
Bachelor Project
Major League Wizardry: Game Engine

Phillip Morten Barth
s113404

February 28, 2014

Abstract

The goal of this project is to design and implement a flexible game engine based
on the rules for the collectable card game, Major League Wizardry.

Contents

1 Introduction 2

2 Glossary and Abbreviations 3

3 Major League Wizardry 4

4 Analysis 5
4.1 End User Requirements . 5

4.1.1 Analysis of the Game . 5
4.2 Developer Requirements . 16
4.3 Analysis of different Approaches . 18

4.3.1 Event system . 18
4.3.2 Achieve Flexibility . 19

5 Technologies 20
5.1 Java . 20
5.2 LibGDX . 20
5.3 JavaScript . 20
5.4 Mozilla Rhino . 20

6 Design 21
6.1 Modular Design . 21
6.2 Basic Structure . 22
6.3 Event system . 24
6.4 Scripts . 26

7 Implementation 28
7.1 JSManager . 28
7.2 Event system . 29
7.3 Randomness . 31

8 Testing 32
8.1 End User Testing . 32
8.2 Developer Testing . 32

9 Future Development 35
9.1 Event Design . 35
9.2 Script Interpretation . 35
9.3 Script more Elements . 36
9.4 Combos . 36

10 Conclusion 37

1

1 Introduction

The focus of this project is on creating a flexible card game engine, which can be
used to interpret the rules of Major League Wizardry. Major League Wizardry is
a collectable card game. Which means that the cards that are used to play the
game, must be collected. For this reason the game needs a large variate of unique
cards which can be collected. Therefore the biggest focus for the engine, other
then interpreting the games rules, will be it’s ability to interpret and add new
functionality in the form of these collected cards.
We can expect that we will need to be able to create and add new cards to the
game on a regular basis and will therefore be required to create an engine that can
handle this.

2

2 Glossary and Abbreviations

Game - A single instance of a game state.

Player - A user who is playing the game.

Engine - The engine refers to the product for this project and is used to
interpret the game rules and hold the games state.

GameElement - Every object and element that is part of the overall game
state.

Wizard - Representation of a player in game. Holds a number of attributes,
like health and mana.

Card - Is used by players to play the game. They hold a number of different
attributes and functionality. There are several different types of cards, many
unique cards and an arbitrary number of cards with the same attributes.

Monster - A type of card. Stays in a players monster zone after it is played
and is first removed when it is defeated. Can attack wizards and other
monsters.

Spell - A type of card. When played it has some effect on the game state,
after which it is immediately removed.

Trap - A type of card. After it is played, it is placed in the trap zone, where
it can be triggered by a specific action.

Deck - A randomly sorted collection of 40 unique cards. Each player has
one during a game, from which they take cards into their hand.

Hand - A list of a limited amount of cards, which can be played. The cards
are taken from the deck.

Mana - Mana is used to player cards from your hand. It is essentially a
currency used in the game.

Health - When either a wizards or monsters health drops to zero or less,
that wizard or monster is defeated. If a monster is defeated it’s removed
from the game, if a wizard is defeated the wizards player loses the game.

Turn - A game is separated in turns. Players take turns one after the other.
A player is only allowed to take actions in the game, during their.

Actions - An action is something a player can take to change the state of
the game. There are several different actions that can be taken. Actions can
trigger reactions.

Triggers - Triggers are actions which will start other actions, as reactions.

Reactions - Reactions are actions that are triggered by a trigger.

MLW - Major League Wizardry.

CCG - Collectable Card Game

3

3 Major League Wizardry

This is an introduction to Major League Wizardry, MLW. MLW is a digital com-
puter and mobile game based on the rules of the physical card game of the same
name. MLW is a multiplayer, this means it requires at least two players to play the
game and a collectable card game, CCG, which means that every player collects
and extends their personal pool of Major League Wizardry cards which they then
use to play the game against other players. A player will have a variety of ways to
collect cards, one of which will be by buying them from an in-game store. Since
the sale of cards will be the main revenue stream the game itself will be free to
play which means you do not need to buy access to the game.
The development contains a large variety of aspects which is needed for the game
to fulfill all the set requirements. Some of these are a game engine to interpret
the games rules, some form of communication between players to facilitate the
multiplayer, a graphical user interface, anti-cheat to prevent players from cheating
during gameplay etc.

4

4 Analysis

In this section I will analyse what requirements the engine must fulfil. There are
two aspects to the engine, one is it’s ability to interpret the game rules and the
other is the ability to modify a large number of rules. These aspects are required
from two different groups of users. The ability to interpret the rules is important
for the engine to play the game, meaning that every user who wants to play the
game, requires the engine to be able to interpret the rules.
The second aspect is required for modifying the game later one, and is required by
the game developers. Usually flexibility and maintainability are considered non-
functional requirements, but since I consider the developers who will make use of
the flexibility and maintainability as a user group, I also consider certain aspects
of the flexibility and maintainability to be functional requirements. Therefore I
will focus mostly on the functional requirements of this project.

4.1 End User Requirements

As mentioned the main end-user requirement is that the game can be played, this
means that the game engine must be able to interpret the rules of the MLW. Since
we only consider the engine for this project, we can ignore the user-interface for
this aspect. The engine must contain the current state of the game and must be
able to receive input which is then interpreted using the rules of MLW to alter the
game state. A system must also be in place to deliver feedback from the engine
about the games current state.

4.1.1 Analysis of the Game

This section will analyse the rules of the game since they will be required for the
design and implementation of the end user requirements. I won’t explain every
rule and functionality required since that isn’t the focus of this project. I will
however give a good overview of the core aspects of the game and how it is played.
The game requires two players, users who wish to play the game. Each player
needs a deck which is a collection of 40 cards which should be in a random order.
When the game begins, the players take turns. Every turn starts with the active
player, the player who’s turn it currently is, drawing cards into his hand. Mean-
ing he can view them, while his opponent, the other player, can’t view them. He
is now able to perform a large variate of actions depending on the cards in his
hand. Some of which are playing a card from his hand, attacking with a monster,
activating an ability or draining a monster. It’s important to note that all these
actions require some prerequisites to be fulfilled, some of which I will explain in
detail later. Once a player has taken all the actions he wants to or is able to, he
ends his turn which will start the other players turn, making him the active player.
The game is build around a handful of elements. Each player is represented as a
wizard, each wizard has health points and mana which are attributes important
to the game. When a wizards health points reaches zero, he is considered defeated
and the wizards player is considered the loser of the game while the other player
is considered the winner. A wizards mana is used as one of the prerequisites for
taking certain actions. Mana can be considered a currency for taking certain ac-
tions. A wizard has at all times two kinds of mana, his maximum mana and his

