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Abstract

The purpose of this project has been to provide a motivating and exciting ba-
sis for learning about compilers, by enhancing an existing basis. The project
consisted of two parts.

The goal of the �rst part was to analyse an existing MiniJava-compiler used for
teaching purposes and use this analysis to provide a layer of persistence between
each internal module of the compiler. Enhancing the compiler to be externally
modular in this way makes the compiler more suited for educational purposes,
as students would be able to implement a module and have the two missing
modules handed out as binary �les, resulting in a functional compiler. The
challenge in this part of the project has been to provide a layer of persistence
which does not require changes within the classes to be persisted, by requiring
data to be exposed or annotations on �elds. It was decided to implement a
custom serializer and a matching deserializer from scratch for maintaining the
layer of persistence. This proved to be di�cult and many special cases had to
be resolved including loss of references, private �eld, and circular references.
The serializer and deserializer ended up being fully functional, and the layer
of persistence was implemented successfully. This was successfully tested by
using the original compiler to compile a number of test �les, which were then
compared with the result of compiling the same test �les with the enhanced
compiler.

The second part of the project concerned implementing a module for the en-
hanced compiler which was able to generate executable byte code for the new
Lego Mindstorms EV3 robot. Documentation for the assembler language was
found along with a working assembler which was successfully used to turn a
hello world assembler program into a �le running on the EV3. The new goal



ii

of the EV3 module now became to compile MiniJava into this assembler lan-
guage, which would then be able to be assembled and executed on the EV3.
This assembler language proved to be very di�erent from the assembler lan-
guage compiled to in the �rst part of the project. A memory managing system
was implemented in the new module along with an Application Programming
Interface, allowing the MiniJava language to interact with the special features
of the EV3 such as the display. Most existing features of the original back end
was also implemented in the new module.



Resume

Formålet med dette projekt har været at skabe en spændende og motiverende
basis for at lære om compilere, ved at forbedre en eksisterende basis. Projektet
har været opdelt i to dele.

Målet for den første del af projektet har været at analysere en eksisterende
MiniJava-compiler brugt til undervisning og bruge denne analyse til at ska-
be et persistenslag mellem hvert internt modul i compileren. Ved at forbedre
compileren til at være ekstern modular bliver compileren mere egnet til under-
visningsformål, da brugeren vil være i stand til at implementere et modul og få
de to manglende moduler udleveret som binære �ler, hvilket vil resultere i en
funktionel compiler. Udfordringen i denne del af projektet har været at skabe
et persistenslag som ikke kræver at der bliver ændret i de klasser der skal persi-
steres ved at stille krav til udsatte felter eller anmærkninger på disse. Det blev
derfor besluttet at implementere en serializer og en dertilhørende deserializer fra
bunden af til at opretholde persistenslaget. Dette viste sig at være svært, og der
skulle tages højde for mange specialtilfælde, her i blandt tab af objectreferencer,
private felter og cirkulære referencer. Serializeren og deserializeren endte begge
med at være fuldt funktionelle, og persistenslaget var derved oprettet. Dette
blev gennemtestet ved at bruge den originale compiler til at compilere et antal
test�ler, som efterfølgende blev sammenlignet med resultatet af at compilere de
samme test�ler med den forbedrede compiler.

Den anden del af projektet omhandlede en udvidelse af compileren. Denne udvi-
delse skulle bestå i et modul til den nye compiler som var i stand til at generere
eksekverbart bytecode til den nye Lego Mindstorms EV3 robot. Dokumentatio-
nen for det dertilhørende assemblersprog blev fundet, sammen med en assembler
som med succes blev brugt til at oversætte et hello-world program til en �l som
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kunne køre på EV3 robotten. Det nye mål for EV3 modulet blev nu at oversæt-
te MiniJava til dette assemblersprog, som efterfølgende kan blive assemblet og
eksekveret på EV3 robotten. Dette assemblersprog skulle vise sig at være meget
anderledes, i forhold til det assemblersprog der blev compileret til i første del af
projektet. Et hukommelsesstyringssystem blev implementeret i det nye modul
sammen med en Application Programming Interface der gør MiniJava-sproget
i stand til at interagere med de EV3-speci�kke funktioner så som skærmen. De
�este af den oprindelige backends funktioner blev også implementeret i det nye
modul.
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Chapter 1

Introduction

Compilers form the foundation of programming as we know it today. A compiler
provide a programmer with a very high level of abstraction and enables the
programmer to focus on creating the actual program instead of being forced
to perform basic tasks like managing memory. This decreases the development
time of programs signi�cantly. In addition, languages with an even higher level
of abstraction are likely to be expected in the future.
For these reasons, every computer science graduate should know about the inner
workings of compilers. This project aims to provide exciting and motivating
tools for e�ectively learning about this subject.

