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Abstract

20 % of all treatments of breast cancer aren’t successful due to the heterogeneity
in the cell population. The heterogeneity can be measured as the response
from various biomarkers which also is used in the determination of the type of
treatment.

226 TMA cores stained with either ER or Ki67 were aligned with their neighbor
slice stained with PCK and the tumor cells with positive and negative response
to the biomarker were segmented using the software VIS. An automatic method
for a better visualization of the heterogeneity in the cell population response
from the two biomarkers Ki67 and ER was developed in form of a heatmap that
illustrated the percentage of positive cells in small areas.

The visualization was further used as a guidance to find the largest area with
highest response (hottest hotspots) and an automatic calculation of the hetero-
geneity score in this area was performed. 110 of the 226 TMA cores were scored
by a pathologist. The automatic calculated scores for the Ki67 TMA cores
were compared with the pathologist scores. The scores calculated in the hottest
hotspot were not significantly different from the pathologist scores but were in
general 7 % higher than the pathologist scores. The automatic calculated scores
for the ER TMA cores were also compared with the pathologist scores. The
scores were not found significantly different from the the pathologist scores but
were in general 1.3 % lower.

The impact on calculating the scores in hotspots was investigated and it was
found that scores from the first, second, third and fourth hottest hotspot weren’t
significantly different from the pathologist scores but scores calculated randomly
outside the hottest hotspot were different from the pathologist scores.

Keywords: breast cancer, digital image analysis, Ki67, ER, cancer heterogene-
ity, heterogeneity score, heatmap, hotspot detection
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Resume

20 % af alle behandlinger af brystkræft er ikke succesfulde grundet heterogenitet
i tumorcellernes population. Heterogeniteten kan måles ved at måle responset
fra en eller flere biomarkører. Biomarkørerne anvendes også til at bestemme
hvilken behandling der skal gives.

226 TMA cores farvet enten med biomarkøren ER eller Ki67 blev alignet med
deres naboslice farvet med PCK. Herefter blev tumorceller, der reagerede posi-
tivt og negativt på biomarkøreren, segmenteret ved brug af softwaren VIS. En
automatisk metode blev udviklet til at visualisere heterogeniteten i cellepopu-
lationen, et såkaldt heatmap, for både de Ki67 farvede og ER farvede billeder.
Heatmapet viste den procentvise andel af positive celler i forskellige områder.

Heatmapet blev yderligere anvendt til at finde det største område med højeste
procentvise andel af positive celler, et såkaldt hotspot. En automatisk bereg-
ning af heterogenitetsscoren i det fundne hotspot blev udviklet. 110 af de 226
anvendte TMA cores var blevet scoret af en patolog. De udregnede scores for de
Ki67 farvede billeder blev sammenlignet med scorene fra patologen. Der blev
ikke påvist en signifikant forskel mellem de udregnede scores og patologscorene,
men de udregnede scores var generelt set 7 % højere end patologscorene. Det
samme blev gjort for de udregnede scores for de ER farvede billeder og her
blev der heller ikke påvist en signifikant forskel mellem de udregnede scores
og patologscorene. De udregnede ER scores var generelt set 1.3 % lavere end
patologscorene.

Betydningen af at regne scorene i et hotspot blev også undersøgt og det blev
fundet at scorene regnet i det største hotspot, det næststørste, det tredje største
og det fjerde største ikke kunne påvises at være signifikant forskellige fra patolog
scorene mens scores regnet tilfældigt uden for det største hotspot var signifikant
forskellig fra patolog scorene.
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Preface

This project was a 32.5 ECTS master thesis carried out at DTU Compute at the
Technical University of Denmark in collaboration with the company Visiopharm.
The project is the completion of the education Medicine and Technology at the
Technical University of Denmark. The project was carried out in the period
October 2013 to March 2014.

The aim of the project was to visualize heterogeneity in breast cancer and cal-
culate a quantitative measure based on the cell population in histology images
stained with two different biomarkers. The used data set consists of a set of
around 240 TMA cores stained with the biomarkers Ki67 or ER and some of
them scored by a pathologist together with around 240 neighbor slice stained
with PCK.

The output of the project is a set of heatmaps visualizing the heterogeneity
and used for guidance to find so-called hotspot where a quantitative measure of
biomarker response was calculated based on the nuclear population basis. The
scores were compared with the scores provided by the pathologist.

Anne-Sofie Wessel Lindberg
Lyngby, 31 March-2014
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Chapter 1

Introduction

In 2011 over 508.000 died from breast cancer worldwide. Breast cancer is the
most prevalent type of cancer in women world wide[1]. One of the main problems
in diagnosing and treating breast cancer is that the population of breast cancer
cells is extremely heterogeneous.

There are two main ways to measure cancer heterogeneity; The first one deals
with classification of different cell types and measurement of parameters within
the same cell type using Haemotoxylin and Eosin (H&E) stained images. The
second is a description of the cells’ response to various biomarkers and is the
one investigated in this project.

Biomarkers are used to evaluate specific features for the individual cancer e.g.
aggressiveness and presence of estrogen receptor as those used in this project.
The responses to the different biomarkers are used to plan the individual treat-
ment and if it should be just one treatment or a combination of treatments.
Due to the heterogeneity, cells will respond different to the biomarker and the
distribution of responses will not be homogeneously distributed within a tissue
sample.

To make sure patients get the right treatment the response to the biomarker
needs to be calculated at a location presenting the highest response to the
biomarker and due to the extreme heterogeneity this might be hard to identify.

The aim of this project was to develop a visualization of the heterogeneity in
tumor tissue stained with two different biomarkers and furthermore to develop
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a method for measuring the heterogeneity on a more objective scale and com-
pare the scores with subjective scores measured by a pathologist. The impact
of measuring in areas with high heterogeneity is discussed and an analysis is
performed to clarify the use of these.



Chapter 2

Theory

2.1 Breast cancer

Breast cancer is the most prevalent type of cancer for women worldwide. In 2011
over 508.000 died from breast cancer. Even though the number seems extremely
high breast cancer is also one of the cancer types with highest survival rates
reaching from 40 % in low-income countries to over 80 % in North America,
Sweden and Japan [2].

In Denmark the survival rate is around 50 % and there is around 3600 new cases
per year. Breast cancer is characterized by being an extremely heterogeneous
type of cancer both regarding proliferation, metastasis and cell distribution [3].

This section contains a more medical explanation of two of the most common
breast cancer types and an illustration of the cells involved.

2.1.1 Types of breast cancer

There are two main types of breast cancer, a ductal and a lobular type. Around
80 % of all breast cancers are ductal and around 10 % are lobular. The remaining
10 % are other special types such as tubular, papillary and metaplastic and will
not be further described in this report [3].



4 Theory

The two main types are described further in the next sections.

2.1.1.1 Ductal carcinoma

The ductal carcinoma originates in the milk ducts and can be both non-invasive
(DCIS - Ductal Carcinoma In Situ) or invasive (IDC - Invasive Ductal Carci-
noma). Often the non-invasive is just a pre-step and develops into the invasive
type when the cancer cells break through the walls of the ducts and grows into
the surrounding tissue, primarily fat tissue. Both DCIS and IDC are illustrated
on figure 2.1. Depending on the type and metastasis status the treatment of
ductal carcinoma is a combination of the following [4]:

• Lumpectomy - breast preservation operation

• Mastectomy - surgical removal of partial or whole breast

• Axillary lymph node dissection - removal of lymph nodes under the arm
due to metastasis

• Radiation

• Chemotherapy

• Hormonal therapy

• Biologic targeted therapy
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Figure 2.1: Illustration of originate sites for Ductal Carcinoma In Situ (DCIS),
Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma
(ILC). Image originates from [5].

2.1.1.2 Lobular carcinoma

The lobular carcinoma originates in the milk producing lobules and can both
be non-invasive and invasive as well. Around 30 % of the non-invasive develop
into invasive cancer. The invasive type (ILC - invasive lobular carcinoma) is
illustrated on figure 2.1 where the anatomy of the breast also can be seen. This
type of breast cancer affects primarily women above 55 years old.

2.2 Immunohistochemistry

Immunohistochemistry (IHC) is as the name refers a combination of immunol-
ogy, histology and chemistry. The immunology used is the knowledge about
antibodies binding to antigens which can be used in histological images. Histo-
logical images are tissue samples that have been fixed, sliced, stained and placed
on a glass slide. To find specific cells containing specific antigens, the tissue sam-
ple is stained with a mixture containing the antibodies for these antigens.

The binding between the antigen and antibody often gives rise to a colored
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histochemical reaction which makes it possible to see the cells that contain the
antigen[6].

2.2.1 Preparation of tissue

The method used for making stained slices is described shortly in this subsection.
A further description of the Tissue Micro Array (TMA) cores can be found in
section 3.1.

First the tissue is cut out and afterwards fixed using paraformaldehyde. A
hollow needle is used to take out a cylinder shaped sample of the tissue, which
is embedded in a block of paraffin. Afterwards the paraffin block is cut into 4 µm
thick slices. Each slice is then stained with different kinds of stains. The used
stains in this study are the biomarkers PCK, Ki67 and ER which are further
described in the following three sections.

2.2.2 PCK stain

PCK stands for Pan Cytokeratin and is a mixture of the two antibodies AE1
and AE3. Cytokeratins are keratin-containing filaments that are found in the
cytoskeleton of epithelial cells. Since almost all cases of breast cancer are adeno
carcinomas and therefore originates from epithelial cells it is a important tool to
visualize epithelial cells in histology images. It is known that the intermediate
filament protein expression is the same in tumor cells as the cells they originates
from[7] and therefore the stain can be used to mark regions with tumor cells.

There can be more than one type of cytokeratins in cells and the used stain
is therefore a mixture of two clones of anti-cytokeratin monoclonal antibodies
called AE1 and AE3. AE1 detects cytokeratin 10, 14, 15, 16 and 19 and AE3
detects cytokeratin 1, 2, 3, 4, 5, 6, 7 and 8. The reason why the stain is called
Pan Cytokeratin is that it covers "all" cytokeratins. There are a few cytokeratins
that it doesn’t cover e.g. cytokeratin 17 and 18 that are present in hepatoma
and therefore it can’t be used for investigation of liver cancer [8], [9], [3].

2.2.3 Ki67 stain

Ki67 is a protein that only is present during the active phases of cell division.
The biomarker can therefore be used to mark cell proliferation and thereby
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indicate how aggressive the cancer is. Aggressive cancer is cancer cells dividing
rapidly and creating large or many tumors, that may spread during a short time
period. The cells where Ki67 is active are colored brown while the cells that are
negative for Ki67 are colored blue. An example of a Ki67 stained image can be
seen on figure 2.2.

Figure 2.2: An example of a histology image stained with the biomarker Ki67.
The brown cells are cells that reacts positive to the stain and
therefore is Ki67 positive. The blue cells are Ki67 negative cells.
The histology image is a TMA core.

An aggressive cancer has a poor prognosis but is easier to treat with chemother-
apy since chemotherapy destroys rapid dividing cells [10], [11], [12].

