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Abstract

Background: New survival models based on Gaussian Processes (GP) and
Random Forests (RF) have been developed, and have shown good perfor-
mance in large cancer cohorts.
Purpose: To investigate if these new survival models can improve predic-
tion of 10 year recurrence in a pooled dataset of breast cancer patients.
Data Sources: Breast cancer patients collected by (Haibe-Kains et al. 2012)
Data Extraction: Patient clinical data and gene expression data from sev-
eral platforms were extracted. Clinical data, including receptor status, was
incomplete. Methods for inference of ER, HER2 and PgR receptor status
from gene expression data was developed. These methods work indepen-
denty of the gene expression platform. Recurrence predictors where ex-
tracted from expression data.
Results: A pilot study showed that RF survival had worse performance than
GP based models. RF survival was not investigated further. Area under
curve (AUC) scores for recurrence prediction in breast cancer patients was
calculated for the models Cox GP model (CoxGP) and Cox proportional
hazard (CoxPH). When appropriate, models were evaluated on dataset with
different number of covariates.
Limitations: The included data is a pooled dataset and may be skewed.
Conclusion: CoxGP models show better performance than CoxPH. It is
shown that addition of features extracted from gene expression data im-
prove prediction of 10 year recurrence in both CoxGP and CoxPH models.
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Chapter 1

Introduction

This project evaluates methods for survival analysis in breast cancer pa-
tients. Breast cancer is one of the most prevalent cancer types with more
than 200,000 incidences and nearly 40,000 deaths per year in USA 2013.
The incidence rate is the highest among cancer types in American women,
as shown in figure 1.1 (Desantis et al. 2013). Risk stratification of breast
cancer patients has traditionally relied on measurement of clinical markers
such as tumor size, histological grading, age etc. combined with pathological
markers such as presence or absence of estrogen receptor (ER), human epi-
dermal growth factor receptor 2 (HER2) and progesterone receptor (PgR)
in tumor tissue samples1 (Goldhirsch et al. 2013; Galea et al. 1992).

In 2001 Sørlie et al. 2001 published a micro array based method for clas-
sifying breast cancers into intrinsic subtypes named luminal A, luminal
B, HER2-enriched, and basal-like. These subtypes has been shown to add
prognostic value for prediction in breast cancer patients (Parker et al. 2009).
In 2002 Veer et al. 2002 published a 70-gene signature which classify pa-
tients as having good or bad recurrence risk. Since then a large number of
gene signatures for prognostication of breast cancer patients has been pub-
lished. The most prominent include OncotypeDX (Paik et al. 2004) and
MammaPrint (Veer et al. 2002; Vijver et al. 2002). OncotypeDX predicts
the risk of distant recurrence after 10 years in node negative, estrogen re-
ceptor positive patients. The prediction is based on a 21-gene signature.

1In this text all of the above mentioned features are called clinical features to dis-
tinguish them from features based on genomic data
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1. Introduction

Figure 1.1: The ten leading cancer types by gender in USA 2013 (De-
santis et al. 2013)

MammaPrint predicts 5-year metastatic recurrence risk as good or bad by
using the expression of 70 genes (Veer et al. 2002; Vijver et al. 2002). A
review of these and other methods is available in Marchionni et al. 2008.

This project investigates how clinical and genomic features can be combined
for survival analysis in breast cancer patients. Typically survival has been
modeled using the Cox proportional hazard model (CoxPH), but this model
comes with rather strong assumptions. Recently several new models based
on Gaussian processes (GP) and random forests (RF) have been developed
(Joensuu et al. 2012; Ishwaran et al. 2008). A recent paper by Joensuu et al.
2012 successfully uses GP based survival models to model recurrence risk
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in gastrointestinal stromal tumor patients. We use the same approach for
breast cancer patients. The new models are compared to classical models
and evaluated by their ability to model survival in breast cancer patients.

1.1 Project Proposal

Micro array data and clinical data of breast cancer patients will be col-
lected from public available databases. The recurrence free survival time of
breast cancer patients is modeled using the methods introduced by Joensuu
et al. 2012 and Ishwaran et al. 2008, these new models will be compared
to CoxPH, Nottingham prognostic index (NPI) and St. Gallen consensus
criteria (STG), the latter two being risk stratification schemes for breast
cancer patients (Goldhirsch et al. 2013; Galea et al. 1992).

A baseline model will be established by modeling recurrence using clinical
markers, i.e. age, histological grade, tumor size, treatment status. These
models will then be expanded with tumor receptor status and lastly we will
investigate the effect of adding features derived from micro arrays.

Several problems need to be resolved during the project. Several of the
datasets do not include tumor receptor status. It is possible to infer the
receptor status from micro array data, but current methods rely on specific
Affymetrix probes2 which are not available in a pooled dataset. The prob-
lem is further complicated by the fact that data is included from studies
using several different platforms. Current methods for receptor inference
are typically developed using a single platform and the performance using
other platforms is not known. We develop methods for inference of recep-
tors status that are independent of the micro array platform.

A number of different features, derived from micro array data, have been
published. These generally suffer from the same problems as mentioned
above. It needs to be investigated whether current features can be general-
ized to other platforms than the ones they where developed on.

2Affymetrix is the producer of one of the major platforms for micro array measure-
ments.
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1.2 Project Outline

The following is a brief outline of this report and the project in general.
The project commenced with data collection. To limit the complexity of the
project data was collected from a patient repository created by Haibe-Kains
et al. 2012 which includes most breast cancer data with micro array data
up to 2012. A pilot study additionally included data from the METABRIC
study (Curtis et al. 2012). The METABRIC data was not included in the
final evaluation because we did not gain access to the micro array data until
late in the project. The included data is described in section 2.9.

The used survival models, GP based, random survival forest, Cox pro-
portional hazard, Nottingham prognostic index and St. Gallen consensus
criteria are described in section 2.1. Gaussian process based and Random
survival forest (RSF) methods, are computationally intensive, especially
combined with cross validation, feature selection and optimization of hy-
per parameters. A pilot study was used to determine which survival model
that should be evaluated. The pilot study showed that the GP based models
generally performed better or on par with RSF based models. To limit the
computational requirements further investigations where therefore limited
to GP based survival models. A detailed description of the pilot study is
given in section 2.10.

To investigate the effect of different features the survival models were eval-
uated using different datasets:

• A baseline model including only clinical data (tumor size, his-
tology, age, treatment status, nodal involvement)

• a model which additionally adds tumor receptor status (ER,
HER2, PgR)

• a model which additionally adds features derived from micro
array data, e.g. prediction of survival time from micro array
data.

The different datasets are described in section 2.11 and the included covari-
ates are presented in section 2.9.

A method called top scoring pairs (TSP) was used for inference of tumor
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1.2. Project Outline

receptor status, the method is described in section 2.7.2. This section also
describes previously developed methods for receptor inference, which are
based on Gaussian mixture models. These mixture based models generally
performed poorly on the data used in this project, probably because they
where developed on a single platform and the data in this study comes from
several platforms. The TSP method alleviate some of the problems by being
a gene expression rank based methods which makes it invariant to (most)
scaling and normalization problems. The results of receptor inference are
presented in 3.1.

Inclusion of features derived from micro array data proved to be more
difficult than expected. The main problem was that currently published
features are based on specific Affymetrix probes which are difficult to map
to Entrez gene ID’s. Micro array derived features are described in section
2.8.

The included models are described in section 2.1 to section 2.5, and the
performance of the evaluated models is presented in section 3.3. The report
concludes with a discussion of the obtained results in chapter 4.

The project strives to be fully reproducible. Except for the pilot study,
the code for reproducing the results, figures and tables is provided. A de-
tailed description of the code is given in section 2.12.
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Chapter 2

Methods

2.1 Survival Models

The following sections briefly explain survival analysis, the format of sur-
vival data, the likelihood function and methods for modeling survival times.
Survival analysis is presented in section 2.1.1. Survival data is often given
as right-censored data, this data type is described in section 2.1.2. The
likelihood function, used for fitting parameters in a statistical model, is
presented in section 2.1.3. Section 2.2 explains the CoxPH model which is
a commonly used survival model (Cox 1972). Section 2.3 describes survival
models based on GP’s and section 2.4 describes survival models based on
random forests. Lastly NPI and STG models are described in section 2.5.

2.1.1 Survival Analysis

Survival analysis is the analysis of time-to-event data. We assume that the
survival time T is a random variable representing the survival time. T is
defined in the interval [0,∞). Let f (t) be the probability density function
for T , see figure 2.1 (left panel). F(t) is the cumulative distribution function
of f (t), defined in equation 2.1. F(t) gives the probability that T is less than
or equal to t.

In survival analysis we are typically interested in the probability that an
event did not happen before t, this is called the survival function and is
defined in equation 2.2. The survival function gives the probability that

9



2. Methods

T is strictly greather than t. Figure 2.1 (middle panel) shows a survival
function. S(t) is a monotone decreasing function and S(0) = 1 and S(∞) = 0.

The hazard function, h(t), is defined in equation 2.3. It is defined as the
instantaneous rate of occurrence at time t, given that no event occurred
for the individual up to time t. Figure 2.1 (right panel) shows an example
of a hazard function. h(t) is not a probability because we divide the nu-
merator by ∆t and h(t) may then be larger than 1 which is not allowed for
probabilities.

F(t) = P (T ≤ t) =
∫ t

0
f (u)du (2.1)

S(t) = 1−F(t) = P (T > t) =
∫ ∞
t
f (u)du (2.2)

h(t) = lim
∆t→0

P (t ≤ T < t +∆t|T ≥ t)
∆t

=
f (t)
S(t)

(2.3)

In the remaining part of this section we will derive some relationships be-
tween f (t), F(t), S(t) and h(t), which are mathematically equivalent de-
scriptions of the random variable T . First we derive the last equality in
equation 2.3. In equation 2.3 we use the product rule of probability1 to
rewrite the equation to:

h(t) = lim
∆t→0

P (t ≤ T < t +∆t,T > t)
P (T > t)∆t

. (2.4)

From equation 2.2 we have that the denominator can be rewritten as S(t)∆t.
The numerator can be simplified by noting that t ≤ T < t +∆t is a subset
of T > t, see figure 2.2. We can then simplify the numerator to P (t ≤ T <
t +∆t). Rewriting equation 2.4 we get

h(t) = lim
∆t→0

P (t ≤ T < t +∆t)
∆t

1
S(t)

. (2.5)

The numerator can now be rewritten into two the difference between the
probabilities P (T ≤ t +∆t) and P (t ≤ T ), which corresponds to the cumula-
tive distribution functions F(t +∆t) and F(t). Inserting this into equation

1p(Y |X) = p(Y ,X)
p(X)
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Figure 2.1: Left panel: Example probability density function for T ,
middle panel: Survival function, right panel: Hazard function.

2.5 the first fraction on the right hand side becomes a derivative which can
be solved2

h(t) = lim
∆t→0

P (T ≤ t +∆t)− P (t ≤ T )
∆t

1
S(t)

(2.6)

= lim
∆t→0

F(t +∆t)−F(t)
∆t

1
S(t)

=
f (t)
S(t)

.

Equation 2.6 proves that the relationship given in equation 2.3 is correct.
Equation 2.7 show the relationship between f (t) and S(t):

f (t) = − d
dt
S(t) = − d

dt
[1−F(t)] = −[−f (t)] = f (t) (2.7)

2f ′(a) = lim
h→0

f (a+h)−f (a)
h
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t t + Δt

T > t

t < T ≤ t + Δt 

Figure 2.2: Shows that t ≤ T < t +∆t is a subset of T > t. A filled dot
includes the point in the set, a not filled dot does not include the point
in the set.

The relationship between S(t) and h(t) is given in equation 2.8. A rela-
tionship between f (t) and h(t) can be found by integrating booth sides of
equation 2.8 to get equation 2.9.

h(t) = − d
dt

ln[S(t)] (2.8)

h(t) = − d
dt

ln[S(t)]⇔−
∫ t

0
h(u)du = ln[S(t)]⇔ (2.9)

S(t) = exp
[
−
∫ t

0
h(u)du

]
⇔ f (t) = h(t)exp

[
−
∫ t

0
h(u)du

]
We can prove equation 2.8 by using the derivative of ln (eq. 2.10) and the
chain rule of differentiation (eq. 2.11). In equation 2.12 we use equation
2.11 with S(t) substituted for u and insert the derivative of ln(S(t)) from

equation 2.10. Equation 2.12 can then be solved to
f (t)
S(t) which by equation

2.3 is equal to h(t).

d
du

ln(u) =
1
u

(2.10)

d
dt

ln(u) =
d ln(u)
du

du
dt

=
1
u
du
dt

(2.11)

h(t) = − d
dt

ln(S(t)) = − 1
S(t)

dS(t)
dt

=
f (t)
S(t)

= h(t) (2.12)

2.1.2 Right-censored Data

For right-censored data we do not know the exact outcome for all samples,
but only that the survival time exceeds some value c or that an event have

12
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Right censored patient

Not right censored patient

Time

Study start Last Follow-up

Patient event (t)
Follow-up (c)

Death ?

