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Summary

In this project a comparison of crossover and diversity-maintaining operators in
randomized search heuristics is performed on the Traveling Salesman Problem
(TSP).
Through a literature study, an initial overview of the �eld is provided. Basic
original operators and more advanced operators are described. Theoretical re-
sults a�ecting the �eld are presented.
A framework for solving TSP solutions and testing TSP-solvers is implemented.
Three operators are then selected, based on the literature study, implemented
and thoroughly tested on problems from the TSP-Lib online library.
An analysis of the results and �ndings from these tests, combined with the lit-
erature study is used to summarize the current state of the art of the �eld, and
present some future design principles of algorithms in the �eld.
It is found that the traditional pure genetic algorithms are not feasible in order
to obtain good performance for solving TSPs. Hybrid algorithms focusing on
combining the best properties of crossover with the properties of local search
heuristics are the current state-of-the-art of 'genetic algorithms' and has shown
the potential to improve solutions obtained by the state-of-the-art algorithms
for solving TSPs.
Diversity maintaining mechanisms are found to be important, however the use
of a simple injection strategy did not by itself provide an increase in �tness of
the solutions obtained.
Four guidelines for future design of hybrid algorithms/crossover-operators in the
�eld, is to have the crossover operator respect the principles of alleles transmis-
sion and respectfulnes, to use an e�cient local search heuristic, to use some
diversity maintaining scheme and to use an operator capable of exploration.
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Resumé

I dette projekt vil en sammenligning af crossover og diversitets-vedligeholdende
operatorer indenfor randomiserede søge-heuristikker blive udført på Traveling
Salesman Problemet (TSP).
Gennem et litteratur studie vil et indledende overblik over feltet blive givet.
Grundlæggende originale operatorer og mere advancerede operatorer vil blive
beskrevet. Teoretiske resultater der på virker feltet vil ligeledes blive præsen-
teret.
Et framework til at løse TSP instanser og til at teste algoritmer der løser TSP-
instanser implementeres. Derefter udvælges tre operatorer baseret på litteratur
studiet, implementeret og grundigt testet på problemer fra TSP-lib biblioteket,
der ligger online.
En analyse af de opnåede resultater og andre opdagelser fra de gennemførte
tests, kombineret med litteratur studiet bruges til at opsummere det nuværende
state-of-the-art indenfor feltet, og til at præsentere nogle fremtidige design prin-
cipper for algoritmer der anvender crossover på TSP-problemer.
Det viste sig at de traditionelle 'rene' genetiske algoritmer ikke kan betale sig,
hvis der skal opnås god performance når TSP-instanser skal løses.
Hybrid algoritmer, der fokuserer på at kombinere de bedste egenskaber fra
crossover konceptet og de bedste egenskaber fra lokale søge-heuristikker, er
det nuværende state-of-the-art indenfor 'genetiske algoritmer' anvendt på TSP,
og har vist potentiale i forhold til at forbedre resultater opnået ved hjælp af
generelle state-of-the-art teknikker.
Diversitets vedligeholdende mekanismer bliver fundet til at være vigtige, men
det ses også at en simpel injektions strategi, i sig selv, ikke giver en forbedring
af hvilken �tness-værdi der opnås.
4 anvisninger for fremtidigt design af hybrid algoritmer/crossover operatorer in-
denfor feltet er: at få selve crossover operatoren til at overholde principerne for
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alleles transmission og respectfulness, at bruge en e�ektiv lokal søge-heuristik,
at anvende en form for diversitets-vedligeholdende koncept og at bruge en op-
erator der er i stand til at sørge for udforskning af løsningsrummet.
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Chapter 1

Introduction

In this project the Traveling Salesman Person problem (TSP) will be considered.
TSP is an old optimization problem dating back to 19th century, and has it roots
from a handbook for german traveling salesmen: the traveling salesman, how
he must be and what he should do in order to get comissions and be sure of
the happy success in his business, by an old commis-voyageur [AS]. It was �rst
studied as a mathmatical problems in the 1930'ies.
The problem originally consists of a merchant that wants to visit n cities to sell
his goods, however he does not want to visit a city he has already visited once,
he wants to start and end in the same city, and he wants to have the tour be as
short as possible. Formally this can be described as follows:
The goal is, given a list of n cities and their internal distances, ci,j for all
1 ≤ i, j ≤ n, to construct a tour visiting all n cities exactly once, starting and
�nishing in the same city, and minimizing the sum. Formally that is minimizing
the value TotalCost, de�ned as follows:

TotalCosttour =

n−1∑
i=1

ci,i+1 + cn,1

This problem can be used to represent various problems in computer science,
examples include: vehicle routing, scheduling and dna sequencing and appear as
a subcomponent in slightly modi�ed forms in other problems. There are multi-
ple types of the problem. It can be symmetric, where the cost of going from city
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i to city j is equal going from j to i, or asymetric where this is not necessarily
the case. The distances can be Euclidean, that is the airline distance between
the two cities, metric (satisfying the triangle inequality) or arbitrary.
In this project the focus is on euclidean, symmetric problem instances, as they
are the most commonly appearing problems and hence the most studied.
The optimization problem has been shown to be computationally hard, belong-
ing to the class of NP-hard problems (Richard M. Karp, 1972). This means that
it is believed that no polynomial-time algorithm can solve the problem exactly
and thus obtaining an exact solution to a large instance is usually considered
infeasible. The combination of a commonly appearing problem, that at the same
time is computationally hard has made TSP a subject of considerable research.
Today it is often used as a 'benchmark problem', that is a problem where new
algorithmic ideas can be tested in order to compare it against other algorithms.
There are a number of di�erent approaches to solve TSPs, including exact
solvers, algorithms based on search heuristics and approximation algorithms.
Exact solvers includes branch & bound and cutting planes techniques. They are
characterized by using considerable time in order to achieve the optimal solution
to a problem instance.
Approximation algorithms tries to approximate the optimal solution, but does
so in reasonable time. An example is Christo�des algorithm that guarentees a
solution at most 50% excess, but �nds it very quickly.
Search heuristics are algorithms that often gets very close to the optimal so-
lution, in relatively short time, without having a formally proven guarentee
for this. This includes Local Search algorithms and Evolutionary Algorithms.
Heuristic search has historically been very e�ective on TSP problems.
I will in this project look at subset of evolutionary algorithms, genetic algo-
rithms and their performance on TSP.

Evolutionary algorithms (EA) are a class of generic heuristic solvers, that mimics
real life evolution theories. Evolutionary algorithms consists of a couple of
concepts and operators that that can be adjusted depending on the problem
instance:

• It runs for a number of iterations, called 'generations'

• It maintains a number of search points, called 'individuals', these are
stored in a 'population'

• It has a �tness evaluation operator, that can assign '�tness' value to the
individuals

• It has a reproduction selection operator, that selects one or more individ-
uals, 'parents' for 'reproduction'
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• In the reproduction step an 'o�spring' is created from the 'parent(s)'

• The o�spring is then with a certain probability 'mutated', that is some
part of it is randomly altered

• then 'survival selection' is used to select the individuals for next genera-
tions population. Those are chosen from among the current population
and the generated o�springs.

• a 'stopping criteria' for when to stop the process. It can be number of
generations, when no improvements is made etc.

A general EA will work as follows: �rst the population is �lled with randomly
generated individuals. In every generation individuals are selected to reproduce.
The o�spring(s) are exposed to mutation and the next population is �lled by
survivor selection. This process continues until the stopping criterion is met.
Genetic Algoritms (GA) are evolutionary algoritms extended with a 'crossover'
operator. A crossover takes two or more individuals selected for mating, it then
builds one or more o�springs using the parent solutions. They can be recombined
in many di�erent ways and there exists a bunch of di�erent crossover operators.
Some are generic, where others tries to make as informed choices as possible.
A common reasoning behind crossover operators is the building-block hypothesis
[Gol89], [Hol75]. This hypothesis informally states that if one can create multiple
solutions that has 'good' subcomponents, that is subcomponents that are have
a high �tness value, or are as they should be in the globally optimal solution,
crossover should be able to recombine these blocks in order to obtain new and
better solutions.

Algorithm 1 Generic GA

Create an initial population of search points,p
while some stopping criteria is not met do
Select two or more search points from p for mating
Perform crossover to obtain new o�springs
With a certain probability mutate the o�springs
Select the appropriate individuals for survival into the next generation pop-
ulation, p1 based on some parameters speci�ed by the programmer
Evaluate the stopping criteria

end while

Development and selection of appropriate crossover operators for di�erent prob-
lems are a large topic within evolutionary computing.
Mutation operators are another frequent topic for research, the purpose of this
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operator is normally to ensure that potential 'good' part solutions that are lost,
can be recreated. It is also capable of generating new genetic material, that has
not been seen before.
Survivor selection and selection for reproduction are other important concepts.
When searching with a algorithm using a search heuristic, a key concept for
achieving good performance, is balancing the 'exploration' of the search space
and the 'exploitation' of good points in the search space. If there is too much
focus on exploration, the algorithm will be very slow to converge on a good solu-
tion. If there is too much focus on exploitation, it might converge prematurely
and be stuck in local minima, thus missing better points in the search space.
For GAs all its various operators can be used to emphasize both exploration
and exploitation. In GA's the concept of 'diversity' in a population is used as
a measure to how much emphasis is currently on exploitation and exploration.
Diversity is a measure for how di�erent the individual search points are from
each other. Diversity and the preservation of it is thought to be important on
multi-modal �tness landscapes (problems that have a lot of local minima).
GAs have been used on TSPs since the early eightees [GL85]
Another line of research seeks to combine multiple di�erent search heuristics
to achieve better performance, those algorithms are called 'Hybrid-algorithms'.
An algorithm combining local search with a genetic algorithm is an example of
a hybrid-algorithm.

In this project I will start by conducting a literature study over various crossover
operators. The goal is to get an overview of the current state-of-the-art as well
as an understanding on what makes a good crossover operator for TSP. I will
futher look into some of the auxillary concepts that are important to make a
genetic algorithm work.
I will then select 3 di�erent crossover operators and the algorithms they are
embedded in, for further study. I will try to apply some diversity-maintaining
mechanisms to these algorithms in order to see if it will result in any improve-
ment on the performance.
The 3 algorithms will be implemented, according the the introducing papers if
possible, and tested on a number of TSP instances.
Statistical tests are then applied to compare the algorithms �tnesswise, in order
to determine if any statistical inference can be made of the performance of the
algorithms.
I will then use the results and the insight from the testing, to see if I can identify
any common traits, concepts that are a strength in the search, and some general
weaknesses/issues.
I will �nish by comparing the tested algorithms to each other, and �nally to
other known solvers on tsp.



Chapter 2

Known Crossover-operators

and Diversity Mechanisms

In this chapter I will present the results of a literature study over crossover op-
erators for TSP. During the study many di�erent ideas were encountered, since
most of these where quite similar, I have chosen to describe some early original
ideas and then what seems to be state of the art. For every operator I describe
the idea, present the algorithm, show an example and provide a brief analysis.
I have split the operators into 'basic' and 'more complex' operators. The last
category is made up of operators that either combine di�erent ideas, build on
the original concepts or are based on concepts that seems to be considered gen-
eral guidelines in the �eld.
The literature study was primarily conducted by reading papers describing the
operators and corresponding algorithms, survey papers comparing multiple al-
gorithms, papers describing concepts and a slide-format survey of important
concepts in crossover for TSP found in [Jak10]. The following papers have consti-
tuted to this section: [WSF89][Hol75][GL85][OSH87][Dav85][Ahm10][WHH09][WHH10][RSJJ94][Hel00]
[ACR03][RBSMBT][HWH12][FOSW09][CS96][WRE+98][Gol89][SS11][RBP05]
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2.0.1 Basic Requirements of Crossover Operators

In traditional genetic algorithms the problem instance is usually encoded as a
bitstring. The bitstring representation is very e�ective in order to represent a
TSP problem instance, hence the early attention in the EA community was to
�nd an e�ective way to represent the problem. The best, and the default, repre-
sentation for tsp instances was quickly established to be the path-representation.
In this, a tour is represented by a list of city id's, the id 's are listed in the order
they are visited in the tour. An edge between the �nal element and the �rst
element is assumed. Usually 0-based indices are used, and this will be used in
this project.
Using this representation, a search with a genetic algorithm basically considers
permutations to the initial list of cities.
One problem with this presentation is that it is not feasible to solely use the
standard crossover ideas like uniform, 2-point crossover etc. This is due to the
restriction that a city must only appear once in the list, as it otherwise would
be visited twice.
Using uniform crossover, where for every position in the o�spring there is 50%
chance for each parent to provide the gene, for example, there is a large chance
that the resulting o�spring will be illegal, as at least one city would likely appear
twice in the o�spring.

2.1 Original Crossover Operators for TSP

The �rst attempts of using Crossover in relation to TSP happened in the early
eightees. Originally the focus was on simple crossover schemes that solved the
issues from 2.0.1 and thus created legal o�springs, as well as preserving the ab-
solute positions of the cities in either parent.
Whitley et al. [WSF89] [Jak10], suggested that this approach was �awed, and
the goal should instead be to preserve the relative order of cities, as the most
important part was the edges. This reasoning has been largely prevailant since,
examples include [WSF89],[Ahm10],[RSJJ94], [WHH09], [WHH10] and its dom-
inance been established through multiple studies. Early implementations at-
tempting to use this concept includes the Edge Recombination operator and
the Order operator.
The majority of these early original concepts are, based on their stated results,
not feasible compared to state-of-the art techniques, like algorithms based on
the Lin-Kernighan search heuristic. For every algorithm, I will explain the work-
ings, write up an abstract algorithmic description, provide an example, followed
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by a brief analysis.

2.1.1 Cycle Crossover

Cycle Crossover (CX) is an older method devised in 1987 by olivier et. al.
[OSH87]. It is based on the assumption that it is important to preserve the ab-
solute position of cities. Thus a city preferably inherits its position from either
parent.
Informally the goal of the algorithm is: 'By looking at cycles, the goal is to get
as many cities as possible placed from one parent, while the rest is taken from
the second parent'.
In CX a cycle is determined as follows:
Let the element in the �rst parent at index 0 be c, then �nd the location in
parent 1, of the element at index 0 in parent2. Repeat for the new index.
This is repeated until the considered element from parent 2 is the same as c.
The indices considered in this process constitutes a cycle.