5

current mana. The current mana is the amount he has left to spend on actions.
At the beginning of each turn he gains an additional maximum mana and after
that his current mana is set to the same as his max maximum mana.
The most important action that mana is spent on is playing a card from the players
hand. Since every other action a player can take requires that this player already
played at least one card. As such, cards are incredibly important for the game.
There are a large number of different cards with different attributes and function-
ality. A player can have up to three instances of the same card in their deck. A
card can be one of three different types, a Monster, a Spell or a Trap. Each of these
have slightly different attributes and functionality and make up the three major
categories. There are some attributes that all these cards share like their name
and their mana cost, the mana that needs to be spent by the player to play the
card. While other attributes are unique to the type, monsters for example, have
the attack and health attribute. Other then the difference in attributes for each
type, they also have functionality unique to them. When a monster is played from
the players hand it is placed in that players monster zone which will be explained
a little later on, while a played spell will simply activate, have a certain effect on
the game and then disappear.
One example for a spell could be the Fireball spell. When it is played the player
chooses a target for the spell; a target being the object that will be effected by
it. The target will then take 4 damage, meaning their health will be reduced by 4
points. Once the health has been reduced, the spell will simply be removed.
When a trap is played from a player’s hand it is simply placed in the player’s
trapzone, which is just the area in front of the player. The trap is placed face
down, meaning that the opponent can’t view it. Only one trap can be in a players
trapzone, but a player can remove his trap from his trapzone at any point during
his turn. The effect of a trap is activated based on an action that the opponent
takes and is the only way that a player can have an influence on the game during
his opponents turn. One example would be the trap called Backfire. If a player’s
opponent casts a spell card, like Fireball, while the player has a Backfire in his
trapzone, Backfire will activate and stop Fireball from being cast. It will then
remove the Fireball, without Fireball taking effect, and then deal damage to the
opposing wizard. After a trap has been activated it is removed from the game,
just like a spell that was played.
The last card type is the Monster card. A monster card is the most unique of the
three types since it has both a couple additional attributes and a very different
functionality. When a monster card is played from the players hand, it’s placed in
that players monster zone; where it will remain until it’s removed. A monster is
removed from the monster zone, and the game, when it’s health drops to zero or
below. In that sense they are similar to the wizard and can be a target, like the
wizard, to other cards like the Fireball spell. Another unique aspect to a monster
is the way that it costs a player mana. At the beginning of a players turn, after
their current mana is set to the same amount as their maximum mana, their cur-
rent mana is reduced by the collective mana cost of all the monsters they have in
their monster zone. This means that having monsters in a players monster zone
reduces the mana that this player has to spent during his turn. A player can also
choose to attack with his monster if they are able. The player chooses a monster to
attack with and a suitable target. This target can either be another monster or the

6

opposing wizard. When a monster attacks another monster, then both monsters
lose the other monsters attack in health. This means if a monster with 3 attack
and 5 health attacks a monster with 2 attack and 4 health, then the first monster
will be reduced to 3 health and the second will be reduced to 1 health. For a
monster to be able to target the opponent’s wizard with an attack, the opponent
wizard may not have any monsters, which are able to defend, in his monster zone.
Their are a number of criteria that decide if a monster is able to defend which I
won’t go into. A monster can only attack once per turn and can not attack in the
same turn that it was played. It is very important to mention that the behaviour
I have been describing is the standard behaviour of these types, but every unique
card can extend this standard functionality, like a monster that can attack twice
instead of once. The specific functionality on a card always overrides the standard
functionality of it’s type.

7

The overall structure of the games elements can be seen in this domain diagram:

Figure 1: Domain Diagram of the game structure

8

Figure 2: A screen shot showing some of the game elements and how the UI
represents them 9

As mentioned, only the active player can take any actions, while some of the
actions a player can take were already described here is a quick overview of all of
the possible actions and a quick description of the action:

Activate Monster - Some Monsters can be activated once they are in
a player’s Monster Zone. This means that a player chooses to activate a
specific monster in his monster zone. Every monster has a unique effect
when it is activated and not all monsters can be activated. One example for
an activatable monster is Fire Elemental, a monster that, when activated can
deal one damage to a target monster. Every monster can only be activated
once per turn.

Use Case 1 Activate Monster

Primary Actor: Player

Preconditions: 1. Player has at least one monster that can be
activated in monster zone

Postconditions: 1. Monster ability has been activated and the
effect has taken effect

Main Success Scenario:

1. Engine shows that monster can be activated

2. Player activates Monster

3. Monsters ability effects the game

10

Attack Monster - This action has already been described, it’s when a
player chooses a monster in his monster zone to attack another monster in a
monster zone. It results in both monsters losing an amount of health, equal
to the attack of the other monster, if a monster to or under zero health, it
is removed.

Use Case 2 Attack Monster

Primary Actor: Player

Preconditions: 1. Player has at least one monster that can be
activated in monster zone

2. Opponent has at least one monster that is
a viable target for an attack in his monster
zone

Postconditions: 1. Attacking monsters health is reduced by tar-
get monsters attack

2. Target monsters health is reduced by At-
tacking monsters attack

Main Success Scenario:

1. Engine shows that monster can attack

2. Engine shows that opponent monster can be targeted with the attack

3. Player selects monster to attack target monster

4. Targeted monsters health is reduced by attacking monsters attack

5. Attack monsters health is reduced by targeted monsters attack

Extensions:
2.a Attacking monster is defeated:

1. Attacking monster has zero or less health remaining

2. Attacking monster is removed

2.b Target monster is defeated:

1. Targeted monster has zero or less health remaining

2. Targeted monster is removed

11

Attack Direct - This action was also briefly mentioned earlier. When a
player chooses to attack the opponent wizard with a monster, instead of
another monster. In that case the target wizards health is reduced by the
attacking monsters attack. A monster can only attack direct if the target
wizard has no monsters able to defend.

Use Case 3 Attack Direct

Primary Actor: Player

Preconditions: 1. Player has at least one monster that can at-
tack

2. Target wizard has no monsters in his mon-
ster zone, which are able to defend

Postconditions: 1. Target wizards health points are reduced by
the attack of the attacking monster

Main Success Scenario:

1. Engine shows that monster can attack

2. Engine shows that wizard can be targeted

3. Player selects Monster to attack

4. Player targets Wizard for attack

5. Monsters attack wizard

6. Wizards health points are reduced by monsters attack

12

Discard Card - A player can choose to remove one of his cards in either
his trap zone or his monster zone. This means the card is simply removed
from the game.

