure 6.2: The pixels which are differently classified illustrated as the red pixels in
the image (a) and in the RGB-space (b). The difference in the classification methods
are mainly on the borders between classes.

It is important to remember that in Fig. 6.2a, not all pixels have been pre-labelled.
Hence the true answer is only known for the training areas, limiting errors to be shown
in these areas. This explains the relative low amount of pixels shown as misclassified.
However it is interesting that Fig. 6.2b shows a great deal of pixels effectively inside
the brown nuclei cluster, which have been misclassified by the Bayesian classifier. In
the same area, not a single pixel is misclassified by the SVM. This means that there
is not only a difference in amount of misclassifications by the methods, but also a
difference in which areas are prone to misclassification.

6.2 High Dimensionality using SVM
In section 5.1 the influence of multiple features was tested. The improvement gained
from using features beyond the basic RGB-values was hardly existing, however it
did show that the three best features was blue, green and HSI instesity. This was
also the combination of features which gave the highest overall accuracy, however the
difference was to small to conclude anything. As mentioned in chapter 2.6, other
methods involve the use of neighbouring pixels as features. It is reasonable to assume
that this approach could work in Visiomorph as well, since there is some correlation
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between the neighbouring pixels and class. For instance in the Ki-67 immunostained
images, if all the neighbouring pixels are brown as well as the pixel itself, it is likely
to increase the possibility that the pixel is of the brown nuclei class.

Nuclei pixel

Noisy pixel

Figure 6.3: Two pixels are marked by a red and a green dot respectively. Using only
the dotted pixel as a feature, both pixels would be classified as nuclei, despite the
red dot being some sort of artefact. This could be avoided by using the 24 nearest
neighbour pixels as features.

The cost of adding extra features comes at a price of computation time. While
the computation time for SVMs is often considered to scale only with the number
of data points [1], it actual also scales linearly with dimensionality [24]. Combining
this with the result from chapter 5.1, the total scaling will then be O(dNp), where
d is the dimensionality, N the data set size and 1 < p < 2 the exponent of the data
size scaling. However it should still be considered a point of interest for a possible
follow-up project.

6.3 Kernel Width

In Fig. 5.1 the optimal value of γ was found to be γ = 2−11. Knowing from chapter
2 that γ = 1/2σ2, this is equivalent of

σ =

√
1

2γ
(6.1)

When inserting the optimal value of γ

σ =

√
1

2 · 2−11
= 32 (6.2)

Which is proportional to the width of the kernel. If the width is defined as the
Full Width Tenth of Maximum (FWTM), the width can be calculated as [27]

2
√
2 ln(10)σ (6.3)

Which when inserting σ = 32 gives a width of
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2
√

2 ln(10) · 32 ≈ 137 (6.4)

Meaning that the width of the kernel is a little more than half the width of the RGB
space, which was the feature space used in the optimization of the hyper parameters.
A graphical presentation of the RBF kernel width can be seen in Fig. 6.4, where the
FWTM is shown on a 2-dimensional Gaussian distribution where σ = 32.

FWTM
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−50
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Figure 6.4: The FWTM of the RBF kernel, when using the optimized γ = 2−11. The
kernel is shown in a 2-dimensional space with a side length equivalent of the RGB
space, i.e. 256.

This is a relatively wide kernel, resulting in a smooth classification boundary
(depending on the value of C as well though). This makes sense when looking at Fig.
3.6b, where the classes are close to being linearly separable. It is also interesting that
looking at the > 97% region in Fig. 5.1, the value of γ ranges from 2−8 to less than
2−12. This gives a kernel width ranging from ≈ 50 to more than 200.

(a) (b)

Figure 6.5: Differences in classification when γ = 2−8 (a) and when γ = 2−12 (b).
The penalty term is the same in both, with C = 28.
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In Fig. 6.5 an example can be seen of classification with two different values of
γ, when the penalty term is constant at C = 28. In Fig. 6.5a a less smooth kernel
with γ = 2−8 is used, with an estimated accuracy of 99.4%. In Fig. 6.5b a smoother
kernel is used, with γ = 2−12, giving an estimated accuracy of 99.8%. The difference
in the classifications (especially the ratio between green and blue) is larger than the
difference in accuracy may suggest. Hence it might not be enough simply to look
at the quantitative measure of success (accuracy), when deciding values of the hyper
parameters.