Algorithm 2 CX-crossover

p1 denotes the �rst parent,
p2 denotes the second parent,
o� denotes o�spring.
Let i=0;
Let start = p1[i]
//STEP 1 �nd a 'cycle'
while true do
Let a = p2[i]
o�[i] = p1[i]
if a == start then
stop cycle 1

end if

let i be the location of a in p1
end while

STEP2: Fill remaining positions in o� with cities from p2
STEP3: Repeat the algorithm but swap p1 and p2, to a second o�spring.

Example:

Assume we have selected the following two individuals as parents:

p1: 1 2 3 4 5 6 7 & p2: 7 5 1 3 2 6 4



8 Known Crossover-operators and Diversity Mechanisms

let o�1: 0 0 0 0 0 0 0 & let o�2 0 0 0 0 0 0 0

After step 1 of the algorithm the �rst o�spring looks as follows: 1 0 3 4 0 0 7

After step 2 of the algorithm the �rst o�spring looks as follows: 1 5 3 4 2 6 7

Using the same approach the second o�spring is produced.

After step 1: 7 0 1 3 0 6 0

After step 2: 7 2 1 3 5 6 4

Analysis:

This concept emphasizes the cities, where in fact, a good solution is likely to
have good connections between cities, that is, the edges between the cities are
favorable. In this case we could in a single crossover replace all the old edges
with newer ones. It has since been argued that the key is to preserve the relative
position of cities and the edges [WSF89].
In fact multiple studies have shown that CX is one of the worst operators con-
sidered for TSP, as for example in a thorough study performated at Carnegie
Mellon in 1996, [CS96]. In the study, CX gets the following comment:
" ..position based operator working on sequential type problem.."
Thus emphasizing the mismatch between the problem types for which CX is
suited for and the actual problemtype of TSP.

2.1.2 Partially Matched Crossover

Partially Matched Crossover (PMX) is one of the �rst operators suggested, it
was presented in 1985 by Goldberg in [GL85]. It aims to preserve the relative
ordering of cities.
The main idea is to exchange a varible area between two points (a segment of the
tour), and then �ll the remaining spots in the o�spring, directly with cities from
the opposite parent. The remaining cities are placed using a mapping between
the exchanged genes, and preserving the order from the oppposite parent.
In 3 I have presented an informal version of the PMX algorithm. p1 and p2 are
the two individuals chosen for mating.

Example:

Assume we have selected the following two individuals as parents:

p1: 2 5 4 7 8 6 1 3 & p2: 1 2 3 8 4 7 6 5
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Algorithm 3 PMX-crossover

p1 denotes the �rst parent, p2 denotes the second parent,
o�1 denotes the �rst o�spring. o�2 denotes the second o�spring.
//step 1
Choose two points in the string according to the chosen strategy
let left = �rst chosen point
let right = second chosen point
//Step 2
for m between left and right do
let o�1 [m] = p2 [m]
let o�2 [m] = p1 [m]

end for

//STEP 3 �ll the remaining spots in the o�springs with cities from the cor-
responding parent, while legal
for remaining positions, m, in the o�springs do
if setting o�1 [m] = p1 [m] is legal then
o�1 [m] = p1[m]

end if

if setting o�2 [m] = p2 [m] is legal then
o�2 [m] = p2 [m]

end if

end for

//STEP 4 construct a mapping
if any position in the o�springs are un�lled then
construct a mapping between elements in p1 and p2 between left and right

end if

//STEP 5 �ll remaining positions.
for every un�lled position in o�1, i do
�nd the element p1 [i ]
�nd the element, a, that p1 [i ] maps to, in the mapping from step 4.
while a has occurred elsewhere in o�1 do

let a = the element a currently maps to
end while

let o�1 [i ] = a
end for

repeat STEP 5 for o�2, reversing the roles of p1 and p2.
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let o�1: 0 0 0 0 0 0 0 & let o�2 0 0 0 0 0 0 0

In step 1, left is chosen to be to 2 and right is is 5.

After step 2 of the algorithm the �rst o�spring looks as follows: 0 0 3 8 4 7 0 0

After step 2 of the algorithm the second o�spring looks as follows: 0 0 4 7 8 6 0 0

After step 3 of the algorithm the �rst o�spring looks as follows: 2 5 3 8 4 7 1 0

After step 3 of the algorithm the second o�spring looks as follows: 1 2 4 7 8 6 0 5

In step 4 this mapping is constructed: 4↔ 3, 7↔ 8, 4↔ 8, 6↔ 7.

After the �nal step of the algorithm the �rst o�spring looks as follows: 2 5 3 8 4 7 1 6

After the �nal step of algorithm the second o�spring looks as follows: 1 2 4 7 8 6 3 5

Analysis:

PMX seeks to maintain the relative ordering, however in some cases it is only
the cities between the cut points for which this holds. If we consider the example
above, o�2 introduces new edges 6 ↔ 3 and 3 ↔ 5. o�1 introduces new edges
1↔ 6 and 6↔ 2, thus changing the relative ordering of the cities.
It maintains good edges between the cutting points, in most cases. However
there is a large chance that new edges are introduced outside of the cutting
points.
Studies over various operators have shown that there are more e�cient operators
than PMX, and more recent operators outperform it signi�cantly [Jak10]. This
is likely due that a lot of new edges can get introduced outside of the cutting
points. In [Jak10] and insinuated in [RSJJ94] it is stated that good crossover
operators preserve the good edges, and does not introduce new edges.

2.1.3 Edge Crossover

Edge Crossover (EX), originally suggested in 1989 by Whitley [WSF89], was
the �rst to explicitly focus on the edges. The operator was designed such, that
the number of new edges introduced in every generation, should be as small as
possible. This approach was considered a breakthrough for crossover operators
on TSP [Jak10] and used as a basis for new operators afterwards.
The algorithm can brie�y be described as such:
EX starts by constructing an Edge-map for every city. An Edge-map for a city,
c, is a list of all cities c can reach through one edge in both parents. If c has a
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transition to another city j in both parents, this transition is only represented
once in c's edgemap (and conversely in j 's).
Iteratively the city with the lowest degree (where the size of the edge-map is
smallest), c_min, is chosen. c_min is then placed in the o�spring and removed
from every edgemap. All cities in c_min's edgemap is added to a queue of un-
processed nodes.
The next city is now chosen from this queue. If the queue is empty, the next
city is chosen at random among cities not yet considered.

Algorithm 4 EX-crossover

p1 denotes the �rst parent,
p2 denotes the second parent,
let o� denote the o�spring.
Construct an edgemap for all cities
Initialise a list, unvisited, consisting of all unvisited cities, intitially this list
contains all cities.
initialise a list of cities, called entry-list
choose a city, i, at random
while unvisited is not empty do
i is added to the back of o�
i is removed from all edgemaps
i is removed from the list unvisited
add the cities in i 's edgemap, and not in unvisited to entry-list
if entry-list is not empty then
choose the city from entry list with lowest degree

else if if unvisited is not empty then
choose a city at random from unvisited

else

return the obtained o�spring
end if

end while

Example:

Assume we have selected the following two individuals as parents:

p1: 1 2 3 4 5 6 & p2: 2 4 3 1 5 6

let o�: 0 0 0 0 0 0

First the edgemaps are constructed:
1: 2,6,3,5
2: 1,3,6,4
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3: 2,4,1
4: 3,5,2
5: 4,6,1
6: 5,1,2

In the initial selection I randomly select city 2:
STEP 3: o�: 0 0 0 0 0 2
STEP 4: 2 is then removed from all edgemaps:
1: 6,3,5
2: 1,3,6,4
3: 4,1
4: 3,5
5: 4,6,1
6: 5,1
STEP 5 and 6: The list unvisited and entrylist:
unvisited: 1,3,4,5,6
entrylist: 1,3,6,4
STEP 7: 4 is chosen as the next city as it has the smallest degree (tied with 3
and 6).
The process is now repeated from STEP 3 until the o�spring is complete. One
potential o�spring completed in this way could be:
2 4 3 1 6 5

Analysis:

EX was one of the �rst to focus explicitly on the edges. The focus on preserving
edges resulted in very few new edges being created in every crossover step.
There are however some drawbacks with this method. One such drawback is
that it is not very e�cient in 'identifying' and combining good building blocks.
Mostly edges are preserved, but ER often has to choose between edges from the
two parents.
In every selection step, if there are multiple options, the selection criteria is the
size of the edgemaps. These edgemaps can be of size 1,2,3 or 4, and as seen in
my example, the options will often have the same size of edgemap, which make
the choice stochastic.
In my example, when choosing the next city after considering city 3, the choice
was between cities 1,5 and 6. If city 6 had been chosen a new edge would have
been introduced ,6↔ 3, but the current selection used an existing edge 3↔ 1.
This illustrate a potential problem in this operator, as the former is discouraged
behaviour and the latter is encouraged in the theory behind the design of EX.
The core ideas behind EX in�uenced later design of algorithms in the �eld.
The concept of edgemaps have been used in later algorithms, notably in the Par-
tition crossover and Generalized Partition Crossover presented in [WHH09][WHH10].
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These algorithms will be described later in this project.
The focus on preserving good edges, further supported by [RSJJ94], were used
in a multitude of later algorithms, as described in [Jak10].
Today EX is by itself no longer competetive with newer algorithms in the �eld.

2.1.4 Order Crossover

Order Crossover (OX) was one of the most succesful early crossover operators,
devised by Davis in 1985, [Dav85]). OX tries to retain the relative order of
cities, thus minimizing the number of new edges that needs to be introduced.
As in PMX two cut points are chosen, the cities between those points are placed
directly in the respective o�springs. The remaining places from the second cut
point and on, are �lled, with cities from the opposite parent (disregarding cities
already placed in the o�spring). Thus it chooses a subsequence from one parent,
and tries to keep the relative ordering from the other parent.

Algorithm 5 OX-crossover

p1 denotes the �rst parent, p2 denotes the second parent
o�1 denotes the �rst o�spring, o�2 denotes the �rst o�spring
choose two cut points, left and right
Let start = p1[i]
for m between left and right do
let o�1 [m] = p1 [m]
let o�2 [m] = p2 [m]

end for

//STEP 3
let a the �rst element to the right of right in p2, that has not yet been placed
in o�1
o�1 [right+1] = a
for the remaining positions, m do

let a = the next, not yet occured in o�1, city to the right of a in p2
o�1 [m] = a

end for

STEP4: Repeat STEP 3 but swap p1 and p2, to produce o�2

Example:

Assume we have selected the following two individuals as parents:

p1: 1 3 4 5 8 7 2 6 & p2: 2 4 1 8 7 6 3 5

let o�1: 0 0 0 0 0 0 0 & let o�2 0 0 0 0 0 0 0
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In step 1, left is chosen to be to 2 and right is is 5.

Filling the sequence between cutpoints for the �rst o�spring: 0 0 4 5 8 7 0 0

Filling the sequence between cutpoints for the second o�spring: 0 0 1 8 7 6 0 0

The remaining positions are �lled according to step 3
First o�spring: 1 6 4 5 8 7 3 2

Second o�spring: 4 5 1 8 7 6 2 3

Analysis:

OX emphasizes maintaining the relative ordering of citites. The chosen subse-
quence will remain intact, however when �lling out the remainder, new edges
will most likely be introduced. Consider the follwing:
If a city, c is in the chosen sequence in the �rst parent, but outside the sequence
in the other parent, at least one new edge (likely two) will need to be introduced.
This happens as when the opposite parent attempts to �ll the o�spring outside
of the cutpoints, it cannot add c and thus the relative order will be broken at
least once.
OX has been shown to be one of the more e�cient operators of the early ones.
Studies in japan and at Carnegie Mellon [Jak10] [CS96], and later papers on
new operators [RBP05], shows that it is superior to other operators presented
at the time. It is possible that, this is due to the maintenance of a subsequence,
and the (potentially) relatively few new edges introduced outside of the choice
points, thus it is closer to the guidelines in [RSJJ94] than many contemporaries.
Some work has been done trying to optimize the performance of OX, by �nding
the best way to choose the cut-points. Several attemps have been made, and
results indicate that it indeed improves performance, at least on some instances.
[RBP05]
Combining results from recent articles on OX indicates that it is inferior to some
recently developed operators [Ahm10],[RBP05].

2.2 Theoretical Findings on the Subject of Crossovers

on TSP

Some theoretical work has been done both speci�cally on this subject, and in
the �eld in general, that applies to this particular subject.
In 1994 Radcli�e and Surry presented a paper in [RSJJ94]. In the paper they
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argued that, to achieve the best succes with crossover on this particular problem,
the two following principles should be observed:

• The crossover should transmit alleles

• The o�springs should be respectful

Alleles transmission means that all edges in the o�spring should come from ei-
ther of the parents. Thus no new edges are introduced.
O�spring respectfulness means that all edges that are in both parents should
also be in the o�spring.
Watson argued [WRE+98] that crossover should introduce new edges in order to
not be stuck in a local minimum. The problem with this argument is, that this
feature can be achieved through other operators used in a genetic algorithm,
like the mutation operator. And as such it does not have to be a principle in
the design of the crossover operator itself.
A study from Carnegie Mellon in 1996, [CS96] argued amongst others, for the
principles og the building block hypothesis, and that by recombining above aver-
age sub-subcomponents through crossover crossover could speed up local search
heuristic. Suggesting a hybrid approach between genetic algorithms and local
search heuristics.
Other suggestion of the Radcli�e article, included combinining crossover opera-
tors with local search heuristics, in order to exploit the building blocks hypoth-
esis.
Recently Witt et al. [FOSW09] Argued that diversity is important for EAs
working on multimodal �tness landscapes, TSP-problems have such a �tness
landscape. Although GAs are di�erent than EAs, these �ndings suggests that
diversity could also be important for genetic algorithms. These thoughts are
also expressed by Whitley et al. in [WHH10].