2.2.4 ER stain

ER stands for Estrogen Receptor and is a staining type that as the name refers
stains cells that contain estrogen receptors. An estrogen receptor is localized
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inside the cell and it binds estrogen with high affinity1.

Positive stained cells are colored brown and negative cells are colored blue.
The intensity of the brown color indicates how many estrogen receptors the
cell contain and this has an impact on the score named the H-score which is
described in section 2.4.1.

Around 75 % of all breast cancer carcinomas have estrogen receptors [13]. Can-
cers with estrogen receptors respond well to endocrine treatment and therefore
have a better prognosis than estrogen negative carcinomas.

1Affinity in chemistry means the tendency of two compounds to combine to each other.
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2.3 Cancer heterogeneity

A tumor consist of cancer cells which all originates from the same mother cell.
A normal cell division consists of a mother cell that divides into two similar
daughter cells. In cancer the daughter cells can deviate a bit from the mother
cell due to genetic changes. An illustration of this can be seen on figure 2.3,
where circles represent cells and the symbols represent genes inside the cells.

Figure 2.3: An illustration of cell division for cancer cells. The circles repre-
sent cells and the symbols represent different kind of genes. For
some divisions the cancer cells’ genes change slightly which in the
end causes different types of cancer cells resulting in cancer het-
erogeneity.

As it can be seen from the figure the gene set (illustrated by symbols) changes
a bit from each cell division making the tumor cells slightly different from each
other. This happens in some cell divisions but not in all cell devisions. Cancer
with high heterogeneity is more difficult to treat since it contains many different
cells, that will not respond in the same way to treatment. Therefore cancers
with high heterogeneity need to be treated with a mixture of treatments[14].

The heterogeneity can be quantified in different ways and in this project it is
described by looking at the response to two different biomarkers.
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2.4 Heterogeneity scores

To quantify the response to a biomarker a score is calculated. This section
defines the H-score and the ER score used for ER stained images and the Ki67
score used for Ki67 stained images.

2.4.1 H-scores

ER stained images are scored with an H-score given as

Hscore = (% of cells stained at intensity category 1×1)
+ (% of cells stained at intensity category 2×2)
+ (% of cells stained at intensity category 3×3)

(2.1)

where category 1 is weak brown stain intensity, category 2 is intermediate brown
stain intensity and category 3 is strong brown stain intensity.

The H-score lies in the interval 0 to 300, where 300 equals to 100 % of tumor
cells stained strongly[15].

The ER stained images can also be evaluated using the percentage of positive
cells as a score. This is named the ER score and is simply done by summing
the % in each category.

2.4.2 Ki67 scores

The Ki67 score is the number of positive cells stained by the Ki67 biomarker
calculated in a chosen area. The Ki67 score is given as

Ki67score = Number of positive cells
(Number of negative cells + Number of positive cells)×100 (2.2)

The Ki67 score lies in the interval 0 to 100 %, where 100 % equals to all cells
stained positive by the Ki67 biomarker.
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2.5 Semivariogram analysis

Semivariogram analysis can be used to find the spatial correlation. The semi-
variogram measures the variability of a variable in a 2D or 3D space. In this
case it is in the 2D space and the spatial variability is given as the variogram
which is a function of distance and direction:

2γ(r, h) = E{[Z(r)− Z(r + h)]2} (2.3)

where r is the location in space and h is the displacement vector between two
observations.

The semivariogram γ is the half of the variogram.

To calculate a graph of the semivariogram, the semivariogram value for all point
pairs is divided into bins and the mean value of each bin is used as a data point
for the semivariogram graph. The value from the first bin is divided by 2 to
minimize the nugget effect which is described in the following.

An illustration of this can be seen on figure 2.4 where the calculated variogram
value between point pairs is illustrated by blue points, the bins with red lines
and the mean in each bin as a red dot.
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Figure 2.4: An illustration of the construction of a semivariogram. The var-
iogram value as a function of the size of the displacement vector
h between points is shown. The bins are marked by red vertical
lines and the red dot in each bin is the mean value. The mean
value in the first bin is divided by 2 to minimize the nugget effect.
To transform the values into a semivariogram the mean values are
divided by 2.

The generated graph follows a spherical model which flattens at some value.
Therefore a spherical model can be fitted to the semivariogram and the fitted
model has three characteristics:

• Range of influence - The distance between points where the correlation
between them ends. Characterized on the model as the value on the x-axis
where the graph flattens.

• Sill - The sample variance characterized as the semivariogram value (on
the y-axis) when the correlation stops.

• Nugget - Theoretically, the semivariogram value should be 0 at lag 0, but
due to measurement errors or spatial variation at distances smaller than
the sampling interval the value often is larger than 0 and this is called the
nugget effect. The value is characterized on the graph as the intercept of
the model.



2.5 Semivariogram analysis 13

The three characteristics is illustrated on a spherical model on figure 2.5.

Figure 2.5: Range, sill and nugget on a spherical model.

The spherical model is given as

γ(h) =


0 |h| = 0
C0 + C1

[
3
2

|h|
R −

1
2

|h|3

R3

]
0 < |h| ≤ R

C0 + C1 R < |h|
(2.4)

where R is the range, C0 is the nugget effect and C0+C1 is the sill.
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Chapter 3

Data

This chapter contains a description of the used data. Futhermore the data qual-
ity is evaluated and a short description of the scores provided by a pathologist
is given.

3.1 TMA cores and their structure

Each histology image used is an image taken of a TMA core. TMA stands for
Tissue Micro Array and is a 4 µm thin stained slice of tissue from a cylinder
block made by plugging a needle down in a paraffin fixed block of tissue. Each
TMA core is placed on a glass slide that contains up to 60 TMA cores in total.
This slide is scanned with an optical scanner that takes high resolution digital
images of all TMA cores.

One slide contains up to 60 TMA cores either stained with ER or Ki67. The
neighbor slice (in the cylinder block) to each TMA core is stained with PCK
and placed at another slide at the same position in the TMA core grid. The
TMA core grid consists of 6 rows and 10 columns, where the rows are named
A-E and the columns 1-10, so each TMA core is named with these coordinates
e.g. A4, B7 etc.

Figure 3.1 shows a virtual slide where the TMA cores are stained with Ki67.
The coordinate system is also shown on the figure.
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Figure 3.1: An example of a virtual slide and the coordinate system. It con-
tains 59 TMA cores stained with Ki67. Core E10 is missing.

In this project, 2 slides with a total number of 111 TMA cores stained with
Ki67 and the corresponding 2 slides stained with PCK are used for the analysis
of Ki67. 64 of the TMA cores have been scored by a pathologist.

For the analysis of ER, 2 slides with a total number of 115 TMA cores stained
with ER and the corresponding 2 slides stained with PCK are used. 55 of the
TMA cores have been scored by a pathologist.

Some TMA cores are removed from the data set which is further described in
the next section.

3.2 Removal of bad TMA cores

The quality of each TMA core is checked since the alignment (further described
in section 5.1.1) between a Ki67 or ER stained core and the corresponding PCK
stained core doesn’t make sense if the two cores aren’t similar due to low quality
of the core.

The quality of the core pair is significantly reduced if one of the cores is folded,
torn apart or stretched under the production process.
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Figure 3.2 shows an ER stained core that is folded. Cores that are folded, torned
or stretched are excluded from the data set.

ER or Ki67 cores and their neighbor slice stained with PCK that aren’t similar
enough are also removed. Bad alignments between those two are excluded as
well.

Figure 3.2: An ER stained core that is folded. The fold is marked with ar-
rows. Cores that are folded, torn apart or stretched too much are
removed since the alignment with PCK doesn’t make sense then.

In total 18 out of 226 cores have been removed from the data set, 12 ER stained
cores and 6 Ki67 stained cores.

Figure 3.3 shows an example of a core that aren’t torn apart, stretch or folded
but is excluded as well simply because the ER and the PCK slice are too differ-
ent.
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(a) PCK stained core with tumor regions marked with blue.

(b) ER stained core with tumor regions found on the PCK stained slice marked with blue.

Figure 3.3: Two neighbor slices that aren’t sufficient similar since the tumor
regions found in the PCK stained core (a) doesn’t match the cells
areas in the ER stained core (b).
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Out of 64 scored Ki67 cores 6 cores were removed leaving 58 for analysis of the
Ki67 score.

Out of 55 scored ER cores 3 cores were removed leaving 52 cores for analysis of
the ER score.

3.3 Scores on data

As mentioned, some of the TMA cores stained with Ki67 or ER have been scored
by a pathologist.

The scores for Ki67 cores are calculated as % of positives in a chosen area of
the TMA core. The standard according to [16] is that the score should be based
on around 400 cells which are manually counted by the pathologist in a ROI
manually chosen by the pathologist. The chosen ROI should contain the highest
number of positives in the core better known as a hotspot. The ROI is normally
a fixed size FOV.

The scores for ER cores are H-scores defined in (2.1) or % of positives. The
scores provided by the pathologist for the ER cores both contain the H-score
and the % of positives in each group (stain intensity). The total % of positives
for the ER cores is used instead of the H-score for the analysis since the intensity
of positives aren’t measured. The score is therefore referred to as the ER score.
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Chapter 4

State of the art

One of the largest problems in treatment of cancer is the heterogeneity. The
heterogeneity in cancer occurs due to small genetic changes in cell division of
cancer cells, which results in a tumor consisting of many different cells react-
ing differently to treatment. This chapter contains a small review of previous
research done to understand and score the cancer heterogeneity in breast cancer.

Cancer heterogeneity

In [14] the division of cancer cells is found to follow the cancer stem cell model.
Sometimes a clonal sweep within the tumor takes place which results in a com-
pletely overtake of the entire cell population by the new clone. This will not
cause tumor heterogeneity since all cells will have the same genes. A heteroge-
nous population occurs when the clone is not able to take over the entire popu-
lation and thereby only some cells are replaced by the new clone. This happens
a number of times and the result is a heterogenous cell population.

Representativity of TMA studies

In [17] the representativity of using TMA cores was investigated. The concern
about using TMA cores is that the small sample of the heterogeneous tumor
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tissue isn’t representative for the tumor and its heterogeneity. In an experiment
using 553 cases of breast cancer over 80 % of ER positives were found using only
one TMA core and over 98 % were identified using 4 TMA cores per patient.
The core size was also shown to have an effect on the result and the 0.6 mm core
was shown preferable. It was also shown that two cores per tumor is preferable
to gain a more precise result.

Several studies have been performed to find out how heterogenous a tumor is
and decide which treatment would be effective for each individual. The following
describes the impact of biomarkers and how to score the heterogeneity based on
those.

Ki67

In [12] Ki67 was investigated as a proliferation marker in breast cancer. The
correlation between Ki67 and clinical outcome was investigated based on several
other studies with over 11.000 patients in total. In 5 out of 6 of the used studies
the Ki67 score was used to predict response to chemotherapy in breast cancer.
The higher Ki67 score the better response. The correlation was strongest for
patients with node negative breast cancer where the correlation for patients with
node positive breast cancer was positive but weaker. No correlation between the
Ki67 score and endocrine treatment was found.