6.4 Data Scaling
Currently there is a big difference in the value range for by different features. As
mentioned the basic features (red, green and blue intensity), has a value between 0
and 255. On the other hand the chromaticities (see Eq. 3.1), will have values between
0 and 1. Besides making correct classification more difficult, this also means that if
the data type is changed to uint8 (for programming reasons), all values less than one
will be reduced to zero. It is an issue that Visiopharm is aware of, but it is still an
issue which should not be forgotten.

Another, and less critical, consideration in the scaling of data is whether or not
all features should be scaled to full range. E.g. if the red intensity only has values
from 26 to 217, should histogram equalization1 be applied to the red intensity? This
has not been investigated in this project, but might be a good potential topic for a
follow-up project.

1Histogram equilization is a method which increases the contrast, by mapping data to its full value
range.
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CHAPTER 7
Conclusion

7.1 Improvements in Accuracy
This project has proved that, if looking solely at the accuracy, SVMs is an improve-
ment over the Bayes classifier and K-Means clustering currently used in Visiomorph.
In all six test images the SVM performed better than the current methods, with a
significance level of α < 0.05 (more than 95% chance of the result being correct). And
with an average reduction in error of 52%, more than half the misclassified pixel can
be avoided. This was achieved with fixed values of γ and C, and using only the basic
features (RGB).

7.2 Computation Time
The fact that an improvement in accuracy can be achieved with a low number of
features and fixed value hyper parameters, means that the training time can be kept
at a reasonable level. Fig. 5.4 shows that a very stable accuracy can be achieved
using ≈ 6000 data points for training, while still having a training time of few seconds
(depending on the computer).

This still leaves an unanswered question regarding the classification time. How-
ever this probably makes more sense to test once LibSVM has been implemented in
Visiomorph, as this would allow direct comparison to the existing methods. It cannot
be tested in the same manner as the training time, as Visiopharm cannot provide a
level of classification time which would be considered acceptable (the current methods
are also time consuming).

7.3 Suggestions
Besides the direct comparison to Visiomorph, in terms of accuracy, a number of ways
to improve the SVM was also investigated. These additional improvements might
help increase accuracy or improve user friendliness (or both).

Automatic Optimization of Hyper Parameters
In chapter 4.1 a brute force method for optimizing the hyper parameters was described.
Optimization of the hyper parameters prior to the classification might help increase
the accuracy slightly. It does however not justify the huge increase in computation
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time, which it causes. If this feature is added, it should be as an optional one, turned
off as default. As another option, optimization of the fixed parameters can be done
by Visiopharm and included in new releases of Visiomorph.

Automatic Feature Selection
Automatic selection of features does give rise to small improvements in the classifica-
tion, as it can be seen in Fig. 5.6. Additionally it can increase the user friendliness,
as the user no longer has to select features manually. While automatic feature se-
lection is not nearly as time consuming as optimization of the hyper parameters, it
does increase the training time. Whether or not this increase is justified, should be
investigated further before implementation. Additionally it might also be possible to
make some more sophisticated algorithms for feature selection, which could improve
the effect and/or decrease the time consumption.

Other Possibilities
Another thing that is definitely worth a closer look in the future work, is the use
of neighbour pixels as features. Looking at the logic behind it, as well as the good
results it has generated for others [14], this might be one of the most obvious topics
for a follow-up project. It could also be interesting to take a closer look at the use of
ensemble classifiers, in which multiple classifiers are used, and then a vote is made on
which class a pixel belongs to. This could be either multiple SVMs or a mix of SVM,
Bayesian and K-Means classifiers.

7.4 Summing Up
Overall the use of support vector machines offers a lot of new and exciting options,
as well as an increase in accuracy. And if implemented with the LibSVM library,
implementation is likely to be worth the cost, even considering that Visiopharm is
not a large company. My personal recommendation to Visiopharm however, would be
to perform a follow-up project, where the suggestions given are investigated further.
This should ensure a more thorough implementation, taking the SVM classification a
step further than just being “yet another classifier”. In other words, if played correctly,
the SVM is a great hand to hold. One which could possibly take Visiomorph to the
next level.
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Full Result Set

A.1 Fluorescence Images

Image 1

(a) Bayesian (b) K-means (c) Support vector machines
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Image 2

(a) Bayesian (b) K-means (c) Support vector machines
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A.2 Immunostained Images

Image 1

(a) Bayesian (b) K-means (c) Support vector machines
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Image 2

(a) Bayesian (b) K-means (c) Support vector machines
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A.3 HE Stained Images

Image 1

(a) Bayesian (b) K-means (c) Support vector machines
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Image 2

(a) Bayesian (b) K-means (c) Support vector machines



APPENDIX B
Copyright

Copyright (c) 2000-2014 Chih-Chung Chang and Chih-Jen Lin All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. Neither name of copyright holders nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LI-
ABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.