2.3 More complex operators

In the last decade there has been a shift in the design of crossover operators.
Earlier the operators were completely stochastic, as usually seen in standard
GAs. Now operators, that try to make 'intelligent' choices during crossover,
instead of relying only on stochastic choices, are being devised. These operators
are usually developed using three di�erent backgrounds.
Many new operators introduce a simple improvement on earlier operators. Im-
provements could be, adding an informed choice instead of a stochastic choice
somewhere in the algorithm, a minor tweak to the processing or the addition of
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an extra component. Examples of this includes [RBP05],[SS11].
Some researchers have tried to combine di�erent �elds in a single operator.
Incorporating greedy or logical reasoning to determine which genes the dif-
ferent parents should contribute to the o�spring. Examples include [Ahm10]
[RBSMBT].
Finally operators have been devised based on theoretical knowledge and insight
of the problems obtained through earlier studies, as brie�y described in 2.2.
Studies like [RSJJ94] and [CS96] and operators like [WSF89] have suggested
a basis for the design of new operators. Operators following these sugges-
tions include Partition Crossover [WHH09] and Generalized Partition Crossover
[WHH10].
The standard GAs have been largely unable to compete with local search heuris-
tics such as the Lin Kernighan search. This has prompted some researchers to
seek to combine local search heuristics with crossover. They seek to achieve the
fast creation of good search points (hopefully containing good building blocks)
from local search, and the ability of crossover to combine building blocks. Gen-
eralized Partition Crossover is the best example of this, that I could �nd.

I have selected three operators for closer analysis, which will be presented in
this section.

• Extended Order Crossover, that add minor improvements to an existing
operator.

• Sequential Constructive Operator, that try to make intelligent choices
when constructing the o�spring.

• Partition Crossover and Generalized Partition Crossover (which uses par-
tition crossover), they are based upon research and the results of studies
like [RSJJ94].

2.3.1 Order and Modi�ed Order Crossover

As OX was one of the initial operators with most succes, numerous attemps to
build on it, has been made. Examples of this are the Modi�ed Order Crossover
(MOC) [RBP05] and the Modi�ed Order Crossover (MOX) [SS11]. Both of
these examples attempts to �nd a smarter way to choose the subsequence that
directly carries over.
The MOC operator tries to limit the size of the subsequence, instead of choosing
the length of the string to be random, it is �xed beforehand. By experiments
the authors of [RBP05] found that a subsequence length of l = max2, α for



2.3 More complex operators 17

n/9 ≤ α ≤ n/7 where n refers to the number of cities in the problem.
The MOX operator tries to optimize the manner of how the selection points
are chosen. The belief is that by adding an element of greedyness, it might be
possible to get more 'good' edges in every generation. Speci�cally it aims to
include the minimal cost edge.

Algorithm

The algorithm is exactly as standard OX, but for MOX, when choosing the �rst
point of the subseqence (the �rst selection point), all edges are scanned and
the minimum cost edge is included. Thus the selection point will be before the
�rst city included in the minimum cost edge. The second point is still chosen
randomly. For MOC the �rst point is chosen randomly and the second point is
a distance of l to the right.

Analysis:

Both examples constitues minor optimizations. MOX prefers exploitation over
exploration, and thus seems to have a better chance of preserving good edges.
However since only the best edge is guarenteed to be in the sequence, and the
problem is multi-modal, the majority of good edges, could still be outside the
sequence.
The computation time is slower, due to the need to �nd the minimum element
which takes at least O(n) extra time. No usable results for MOX were reported.
MOC is primarily used to decrease the computation time of standard OX, with-
out decreasing the quality of the obtained solution. According to [RBP05] the
time is lowered, but the results obtained by the MOC is not compared to that
of the standard OX. However the results they report, does not seem to indicate
that MOC is a major upgrade or downgrade.
In general the extension operators I have found suggests that minor modi�ca-
tions can improve slightly on the original operator, but the capacity of the new
algorithm will still be close to the original.

2.3.2 Sequential Constructive Crossover

The SCX operator was suggested by Zakir Ahmed in [Ahm10] in 2010. This
operator largely tries to preserve good edges, but adds an element of greediness,
in the hope of creating new good edges. It builds the o�spring sequentially from
the two parents.
It starts from the �rst element in one of the parents, then in every step it
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considers the next unvisited city after this city in both parents. If there is none
(it considers the parent tours as paths), then the �rst unvisited city in the set of
cities, sorted by index, is chosen. The two chosen cities are then compared by
looking at the edge cost of getting there from the current city. The one with the
smallest cost is chosen as the next city in the o�spring. This process continues
until the o�spring is fully constructed.
example

To illustrate this operator, consider this cost matrix:
Costmatrix 1 2 3 4 5

1 0 8 7 4 8
2 8 0 6 5 7
3 7 6 0 9 10
4 4 5 9 0 6
5 8 7 10 6 0

Assume we have selected the following two individuals as parents:

p1: 2 3 1 5 4 & p2: 1 2 4 5 3

let o�spring: 0 0 0 0 0 0 0

In step 1, 2 is placed and we consider the successor to 2:
There are two options: 3 and 4, since (2↔ 4) is the cheapest edge we choose it

The o�spring is then: 2 4 0 0 0

When selecting the next city, 4 has no successor in p1, I then select the mini-
mum index city that has not yet been placed to represent p1. The options are
then: 1 and 5, and since (1↔ 4) is the cheapest edge we choose it

The o�spring is then: 2 4 1 0 0

This is continued until all places in the o�spring is �lled.
the �nal o�spring is: 2 4 1 5 3

Analysis:

SCX tries to get the immediate best city at every step, while still preserving
order if possible. This combination of greediness and preservation appearently
provides better results, at least than the operator EX [Ahm10]. It is claimed in
the same study that SCX ensures that the o�spring inherits good characteristics
from the parents. Meaning that the edges, found to be good at the time, will
mostly be preserved.
In the above example, one globally good edge is created, (1↔ 4), and two glob-
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ally good edges are destroyed, (3↔ 1), (4↔ 5). The new o�spring has a higher
total �tness than the second parent, and will thus be selected in a deterministic
crowding selection, that SCX in [Ahm10] uses. However the o�spring and the
�rst parent combined contains all 3 globally good edges, thus the total number
of good edges in the population has increased by one. In this case the end-result
was positive (an increase in total number of good edges), but the example indi-
cates, that there is a potential of destroying good edges.
In the example presented in the article, 71% of the edges in the o�spring comes
from either parents [Ahm10]. Thus SCX is not in strict accordance with the
guidance of respectfulness and alleless transmission laid down in [RSJJ94], in-
sinuated in [CS96] and introduced in 2.2. This might lead to an expectation that
this operator will not work as well as operators fully adhering to the mentioned
principles.
Another issue with SCX is that it seems to be trying to perform two roles simul-
taneously (crossover and mutation). In one crossover step it develops new edges
(ca. 28%), these edges are constructed in either greedy or random fashion.
There is an issue that the greed could break up good subcomponents, which
especially on a multimodal �tness landscape as TSP, could negatively impair
the abiliy to use two local minimas to obtain a new and better local minima.
However it could also lead to faster convergence times, as new good edges are
created. Both concepts were illustrated in the above example.

2.3.3 Partition Crossover

Partition Crossover (PX) is presented in [WHH09] which won the best paper
award at the '09 Genetic and Evolutionary Computation Conference, which is
the most in�uential conferences in the evolutionary computing community.
In [WHH09] PX is presented based on earlier knowledge of TSP and GAs. It
presents the algorithm but does not include a �nished set up for testing. A
further improved test version was introduced a year later in [WHH10]. The core
concept in PX is a partitioning of the union graph of the two parent tours. A
partitioning is in this case a seperation of the graph into multiple disconnected
parts called partition components. In PX the goal is to �nd a single partition-
ing of cost 2. The cost refers to how many edges that has to be cut in order to
construct the partitioning. The goal of a partitioning in PX is thus to split the
graph into two partition components by only removing two edges (if there is a
common edge, it counts as one).
The Partition operator works by constructing the union of the two parent tours,
the union-graph. It then searches for a partition of cost 2. If it �nds such a
partition the graph is split into the two partition components. Inside each par-
tition it chooses to use the edges of only one of the parents. The o�spring is
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then constructed using the two relevant subtours. If no partitioning is found, it
is not feasible to use PX and the parents are returned as o�springs.
The described partitioning problem in PX, is a special instance of the general
partitioning problem, which is believed to be NP-hard[WHH09]. In order to
construct the partitioning e�ciently the authors use the following method to
construct the partitioning:

• First the edgemap for all cities is constructed. Marking all common edges
along the way.

• Then all nodes that have degree 3 or 4 are found (nodes that have 0 or 1
common edge in its edgemap)

• Starting from the �rst node with degree 3, c, all nodes connected to c
through only nodes of degree 3 or 4 are labelled to the �rst partition p1.

• If there are any nodes of degree 3 or 4 not labelled to the �rst partition,
and there are exactly two nodes in this component that has connections to
nodes not in the partition. crossover is feasible and the two components
are p1 and the remaining nodes in the other partition.

• otherwise return fail

A visual representation of a union graph, and potential partition is shown in
2.1.
It can be seen that if the common edges are removed from the union-graph,
potential partition components will be seperated. This insight is the reason for
only considering nodes of degree 3 and 4 in their algorithm.
The resulting o�spring is respectful as all edges present in both parents are in
the o�spring. It has alleles transmission as all edges comes from one of the
parents. It thus adheres fully to the principles from [Jak10] and [RSJJ94].

Example and discussion will be done in next subsection under Generalized Par-
tition Crossover.

2.3.4 Generalized Partition Crossover - Hybrid Algorithm

Generalized Partition Crossover (GPX) is presented in [WHH10] and is an en-
hanced version of the partition crossover (PX) suggested by Whitley et. al in
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[WHH09]. This version optimizes a potential weak spot in PX. GPX follows the
guidelines established by [Jak10],[RSJJ94] [CS96], o�springs are respectful and
GPX is capable of 'tunneling' directly to new local optima. Tunneling means
that it is capable of taking two local minima and directly construct a new local
minimum.
This operator has been used in conjunction with various local search operators,
in hybrid algorithms.
The general idea in GPX, as in PX, is to partition the problem into smaller
parts (by parting through common edges between parents) and then try to lo-
cally optimize each part as they are independent of other clusters. As opposed
to PX, GPX will consider all potential partitions (of cost 2), choosing the most
promising parent in each partition component.
GPX works (as PX) by taking the union of the two parent tours, then searching
for all partitions of cost 2. Inside each of the k partition components, it then
makes a greedy choice of either following the edges from one parent or the other.
The main di�erence from PX is, that it uses all possible partitions, to construct
as many partition components as possible. If a single partitioning cannot be
found, it reports that crossover is unfeasible.
The actual hybrid algorithm combines the crossover operator with Lin-Kernighan
search, the scheme presented in [WHH10] is presented in 6, the additional algo-
rithms used in this version will be described later in this chapter.

Algorithm 6 GPX-crossover-hybrid algorithm

initialise a population p of size m
apply lin-kernighan search to all m tours and evaluate
while stopping criteria is not met do
create a temporary population p_temp
attempt to recombine the best tour in p with the remaining m-1 tours in p

if crossover is unfeasible with a tour i then
mutate i with a double bridge move, and place it in p_temp

end if

place the best solution among o�spring and the previous best tour in
p_temp
from the set of o�spring, select tours to �ll p_temp using diversity selection

apply lin-kernighan search to all members of p_temp
set p to be p_temp
evaluate stopping criteria

end while
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Example of the GPX operator itself:

Assume the following two parents have been selected for mating.
p1: 2 1 9 8 4 6 10 3 5 7

p2: 2 8 9 1 4 6 5 3 10 7
The optimal solution is:
opt: 2 1 9 8 4 6 10 3 5 7
The following holds for the edges:
8↔ 4 is smaller than 8↔ 3,
4↔ 6 is smaller than 4↔ 3,
2↔ 1 is smaller than 2↔ 8,
8↔ 4 is smaller than 1↔ 4,
6↔ 5 is smaller than 6↔ 10,
6↔ 10 is smaller than 6↔ 3,
10↔ 7 is smaller than 5↔ 7,
Using GPX, the union graph is �rst constructed shown in �gure 2.1. A potential
partition is then found. The edges that needs to be cut in order to partition
this graph, are shown by the large dash through them. The pathlength of each
parent inside each component is compared in order to pick the best parent inside
each component.
In the �nal result p1 will provide the edges inside the �rst partition component,
and p2 will provide the edges in the second partition component, resulting in
the following o�spring:
o�: 2 1 9 8 4 6 10 3 5 7
Which is actually the optimal solution.

Figure 2.1: a simple example of the GPX operator
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Analysis:

GPX is thoroughly analysed by Whitley in the introducing paper [WHH10]. He
argues that since all edges come from either of the parents it transmits alleles.
Since every common egde will be used by the o�spring, the o�spring is respect-
ful. He proves that GPX considers up to 2t potential o�springs, where t is the
population size.
GPX is very good at using local minima to produce new local or global min-
ima. This is due that it makes greedy choices in every subcomponent, but since
subcomponents are usually locally optimized in either of the parents, they will
turn into excellent building blocks and thus produce new quality solutions.
One drawback is that when recombining the best solution with the remaining
solutions, if some of the partition components contain a large number of edges
that are uncommon, GPX will have a di�cult time of �nding the global opti-
mum.
Whitley et al. looked closer at the generated solutions and made some interest-
ing observations:

a: the largest partition component will have the largest amount of uncommon
edges.

b: the remaining components have very few uncommon edges.

c: In his experiments, after 5 generations all edges found in the global optimum
is present in the population (at least when the size of population is 10)

c suggests that after 5 generations we could stop looking for new edges, and con-
centrate on recombining the edges already contained. Potentially using some
other type of algorithm.
a and b however suggests that to �nd the global optimum it might be necessary
to somehow look individually at the largest partition component. It would sug-
gest that introducing some diversity mechanism occasionally might help to avoid
this pitfall. One example could be to pick a random solution, and recombine
it with the rest. This might lead to a better edge selection inside the largest
partition component.
The hybrid algorithm uses diversity selection as diversity mechanism to retain
some individuals that might have the globally optimal edges inside some parti-
tion components, even though the total �tness of the individual can be worse
than other solutions.