The aim of the �rst part of this project is to enhance a compiler written in
Java that transform the educational language MiniJava into assembler language
for the LC3 processor. The implementation of this compiler is to be examined
and ultimately divided into three externally modular applications. An user can
then be provided with two of the applications as binary .jar �les and a program
skeleton of the third. If the missing application is implemented correctly, the
user is able to pass test programs through the whole compiling pipeline even
though only one part has been implemented. This should motivate the user and
increase the overall understanding of the compiler.

The second part of the project is an attempt to create a module for the compiler
which is able to transform MiniJava into executable byte code for the new Lego
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Mindstorms EV3 robot. The robot was released on September 1, 2013, hence
not much experimentation has been done on the computer brick yet. As the
result of this module will be executable code, able to be run on the robot, the
module should be a motivational and interesting addition to the educational
compiler.

This report can be read by anyone with a basic understanding of object oriented
programming, data structures, and computer science modelling.



Chapter 2

Part 1: Creating a modular

compiler

2.1 Introduction

The aim of this part of the project is to analyse and enhance an existing com-
piler, by making it externally modular. This will be achieved by examining
the existing implementation and determine, whether this needs to be altered in
order for us to separate the modules. After this, an approach will be chosen
for achieving external modularity. The solution will then designed and im-
plemented. Afterwards, the implemented solution is tested to ensure that the
compiler still behaves as expected. Finally, the solution and decisions chosen
during this part are discussed.
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2.2 Analysis

In this section the language of MiniJava will be examined and described. The
compiler being enhanced in this project will also be examined, described, and
analysed, making it easier to modify the compiler in both this part of the project
and the next part. Furthermore, the problem of achieving external modularity
for all modules of the compiler is analysed, which includes an analysis of the
internal modularity of the compiler. The notation used in this section and the
rest of the project is explained in Appendix A.

2.2.1 MiniJava

MiniJava is a programming language used for educational purposes within many
areas of computer science, including programming, algorithms, semantics, and
compilers. The language itself is a subset of Java and removes the most advanced
features from Java such as parallel threading, inner classes, and library includes.
There are various versions of MiniJava. Some of these include extensions to
make it easier to learn how to program and some more simpli�ed than others[1].
The Backus-Naur form (BNF) grammar of the version used in this project is
seen in �gure B.2 found in Appendix B. From this grammar it is seen that the
used language is still object-oriented, but does not include all object-oriented
features of Java, for example abstract classes, and interfaces. Other features
omitted are for-loops, exceptions and exception handling, switch-statements,
and several logical and arithmetic operators. The grammar is examined further
in section 2.2.2.2

2.2.2 The original compiler

A compiler normally consists of three phases: Front end, analysis, and back
end. Each of these phases have di�erent responsibilities and the relation be-
tween them is seen in �gure 2.1.
The front end takes an input program and runs it through the lexical anal-

yser, which converts the source code into a stream of tokens. Next, the stream
of tokens is parsed to form the Intermediate Representation (IR), a tree data
structure, representing the program in a way that makes it easier to analyse and
translate.
In the analyse phase various things happen. While the syntax might be correct,
types may not match or variables might not have been initialized when being
read. Checking for errors like these is usually done in the analyse-phase. Fur-
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Figure 2.1: The three phases of a compiler.

thermore, the analyse-phase can be used to optimize and rewrite the code.
The back end, or code generator, translates the IR into the target language and
usually also manages memory.
The compiler being extended in this project also consists of these phases and
contains the following packets:

• compiler - The main compiler class and a pretty printer for debugging.

• compiler.CODE - Support classes for code generation.