In [11] the impact of Ki67 as a prognostic and predictive factor on Estrogen
Receptor (ER) Positive breast cancer patients was reviewed using several stud-
ies. Most studies found that Ki67 is a good prognostic factor for ER+ patients
and several indicated that it also could be used as a predictor for chemotherapy.
Since Ki67 scoring isn’t accepted as a standard yet, the article also implies that
a standardization of the staining methods and an automatic image analysis is
wanted to get a standardized score for Ki67, since the impact on both treatment
and prognosis is clear.

Impact of cut off value on survival

In [18] three different cut off values (10 %, 14 % and 20 %) were used for dividing
369 Hormone Recepter (HR) positive, Human Epidermal growth factor Receptor
2 (HER2) negative, node negative invasive breast cancer patients into high and
low risk groups and compare it with their survival. A cut off value of 14 or 20 %
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was found most reasonable for the determination of high risk patients and their
survival rates where higher with these cut off values. The analysis was based
on Japanese patients and in [16] a cut off value of 14 % is recommended for use
in Europe.

Hotspot detection

In [19] the reproducibility of Ki67 scores was investigated. Four different meth-
ods for finding the hotspot were used and the scores were compared.

One of the methods was performed by an independent pathologist, where the
hotspot detection was guided by a grid with squares containing cell counts. A
variability of 30-40 % in counts between the pathologists was observed, when
they counted in the same FOVs and it was 35-50 % higher when they counted
in different, random selected FOVs. Using this method and a cut-off value of
15%, 13% cases out of 237 total were misclassified.

The determination of the hottest hotspot was also investigated to see how often
the hottest hotspot was found by a pathologist as the hottest hotspot. In 50
% of the cases the hottest hotspot was chosen as the hottest one. In 23% of
the second hottest hotspot was chosen as the hottest one. In 15 % of the cases
the third hottest hotspot was chosen as the hottest one and the fourth was also
chosen in 15 % of the cases. In 2 % of the cases the fifth hottest hotspot was
chosen as the hottest one.

Another method that was investigated for calculation of the Ki67 score was an
automatic digital image analysis performed using the software tool VIS[20]. The
Ki67 scores were estimated based on area of cells. The results from this method
were strongly reproducible and the deviation of undertreated was 4 % and 43
% overtreated. The deviation percentages for the pathologist method were 8-32
% for the untreated and 25-51 % for the overtreated.

Visualization of heterogeneity

In [21] a HetMap for visualizing the patient’s individual heterogeneity using the
cell population based on HER2 and ER stained slices was created. The HetMap
is a graph of the entire patient population of cells, where a cell-based hetero-
geneity is on one axis and a slide-level heterogeneity is on the other axis. The
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tumor regions was marked by a pathologist and the two scores were calculated.
The disadvantage of this method is that HER2 stained slices represent the best
case scenario of heterogeneity.



Chapter 5

Methods

5.1 Image processing in VIS

The histology images are preprocessed in Visiopharm Integrator System (VIS)[20]
to create segmented images that only contain positive and negative cells for the
biomarker. In this section, the steps performed in VIS are described and illus-
trated.

5.1.1 Alignment using virtual double staining

To only segment tumor cells an alignment using virtual double staining is per-
formed. The alignment is between the ER or Ki67 stained TMA core and the
PCK stained TMA core. The PCK stained TMA core is a neighbor slice to
the ER or Ki67 core and therefore the content in the core is assumed to be
similar. At the PCK stain slice the epithelial tissue is stained dark brown and
since breast cancer originates from epithelial cells the epithelial tissue represents
tumor regions.

Figure 5.1 shows an example of two aligned cores, a core stained with ER aligned
with the neighbor slice stained with PCK.
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(a) ER stained TMA core with positive cells colored brown.

(b) PCK stained slice with epithelial tissue colored dark brown.

Figure 5.1: (a) An ER stained TMA core with positive colored brown and (b)
the neighbor slice stained with PCK where the epithelial tissue is
stained dark brown. The two cores have been aligned.
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If the alignment is too poor or the content in the cores is too dissimilar, the TMA
cores are removed from the data set. All alignments are visual evaluated and
the dissimilarity is evaluated as described in details and illustrated in section
3.2.

5.1.2 Segmentation of cells

The positive and negative cells in each ER or Ki67 stained TMA core are seg-
mented and an image only containing two labels is made. As already mentioned
the positive stained cells are colored brown and the negative stained cells are
colored blue. The intensity of the color can vary between manufactures and
the used parameters in the protocol are adjusted to the stain used. The proto-
col is described in details in the next three sections. The segmentation is only
performed within the tumor regions found after the alignment.

5.1.2.1 Preprocessing

The performed preprocessing of each image is:

1. Red band image - The red band image of the RGB image is used for
the analysis. In the red band image the difference between the brown and
blue color is smallest and since the negative cells are blue and the positive
cells are brown, this image is used for the segmentation.

2. Mean filter - The image is afterwards filtered using a mean filter to
minimize noise.

3. Polynomial filter - The image is then filtered using a local linear poly-
nomial filter to find the edges of elongated shapes.

4. Blob detection - The image is also filtered twice with a blob filter of
different sizes. It is done twice to ensure to find small and large round
cells.

5.1.2.2 Classification

A classification of the preprocessed image is performed using a simple threshold
classifier. The threshold value depends on the stain used since the intensities
varies across manufacturers. Labels are assigned based on the classifier.
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5.1.2.3 Postprocessing

After the classification some post processing steps is performed.

• Label clean up - Clean up in labels from the classification. Some criteria
are set up for labels to find out whether or not they belong to a cell or
the background e.g. based on shape and size. Separation of cells is also
performed at this step using watershed algorithm.

• Erosion - Erosion of the segmented cells is performed to make sure that
the cells stay separated after the export from VIS since the image is down-
scaled at export. The erosion is done by assigning a different label to the
edge of the cells with a defined width.

The labeled images with positive and negative cells are a segmentation of the
cells and the images are exported from the software for further analysis. In the
next section some examples of exported images are shown.

5.1.3 Examples of the segmentation of cells

The images with the segmented cells are exported from the software with a
magnification of 4 as bmp files and this section shows two examples of the
exported images used for the analysis.

Figure 5.2 shows some examples of the exported images from VIS with negative
(green) and positive (red) cells.
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(a) An ER stained image with posi-
tive (red) cells and a few negative
(green) cells exported from VIS.

(b) An Ki67 stained image with a mixture of
positive (red) and negative (green) cells
exported from VIS.

Figure 5.2: Examples of exported images from VIS with segmented cells, (a)
an ER stained image with positive (red) cells and a few nega-
tive (green) cells and (b) a Ki67 stained image with a mixture of
positive (red) and negative (green) cells.

5.2 Outline of TMA core

The outline of the TMA core is found on each exported image with the seg-
mented positive and negative cells. The outline is used to make a binary TMA
core mask for each TMA core.

The mask is multiplied on the image to exclude cells from neighbor TMA cores
that might be visible in the image and to exclude cells in fragments of the TMA
core that also have been segmented.

The image with segmented tumor cells can’t be used to find the outline since
the tumor regions don’t necessarily cover the whole outline. A segmentation of
all cells in the TMA core is therefore performed and the image is used to find
the outline. Figure 5.3 shows the segmented cells in the whole core and the
segmented cells in the tumor regions in the same TMA core.
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(a) ER positive and negative cells segmented
in the whole core.

(b) ER positive and negative cells segmented
in the tumor regions.

Figure 5.3: Example of (a) a TMA core where all cells in the core are seg-
mented and (b) the same TMA core where cells inside tumor
regions have been segmented.

Four points on the image with segmented cells in the whole core are found
using minimum and maximum x and y coordinates and the best geometric fit
for a circle is found by minimizing the orthogonal distances using standard
Levenberg-Marquardt optimization [22].

Figure 5.4 shows the same TMA core as on figure 5.3 with the best fitted circle
as the outline of the TMA core. The blue points are the 4 points used for the
circle fit and the pink point is the center of the fitted circle.
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Figure 5.4: The same TMA core as on figure 5.3 with the fitted circle (red),
the four used points (blue) and the center of the circle (pink).

5.3 Tumor masks

A tumor mask for each TMA core is also made and is e.g. used to calculate
the amount of tumor tissue in each TMA core. The tumor regions found in the
PCK stained image are exported from VIS as an image and converted into a
binary image for all TMA cores.

All tumor masks are multiplied with their binary TMA core mask (described
in section 5.2) to remove segmented regions outside the core that occurs due to
air, dust or small fractions of epithelial tissue lying around the TMA core.

Figure 5.5 shows an example of a tumor mask with tumor regions outside the
TMA core and the regions after multiplication with the TMA core mask.
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(a) Tumor mask exported from VIS.
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(b) TMA core mask found as described in section 5.2.
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(c) Tumor mask multiplied with TMA core mask. Re-
gions outside the TMA core have been removed.

Figure 5.5: Example of tumor mask with regions outside the TMA core. (a)
the raw tumor mask, (b) the TMA core mask and (c) the tumor
mask and the TMA core mask multiplied to eliminate small objects
labeled as tumor tissue but lying outside the TMA core.
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5.3.1 Amount of tumor tissue inside TMA core

The amount of tumor tissue in each TMA core is calculated. This is done by
calculating the area of each tumor mask and each TMA core mask in pixels.

The percentage of tumor tissue in each TMA core is given as

%tumor tissue = Number of pixels in tumor mask
Number of pixels in TMA core mask × 100 (5.1)

The results can be found in section 6.2.

5.4 Blob detection

A blob detection in MATLAB is performed on images with segmented cells to
find the cells and their center. Since the cells were eroded in VIS to make sure
that they stayed separated after the downscaling of the image under export the
size of the cells aren’t physically representable. Therefore the cells are presented
by their center found in a blob detection instead.

A blob detection of the positive cells and the negative cells is performed sep-
arately to know if the cell is positive or negative. The positive cells lie in the
red band of the RGB image and the negative cells in the green band and a blob
detection of the image in each band is therefore performed.

Figure 5.6 shows an example of the two blob detections of the positive (red) and
negative (green) cells. For a better visualization a zoom box is used. The zoom
box is marked by a red square on image figure5.6a and the rest of the images
(figure 5.6b-5.6d) are images inside the zoom box.
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(a) The image from VIS with segmented positive (red) and negative (green) cells.
The red square is a zoom box used to visualize the positive and negative cells.

(b) Zoom in on (a) marked by a red square for a better visualization of the positive
(red) and negative (green) cells.
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(c) The negative cells in the zoom box and their center (marked by red dot) found
in the blob detection of the negative cells.

(d) The positive cells in the zoom box and their center (marked by green dot)
found in the blob detection of the positive cells.

Figure 5.6: Visualization of the blob detection of the positive and the negative
cells. (a) the image from VIS with segmented positive (red) and
negative (green) cells. The red square is a zoom box used to get
a better visualization of the small cells. (b) The image on (a) in
the zoom box. (c) the positive cells and their center from the blob
detection and (d) the negative cells and their center from the blob
detection.
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The centers found for the positive and negative cells are put into two images
each representing the positive and negative cells. These images are used for the
rest of the analysis based on cells.