24 Known Crossover-operators and Diversity Mechanisms

GPX combined with LK-search has produced results comparable and in many
cases better than of the , at that time, state of the art algorithms: chained
LK-search. Furthermore the three observations by the author suggest that com-
bining this hybrid algorithm with a deterministic local search on the smaller in-
stance of the largest partition component might yield even better results. Other
ways of taking advantage of these ideas should be investigated [WHH10]. The
author already has started to do this, exampli�ed by the work done in [HWH12]

2.4 Diversity and the e�ect on the computations

In the �eld of evolutionary computing, there is always a balancing act of ex-
ploitation and exploration. Too much emphasis on exploitation leads to the
algorithm being stuck in a local minimum/optimum, while too much experi-
mentation results in slower convergence times, and hence slow running times.
One of the primary determinants for performance [FOSW09],[WHH10], espe-
cially on multi-modal �tness landscapes is the population diversity, and how it
is allowed to a�ect the computation.
In a study by Witt et al. [FOSW09] it is shown that population diversity is im-
portant for EAs on multimodal �tness landscapes. Indicating it could be as well
for GAs. In recent studies by Whitley et al.[WHH10], the power of a population
was shown. It was demonstrated that in a population of size 10, all edges that
also were in the global optimum, were present (after 5 generations of GPX).
These �ndings suggest that keeping a diverse population will enhance the per-
formance of some GAs in some settings.

The primary advantage of maintaining diversity on problems like TSP, is that
more edges can be kept for consideration throughout the computation. This
reduces the chance of losing good genetic material, that can then later be used
for escaping a local optimum, and potentially reach the global optimum.
The main advantage of small diversity is a quicker convergence time. Other
advantages can exists but it depends on the design of the algorithm used and
the nature of the problem.

I will in this project, test some simple methods for preserving diversity known
from other problems, to see if they can help the algorithm avoid being stuck in
local minima. The injection strategy will be primarily be used.
The idea of injection is simply to 'inject' a solution into the population after
a certain amount of computations have been made. This solution can be pre-
pared in any way or be completely random. The idea is to hopefully introduce
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or re-introduce good genetic material to the population.
In some algorithms roulette wheel selection will be used, others use elitit selec-
tion.

2.5 Other important features of GAs on TSP

In order to make these crossover operators work e�ectively on practical prob-
lems, they have to be combined with a good mutation operator and, for the
hybrid algorithms, a good local search heuristic. I will in this section describe
some mutation and local search heuristics that are used in GAs. Many of these
were used in the algorithms described in the past sections.

2.5.1 2-opt

Figure 2.2: a 2-opt improvement on a subpath of a tour

2-opt is a special case of the general k-opt heuristic. It was devised in 1958
by Croes as a method for solving TSPs, and has been used in various forms
extensively since.
It was inspired by Euclidean tours, that had a subcomponent (a passage), that
'folded back over itself', see �gure 2.2, which intuitively is not optimal for such
tours. His idea was then to swap two edges, that is exchange two cities and then
reverse the path between them, hoping to unwind any paths like in the �gure
2.2. Such a move is called a 2-opt move, [Uni].
In a 2-opt search, all possible exchanges are investigated. In some versions the
best move (greed) is selected an carried out, other versions stop as soon as an
improvement is found.
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Today 2-opt is primarily used as mutation-operater and for generating starting
points in a search or population (for GAs).

2.5.2 Lin Kernighan Heuristic

The Lin Kernighan Heuristic was developed by Lin and Kernighan in 1973 for
solving TSPs, and has been used as the core of search algorithms that have
been highly succesful since, the original algorithm simply called LK-search. For
16 years it was the 'best' algorithm for solving TSPs, and following a series
of improvements from 1999-2009 by Keld Helsgaun [Hel00] [Hel09], the slightly
modi�ed LK-search has solved a 1 million city instance to under 0.058% in
excess of the Held-Karp bound (the accepted method used for estimating optimal
solution costs for tsp).
Inspired by the K-opt improvement algorithm, the basic ideas of LK-search can
brie�y be described as:

• Instead of using a �xed K-value, K can vary doing each iteration

• For K>2, edges to be broken have to be continues such that the endpoint
of the �rst swap is used as a starting point for the next swap.

• In LK search uptil K-1 consecutive worsenings are accepted if the K'th
swap �nally results in an improvement. This corresponds to going down
a hill in the �tness landscape, in order to climb back up on a new and
higher hill.

• Only considering the 'interesting' part of the neighborhood.

• Some bookkeeping to ensure an e�ective search

There are multiple di�erent implementations of the heuristic. For practical pur-
poses every implementation has to have som decision on how to use the ideas
listed above, as well as other bookkeeping issues. Some of the algorithms pre-
sented in this chapter uses a lin-Kernighan implementation as a subroutine,
hence I need to construct a working LK-routine.
I have chosen to follow the approach in [KG11], as it seems to be well-argued
for and, compared to the original LK-heuristic, is simpler to implement. This
version makes some changes to the heuristic compared to the original LK-search,
but every change is carefully considered and the performance of the heuristic
should be competetive.
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In this version the key ideas are used as follows:
The input tour is examined iteratively from the beginning, whenever an im-
provement is made, it restarts with the new improved tour.
When trying to improve a path it uses a 'cuto�' depth, α, to determine maximal
value of K.
When searching for potential moves, only the interesting part of the neighbor-
hood is investigated. Here the interesting part is de�ned to be those edges, that
by swapping with the considered edge, generates a positive gain. That is, the
di�erence between the original edge and the new edge is positive. I call these
swaps promising.
For the �rst edge in the tour, it tries to make a promising swap between it and
another edge. If closing the new tour is bene�cial the changes are done and the
search restarted with the new tour as starting point. If not, a new contigous
swap is tried. This continues until α is reached, if no improvement has been
made by then, the algorithm considers the next promising swap.
If none of the promising swaps works, the next edge in the tour is considered.
This continues until all edges have been considered as a starting edge or an
improvement has been found.
The running time depends exponentially on the value of alpha, hence small val-
ues of alpha should be used.
Today LK-search is used as a subroutine in various di�erent algorithms like hy-
brid algorithms, Chained-Lin-Kernighan etc.

2.5.3 Double Bridge Move

Double Bridge Move is basically a 4-opt move. It is done by splitting the tour
in 4 sections using 3 random points. These sections are then recombined in such
a way that 4 swaps are performed.
This move is often seen, in literature, combined with Lin-Kernighan search
[WHH10][Hel00][ACR03] and is used to break the search out of local minima.

2.5.4 Diversity selection

Although there might be other uses of the term 'Diversity Selection', it will in
this paper refer to the survivor selection strategy used by Darell Whitley in his
GPX-hybrid algorithm.
Diversity selection is a method to improve the diversity in a population, designed
for use on TSP.
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The concept is to count the number of times each edge appear in a population.
For all potential candidates all edges are weighted according to the total number
of appearances. The edge contributes a value corresponding to the inverse of
the number of times the edge has appeared in the population, to a sum d. When
all edges have been processed in this way, the d is used as a measure of how
much diversity this solution represents.
Once all candidates have had their d -number calculated, the candidates with
the highest d-numbers are selected for the next population.
This procedure is in this actual case [WHH10],combined with elitist selection
(where the best candidates are found using strictly �tness evaluation).
In the article it is not clear whether the 'population' is the original population,
the o�spring population, the un�nished next population or the un�nished next
population + all potential o�springs. A case can be made for all choices.
I chose in this paper to use the o�spring population as the population.
It is interesting to study in this project, whether additional diversity maintaining
mechanisms are needed for GPX.

2.6 Summary of literature study

In the early days of crossover operators, the focus was on preserving the cities
actual position. The next wave shifted the focus to the edges. With the Radclif-
fe/Surry paper from 1994, [RSJJ94] and the introduction of the EX in [WSF89]
a line with focus on the theoretical foundations for good operators in this �eld
seemed to emerge.
[RSJJ94] introduced two basic principles for designing crossover operators:

• Alleless Transmission

• Respectfulnes

Watson argued in [WRE+98] that crossover needed to introduce new edges, to
escape local minima and for diversity. This seems to suggest a tradeo� with
the principles of [RSJJ94]. A key point, however is that new edges does not
necessarily have to be introduced in the crossover operator, but can be done
by using mutation. Diversity can be preserved using various methods such as
diversity selection etc. Hence it is sound to focus on the principles of [RSJJ94]
in the design of a crossover operator.
Recently the design of new operators seems to fall into three categories, where
each follows its own design path. Some are devised as simple improvements to
existing algorithms as in [SS11], [RBP05]. In another category di�erent ideas



2.6 Summary of literature study 29

are combined to create an 'intelligent' choice in the crossover operator as in
[Ahm10] and �nally there is a category where operators are devised based on
theoretical understanding of the problem [WHH10]. Algorithms adhering partly
of fully to the principles in 2.2 have recently been devised. These algorithms
have delivered promising results [Ahm10], [WHH10].
In order to compete with succesful search heuristics such as Lin-Kernighan
search, as suggested in [RSJJ94], attention has been spent on combining crossover
with local search operators into hybrid algorithms [WHH10]. The reasoning be-
hind seems to be, to exploit the best of both worlds.
It is hard to numerically compare the performance of various algorithms, as not
all of them have been tested in comparison-studies. I hope to be able to provide
some head-to-head results in the next chapters.
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Chapter 3

Selection and

Implementation of

Representative Crossover

Operators

In this chapter I will describe the selection and subsequent implementation of
certain crossover operators. I will argue for the choice of operators, describe
how central features of the operators are implemented, and elaborate on design
choices left open by the underlying papers.

3.1 Selecting Operators

The �eld of GA operators for TSP is quite large, as evidenced by the number of
operators considered in the previous section. In order to be able to treat some
operators in depth, I have chosen to focus on a few operators.
I have chosen to select the arguably best solution in the early stages (80-90'ies),
and two promising solutions from di�erent design paths. One of which seems to
be the current state of the art in GAs for TSP's.
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In multiple papers and in surveys [Jak10] [RBP05], Order Crossover (OX) is
mentioned as the best operator and used as reference for testing new operators.
I have therefore decided to use this as a baseline for performance on the TSP
problems. The results obtained by OX will be used as a comparison to see how
much ground newer methods adhering partly or fully to the design principles of
[RSJJ94] have gained.
The Sequential Constructive Operator (SCX) try to combine the idea of pre-
serving optimal edges and at the same time introduce new good edges, thus
adhering to the principles mentioned in [Jak10], from both Watson [WRE+98]
and Radcli�e et al. [RSJJ94]. It is done by adding a simple 'intelligent' choice.
When building the o�spring it starts sequentially from the start, and for all
subsequent places, it decides by greed, if it should be �lled with a gene from
the �rst or the second parent. Thus this operator represents the second design
paths, from last chapter.
The SCX is referenced in some newer papers, but not by any paper, introducing
new operators. It seems from my litteratur study that there is a lack of contem-
porary research for this period and the paper seems to have lacked a thorough
peer-review. The last one based on unclear description of some design choices,
and places where the formulation is quite di�erent from established standards
within the evolutionary computing community.
However the results mentioned in the paper on SCX, [Ahm10] suggests that
this operator could be competetive at a larger scale. Hence I have chosen to
implement and study it. In 2009 Darell Whitley et al. presented a new oper-
ator, the Partition Crossover at the GECCO conference [WHH09]. It won the
best-paper award at this conference, indicating that it was highly though o� in
the Evolutionary Computing community.
The operator was based on theoretical principles and insights gained through
studies and earlier operators, and hence it represents the third design path, as
presented in the last chapter.
This operator was further developed into a working hybrid algorithm presented
in 2010 in [WHH10]. It was claimed that it outperformed one of the state-of-the-
art algorithms; Chained-lin-kernighan, and thus a major breakthrough for GAs
on TSP. This implies that GPX is one of the currently best solutions among
GAs. I have therefore selected this operator.

As mentioned in the survey. When using GAs on TSPs respecting solely the
principles of [RSJJ94], there is a risk that the algorithm will converge too early
to a local optimum and be stuck there. Algorithms like SCX and GPX requires
a population where edges, that also exists in the global solutions, are present,
in order to be maximally e�ective.
Preserving a certain amount of diversity in the population during GA search is
thus important. In the hybrid GPX algorithm it is embedded through the use
of diversity selection. On the other two algorithms, I will in this project try a
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simple injection strategy.
I will consider injecting a random solution, and random solutions improved by
di�erent local search heuristics. I will do some preliminary experiments to de-
termine which heuristic should be used in the tests.

I will try to implement the algorithms as they are described in the respective
papers. If there are some aspects that are unhandled or unclear in the papers,
I will implement what seems to be the best solution, but respect the basic idea
of the authors.
In the following the implementation of the crossover operators will be described.
When embedding the operators into TSP solvers, some auxillary functions are
necessary, those will be described as well. Finally the overall structure of the
program for the testing will be explained.
I describe the primary issues in the implementation of the operators, as well as
how I handled them. More triviel parts will not be described.

3.2 The Overall Program Structure

The framework for the tsp solver is constructed in the JAVA programming lan-
guage, using the model-view-control design paradigm.
The modelling part contains the representation of the problem, methods for
constructing a problem representation from a �le and the algorithms that are
used to solve tsp-problems.
The view part contains the visualisation of the tsp-problem, the solution(s) to
it and presents the user with a visual representation of the possible settings.
The control part allows the user-speci�ed input to control the loading of a prob-
lem and the calculation of solutions on it.
The visualization and the graphical user interface (GUI) is described later. It
is designed to be simple and easy to understand.
The algorithms for solving the tsp-problems are explained in the following sec-
tions. I will here describe some important choices for datastructures in the
overall framework.
An important aspect is the choice of representation for the problem, and po-
tential solutions. I used the path representation method of representing the
solutions, I implemented it using array-list datastructures. This allows me to
perform fast look-ups, and provided some �exibility. Although some speed up
could have been gained by using specialized datastructures (as will be mentioned
later), a di�erent implementation might have been necessary for the di�erent
algorithms. The primary task is to compare the algorithms to each other, and
since they all use the same datastructure the comparison should not be a�ected.
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Using this argument, I choose �exibility and fast look up.
I choose to represent the cost of traveling between each city, as a precomputed
cost-matrix, once the positions of the individuel cities (on euclidean problem
instances) are loaded, I calculate the individal edge costs and store them in this
matrix. The datastructure for this is a double array of the double data type,
this provide O(1) lookup time, which is important, as this is an operation that
will be performed often.
These are the most important design choices. One issue derived from the use
of doubles, are that the computation of the �tness of a solution will be a little
bit larger than it should be in reallife. The optimal solution to the berling52
instance is 7544.3 in the evaluations in this program, while it is normally 7542.
I have seen this problem in a number of other studies, and since this is a relative
study, and the deviances are very small, it should not a�ect the evaluation of
the various operators.
In �gure 3.1 I have shown the classes of the programs, the most important �elds
and methods, and which segment of the model-view-control they belong to.
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Figure 3.1: An overview of the programming structure
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3.3 Implementing Order Crossover

To implement OX there are two problems I need to handle: The �rst one is to
establish the swapping range, this is done by using a pseudo-random generator
to generate a number and then a subsequent number between the �rst number
and the size of the parents.
The second issue is to consistently be able to track what positions are already
�lled in the respective o�springs in constant time. This is done by maintaining
two arrays, mapping from id to location in o�spring for the respective o�spring.
This ensures that, since I have constant access to a given city's id, given its
position, I can determine whether an element at location i in the second parent
has already appeared somewhere else in the �rst o�spring. Thus deciding if it is
legal to use this gene in the o�spring (this is a method to avoid repeating genes
that have already been transferred from the �rst parent). Thus I avoid creating
duplicates.
This operator produces legal o�springs according to the OX strategy, in O(n)
time, where the implicit constant is small.