54



List of Figures
1 Technical University of Denmark . . . . . . . . . . . . . . . . . . . . . . . vii

1.1 Motivational photography . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An example of classification, where the two different nuclei has been sep-

arated from the background. The reduction to only three colors (classes),
eases the remaining process. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Two-dimensional SVM classification example . . . . . . . . . . . . . . . . 5
2.2 Margins and hyperplanes visualized . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Classifying overlapping classes . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 The effect of γ on the RBF . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Validation flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Cross-validation loop through . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Semi-Supervised Support Vector Machines . . . . . . . . . . . . . . . . . . 13

3.1 The three steps in data acquisition . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Comparison of staining methods . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Immunostaining visualization . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Principle of a fluorescence microscope . . . . . . . . . . . . . . . . . . . . 17
3.5 Example of different classes . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Data in the RGB space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Red chromaticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Median filter example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Imact of the size of γ and C range . . . . . . . . . . . . . . . . . . . . . . 25
4.5 2-fold cross-validation diagram . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Selection of training data . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Example of γ − C accuracy map . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Example of γ − C time map . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Image used for data scaling test . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Scaling with data size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Accuracy when training on single basic features . . . . . . . . . . . . . . . 32
5.6 Accuracy as a function of feature count . . . . . . . . . . . . . . . . . . . 32
5.8 Standard deviation of LibSVM accuracy . . . . . . . . . . . . . . . . . . . 37



56 List of Figures

6.1 Difference between LibSVM and Visiomorph Bayes . . . . . . . . . . . . . 39
6.2 Errors by LibSVM and Visiomorph Bayes . . . . . . . . . . . . . . . . . . 40
6.3 Using neighbouring pixels as features . . . . . . . . . . . . . . . . . . . . . 41
6.4 Width of optimal kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 Classification influence of γ . . . . . . . . . . . . . . . . . . . . . . . . . . 42



List of Tables
4.1 Parameter values for test of variable values . . . . . . . . . . . . . . . . . 24
4.3 Parameter values for test of training data size . . . . . . . . . . . . . . . . 26
4.4 Features used in testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.7 Accuracy summary for the different methods . . . . . . . . . . . . . . . . 37



58



Bibliography
[1] Cristopher M. Bishop. Pattern Recognition and Machine Learning. Number

978-0387-31073-2. Springer, 2006.

[2] H. Skip Brown. Hematoxylin & eosin (the routine stain). Technical report,
Sigma-Aldrich, 2002.

[3] Chih-Chung Chang and Chih-Jen Lin. A practical guide to support vector clas-
sification. April 2010.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[5] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee.
Choosing multiple parameters for support vector machines. Machine learning,
46(1):131–159, 2002.

[6] Xinjia Chen. Coverage probability of wald interval for binomial parameters.
Technical report, Louisiana State University, 2009.

[7] Nikolaos Giannakeas, Petros S Karvelis, Themis P Exarchos, Fanis G Kalatzis,
and Dimitrios I Fotiadis. Segmentation of microarray images using pixel classi-
fication—comparison with clustering-based methods. Computers in biology and
medicine, 43(6):705–716, 2013.

[8] Isabelle Guyon. A scaling law for the validation-set training-set size ratio. AT&T
Bell Laboratories, 1997.

[9] J. Kapuscinski. Dapi - a dna-specific fluorescent-probe. BIOTECHNIC and
HISTOCHEMISTRY, 70(5):220–233, 1995.

[10] SS Keerthi and CJ Lin. Asymptotic behaviors of support vector machines with
gaussian kernel. NEURAL COMPUTATION, 15(7):1667–1689, 2003.

[11] Rethabile Khutlang, Sriram Krishnan, Ronald Dendere, Andrew Whitelaw, Kon-
stantinos Veropoulos, Genevieve Learmonth, and Tania S Douglas. Classification
of mycobacterium tuberculosis in images of zn-stained sputum smears. Informa-
tion Technology in Biomedicine, IEEE Transactions on, 14(4):949–957, 2010.

http://www.csie.ntu.edu.tw/~cjlin/libsvm


60 Bibliography

[12] Andreas Kårsnäs. Image Analysis Methods and Tooks for Digital Histopathology
Applications Relevant to Breast Cancer Diagnosis. PhD thesis, Uppsala Univer-
sitet, 2014.