Figure 2.3: Explanation of right-censored data. For the right-censored
patient t > c and we do not know the exact survival time for the patient.
For the not right-censored patient t ≤ c and the exact survival time is
known.

occurred (e.g. relapse, death, failure etc.). A patient is right-censored if
the study ends before the patient has an event. Figure 2.3 explains right-
censoring. In the figure the not right-censored patient dies before the last
follow-up and the exact survival time is known. For the right-censored
patient we do only know that her survival time exceed the last follow-up but
the exact survival time is unknown. Let ci be the last follow-up for patient
i and ti be the time of death for patient i. Patient i is right-censored if
ti > ci , if ti ≤ ci the patient is not right-censored.

2.1.3 Likelihood in Survival Analysis

Likelihood functions are used for fitting the parameters in statistical models.
The likelihood function is a function of the parameters in the statistical
model it is defined as

L(β|X,y) = P (y|β,X). (2.13)

X is the covariates and y is the observed outcomes. The likelihood function
is typically viewed as function of the parameters β3. We now define the
likelihood function for survival models. For survival analysis using right-
censored data two cases exists: a) the patient has an event before censoring
in which case we know the exact survival time of the patient. In case b)
the patient does not have an event before censoring, in which case we only

3A more indebt description of likelihood functions is available at: http://cs229.

stanford.edu/notes/cs229-notes1.pdf
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know that the survival time exceeds the censoring time, but we do not the
exact time to event. Before the likelihood is defined note that equation 2.3
can be rewritten as:

h(t) =
f (t)
S(t)
⇔ f (t) = h(t)S(t) (2.14)

In case a we use equation 2.13 and equation 2.14 to write the likelihood
contribution of individual i. Individual i has survival time ti which is the
probability density at time ti . Using this we write the likelihood as

Li = f (ti) = S(ti)f (ti) (Not censored). (2.15)

In case b we know that the survival time exceeds the censoring time, which
is equal to S(t) by definition. The likelihood contribution is then

Li = S(ti) (Censored). (2.16)

We combine equation 2.15 and equation 2.16 into a single expression by
introducing a right-censoring indicator δ. δi is 1 if sample i is right-censored
and 0 otherwise. Using the censoring indicator we can combine equation
2.15 and equation 2.16 into a likelihood for a single sample as shown in
equation 2.17 and for all n samples as shown in equation 2.18.

Li = h(ti)
1−δiS(ti) (2.17)

L =
n∏
i=1

Li =
n∏
i=1

h(ti)
1−δiS(ti) (2.18)

2.2 Cox Proportional Hazard Model

The CoxPH model is a model that handles right-censored data. We will
not go into detail about the CoxPH models, but only specify the model and
briefly discuss the proportional hazard assumption. An in depth description
of CoxPH models can be found in Cox 1972. For a single individual i the
CoxPH model is defined as:

h(t|xi) = h0(t) · exp(xi · β) (2.19)

The CoxPH models gives the hazard at time t for patient i with covariates
xi . β is the regression coefficients of the model. h0 is the baseline hazard
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function, which is equal to the hazard function for patients with covariates
all 0. Using the relationships between h(t), S(t) etc. we can get the sur-
vival function from the hazard defined in equation 2.19. The CoxPH model
assumes that the baseline hazard is independent of the covariates, and the
exponential part is independent of t. In the basic CoxPH model all covari-
ates have multiplicative effect and no interaction occurs.

We now explain the“proportional hazard”assumption in the CoxPH model.
First we define the hazard ratio (HR) between the individual or groups i
and j as:

HR =
h(t|xi)
h(t|xj)

=
h0(t) · exp(xi · β)
h0(t) · exp(xj · β)

= exp(xi − xj)β. (2.20)

The CoxPH model assumes that the hazard ratio between groups is constant
over time, i.e. the hazard ratio is independent of time. This follows from the
right hand side of equation 2.20 which does only depends on the difference
in covariates between group i and j. We can reformulate equation 2.20 as

θ =
h(t|xi)
h(t|xj)

⇔ h(t,xi) = θ · h(t,xj), (2.21)

where θ is equal to the hazard ratio, which is constant over time between
any two groups. Equation 2.21 shows that the hazard function for any group
can be calculated as some constant, θ, times the hazard function for an-
other group, i.e. the hazard functions between groups are proportional. The
proportional hazard assumption is not met if the hazards between groups
change over time. An example of this is surgical intervention where the in-
tervention group have high hazard after surgery but low long time hazard.
For the non-intervention group the short term risk is low but may rise with
time.

The parameters in the CoxPH models, β, can be found by partial likelihood
optimization, partial because the likelihood does only explicitly considered
non-censored samples. Refer to Cox 1972 or Ibrahim, Chen, and Sinha
2001 for an indebt description of partial likelihood for CoxPH models. The
likelihood can be written as

P L(β|D) =
n∏
i=1

 exp(x′iβ)∑
l∈Ri exp(xlβ)

1−δi , (2.22)
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n is the number of samples and δi is 1 if patient i is right censored and 0
otherwise (Ibrahim, Chen, and Sinha 2001, p. 16).

2.3 Gaussian Process Based Survival Models

The GP based survival models used here where introduced in Joensuu et al.
2012 and are implemented in the MATLAB package gpstuff (Vanhatalo
et al. 2013). The section assumes basic familiarity with GP processes. A
short description of GP’s are available in the appendix 5.3, p. 86 for a
comprehensive description refer to Rasmussen and Williams 2006 available
at: http://www.gaussianprocess.org/gpml/chapters/RW.pdf.

The CoxPH model in equation 2.19 is extended by replacing the linear
predictor xiβ with ηi(xi), η being a GP. The extended model for the hazard
rate for sample i is

hi(t) = exp(log(h0(t)) + ηi(xi)). (2.23)

The GP over η = (η1, ...ηn)T is defined as

p(η|X) =N (0,C(X,X)), (2.24)

where X is the matrix of covariates for all n samples and C is a covariance
function which will be defined later. We further assume that the baseline
hazard is piecewise constant as shown in figure 2.4. The hazard function
is divided into K equal length intervals with cut points: 0 = s0 < s1... < sK
where sk > yi∀i = 1, ...,n. Using the piecewise linear assumption the baseline
hazard can be written as shown in equation 2.25 and equation 2.26 which
is ln of the former.

h0(t) = λk f or t ∈ (sk−1, sk] (2.25)

fk = ln(λk) f or t ∈ (sk−1, sk] (2.26)

A second GP is placed on f = (f1, ..., fK )T and equation 2.23 can be written
as

hi(t) = exp(fk + ηi(xi)) , t ∈ (sk−1, sk]. (2.27)

The GP over f has the form

p(f|τ) =N (0,Cτ(τ,τ)), (2.28)
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Figure 2.4: Hazard function with piecewise constant approximation
overlaid.

here τ = (τ1, ...τK ) is the vector of mean values of the K intervals that the
hazard function is divided into and Cτ is the covariance function for f.

The likelihood for equation 2.27 can be found by substituting the hazard
rate into equation 2.17 and remembering the relationship between h(t) and
S(t) given in equation 2.9. This then gives the likelihood of a single sample
as

Li = hi(ti)
1−δi exp

(
−
∫ ti

0
hi(u)du

)
. (2.29)

Substituting the definition of the Cox GP hazard function into equation
2.29 the likelihood of sample i can be written as

Li =
[
λk exp(ηi)

]1−δi exp
−[(ti − sk−1)λk +

k−1∑
g=1

(sg − sg−1λg)]exp(ηi)

 .
(2.30)

2.3.1 Covariance Functions

A GP is an interpolator, i.e. for data points that are similar we make
similar predictions. In a GP we define similar via the covariance function.
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A covariance function is a function that takes two data points as input
and outputs the similarity. A popular covariance function is the squared
exponential defined as

k(xi ,xj) = σ
2
exp

−12
d∑
k=1

(xi,k − xj,k)2

l2k

 . (2.31)

Here xi and xj is the vector of covariates for sample i and sample j. The
length of xi and xj is d. In the squared exponential covariance function
σ2exp and l are considered hyper parameters. The task of learning in a
GP is to tune the hyper parameters and choose an appropriate covariance
function. Changing the hyper parameters will give the function different
characteristics. lk, the length scale in dimension k, determines the correla-
tion scale in this dimension. A small value for l will make the predictions
dependent on nearby points whereas a larger value will put more weight on
far away data points. σ2exp is determines the overall variability of the GP4.

In this project a number of different covariance function were explored,
among others squared exponential, Matern, Linear and Neural Network
kernels. Experiments with different combinations of the above mentioned
covariance functions where also performed. The choice of kernel function
generally had minor impact on the performance of the GP models, but
a combination of neural network kernel and constant kernel consistently
showed good performance. Neural Network combined with constant kernel
was used for booth the baseline hazard, f, and the latent predictors (η) in
the GP model.

2.3.1.1 Constant Kernel

Constant covariance kernel:

kCON(xi ,xj) = σ (2.32)

4http://skaae.shinyapps.io/test_project/ lets you play with the hyper param-
eters. The example is also available at https://github.com/skaae/GP_shiny/ with
instruction on how to run the example locally.
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2.4. Random Survival Forest

2.3.1.2 Neural Network Kernel

The neural network covariance function has the form:

KNN(xi ,xj) =
2
π
sin−1

 2x̃iTΣx̃j√
(2x̃Ti Σx̃j) · (2x̃

T
i Σx̃j)

.

 (2.33)

x̃ is the vector of covariates augmented with 1, i.e. (1,x1, ...,xd) and Σ is
diag(σ )

2.3.2 GP Tuning of Hyper Parameters

A GP model has a varying number of hyper parameters depending on the
choice of covariance function. These hyper-parameters needs to optimized.
Hyper parameters were optimized by maximizing the marginal likelihood.
The marginal likelihood is the probability that the models assigns to the cor-
rect target given the covariates, i.e. p(y|X). For non-Gaussian observation
models the marginal likelihood was optimized using Laplace approximation
(Rasmussen and Williams 2006).

2.4 Random Survival Forest

Random survival forests are survival models based on random forests (Ish-
waran et al. 2008; Breiman 2001). This section assumes that the reader
has basic familiarity with random forests. Section 2.4.1 to section 2.4.3
describes Random Survival forest, the hazard function and tuning of hyper
parameters.

2.4.1 Random Survival Forests

When a RSF is grown the following procedure is used:

1. Draw B bootstrap samples from the original data. Note that
each bootstrap sample excludes on average 37% of the data,
called out-of-bag data (OOB data).

2. Grow a survival tree for each bootstrap sample. At each node
of the tree, randomly select p, candidate variables. The node is

19



2. Methods

split using the candidate variable that maximizes survival differ-
ence between daughter nodes.

3. Grow the tree to full size under the constraint that a terminal
node should have no less than d0 > 0 unique deaths.

4. Calculate a Cumulative Hazard Function (CHF) for each tree.
Average to obtain the ensemble cumulative hazard function.

5. Using OOB data, calculate prediction error for the ensemble
CHF. (Ishwaran et al. 2008)5

For clarification a bootstrap dataset of size n is constructed by drawing n
samples with replacement from the original dataset. Candidate variables,
p, mentioned in point 2, are covariates to be considered for splitting at each
node in the tree. When the tree is grown, each node will split the dataset
such that its daughters will have the largest possible difference in survival
time. That is at each node we push dissimilar cases apart. The tree is grown
until each terminal node has at least d0 unique deaths. That is if we drop
the bootstrap data (training data) down the tree each terminal node will
have at least d0 unique deaths. Figure 2.5 shows an example of a single tree.

Hyper parameters in the RSF is candidate features at each split, p, the
number of unique deaths in each node, d0, the number of trees in the forest.
Lastly the number of splitting points to be considered for each candidate
variable is a hyper parameter, i.e. when we try to push dissimilar cases
apart how many threshold values should we try for each of the considered
covariates.