• compiler.CODE.LC3 - Instruction classes for code generation.

• compiler.Exceptions - Exceptions used in the compiler.

• compiler.Frontend - The front end containing the lexical analyser and
parser.

• compiler.IR - Classes for the IR data structure.

• compiler.IR.support - Support classes used for analyzing the IR and for
generating code.

• compiler.Phases - Classes used by the compiler to start the di�erent
phases.

The entry point of the program is the main method in the main compiler class.
This class processes the command line arguments, which can be the following:

• -v for debugging mode.

• -o followed by a �le name for de�ning the output �le name.



6 Part 1: Creating a modular compiler

• The �lename of the source �le to compile.

• −− for indicating that the rest of the arguments should go to the input
program.

The �le name for the input �le is of course required. If this is not supplied, a
help message is printed.
The compiler then executes the three phases sequentially while printing messages
to the console, informing about the process so far.

2.2.2.1 The IR datastructure

Before the implementation of the phases mentioned above can be explained, the
IR datastructure should �rst be examined. As the IR is the output of the front
end and analysis, and the input for the analysis and back end, it is easier to
understand these parts if one has an understanding of this datastructure.
The IR can be seen as a tree with the class IR as the root node. In this class,
the main program of type MJProgram is contained in a �eld. In addition, some
static �elds with support objects are de�ned; a MJClassTable, making it eas-
ier to retrieve classes, methods, and �elds, a MJScopeStack which keeps track
of which variables that are able to be used, and two �elds saving the current
method and the current class.
MJProgram contains a list of the classes de�ned in the program. Each item in
the list has type MJClass. Each MJClass contains an unique name, a list of
methods of type MJMethod, a list of �elds of type MJVariable, and the type
of the superclass, which is of type MJType. Note that primitive types, like the
name of the class, will be leaves in the tree-structure, as no further objects of
the IR can be de�ned here.
The MJType-class is de�ned in order to help with type checking and code genera-
tion. In this class, an enum is used to de�ne some standard types; the primitive
int and boolean types, the null-type, and the type void for being used as a
method return type. For treating constructors di�erent from normal methods,
a constructor-type is also de�ned. If a MJClass is passed as parameter to the
MJType-constructor, a class type is created and the class used for creating the
type is saved in a �eld that can be accessed with a getter. This means that
it is possible to get the MJClass being the superclass of another MJClass by
calling this getter on the �eld denoting the type of the superclass. The MJType-
class is also used for array types. In that case an array type is created and the
basetype-�eld will contain the type of the elements in the array.
The MJMethod-class also contains a name, a return type, and a list of parameters.
Each entry in this list is of type MJVariable. The modi�ers of the method are
saved as three boolean values: isStatic, isPublic, and isEntry. A static method
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means that the method can only operate on static �elds of the containing class.
If the method is public, it can normally be accessed outside of the containing
class, whereas if it is private it can not. However, this has not been implemented
yet, and this value is currently only used by the pretty printer, which prints the
whole IR in a readable format. The isEntry is used to determine whether the
method is the main method, and thereby the entry point of the program. Fi-
nally the body of the method is de�ned as a MJBlock.
In a MJBlock, a list of variables of type MJVariable and a list of statements
of type MJStatement are de�ned. The latter type is an abstract class, and the
statements can be one of the following:

• MJComment: A comment which consists of a single string. Comments are
not compiled and only serve as a tool of documentation when coding.

• MJAssign: An assignment statement which consists of a left hand side and
a right hand side. The left hand side is an identi�er of type MJIdentifier
which will be bound to a MJVariable at compile-time. The MJIdentifier-
class is elaborated under the expressions later in this section. The right
hand side is a MJExpression, stating the value that the bounded variable
should be assigned.

• MJIfElse: An if-statement containing a MJExpression and a then-block
of type MJBlock. The statement can also be supplied with an optional else-
block. The statement will branch the program depending on the value that
the MJExpression-evaluates to. If the expression is evaluated to true, the
then-block is executed. If the expression is false, the else block is executed
if present. If the else block is not present, the program continues.