5.5 Heatmap calculation

This section describes the methods used and considerations made about the
heatmap generation. First the performed semivariogram analysis is described,
then the sliding window function and the gauss filter are described and some
heatmap examples are shown.

5.5.1 Semivariogram analysis

To investigate the spatial correlation, a semivariogram analysis is performed for
both the ER stained and the Ki67 stained images. The reason that the spatial
correlation is investigated separately in the two image types is that the cells
stained by ER might lie differently than the cells stained by Ki67.

The theory for calculating the semivariogram is described in section 2.5. This
section contains some examples of the performed semivariogram analysis, the
used parameters and other considerations.

The used images for the semivariogram analysis are the images with cells rep-
resented by their center from the blob detection put into one image. The image
contains one pixel for each cell either positive with value 1 or negative with
value 0. The background is valued as Not-a-Number (NaN) to exclude these
pixels.

A few of the images contain over 30.000 cells and due to computation speed
and working memory capacity only 5000 random sampled cells are used for the
calculation of the semivariogram. Most of the images contains between 2000
and 10.000 cells and 5000 is a good representative for images containing more
than 5000 cells.

Figure 5.7 shows a zoom on one image with 5000 random sampled cells between
9000 cells total. As it can be seen the cells are well represented and the sampling
aren’t spread too much so the estimation of the spatial correlation still makes
sense.
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Figure 5.7: Zoom on image where 5000 cells are random sampled between 9000
cells in total. The random sampled cells are marked by a blue star
and as it can be seen the sampling well represent the cells. Almost
all images contain less than 10.000 cells. The estimated range for
this image is 6.54 pixels.

A large matrix X is set up for the analysis and the coordinates for the negative
cells N(x, y) and the positive cells P (x, y) are placed in column 1 and 2. The
value 0 or 1 depending on whether it is a negative or positive cell is placed in
column 3. The set up of the X matrix is given as

X =



0

N(x, y)
...
0
1

P (x, y)
...
1


(5.2)

The matrix is used as an input to the function for calculation of the semivari-
ogram provided by Allan Aasbjerg Nielsen. It can be found as appendix A. The
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function calculates the semivariogram value for all point pairs provided in the
matrix X.

A spherical model is fitted to the calculated semivariogram to find the range,
sill and nugget for the semivariogram as described in section 2.5.

5.5.1.1 Considerations

Images with only positive or negative cells were removed from the semivariogram
analysis since it didn’t make sense to calculate the correlation between positive
and negative cells in these images. The analysis is based on 56 out of 110 ER
stained images and 76 out of 114 Ki67 stained images.

The used lag distance is 1 pixel and the number of lags used is 100.

The results from the semivariogram analysis are presented in section 6.1.

5.5.2 Heatmap

The heatmap is a visualization of the heterogeneity by visualizing the response
to one of the two used biomarkers as the percentage of positive cells in a given
area. The heatmap is also used as a guide for finding hotspots to calculate
the heterogeneity score in. The generation of the heatmap is described in the
following sections.

5.5.3 Sliding window function

To generate the heatmap the percentage of positive cells in small areas needs to
be calculated.

The images from the blob detection containing positive and negative cells are
used.

A sliding window is used for calculation of the percentage of positives in all
pixels inside the TMA core defined by the TMA core mask. This is practically
done by taking a ROI in both images (image with positive or negative cells)
and then multiply them with a circular function. Afterwards the sum in both
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images is calculated and the percentage of positives cells is calculated as

%positives =
∑
Pixelspositive

(
∑
Pixelspositive + Pixelsnegative) (5.3)

A new ROI is taken out from the image by moving the ROI 1 pixel at the time
and thereby sliding through the whole TMA core.

To take the position of the cells inside the ROI into account, the circular window
is gauss weighted. The used gauss filter is described in the next section.

Figure 5.8 shows a ROI in the image with positive cells, the circular gauss
weighted window function and the result of those two multiplied.

(a) Positive cells in a cho-
sen ROI at same size as
the circular gauss win-
dow function.

(b) The circular gauss win-
dow function.
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(c) Positive cells in the ROI after
multiplication with the circu-
lar gauss filter. The remain-
ing cells can have values be-
tween 0.11 and 1. The sum is
4.68.

Figure 5.8: An example of the sliding window function where a ROI of the
image with positive cells on (a) is multiplied with the circular
gauss filter on (b) and the remaining cells on (c) have values
corresponding to their distance to the center of the circle. The
values in (c) are summed and corresponds to the value for positive
cells in that ROI. The same procedure is done for the negative cell
image and the percentage of the positive cells is assigned to the
center of the ROI.
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5.5.4 The Gauss filter used

The window function is gauss weighted to weight the impact of cells placed
close to the center higher than cells placed close to the periphery of the circle.
The median of the found ranges in the semivariogram analysis is used as the
standard deviation σ in the gaussian function. The used ranges are presented in
table 5.1. The reason why the median and not the mean is used is a few outliers
that maximizes the mean artificial. The two distributions of range can be seen
on figure 5.9.

Median of Range
Ki67 6.93
ER 14.40

Table 5.1: The median of the ranges for Ki67 stained images and ER stained
images from the semivariogram analyses.

The used window functions for Ki67 stained images and ER stained images can
be seen on figure 5.10a and 5.10b.
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(a) Distribution of ranges from ER stained images.

0 20 40 60 80 100 120 140 160
0

5

10

15

20

51

56

Range in pixels

Q
u
a
n
ti
ty

(b) Distribution of ranges from Ki67 stained images. A few outliers are seen.

Figure 5.9: The two distribution of range from the two semivariogram analy-
ses. (a) the distribution of range from the semivariogram analysis
of ER stained images and (b) the distribution of range from the
semivariogram analysis of Ki67 stained images.
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(a) The circular gauss weighted window function used for Ki67 stained im-
ages. The standard deviation σ of the used gaussian function is 6.93. The
size of the window function is 31 x 31.
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(b) The circular gauss weighted window function used on ER stained images.
The standard deviation σ of the used gaussian function is 14.4. The size
of the window function is 61 x 61.

Figure 5.10: The two circular gauss weighted window functions used for the
heatmaps for the Ki67 and ER stained images respectively.
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5.5.5 Heatmap parameters

A few parameters for the heatmaps are calculated and used to describe the
heatmaps. The parameters are only calculated inside the tumor regions of the
heatmap, which means that the heatmap is multiplied with both the TMA core
mask and the tumor mask.

A calculated heatmap and the heatmap multiplied with tumor and TMA core
mask is shown on figure 5.11.

The calculated parameters for each heatmap are:

• Mean value µ

• Variance σ2

• Histogram

The mean value and variance for all heatmaps and the cumulated histogram for
some heatmaps can be found in section 6.5.
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(a) Calculated heatmap for a Ki67 stained image.

(b) The same heatmap as on (a) but after multiplication with tumor mask and TMA
core mask.

Figure 5.11: (a) Calculated heatmap for a Ki67 stained image and (b) the
same heatmap but after multiplication with the tumor mask and
TMA core mask done before calculation of mean value and vari-
ance.
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5.6 Hotspot detection

A detection of the hottest hotspot in the heatmap is performed and is used to
calculate a heterogeneity score in the TMA core, either the Ki67 score or the
ER score.

The method for finding the hottest hotspot is described in this section and the
calculation of score is described in section 5.6.3.

The results can be found in section 6.4.

5.6.1 Detecting largest hotspot

The largest hotspot in the heatmap is the largest area with the the relative
maximum in the heatmap as pixels value. In most heatmaps the value will
be 1 or close to 1 but for some heatmaps based on images with few positives
the maximum might be 0.5 or lower. Therefore the relative maximum is used
instead of using 1.

The following steps are done to find the largest hotspot

• Threshold - A simple threshold of the heatmap with the relative maxi-
mum of the heatmap as the threshold value.

• Blob detection - A blob detection of the found areas with the relative
maximum value if more than one exist. The blobs are sorted by size and
the largest blob is used as the hottest hotspot.

• Dilation until 60 % of max value using seed growing - The largest
blob found is dilated by including neighbor pixels iteratively if their value
is larger than 60 % of the maximum value. The iterative process is started
at the edge of the blob found by an edge detection. The maximum number
of iterations is 100. The number is set to avoid a too large hotspot resulting
from wrong placement of the FOV. The hotspot is dilated to make sure
the FOV contains a representative distribution of the neighborhood of the
hotspot.

• Center - The center of the dilated blob is calculated.

Figure 5.12 illustrates the process of finding the largest hotspot.
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(a) The heatmap used for the illustration of hottest hotspot detection.

 

 

(b) The maximum value is marked with black at the heatmap.
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(c) The image after threshold with the relative maximum as threshold value.

(d) The threshold image with centers of blobs marked by a green dot found
in the blob detection. The largest blob is chosen based on area.
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(e) The found largest blob dilated using seed growing - which is done iter-
atively by including neighbor pixels with values larger than 60 % of the
maximum value. The maximum number of iterations is 100. The center
of the hotspot is marked by a green star.

Figure 5.12: Illustration of the process with detecting and dilating the hottest
hotspot. (a) the heatmap, (b) relative maximum value on the
heatmap marked by black, (c) result of threshold with the rela-
tive maximum value, (d) blob detection of the threshold image
to find largest blob and (e) dilated hottest hotspot using seed
growing with max 100 iterations.

5.6.2 Field Of View (FOV)

The score is calculated inside a Field Of View (FOV). The FOV used by the
pathologist is of defined size but should minimum contain 400 cells [16]. The
pathologist places the FOV manually at a site where the heterogeneity is rep-
resentative and often in the hottest hotspot which is found subjectively.

Two types of FOV is used for calculation of the heterogeneity score, a fixed size
FOV and an adjusting FOV that vary in size depending on the number of cells
inside the FOV.

The size of the FOV is 88 µm x 88 µm and the TMA core is between 1700-2000
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µm in diameter for comparison.

Most ER stained images is either 100 % positive or negative (score 0) which
means that the FOV placed at a hotspot doesn’t make sense since either the
whole core is a ’hotspot’ or no hotspots exist. Therefore the FOV for ER
stained images is placed randomly if the size of the hotspot is above the size of
the defined size FOV.

Figure 5.13 shows the distributions of cells inside the two types of FOVs.

0 100 200 300 400 500 600 700 800
0

5

10

15

Number of cells inside FOV

C
o

u
n

ts

(a) The distribution for number of cells in
the defined size FOV in all Ki67 images.
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(b) The distribution for number of cells in
the adjusting FOV. The lower limit is
400 cells and the upper limit is 450. The
distribution is for the Ki67 images.

Figure 5.13: The distribution of cells in the FOV for the two types of FOV,
(a) the defined size FOV and (b) the adjusting FOV with lower
limit of 400 cells and upper limit of 450 cells.

5.6.2.1 Considerations about the chosen FOV type

The distribution for the defined size FOV on figure 5.13a varies between 100
cells and up to 800 cells in a FOV, where most FOVs’ contain less than 400
cells. The FOV size was tried varied, but the distribution of cells within and
around the hotspot varies too much to find a size that made sure that the FOV
contained at least 400 cells and a realistic maximum of cells that would make
sense to count manually. Therefore the adjusting FOV was chosen.