2.4.2 Cumulative Hazard Function

For each terminal node a cumulative Hazard Function (CHF) is predicted.
All cases in a specific terminal node share CHF. The CHF estimate (Ĥh(t))

5The description is a quote from (Ishwaran et al. 2008)
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ER > 0 Grade < 2

TRUE

TRUE FALSE

FALSE

TRUE FALSE

Terminal nodes
Node split

Size > 5 cm

CHF 1 CHF 2 CHF 3 CHF 4

Figure 2.5: An example tree constructed from a bootstrap dataset. At
each node split p covariates are considered for pushing samples apart.
For each considered covariate the number of considered thresholds val-
ues, e.g. tumor size > 5 cm, is a hyper parameter. The tree is grown
such that when all samples are dropped down the tree at least d0 unique
samples end in each terminal node. For each terminal node a Cumulative
Hazard Function (CHF) is constructed.

at terminal node h in a single tree is:

Ĥh =
tN (h),h∑
l=t1,h

dl,h
Yl,h

(2.34)

Yl,h : Number of individuals at risk at tl,h
dl,h : Number of deaths at tl,h

t1,h < t2,h, ..., tN (h),h are the distinct event times at terminal node h. To get
the CHF estimate of individual i, with covariates xi , drop xi through the
tree. The individual will end in some terminal node h. h’s CHF is the
estimated CHF.

As in random forest an ensemble of trees is trained, each using a differ-
ent bootstrap dataset and different candidate features at the node split.
Equation 2.34 is the CHF estimate for a single tree. For the ensemble we
can either estimate the OOB CHF or the bootstrap CHF. HOOB is the av-
erage over all predicted CHF’s for which individual i is OOB, as shown in
equation 2.35. The bootstrap estimate of the CHF is simply the average
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CHF over all B trees, shown in equation 2.36.

HOOB =

∑B
b=1 Ii,bH

∗
b∑B

b=1 Ii,b
(2.35)

HBOOTSTRAP =
1
B

B∑
b=1

H ∗b (2.36)

H ∗b : CHF from bootstrap tree b

B : Number of bootstrap trees

Ii,b : 1 if individual i is OOB for tree b else 0

Empirical evaluation of Random survival forest by Ishwaran et al. 2008 sug-
gests that the method is insensitive to noise variables e.g. features with no
information. This makes the method a good candidate for trying different
genetic measures as predictors of survival.

2.4.3 RF Tuning of Hyper Parameters

The R package RandomSurvialSRC was used to grow the forest (Ishwaran
and Kogalur 2013). The forest consisted of 1000 trees. The minimum ter-
minal node size, number of candidate features at splits and the number of
splitting points for each features were considered hyper parameters. Mini-
mum terminal node size, candidate features at splits and number of splitting
points where optimized using grid search, the values 1,3,5,10, 1,3,5,10,50
and 0,1,3,106 were searched respectively. OOB error rate was used as
criteria for selecting the best model.

2.5 Nottingham Prognostic Index and St. Gallen

Nottingham Prognostic Index (NPI) and St. Gallen consensus criteria
(STG) are guidelines for stratification of breast cancer patients (Galea et al.
1992; Goldhirsch et al. 2003). NPI is described in section 2.5.1 and STG
in section 2.5.2. NPI and STG are both designed to evaluate patient sur-
vival and not recurrence risk. Comparison of NPI and STG to models that

60 means all possible split are tried, see help for rfsrc package
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are specifically trained for prediction of recurrence is therefore unfair. Per-
formance of STG and NPI was used because no other widely used models
where identified in the literature.

2.5.1 Nottingham Prognostic Index

The Nottingham prognostic index (NPI) predicts 15 years survival in breast
cancer patients of age up to 70 at time of diagnosis. The NPI is defined in
equation 2.37. Using equation 2.37 the NPI score is calculated which can
then be translated to a risk group by using table 2.1.

NPI = [Size (cm)]× 0.2+ (2.37)

[Nodes (lymph nodes, 1-3 by level)]+
[Grade (1-3: good, moderate, poor)]

Risk Score

Good <3.4
Intermediate [3.4-5.4]
Poor >5.4

Table 2.1: NPI score classification (Galea et al. 1992)

.

2.5.2 St. Gallen Consensus

STG is based on the covariates tumor size, histological grade, nodal in-
volvement, her2 status, age and vascular invasion. STG groups patients in
the risk groups low, intermediate and high risk (Goldhirsch et al. 2003).
Vascular invasion was not available for any patients in the data used in
this project. The status was randomly sampled; this may have impaired
the performance of STG. The status of vascular invasion may switch the
prediction from low to intermediate risk or vice versa.
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2.6 Model Evaluation

All models that needed training were trained on a training set and tested
on a separate test set. In the pilot study, see section 2.10, 5-fold nested
cross validation was used as shown in figure 2.6. The pilot study combined
this with forward feature selection7. Cross validation and feature selection
was not used in the full study because of the computational requirements.

The survival models were evaluated using area under the ROC curve (AUC)
and Receiver Operating Characteristics (ROC) described in section 2.6.2
and 2.6.1. Binary classification methods, e.g. receptor inference and 10
year survival prediction, were evaluated using accuracy.

Held out 
test set

Training set
optimized
with 5 fold 
CV

Figure 2.6: Data was partitioned with 33% in the test set and 66% in
the training set. In the pilot study the best performance on the training
set was found using 5-fold cross validation.

2.6.1 Receiver Operating Characteristic

For a binary classifier the ROC curve is created by calculating the true
positive rate and false positive rate at varying discrimination thresholds, see
figure 2.7. If one has a high threshold value no positives will be predicted
and the true positive rate (tpr) and false positive rate (fpr) will both be 0.
As the threshold is lowered all samples will at some point be predicted to
be positive and the true positive rate and false positive rate will both be 1.

7A short description of forward feature selection by Andrew Ng is available at http:
//cs229.stanford.edu/notes/cs229-notes5.pdf
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2.6. Model Evaluation

As shown in figure 2.7 the best classifier will have a ROC curve closer to the
top-left corner. A model with random predictions will have a ROC curve
that is a straight line from the bottom-left corner to the top-right corner
equal to f pr = tpr.
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Figure 2.7: Graphical presentation of ROC curves. The line true positive
rate = false positive rate is equal to random performance and an AUC
of 50%.

2.6.2 Area Under the ROC Curve

The definition of AUC follows Chambless, Cummiskey, and Cui 2011. The
AUC is related to the receiver operating characteristic (ROC) curve. The
ROC curve plots tpr vs. fpr, the AUC is the area under this curve.

The AUC can be shown to measure the probability of a person having
and event is assigned greater risk than a person that did not have an event,
formally that is:

AUC = P (Zi > Zj |Di = 0,Dj = 1), (2.38)
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where Zi and Zj are risk scores and Di and Dj indicate events, 0 means

event and 1 means no event.8

AUC can be used on survival data with:

AUC(t) = P (Zi > Zj |D(t)i = 0,D(t)j = 1) (2.39)

(Chambless, Cummiskey, and Cui 2011),

here AUC(t) is the AUC evaluated at time t, and Di(t) and Dj(t) indicate
events at time t, 0 means event and 1 means no event at time t. The AUC
score ranges from 1 to 0.5. With 1 being perfect prediction and 0.5 being
random prediction.

2.7 Inference of Receptor Status

Many of the patients included in the study does not have receptor status
measured, this can be seen in table 2.5 p. 35. To solve this it was in-
vestigated how receptor status could be inferred from micro array data.
Two methods for receptor inference were investigated. The first methods is
an unsupervised method based on Gaussian mixtures, explained in section
2.7.1. The second method is an supervised method based on relative gene
expression of a varying number of genes, this is explained in section 2.7.2.

2.7.1 Inference of Receptors by Gaussian Mixtures

The Gaussian mixture approach assumes that expression of receptors can
be inferred from the expression of a single gene (Lehmann et al. 2011). Karn
et al. 2010 used a similar approach as (Lehmann et al. 2011). In a meta-
study they collected 3,030 Affymetrix U133A micro arrays. They used the
following probes to represent receptor status:

• ER: Affymetrix probe 205225_at (gene name: Estrogen Recep-
tor 1, entrez: 2099)

• HER2: Affymetrix probe 216836_s_at (gene name: v-erb-b2
erythroblastic leukemia viral oncogene homolog 2, entrez: 2064)

8D is specified different than in (Chambless, Cummiskey, and Cui 2011) to follow
the convention used in the MATLAB code.

26



2.7. Inference of Receptor Status

• PgR: Affymetrix probe 208305_at (gene name: Progesterone
Receptor, entrez: 5241)

For each of the genes a bi-modal Gaussian mixture was fitted using max-
imum likelihood, the technique is illustrated in figure 2.8. Each sample
is assumed to have the receptor expressed if the expression value lies, with
highest probability, in the Gaussian component with the highest mean value.
Using this method Karn et al. 2010 obtained accuracies 91.6%, 89.2%, and
71.8% for ER, HER2 and PGR respectively. These accuracies where ob-
tained by pooling the data from all the included studies. We investigated
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Figure 2.8: Example of Gaussian mixture model. Expression value den-
sities are shown as grey bars. The fitted Gaussian are shown in blue
(HER2 negative) and red (HER2 positive). Adapted from (Karn et al.
2010).

if the method used by (Karn et al. 2010) was feasible for multiplatform
data. A bi-modal Gaussian mixture was fitted to each of the datasets in
Haibe-Kains et al. 2012. We used the R package mclust9 for fitting the Gaus-
sian mixtures. Karn et al. 2010 represent the receptors with probes, which
is possible because the study only include a single platform, Affymetrix

9http://cran.r-project.org/web/packages/mclust/
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HG U133A. The data from (Haibe-Kains et al. 2012) includes several plat-
forms. Probes were translated to entrez gene ID’s. The probes repre-
senting the receptors were mapped to entrez ID’s (ER:2099, HER2:2064,
PgR:5241). To ensure that mixture 1 would have the lowest mean and mix-
ture 2 would have the highest mean a small prior was but on the mean of
each cluster. The prior on the mixture means were 0.9 ·mean(expression)
and 1.1 ·mean(expression). The constants where arbitrarily chosen.

The results of fitting bi-modal Gaussians can be seen in section 3.1.1 page
51.

2.7.2 Inference of Receptors by Relative Expression

The following sections describe the top scoring pair (TSP) classifier based
on relative gene expression (Geman et al. 2004; Tan et al. 2005). The TSP
is based on the expression rank for each gene, not the absolute expression
value, as such the method is invariant to most normalization and scaling
and comparisons across different platforms are easily performed.

2.7.2.1 Top Scoring Pair Classifier

Marchionni et al. 2013 recently demonstrated the effectiveness of using a
TSP for prediction of prognosis in breast cancer patients. The TSP has pre-
viously been used to predict ER and BRCA1 status in breast cancer patients
(Lin et al. 2009) and for prediction in other types of cancers, See (Eddy et
al. 2010). The TSP algorithm works by identifying gene pairs whose expres-
sion rank most consistently change between classifications groups. A typical
scenario is that one of the genes in a gene pair varies while the other gene
is some household gene with relatively constant expression. An example is
given in figure 2.9 which show that the expression of entrez ID 2099 vary
while the expression of 4953 is relatively constant. The TSP was introduced
using a single gene pair. The TSP can be extended to include k gene pairs,
here called a k-TSP. For training the k-TSP we follow the procedure used
by Marchionni et al. 2013:

1. train a TSP

2. remove the genes in the gene pair from the training data

3. repeat 1 and 2 k times
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Figure 2.9: Shows patients from the VDX study. Patients are measured
to be either ER positives (right of vertical line) or ER negatives (left
of vertical line). Expression values of the entrez ids 2099 and 4953 are
plotted. The figure illustrates that a gene pair is often composed of
varying gene (2099) compared to a gene with more constant expression
(4953).

The output from a k-TSP will be a binary matrix of size k by number of
samples. Using this matrix the final prediction can be obtained be e.g.
majority vote or a threshold value.