• MJWhile: A while-loop which has an expression and a MJBlock as body.
The semantics are similar to the if statement, but if the expression eval-
uates to true, the body is executed once, and the expression is evaluated
once more. This is repeated until the expression evaluates to false or the
program is aborted.

• MJMethodCallStmt: A method call without any return value. This can
only be used as a statement, as no value for use in an expression is returned.
The method contains an identi�er for identifying the method to call and a
list of MJExpressions which are used as parameters for the method. The
method call statement is bound to a method at compile-time by looking
up the method using the class table of the IR-class.

• MJReturn: A statement used for returning an expression from a method.
The return statement is required as the last statement of a method except
for the main method and can not be used anywhere else.
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• MJPrint: A statement for printing the evaluation of an expression to the
console. This statement would not be seen in a compiler normally, as
this is covered by the method call statement explained above. However,
as this compiler is for teaching purposes and does not include libraries,
the System.out.print and System.out.println-statements are parsed
into their own IR-class. This makes it easier to treat them di�erently
from normal method calls when code is generated. It is possible to treat
methods in di�erent ways without having dedicated classes for them in the
IR-datastructure, which is the approach that will be taken in the second
part of the project.

• MJPrintln: A statement, where the only di�erence from the MJPrint-
statement is that this statement will end with a new line character.

• MJBlock: A block for holding statements and variables. Blocks can be
nested inside each other for creating a new scope for variables.

The abstract class MJStatement is used for de�ning operations that all state-
ments should implement, such as pretty printing and code generation. In this
way, polymorphism can be used to easily apply the same operations to di�erent
statements that implement this operation in di�erent ways.
Most of the above statements use expressions for evaluating values. Like with
statements, the MJExpression class is an abstract class used for de�ning com-
mon operations for expressions. A type is de�ned for each expression, which is
useful for checking types when di�erent statements and operators are applied
to an expression. An MJExpression can be one of the following subclasses:

• MJBinaryOp: This is an abstract class that all binary operators inherit
from. It de�nes two expressions denoting the left hand side and the right
hand side of the operator, respectively. A subclass of this abstract class is
either an arithmetic, a logical, a comparison, or a string operator. Below
is an overview of all binary operators in the compiler:

� Arithmetic operators

∗ MJPlus: Used for adding integers.

∗ MJMinus: Used for substracting integers.

∗ MJMult: Used for multiplication of integers.

� Logical operators

∗ MJAnd: The logical ∧ operator for boolean expressions.

� Comparison operators

∗ MJEqual: Determines if two expressions evaluate to the same
value.
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∗ MJLess: Checks whether the left hand side of the expression
evaluates to a value which is less than the value of the right
hand side.

� String operators

∗ MJPlus: This operator is also used as a concatenate-operator for
strings, appending the right hand string expression to the left
hand string expression.

Note that operator precedence is not handled by the data structure, but
instead de�ned by the front end.

• MJUnaryOp: Similar to the MJBinaryOp, this is an abstract class that is
inherited by all unary operators. The class contains a single expression
that the operator is to be applied to. There are two unary operators in the
compiler: MJNegate which represents the boolean negate-operator, and
MJUnaryMinus which turns a negative integer expression into a positive
one and a positive into a negative.

• MJParentheses: This expression class is used for giving some expressions
higher precedence than others. The class contains a single expression
which is the content of the parentheses.

• MJIdentifier: If an identi�er is used in an expression, the value of the
variable bound to the identi�er is used. The MJIdentifier has two sub-
classes, MJArray and MJSelector. The �rst is an identi�er for an array
object which contains the identi�er for the array and the index to be read
from (in an expression) or written to (in an assign-statement). The sec-
ond subclass is used for selecting �elds and methods from an object in
expressions or statements. The MJSelector therefore has two �elds: An
object-�eld determining what object is used to call the �eld or method
and a �eld-�eld determining the �eld or method of the object that the
MJSelector should be bound to. The two keywords "this" and "super"
can be used to set the object �eld to the current class or to the superclass
of the current class.

• MJIfThenElseExpr: This is the expression equivalent of the if-statement.
The expression contains three expressions; a condition, a then-expression,
and an else-expression. If the condition supplied evaluates to true, the
then-expression is chosen. If evaluated to false, the else-expression is used.
Note that the else-expression is not optional as in the if-statement, but
has to be supplied.