Figure 5.14 shows the two FOV types on the same heatmap as used for the
illustration on figure 5.12. From the figure it can be seen that the amount of
cells in the hotspot is greater than 450 for the defined size of FOV and the
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adjusting FOV is therefore decreased to make the FOV contain between 400
and 450 cells.
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(a) The same heatmap as used in the illus-
tration of the hotspot detection on figure
5.12; here with FOV of defined size.
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(b) The same heatmap as used in the illus-
tration of the hotspot detection on figure
5.12; here with adjusting FOV which is de-
creased compared to the FOV of defined
size on (a).

Figure 5.14: The two types of FOV, (a) a FOV of defined size and (b) a FOV
with adjusting size until it contains minimum 400 cells. In this
case the FOV is decreased a bit compared to the FOV of defined
size.

5.6.3 Calculation of heterogeneity score at hottest hotspot

The heterogeneity score is calculated inside the FOV as percentage of positives
cells out of the total sum of cells. The cells are counted in the positive and
negative cell images from the blob detection with one pixel representing each
cell. Analysis of the calculated scores and comparison between them and the
pathologist scores are described in section 6.6 for Ki67 and section 6.10 for ER
scores.

A calculation of the heterogeneity score outside the hottest hotspot is also per-
formed for Ki67 images and is presented in section 6.7.

A linear regression model is fitted to the calculated scores and the best fitted
model is found. A F-test of each model’s slope different from 1 is performed
to investigate whether the scores are significantly different from the pathologist
scores. All fitted models and statistical tests are described in sections 6.6, 6.7
and 6.10.



Chapter 6

Results

6.1 Segmented cells and their semivariogram

This section contains results for some of the images with segmented cells and
their semivariogram with a fitted spherical model.

Figure 6.1 and figure 6.2 show images with segmented cells for two Ki67 stained
images and the calculated semivariogram with a fitted spherical model.

Figure 6.3 and figure 6.4 show images with segmented cells for two ER stained
images and the calculated semivariogram with a fitted spherical model.
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(a) Semivariogram (red squares) with fitted
spherical model (blue line) for the Ki67
stained image shown on (b).

(b) A Ki67 stained image with a great
mixture of closely lying positive cells
(red) and negative cells (green).

Figure 6.1: (a) The semivariogram (red squares) with a fitted spherical model
(blue line) for the Ki67 stained image on (b).
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(a) Semivariogram (red squares) with fitted
spherical model (blue line) for the Ki67
stained image shown on (b).

(b) A Ki67 stained image with more
spread areas with positive cells (red)
and negative cells (green).

Figure 6.2: (a) The semivariogram (red squares) with a fitted spherical model
(blue line) for the Ki67 stained image on (b).
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(a) Semivariogram (red squares) with fitted
spherical model (blue line) for the ER
stained image shown on (b).

(b) An ER stained image with a
great mixture of positive cells
(red) and negative cells (green).

Figure 6.3: (a) The semivariogram (red squares) with a fitted spherical model
(blue line) for the ER stained image on (b).
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(a) Semivariogram (red squares) with fitted
spherical model (blue line) for the ER
stained image shown on (b).

(b) An ER stained image with many
positive cells (red) and a few neg-
ative cells (green).

Figure 6.4: (a) The semivariogram (red squares) with a fitted spherical model
(blue line) for the ER stained image on (b).
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6.2 Amount of tumor tissue inside TMA core

This section contains the distribution of tumor tissue in percentage in the TMA
cores in the dataset.

Figure 6.5 shows the total distribution of percentage of tumor tissue in all TMA
cores. The distributions for Ki67 and ER stained cores can be found in appendix
B.
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Figure 6.5: Distribution of percentage tumor tissue inside TMA core for all
stained cores.

It is clearly seen that most TMA cores contain between 20-30 % tumor tissue.
The median of the histogram for all TMA cores is 26.7 %.

Figure 6.6 shows the distribution of tumor tissue in the FOV as percentage of
the total amount of tumor tissue in the TMA core.
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Figure 6.6: Distribution of tumor tissue inside the FOV as percentage of the
total amount of tumor tissue in the TMA core.

The results are discussed in section 7.1.

6.3 Heatmaps

This section contains some of the calculated heatmaps for the Ki67 stained and
ER stained images. The chosen heatmaps show the three types of heatmaps
that exist in the two types of stain.

6.3.1 Ki67 Heatmaps

Figure 6.7 shows the Ki67 image with a great mixture of positive and negative
cells and the calculated heatmap. The hotspots are clearly seen on the heatmap
but they are hard to identify on the image with the segmented cells.

Figure 6.8 shows the Ki67 image with a great mixture of positive and negative
cells and the calculated heatmap. Areas with positive cells are clearly seen on
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the segmented cell image and the heatmap helps visualize the density of the
cells in these areas.

Figure 6.9 shows the Ki67 image with few cells mostly negative cells and a few
positive cells and the calculated heatmap. Hotspots are hard to identify on the
segmented cell image due to the variating density of negative cells. The heatmap
clearly shows the hottest hotspot and a few other hotspots.
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(a) Image with positive (red) and negative (green) Ki67 stained cells.
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(b) Calculated heatmap for the image on (a).

Figure 6.7: (a) A Ki67 stained image with a great mixture of positive (red)
and negative (green) cells and (b) the calculated heatmap. The
hotspots are clearly seen on the heatmap but hard to identify on
(a).
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(a) Image with positive (red) and negative (green) Ki67 stained cells.
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(b) Calculated heatmap for the image on (a).

Figure 6.8: (a) A Ki67 stained image with large areas with only positive (red)
or negative (green) cells and (b) the calculated heatmap. The
hotspots are obvious on the cell image but the cell densities are
hard to incorporate in a manual selection of the hotspot. The
heatmap clearly shows areas with high density of positive cells
and eliminates areas with only negative cells or areas with many
negative cells densely packed and few positives.
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(a) Image with a few positive (red) and many negative (green) Ki67
stained cells.
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(b) Calculated heatmap for the image on (a).

Figure 6.9: (a) A calculated heatmap for a Ki67 stained image (b) with few
tumor cells and almost all negative (green) to the Ki67 stain. Ar-
eas with positive cells are easy to identify, but the density of pos-
itive cells versus the density of negative cells can be hard to mea-
sure by eye and the heatmap clearly points out areas with more
positive cells than negative in the few areas where positive cells
occur.
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6.3.2 ER Heatmaps

Figure 6.10 shows the ER image with a great mixture of positive and negative
cells and the calculated heatmap. The hotspots are easily seen on the heatmap
and the cell densities are taken into account compared to just finding the hotspot
on the cell image.

Figure 6.11 shows an ER image with almost only positive cells and the calcu-
lated heatmap. The hotspot detection in this kind of image doesn’t make sense
and when the hotspot size is larger than the fixed size FOV, the score is just
calculated at a random place.

Figure 6.12 shows an ER image with one positive cell and many negative cells
together with the calculated heatmap. Hotspot detection might influent the
score a bit due to the low cell density of the negative cells but the conclusion
will be a pure negative ER image. Most ER images and their heatmap are like
the example on this image and the one on figure 6.11.
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(a) Image with positive (red) and negative (green) ER stained
cells.
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(b) Calculated heatmap for the image on (a).

Figure 6.10: (a) An untypical ER stained image with a great mixture of pos-
itive (red) and negative (green) cells and (b) its heatmap. Most
ER stained images have either positive cells or negative cells. In
this case a mixture of positive and negative cells exits and the
hotspot is easy to identify. The heatmap can nevertheless be
used for the exact finding of the hottest hotspot and not just a
hotspot.
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(a) Image with positive (red) and negative (green) ER stained
cells.
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(b) Calculated heatmap for the image on (a).

Figure 6.11: (a) A typical positive ER stained image with almost only positive
(red) cells and a few negative (green) cells and (b) its heatmap.
A manual selection of hotspot is easy and the heatmap can be
used to support the choice.
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(a) Image with one positive (red) and many negative (green)
ER stained cells.
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(b) Calculated heatmap for the image on (a).

Figure 6.12: (a) A typical negative ER stained image with almost only neg-
ative (green) cells and only one positive (red) cell and (b) its
heatmap. The positive cell is hard to identify on the image and
the heatmap therefore nicely illustrate its presence. The impact
on the total score is not substantial and the heatmap can only
be used as an illustration.
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6.4 Hotspot detection

This section contains results from the hottest hotspot detection. The results
present are chosen heatmaps and their adjusting FOV placed in the hottest
hotspot together with the calculated score and the pathologist score. The results
are mainly for the Ki67 stained images since the heatmaps from the ER images
are either positive or negative and the hotspot detection therefore doesn’t make
much sense.

6.4.1 Ki67 Heatmaps with fixed size FOV and adjusting
FOV

Figure 6.13 shows the image and the calculated heatmap with the fixed size FOV
(red box) and the adjusting FOV (yellow box). The fixed size FOV contains
345 cells and the score is 34.2 % while the adjusting FOV contains 400 cells and
the score is 34.25 %. The score provided by the pathologist is 17.3. The cell
density in the core seems uniform and the explanation of the difference between
the calculated scores and the pathologist score may be the manual selection of
the hotspot by the pathologist.

Figure 6.14 shows the image and the calculated heatmap with the fixed size
FOV (red box) and the adjusting FOV (yellow box) together. The image only
contains a few positive cells. The fixed size FOV contains 156 cells and the
score is 14.1 while the adjusting FOV contains 403 cells and the score is 11.56.
The score provided by the pathologist is 8.24. The explanation of the deviation
in the scores might be explained by the variation in the density of the negative
cells.
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(a) Image with positive (red) and negative
(green) Ki67 stained cells.

(b) The calculated heatmap for the core
shown on (a) with the fixed size FOV
marked by a red box and the adjusting
FOV marked by a yellow box.
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Figure 6.13: (a) Ki67 stained TMA core with positive (red) and negative
(green) cells. (b) The calculated heatmap for the TMA core
on (a) with the fixed size FOV marked by a red box and the
adjusting FOV marked by a yellow box.

(a) Image with a few positive (red) and
many negative (green) Ki67 stained
cells.

(b) Calculated heatmap for the core
shown on (a) with the fixed size FOV
marked by a red box and the adjusting
FOV marked by a yellow box.
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Figure 6.14: (a) Ki67 stained TMA core with a few positive (red) and many
negative cells (green). (b) The calculated heatmap for the TMA
core on (a) with the fixed size FOV marked by a red box and
the adjusting FOV marked by a yellow box.
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6.5 Mean, variance and histogram for heatmaps

This section contains the mean value, variance and some histograms for the
calculated heatmaps. The mean and variance are calculated inside the tumor
tissue as described in section 5.5.5.

Figure 6.15 shows the distribution of the mean value in the heatmaps for the
ER stained and Ki67 stained images respectively.

Figure 6.16 shows the distribution of the variance in the heatmaps for the ER
stained and Ki67 stained images respectively.
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(a) Distribution of the mean values in the
heatmaps for ER stained images. The
mean value is either high or low which
matchers the fact that almost all ER
stained images are either 100 % or neg-
ative.
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(b) Distribution of the mean values in the
heatmaps for Ki67 stained images.