2.7.2.2 Training the Top Scoring Pair Classifier

Several implementation of the TSP classifier exists for MATLAB and R
(Leek 2009; Magis et al. 2011; Marchionni et al. 2013). We use R code based
on the SwitchBox R package10. The code used for training the k-TSP’s in

10code available at http://astor.som.jhmi.edu/~marchion/software
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this project is available in the R package ktsp11, refer to section 2.12 for fur-
ther details. Training and test set for the receptors ER, HER2 and PgR was
extracted from the data available in (Haibe-Kains et al. 2012). Exact set-
tings for extraction of datasets can be seen in the R package datathesis12

help files for er-random, her2-random and pgr-random. For each receptor
we extracted samples with the receptor status measured with either im-
munohistochemistry (IHC) or FISH. For all receptors 50% of the data was
randomly assigned to the test set. For each receptor we identified the 50
TSP’s. Using 5-fold cross validation the optimal number of pairs, k, was
chosen. At each number of pairs all possible threshold values were tested
using cross validation. Using the identified k a k-TSP was trained using
the entire training set. Finally the prediction accuracy was evaluated at
the test set. Missing expression values where imputed using KNN impute
from the R impute package (impute: impute: Imputation for microarray
data). The number of clusters was set to 10 and other settings where left
at default values. For all receptor inference, the following platforms were
included: agilent, affy, affy.u95, agilent99. Table 2.2 shows the available
data for training and testing the k-TSP’s. Section 3.1.2 presents the results
of receptor inference by k-TSP.

Table 2.2: Patients available for training and testing the k-TSP for
prediction of status of different receptors.

Available Negatives Positives

ER 4084 1127 2957
HER2 1350 980 370

PgR 2100 878 1222

2.8 Microarray Derived Features

Several micro array derived features have been used for predicting recur-
rence risk in breast cancer patients, among others:

1. PAM50 (Parker et al. 2009)

11ktsp code available at: https://bitbucket.org/skaae/ktsp
12datathesis code available at: https://bitbucket.org/skaae/datathesis
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2. OncotypeDX (Paik et al. 2004)

3. MammaPrint (Veer et al. 2002)

PAM50 classifies breast cancer tumors into the subtypes: HER2 enriched,
basal-like, luminal B and luminal A. OncotypeDX predicts the risk of dis-
tant recurrence after 10 years in node negative, estrogen receptor positive
patients. The prediction is based on the expression in 21 genes (Paik et al.
2004). MammaPrint predicts 5-year metastatic recurrence as good or bad by
using the expression of 70 genes (Veer et al. 2002; Vijver et al. 2002). Some
of these molecular features have been developed for patient sub groups, and
they might perform poorly in the patient population used in this study.

All of the above mentioned features rely on at least some micro array probes,
which do not map to a Entrez ID. Because this project uses Entrez Id’s to
map between different platforms it is difficult to use these methods. (Mar-
chionni et al. 2013) has recently shown that the MammaPrint assay can be
accurately reproduced by use of k-TSP. A k-TSP was trained for predict-
ing recurrence free survival 10 years. The available data is identical to the
data shown in table 2.5. Exact settings for data extraction can be seen in
the datathesis package help file for surv10. Table 2.3 shows the number
of patients with and with out recurrence. Because the number of patients
with out recurrence is larger than the number of patients with recurrence
we rescale the classes in the training data to equal size.

Table 2.3: Patients available for training and testing the k-TSP for
prediction of recurrence at 10 years

Available patients Without Recurrence Recurrence

10 year survival 1374 864 510

2.9 Data Collection

This section describes the data used in the project. Section 2.9.1 describes
the data inclusion criteria. Section 2.9.2 describes the used covariates, nor-
malization and handling of missing expression values. The included data is
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presented in section 2.9.3 and visualized using Kaplan-Meier plots in section
2.9.4.

2.9.1 Data Inclusion Criteria

Breast cancer data from Haibe-Kains et al. 2012 was used in the project.
The following inclusion criteria where used:

1. Either recurrence free survival or distant metastasis free survival
time must be available. If both are available recurrence free
survival is preferred.

2. Tumor size, histological grade, nodal involvement, patient age
and treatment status must be available.

3. Microarray data must be publicly available and measured with
either Agilent, Affymetrix or Illumina platforms.

4. If receptor status was measured with either IHC or FISH this
value was preferred otherwise the inferred receptor status value
was used.

2.9.2 Covariates, Normalization and Missing Values

The following covariates were included in the model:

1. age [Continuous, years]

2. her2 receptor status, [Categorical, -1/1]

3. Estrogen receptor status [Categorical, -1/1]

4. PgR receptor status [Categorical, -1/1]

5. Nodal involvement [binary, -1/1]

6. Tumor size [Continuous, cm]

7. Histological grade [Ordinal, 1/2/3]

8. Treatment [Categorical, -1/1]

9. Predicted recurrence at 5 years [Categorical, -1/1]

10. Predicted recurrence at 10 years [Categorical, -1/1]
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Continuous and ordinal covariates were scaled to zero mean and unit vari-
ance. Categorical covariates where represented as ±1 if the number of cat-
egories was equal to 2 otherwise one hot encoding.

For genomic data missing values where calculated with KNN impute from
the impute R package (Hastie et al. 1999). The imputation of missing val-
ues was performed using 10 clusters and all other settings as default. Data
was collected from different micro array platforms. A shared gene set was
created by mapping probes to entrez gene ID’s. Several probes may map
to the same Entrez ID, in these cases the probe with the highest variance
within each platform was chosen. Only entrez ID’s shared across all used
platforms were considered.

2.9.3 Included Data

This section presents the data used for training of survival models. Table
2.4 shows an overview of collected data. Table 2.5 shows basic statistics
of the included data. The total number of included patients is 2064. The
patients included in table 2.5 were selected based on the criteria listed in
section 2.9. Note that many of the patients does not have HER2 and PgR
status measured, which made it necessary to infer these from micro-array
data.
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Table 2.4: Microarray studies. Collected from (Haibe-Kains et al. 2012).
Os: overall survival, Rfs: Recurrence free survival, dmfs: Distant metas-
tasis free survival. Refer to Haibe-Kains et al. 2012 for references on the
specific datasets.

Study Patients Os Rfs Dmfs Platform

NKI 337 yes no yes agilent
STNO2 118 yes yes no cdna.stanford
NCI 99 no yes no cdna.nci
KOO 88 no no no affy.u95
MSK 99 no no yes affy
UPP 251 no yes no affy
STK 159 no yes no affy
VDX 344 no no yes affy
UNT 133 no no yes affy
MAINZ 200 no no yes affy
DUKE 171 yes no no affy.u95
DUKE2 160 no no no affy.3x
CAL 118 yes no yes affy
TRANSBIG 198 yes no yes affy
EMC2 204 no no yes affy
LUND 143 no no no swegene
LUND2 105 no no no swegene
FNCLCC 150 no no no umgc.ircna
MDA4 129 no no no affy
NCCS 183 no no no affy
IRB 129 no no no affy
DFHCC 115 no no yes affy
DFHCC2 84 no no no affy
EORTC10994 49 no no no affy
HLP 53 no no no illumina
MAQC2 230 no no no affy
MCCC 75 no no no illumina
MUG 152 no no no operon
DFHCC3 40 no no no affy
PNC 92 yes yes no affy
EXPO 353 no no no affy
UCSF 162 yes no yes cdna.ucsf
UNC4 305 yes yes no agilent99
SUPERTAM HGU133A 856 no no yes affy
SUPERTAM HGU133PLUS2 517 no no yes affy
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Table 2.5: Basic statistic of data used for training and evaluation of
survival models. n=2064.

Age (years)
Median 54 (24-91)
Mean 56 (±13.16)
No age inf. 0

Size (cm) Patients
<=1.5 583
(1.5-2.5] 866
>2.5 615
No size inf. 0

Nodal Involvement
0 1451
1 613
No Node inf. 0

Histological Grade
1 389
2 895
3 780
No Grade inf. 0

Estrogen Receptor Status
Negative 439
Positive 1617
No ER inf. 8

HER2 Status
Negative 213
Positive 65
No HER2 inf. 1786

Progesterone Receptor Status
Negative 257
Positive 579
No PgR inf. 1228

Treatment Status
Treatment 1037
No Treatment 1027
No Treatment data inf. 0
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2.9.4 Kaplan-Meier Plots

Kaplan-Meier plots were used to plot survival curves for patients with dif-
ferent characteristics. Briefly a Kaplan-Meier plot shows the probability
of having recurrence at different times. A group with high risk of recur-
rence will have a curve that decreases fast and visa versa for group with low
risk of recurrence. Significant difference between groups where tested using
log-rank test (Zeileis et al. 2008) with a p-value below 0.05 considered signif-
icant. Figure 2.10, 2.11 and 2.12 show Kaplan-Meier plot for patients with
different clinical parameter used for stratification, the shaded areas indicate
the two sided 0.95% confidence intervals. The patients used in the figures
are identical to the patients used for table 2.5. Figure 2.10 shows that in-
creased histological grade, NPI, STG and tumor size are associated with
decreased time recurrence, which is also reflected in low p-values. Figure
2.11 shows increased risk for ER and PgR negative patients, both having sig-
nificant p-values. HER2 positive receptor status seems to be associated with
slightly higher risk, even though the p-value is not significant. Treatment
does seem to be predictive of recurrence risk, the p-value is not significant.
Lastly figure 2.11 shows that nodal involvement is associated with higher
recurrence risk, the p-value is significant. The prediction of survival at 10
years does not predict survival and the p-value is not significant. Low age
seems to be associated with higher risk of recurrence as seen in figure2.11,
the p-value is significant.

Table 2.6 shows classification by NPI and St. Gallen, used for creating
figure 2.10. The table shows that both methods classify the majority of
patients in the intermediate risk group, indicating that the methods are not
that useful for stratification of patients.

Table 2.6: Risk stratificatoin by NPI and St. Gallen 2006

Good Intermediate Poor Not Available

NPI 634 1251 179 0
STG 72 1878 114 0
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Figure 2.10: Kaplan-Meier plot of included data. Panel a) stratification
by histological grade (p-value: < 2.22e-16), b) stratification by NPI
(p-value: < 2.22e-16), c) stratification by St. Gallen 2006 (p-value:
1.7263e-10), d) stratification by tumor size (p-value: 9.992e-16).
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a) ER receptor (n=2064)
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Figure 2.11: Kaplan-Meier plot of included data. Panel a) stratification
by ER (p-value: 1.7784e-06), b) stratification by PgR (p-value: 3.4957e-
10), c) stratification by HER2 (p-value: 0.068235), d) stratification by
Treatment status (p-value: 0.72859). For receptors the inferred receptor
status was used if IHC or FISH measurements was unavailable.
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Figure 2.12: Kaplan-Meier plot of included data. Panel a) stratification
by nodal involvement (p-value: 1.2167e-07), b) stratification by age (p-
value: 0.011539), c) stratification by 10 year survival prediction. 0 is
event and 1 is right censoring at 10 years (p-value: 0.59559).
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2.10 Pilot study

The pilot study was used to determine if the GP based survival models
and RSF models performed better than existing survival models. The pi-
lot compared the performance of GP models, RSF models, CoxPH models,
NPI and STG. The pilot study includes covariates that were readily avail-
able at the beginning of the project, that includes samples from both the
Haibe-Kains et al. 2012 and Curtis et al. 2012 (METABRIC). METABRIC
was because at the time the pilot study was performed it was thought that
the genomic data from METABRIC would be released. The pilot study
also differs in outcome variable. The pilot study uses overall survival, but
the final study uses recurrence free survival or distant metastasis free sur-
vival. The outcome variable was changed because of the limited amount of
”overall survival samples” when METABRIC was not included. Lastly the
pilot study used forward feature selection, which is not used in the final
evaluation.

The following covariates where used: age, nodal involvement, tumor size,
histological grade and treatment information. Table 2.7 shows the size of
the dataset used in the pilot study. All samples with NA values were re-
moved prior to training and testing.

Table 2.7: Samples in training and test set used in pilot study. 33% of
the samples were assigned to the test set.

Training Test total

1400 690 2090

2.10.1 Models

GP models were trained using the gpstuff MATLAB package (Vanhatalo
et al. 2013). A neural-network covariance function combined with constant
covariance function was used. Weights variance was either free in all dimen-
sions (free) or shared between dimensions (not free). For each model the
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features where selected using forward selection and 5 fold nested cross val-
idation. The neural network plus constant covariance function was chosen
after several alternatives had been explored, among others Matern, squared
exponential and polynomial covariance and various combinations of these,
results not shown. The neural network plus constant covariance function
generally performed best which is the same result as obtained by Joensuu
et al. 2012.