• MJNew: An object initializer. This expression consists of a list of expres-
sions denoting the arguments for the constructor. Through the declara-
tion of the MJType-�eld of the MJExpression-superclass, it is possible to



10 Part 1: Creating a modular compiler

retrieve the MiniJava class that should be instantiated. The constructor of
this class is then looked up and bound to the MJNew-expression. This bind-
ing is created in the analyse phase. The expression has the MJNewArray-
class as a subclass, which contains the same information as MJNew, but as
this expression has to initialize an array, a MJExpression-�eld is added
which value is used to determine the size of the new array.

• MJMethodCallExpr: This is the expression equivalent of the
MJMethodCallStmt-class. The semantics are the same as the statement-
version of the class, except for the fact that the return value of the method
will be the value of evaluating this expression.

• MJCast: Used for converting an identi�er of one type into another. The
type to convert into and the identi�er to cast is saved in �elds. The
identi�er is basically wrapped into the MJCast-expression, and the type of
this expression then decides how the identi�er is treated.

• MJNoExpression: This is basically a null value for expressions. Used for
return statements in a method of type void and for variables that have
not been initialized yet.

• MJBoolean: A boolean primitive, having either the value true or the value
false. Both possible values are de�ned in the public and static True and
False �elds.

• MJInteger: An integer primitive.

• MJNull: Denotes the null reference for objects.

• MJString: A string literal, which contains a string value.

An overview of the class hierarchy of the IR is seen in Appendix C. For illustra-
tive purposes, some associations and classes are omitted from the diagram and
no associations with classes outside the IR are shown.

2.2.2.2 Front end

The front end is responsible for converting the text document containing the
source code into the IR. As lexical analysers and parsers can be quite di�cult
to build and debug, several tools called parser generators exist to make the
process of creating these easier. One of the most widespread parser generators
generating java output code is the ANTLR-tool. This tool takes a context-free
grammar as input and generates a Java parser that can read this grammar. The
grammar is de�ned in a �le with the �le extension .g, and the �le attachment



2.2 Analysis 11

MiniJava.g contains the input used for generating the parser for the original
compiler. The MiniJava grammar de�ned in �gure B.2 in Appendix B is de-
rived from this �le. In addition to de�ning the grammar of the language that
is to be parsed, ANTLR also allows the programmer to de�ne what to do when
hitting the di�erent tokens. This is expressed by writing java code in the .g
�le at each tokenm and can be used to return objects and perform operations
associated with this token. More speci�cally, this makes it easier to bind the
parser to the IR by binding each token to a class de�ned in the IR hierarchy.
ANTLR also allows the user to de�ne regular expressions. These can be used
for de�ning fragments, which are alphabets for use in other regular expressions.
The notation used for regular expressions is explained in Appendix A. In the
MiniJava.g �le, the following fragments are de�ned:

- LOWER : ('a'..'z') (Lower case letters)
- UPPER : ('A'..'Z') (Upper case letters)
- NONNULL : ('1'..'9') (Numbers from 1 to 9)
- NUMBER : ('0' | NONNULL) (Numbers from 0 to 9)
- NEWLINE:'\r'? '\n' (Optional carriage return and new line character)

In addition, a fragment CHAR is de�ned, which denotes all allowed string char-
acters. From these fragments, regular expressions are de�ned for use in the
grammar of MiniJava. These include the following:

IDENT : ( LOWER | UPPER ) ( LOWER | UPPER | NUMBER | '_' )*

INT : '0' | ( NONNULL NUMBER* )

STRING : '"' CHAR* '"'

COMMENT : ( '//' .* NEWLINE | '/*' .* '*/' )