3.4 Implementing Sequential Constructive Crossover

When implementing this crossover, there are a couple of issues that should be
handled. Those are primarily related to selecting the right city for every posi-
tion:
SCX use the individual edge costs twice for every position in the o�spring hence
it should be possible to �nd those quickly. I argued in the overall description of
the program that this can be done in constant time with the chosen implemen-
tation.
SCX frequently checks whether a given node has already been assigned to the
tour. Thus this needs to be checked fast.
I achieve this by using an array per parent. Each array maps from city id to
position in the o�spring, if the id has not yet been assigned it is set as -1, thus
when I check for legitimate nodes, I can use constant time to look up if a node
is 'legal' or not.
When for a given position in the o�spring, SCX switches parent nodes compared
to the previous, I need to �nd the position of the considered node in the new
parent. If done naïvely, this can take worstcase O(n) time for every node (O(n2)
total running time). To avoid this I create a mapping from id to index in both
parents.
Using these auxillary date structures, the SCX operator is implemented as de-
scribed by Ahmed in [Ahm10].
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3.4.0.1 Embedding the crossover operator into a working algorithm

To use the operator on practical problems, we need to add other features. The
author, [Ahm10], explains in his paper which choices he has made, although a
couple of those choices were unclear, I have tried to stay true to the intention.

The selection procedure:

The author suggests using a kind of �tness proportional selection called stochas-
tic remainder method. However that does not make much sense for this given
set up, I decide on using reciprocal roulette wheel selection (rws) instead, which
is a �tness proportional selection strategy. An important aspect of using rws
is to determine how much of the �tness is due to the individual genes, when
operating with high �tness values, the relative di�erences becomes quite small.
Thus when used on larger instances of tsp (costwise), a good solution will not
be particularly preferred to another. Thus there will be close to uniform chance
of choosing each indivial for mating.
Another issue, is that I need to do it reciprocal. Thus the best solution is the
one, that has lowest �tness cost, and not highest:
To achieve this, I �rst subtract each �tness value from a 'correction' value
slightly smaller than the current lowest �tness value in the population. By
doing this subtraction, I ensure that the correlated �tness is below zero (or
zero) for all candidate solutions, and that the best candidates correlated �tness
now is the highest. By adding the correlated �tness of the worst candidate (now
the least-valued candidate) to every candidate plus 2, I ensure all candidates
are positive, and that I can calculate the proportion of the total �tness as if it
was normal rws.
The exact value used in the last paragraph is not important in order to make rws
reverse, but if the value is chosen appropriately, it can a�ect how much empha-
sis is placed on �tter solutions when selecting for mating. Consider this example:

Example There are two individuals in a population with �tness value 8 and
12 respectively. I want to select one of those for mating.
If I choose the correction value to be the sum of these two, 20, there would be
60% of selecting the individual with �tness value 8 and 40% for the other, this
is close to uniform selection. If I instead choose the correction value to be 6
and follow the suggested algorithm by subtracting the current �tness value and
adding the numerical value of the (current) least solution plus two, I get the
following new values: 6 (previously 8) and 2 (previously 12). This gives a 75%
chance of selecting the 'best' individual and only 25% chance of choosing the
other individual.

When the appropriate �tness slots have been found and placed in an array.
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I use a random generator to generate random number, and use it to select two
solutions for mating.

The mutation operator The author suggests using reciprocal swap (i.e. ran-
domly swapping two cities) which is well known standard mutation operator
on TSPs. When the swap is completed the sequence between those two nodes
are reversed. This is potentially an expensive operation as I use arraylists as
datastructure for storing the solutions, however since this is only done at most
once per generation, its impact is small compared to the crossover operator.

Survivor Selection operator The author suggests using Deterministic Crowd-
ing (the o�spring competes directly with its parents). I have implemented this,
using a simple tournament approach where both parents and the o�spring com-
pares to each other, scoring a point for each 'victory'. If either of the parents
has scored zero points it is replaced by the o�spring (which by default will have
won at least one comparison).

3.5 Implementing Generalized Partition Crossover

Implementing GPX requires several sub-algorithms. Whitley et al. [WHH10]
embedded the GPX operator in an hybrid algorithm, using predetermined mu-
tation, selection and survivor selectors and combining it with the Lin-Kernighan
local search heuristic. I will in the following describe how I implemented the
core GPX operator. The auxillary algorithms and a working Lin-Kernighan
implementation, will be presented later under the section 'auxillary algorithms'.

3.5.1 The core GPX operator

A key part of the GPX is the partitioning of the graph. Naïvely implementing
the partitioning part would result in unreasonably large running times as the
generel partition problem is believed to be NP-hard [WHH09].
In the precursor article for GPX, where PX is introduced, the author suggests
an alternate implementation of the partitioning [WHH09], which can be done
in O(n) time. I have implemented this version.
The �rst step is to construct an edgemap for the two parents. I need to be able
to track the degree of each node in the edgemap, and to mark which edges are
common (appears in both parents). I use an arraylist of linkedLists to repre-
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sent the edgemap, where the �rst element of the list contains the degree of the
node, and the rest the id of the node it links to. A common edge is denoted by
�ipping the sign, so it becomes negative, special consideration is taken on edges
connecting with node 'zero'.
The second step is to construct two lists, one holding the nodeId 's, but sorted
in ascending order by degree, the second indexing from ID 's and into positions
in list1. This is done by two simple arrays. A pointer is maintained pointing to
the �rst element with degree 3.
I construct an array mapping from nodeID 's into partition component numbers,
every partition is initialized to -1.
The third step is to search for feasible partitions. I search through all potential
nodes that can constitute a partition, that is nodes of degree 3 and 4. The
search proceed as follows:

• initially enter the �rst node with degree 3 or 4 into a FIFO-queue, set
the start partition component to 1 and set a pointer, tracker, to the �nal
element in the list.

• for as long as there are unvisited nodes with degree 3 or 4 do:

• for as long as there are elements in the queue do:

• select the �rst element from the queue, c

• assign c to the current partition component

• add all unvisited and uncommon nodes in c's edgemap to the queue

• put c at the position where tracker points.

• put the element at the tracker position (before the update) to c's previous
position

• decrement the tracker

• when there are no more elements in the queue, increment the current
partition component, and add the element pointed to by tracker to the
queue.

The above algorithm is implemented in a straighforward manner by introducing
a linkedList, that acts as a queue (by adding last and retrieving �rst elements
in my algorithm) and using previously introduced datastructures.
If there was only one partition component, then it is not possible to specify a
meaningful partitioning of the graph, and the algorithm returns without produc-
ing a new o�spring. I can test this by looking at my current partition component
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number.
The fourth step is to determine how many partitions can actually be used (re-
member: only partition components that can be seperated by cutting just two
edges are acceptable). Realising that only nodes of degree 3 are relevant, we
consider only these nodes.
First all the nodes are checked to see if they have a common edge, to another
partition, if so, they are stored as a cut-edge (meaning they can be used to cut
a link between two components).
Then we consider all nodes in the partitionlist, if it is currently unassigned, we
investigate it using a custom function, for handling 'surrogate' edges (surrogate
edges is the authors word for a series of linked nodes of degree 2, starting and
ending in nodes of degree 3):

• given a node of degree 2, investigate both neighbors recursively

• during recursive search, ensure the direction of the search, by noting the
node the call came from

• if the current node is unassigned to a partition the search continues

• if the current node is assigned to a partition, partition component number
of the node is propagated back, and the id of the endpoint (this current
node) is stored.

• when unwinding the recurstion, all nodes set their partition component to
the one returned from their recursive call.

• when reaching the original node, check if both endpoints are in the same
partition, if yes, set this node's partition to be the same. If not, assign it
to the left endpoints partition, and return this common path as a potential
cut-edge between the two partitions, and starting at the two endpoint id's.

The implementation is done using a recursive subroutine, recursiveSearch, the
results are returned in an double array of size number of partitions and size
3. The list of cut-edges from earlier is used to store the new cut-edges. The
�nal step in this phase, is to determine which partition components are feasible.
If at least one partition component has exactly two cut-edges the algorithm is
feasible. All other partition components, with cut-edge size di�erent than two
is grouped together in a single partition component. (Implementation wise, this
is achieved by reserving a special partition component number to this partition.)

The �nal step in the algorithm is using these partitions to build the o�springs.
It turned out that there were a few unexpected traps/issues with this part.
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First, since GPX base its choice of which parent that contributes the genes in
each partition, o� greed, I need to know the path length of each parent in all
partitions. This is done by going through the parents sequentially. If an edge
has an endpoint in two partition components its cost is not stored. Otherwise
the cost of the edge is added to the parent's pathcost in the respective partition
component.
Now the contributing parent for all partitions can be chosen. In all components
the parent yielding the cheapest solution is preferred. However in the construc-
tion of the second o�spring, for the largest partition component, the parent with
the most expensive solution is chosen.

In the the construction itself a key observation is that I am working with graphs
and paths, but using arraylists to represent the solutions in a sequential manner.
Thus one issue is that the nodes in a given partition component can be listed
from left to right in the �rst parent, but might be listed from right to left in the
other parent. I need to handle this when constructing the o�spring.
A third issue is that nodes from a parent in a single component, does not have to
have a direct connection within the actual component (the path between some
nodes could go through another partition componen). Thus I cannot assume
that all the nodes in a partition component will appear sequentially, in a parent.
I proceed from the �rst node, c, in parent1 and decides which parent should be
used for c's partition component. If the other parent should be used, I search
for the position of c in parent2.
Then I do:

• Check if I should go forward or backward in the parent

• proceed in the chosen direction adding nodes to the o�spring along the
way

• when crossing to a new partition component, �nd the parent that should
be used

• if a parent switch was made, look up the position of the node in the
opposite parent and repeat. If not, continue in the same direction as
before.

This continues until all positions in the o�spring are �lled (and repeated for
the second o�spring). I use two arrays indexing from nodeId to position in the
respective parents.
The GPX operator has now completed and returns the two o�springs.
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3.5.1.1 Running time of GPX

It was claimed by the author that the running time can be done as O(n). I
construct a number of datstructures in this algorithm, and none of these takes
more than linear time, which I will argue for here.
In the �rst step I go through all edges in the parents once, spending constant
time at each step. This takes O(n) time .
In the second step I construct a linkedlist of nodes of degree 3 and 4, this can
be used to sort the nodes by degree, when constructing the two lists. This all
takes O(n) time.
In the third step all nodes of degree 3 and 4 are considered. For every node
considered, at most four other nodes can be checked. The time spend is constant
for all checks and other bookkeeping steps (using the chosen datastructures).
Thus the running time is O(n).
In the fourth step, where we handle the surrogate edges, every node previously
unassigned is considered at most once. A border node can only be visited once
in this step, as it otherwise would have degree 4 or be visited from another node
with degree 3 or 4 (which this algorithm does not do). Thus the running time
is O(n).
To select usable partitions, the number of cut-edges for all partitions are counted.
This can at most be O(n) as there are at most 2n edges in the graph. Then all
partitions are updated or checked. This step thus takes at most O(n) time.
Determining the path lengths inside each partition for both parents, requires a
single traversal of both parents, constant time is spent for each node, thus this
is takes O(n) time.
Finally to construct the o�spring I iterate for n steps, one for each position in
the o�spring. At every step I do various checks and updates, in the worst case I
have to switch parents. This requires a lookup in my indexing table which takes
O(1) time and then a check to the neighboring nodes to determine direction.
The runtime of this step is thus O(n).
Thus the total running time of the GPX operator is O(n), and this implemen-
tation complies with the demands and claims of the author in [WHH09] and
[WHH10].

3.6 Implementing auxillary algorithms:

A number of auxillary algorithms are necessary to make the TSP-solving al-
gorithms, incorporating the crosssover operators, work. The primary ones are
described here.
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3.6.1 Implementing 2-Opt

The 2-opt was implemented in the version, where the best move based on greed
is chosen.
The 2-opt move is done by choosing two positions in the tour and exchanging
them. In order to avoid creating four new edges, the order of the nodes between
the two positions are reversed. The positions yielding the best gain is stored
during the computation.
The method for reversing is used two times for every possible edge in the tour,
this method is hence crucial to fast running times for 2-opt.
The datastructure used right now to represent tours (arraylists) requires linear
running time in the distance between the two positions. If we consider all
potential swaps involving the �rst city in the tour, the total running time of the

reverse function is then 1 + 2+ 3+ ...+ n− 1 which is O(n
2

2 ). Since this has to
be done for all cities, the total running time is O(n3), which is relatively slow.
A simple method of improving this would be to change the datastructure to
something like a Linked list. However lookup operations would then be quite
expensive (O(n)). A more thorough possibility is to use 'sway graphs' as used by
Helsgaun in this Lin-Kernighan implementation [Hel00], [Uni]. This is, however,
not simple to implement.
Since all the chosen algorithms use the feature of reversing a sequence either
through 2-opt or LK-search, and that the comparisons in this project, is made
relatively between the implemented algorithm, it is acceptable to use the chosen
implementation.

3.6.2 Lin-Kernighan

As mentioned in the previous chapter, LK-search is one of the historically most
succesful TSP solver. In order to �nd a good implementation, I originally looked
at the implementation presented by Keld Helsgaun in [Hel00], but his imple-
mentation consists of more than 4000 code lines and a number of sophisticated
datastructures and subroutines.
Since the focus in this work is on crossover and diversity, I have chosen to follow
a relatively simple and recursive implementation of the LK heuristic found in
[KG11]. Furthermore I use standard datastructures. This should severely im-
pact the running time of the Lin-Kernighan subroutine, especially since it use
the same reverse method described in 2-opt, and thus the running time of the
hybrid algorithm using GPX.
Since I use relative time, signi�cant di�erences between the algorithms should
hopefully be clear regardless of these choices.