The R package randomForestSRC was used for training RSF models (Ish-
waran and Kogalur 2013). A forest of 1000 trees was grown using the train-
ing data. Minimum terminal node size, number of candidate features at
splits and number of considered split values were considered hyper parame-
ters to the model. CoxPH models were evaluated using coxphfit from the
MATLAB statistics toolbox. NPI and STG models were ported to MAT-
LAB from the implementation available in the genefu R package (Haibe-
Kains et al. 2013). Forward feature selection was used for GP models and
CoxPH models using sequentialfs from the MATLAB statistics toolbox.

2.10.2 Results

AUC scores for the different models are reported in table 2.7. Table 2.7
shows that the GP models generally performed best (AUC Feat selection
column). The free and not free GP models practically performed on par.
The not free GP model was evaluated on the test set. The AUC evaluated
at 10 years was 73.03% on the test set. The test AUC is shown in figure
2.14. The test AUC scores for NPI and St. Gallen 2006 are 69.24% and
56.40% respectively.

Figure 2.13 shows conditional plots of the GP model. The conditional plots
were created by tying all parameters but the selected at their mean value.
The conditional plot shows how varying a single parameter influences the
prediction. Figure 2.13 generally shows the expected, e.g. increased tumor
size and histological grade are associated with increased risk. Interestingly
young age seems to be associated with increased risk.
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Table 2.8: Final AUC scores evaluated at 10 years. AUC feature selection
is the score found using 5-fold cross validation of the training set. AUC
train is the AUC score from fitting a model using the features found by
forward selection. Columns 3 to 12 indicate if the feature was selected
by forward feature selection. The features Treat. RT/CT/HT are only
available in Curtis et al. 2012 and are not included in the final study.
RT: radio therapy, CT: chemo therapy, HT: hormonal therapy.
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GP free 0.6971 0.7202 1 1 1 1 1 0 1 0 1 0
GP Not Free 0.6994 0.7217 1 1 1 1 1 0 1 0 0 0
CoxPH 0.6759 0.6646 1 1 1 1 0 0 1 0 0 1
RFS 0.6552 0.6552 NA →
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Figure 2.13: Conditional plots of covariates in GP model, features se-
lected by forward feature selection. (Evaluated at training data)
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Figure 2.14: Test AUC scores in pilot study.

2.11 Evaluated Models in Final Study

The pilot study showed that the GP based models generally performed
best. Further investigations are limited to GP based models in comparison
with CoxPH, NPI and STG models. Feature selection was not performed
because of the computational times involved. The outcome variable in the
final study was changed from overall survival to recurrence free survival
(rfs) or distant metastasis free survival (dmfs), because few samples with
overall survival status is available in Haibe-Kains et al. 2012. The selected
models were evaluated at the datasets:

1. Baseline model: age, histological grade and tumor size and treat-
ment status
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2. Receptor model: baseline + HER2, ER, PgR

3. Fingerprint model: receptor + fingerprints

Fingerprints means features derived from microarray data. The models will
be trained using the data in table 2.5 p. 35. 33% of the samples will be
put in a held out test set. For all models identical training and test sets are
used. The performance criterion is AUC evaluated at 10 years. The result
for the different models are presented in section 3.3.

2.12 Code

The code used in this project is programmed in R, MATLAB and Sweave,
described in section 2.12.1, 2.12.2 and 2.12.3 respectively. Except for the
pilot study all analysis, figures and tables should be reproducible using the
code accompanying this project. Figures and tables are either generated
in R or MATLAB. Table 2.9 shows what code was used to generate which
figures and tables.

2.12.1 R code

Most of the R and Sweave code depends on the R packages ktsp and
datathesis that were written during the project. The source for both
packages are available on https://bitbucket.org/skaae/. To install the
R packages you need a to install R, see http://cran.r-project.org/ for
installation instructions for most operating systems. When R is installed
the ktsp and datathesis can be installed from the online repository using
the code shown in listing 2.1.

Listing 2.1: Code for installing R packages

install . packages ( ”devtools ”) #package f o r installing from ←↩
bitbucket

require ( ”devtools ”)
install_bitbucket ( ”datathesis ” , ”skaae ”) #install datathesis ←↩

from bitbucket
install_bitbucket ( ”ktsp ” , ”skaae ”) #install ktsp from bitbucket
require ( datathesis )
require ( ktsp )
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The datathesis package contains all data sets used in the rapport. The
following datasets are included in the package:

• matlabsurv data used for training survival models.

• er-random: Data set used for training ktsp for prediction of
Estrogen receptor.

• her2-random: Data set used for training ktsp for prediction of
HER2 receptor.

• pgr-random: Data set used for training ktsp for prediction of
PgR receptor.

• allclinical: All clinical data

The help file for each dataset contains code for reproducing the dataset.
Access the help file by running help("dataset-name") from the R con-
sole. To reproduce the data sets you need to download the micro ar-
ray data which is available at https://bitbucket.org/skaae/thesis_

sweave as a zip-file, see listing 2.2. In each of the examples you need
to change the variable path.haibekains to the folder where the folder
breast_cancer/datasets/haibekains is located. The folder is a part of
the thesis_sweave repository.

2.12.2 MATLAB code

MATLAB and Sweave code is available as bitbucket repository at: https:
//bitbucket.org/skaae/thesis_sweave. To download the code locally
run the code in listing 2.2. Download wgethttp://compbio.dfci.harvard.

edu/pubs/sbtpaper/data.zip and unzip file to datasets/haibekains/

in the cloned repository. The *.RData files from the zip file must be in
datasets/haibekains/ not in any subfolder.

Listing 2.2: Code for cloning Sweave and MATLAB code

git clone https : // skaae@bitbucket . org/skaae/thesis_sweave . git

The Matlab code for training survival models is available in the folder:
matlab_files/serverfiles/. MATLAB code uses data from the matlabsurv
data set in the datathesis package. If you need to recreate the csv files
run the example code in the help to the matlabsurv data set. The csv
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files for the training and test sets are saved to the folders specified in
file.matlab.train and file.matlab.test respectively. To train the sur-
vival models run the script matlab_files/serverfiles/evaluate_all_models.m.
The csv files with training and test data need to be in the same folder as
evaluate_all_models.m. The MATLAB code uses GPstuff 4.3 for running
GP survival models13. All code was run using MATLAB version 2013b.

2.12.3 Sweave Code

The rapport is generated using Sweave(Leisch 2002), i.e LATEXwith embed-
ded R code. To generate the rapport download RStudio14 and LATEX15.
Download the datathesis package and the ktsp package as described in
section 2.12.1. Download the Sweave code from bitbucket using the code
given in listing 2.2. This will download the Sweave code to your current
directory. Unzip the file. Within this directory open the master.Rnw

file in RStudio and push the compile PDF. This will generate the rap-
port as master.pdf.If you are not on a MAC obtain sweave from http:

//www.stat.uni-muenchen.de/~leisch/Sweave/ and follow the instruc-
tions.

2.12.4 R Session Information

• R version 3.0.2 (2013-09-25), x86_64-apple-darwin10.8.0

• Locale:
en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid,
methods, parallel, splines, stats, utils

• Other packages: affy 1.39.4, AnnotationDbi 1.23.27,
Biobase 2.21.7, BiocGenerics 0.7.5, BiocInstaller 1.12.0,
biomaRt 2.17.3, cacheSweave 0.6-1, caret 5.17-7, caTools 1.14,
class 7.3-9, cluster 1.14.4, coin 1.0-23, data.table 1.8.10,
datathesis 0.1.0, DBI 0.2-7, dplyr 0.1.2, e1071 1.6-1,
filehash 2.2-1, foreach 1.4.1, gdata 2.13.2, genefu 1.11.0,

13http://becs.aalto.fi/en/research/bayes/gpstuff/
14https://www.rstudio.com/
15http://latex-project.org/ftp.html
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2. Methods

ggplot2 0.9.3.1, gplots 2.11.3, gridExtra 0.9.1, gtools 3.1.0,
impute 1.35.0, KernSmooth 2.23-10, ktsp 0.1.0, lattice 0.20-23,
MASS 7.3-29, mclust 4.2, minpack.lm 1.1-8, nnet 7.3-7,
org.Hs.eg.db 2.10.1, plyr 1.8, prodlim 1.3.7, qpcR 1.3-7.1,
R.matlab 2.1.0, randomForest 4.6-7, RColorBrewer 1.0-5,
reshape2 1.2.2, rgl 0.93.996, robustbase 0.9-10, ROCR 1.0-5,
RSQLite 0.11.4, stashR 0.3-5, stringr 0.6.2, survcomp 1.11.0,
survival 2.37-4, xtable 1.7-1

• Loaded via a namespace (and not attached): affyio 1.29.5,
amap 0.8-7, assertthat 0.1, bitops 1.0-6, bootstrap 2012.04-1,
codetools 0.2-8, colorspace 1.2-4, dichromat 2.0-0, digest 0.6.3,
gtable 0.1.2, IRanges 1.19.38, iterators 1.0.6, labeling 0.2,
modeltools 0.2-21, munsell 0.4.2, mvtnorm 0.9-9997,
preprocessCore 1.24.0, proto 0.3-10, R.methodsS3 1.5.2,
R.oo 1.15.8, R.utils 1.28.4, Rcpp 0.11.0, RCurl 1.95-4.1,
rmeta 2.16, scales 0.2.3, stats4 3.0.2, SuppDists 1.1-9,
survivalROC 1.0.3, tools 3.0.2, XML 3.95-0.2, zlibbioc 1.7.0

2.12.5 Scripts

Table 2.9 shows what code that was used to generate which figures and
tables.
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2.12. Code

Table 2.9: List of scripts used to create figures and tables

Figure / Table Script

Figure 2.1 p. 11 matlab_files/plot_fevent_surv_haz.m

Table 2.2 p. 30 documents/methods_infer_receptors.Rnw

Table 2.3 p. 31 documents/methods_fingerprints.Rnw

Table 2.4 p. 34 table/table_combined_data.R

Table 2.5 p. 35 documents/methods_data_overview.Rnw

Table 2.6 p. 36 documents/methods_kaplan_meier.Rnw

Figure 2.10 p. 37 documents/results_kaplan_meier.Rnw

Figure 2.11 p. 38 documents/results_kaplan_meier.Rnw

Figure 2.12 p. 39 documents/results_kaplan_meier.Rnw

Figure 3.1 p. 53 R_files/bimodal_plots.R

Figure 3.2 p. 54 R_files/bimodal_plots.R

Figure 3.3 p. 55 R_files/bimodal_plots.R

Table 3.2 p. 56 documents/results_infer_receptors_TSP.Rnw

Figure 3.4 p. 57 R_files/ktsp_receptors.R

Table 3.3 p. 58 R_files/ktsp_receptors.R

Figure 3.5 p. 60 R_files/ktsp_receptors.R

Table 3.4 p. 59 R_files/ktsp_receptors.R

Figure 3.6 p. 61 R_files/ktsp_receptors.R

Table 3.5 p. 61 R_files/ktsp_receptors.R

Table 3.6 p. 62 documents/results_surv10.Rnw

Figure 3.7 p. 63 R_files/ktsp_receptors.R

Table 3.7 p. 62 R_files/ktsp_receptors.R

Table 3.8 p. 64 matlab_files/evaluate_all_models.m

Figure 3.8 p. 65 matlab_files/evaluate_all_models.m

Figure 3.9 p. 66 matlab_files/evaluate_all_models.m

Figure 3.10 p. 67 matlab_files/evaluate_all_models.m

Figure 3.11 p. 68 matlab_files/evaluate_all_models.m

Table 5.4 p. 82 R_files/ktsp_receptors_tables.R

Table 5.5 p. 83 R_files/ktsp_receptors_tables.R

Table 5.6 p. 84 R_files/ktsp_receptors_tables.R

Table 5.7 p. 85 R_files/ktsp_receptors_tables.R
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Chapter 3

Results

This chapter presents the results of the project. The chapter mainly tables
and figures presenting the results. Discussions of the results are in chap-
ter 4. This chapter starts with the results of receptor inference presented in
section 3.1. The results of predicting 10 year recurrence from micro array
data is shown in section 3.2. Finally section 3.3 concludes the chapter with
the results of modelling recurrence risk in breast cancer patients.

3.1 Infer Receptors

Results of inference of receptors by Gaussian mixture models are described
in section 3.1.1, results of inference by k-TSP’s are described in section
3.1.2.