Figure 6.15: (a) Distribution of mean values in the heatmaps for the ER
stained images and (b) distribution of mean values in the
heatmaps for the Ki67 stained images.
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(a) Distribution of the variance in the
heatmaps for ER stained images.
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(b) Distribution of the variance in the
heatmaps for Ki67 stained images.

Figure 6.16: (a) Distribution of variance in the heatmaps for the ER stained
images and (b) distribution of variance in the heatmaps for the
Ki67 stained images.

The cumulated histograms for all heatmaps were also calculated to get an idea
of the distribution of values in the individual heatmap. Some of the cumulated
histograms for Ki67 stained images can be seen on figure 6.17 and for ER stained
images on figure 6.18.
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Figure 6.17: Cumulated histograms for some heatmaps based on Ki67 stained
images.
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Figure 6.18: Cumulated histograms for some heatmaps based on ER stained
images.

As it can be seen from both the distribution of the mean values and the cumu-
lated histograms for the heatmaps, almost all ER stained images are either 100%
positive or negative. The mean values and the cumulated histograms for the
Ki67 stained images’ heatmaps show that some heatmaps contain few hotspots
and many areas with only negatives and some heatmaps is a great mixture.

6.6 Ki67 scores from hottest hotspot

This section contains the results for the calculated Ki67 scores in the hottest
hotspot inside a FOV of adjusting size containing between 400 and 450 cells.
The correlation between the calculated scores and the pathologist scores is in-
vestigated and discussed using linear regression, statistical tests and other plots
for visualization.
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6.6.1 Bland Altmann plot

Bland Altmann plot is often used when two methods are compared [23]. In a
Bland Altmann plot the difference is plotted against the average of the scores
from two methods.

Figure 6.19 shows the Bland Altmann plot for the pathologist scores and the
calculated Ki67 scores.
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Figure 6.19: Bland Altman plot for the Ki67 scores found with the adjusting
FOV. The difference of the pathologist scores and the calculated
scores is plotted against the average of them. The mean and ± 2
standard deviations is marked by a blue and two red lines. The
black line indicates a difference of 0. It is clear to see that the
absolute difference increases with increasing scores.

The increasing variance for increasing scores is discussed in section 7.4.1. The
next section contains the fitted regression model where the increasing variance
also is taken into account.
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6.6.2 Linear regression models

This section contains the fitted regression model used between the pathologist
scores and the calculated Ki67 scores. The model is used to investigate if the
scores are different from each other.

To find the best suitable regression model a variety of models were fitted to the
data. The model used is presented in this section and the other fitted models
are presented in the appendix C and appendix D.

An overview of the fitted models and where they can be found is listed in table
6.1.

Model section/appendix
y = βx+ α appendix C
y = βx appendix C
Log(y)=β Log(x) + α appendix D√
y = β

√
x+ α section 6.6.2.2√

y = β
√
x section 6.6.2.2

Table 6.1: Overview of fitted regression models for the Ki67 scores and where
the description and plots are located.

In the model y = βx+α, it was found that the intercept (α) wasn’t significant for
the model and therefore the model y = βx was fitted to the data. The variance
was increasing with increasing scores and therefore a Log transformation was
performed.

The variance was decreased for large scores but increased for small scores in the
model and therefore a Box Cox transformation was performed to find the optimal
transformation of the data to make the variance constant and the residuals
normally distributed.

The Box Cox transformation is described in the next section and the transformed
and final model used is presented in the following section.

6.6.2.1 Box Cox transformation

A Box Cox transformation based on the model y = βx was performed. The
Log-Likelihood as a function of λ was estimated and can be seen on figure 6.25.
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Figure 6.20: The Log-Likelihood as a function of λ for the model y = βx,
where y is the calculated scores and x is the pathologist scores.
The 95 % confidence interval is marked by dotted lines and the
suitable λ for the transformation lies in this interval. λ = 0.5 is
chosen.

The chosen λ is 0.5 which is the most preferable transformation and it lies in the
95 % confidence interval (marked by dotted lines on the Log-Likelihood plot).
The transformation with λ = 0.5 is the same as taken the square root of the
data. The fitted model is described in the following section.
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6.6.2.2 Model: √y=β
√
x+ α and √y=β

√
x

The regression model √y=β
√
x + α and its confidence bounds can be seen on

figure 6.26.
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Figure 6.21: Plot of the regression model √y=β
√
x + α.

The results of the two t-test of the model’s coefficients can be found in table 6.2
and as it can be seen the intercept isn’t significant for the model.
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Estimate Std. Error t value Pr(>|t|)
Model: √y=β

√
x+α

Intercept (α) -0.255 0.236 -1.081 0.285
Slope (β) 1.0862 0.0538 20.181 <2e-16

Model: √y=β
√
x

Slope (β) 1.0330 0.0217 47.52 <2e-16

Table 6.2: t-test for α’s and β’s significance in the two regression models:√
y=β
√
x+α and √y=β

√
x.

Therefore a new model of the form √y=β
√
x was fitted and can be seen on

figure 6.27. The test value of β in the reduced model is also given in table 6.2.
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Figure 6.22: Plot of the regression model √y=β
√
x.
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The diagnostic plot for the model can be seen on figure 6.28.
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Figure 6.23: Diagnostic plot for the regression model √y=β
√
x.

The diagnostic plot shows that the variance is constant and the residuals are
normally distributed which was the intention with the transformation of the
data.

The model plotted on the original scale can be seen on figure 6.29.
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Figure 6.24: Plot of the regression model √y=β
√
x on the original scale. The

model is given as y = 1.067x.

The model on the original scale is y = 1.067x. This means that the calculated
scores generally is around 7 % higher than the pathologist scores.

6.6.2.3 Linear hypothesis test: Scores calculated in the hottest hotspot
compared with the pathologist scores

To test if the found model and thereby the method for calculating the Ki67
scores in the hottest hotspot is significantly different from the pathologist scores
a linear hypothesis test (F-test) with the hypothesis

H0: β = 1
H1: β 6= 1

is performed. The calculated F-value and the p-value can be found in table 6.3.



76 Results

Res.Df RSS Df Sum of Sq F Pr(>F)
54 27.048 1 1.1521 2.3 0.1352

Table 6.3: Test of significant difference between model √y = 1.0330
√
x and

y = x with test value α = 0.05.

The p-value is higher than 0.05 which means that no significant difference be-
tween the estimated model and y = x can be proved.

This means that the score calculated in the hottest hotspot for Ki67 stained
images can’t be proved significantly different from the pathologist scores.

But what if the scores were calculated outside the hottest hotspot? The next
section contains a similar analysis with scores measured randomly outside the
hottest hotspot to investigate and perhaps give an idea of the meaning of the
hottest hotspot.

6.7 Ki67 scores outside the hottest hotspot

To investigate and understand the use of the hottest hotspot to calculate the
score in, the Ki67 score was calculate in the same heatmaps inside an adjusting
FOV containing between 400 and 450 cells placed randomly outside the hottest
hotspot.

6.7.1 Linear regression models

The procedure for fitting a linear regression model is exactly the same as in
section 6.6.2. The fitted model used is presented in this section and the other
fitted models and where they are found are listed in table 6.4.
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Model section/appendix
y = βx+ α appendix E
y = βx appendix E
Log(y)=β Log(x) + α appendix F
Log(y)=β Log(x) appendix F√
y = β

√
x+ α section 6.7.1.2√

y = β
√
x section 6.7.1.2

Table 6.4: Overview of the fitted regression models for the Ki67 scores and
where the description and plots are located.

6.7.1.1 Box Cox Transformation

The Box Cox transformation for the model y = βx was calculated. The used
λ is again 0.5. The value lies in the confidence interval which can be seen on
figure 6.25, where the Log-Likelihood as a function of λ is plotted.
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Figure 6.25: Log-likelihood as a function of λ to find a suitable λ for the
transformation.
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The fitted model with the Box Cox transformed data is presented in the next
section.

6.7.1.2 Model: √y=α+β
√
x

The fitted regression model √y=α+β
√
x with the transformed data can be seen

on figure 6.26. Table 6.5 contains the estimated coefficients and a t-test value
for a test of their significance in the model. The intercept can be removed since
it isn’t significant. The model √y=β

√
x was fitted and the coefficient estimate

is also presented in table 6.5.

0 2 4 6 8 10

0
2

4
6

8
10

Pathologist score

C
al

cu
la

te
d 

sc
or

e

0 2 4 6 8 10

0
2

4
6

8
10

95 % Confidence Limits
95 % Prediction Limits

Figure 6.26: Plot of the regression model √y=α+β
√
x.
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Estimate Std. Error t value Pr(>|t|)
Model: √y=β

√
x+α

Intercept (α) -0.00717 0.296 -0.024 0.981
Slope (β) 0.919 0.0664 13.845 <2e-16

Model: √y=β
√
x

Slope (β) 0.917 0.0259 35.39 <2e-16

Table 6.5: t-test for the estimated α’s and β’s significance in the two regression
models: √y=β

√
x+α and √y=β

√
x.

Figure 6.27 shows the reduced fitted model and figure 6.28 contains some di-
agnostic plots for the model. The diagnostic plots shows that the residuals are
normally distributed and the variance is more stable.
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Figure 6.29 shows the model on the original scale. The model on the original
scale is y = 0.841x.
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Figure 6.29: Plot of the regression model √y=β
√
x on the original scale. The

model is y = 0.841x.

6.7.1.3 Linear Hypothesis Test: Scores calculated outside the hottest
hotspot compared with the pathologist scores

The fitted model for the scores calculated randomly outside the hottest hotspot
is tested to illustrate if a significant difference from the pathologist scores can
be proved. This is done by a F-test with the hypothesis:

H0: β = 1
H1: β 6= 1

The calculated F-value and the p-value can be found in table 6.6.
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Res.Df RSS Df Sum of Sq F Pr(>F)
52 36.697 1 7.2077 10.213 0.002372

Table 6.6: Test of significant difference between model √y = 0.917
√
x and

y = x with test value α = 0.05.

The p-value is below 0.05 and the H0 hypothesis is rejected. Thus the scores
calculated randomly outside the hottest hotspot are significantly different from
the pathologist scores.

6.7.1.4 Linear Hypothesis Test: Scores calculated outside the hottest
hotspot compared with scores calculated at the hottest hotspot

The fitted model for the scores calculated outside the hottest hotspot is com-
pared to the model fitted for the scores calculated at the hottest hotspot by
testing if the model is significantly different using an F-test. The hypothesis is:

H0: β = 1.0330
H1: β 6= 1.0330

The calculated F-value and the p-value can be found in table 6.7.

Res.Df RSS Df Sum of Sq F Pr(>F)
52 36.697 1 14.089 19.965 4.289e-05

Table 6.7: Test of significant difference between the models √y = 1.0330
√
x

and √y = 0.917
√
x.