Use Case 4 Discard Card

Primary Actor: Player

Preconditions: 1. Player has card in either monster zone or
trap zone

Postconditions: 1. Card is removed

Main Success Scenario:

1. Engine shows that card can be discarded

2. Player chooses to discard Card

3. Card is removed

Drain Monster - Once per turn, a player can choose to drain one of his
monsters. This action will refund the monsters mana cost immediately and
add one extra mana to the wizards max and current mana.

Use Case 5 Drain Monster

Primary Actor: Player

Preconditions: 1. Player has monster that can be drained in
monster zone

Postconditions: 1. Monster is removed

2. Wizard gains one maximum mana

3. Wizard gains one current mana

4. Wizard gains monsters mana cost to his cur-
rent mana

13

Main Success Scenario:

1. Engine shows that monster can be drained

2. Player chooses to be drained Monster

3. Monster is removed

4. Wizard gains mana accordingly

Play Card from Hand - This action has also mostly been described earlier.
It means that a player plays one of the cards in his hand, by spending the
required mana cost. Depending on the type of card, this action differs. If
it’s a spell, the spells effect takes effect and the spell is removed. A trap will
be placed in the trap zone, ready to be activated by an action and a monster
will be placed in the monster zone.

Use Case 6 Play Card from Hand

Primary Actor: Player

Preconditions: 1. Player has a card in their hand that can be
played

Postconditions: 1. The players current mana is reduced by
cards mana cost

2. The card is played.

Main Success Scenario:

1. Engine shows that card can be played

2. Player plays card

3. Mana cost is subtracted from current mana

4. Card is played

14

Ending turn - A player can choose to end his turn. Making the other player
the active player.

Use Case 7 Ending turn

Primary Actor: Player

Preconditions: 1. It’s the players turn

Postconditions: 1. It’s the opponents turn

Main Success Scenario:

1. Player chooses to end his turn

2. Players turn is ended

3. Other players turn is started

Surrender - A player can choose to forfeit the game. This will immediately
reduce his wizards health to zero, which will result in the players loss.

Use Case 8 Surrender

Primary Actor: Player

Postconditions: 1. The game is over

2. The player that surrendered is considered
the loser

3. The other player is considered the winner

Main Success Scenario:

1. Player surrenders the game

2. The players wizards health is reduced to zero

3. The player loses

4. The other player wins

5. the game is over

15

4.2 Developer Requirements

In a game, such as ours, the gaming engine provides the environment in which
the game is played. The engine dictates the rules and possibilities that the player
has. As such, the flexibility of the engine dictates how much freedom the game
designers have to make a great game for the end consumer.
While the engine will be implemented with a specific rule-set in mind, the de-
sign should support many easy changes to the basic set of rules, while still being
playable by the end-user.
While most engines try to give the game designers a lot of flexibility in what rules
they can extend, a card game like ours, must provide an even greater degree of
flexibility, since such a game is based on the idea of a very basic rule-set which is
expanded by a very large amount of additional rules. These rules are introduced
by the individual cards and as such, very unpredictable. The engine has to be
powerful enough to handle and easily implement all these additional rules without
much work or re-rewriting of existing rules. The rules that are introduced by cards
must be able to overrule the basic rule-set if necessary, which means that most
basic rule must implicitly state that they are in effect unless otherwise stated by
an additional rule. One example for this would be the card Alex; the basic rules
state that a monster can’t attack the opponent directly if the opponent has one or
more monsters on the field. Alex overrules this basic rule, and is allowed to attack
directly, even if the opponent has monsters on the field. Most trading card games
rely on a large quantity of different cards to keep their player-base interested in
the game; Major League Wizardry is no exception to that. Considering that the
revenue stream of the game is mostly going to rely on players buying new cards
in-game, it’s very important for us that we can easily add new and interesting
cards to the game.
While the engine must provide such a large degree of freedom when it comes to
card design, we can make use of the restrictions that are inherent to the games
rules to set up the basic structure on how cards should work. If we look at the
rule-set, it becomes apparent that everything that which changes the games state
is initiated by a players action. When a player takes an allowed action, the game
state is changed accordingly. One example would be a player, playing a monster
from their hand.
Something important to notice is that this change in the game can lead to a rule
activating which alters the game state further. This means that a player action
changes the game state which then triggers another change. This second change
is essentially an event that was triggered by the rules. Since this event changes
the game state again it can trigger another event. Maybe, when the player played
that monster, the opponent had a trap card on the field which got triggered and
damaged the monster. Here the users action triggered an event which in turn
triggered another event.
So while every game state change requires some kind of action from the player to
occur, they aren’t always directly related to the action but are triggered by one of
the events that was triggered by an action.
Based on this analysis it’s apparent that the engine will need some kind of event
system that keeps track of different actions and events as they happen, and makes
sure that certain other events are triggered as a result. The engine will therefor
not support events that happen without being initialized by a user action.

16

Other then simply being able to run the game, there are certain other requirements
that the engine must fulfill, one of which is dictated by the desire to release the
game on the iOS App-store. The store has a screening process for every app and
every update for an existing app which can take up to two weeks. Since the regular
addition of content is essential to the game, we want to find a way of adding cards
and content without having to go through the official store. We would like to be
able to be able to extend the rules of the game, on the fly, without the two week
waiting period. The engine must therefor be powerful enough to easily extend the
rules of the game and handle new cards without having to be re-compiled. To
achieve this, we will make use of the fact that the users need to connect to our
server to play the game.
To avoid the iOS store as much as possible, the engine will use some form of
scripting language to compile scripts and logic on the clients machines. The idea
is that every time a game is created on the server, the server will make sure that
the client has all the current scripts from which point the client can set up the
game with the newest version of those scripts. This would mean that we will be
able to update the game without having to re-compile or even restart it.
While flexibility is very important, there are some natural limitations that won’t
be avoided. One limitation will be the user interface. The UI will have very lim-
ited functionality, and will require a new compiled version to be updated. For that
reason, there is no need to add functionality to the engine which isn’t in some
way supported by the UI. A basic UI implementation will already support a large
variety of back-end functionality, so the engine must be much more flexible then
the UI but completely inaccessible functionality is not required.
Another limitation which is already apparent, is set by the “play-by-email” nature
of the game. It’s impossible for a player to take any action during his opponent’s
turn. While actions can’t be taken, Traps will activate automatically during an
opponent’s action, meaning that, while actions can only be taken by a player dur-
ing their own turn, automatically triggered events, like traps and monster abilities
could be triggered by the opponent.
What events will be able to act as triggers is another area that will be limiting
the flexibility, this means specially traps and monsters with special abilities that
are activated by something happening in the game. Most of these events have
to be predicted beforehand and therefor any event that isn’t implemented will
not be able to be used. To expand the number of events that can trigger certain
abilities, it’s simply a question of trying to cover ever possible event but it can’t
be guaranteed that all are covered. One example for this would be, if we didn’t
consider attacking an action that can trigger other events from the beginning, then
we wouldn’t be able to trigger traps or other cards off a monster attacking.
Since most of the game logic is done via scripts which use data objects to read and
store data, it’s important that the scripts get all the information that might be
needed. By default, the scripts will have access to the entire state of the game but
that might not be enough information. Specially when it comes to a previous state
of the game. Here it’s important that most actions and events that could trigger
scripts pass along as much information about the action or event as possible. This
could however end up being some limitation.
Another major limitation would be if a major change happens to the basic struc-
ture of the game itself. One example would be, if we were to add another card