3.1.1 Receptor Inference Using Gaussian Mixture Models

Figure 3.1, figure 3.2 and figure 3.3 show the attempt to fit a bimodal Gaus-
sian mixture to each of the datasets. The performance for each receptor is
given in table 3.1. Using the Gaussian mixture models all methods per-
form poorly, with only inference of ER being better than random guessing.
Figure 3.1 shows that the expression value density for entrez ID 2099 (ER)
has a bimodal distribution for all datasets except DUKE. Note that booth
SUPERTAM studies have close to zero ER negative patients and therefor
should not be bimodal. Figure 3.2 shows bimodal Gaussian mixtures fitted
to expression densities of entrez ID 2064 (HER2). The MSK study has
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3. Results

Receptor Test Performance

ER 0.591
HER2 0.457
PgR 0.493

Table 3.1: Accuracy of Gaussian mixture models for inference of recep-
tors.

no HER2 negatives. Several studies fail to show bimodality, e.g. MAQC2.
Figure 3.3 shows bimodal Gaussian mixtures fitted to expression values of
entrez ID 5241 (PgR). SUPERTAM HGU133A and UNT only have a small
fraction of PgR positives. Several studies fail to bimodality, e.g. UNC4,
KOO and DUKE.
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3.1. Infer Receptors

NKI KOO MSK UPP STK

VDX UNT MAINZ DUKE CAL

TRANSBIG MDA4 IRB DFHCC DFHCC2

EORTC10994 MAQC2 PNC EXPO UNC4

SUPERTAM_HGU133A SUPERTAM_HGU133PLUS2

Expression (log2)

D
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value Mixture 1 Mixture 2

ER Receptor (Entrez: 2099)

Figure 3.1: Density plot of Entrez ID 2099 with fitted Gaussian overlaid.
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Figure 3.2: Density plot of Entrez ID 2064 with fitted Gaussian overlaid.
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PgR Receptor (Entrez: 5241)

Figure 3.3: Density plot of Entrez ID 5241 with fitted Gaussian overlaid.
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3. Results

3.1.2 Receptor Inference Using Top Scoring Pair

The following section shows the results of receptor inference using k-TSP’s.
The final results are listed in table 3.2. CV test performance and training
performance are shown in figure 3.4, 3.5 and 3.6 for ER, HER2 and PgR
respectively. Included gene pairs are listed in table 3.3, 3.4 and 3.5 for ER,
HER2 and PgR respectively.

Table 3.2: Final accuracy of receptor inference using k-TSP. Threshold
is the voting threshold when combining the TSP’s.

Best k Threshold Training Accuracy Test Accuracy

ER 30 17 0.9094 0.8939
PgR 8 3 0.8385 0.7960

HER2 9 4 0.7910 0.7908

3.1.2.1 ER

56
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Figure 3.4: Accuracy scores for k-TSP’s as k is varied from 1 to 50.
Train and test accuracy is the mean CV accuracy.
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3. Results

Entrez A Hugo A Entrez B Hugo B

2099 ESR1 4953 ODC1
2625 GATA3 8884 SLC5A6
23158 TBC1D9 114908 TMEM123
771 CA12 5214 PFKP
7802 DNALI1 6491 STIL
9 NAT1 9111 NMI
18 ABAT 10926 DBF4
4602 MYB 2195 FAT1
7033 TFF3 6590 SLPI
7031 TFF1 991 CDC20
8416 ANXA9 9212 AURKB
2066 ERBB4 53335 BCL11A
4137 MAPT 898 CCNE1
10551 AGR2 6280 S100A9
9687 GREB1 6664 SOX11
8614 STC2 1001 CDH3
2203 FBP1 8140 SLC7A5
7494 XBP1 7388 UQCRH
51097 SCCPDH 8833 GMPS
1602 DACH1 51442 VGLL1
8382 NME5 1058 CENPA
10974 ADIRF 445 ASS1
6337 SCNN1A 5918 RARRES1
22977 AKR7A3 11004 KIF2C
3480 IGF1R 2296 FOXC1
2674 GFRA1 9420 CYP7B1
2879 GPX4 4904 YBX1
3249 HPN 1054 CEBPG
79921 TCEAL4 7913 DEK
6478 SIAH2 9833 MELK

Table 3.3: Genes in Best k-tsp for ER named by Entrez ID and Hugo Id
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3.1. Infer Receptors

3.1.2.2 HER2

Entrez A Hugo A Entrez B Hugo B

10948 STARD3 596 BCL2
2886 GRB7 1108 CHD4
51755 CDK12 23131 GPATCH8
2064 ERBB2 6659 SOX4
5709 PSMD3 6651 SON
8564 KMO 9639 ARHGEF10
5409 PNMT 2145 EZH1
8714 ABCC3 23189 KANK1

Table 3.4: Genes in Best k-tsp for HER2 named by Entrez ID and Hugo
Id
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Figure 3.5: AUC scores for k-TSP’s as k is varied from 1 to 50. Train
and test AUC is the mean CV accuracy.

3.1.2.3 PgR
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Figure 3.6: Accuracy scores for k-TSP’s as k is varied from 1 to 50.
Train and test accuracy is the mean cross validation accuracy.

Entrez A Hugo A Entrez B Hugo B

771 CA12 4860 PNP
2099 ESR1 4704 NDUFA9
2625 GATA3 11130 ZWINT
7802 DNALI1 11339 OIP5
9687 GREB1 7272 TTK
9 NAT1 1475 CSTA
18 ABAT 9833 MELK
2066 ERBB4 1054 CEBPG
4137 MAPT 898 CCNE1

Table 3.5: Genes in Best k-tsp for PGR named by Entrez ID and Hugo
Id
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3. Results

3.2 10 Year Recurrence

Accuracies for prediction of recurrence 10 years are shown in table 3.6.
Figure 3.7 shows the mean CV performance. The selected genes are shown
in table 3.7 p. 62. A detailed table is availble in the appendix table 5.7 p. 85.
In table 3.6 note the high voting threshold indicating that the classifier is
focusing on one of the classes.

Table 3.6: Performance for prediction of 10 year recurrence risk

Best k Threshold Training Accuracy Test Accuracy

10 year 22.0 10.0000 0.6806 0.6320

Entrez A Hugo A Entrez B Hugo B

23303 KIF13B 9133 CCNB2
8764 TNFRSF14 10615 SPAG5
8604 SLC25A12 4288 MKI67
330 BIRC3 9787 DLGAP5
10308 ZNF267 7272 TTK
10628 TXNIP 11130 ZWINT
6908 TBP 9319 TRIP13
26292 MYCBP 9833 MELK
5281 PIGF 1033 CDKN3
25972 UNC50 11065 UBE2C
1117 CHI3L2 2305 FOXM1
7405 UVRAG 22974 TPX2
4074 M6PR 891 CCNB1
4285 MIPEP 4751 NEK2
4189 DNAJB9 1062 CENPE
55573 CDV3 890 CCNA2
2791 GNG11 57007 ACKR3
1777 DNASE2 1058 CENPA
6392 SDHD 27338 UBE2S
9183 ZW10 11004 KIF2C
56998 CTNNBIP1 991 CDC20
27095 TRAPPC3 4171 MCM2

Table 3.7: Genes in Best k-tsp for 10 named by Entrez ID and Hugo Id
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Figure 3.7: Mean performance for 10 year recurrence prediction using
5-fold CV.

3.3 Evaluation of Survival Models

This section presents performance of the different survival models. Ta-
ble 3.8. For the GP models conditinal plots of all the covariates are included
in figures 3.9, 3.10 and 3.11 for the datasets baseline, receptor and finger-
prints respectively. All conditional plots are produced using the notfree
GP because the performance for the free and notfree models are equal, in
which case we prefer the simpler model. The conditional plots are created
by tying all but one covariate at their mean value and varying the non-tied
parameter.
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3. Results

Table 3.8: Performance of different survival models. In the Freedom
column notfree and free refers to the variances being shared or not shared
across all dimensions, this setting is only applicable when GP’s were used.

Model Freedom Train Test

GP baseline free 0.6991 0.6775
GP baseline notfree 0.6984 0.6774
GP receptor free 0.7086 0.6854
GP receptor notfree 0.7086 0.6859
GP surv10 free 0.7742 0.6933
GP surv10 notfree 0.7741 0.6934
CoxPH baseline - 0.6870 0.6812
CoxPH receptor - 0.6861 0.6834
CoxPH Survival 10 years - 0.7425 0.6958
NPI - 0.6492 0.6428
St. Gallen - 0.5416 0.5533
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Figure 3.8: ROC curves for survival models
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Figure 3.9: Conditional plots for GP model trained using the baseline
dataset.
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Figure 3.10: Conditional plots for GP model trained using the receptor
dataset.
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Figure 3.11: Conditional plots for GP model trained using the fingerprint
dataset.

68



Chapter 4

Discussion and Conclusion

The purpose of the project was to evaluate new methods for modeling of
survival data, specifically we modeled recurrence risk in breast cancer pa-
tients using GP based models, CoxPH models, NPI and STG.

Data

Data was collected from the repository created by Haibe-Kains et al. 2012.
The repository contains clinical data and micro array data for breast cancer
patients collected in several different studies. The micro array data is mea-
sured with several platforms as shown in table 2.4 p. 34. Mapping between
platforms was performed by creating a set of entrez ID’s which was shared
across all platforms. To keep the shared set reasonably large we only con-
sidered the platforms: Agilent, Affymetrix HGU A/B, Affymetrix HGU95
and Agilent99. This resulted in 7648 entrez ID’s being shard across all
platforms. In case of multiple probes mapping to the same ID the highest
variance probe, within each study, was preferred.

For the survival models the following clinical covariates were required: age,
tumor size, nodal involvement, histological grade and treatment status and
recurrence data, 2064 patients had these covariates available. Table 2.5
p. 35 shows statistics on the included patients. Presence or absence of the
receptors ER, HER2 and PgR is often used for subtyping of breast cancers.
We wanted to investigate the effect of adding receptor status as covariates in
the survival models. Table 2.5 show that HER2 and PgR receptor status is
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4. Discussion and Conclusion

only available for a limited subset of patients (n=278 and 836 respectively).
Different methods for inferring receptor status was evaluated, these will be
discussed later.

The data from table 2.4 p. 34 was visualized using Kaplan-Meier plots,
the plots are presented in section2.9.4 p. 36. As expected the Kaplan-Meier
plots show that increased histological grade (p-value: < 2.22e-16), NPI score
(p-value: < 2.22e-16), STG score (p-value: 1.7263e-10), tumor size (p-value:
9.992e-16) and nodal involvement (p-value: 1.2167e-07) are associated with
increased risk of recurrence. From the Kaplan-Meier plots it seems that
NPI and STG are good predictors of recurrence risk, but evaluation of their
AUC contradict this. For STG this probably happens because it classifies
the majority of the patients in the intermediate group, leaving only the best
and worst patients in the good and poor groups, see table 2.6 p. 36. NPI
classifies most patients into the groups good and intermediate and seems to
be able to discriminate between these, but very few patients are classified
in the poor group. NPI and STG are evaluated at prediction on recurrence
risk, a task they where not developed for, which is the likely cause of the
poor performance. The Kaplan-Meier plot of age shows that the low age
group patients has high recurrence risk (p-value: 0.011539). Kaplan-Meier
plots of receptor status show that negative ER (p-value: 1.7784e-06) and
PgR (p-value: 3.4957e-10) receptor status seems to be associated with in-
creased risk of recurrence. The p-value HER2 is not significant ((p-value:
0.068235). Prediction of recurrence at 10 years (p-value: 0.59559) using
micro array data and patients receiving treatment (p-value: 0.72859) does
not have significant p-values.

Pilot Study

A pilot study was used to investigate the performance of the survival models
NPI, STG, CoxPH, RSF and GP based models. The pilot study evaluated
prediction of overall survival as opposed to the full study, which evaluated
recurrence free survival. The difference in target between the pilot study
and the full study happened because the pilot study only uses clinical data
where many patients had overall survival data available. The full study
needs clinical and microarray data to be available, the micro array require-
ment limited the number of available patients making it necessary to use
recurrence risk instead of overall survival. The results of the pilot study
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are shown in table 2.8 p. 42. The pilot study showed that GP based mod-
els generally performed better than both random forest based models and
CoxPH based models. Both GP based models and random forest models
are computationally demanding to evaluate. Based on the results from the
pilot study further investigations focused on the GP based models, CoxPH
and NPI and STG, the latter 3 being fast to evaluate.