WHITESPACE : ( ' ' | '\t' | NEWLINE )+

As the regular expressions imply, identi�ers have to start with a letter and
can then be followed by letters, numbers. and the '_' character. Integers are
either a zero or a nonzero-number followed by additional numbers. A string is
a sequence of characters enclosed in quotes and a comment is de�ned by two
slashes followed by any text terminated by a new line or text between the /* and
*/ character sequences. Last, whitespaces are de�ned as any positive number
of spaces, tab-character, and new lines.
The grammar in �gure B.2 in Appendix B already describes how the programs
should be structured in order for the front end to parse, and this grammar also
declares where the di�erent regular expressions de�ned above are used. The
MiniJava.g-�le will not be changed in this project, nor will the ANTLR-output
parser. The MiniJava.g �le or the ANLTR tool will therefore not be explained
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Figure 2.2: The expression 1 + 2 ∗ 3 parsed in two di�erent ways, giving two
di�erent results when evaluated. E is an expression while I is an
integer. The result of the left parse tree is 7 while the result of
the right tree is 9

in great detail.1. However, most of the production rules of the grammar have
a corresponding class in the IR. When a token matches a production rule, the
corresponding class' constructor is called to create an object which is then re-
turned by the production rule. In addition, types, modi�ers, and other settings
can be read and passed to the appropriate constructor or method. If a produc-
tion contains the closure operator (*), implying that zero or more occurrences
of a speci�c token is accepted, a linked list is used to hold the corresponding
IR-objects.
Next, operator precedence is considered. The same expressions can have dif-
ferent parse trees representing di�erent precedence hierarchies as seen in �gure
2.2, where the *-operator has higher precedence than the +-operator in the tree
to the left, while + has the highest precedence in the tree to the right.

It is important to make sure that all expressions are parsed the right way so they
form the correct parse tree in order to obtain the operator precedence wanted.
The front end of the original compiler handles this by de�ning six levels of
parsing. Level one is parsed �rst, then level two and so on. The operators are
grouped according to their level as seen below.

Level one: && (MJAnd)

Level two: == (MJEqual)

Level three: < (MJLess)

Level four: +,− (MJPlus and MJMinus)

1 More information can be found in the ANTLR documentation at:
https://theantlrguy.atlassian.net/wiki/display/ANTLR4/ANTLR+4+Documentation
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E

E

E

E + E

+ E

+ E

Figure 2.3: A left-associative parse tree.

Level �ve: ∗ (MJMul)

Level six: All unary operators, parentheses, primitives, and other expressions.

Note that these levels are de�ned in �gure B.2 in Appendix B, where level one is
named expression, level two is named level1 and so on. This system ensures
that the &&-operator has the lowest precedence and that all parentheses and
unary operators have the highest precedence and hence are evaluated �rst when
traversing the IR tree. All binary operators mentioned above are left associative,
as the left expression is evaluated before the right. Expressions using more than
one operator from a level will therefore form parse trees like the one seen in
�gure 2.3

2.2.2.3 Analysis

The analysis part of the compiler should ensure that the IR is ready for the back
end, and that basic errors such as types not matching or uninitialized variables
is caught before code is generated. The analysis phase in the original compiler
consists of four sub-phases, which are explained below.

First, the IR is rewritten in the �rst rewrite phase. This phase �nds all non-
static methods of the program and add a parameter, this, with the same type
as the class containing the method. This parameter is later used to pass the
object containing the method as parameter to this method.

Next, the type check phase checks the entire IR for type errors. A type check
method is implemented by most classes, and each of these methods ensure that
the IR objects they contain are also type checked. This phase also checks
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whether variables are actually in the scope when they are used.
Initially, the type check method of MJProgram is called. This method adds a
MiniJava Object class and a MiniJava String class to the IR. Doing this makes
the programmer able to use these classes without having to de�ne them. A text
and length-attribute is also added to the String class, although these are not
assigned anywhere in the compiler, hence the programmer would have to assign
these manually.
Afterwards the support classes are being set up; all classes are added to the
class table, and all methods added to the corresponding method table. When
this is done, the di�erent classes are ready to be type checked.
For classes, the current class �eld is �rst set to the class that is currently being
type checked. Afterwards the super class, the �elds, and all methods of the class
are type checked.
The type check method of MJType only checks class types and the base type
of array-types. The type is checked by performing a lookup on the type name
in the IR support class table. If no class with the same name is found, a type
checker exception is thrown, informing about the lacking class.
The type check method of MJVariable is used to check the �elds of the class.
This method type checks the type of the variable in the same way that the
type of the superclass is checked. In addition, if the variable is initialized when
being declared, this initialization expression is also type checked. If the type
of the expression is not assignable to the type of the variable, an expression is
thrown. Types are de�ned to be assignable to each other if one of the following
conditions are met:

• Both types are class types with the same name.