17

type. So instead of just having Monster, Spell and Trap, we would have to take a
fourth one into consideration with it’s own rules and such.
So while the focus of the engine is to provide our game designers with the greatest
flexibility, there are a number of limitations which we simply can’t avoid, these are
mainly the UI-limitations, the natural turn based limitations and certain script
and event limitations. All of these would require the entire app to be re-written
and re-compiled.
The scripting is the most important aspect to making the game flexible, therefor
most of the game rules will be scripted. Not just the individual cards but also
the rules on who wins, who loses etc. This will give us more freedom to patch the
game and to introduce new game modes if we want to.
The aspects that are most likely going to be scripted are going to be the cards, the
player logic and the combos. Since most game rules are contained in these three
aspect, almost everything is covered with the exception of the communication with
the UI and the event handling to trigger certain effects. The triggered effects will
be part of the card or combo they belong to, and would be scriptable too.

4.3 Analysis of different Approaches

Before I settled for a design, I considered several different approaches. Most of
them showed problems once implemented, but they lead to the currently imple-
mented design which is why I will describe some of these approaches here.

4.3.1 Event system

The event system used to structure the flow of the game is based on a typical
listener design. The idea is that certain objects can listen to other objects, waiting
for the other object to trigger the listener. An early approach was the idea that
every object had a large number of lists. Each list would correspond to an event
that the object could trigger. When an object wanted to listen to a specific event,
it would add an anonymous implementation of a listener interface to the list for
that specific event. Once the event was triggered the object would go through the
list and trigger every listener that is added to the list. The listener would then
run whatever the listening object wanted to have run.
While the current system is similar, several changes were made to it and it will be
described in detail in the main design section.
The first aspect that was changed, was the idea of having a large number of
lists. Instead of having a list for each event, I chose to only have one list of
listeners for the entire object. To make sure that every event would only trigger
the corresponding listeners, listeners were given an enum, to identify what event
they were listening for. This was done to make it easier to add new events that
should be listened to.
The other change to the event system was that instead of having a specific interface
for each event, I simply designed a generic listener class which can, by using the
earlier mentioned enum, listen to any event. This was done for the same reason as
the idea of reducing the number lists to only one list. It meant we could simply
start listening on anything that we had an enum for, instead of having to implement
a new interface and a new array for that interface. While both of these changes

18

decrease the performance of the engine a bit, they did make it more maintainable
and easier to extend and implement.

4.3.2 Achieve Flexibility

To achieve our current flexibility, the engine went through three design iterations
which lead to the now implemented design.
The first design was build on the idea that every aspect that makes the card
unique other then fields that every card shares, like name and mana-cost, can be
considered the cards ability. This means that every card can have one or several
abilities. Some examples could be that Fire Elemental can do one damage to any
target once per turn, or that Sparky can both attack twice per turn and that he
can’t be counter-attacked. The idea for the design was to create a generic ability
class which would contain the functionality of the ability in question. An abil-
ity would contain a Trigger-class, an Effect-class and a Target-enum. The trigger
would be used to determine when an ability is activated, the effect was used to
determine what functionality the ability had and the target was used to decide
what parts of the game would be influenced by the ability.
The idea of this design was that every ability can be split into these three build-
ing blocks which then could be combined. This would mean we could implement
the individual building blocks and then combine them into a very large number
of different abilities. The reason this approach was abandoned was that it was
very complex to work with. The building blocks needed the right information to
function correctly and the overall work-flow became very complex.
The next solution was designed to avoid some of that complexity. The idea here
was to replace the building blocks with a script. This meant that every card would
still have it’s set of abilities but the abilities functionality would be scripted. A
proper description on the design of the scripting language and it’s interpretation
will be found in the design section. This design was quickly replaced with the
current design, where the idea of abilities is completely discarded and instead all
of the cards functionality is scripted.

19

5 Technologies

This section is to give some quick descriptions of the technologies used in the
project.

5.1 Java

Java probably needs little to no introduction. It’s both a programming language
and a software platform. The Java language is an object-oriented language, which
is run on the Java Virtual Machine which makes it cross-platform. There are sev-
eral reasons why Java was chosen for the game engine. The main reason being,
that the rest of the project uses the LibGDX framework, a Java framework specif-
ically designed to make games. Our server runs on the Play framework, another
Java framework. Beyond that it’s also the language I have worked with the most,
so it just seemed like the best decision to use it for the engine.

5.2 LibGDX

LibGDX is a Java game-development framework. It can be used to create desktop
and android games using the same code base. This means a developer is able to
write, test and compile his code on a computer, and compile the exact same code
as an android application. The general way of developing in this framework is to
mostly test and work on a computer, and only do performance tests on an android
device.

5.3 JavaScript

JavaScript is most commonly used for the front end of web-development. It is a
dynamic language, which means it doesn’t have to be compiled or can be compiled
on the fly, meaning it can be altered during runtime. The syntax is very similar to
that of Java or C which meant it was easy to pick up considering we already used
Java for the rest of the project. The dynamic nature of JavaScript made it perfect
for the purpose of scripting the cards in the game. Other then the similarity in
syntax to languages we were already familiar with, JavaScript also has a lot of
already existing support to be interpreted in Java, meaning we could simply use
existing libraries to interpret the script instead of writing our own interpreter.