Inference of Receptors

Receptor status was only available for a subset of the included patients.
Current methods for inference of receptor status are developed using the
Affymetrix HGU133 platforms and are based on fitting a Gaussian mix-
ture model to the expression value of a single probe. The performance of
the Gaussian mixture model method is shown in table 3.1 p. 52. On the
dataset used in this study the performance is no better than random for
HER2 (45.7%) and PgR (49.3%) and only slightly better than random for
ER (59.1%). These results are worse than the results reported by Karn et
al. 2010 who used a similar method and obtained accuracies 91.6%, 89.2%,
and 71.8% for ER, HER2 and PgR respectively. The method by Karn et
al. 2010 uses a single platform, Affymetrix HGU133A, and a specific probe
from this platform, to represent each of the receptors. To be able to evaluate
the Gaussian mixture model using different platforms we first mapped the
probes, representing each receptor to entrez ID’s, if several probes mapped
to the same entrez ID the probe with maximum variance was used. The
probes used to represent each receptor are therefore not the same as the
ones used by Karn et al. 2010. The Gaussian mixture approach rely on the
expression density having a bimodal shape, in figure 3.1, p. 53 the MSK
study is a good example of an entrez ID having a bimodal density. Figure
3.1, 3.2 and 3.3 clearly shows that the densities for many studies are not
bimodal. The lack of bimodality can be caused by some studies having
only positive or negative samples, in which case the Gaussian mixture does
not work, secondly the lack of bimodality may be caused by inclusion of
different micro array platforms than Affymetrix HGU133A.

We evaluated an alternative method for inference of receptor status based
on relative gene expression. The performance of this method is summa-
rized in table 3.2 p. 56, The test accuracies are 90.01%, 81.93% and 78.19%
for ER, HER2 and PgR respectively. The performance using the k-TSP
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4. Discussion and Conclusion

method is better for predicting PgR (78.2% vs. 71.8%), a little worse for
ER (90.0% vs. 91.6%,) and worse for HER2 (81.9% vs. 89.2%). The k-
TSP method improves on the method by Karn et al. 2010 by being able to
classify single arrays and being robust against normalization and changes in
platform. The current implementation of the k-TSP algorithm uses voting
among the gene pairs to make a decision. The performance of the k-TSP
may be improved by using other methods than voting for combining the
predictions of the individual gene pairs, e.g. random forest, SVM’s or neu-
ral networks.

Table 3.3 p. 58, 3.4 p. 59 and 3.5 p. 61 shows the entrez ID’s of the se-
lected gene pairs for ER, HER2 and PgR receptors respectively. The gene
pairs are further detailed in appendix tables: 5.4 p. 82, 5.5 p. 83 and 5.6
p. 84 which show gene names of the genes in the gene pairs. Karn et al.
2010 used the probes 205225 at, 216836 s at and 208305 at to represent
ER, HER2 and PgR respectively. These probes corresponds to entrez ID’s,
ER: 2099, HER2: 2064 and PgR: 5241. For ER entrez 2099 is in the top
pair and for HER2 entrez is in gene pair 5. For PgR the entrez ID used by
Karn et al. 2010 is not present in the k-TSP.

Micro Array Derived Features

Features derived from micro array data has been shown to be predictive of
survival in breast cancer patients. We considered to include PAM50 intrinsic
subtypes in the model, but because the algorithm is based on specific probes
from Affymetrix chips this was not possible. The same problem was present
for OncotypeDX and MammaPrint that used probes that did not map to an
entrez ID. To include some micro array derived features we used a k-TSP to
predict recurrence risk at 10 years represented as a binary indicator. The
results are shown in table 3.6 p. 62. For predicting 10 years recurrence
the training performance is 68.1% and the test accuracy is 63.2% indicating
that the method is overfitting. The k-TSP uses 22 gene pairs and a voting
threshold value of 10.

Survival Models

The models CoxPH, NPI, STG and GP based survival models were eval-
uated for their ability for predicting 10-year recurrence in breast cancer
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patients. The results are shown in table 3.8 p. 64 and are visualized in
figure 3.8 p. 65. Table 3.8 shows that the performance for GP models and
CoxPH models is similar. The NPI and STG models are not effective for
predicting recurrence.

Table 3.8 shows that addition of additional features increase the perfor-
mance for both GP based models and CoxPH models. Addition of the
micro array based prediction of 10 year recurrence increase the training
performance more than 5% for both GP models and CoxPH models. The
increases in test performance are modest indicating that both models might
be overfitting.

In GP models the degree of freedom, free and notfree in table 3.8, does
not impact performance, in which case we should prefer the notfree be-
cause it has less free parameters. Conditional plots for GP notfree models
are shown in figures 3.9, 3.10 and 3.11 for datasets baseline, receptor and
fingerprints respectively. The conditional plots show the effect of varying
a single covariate while the other covariates are held constant. The condi-
tional plots shows that nodal involvement, tumor size and histological grade
are the strongest predictors of recurrence. Interestingly age is associated
with decreased risk of recurrence, which is the opposite effect of what is
seen in the pilot study. This change is probably due to the change from
overall to recurrence risk as outcome variable. Receiving no treatment is
associated with increased recurrence risk. The conditional plots also shows
that ER negative status (-1 in the conditional plots) is associated with in-
creased risk. For PgR the conditional plots are nearly constant performance
and the datasets receptor and fingerprint does not agree whether PgR neg-
ative status is associated with decreased or increased recurrence risk. In the
fingerprint data, figure 3.11, predicted recurrence at 10 years is associated
with increased risk. For the surv10 plot -1 is predicted recurrence and 1 is
right censoring.

We conclude that addition of both receptor status and micro array de-
rived features improve the predictive performance for both GP models and
CoxPH models. GP based models are not better than CoxPH models for
prediction of recurrence in breast cancer patients.
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Chapter 5

Appendix

5.1 Receptor inference Gaussian mixture

datasets

study platform pos neg frac

SUPERTAM HGU133PLUS2 affy 164 0 1.00
SUPERTAM HGU133A affy 507 5 0.99
UPP affy 213 34 0.86
KOO affy.u95 73 15 0.83
STK affy 130 29 0.82
MAINZ affy 162 38 0.81
NKI agilent 249 88 0.74
UNT affy 86 40 0.68
TRANSBIG affy 134 64 0.68
DUKE affy.u95 114 57 0.67
EXPO affy 161 85 0.65
CAL affy 75 43 0.64
MDA4 affy 79 48 0.62
MAQC2 affy 141 89 0.61
DFHCC affy 70 45 0.61
UNC4 agilent99 154 99 0.61
VDX affy 209 135 0.61
IRB affy 76 53 0.59
MSK affy 57 42 0.58
EORTC10994 affy 27 22 0.55
PNC affy 45 43 0.51
DFHCC2 affy 31 53 0.37

Table 5.1: ER receptor. Datasets and distribution of negative and pos-
tive ER receptors. Frac is the fraction of ER positives.
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5. Appendix

study platform pos neg frac

MSK affy 85 0 1.00
DFHCC affy 36 79 0.31
PNC affy 26 64 0.29
EXPO affy 61 166 0.27
IRB affy 31 98 0.24
UNC4 agilent99 58 203 0.22
DFHCC2 affy 18 66 0.21
MAQC2 affy 40 190 0.17
MDA4 affy 15 114 0.12

Table 5.2: HER2 receptor. Datasets and distribution of negative and
postive HER2 receptors. Frac is the fraction of HER2 positives.

study platform pos neg frac

SUPERTAM HGU133A affy 65 5 0.93
UNT affy 56 6 0.90
SUPERTAM HGU133PLUS2 affy 123 39 0.76
UPP affy 190 61 0.76
KOO affy.u95 65 23 0.74
DUKE affy.u95 65 23 0.74
CAL affy 66 51 0.56
DFHCC affy 64 51 0.56
EXPO affy 129 114 0.53
PNC affy 40 43 0.48
UNC4 agilent99 109 126 0.46
MAQC2 affy 104 126 0.45
MSK affy 43 55 0.44
MDA4 affy 54 73 0.43
EORTC10994 affy 18 29 0.38
DFHCC2 affy 31 53 0.37

Table 5.3: PgR receptor. Datasets and distribution of negative and
postive PgR receptors. Frac is the fraction of PgR positives
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5.2. Receptor inference gene names

5.2 Receptor inference gene names
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5. Appendix

5.3 Gaussian Processes

A Gaussian process is defined as a probability distribution over functions
f(x) such that f(x) evaluated at any set of points x1...xn is jointly Gaussian.

We define the Gaussian process, GP with:

f (x) ∼ GP (m(x), k(x,x′)) (5.1)

Mean m(x) = E[f (x)] (5.2)

Covariance k(x,x′) = E[(f (x).m(x))(f (x′)−m(x′))] (5.3)

X ∈<D (5.4)

We often assumes that m(x) = 0. f (x) is the process evaluated at the point
x Using the definition of a GP we can draw a number of functions, f∗ from
a particular GP evaluated at the points X∗, i.e:

f∗ ∼N (0,K(X∗,X∗)) (5.5)

The following is a short demonstration of 5.5. In order to draw functions
from the GP we need to defines its covariance functions. This example uses
the squared exponential covariance function:

k(x,x′) = σf · exp
(
−(x − x′)2

2 · l2

)
(5.6)

Here σf is magnitude parameter governing the overall variability of the
process and l is the length scale governing the governing the correlation
between points. Both σf and l hyper parameters of the GP1. To draw
functions from the GP do:

1. Create a vector of test inputs, X∗ at which to evaluate the func-
tion

2. calculate the covariance matrix, K(X∗,X∗) with the covariance
function k(x,x′), e.g with equation 5.6 or some other valid ker-
nel function. See figure 5.1 panel C) for example covariance
function.

1http://skaae.shinyapps.io/test_project/ lets you play with the hyper param-
eters. The example is also available at https://github.com/skaae/GP_shiny/ with
instruction on how to run the example locally
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5.3. Gaussian Processes

3. Draw multivariate samples from multivariate function

f∗ ∼N (0,K(X∗,X∗)), where f∗ is evaluation of the GP at the test
points X∗

The code in listing 5.1 and listing 5.2 was used to draw functions from a
GP. All code in the listings is available at https://bitbucket.org/skaae/
simple_gp_matlab. The plots from listing 5.1 is shown in figure 5.1. Panel
A) shows 3 functions drawn from the GP, panel B) shows the histogram
of x = −3.1633 evaluated 5000 times, the plot shows that f(x) is Gaussian.
Lastly panel C) shows the covariance matrix.
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Figure 5.1: Panel A) shows 3 functions drawn from the GP, panel B)
shows the histogram of x = −3.1633 evaluated 5000 times, the plot
shows that f(x) is Gaussian. Panel C) shows the covariance matrix.