44 Selection and Implementation of Representative Crossover Operators

The described algorithm is recursive and consists of an outer method that sim-
ply iterates through all potential edges. It then calls the recursive inner method,
improve_path.
improve-path works as described in [KG11]. I made two primary changes to the
algorithm:
I precomputed all costs between cities in advance, to reduce running time. Sec-
ondly there was an issue not described in [KG11], that one has to undo potential
changes if the �nal LK-move is rejected. This is done by adding a boolean, spec-
ifying if a LK-move was succesful or not, to each call/return for the recursive
method.

3.6.3 Implementing Diversity Selection

This method refers to the special method introduced by whitley et al. for their
hybrid GPX algorithm. I described it in 2.5.4.
This method requires two iterations of all o�springs, considering all edges in
every o�spring, thus it is important to minimize the time spend at each iteration.
For this purpose I �rst use a 2-level datastructure. I use an arraylist representing
all edges, where every �eld is a hashMap, mapping from recieving edge to number
of occurences. Thus if I need to count edge (i, j) where i < j, I go to the i 'th
entry in the arrayList, �nd the j 'th entry in the hashMap and update the number
of occurences of this (i, j)-edge by one.
To calculate the d -values I construct a treeMapping from d -values, to a linked
list of o�spring id's. Thus for every value of d, I have the id's of the o�springs
that have exactly this value.
Finally to select the k best candidates, where k depends on how many open
spots are left, I extract the maximum d -value and corresponding o�spring from
the mapping holding the d -values. If the list for this d -value is now empty, I
delete the entry. This continues until all k spots are �lled.
In the �rst part I used a 2-level structure going from arrayList to a hashtable
implementation, to achieve O(1) insertion and look up time.
Another decision was that all edges will be inserted as going from smaller to
higher index. Even though this requires some bookkeeping, it reduces the space
requirements by 50% and reduces the necessary look up operations by 50%.
These datastructures allows me to �nd all d-values in O(n) time, using O(n)
space. This could be compared to a double-array datastructure which would
have required O(n2) space. I choose to use a tree-Map for the d-values as it
basically implements a max-heap, meaning I can get O(log(n)) time for inserting
and extracting the maximum and O(1) for �nding the maximum. Alternatively
I could have used a hashtable for obtaining O(1) insertion time, but then I would
have to spend more time at extraction and reporting maximum values.
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The running time of selecting the k elements is then O(op · log(op)) where op
equals the size of the o�spring population.
The total asymptotical running time is then O(op · n + op · log(op)). where op
is at most 18, the asymptotical running time is then O(n).

3.6.4 Implementing Double Bridge Move

I implemented this by generating 3 random numbers as splitting points. The 1.
and 4. section were then concatenated in an intermediate arraylist, as was the
3. and 2. sections.
Finally the new tour was build by concatenating the elements in the two inter-
mediate lists. The �nal order combination of sections was 1432.

3.7 Implementing Diversity measures

In the previous chapter, 2.4, I decided on using injection. This can be performed
in a variety of ways, I have selected two of those.
The hybrid algorithm using GPX, implements its own version of diversity mea-
sure, diversity selection, so I expect that the e�ect of injection will be minimal
on this algorithm.

3.7.1 Implementing Random Solution

The �rst idea is to have a random restart join the existing population. This is
done simply by counting the generations and after a certain number, a random
element in the population is replaced by a random generated solution.

3.7.2 Implementing local-search improved solutions

The second idea was to generate a random solution, and then improve it by some
local-search heuristic before injection. As in the �rst idea, this is done by, after
a certain number of generations, creating a new solution and improving it. This
new individual is then placed in the population replacing another individual.
We consider the following local-search methods: LK-search, a series of 2-Opt
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moves, until no further improvement can be made, and a �xed number of two-
opt moves.
Before recording results, informal experiments were done to settle on when in-
jection should be made, how many times, which local-seach method/which re-
placement method should be used, which element should be replaced.
I decided to fokus on LK-improved solutions and a series of 2-opt moves until
no further improvement can be made. I used these for both the OX and SCX
algorithms. The GPX, however, did not bene�t at all, so I decided to switch it
o� for the testings.

3.8 The Graphical User Interface

The testing system is presented with a Graphical user interface. Interacting
with this system triggers underlying methods that executes the tests. The end
result is displayed visually in the interface. The implemented methods have
been presented previously, here I will focus on describing the GUI. A screenshot
can be seen in 3.2.

Figure 3.2: An example of the GUI of the framework
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3.8.1 The visual representation

The interface consists of:

• A pane for displaying the problem and a solution.

• A menuItem that opens op a screen for selecting problems.

• A menuItem 'settings' that opens a controller that allows the user to
choose between various options for the solution algorithm.

• A menuItem that explains the minimum settings for a given problem.

• A side panel for displaying the current settings for the solution algorithm.

• A toppanel containing the solution length, the name of the current problem
and the computation time of computing this solution.

3.8.1.1 The solution panel

Visualizes the problem, by representing each city with a small circle at the
appropriate coordinate. The solution is shown by drawing a line for every edge
present in it.
I use a variable scaling factor to be able to monitor the whole problem in the
same frame. When clicking with the left mouse button, a random solution is
generated.

3.8.1.2 Problem selection

At present the user has the choice between a number of problems gathered from
TSPLib library.

3.8.1.3 Options for the algorithm

The user has a choice of options. He can choose between the Order, Sequential
Constructive and General Partition operators. When using GPX it is possi-
ble to specify the maximum depth for Lin-Kernighan search. It is possible to
specify population size (has to be at least 2), number of generations and how
many testruns should be made. Furthermore injection diversity measure can be
switched on.
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3.8.1.4 Top panel

The toppanel serves as a status panel where the current problem, the cost of
the current solution, and the time to calculate the solution is displayed.



Chapter 4

Experimental results

In this chapter, I will execute various tests, using the algorithms described in
the previous chapters. I will perform qualitative tests (�ndings to be discussed
in the discussion section), standard numerical tests, and statistical tests.

4.1 Selection of Tests

I have chosen three standard problems from the online library TSP-Lib which
can be found at [GR]. TSP-Lib contains a number of real-life inspired problems
formulated as TSP instances. Although all instances have been solved, all the
papers I read, referenced this library. Based on this, I chose to use problem
instances from this library.
The �rst problem I chose was Berlin52. Berlin52 is 52 locations around Berlin,
and is thus indicative of a 'real-life' problem. The problem uses euclidean dis-
tances and are symmetric. Results for both OX and SCX ( in [Ahm10]) have
been reported on this particular problem.
The second problem is kroA100. This problem is slighly larger, and should be
a challenge for the older operator OX. Results are reported for SCX on this
problem in [Ahm10]
The third instance is a problem of medium size by today's standards, but large
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for older algorithms. It is called pr439 and represents the printing of a circuit
board. I expect that this will be a problem where OX and SCX might have
trouble, but I expect GPX to solve it e�ciently, as problems of comparable size
have been solved easily [WHH10].

The 3 algorithms with the injection strategies presented in 3.7.1 are run 10
times on all three problem instances, and will be initiated using uniformly ran-
dom starting points. For GPX I tested before hand if injection is feasible, and
found that it was not, hence results will not be presented for this instance.
I will use these test runs to obtain numerical results, a statistical comparison
between the algorithms and to observe qualitative behavior of the algorithms.
When reporting the test result I will use a measure called excess percentage
which is calculated as obtainedresult−optimalresult

optimalresult · 100%. This is the standard
numerical measure for quality of solution used when testing TSP-solving algo-
rithms.

Statistical tests can be used to make statistical inference. The idea is to measure
small samples of larger populations and use probability theory to gain insight
on the larger populations. Since it uses small sample sizes, there is some small
chance of error, as for instance, an observation might be very rare, but have
occurred in exactly this small sample.

Typically a speci�c hypothesis is formulated for testing, this hypothesis is then
either rejected or accepted with a given level of signi�cance. The level of signi�-
cance indicates how much chance there is that the conclusion is correct. Usually
tests are conducted with a 95% or 99% con�dence interval, which means that
with 95% or 99% chance respectively, the conclusion of the statistical test are
correct.

Di�erent statistical tests exists with di�erent strengths and weaknesses. In
this project I want to determine whether two sets of observations come from
the same population, or if they are di�erent. For this purpose I have chosen the
Mann-Whitney-U test (also known as Wilcoxon rank-sum).
Mann-Whitney tests are parameter free, statistical tests that is usually used
to test the main hypothesis that two sets of observations belong to the same
population. The alternative hypothesis is that they are di�erent and that one
population has smaller/larger values than another. I will use a 95% con�dence
interval when performing the tests.
The concept of the Mann-Whitney-U test is to rank the two populations against
each other, in order to obtain a u-value, that can be used to either reject or
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accept the hypothesis.

4.2 Evaluation of Tests

4.3 Test of Order Crossover

4.3.1 Parameters for the test

It was di�cult to �nd an 'optimal' con�guration for OX in papers, so I did some
initial experiments to determine what con�guration I would use.
OX is used with a population of 100, and run for 50.000 generations. As a
sidenote I later found one study [RBSMBT], that actually suggests using a pop-
ulation size of 100 for OX.
I use a mutation operator, that with 1% chance uses 2-Opt, and 5% uses a
random swap, and subsequent inversion of the nodes between the two swapped
nodes.
After the last generation, 2-Opt is run on the best solution, until the solution
could not be further improved by this.

During the process, considerable e�ort was spend trying to establish the best
mutation operator and population. Using the inversion extension combined with
occasional 2-Opts decreases the excess percentage by 50% compared to not using
2-Opts and having a standard mutation rate of 1%.

4.3.2 The results

The algorithm was run for 10 testruns:

Testrun Avg. Excess Percentage Best Worst Wallclock time
1 4.2 0 7.7 22.5 seconds

Table 4.1: Results for OX on Berlin52

For Berlin52 this resulted in an average excess percentage of 4.2%. The global
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optimum was hit 3 times, there was one outlier that was almost 12% in excess.
2-Opt was used on average 2 times to �nish the algorithm.

4.3.2.1 kroA100

The algorithm was run for 10 testruns :

Testrun Average Excess Percentage Best Worst Wallclock time
1 5.1 3.0 8.5 213.5 seconds

Table 4.2: Results for OX on KroA100

On this instance 50.000 appeared to be to few generations for the algorithm to
converge, setting generation numbers to 100.000 and 200.000 produced better
results, and it still appeared to not be �nished converging. The reported results
are for 50.000 generations though.
However when running this many generations, and especially if using 2-Opt,
the running time is quite slow. Furthermore the quality of solution is not very
good.
The average excess percentage was 5.1. The 2-Opt procedure was used on
average 15 times to �nish o�.
The running time is negatively impacted by the number of twoOpts.

4.3.2.2 pr439

The algorithm was run 10 times, however the running time was so slow, that I
decided to switch o� the 2-opt mutation, and only use the standard mutation I
described in 3.4.0.1

Testrun Average Excess Percentage Best Worst Wallclock time
1 8.5 4.5 10.5 1110.2 seconds

Table 4.3: Results for OX on pr439

On this larger instance OX was unable to produce solutions of a quality close to
that of the performance on the other two instances. An average excess percent-
age of 8.5% was obtained. The relative worse performance is probably because
I removed the occasional 2-opt mutation.
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I use the same number of generations on this instance as on kroA100, so I ex-
pect the di�erence in running time is how many times 2-opt is used as the �nish
procedure. It was used on average 400 number of times.

4.3.3 Test on OX with injection

I test the three di�erent injection strategies. Since Lin-Kernighan search is
known to be very e�cient by itself (usually capable of being within 2-3% of
the optimum), I test it seperately as well.The results are presented under each
problem:

4.3.3.1 Tests on berlin52 summarized

Type avg. result excess percentage best worst Wallclock time
LK injection 1.5 0 5.3 11.4 seconds

2-Opt injection 2.2 0 6.2 10.0 seconds
random restart 5.6 2.5 12.6 9.8 seconds

Pure LK 2.6 0 5.6 0.2 seconds

Table 4.4: Results for OX with injection on berlin52

In most of the testruns with lk-injection the �nal solution was equal to the
injected solution, but in four of the testruns, OX bettered the solution found
by LK-search. The improvements lowered the excess percentage by 0.8% on
average. None of these cases resulted in the optimal solution.
On average the �rst injection were selected for mating in 500 out of 25000
generations corresponding to 2% of the time. There was a single outlier (excess
percentage of 5.3) bumping the average up.
When using 2-Opt injection, OX improves on the injected solution in 60% of
the testruns. The average increase is approximately 4%. On average the �rst
injection were selected for mating in 500 out of 25000 generations corresponding
to 2% of the time.
Random restart was largely unable to converge on a good solution compared to
OX without injection.
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4.3.3.2 Tests on kroA100

Type Avg. Excess Percentage Best Worst Wallclock time
LK-injection 0.6 0.1 0.8 18.4 seconds

2-Opt injection 3.2 0.4 8.2 26.4 seconds
Random restart 5.2 1.7 12.2 21.0 seconds

Pure LK 1.3 0.3 4.0 0.9 seconds

Table 4.5: Results for OX with injection on kroA100

In none of the testruns did OX improve on the injected lk-results. The �rst in-
jected solution were used in approximately 500/25000 generations corresponding
to 2%.
The 2-opt injection was improved in 5 out of 10 cases corresponding to 50%. for
an average improvement in excess percentage by 4%
Random restart was again unable to converge within the alloted number of
generations.