5.4 Mozilla Rhino

Mozilla Rhino is the JavaScript engine we use to interpret and run our JavaScript
code. It’s developed and maintained by Mozilla and is completely based on Java.
Rhino can both compile and simply interpret JavaScript into Java code. This
means that it can either compile it into byte-code or simulate the interpretation
of the JavaScript. It can easily switch between the interpretation mode and the
compile mode and even gives you the ability to decide on different degrees on
compilation. Meaning that only parts or the the entire script can be compiled on
the fly. The ability to just interpret the scripts instead of fully compiling them
was very important since neither Android nor iOS allow or support the generation
of byte-code on the fly. This means that when our application runs on the mobile

20

devices, we are forced to only use the interpreted mode while on PC and Mac, we
are able to easily switch to compile mode to increase performance.

6 Design

This section will explain the design of game engine. It will give an overview of
the basic structure of the engine and go into detail with the event system and the
design and interpretation of the script system.

6.1 Modular Design

The design of the game engine was mostly based on the design of the rules of
the game itself. It was very important that the engine was it’s own module that
simply interpreted input and applied it to the current game state. This means it’s
currently it’s own project, which is simply imported into the main project. The
advantage is that we can easily import it into other projects which need to inter-
pret the game rules. One of these could be the server for certain verification or to
enable the player to play against a server controlled AI. Every project that wants
to interact with the engine, can then create an access layer, which implements an
interface. This access layer can then be used to interface with the game and make
changes to the game state. This design decision has already payed off. We were
able to add several game modes that weren’t planned to begin with, like the ability
to play against an AI, artificial intelligence, opponent, without having to alter the
engine itself.
An object instance of the game engine will always hold a specific game-state at
any given points. This means it’s similar to playing the game with physical cards,
at any given point in time, the game is in a specific state. Defined by the objects
and their states that make up the game. An action taken by the user will alter
this state into a different state. As such the game engine is simply the model of
the game, waiting for input by the interface.

21

6.2 Basic Structure

Figure 3: Class Diagram of the game structure

The class structure of the engine is very similar to that of the physical game. First
we consider every element that exists in the physical game as a GameElement, by
implementing the IGameElement interface. This is used so that these elements
can implement the listeners needed for the event system, which will be discussed
later. The rest of the design is very much based on the analysis of the games rules.

22

The Game is the class that the GameAccessLayer accesses. It could be consid-
ered the current state of the game, containing all the different GameElements that
make up the game, and the functionality to access these elements. Here under it
contains a list of Wizard objects.
These wizards contain all the attributes that a wizard described in the rules con-
tain, such as health and mana. A wizard also holds it’s deck of cards and the three
different zones described in the analysis. These zones are not grouped into a field,
since there is no actual functionality associated to the field. As such the wizard
holds the monster, trap and spellZone individually. The card class is extended by
the trap class, the monster class and the spell class. As described in the analysis,
every card shares certain functionality and attributes, like a name and a mana-
cost, but the three different kinds of cards have each their unique attributes and
functions.
Statuses were added to the design, they hold any functional changes to a GameEle-
ment. They are generally added to an element by a card and can persist indefi-
nitely. They change the functionality of a specific card. Any GameElement can
have an arbitrary number of statuses at any given time. These statuses will listen
on actions taken by the GameElement, and trigger accordingly. They use the event
system which will be described in the next section to listen on the GameElement,
and their functionality can be found in the script of the card which added the
status to the GameElement. The description of how these scripts operate can also
be read later on.
When the user decides to take one of the actions described in the analysis, like
attacking a monster, the work flow would look like this:

Figure 4: Sequence Diagram for attacking a monster

First the GameAccessLayer calls the Game, which in turn calls the Wizard
object to attack. The Wizard object uses a canAttack() check to determine if

23

he can attack. If all the requirements for the wizard to declare the attack are
met, the wizard checks if the monster is able to attack, by calling the monsters
canAttack() function. If this function returns true as well, then the wizard calls
the attacking monsters attackMonster() function and passes the target along. The
monster then calls the targets attackMonster() function, which reduces the target
monsters health. The target monster then checks if it can defend, which means
reducing the attacking monsters health by the targets attack. If this check is true,
it defends against the attacking monsters. Which reduces the attacking monsters
health as well.
That was mostly an example for the work-flow that results by a user action. While
different user action will be slightly different from this one. Most of them follow
the same flow, going from the GameAccessLayer to the Game and then to the
Wizard, after which it will go to a card, if the action requires some interaction
with a card.

6.3 Event system

As explained in the analysis, a user action will trigger one or several reactions
withing the engine. The events system is used to trigger these kinds of reactions
within the engine and to communicate any changes in the engine to the user in-
terface. Most actions that a GameElement takes triggers an event to be thrown,
other objects can listen for this event to be thrown and react to it.
For this, every GameElement contains a list of Listener objects. These listeners
are anonymous implementations of the abstract Listener class. Every listener has
a specific ListenerType, which is an enum, used to identify what event the listener
is listening for.
When a GameElement throws an event, it runs through it’s list of listeners and
triggers any listener with the same ListenerType as the event that is thrown.
One example would be when a Monster is killed, it triggers every listener with the
type ON MONSTER DEATH. A triggered listener will always pass the GameEle-
ment that was listened to, with it. So in this example the monster that was killed,
would be passed onto the implementation of the anonymous function.
Some events pass along several arguments, when a wizard plays a card from his
hand, both the wizard and the card that is played are passed to the triggered lis-
tener. This is to ensure that any reaction that requires the card that was played,
can react to this. The listener class can pass up to three GameElements to the
triggered function, which is enough for all the currently implemented actions.
To visualize the work flow of the event system, and how often events are used, we
can take the earlier sequence diagram for an attack and look specifically at how
the wizard and monster cast events. The more detailed diagram looks like this:

24

Figure 5: Sequence Diagram, showing the event system for attacking a monster

When we add the event system to the sequence diagram, it becomes very ap-
parent how often these events are cast. Both the can check of wizard and monster
and the actual action cast events individually for allow as much freedom to react
to actions as possible.
Sometimes an action has to be stopped by a reaction, before it concludes. One ex-
ample would be a trap, which stops a monster from attacking. The initial action by