Listing 5.1: Draw functions from GP

rand ( ' s t a t e ' ,12345) ;
x_star = l i n s p a c e ( −5 ,5 ,50) ; % t e s t data
sigma_f= 1 ; l = 1 ; f_samples = 5000 ; , sigma_n = 0 . 5 ;
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5. Appendix

% squarred exp ke rne l
sqr_exp = @ (x1 , x2 ) sigma_f ∗ exp (−(x1−x2 ) ˆ2 / 2∗lˆ2) ;
kernel = sqr_exp
K = calc_k ( x_star , x_star , 0 , sqr_exp ) ;
gp_samples = mvnrnd ( z e r o s (1 , l ength (K ) ) , K , f_samples ) ;

%% p l o t s
subplot ( 1 , 3 , 1 ) ; p l o t ( repmat ( x_star ' , 1 , 3 ) , . . .

gp_samples ( 1 : 3 , : ) ' , 'LineWidth ' , 2 )
hold on ; p l o t ( [ x_star (10) x_star (10) ] , [ 2 , − 2 . 5 ] , 'k− ' ) ; hold off ;
y l ab e l ( ' f ( x ) ' ) , x l ab e l ( 'x ' ) , t i t l e ( 'A ' )

subplot ( 1 , 3 , 2 ) ;
binWidth = 0 . 7 ; %This i s the bin width
binCtrs = −3: binWidth : 3 ; %Bin cente r s , depends on your data
n=length ( gp_samples ( : , 1 0 ) ) ;
counts = h i s t ( gp_samples ( : , 1 0 ) , binCtrs ) ;
prob = counts / (n ∗ binWidth ) ;
H = bar ( binCtrs , prob , ' h i s t ' ) ;
s e t (H , ' f a c e c o l o r ' , [ 0 . 5 0 . 5 0 . 5 ] ) ; hold on ;
gaus = normpdf ( −3 : . 1 : 3 , 0 , K (10 ,10) ) ; %r e qu i r e s S t a t i s t i c s too lbox
p lo t ( − 3 : . 1 : 3 , gaus , ' r ' , ' l i n ew id th ' , 3 ) ;
x l ab e l ( ' f ( x ) ' ) ; y l ab e l ( 'Freq ' ) , t i t l e ( 'B ' )
hold off ;

subplot ( 1 , 3 , 3 ) ; imagesc ( x_star , x_star , K/max(max(K ) ) ) ;
colormap ( ' gray ' ) ;
y l ab e l ( 'x ' ) , x l ab e l ( 'xp ' ) , t i t l e ( 'C ' ) ;

Listing 5.2: Function for calculation covariance matrix

f unc t i on [ K ] = calc_k (x1 , x2 , noise , kernel )
% Calcu la te covar iance
K = zero s ( l ength ( x1 ) , l ength ( x2 ) ) ;
I = eye ( s i z e (K ) ) ;
f o r i = 1 : s i z e (K , 1 )

f o r j = 1 : s i z e (K , 2 )
K (i , j ) = kernel ( x1 (i ) , x2 (j ) ) ;

end
end
K = K + I .∗ noise ;
end

5.3.1 GP regression

In the regression setting we are interested in drawing functions from the GP.
First step in the inference step is to condition the functions drawn from the
GP on the training data D = {(x1, y1), ...m(xn, yn)}, where X is the training
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input and y is the training output. We assume that our observations of the
targets y are corrupted by noise, i.e. the observation model is assumed to
be:

y = f+ ε,ε ∼N (0, Iσ2
n ) (5.7)

Because the noise is assumed to be independent of f we use that sum of
independent Gaussian the sum of the means and the sum of the covariance,
i.e.

y ∼ N (0,K(X,X) + Iσ2
n ) (5.8)

(5.9)

Following the notation of Rasmussen and Williams 2006, we have that the
joint distribution between our observed targets, y and the points that we
want to evaluate f∗ is given by:[

y
f∗

]
∼N

(
0,

[
K(X,X) + σ2

n I K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(5.10)

To get the distribution of f∗ we use standard rules of conditioning 2 on mul-
tivariate Gaussians, which gives the distribution of functions conditioned
on the test data (X∗), training data (X) and the observed targets (y):

f∗|X,y,X∗ ∼ N (f̄∗, cov(f∗)) (5.11)

f̄∗ = K(X∗,X)[K(X,X) + σ
2
n I]
−1y (5.12)

cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2
n I]
−1K(X,X∗) (5.13)

The equations above are used in listing 5.3 where we first condition on noise
free data and then on data including noise.

Figure 5.2 shows the figure produced by listing 5.3. Note than in panel
A) all functions passes through the observed data because we have assumed
that the observations has no noise. In panel B) noise is added and the func-
tions are allowed not to move through the observations. Panel C) shows
the mean of f∗|X,y,X∗ where the shade indicate uncertainty.

2See Rasmussen and Williams 2006 appendix A.2, p. 200, http://www.

gaussianprocess.org/gpml/chapters/RWA.pdf
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Figure 5.2: A) f∗|X,y,X∗ using noise free observations, B) shows
f∗|X,y,X∗ using observations with nose σ2

n , and C) shows f̄∗ using ob-
servations with noise. In C) The shaded error is the uncertainty.

Listing 5.3: conditioning f on data

%% samples cond i t i oned on observed data
% ca l c u l a t e mean and covar iance o f t r a i n i n g data (2 . 23 and 2 . 24 )
% ca l c u l a t e k see Rasmussen ( 2 . 2 1 )
% Observed data
x = [ −4 , −3 , −1 ,0 ,2 ] ;
y = [ −2 , 0 , 1 , 2 , −1 ] ' ;

k_xx_nonoise = calc_k (x , x , 0 , kernel ) ;
k_xx = calc_k (x , x , sigma_n , kernel ) ;
k_xxs = calc_k (x , x_star , 0 , kernel ) ;
k_xsx = calc_k ( x_star , x , 0 , kernel ) ;
k_xsxs = calc_k ( x_star , x_star , 0 , kernel ) ;

f_mean_s = k_xsx ∗ inv ( k_xx_nonoise ) ∗ y ;
f_cov_s = k_xsxs − k_xsx ∗ inv ( k_xx_nonoise ) ∗ k_xxs ;
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gp_samples_wdata_nonoise = mvnrnd ( f_mean_s , f_cov_s , 3 ) ;

f_mean_s = k_xsx ∗ inv ( k_xx ) ∗ y ;
f_cov_s = k_xsxs − k_xsx ∗ inv ( k_xx ) ∗ k_xxs ;
gp_samples_wdata = mvnrnd ( f_mean_s , f_cov_s , 3 ) ;

f i g u r e (2 )
subplot ( 1 , 3 , 1 ) ; p l o t ( repmat ( x_star ' , 1 , 3 ) , gp_samples_wdata_nonoise ' ,←↩

. . .
'LineWidth ' , 2 ) ;

y l ab e l ( ' f ( x ) ' ) , x l ab e l ( 'x ' ) ; t i t l e ( 'A ' )
hold on ; p l o t (x , y , 'bo ' , 'LineWidth ' , 5 ) ; hold off ;
subplot ( 1 , 3 , 2 ) ; p l o t ( repmat ( x_star ' , 1 , 3 ) , gp_samples_wdata ' , . . .

'LineWidth ' , 2 )

hold on ; e r r o rba r (x , y , ones (1 , l ength (x ) ) .∗ sigma_n , ' . ' ) ;
p l o t (x , y , 'bo ' , 'LineWidth ' , 5 ) ; hold off ;
x l ab e l ( 'x ' ) ; t i t l e ( 'B ' )

subplot ( 1 , 3 , 3 ) ; shadedErrorBar ( x_star , f_mean_s , d iag ( f_cov_s ) ) ; hold←↩
on ;

p l o t ( x_star , f_mean_s , ' r ' , 'LineWidth ' , 2 ) ; hold off ;
x l ab e l ( 'x ' ) ; t i t l e ( 'C ' )

5.3.2 Tuning the hyper parameters

We tune the hyper parameters by optimizing the marginal likelihood. The
marginal likelihood (evidence) is defined as:

Marginal Likelihood: p(y|X) =
∫

likelihood× function prior (5.14)

=
∫
p(y|f,X)p(f|X)df

f : training output (5.15)

f∗ : test output (5.16)

Where marginal refers to marginalization over the function values f. Equa-
tion 5.1 shows the definition of a GP, assuming that the mean is 0 we get
the prior distribution:

p(f|X) ∼N (0,K(X,X)) (5.17)

The likelihood is the probability of the targets given training out put:

y|f ∼N (f, Iσ2
n (5.18)
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The likelihood function is conditioned on the training output. If we con-
dition on the training outputs the distribution of y will be Guassian with
mean f and covariance Iσ2

n . To optimize this we find the log marginal
likelihood as:

y ∼N (0,K(X,X) + σ2
n I) = 2π−

n
2
∣∣∣K + σ2

n

∣∣∣− 1
2 (5.19)

· exp
(
−1
2
yT

(
K + σ2

n

)
y
)

ln(l) = −n
2
ln(2π)− 1

2
ln |K + σ2

n I | (5.20)

− 1
2
yT

(
K + σ2

n I
)
y

Listing 5.4 shows how the hyper parameters can be found using grid
search. In the example the observation noise σ2

n is keept at 0.1 and the
maximum marginal likelihood is found. The result of running listing 5.4 is
shown in figure 5.3. The left panel shows a contour plot of the negative log-
likelihood, where the red dot shows the minimum. The middle plot shows
three functions drawn from the function posterior and the right plot shows
uncertainty and mean prediction.

Listing 5.4: conditioning f on data

%% varying the hyper parameters
s_n = 0 . 1 ;
resolution = 200 ;
s_f = l i n s p a c e (0 , 5 , resolution ) ;
l_f = l i n s p a c e (0 . 00000 , 2 , resolution ) ;

marg_loglik = @ (n , K , y , s_n ) −0.5∗n∗ l og (2∗ pi ) . . .
−0.5∗ l og ( det ( K+eye ( l ength (K ) ) ∗s_n ) ) . . .
−0.5∗y ' ∗ inv (K+eye ( l ength (K ) ) ∗s_n ) ∗y ;
grid_mll = zero s ( resolution ) ;
f o r i = 1 : l ength ( s_f )

f o r j = 1 : l ength ( l_f )
sqr_exp = @ (x1 , x2 ) s_f (i ) ∗ exp (−(x1−x2 ) ˆ2 / 2∗l_f (j ) ˆ2) ;
K = calc_k (x , x , s_n , sqr_exp ) ;
n = length (y ) ;
grid_mll (i , j ) = marg_loglik (n , K , y , s_n ) ;

end
end
f p r i n t f ( ' \n ' ) ;

% p lo t negat ive l o g l i k e i hood , normal ized
% we need to f i nd the minimum
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f i g u r e (3 ) ; subplot ( 1 , 3 , 1 ) ;
im = −grid_mll . / max(max(−grid_mll ) ) ;
contour ( l_f , s_f , im ) ;
y l ab e l ( ' l ength ' ) ; x l ab e l ( ' \ s igma f ˆ2 ' ) ; t i t l e ( ' negat ive normal ized ←↩

l og l i k ' )
[ v , ind ]=min ( im ( : ) ) ;
[ sf_minidx , lf_minidx ] = ind2sub ( s i z e ( im ) , ind ) ;
lf_min = l_f ( lf_minidx ) ;
sf_min = s_f ( sf_minidx ) ;
hold on ;
p l o t ( lf_min , sf_min , ' or ' , 'LineWidth ' , 6 ) ;
hold off ;

kernel = @ (x1 , x2 ) sf_min ∗ exp (−(x1−x2 ) ˆ2 / 2∗lf_min ˆ2) ;
k_xx = calc_k (x , x , s_n , kernel ) ;
k_xxs = calc_k (x , x_star , 0 , kernel ) ;
k_xsx = calc_k ( x_star , x , 0 , kernel ) ;
k_xsxs = calc_k ( x_star , x_star , 0 , kernel ) ;

f_mean_s = k_xsx ∗ inv ( k_xx ) ∗ y ;
f_cov_s = k_xsxs − k_xsx ∗ inv ( k_xx ) ∗ k_xxs ;
gp_samples_wdata = mvnrnd ( f_mean_s , f_cov_s , 3 ) ;

subplot ( 1 , 3 , 2 ) ; p l o t ( repmat ( x_star ' , 1 , 3 ) , gp_samples_wdata ' , . . .
'LineWidth ' , 2 )

hold on ; e r r o rba r (x , y , ones (1 , l ength (x ) ) .∗ s_n , ' . ' ) ; hold off ;
x l ab e l ( 'x ' ) ; t i t l e ( ' 3 func t i on s drawn from Pos t e r i o r ' )

subplot ( 1 , 3 , 3 ) ; shadedErrorBar ( x_star , f_mean_s , d iag ( f_cov_s ) ) ; hold←↩
on ;

p l o t ( x_star , f_mean_s , ' r ' , 'LineWidth ' , 2 ) ;
p l o t (x , y , 'b . ' )
hold off ;
x l ab e l ( 'x ' ) ; t i t l e ( ' Uncerta inty and mean ' )
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Figure 5.3: The left panel shows a contour plot of the negative loglike-
lihood, where the red dot shows the minimum. The middle plot shows
three functions drawn from the function posterior and the right plot
shows uncertainty and mean prediction.
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5.4 Abbreviations

AUC Area under ROC curve

CHF Cummulative hazard function

CoxPH Cox Proportional hazard model

CV Cross validation

dmfs Distant metastatis free survival

ER Estrogen receptor

FISH Fluorescence In Situ Hybridization

fpr False positive rate

GP Gaussian Process

HER2 Human epidermal growth factor receptor

HR Hazard ratio

IHC Immunohistochemistry

NPI Nottingham prognostic index

OOB Out Of Bag sample

PgR Progesterone receptor

RF Random forest

rfs recurrence free survival

ROC Receiver operating characteristics

RSF Random survial forest

tpr True positive rate

STG St. Gallen consensus criteria

TSP Top scoring pair
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