It can be seen that there is a significant difference between the two models which
means that a significant difference between calculating the score in the hottest
hotspot and another place than the hottest hotspot can be proved.
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6.8 Cut off at 14 % for Ki67 scores

Ki67 scores above 14 % are Ki67 positive and thereby denoted aggressive cancers
that will be treated with chemotherapy. The number of calculated scores and
pathologist scores above 14 % was determined. A discussion of the results can
be found in section 7.4.2.

26 out of 58 TMA cores have Ki67 score higher than 14 % for the pathologist
scores.

The number of calculated scores above the cut off value is 28 out of 58. But is
it the same TMA cores that are scored above the cut off value?

The calculated scores have 4 TMA cores scored above the cut off value that
aren’t scored above by the pathologist and the pathologist scores 2 TMA core
above the cut off value that aren’t scored above for the calculated scores.

Table 6.8 lists the scores for the 6 TMA cores that aren’t classified as the
same (either above or below the cut-off value) by the calculated score and the
pathologist score.

Core Score by Score in Deviation (%) Deviation (%)
coordinates pathologist hotspot between scores from cut-off 14%

pathologist/hotspot
C7TMA3 12.8 15.31 19.61 8.57/-9.36
E6TMA3 12 17.56 46.33 14.30/-25.43
A10TMA4 11 15.8 43.64 21.43/-12.86
D3TMA4 11 20.32 84.73 21.43/-45.14
A6TMA4 20 11.22 -78.25 -42.86/19.86
F7TMA3 17.17 13.54 -26.81 -22.64/3.3

Table 6.8: Table of scores for the 6 TMA cores that aren’t classified as the
same by the pathologist and the calculated score. The first column
lists the coordinates for the TMA core, the second column lists the
score of the core provided by the pathologist, the third column lists
the score calculated in the hottest hotspot, the fourth column lists
the deviation between the two scores in % and the last column lists
the deviation between the two scores and the cut-off value in %.

Figure 6.30 shows the calculated scores as a function of the pathologist scores
together with the fitted regression model on the original scale. The outliers are
marked by red.
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Figure 6.30: The calculated Ki67 scores as a function of the pathologist scores
together with the fitted regression model on the original scale.
The outliers are marked by red.

The results are discussed in section 7.4.2.

6.9 Ki67 scores in the hottest, second, third and
fourth hottest hotspot

The Ki67 score in the hottest, second, third and fourth hottest hotspot has been
calculated to try to investigate the impact of the chosen hotspot and compare
the scores with the pathologist scores.

The models have been fitted in the same way as the found models in section 6.6
and 6.7. The data has also been transformed using the Box Cox transformation,
all with λ=0.5.

All four models have been tested for significant difference from the pathologist
scores, with the hypothesis:

H0: β = 1
H1: β 6= 1
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and the F-values and p-values can be found in table 6.9. The estimated models
are also listed in the table and a plot of the model and a diagnostic plot for
the second, third and fourth hottest hotspot can be found in appendix H. The
model for the hottest hotspot is the same as the model presented in section 6.6.

Res.Df RSS Df Sum of Sq F Pr(>F)
Hottest hotspot

y = 1.067x

54 27.048 1 1.152 2.3 0.135

Second hottest
hotspot

y = 1.0235x

54 29.353 1 0.145 0.267 0.608

Third hottest
hotspot
y = 0.999x

54 26.528 1 0.0296 0.0602 0.807

Fourth hottest
hotspot
y = 0.998x

54 29.456 1 0.00104 0.0019 0.965

Table 6.9: F- and p-values for the hypothesis testing of the four models’ slopes
different from 1. All tests show that non of the four models could
be shown significantly different from the model y = x.

From the hypothesis test it was found that none of the models based on the
scores calculated in the first, second, third and fourth hottest hotspot could be
proved significantly different from the pathologist scores.
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6.10 ER scores from hottest hotspot

To investigate whether the calculated ER scores were significantly different from
the pathologist scores and to investigate the correlation between them a linear
regression model was fitted. This section contains the fitted regression model
used and a test of significant difference between the fitted model and the pathol-
ogist scores.

6.10.1 Model y = βx

The model y = βx is the fitted regression model used. The model y = βx + α
was fitted first and the intercept α wasn’t significant for the model. The model
y = βx+α and the table for the t-test of α and β in the model can be found in
appendix G.

Figure 6.31 shows the fitted regression model y = βx.
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Figure 6.31: The fitted regression model y = βx with 95 % confidence bounds.

The estimated slope and the t-test of it can be found in table 6.11.

Estimate Std. Error t value Pr(>|t|)
Slope (β) 0.98733 0.01206 81.83 <2e-16

Table 6.10: Test for β’s significant in the regression model.

Figure 6.32 shows some diagnostic plots for the fitted model. As it can be seen
the residuals are high for the intermediate scores. The number of observations in
this interval is lower than the number of observations in the ends. The reason
is that ER scores often is 0 % or 100 % - either negative or positive. A few
of the ER stained TMA cores in the data set have a mixture of negative and
positive cells and the hotspot detection was used in these cores to calculate the
score. A hotspot in the cores could easily be found manually but it might not
be the hottest hotspot. Most of the calculated scores between 0 and 100 % that
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lies outside the confidence boundaries are estimated higher than the pathologist
score which might be explained by the use of the hottest hotspot. Only one score
outside the confidence boundary is estimated lower than the pathologist score.
The adjusting FOV is in this case increased to cover half of the core to contain
above 400 cells and an area with high density of negative cells is included. The
pathologist score might be based on significantly less cells than 400 due to the
fixed size FOV used and the area with high density of negative cells will not be
included.
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Figure 6.32: Diagnostic plot for the model y = βx.

6.10.1.1 Linear Hypothesis Test: ER scores compared with the pathol-
ogist scores

To test if the found model and thereby the method for calculating the ER scores
is significantly different from the pathologist scores a linear hypothesis test (F-
test) with the hypothesis
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H0: β = 1
H1: β 6= 1

is performed. The calculated F-value and the p-value can be found in table 6.11.

Res.Df RSS Df Sum of Sq F Pr(>F)
51 1979.3 1 52.013 1.3402 0.2524

Table 6.11: Test of significant difference between model y = 0.987x and y = x
with test value α = 0.05.
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Chapter 7

Discussion

7.1 Amount of tumor tissue

This section contains a discussion of the amount of tumor tissue in the TMA
cores as presented in section 6.2. If the amount of tumor tissue in a core is
extremely low it might have an impact on the score since it will be based on
few cells. Most of the TMA cores contained between 20-30 % tumor tissue and
in general 10 % of the tumor tissue lied in the adjusted FOV. The tumor tissue
might not contain many cells but over 70 % of all used FOV contained less
than 15 % of the total amount of tumor tissue in the core and still contained a
minimum of 400 cells. This indicates that no cores used contain too few cells
and too low amount of tumor tissue that would affect the score.

7.2 Heatmaps and the spatial correlation

The heatmaps were calculated using a gauss weighted sliding window function.
The size of the window and the standard deviation of the gauss function were
estimated using the spatial correlation found by semivariogram analyses of the
Ki67 and ER stained images. The found spatial correlation for the ER stained
images was twice the spatial correlation for the Ki67 stained images.

The amount of tumor tissue in the cores could have an impact on the spatial
correlation since small wide spread areas with few cells would have a larger
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range than cores with large tumor areas. The distribution of tumor tissue was
practically the same for the ER stained images and the Ki67 stained images,
both having a large number of cores with 20-30 % tumor tissue.

The difference between the found standard deviation therefore might just be ex-
plained by the density of cells that are stained with the two different biomarkers.
This was also the reason why two semivariogram analyses were performed in-
stead of just one with all cores independent of biomarker.

7.3 Hotspot detection and FOV

The hotspot was detected as the largest area of pixels with value of the relative
maximum in the heatmap. The found area was expanded using seed growing
iteratively with 100 iterations and a threshold value of 60 % of the maximum
value. A maximum number of iterations was set to avoid that the hotspot
became too large and perhaps consisted of more than one hotspot. The reason
why the seed growing was used, was to make sure that the neighborhood of
the found largest area was taken into account when the FOV was placed at the
center of the hotspot. The FOV was chosen to adjust in size depending on the
number of cells and made sure that the FOV contained between 400 and 450
cells. The pathologist uses a FOV of fixed size. The amount of cells inside the
fixed size FOV varied too much and the score therefore wouldn’t be based on at
least 400 cells. The size was tried varied but no size seemed to be able to fulfill
the criteria of the 400 cells and the adjusting FOV was therefore chosen.

7.4 Quantative measured scores

This section contains a discussion of the quantative measured scores for the Ki67
and ER stained images.

7.4.1 Increasing variance for increasing Ki67 scores

The Ki67 scores calculated in the hottest hotspot had a larger variance for larger
scores. Several things can explain this

• Densely packed cells in hotspot - if the density of cells in the hotspot
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is high the adjusting FOV will decrease in size compared to the FOV with
defined size used by the pathologist. This might result in a higher estimate
of the score if the FOV contains more positive cells, which depends on the
hotspot size and the cell density and distribution around the hotspot.

• Variance in the manual counting by the pathologist - the manual
count method used by the pathologist contains a high variance and the
cells are only counted by one pathologist.

• Few cells in the TMA core - Some TMA cores have a low density of
tumor cells and the fixed size FOV the pathologist uses can’t cover 400
cells. The developed method expands the FOV to contain 400 cells if
the TMA core in total contains more than 400 cells. The FOV might be
expanded to include areas with higher density of negative cells. In this
case the score will be lower.

• Hottest hotspot not used - One other explanation is simply that the
pathologist didn’t score in the hottest hotspot. The hotspot is manually
selected by the pathologist and as found in [19] the hottest hotspot is only
selected as the hottest hotspot in 50 % of the cases.

7.4.2 Classification of patients based on Ki67 scores above
and below cut off value

Section 6.8 contained the results for classification of patients above the cut off
value of 14 % that will be treated with chemotherapy. 6 TMA cores weren’t
classified as the same based on the calculated scores and the pathologist scores.
4 of them weren’t classified as above the cut off value by the pathologist but were
classified as above based on the calculated score. 2 of them weren’t classified as
below the cut off value by the pathologist but was below in the calculated score.

A simple explanation why the 4 TMA cores weren’t classified as above cut off
by the pathologist and classified as above by the developed method is that the
pathologist scores might not be calculated in the hottest hotspot and therefore
the scores are lower. The size of the FOV might also have an impact on the
score.

The two cores classified as above the cut off value by the pathologist and below
by the method are cores with low density of cells across the whole core. If a fixed
size of FOV is used the score will be based on an significantly lower number of
cells than using the adjusted FOV as done in the developed method.
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7.4.3 Evaluation of the score results and the fitted regres-
sion models

The calculated Ki67 scores inside the hottest hotspot were generally 7 % higher
than the scores estimated by the pathologist. The pathologist scores were cal-
culated in a manual selected hotspot and as found in [19] the hottest hotspot is
only chosen in half of the cases. The explanation of why the pathologist scores
are lower might simply be that the hottest hotspot wasn’t chosen as the hotspot
and the scores are thereby lower than the calculated scores where an automatic
detection of the hottest hotspot was used.