25

the user is to declare an attack. This would usually lead to the monster attacking,
but instead it triggers the trap, which reacts by interrupting the attack. For this
reason the trigger functions in the Listener class return a Boolean. This Boolean
is used in “before”-checks, which determine if a specific action is allowed to take
place. If we take the earlier example, of the monsters attack getting stopped by a
triggered trap, the trap would add a listener to the opponent wizard. This listener
would listen for the BEFORE WIZARD MONSTER ATTACK event. When the
listener is triggered, it simply returns false. If just one listener returns false on a
triggered event, then the entire event will return false.
The user interface has access to the same event system, this is used to update
the user about any actions or reactions that happen in the engine, like a monster
dying or a trap being triggered.
The JSListener and the StatusListener classes are designed for specific cases. The
JSListener is designed to be used when some functionality within a script wants
to listen for a specific event. Compared to the normal listener, where the trigger
function is supposed to be implemented when it’s used, the JSListener executes a
given function in the script, that added the listener. This is used when a card is
waiting for a specific event to occur, before reacting to it.
The StatusListener is similar to the JSListener, in that it extends the normal Lis-
tener Class, to be a more specific implementations of it. It’s used for when a status
needs to listen for a specific event to occur. The disabled status, for example, stops
a monster from attacking. For this the status listens for the monster to do the
“before attack”-check, and uses it to stop the attack. Much like the JSListener,
the StatusListener has access to the script of the card that created the status and
the name of the function that is triggered when the listener is triggered.

6.4 Scripts

To be able to update cards on the fly, without having to recompile the application,
we decided to script individual card functionality. The scripts are stored on the
server, and when a game is created, the server sends all the newest scripts for the
required cards to the client, where the client builds the game from the received
scripts. This means that, as soon as we change a script on the server, all newly
created games will run with the updated script.
At first we considered the Lua scripting language as the scripting language we
wanted to use, but it became apparent that Java doesn’t support Lua very well
and we had problems with finding a good library that could interpret the Lua
script. So we looked at other alternatives, and choose JavaScript due to the similar
syntax to Java and the fact that there are a great variety of existing libraries for
Java that interpret Javascript.
Every cards functionality is completely scripted, the Card-class, and it’s children
classes Monster, Trap and Spell, are just interfaces to access the script and to
hold the necessary data that goes along with every card, like it’s name and it’s
mana-cost.
Every card has both a default script and an individual script. The default script
holds the functionality of a basic card of that type. This means that there is a
default monster script, a default spell script and a default trap script. The basic
monster script would be a monster that has no special ability and which doesn’t

26

extend or alters the rules what so ever. Since every monster will use the same
default script in the same game, the default script is only send once by the server,
instead of once per monster card, the same goes for the default spell and default
trap script.
The individual script holds all the functionality that is unique to a specific card.
Meaning it simply overrides already existing functionality in the default script,
with new implementations. One example would be sparky, who can attack twice
instead of once. The default monster script has the function, “canAttack” which
determines if a monster can attack or not. In the default script, this function will
only return true, if the monster has attacked less then once. Sparkys individual
script will override the “canAttack” function, by having it’s own implementation
of the function. This individual implementation will return true, if sparky has
attacked less then twice.
For a function in the individual script to override the implementation of a function
in the default script, the two functions have simply be called the same, in which
case the individual script will override the default script.
The interpretation of the scripts is handled by the JSManager class. This is simply
a utility class that has access to the Mozilla Rhino library, which is used to interpret
the JavaScript on the go. The game object creates an instance of the JSManager,
which gives all other game objects access to it, to interpret JavaScript anywhere
it’s needed.

27

7 Implementation

This segment will have a more detailed look at some of the implementations of the
former mentioned design. I selected these concrete examples since they seemed
the most interesting, while the rest of the implementation is a very direct imple-
mentation of the design.

7.1 JSManager

The Java Script Manager, JSManager, is the class that is responsible for handling
all JavaScript interpretations. A new JSManager instance is initiated and defined
as a public object in the field of the Game Class. Since all elements in the game,
which have to be able to interpret JavaScript, contain an instance of the game that
they are part of, they also all have access to the same JSManager. This way every
element that needs to interpret some JavaScript, has a reference to the JSManager
instance and can use it to have the JavaScript interpreted.
The JSManager uses the Mozilla Rhino library to interpret the scripts which
are stored in card objects. To interpret a script, the card object containing the
script, the name of the function that is to be interpreted and run and an array of
parameters, which are supposed to be used during the interpretation, are passed
to the JSManager.
The JSManager then creates a ScriptableObject, which the Rhino Library uses
to store the evaluated scripts. After creating the ScriptableObject, we evaluate
and store the cards default script in it. This means that the Rhino library will
interpret the entire string, and create a hash-map of all the functions in the script,
using the name of the function as it’s key and the interpreted script as the value.
Now we use the same ScriptableObject to evaluate the specific script. This means
that every function with the same name will simply override the already existing
value in the hash-map, with the newly interpreted one. While adding functions
with a name that isn’t a key yet, to the same hash-map. Using this method,
the default script can be override by specific functionality, by simply naming the
function in the specific script the same as the default script function.
Once the ScriptableObject for a given card is created, the JSManager uses the
name of the function that we passed along as a String, to get the function from
the ScriptableObject, and then calls it with the parameters that were passed along.
Some scripted functions are expected to return a boolean, like the canAttack check
that can be found in the default script for a monster card. For this we have
a different function in the JSManager, which operates in the same way as the
former mentioned void function, with the only difference being that the result of
calling the function is stored and then used to extract the resulting boolean from,
which is then returned.
The JSManager is also responsible for interpreting the scripts that correspond to
a specific status. This is done in the exact same way as interpreting card scripts,
just instead of passing the Card object, the Status object is passed.

28

7.2 Event system

Since the event system stretches throughout the entire basic structure, since every
GameElement is able to throw these events and every object is able to listen to
them, the best approach to explaining it is to use on implementation of it as an
example and go through the workflow of the system.
The attackMonster() function in the Wizard class is a good example for how the
event system is part of most functionality in the basic structure:

Figure 6: attackMonster() function in Wizard

The function is called when the wizards monster is supposed to attack another
monster. It requires the attacking monster and the monster that is to be attacked,
which we will call the target monster.
First we run the canAttackMonster() function, which requires the same parameter.
This function will return a boolean which indicates if the attack can be started at
all. The can function also throws events accordingly to test if an attack can be
initiated, for the purpose of this example, lets say that the canAttackMonster()
function returns true.
The next step in the function is that it calls the eventBeforeAttackMonster() func-
tion. This is a function in the Wizard Class that initiates throwing the corre-
sponding event. Since thrown events return a boolean, we can use the boolean to
determine if a listening object wants to interrupt the rest of the attack. Which is
why the call to the function is encased in an if-statement.
The eventBeforeAttackMonster() function looks like this:

Figure 7: eventBeforeAttackMonster() function in Wizard

This function will simply run the castEvent() function in GameElement, which
Wizard extends, with the required parameters. The first of which being the type of
event that is being thrown, namely the BEFORE WIZARD MONSTER ATTACK
event, which is given as a ListenerType enum. The next parameters are informa-
tion on what objects are involved in the event. The first parameter after the type,
is always the one throwing the event, in this case the wizard. The next two param-
eters are the attacking monster and the target monster respectively. All of these
are wrapped in a TargetContainer object, which is used so we can easily transfer

29

any kind of object without having to cast it until it’s needed. The eventBeforeAt-
tackMonster() function will then return the result of the castEvent() function.
The GameElement class contains three different castEvent functions. Each one
takes a different number of parameters, from one to three TargetContainer param-
eters. Since some events will pass several parameters while others only pass the
object that threw the event. First the function declares and initiates a boolean to
be true. This boolean is later returned and is the one that is passed all the way
back to the attackMonster() function, where it’s used to determine if the action
can continue or is interrupted. It is set to be true, so that if no object that is
listening wishes to interrupt the action, it will default to return true.
Then the function goes through the list of listeners, which are listening to the
GameElement. For every element it checks if the listeners type is the same as the
type that was passed along, so for our example it tests if any of the listeners have
the BEFORE WIZARD MONSTER ATTACK type. If any of them are of the
given type, then they are triggered. This means the listeners trigger() function is
called.
By default the trigger function looks like this: castEvent() function.

Figure 8: trigger() function in Listener

This default implementation is however, just for debugging purposes. When
an object is supposed to listen to a GameElement, it’s supposed to add an imple-
mentation of the Listener class, which extends it’s functionality, and overrides the
trigger() function that will be run, given the correct ListenerType. This means
that this trigger code will only be executed if the listener was implemented in-
correctly, since it’s missing the functionality that is actually supposed to be run,
when the listener is triggered.
As mentioned in the design part of this report, there are both the JSListener
and the StatusListener classes, which extend the basic Listener class. These are
specifically used so that JavaScript functions can be triggered by events.If we
use the earlier mentioned specific case, where the wizards attackMonster() func-
tion, casts the BEFORE WIZARD MONSTER ATTACK event, as an example,
then maybe a specific card wishes to interrupt the attack. Maybe a trap card is
triggered, which simply stops an attack from happening. This trap would have
added a JSListener to the list of listeners, which listen to the wizard. The JS-
Listener contains the card that is listening, the name of the function that is to
be triggered, when the trigger is triggered and the type it’s listening for, which
is BEFORE WIZARD MONSTER ATTACK. The implementation of the JSLis-
tener, will then, when triggered by the event, use the JSMangager to execute the
correct JavaScript function.

30

7.3 Randomness

There are two aspects of the game that are meant to be perceived as random. The
order of cards in a players deck and the outcome of certain effects on some cards,
like the ability of the monster Flux and Nunu, which has a 50% chance to deal
less damage when it attacks. While both of these aspects should be randomised,
their outcome has to be consistent across the same game instance. This means
that when we rebuild the same game instance with the same actions that a user
has taken, all the random results should be the same.
To make sure that the decks are randomised and consistent, we simply order them
randomly on the server, before sending them to the client, when the game is
created. Once the deck is randomly ordered, we save this order both on the server
and the client. This means that the order of the deck is consistent for that game,
but random for every new game created.
To achieve the same consistent randomness for the cards special abilities, we simply
had to make sure that the random algorithm to determine a random number, used
something consistent as it’s seed. In this case we use the games Id, which we
generally use to identify the game, as the random seed. This means that the
randomness is consistent in a game with the same Id and where the players take
the exact same actions, but will be different in a different game where the players
take the same actions.
To keep the consistency over the same game, the same random number generator
has to be used throughout the entire game. To make sure of this, the Game object
holds the random generator and has a function that will return the next random
integer in from the generator. Since every card in the same game holds a reference
to the same game instance, every card also holds a reference to the same random
generator and can request random numbers from it, which will stay consistent
throughout the entire game.

31

8 Testing

Since the requirements were separated into two different aspects, the end user
aspect and the developer aspect, the testing section is separated in the same way.
Since different testing methods were used for each of these aspects.

8.1 End User Testing

To assure that the end user requirements were fulfilled, I created several unit tests
which test all the use-cases mentioned in the analysis. There is a unit test function
for each of the use-cases. In the set-up function of the unit test class, I create a
game and two wizard objects, using the game and wizard factory. I also have a
utility function which creates a generic monster object, which only uses the default
script. To test use cases like attacking or playing a card. It’s important to mention
that the unit tests only cover the basic rule set, no extension based on card effects
are tested, meaning card functionality hasn’t been tested. A system that could
unit test all the card scripts would be very useful and will be discussed in the
future development section. Since all the unit tests succeeded as planned, we can
expect that the rules are executed as required.
The game has also been publicly available for several weeks, with thousands of
created users and several hundred games a day. The practical use also shows that
the game works. The only aspects that seem to cause bugs from time to time
are individual script implementations, which can easily be fixed without having to
re-compile the game. For this purpose a system was created that sends, any kind
of exceptions that the engine casts, to a server with information on the exception,
like what script might have caused it and what exception was cast. This makes
it very easy to debug any problems that occur on the already distributed devices.
Since we are ably to fix these problems on the fly, on our server without the client
even noticing.

8.2 Developer Testing

To test the flexibility that is given to the developers of the game, by the engine, was
a bit tricky. Conventional Unit testing can’t determine flexibility, since the whole
concept is to create unforeseen circumstances and unit testing is about testing for
all the known circumstances.
The core requirement for the flexibility is, that developers are able to add any new
cards they want, with ease, without having to modify the compiled code. So the
most appropriate way to test this would be to try and implement a handful of
cards and more importantly, their unique abilities, without having knowledge of
these cards while developing the engine. For this purpose I asked the project lead
behind MLW, to come up with a handful card abilities, which I would attempt to
implement, after the engine was already created. The abilities were supposed to be
designed to test the limitations of the engine. I have attempted to implement all of
them, most of which were implemented with ease, while a very small number was
impossible to implement with the design of the engine. However, all the cards that
couldn’t be implemented were outside the original scope, and were never meant to
be possible to be implemented.