4.3.3.3 Tests on pr439

Type Avg. Excess Percentage Best Worst Wallclock time
lk-injection 1.9 0.9 2.7 107.2 seconds

twoOpt injection 8.0 5.8 9.7 2814 seconds
random restart 10.6 10.1 11.5 1241 seconds

Pure LK 2.3 1.0 4.2 13 seconds

Table 4.6: Results for OX with injection on pr439

In three of the testruns did OX improve on the injected lk-results. The improve-
ments lowered the excess percentage by 0.75 % on average. The �rst injected
solution where used in approximately 500/25000 generations corresponding to
2%.
2-Opt injection did not improve notably on the quality of results compared to
the original OX operator, but the running time was doubled.
Random Restart yields worse results than standard OX.
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4.4 Test of Sequential Constructive Crossover

4.4.1 Parameters for the testing

I tried to follow the exact speci�cations of the algorithm in [Ahm10], but (per-
haps) due to ambiguity in the text for instance regarding selection strategy. I
was unable to reproduce the claimed results obtained in [Ahm10], I missed the
claimed times by a factor of 10.
I then used SCX in conjunction with some other ideas to see if I could somehow
reproduce the achieved results:
I used population size on 200, 10.000 generations, a reciprocal swap mutation
but inverting the sequence between the swapped nodes all as claimed in [Ahm10].
I changed the mutation rate to 5%, and used a standard reverse rws selection
procedure (as this was a 2+1 algorithm), and hence his suggestions of stochastic
remainder selection did not seem to make sense.
I kept the concept of deterministic crowding as survivor selection, this concept
was explained earlier in 3.4.0.1.
Finally I added a '�nish' procedure, which I applied to the best solution (by
�tness evaluation) after the last generation had been run. I experimented with
two local-search �nish procedures one was to continously apply 2-opt as long as
it yielded a better result and the second was to use LK-search.

4.4.2 Testresults

Instance �nish procedure Avg. Excess Percentage Best Worst Wallclock time
berlin52 twoOpt 1.4 0.0 4.1 4.1 seconds
berlin52 linKernighan 1.1 0.0 3.1 3.4 seconds
kroA100 twoOpt 2.5 0.4 8.2 7.9 seconds
kroA100 linKernighan 1.9 0.0 6.2 8.5 seconds
pr439 lin Kernighan 2.7 0.8 4.1 77.5 seconds

Table 4.7: Results for SCX

For Berlin52 an average result on ten runs resulted in excess percentage of 1.1%
when using LK search to �nish, and 1.4% when using twoOpts. During the ten
runs, the global optimum was found at least 5 times. At least one run resulted
in an 'outlier' on around 8% excess, that bumps up the total excess percentage.
During the runs, some qualitative information was obtained about where it has
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trouble which will be discussed in the next chapter.

For kroA100 the algorithm started to get bogged down. It still produced de-
cent results, although only 1 in ten runs found the optimum. It seems 10.000
generations is to few for it to converge.
The results however are better than those stated in the paper by Zakir Ahmed
[Ahm10]. only showing an excess percentage of 2.

For pr439 It was infeasible to use twoOpt as a �nish procedure. With Lin
Kernighan �nish, it hit 2.7% average excess percentage.
In general it performs well, but it has one outlier that causes the average per-
centage to be higher. It seems that 10.000 generations are too few for it to
converge on an optimum. This number can be varied to obtain better results
(using 20.000 generations yielded 2.4% excess percent) at the expense of higher
computation costs.

4.4.3 Injection strategies on SCX

I tried to use all three described injection strategies on SCX. Again I inject after
50% and 75% of the total generations are computed. Since the Lin Kernighan
�nish procedure was found to be better in the previous section, I have chosen
to use it as �nish procedure in these tests.

Instance Injection Strategy Avg. Excess Percentage Best Worst Wallclock time
berlin52 2-Opt 1.6 0.0 3.5 4.2 seconds
berlin52 linKernighan 1.9 0.0 2.7 6.8 seconds
berlin52 randomInjection 1.6 0.0 4.3 3.9 seconds
kroA100 2-Opt 1.6 0.0 3.7 14.1 seconds
kroA100 linKernighan 0.7 0.0 2.6 8.2 seconds
kroA100 randomInjection 0.8 0.0 1.9 6.6 seconds
pr439 linKernighan 1.7 0.7 4.9 52.0 seconds
pr439 2-opt 3.8 2.0 5.8 3012 seconds
pr439 random 2.9 0.7 4.5 49 seconds

Table 4.8: Results for SCX with injection

On berlin52 the injection strategies were actually a bit worse than standard
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SCX. But this is probably just statistical uncertainty.
On kroA100 and pr439 the injection strategies yield better results than standard
SCX. The twoOpt strategy provides a slight improvement of only 0.3% average
excess percentage on the kroA100 instance and slight decrease in performance
on the pr439 instance (and an explosion in runnning time).
The LK injection yields an improvement of 1.2% average excess for kroA100 and
1.0% for pr439. Random injection does not yield any improvement on pr439
and berlin52, but does yield improvements similar to injection with LK-search
on kroA100.

4.5 Test of Generalized Partition Crossover

4.5.1 The Testversion and parameters

The GPX hybrid algorithm is implemented as in the original paper [WHH10].
It was explained in this paper at 6 in the Survey.

4.5.2 The tests

I use 5 generations for berlin52 and kroA100. For pr439 I use 10 generations.
In the original paper between 5 and 50 generations are used, and 5 generations
should generate solutions to larger instances of a quality of around 0.6% excess
percentage. The maximum depth of the LK search is set to 5. Otherwise I use
the settings from [WHH10].

Instance Avg. Excess Percentage Best Worst Wallclock time
berlin52 0.0 0.0 0.0 0.3 seconds
kroA100 0.03 0.0 0.3 2.7 seconds
pr439 0.7 0.3 1.0 114.0 seconds

Table 4.9: Results for GPX

For berlin52 the optimal result is found in 1 generation, the running time on
the wall clock is 0.3 seconds. Mostly the LK-search produces the right solution
in the �rst generation, so GPX is idle, but in a few cases GPX improves on the
LK-produced results via crossover.
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For kroA100 optimal result are mostly found within 3 generations in average
2.7 seconds. Here LK-search is mostly incapable of producing the optimal result
alone, but GPX is e�ectively recombining the various near-optimal solutions to
achieve to optimal one.

For pr439 GPX was not capable of generating the optimal result in 10 gener-
ations. The best result was 0.3% percent above the optimal solution, with the
average being 0.7% excess. On this problem the strength of GPX is clear, as it
repeatedly uses local minima to create better local minima. On a problem of
almost similar size, att532, the author of [WHH10] reports excess percentages of
0.5% average after 10 generations, which is comparable to the results I achieved
here (assuming the hardness of each problem is comparable, and I haven't found
anything that indicates otherwise).

4.6 Statistical Tests

In order to be able to determine whether there are signi�cant di�erences in �t-
ness level between the results produced by the various algorithms, I ran a series
of Mann-Whitney-U tests.
The number of test runs, that is 10, for each algorithm provides the population
of each algorithm. Since the population is this small, the distribution is tabled,
and I can use a simple counting scheme to �nd the u-values used.
This counting scheme works as follows:

Let the population that seems to be smallest be distribution 1, and the other
distribution 2.

Make a complete list of all observations in both distributions, sorted by �tness
value.

For all observations in distribution 1, count how many observations from dis-
tribution 2, that has a better �tness value than itself.

Add this number to the total u-value

When using the 95% acceptance interval for a population size of 10, the accept
interval is for u-values between 23 to 77. If the number is lower, distribution 1
has better values. If the number is larger than 77 distribution has better values.
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(with 95% con�dence)
In the following table I have listed the results of the statistical tests:
Some notes: I tested SCX linK �nish vs. SCX twoOpt �nish and they were
not statistically di�erent. Hence whenever I write SCX, I mean SCX with a
Lin-Kernighan �nish.

Instance Algorithm 1 Algorithm 2 u-value Rejection
of the
null-
hypothesis

Best algorithm

kroA100 OX SCX 8 yes SCX
kroA100 GPX OX 0 yes GPX
kroA100 SCX GPX 10 yes GPX
kroA100 OX inject LK OX inject twoOpt 20 yes OX inject LK
kroA100 OX inject twoOpt OX 14 yes OX inject twoOpt
kroA100 SCX LK �nish SCX twoOpt �nish 26 no n/a
kroA100 SCX inject LK SCX 12 yes SCX inject LK
kroA100 SCX inject LK SCX inject 2-opt 54 no n/a
kroA100 SCX inject LK SCX inject random 59 no n/a
kroA100 SCX OX inject LK 84 yes OX inject LK
kroA100 SCX inject LK OX inject LK 59 no n/a
kroA100 SCX inject LK GPX 0 yes GPX
pr439 SCX OX 0 yes GPX
pr439 GPX OX 0 yes GPX
pr439 GPX SCX 10 yes GPX
pr439 OX inject LK OX inject 2-opt 0 yes OX inject LK
pr439 SCX inject LK SCX inject 2-opt 8 yes SCX inject LK
pr439 SCX inject LK SCX 22 yes

(barely)
SCX inject LK

pr439 SCX inject LK OX inject LK 44 no n/a
pr439 SCX OX inject LK 82 no n/a
pr439 GPX SCX inject LK 5 yes GPX

Table 4.10: Statisical tests

For Berlin52 there were too many observations that were equal, in particular
results that hit the global minimum to reject the null-hypothesis. Instead I
decided to focus on the results for the larger instances.
Of the algorithms without injection, GPX is the best, SCX is worse than GPX
but better than OX. OX is the worst operator.
The best �nish procedure for SCX is statistically LK-search.
For both kroA100 and pr439 injection with LK is statistically signi�cant better
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than other injection methods for OX, hence we will use this version to compare
to other algorithms.
Injected OX is statistically better than standard OX for all instances including
berlin52, and it SCX injected with LK is statistically not better than SCX
injected with twoOpt on the kroA100 instance, but on the larger instance pr439,
injection by LK is statistically better.
Injected SCX is statistically better than SCX for kroA100 and for pr439 but
only barely (the U-value was on the border). Which indicates that injected SCX
might be marginally better.
Injected OX is statistically better than SCX, but worse than GPX.
Injected SCX is statistically as good as injected OX and worse than GPX.



Chapter 5

Discussion

In this chapter I will discuss the obtained results. I will use those, together with
the analysis from the survey, to present strengths and weaknesses of the three
operators. I will then compare them to each other and �nally I will present
some summarizing thoughts on the use of crossover operators on TSP.

5.1 Comments on the results

5.1.1 The Order operator

The Order operator was the simplest and easiest to implement. The results
show that the OX operator has problems with solving moderate and larger
sized problems e�ciently. On the Berlin52 case it performs adequately, but on
the kroA100 and pr439 the results are increasingly worse.
OX seems to be better with a higher number of allowed generations, continously
improving on solution quality with increased number. This indicates, that it is
capable of escaping local minima traps. This however is probably due to the
mutation operator and not the crossover.
OX is one of the most succesful GAs for TSP from before theoretical research
suggested key principles like alleles transmission and respectfulness. Since OX
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is not following these principles, it can introduce many new edges at each gen-
eration, (recall the analysis in 2.1.4).
This enables OX to not be trapped in local minima. However as seen in [Jak10]
the converging time is considerably slower, as the probability of producing bad
o�springs (because of the new edges) are signi�cantly larger, and thus OX needs
more generations to produce high-quality o�springs. I believe that this mecha-
nism is re�ected in the obtained results.
In most papers I considered for the survey, GAs for TSP used a population size
of 10. Thus I would have expected that a population size around this should be
preferably for OX. When experimenting, however, I found that solution quality
seems to bene�t from considering a larger population. Empirically I found a
steady improvement in quality until population size reached 100, and a steady
decrease in quality when further increasing size. This is the same population
size as suggested in [RBSMBT].
The explanation for the increase in performance is probably due that there are
more options to work with for OX. with more options, there are both a larger
probability for producing good edges in the initialization step and preserving
diverse searching points for a longer time. The increased population sized can be
viewed as a kind of parallelization of the search, but with interactions between
intermediate results.
The decrease, I expect, is caused by the limitation on the generations. With a
larger search space, with more candidates to potentially improve, more gener-
ations are needed to converge on a good solution. Thus there appears to be a
certain 'golden' ration between population size and number of allowed genera-
tions.
If those claims are valid, the performance of OX becomes (perhaps not surpris-
ingly) a tradeo� of quality of solution (increasing population size and genera-
tions) and execution time.
As evidenced by the very slow performance on a problem of moderate size,
pr439, it is for most practical purposes not feasible to have a su�ciently large
population and allowed number of generations to achieve decent quality of so-
lution for larger problem instances using OX.

5.1.2 OX with Injection

When Figuring out how to use the injection for best e�ect, it appeared that
di�erent strategies worked well on di�erent problems. In general however, in-
jection by an individual improved by Lin Kernighan produced the best results.
I tested all three variants on this algorithm. The random restart injection strat-
egy did not improve on the quality of solution. Both the 2-Opt and LK injection
strategies improved the quality. Looking closely at the results for LK-injection,
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it seems that the improved results are mostly due to the use of LK-search. How-
ever in 40% of the cases, OX is capable of improving the solutions produced by
the injected LK individual, and decreases the excess percentage by 0.8% in those
cases. On average the total results for the LK-injected algorithm are 1% better
on average than pure LK-search, and 4% better than standard OX.
When looking at the 2-opt strategy, OX clearly improves on the injected solu-
tions (in 50-60 percent of the cases), by approximately 4% on average. However
some of the injected results are not very good, and this causes the end result on
pr439 to be close to that of the standard OX operator. The end result is the
second best of all OX-algorithms though, and not far behind the LK-injection
strategy (except on the pr439 instance) based on �tness value. The running
time is considerably slower though.
It is still clear that working on a moderate-large instance, pr439, (except for the
LK-injection strategy) is slow work compared to other algorithms as it spends
between 20 and 40 minutes on achieving solutions of subpar quality.
It can be argued that the injection should be performed at other times, but
when I experimented with moving the injection time in generations, and the
number of injections, I found no noticeable di�erence.

Although, perhaps because of the chosen method, there was no clear bene�t from
using injection as a diversity maintaining strategy. The results support the idea
that if given decent candidates as input (�tness wise), crossover operators are
capable of generating new and better solutions using these candidates. It is
an encouraging result especially since OX is by no means optimized for this
purpose.