It was also seen that the scores calculated in the second, third and fourth hottest
hotspot generally were closer to the pathologist scores with slopes of 1.02, 0.99
and 0.99 for the fitted models. This might also indicate that the second, third or
fourth hottest hotspot was used in the manual selection of the hottest hotspot.

The automatic detection of the hottest hotspot using the heatmap takes the cell
density into account which is a thing that can be difficult to interpret at the
manual selection.

The calculated ER scores had a few outliers which were the scores not being 0
and 100 %. The adjusting FOV was increased extremely for one core where the
cell density was low in the whole core except for one area with many negative
cells. The FOV was therefore increased in size and the large area of negative
cells was included which made the score lower than the score provided by the
pathologist.

The explanation for the overestimated scores could be the cell density in the im-
ages which made a manual hotspot detection of the hottest hotspot difficult and
therefore the pathologist scores might not be calculated in the hottest hotspot.



Chapter 8

Conclusion

A visualization of the heterogeneity described by the response to the two biomark-
ers Ki67 and ER was performed in the form of a heatmap. The heatmap made
it possible to get an idea of the individual tumor’s population of cells and was
used as a tool to find the hottest hotspot that should be used to calculate an
individual response score.

An automatic hotspot detection in the heatmap was made and two types of FOV
was used to calculate the score in. The FOV with adjusting size was chosen and
several regression models were fitted to the scores for investigation of difference
between the calculated scores and the pathologist scores.

No significant difference between the scores calculated in the hottest hotspot
with the generated heatmaps used as guidance and the pathologist scores could
be proven. The method might therefore be possible to use as an automatic
method of measuring a quantitative measure of the tumor heterogeneity based
on the nuclear population.
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Appendix A
Semivariogram function by

Allan Aabjerg Nielsen

function [sv]= semivariogram (X)

dist = pdist(X(: ,1:2));
pc = pdist (X(: ,3)).^2;
sv = nan(nlag +2 ,3);
idx = find(dist ==0);
sv (1 ,:) = [size(idx ,2) mean(dist(idx)) 0.5* mean(pc(idx))];
idx = find (0< dist & dist <=( lagdist /2));
sv (2 ,:) = [size(idx ,2) mean(dist(idx)) 0.5* mean(pc(idx))];

for ii =3:( nlag +2)
idx = find ((2*ii -5) *( lagdist /2) <dist & dist <=(2*ii -3) *(

lagdist /2));
sv(ii ,:) = [size(idx ,2) mean(dist(idx)) 0.5* mean(pc(idx))];
end

%Plot semivariogram
figure ; plot(sv (: ,2) ,sv (: ,3) ,’o’)
end
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Appendix B
Amount of tumor tissue in ER

and Ki67 stained images
separately

This appendix contains the distribution of the percentage of tumor tissue in all
Ki67 stained cores and all ER stained cores separately.

Figure B.1 shows the distribution for the Ki67 stained cores and figure B.2 for
the ER stained cores.
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Figure B.1: Distribution of percentage tumor tissue inside TMA core for Ki67
stained cores.
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Figure B.2: Distribution of percentage tumor tissue inside TMA core for ER
stained cores.



Appendix C
Regression model for Ki67

scores from the hottest
hotspot

This appendix contains the first fitted regression models y = βx+α and y = βx
for the Ki67 scores calculated in the hottest hotspot and some diagnostic plots
for the models.

Figure C.1 shows the fitted regression model y = βx + α and table C.1 shows
the test values of the slope and intercept of the model. Two t-tests, one for the
intercept (α) and one for the slope (β) of the model are performed to test for
significance for the model. The t-test of the intercept α with the hypothesis:

H0: α=0
H1: α 6= 0

and the t-test of the slope β with the hypothesis:

H0: β=0
H1: β 6= 0
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Figure C.1: The fitted regression model y = βx + α with 95 % confidence
bounds.

Estimate Std. Error t value Pr(>|t|)
Intercept (α) -0.93495 1.54675 -0.604 0.548
Slope (β) 1.14106 0.06082 18.760 <2e-16

Table C.1: Test for α and β’s significant in the regression model y = βx+ α.

Since the intercept wasn’t significant, the model was reduced to the model y =
βx.

Figure C.2 shows the fitted model y = βx and figure C.3 shows some diagnostic
plots for the model.

Table C.2 contain the test value for the t-test of the slope different from 0.
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Figure C.2: The fitted regression model y = βx with 95 % confidence bounds.

Estimate Std. Error t value Pr(>|t|)
Slope 1.11319 0.03842 28.98 <2e-16

Table C.2: Test for β’s significant in the regression model y = βx.
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Figure C.3: Diagnostic plot for the model: y = βx.

As it can be seen from the QQ-plot tales exist in each end which indicates that
the residuals aren’t normally distributed and the residual plot also shows an
increasing variance for higher score values. A transformation of the data was
therefore necessary and the obvious choice was a Log transformation of the data,
a regression model of the form Log(y)=βLog(x)+α.

The fitted Log model and its diagnostic plot can be found in appendix D.



Appendix D
Log model for Ki67 scores
from the hottest hotspot

This appendix contain the Log transformed model for the Ki67 scores calculated
at the hottest hotspot as a function of the pathologist scores.

Figure D.1 shows the fitted model and the transformed data and figure D.2
shows some diagnostic plots for the model.
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Figure D.1: Linear regression model Log(y)=βLog(x)+α.
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Figure D.2: Diagnostic plots for the model Log(y)=βLog(x)+α.

The increasing variance for higher scores are eliminated but the variance isn’t
constant and increasing for the low scores.
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Appendix E
Regression model for Ki67
scores outside the hottest

hotspot

This appendix contains the first fitted regression models y = βx+α and y = βx
for the Ki67 scores calculated randomly outside the hottest hotspot and some
diagnostic plots for the models.

Figure E.1 shows the fitted regression model y = βx+α and the table E.1 shows
the test values from the t-test of the slope and intercept in the model.
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Figure E.1: Linear regression model of form y = βx+α fitted to scores calcu-
lated outside the hottest hotspot as a function of the pathologist
scores.

Estimate Std. Error t value Pr(>|t|)
Intercept 0.45351 1.68108 0.27 0.788
Slope 0.85372 0.06615 12.90 <2e-16

Table E.1: Test for α and β’s significant in the regression model y = βx+ α.

The intercept wasn’t significantly different from 0 and the model was reduced
to y = βx. Figure E.2 shows the reduced fitted model and table E.2 contain the
test values for the slope (β) different from 0 in the model. Figure E.3 shows the
diagnostic plot for the model.
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Figure E.2: Linear regression model y = βx fitted to scores calculated outside
the hottest hotspot.

Estimate Std. Error t value Pr(>|t|)
Slope 0.86714 0.04323 20.06 <2e-16

Table E.2: Test for α’s significant in the regression model y = βx.
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Figure E.3: Diagnostic plot for the model y = βx.

As it can be seen from the QQ-plot tales exist in each end which indicates that
the residuals aren’t normally distributed and the residual plot also shows an
increasing variance for higher score values.
A transformation of the data was therefore necessary and the obvious choice was
a Log transformation of the data, a regression model of the form Log(y)=βLog(x)+α.
The fitted Log model and its diagnostic plot can be found in appendix F.



Appendix F
Log model for Ki67 scores

outside the hottest hotspot

This appendix contains the fitted log transformed model for the Ki67 scores
calculated randomly outside the hottest hotspot.

Figure F.1 shows the fitted model Log(y)=βLog(x)+α and table F.1 contains
the test value for the t-test of the slope and intercept different from 0.
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Figure F.1: Linear regression model Log(y)=βLog(x)+α.

Estimate Std. Error t value Pr(>|t|)
Intercept -0.39590 0.22747 -1.74 0.0878
Log(Slope) 1.05805 0.08197 12.91 <2e-16

Table F.1: Test for α and β’s significant in the regression model
Log(y)=βLog(x)+α

The intercept wasn’t significant for the model and a reduced model of the form
Log(y)=βLog(x) was fitted.

Figure F.2 shows the fitted model Log(y)=βLog(x) and table F.2 contains for
the test value of the slope in the model.

Figure F.3 shows the diagnostic plot for the model.



125

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Log(Pathologist score)

Lo
g(

C
al

cu
la

te
d 

sc
or

e)

0 1 2 3 4 5 6

0
1

2
3

4
5

6

95 % Confidence Limits
95 % Prediction Limits

Figure F.2: Linear regression model Log(y)=βLog(x).

Estimate Std. Error t value Pr(>|t|)
Log(Slope) 0.9230 0.0269 34.31 <2e-16

Table F.2: Test for α and β’s significant in the regression model.
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Figure F.3: Diagnostic plots for the linear regression model
Log(y)=βLog(x)+α.

The increasing variance for higher scores are eliminated but the variance isn’t
constant and high for the low scores.



Appendix G
Regression model for the ER

scores

This appendix contain the first fitted model to the ER scores of the form y = βx
+ α and the table for the test of the coefficients in the model.

Figure G.1 shows the fitted model and table G.1 contains the test values for the
t-test of the slope and intercept.

As it can be seen from the table the intercept isn’t significant for the model and
therefore the model was reduced as shown and described in section 6.10.
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Figure G.1: Linear regression model fitted to scores from method 1 as a func-
tion of the pathologist scores.

Estimate Std. Error t value Pr(>|t|)
Intercept 1.77435 1.54346 1.15 0.256
Slope 0.96866 0.01956 49.52 <2e-16

Table G.1: Test for α and β’s significant in the regression model y = βx + α.



Appendix H
Regression models for Ki67
scores in the second, third
and fourth hottest hotspot

This appendix contain the fitted models for the Ki67 scores calculated in the
second, third and fourth hottest hotspot.

Figure H.1 shows the fitted model with transformed data and the model trans-
formed to the original scale for the second hottest hotspot.
The diagnostic plot for the model can be seen on figure H.2.

Figure H.3 shows the fitted model with transformed data and the model trans-
formed to the original scale for the third hottest hotspot.
The diagnostic plot for the model can be seen on figure H.4.

Figure H.5 shows the fitted model with transformed data and the model trans-
formed to the original scale for the fourth hottest hotspot.
The diagnostic plot for the model can be seen on figure H.6.
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hotspot
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(a) The fitted model √
y = β

√
x for the scores calculated in the second hottest
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(b) The fitted model on (a) transformed to the original scale.

Figure H.1: (a) the fitted model √y = β
√
x and on (b) the fitted model

transformed to the original scale
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Figure H.2: Diagnostic plot for the model shown on H.1.
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(a) The fitted model √
y = β

√
x for the scores calculated in the third hottest

hotspot.
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(b) The fitted model on (a) transformed to the original scale.

Figure H.3: (a) the fitted model √y = β
√
x and on (b) the fitted model

transformed to the original scale
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Figure H.4: Diagnostic plot for the model shown on H.3.
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(a) The fitted model √
y = β

√
x for the scores calculated in the fourth hottest

hotspot.
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(b) The fitted model on (a) transformed to the original scale.

Figure H.5: (a) the fitted model √y = β
√
x and on (b) the fitted model

transformed to the original scale
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Figure H.6: Diagnostic plot for the model shown on H.5.
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