32

For this report I selected the following card abilities, that were used to test the
flexibility of the engine, as examples:

Take a random Card from your opponents hand and put it in your
own hand - Implementing this ability was fairly easy. The script for it can
be found in the appendix and the resulting card was even added to the live
game itself. Having several hundred users playing with it. The script simply
puts a random card instance from the opponents hand into the players hand,
after which it removes that card from the opponents hand.

If you have less monsters in play than your opponent remove all
opposing monsters - This card is very similar to the already existing card
Avalanche, which destroys all monsters in both wizards monster zones. The
main difference is the added condition that the player has less monsters in
his monster zone, which simply requires a check if this condition is met and
the changed effect that only the opponents monsters are removed.

Remove top 10 cards from your opponents deck - While there isn’t a
card similar to this one, it’s implementation was still straight forward, since
it simply pops the top ten cards of the opponents deck. Which is simply a
stack of card objects.

You can now have 6 monsters in play for the rest of the battle - This
card could be very tricky to implement, since it overrides one of the most core
rules, the fact that a player can only have up to 5 monsters in his monster
zone. The engine was designed with the possibilities for cards like this in
mind. Therefore every numerical variable, like the max size of a players
hand or the size of their monster zone, is limited by a integer variable in the
wizards field. So this ability simply needs to change the integer variable for
the maximum number of monsters in the monster zone to 6.

Opposing wizard can only have 4 monsters in play for the rest of
the battle - The reason I picked this ability as one of the examples is to
show how very similar a lot of abilities are. For testing purposes I didn’t
even implement this ability, since it would be almost exactly the same as the
last ability mentioned.

As long as this monster is in play the opposing wizard can not
drain any monsters - This card is similar to another monster, which stops
the opponent from playing any trap cards. The way these kind of cards work,
is by listening to the opponent wizard, for a specific event. In this case, the
monster listens for the ”CAN DRAIN” listener type, to be triggered. After
which it simply returns false. This means that whenever the wizard checks
if it can drain, it is interrupted by the event trigger and is not allowed to
drain a card.

33

Remove a card permanently from your collection and win the game
- This ability could not be implemented with the current design. Since the
whole point of the engine to be only the interpreter of a currently ongoing
game, in a completely modular way, there isn’t really a way that the engine
could remove a card from the collection outside the currently ongoing game.
The engine has only influence on the current game state.

Beyond the cards implemented here, we also have already over 80 different card
abilities implemented, some of which are very simple, while others are very com-
plex. In this case a large amount of proofing the flexibility is done by using the
engine in a real world scenario, with actual users. Developing new cards and
abilities on the fly.

34

9 Future Development

Due to the nature of software development, many improvements and problems
become first apparent during or after the implementation of the design, but due to
time constrains these improvements did not make it into the build for this project.
This section will discuss some of these improvements, which will be implemented
in the future, and how they might be designed.

9.1 Event Design

There are a large variety of improvements that could be done to the Event Design
and the general work flow of events through the engine. One major improvement,
which actually changes part of the core design of the engine work flow, is the
addition of objects which would hold all the information and functionality for a
given action, that the user takes. For example, when a monster is supposed to
attack another monster, instead of passing both these monsters to the wizard,
an attackMonster object would be passed along, with both monsters and other
important information. This way individual information can be changed on the
object, before the attack happens. This object is then passed along the events, so
that objects listening can change the object if needed. These objects could also
be saved in a list, to easily recreate events that already happened.
The system also needs a more coherent system for when events are to be thrown.
At the moment different actions throw events at seemingly arbitrary times, it’s
important that this is standardised.

9.2 Script Interpretation

Currently the scripting interpretation is by far the biggest performance issue in the
engine. As mentioned, Android does not have the ability to compile the scripts,
instead they are only interpreted, which means that executing the scripts takes
quite a bit of time, which can lead to the gaming hanging for a fraction of a
second, which is enough for the user to notice. The first step was to make calls
to the engine multi-threaded. This means that the UI can continue showing fluid
animations, while the engine interprets the scripts. This makes the delay much
less noticeable, but does not fix the actual problem.
The best way to fix the problem, and the way that we will implement, would be
to cache the scripts as soon as they have been interpreted. This means that every
script only needs to be interpreted once, or at least until the game is closed and
opened again. This will probably done with a hash-map, the key will be the hash
value of the script string, while the interpreted script will be the value for the
same. This is to make sure that we can still update cards on the fly, without
having to create our own versioning system.

35

9.3 Script more Elements

Once the scripts have been optimized enough, so that they aren’t a problem for the
games performance, it would make sense to script even more aspects of the game.
Specifically the functionality of game elements, like the Wizard class or the Game
class. The general design would be similar to that of the cards. Where the object
serves as a shell for the attributes and as an interface to the script functionality,
while the scripts would contain all the logic. This would give us more freedom to
even change core game rules that are completely unrelated to specific cards.

9.4 Combos

Combos are a game play aspect that the game designers have been considering
for a while, but which hasn’t made it into the rules yet. The general idea is
that using specific cards in a specific order, in the same turn, will result in a
special effect. One example would be playing three Fireball cards in a row, will
make the third Fireball do double the damage. There are a variety of ways for
approaching this functionality. The general design idea would be that there are
Combo objects, which are scripted, similarly to the Card objects, which simply
listen for the combo requirements to be met, before they activate. They should be
fairly easy to implement, given the required time.

36

10 Conclusion

Finally we can conclude that, even though there are many improvements to be
made, the product is working as intended. The engine is capable of running the
game and interpreting the games rules. The system is also able to extend the
rule-set by an arbitrary number of additional cards, with unique effects. While
minor unit testing and test scripts have been implemented, to assure that the re-
quirements are mostly met, the best assurance is the fact that the game is already
played by thousands of people, with over 80 different scripts implemented. New
scripts are added regularly without any problem as long as they hold themselves
in the pre-determined scope. While the improvements would definitely add flex-
ibility and maintainability to the system, it already manages to meet all the set
requirements.

37

	Introduction
	Glossary and Abbreviations
	Major League Wizardry
	Analysis
	End User Requirements
	Analysis of the Game

	Developer Requirements
	Analysis of different Approaches
	Event system
	Achieve Flexibility

	Technologies
	Java
	LibGDX
	JavaScript
	Mozilla Rhino

	Design
	Modular Design
	Basic Structure
	Event system
	Scripts

	Implementation
	JSManager
	Event system
	Randomness

	Testing
	End User Testing
	Developer Testing

	Future Development
	Event Design
	Script Interpretation
	Script more Elements
	Combos

	Conclusion