5.1.3 The SCX operator

The SCX operator is quite easy to implement, requiring a little more work than
the OX operator, and given the testresults, SCX seems to be a preferred choice
compared to OX.
I was unable to reproduce the results claimed in [Ahm10] (by a factor of 10
in excess percentage). However with the addition of a '�nishing' procedure, I
was able to reproduce similar results, and for kroA100, even better results. For
the smaller instances SCX seems to provide good quality of solutions, as stated
by the author. On the larger instances including pr439 SCX performsnot as
well. It was not as e�ective at improving good solutions as expected, which was
thought to be a strength of SCX.
The overall impression from the test results is that SCX is better than the early
crossover operators and many other suggested operators, but appearently it does
not scale well.
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The main argument for using SCX (by the author) was that it retained approx-
imately 71% of edges on each crossover and then introduced good new edges. It
seems that the operator seems to �nd a tradeo�, complying with both watson
and Radcli�e et al. [RSJJ94]. As argued earlier the principles in [RSJJ94] is
the most important in order to create good o�spring, as SCX adheres to these
but not completely. This is a possible explanation of why it is better than an
algorithm like OX, but fails to outperform GPX.
In SCX the problem is viewed as one-directional, that is, the order is only con-
sidered from left to right. However since we are working on a bi-directional
problem, we might miss on preserving/adding good edges.

example: This example is taken from berlin52, Consider the optimal sequence:
xx 40 37 38 48 yy.
We consider two candidates where the sequence is close to the optimal:
p1: 40 38 37 48

p2: 40 37 48 38
From the cost-matrix I know that the edge 40↔ 38 is better than 40↔ 37, that
37 ↔ 38 is extremely cheap and that 37 ↔ 48 is slightly worse than 38 ↔ 48.
Both parents thus have edges present in the global optimum. However since
SCX is one directional and always starts with p1, the o�spring will be build as:
40 38 37 48 , although if p1 had been reversed (or read from the end) the
resulting sequence in the o�spring would have been:
48 38 37 40 , which is the optimal sequence.

Another problem related to this, is when two local minima are similar (not iden-
tical), If the order of the second candidate is reversed compared to the �rst, the
crossover would basically only use the �rst candidate for building the o�spring.

Consider this small example:

In here the example from the survey section that GPX solves is revisited.
The two parents have the following genes:
p1: 2 1 9 8 4 6 10 3 5 7

p2: 7 10 3 5 6 4 1 9 8 2
The optimal solution is:
opt: 2 1 9 8 4 6 5 3 10 7
Remember that the following holds for the edges:
8↔ 4 is smaller than 8↔ 3,
4↔ 6 is smaller than 4↔ 3,



5.1 Comments on the results 65

2↔ 1 is smaller than 2↔ 8,
8↔ 4 is smaller than 1↔ 4,
6↔ 5 is smaller than 6↔ 10,
6↔ 10 is smaller than 6↔ 3,
10↔ 7 is smaller than 5↔ 7,
Given those edges the o�spring constructed by SCX, will be exactly p1, however
if p2 had been reversed, the following o�spring would have been created:
o�spring: 2 1 9 8 4 6 5 3 10 7 , which is the optimal solution.

The strength of this operator is when the edges used in the global optimum
are present in the population. If the candidates chosen for mating contain one
such edge, it will be in the o�spring (unless as shown in the above example, the
candidate containing such an edge is in reverse order).
If the global minimum edges are not present, SCX tends to be stuck in a local
minimum. When adding 2-Opts in the search process, the overall performance
improves, I believe it is mainly due to this mechanism.
An algorithm using SCX as the crossover operator should focus on this particular
strength, thus it aught to �nd a way to introduce edges that are present in the
global optimum, through, for instance, local search.

5.1.4 SCX with injection

The three injection strategies were used in the same manner as for OX.
The random restart injection strategy resulted in results that were close to that
of the standard SCX algorithm. The di�erences were found to be statistically
insigni�cant.
The 2-opt injection produced results that were very similar to standard SCX,
and did not result in any noticeable improvements on the quality of solutions.
The Lin-Kernighan injection strategy gave (except for the berlin52 instance) an
improvement of 0.4% and 1% excess percentage on kroA100 and pr439 respec-
tively. The injected results were used on average 1% of the following generations.

As for OX, the idea of a random restart injection to preserve diversity, does
signi�cantly not a�ect the �tness of the achieved solution.
The idea of introducing a good 'building block' in the form of a local search
improved search point seems to work well for SCX. Demonstrating, as for OX,
that crossover can use good local minima to create new and better local minima.
Where LK-search usually generate a good search point, the 2-opt strategy are
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more inconsistent. Sometimes the 2-opt enhanced injected individual is a very
bad local minima, and SCX has trouble using it as a building block. This is
probably the reason why the LK-injection strategy is better than 2-opt strategy
for this algorithm.

5.1.5 The GPX operator

The hybrid algorithm integrating the GPX operator, delivers comparatively
good results. On the small berlin52 instance the optimal solution is found in
every test run. On kroA100 the optimal solution was found in 50% of the runs,
although all solutions where within 0.5 excess percentage. When used on the
larger instance pr439 the global optimum was not found, but the average excess
percentage was 0.6%. These results are signi�cantly better than the other tested
algorithms, and are close to the claims (quality wise) made by Whitley et al. in
[WHH10].
It was to be expected that the hybrid algorithm would perform well, as it makes
heavy use of the LK-search routine. In order to gauge the e�ectiveness of GPX
I looked at whether it did indeed improve on the solutions with each generation,
thus demonstrating the value of the GPX crossover operator.
I found that the GPX is indeed able to reassemble local minima to a new local
minimum (the tunneling claim by whitley in [WHH09] and [WHH10]) and to
�nd the global optimum in this way. On kroA100 LK-search was unable to get
closer than 0.3% excess percentage, and on average the LK-produced solutions
where around 1.3% excess. The GPX had to use between 2 and 3 generations
to recombine the produced local minimas to produce the global optimum.
This e�ect was larger on the pr439 instance, where LK-search produced results
at least 1.0% excess percentage over global minimum (1.9% on average). GPX
was able to reduced this to an excess percentage of 0.5%. These �ndings demon-
strate the claimed e�ectiveness of GPX by [WHH09][WHH10].
The strengths of GPX is directly tied to its adherence to the principles of alleless
transmission and respectfulness. It is very good at preserving good edges from
both parents, and recombine them in the o�spring.
One contributing factor is that the problem is considered both-directional. It
respects the fact that it is working on a problem that is best represented as a
graph, and thus avoids the trap that SCX su�ers from in 5.1.3.
In the following I will present two examples. The �rst one revisits the example
from the survey 2.1, which is the same as in 5.1.3, the principle of combining
good building blocks is shown. The �rst parent contains a good solution in the
�rst part, and the second parent do that in the second part.
Afterwards I present an example of the e�ectivity on the problem instance of
berlin52, the example was taken from a run of the GPX-algorithm on the prob-
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lem during my tests.
Example:

The two parents have the following genes:
p1: 2 1 9 8 4 6 10 3 5 7

p2: 2 8 9 1 4 6 5 3 10 7
The optimal solution is:
opt: 2 1 9 8 4 6 10 3 5 7
Using GPX, the string is two partition components one containing the sequence
between 2 and 4 and one containing the sequence between 6 and 7. This will
result in the choice of p1 inside the �rst partition component and p2 inside the
second component. Thus the optimal solution would have been optained.
A visual representation was given in 2.1

A real life example is taken from the berlin52 instance:
Real life example:

In this example, Two solutions were selected for mating.
Parent1 had a �tness value of 7777, and Parent2 had a �tness value of 7658.
In the following image, the union graph of the two parents are shown, as well
as how to partition the graph. For simplicity, surrogate edges are compressed.
In the o�spring, the edges of parent2 are followed in the largest component, and
the edges of parent1 are followed in the smallest component. Together this gives
a �tness of 7544. Which is the optimal result for this instance (given my dis-
tance function).
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Figure 5.1: a real life example of the GPX operator

Since GPX adheres to principles of [RSJJ94], the hybrid algorithm needs to
apply measures for preserving diversity and for introducing new edges into the
population. The author explains the need for diversity, in [WHH10], to keep
good edges from solutions that have relative low �tness value, and thus would
be lost in an elitist survival selection procedure. Diversity is maintained by
combining elitist selection with using the strategy of diversity selection. From
the testresults this seems to allow it to escape the local minima the other algo-
rithms get stuck in.
The use of double bridge moves as mutation operator is a good choice for this
algorithm (it was originally introduced in conjunction with LK-search, when
constructing chained-Lin Kernighan). By breaking up the paths at 3 di�erent
places and recombining them, 4 new edges are introduced. there is a chance
that a suboptimal subpath needed more than the maximum depth of lk-search
number of swaps, in order to be improved, now can be handled by the algo-
rithm, thus allowing LK-search to turn a suboptimal sequence into a better
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(sub)optimal sequence. Although the combined solution might be worse it will
have introduced an important building block that can be used by GPX in the
next generation.

Since breaking such a subpath in a large problem instance, would have a low
probability it might take an extended number of generations to be able to reach
the global optimum if it depends on the double bridge move in order to escape
a local minimum.

The implementation of GPX included some tricky sub-algorithms and datas-
tructure choices, including the need for a working implementation of the LK-
heuristic. Although it should be easy to reproduce if given a detailed algorithmic
description, it is de�nitely more di�cult to implement than the other operators.
A �nal remark should be made, that even though I fail to reach the same run-
ning rimes as the authors, this is most likely due to the unoptimized version of
Lin Kernighan I use.

5.1.5.1 Summarizing thoughts on the tested operators

The testing results showed that GPX was the most e�ective algorithm followed
by SCX and then OX. It also showed that injecting local optima into SCX and
OX improved performance.
This indicates that operators adhering to the principles of [RSJJ94], yield the
best results, as GPX adheres fully, while SCX does it partly and OX does not
focus on it.
Another common property is that crossover seems to be more e�ective when
given local optima as starting points. It is especially clear in the operator where
it is designed with this in mind (GPX), but both OX and SCX bene�ts from it
as well which can be seen in the injected versions of both. Local search algo-
rithms like LK-search will be a good choice for providing these local optima.
In cases where local search cannot escape a local optimum or if some edges
appearing in the global optimum is missing, a mutation operator is necessary.
A mutation operator like double bridge move is e�ective in the current case
because of the inherent limitation in LK-search (as described in the previous
section 5.1.5.
Diversity is important in multi-modal �tness landscapes like TSP as argued
in [FOSW09] and [WHH10], in the hybrid-GPX algorithm it was incorporated
using diversity selection, which, in the testresults, appeared to meet its pur-
pose. Unfortunately it was not clear whether injection had an impact on the
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performance due to diversity. Injecting unimproved random solutions, seemed
to be detrimental to overall performance. However the appearent succesful use
of diversity selection in GPX indicates that diversity measures are important,
but that they may vary depending on used operator and overall algorithm.
From the survey and the tests, the following design features seems to be impor-
tant for the performance of a good GA/hybrid algorithm for tsp:

• Full adherence to principles of alleless transmission and respectfulness

• The use of local search heuristics to ensure there are good candidates for
mating during crossover

• An e�cient diversity scheme, helping to ensure that edges in the global
optimum is present in the population

• Adding an operator capable of exploration, like a mutation operator, that
is capable of breaking the algorithm out of a local minimum that neither
the crossover or the local search heuristic can escape from.

If the purpose is not to solve large TSPs, and/or in circumstances where ex-
tremely fast running times is crucial, one might consider alternative options.
Based on the tests of SCX and OX, especially their ability to hit the global
optimum at least one in ten runs, combined with the claim that they are easy
to implement, they might be an interesting choice. Especially if the �nancer is
reluctant to spend many ressources on it.

A real life example where this would be feasible could be the following case: A
small internetbased company delivers to a number of (di�erent) customers every
day using a single truck. To minimize the delivery time, the shortest round trip
is desired. This should be calculated every morning and given to the driver.
Using a quick implementation of SCX, focus can be spend on specifying an
e�ective cost function, and thus the company can relatively quick get a good
tsp-solver for their purpose.

5.2 Potential of genetic algorithms

How do GA/hybrid GAs perform compared to other algorithm types used on
TSP? As explaned earlier I was unable to hit the fast running times claimed by
GPX in [WHH10], But it seems that in certain cases a good crossover operator
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can improved on performance of local-search algorithms, proving the original
idea by Radcli�e and Surry [RSJJ94]. In [WHH10], a GPX hybrid algorithm
was claimed to improve on Chained Lin-Kernighan.
Keld Heldsgaun [Hel00] presented an implementation of the LK-heuristic that,
by his claimed results, far outperform those results stated for GPX and chained
LK in [WHH10]. One could argue that a combination of this very fast LK-
implementation used in a hybrid algorithm might produce even better results.
Whitley, one of the authors of the GPX, recently tried to do this in [Hel09],
where he was able to improve the performance of the LK-Helsgaun on 'clus-
tered instances' where it was known to struggle.
Other known approaches includes cutting-planes and branch & bound tech-
niques. Those were out of the scope of this project, so I have not obtained
results from those.
It seems clear however that pure GAs, in the way that they are traditionally pre-
sented in the �eld of evolutionary computation, are infeasible compared to other
methods. This would seem to indicate that the focus within the evolutionary
computing community working on tsp's, should be on constructing/inventing
crossover operators that support and supplement state-of-the-art local search
techniques, integrating it into hybrid algorithms.
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5.3 Conclusion

In this project I have considered a large number of di�erent crossover operators
for the tsp-problem, that I have been able to �nd. I have tried to compare them
and to provide an overview of the performance of all operators.
I selected 3 of those crossover operators, that seemed to be among the best.
The Order, Sequential Constructive and General Partition crossover operator.
Those were implemented and thoroughly analysed using statistical and numer-
ical tests and qualitative observations of the solution process.
SCX was found to be better than OX, and GPX was found to be the best oper-
ator based on quality of solutions. GPX was considerably faster than the other
tested algorithms.
Considered to be important for multimodal �tness landscapes, I tested the e�ect
of some diversity measures. GPX preserves diversity through diversity selection,
which seems to work well. I tried using injection strategies on the algorithms.
Injection by itself did not enhance performance, but if injection were done with
solutions improved by local search heuristics, the performance were signi�cantly
improved.
In the last chapter I have suggested some general guidelines for design of crossover
algorithms for tsp based on my �ndings in literature and the performed tests.

The results of the qualitative study of the three operators combined with princi-
ples established from the literature study, indicates that the traditional crossover
concepts does not work optimally on tsp.
Attention should be spend on constructing 'hybrid-algorithms' combining search
heuristics, that quickly can generate good search points, and a crossover oper-
ator that can recombine these search point to obtain new better search points.
It has been shown in studies that this approach can improve on the solutions
obtained by current state-of-the-art algorithms.
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