[13] Joseph R. Lakowicz. Principles of fluorescence spectroscopy. Principles of Fluo-
rescence Spectroscopy, pages 1–954, 2006.

[14] Boris Lenseigne, Priscille Brodin, Hee Kyoung Jeon, Thierry Christophe, and
Auguste Genovesio. Support vector machines for automatic detection of tuber-
culosis bacteria in confocal microscopy images. In Biomedical Imaging: From
Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on, pages
85–88. IEEE, 2007.

[15] D. D. Lewis, C. Nedellec, and C. Rouveirol. Naive (bayes) at forty: the indepen-
dence assumption in information retrieval. 1998.

[16] Olivier Lezoray and Hubert Cardot. Cooperation of color pixel classification
schemes and color watershed: a study for microscopic images. Image Processing,
IEEE Transactions on, 11(7):783–789, 2002.

[17] David MacKay. An example inference task: clustering. Information Theory,
Inference and Learning Algorithms, pages 284–292, 2003.

[18] Ujjwal Maulik and Debasis Chakraborty. A self-trained ensemble with semisu-
pervised svm: An application to pixel classification of remote sensing imagery.
Pattern Recognition, 44(3):615–623, 2011.

[19] Afshin Rostamizadeh Mehryar Mohri and Ameet Talwalkar. Foundations of
Machine Learning. Number 978-0-262-01825-8. The MIT Press, 2012.

[20] Susanne Holck Niels Marcusen, Flemming B. Sørensen and Torben Steiniche.
Patologi. FADL’s Forlag, 2010. Danish book.

[21] Liron Pantanowitz. Digital images and the future of digital pathology. Journal
of Pathology Informatics, 1, 2010.

[22] John C Platt. Fast training of support vector machines using sequential minimal
optimization. 1999.

[23] T. Scholzen and J. Gerdes. The ki-67 protein: From the known and the unknown.
JOURNAL OF CELLULAR PHYSIOLOGY, 182(3):311–322, 2000.

[24] V Sreekanth, Andrea Vedaldi, Andrew Zisserman, and C Jawahar. Generalized
rbf feature maps for efficient detection. 2010.

[25] Visiopharm. Working With: VisiomorphDP, The Calculator, ArrayImager. 2013.



Bibliography 61

[26] Xiang-Yang Wang, Ting Wang, and Juan Bu. Color image segmentation
using pixel wise support vector machine classification. Pattern Recognition,
44(4):777–787, 2011.

[27] Eric Weisstein. Wolfram mathworld - gaussian function, 2014.

[28] Wikipedia. Fluorescence microscope, 2014. Provider of fluorescence figure.

[29] Hanns-Olof Wintzer, Irmgard Zipfel, Jürgen Schulte-Mönting, Ursula Hellerich,
and Sabine von Kleist. Ki-67 immunostaining in human breast tumors and its
relationship to prognosis. Cancer, 67(2):421–428, 1991.




	Short contents
	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Description
	1.3 Focus Areas

	2 Theory of Support Vector Machines
	2.1 The Classification Problem - Separable Classes
	2.2 Overlapping Classes
	2.3 The Kernel Trick
	2.4 The Radial Basis Function
	2.5 Accuracy Estimation
	2.6 State of the Art

	3 Data Acquisition & Structure
	3.1 Staining
	3.2 Digitalization of Data
	3.3 Classes
	3.4 Feature Selection

	4 Design of Experiments
	4.1 Stand-alone Experiments
	4.2 Comparison to Visiomorph

	5 Experiment Results
	5.1 Stand-alone Results
	5.2 Comparison to Visiomorph
	5.3 VisSVM - A Demo Tool

	6 Discussion
	6.1 Accuracy Compared to Existing Methods
	6.2 High Dimensionality using SVM
	6.3 Kernel Width
	6.4 Data Scaling

	7 Conclusion
	7.1 Improvements in Accuracy
	7.2 Computation Time
	7.3 Suggestions
	7.4 Summing Up

	A Full Result Set
	A.1 Fluorescence Images
	A.2 Immunostained Images
	A.3 HE Stained Images

	B Copyright
	List of Figures
	List of Tables
	Bibliography