• Both types are class types and the source is a subclass of the destination.

• Both types are array types and their base types are assignable.

• The type of the types are equal and is neither a class type nor an array
type (hence they are primitive types).

• The source is null and the destination is a class type.

• The source is a void type and the destination is a constructor.

After the super class and �elds of a class are checked, all methods of the class
are type checked. The type check method of MJMethod �rst assigns itself to
the static current method �eld in the IR-class. The return type and all the
parameter variables of the method are then type checked. A new scope for the
parameters is also created and added to the scope stack of the IR-class. If the
method is a constructor, a call to the default constructor of the super class
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should be added if the body of the constructor does not contain a call to any
constructor of the super class as its �rst statement. This constructor is found
by using the class table of the IR-class and a constructor call is then added as
the �rst statement of the body of the method. Afterwards the body of type
MJBlock is type checked and the scope is left.
For type checking a MJBlock, all variables declared in the block are �rst type
checked. All these variables are then added to a new scope similar to the pa-
rameters of MJMethod. Afterwards, all statements of the block are type checked
and the scope is left.
The abstract MJStatement class inherits the typeCheck-method from the IR-
class. It is therefore possible to use polymorphism for type checking all state-
ments. Below is an overview of how the di�erent subclasses of MJStatement are
type checked.

• MJComment: There is nothing to type check in this class. The IR method
is therefore overwritten with an empty method.

• MJAssign: The MJIdentifier on the left hand side and the MJExpression
on the right hand side are both type checked. After this, it is checked
whether the expression is assignable to the identi�er.

• MJIfElse: The condition of type MJExpression is type checked, and it
is ensured that the condition has the boolean type. Afterwards the then-
block is checked and if an else-block is supplied, this block is checked as
well.

• MJWhile: Similar to the MJIfElse-statement. The condition is type checked
should be boolean, and the body is type checked as well.

• MJMethodCallStmt: All parameters of the method are �rst checked. If
the method identi�er is an instance of MJSelector, the object identi�er is
�rst type checked. This identi�er must be a class type and an exception
is thrown if this is not the case. The de�nition class is then set to the
declaration class of the type and the method name is retrieved from the
MJSelector. If the method identi�er is not a MJSelector, it is checked
whether the identi�er name is equal to the "this" or "super" keywords.
If it is, it implies a call to a constructor in the current class or the super
class. If the name equals "this", the de�nition class and the name of the
method is set to be the current class, and if the name equals "super", the
de�nition class and method name is set to be the superclass of the current
class. If neither, no de�nition class is set, and the method name is set to
the name of the identi�er.
The class table in the IR-class is then used to retrieve the method. If the
method or class is not found, a type checker exception is thrown informing
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about this. Otherwise, the method is bound to the method call for use in
the back end.

• MJReturn: The expression to be returned is type checked and the type of
this expression is retrieved. The type is then compared with the return
type of the current method by ensuring that the expression is assignable
to the return type. Otherwise an exception is thrown.

• MJPrint: In this statement the parameter is type checked.

• MJPrintln: Same as MJPrint.

• MJBlock: The type checking of this class is already explained earlier in
the description of the phase.

The abstract MJExpression also inherits the typeCheck-method. The overview
below explains how the method used to override this inherited method is imple-
mented:

• MJBinaryOp: All binary operators �rst type check the left and the right
hand side expressions. When this is done, the di�erent operators require
that the left and right hand side have the same speci�c type.

� Arithmetic operators only accept expressions of type integer and is
an integer type.

� Logical operators are used on expressions of type boolean and are
boolean themselves.

� Comparison operators normally accept any pair of expressions of the
same type that can be compared. In this compiler, the MJEqual

operator accepts boolean and integers, and the MJLess-operator only
accepts integers. The expression is of type boolean.

� String operators accept strings and are of type String.

Note that the MJPlus operator is both used as an arithmetic operator and
a string operator, thus this operator has to have arguments of the same
type that are of either the integer or the String type.

• MJUnaryOp: Subclasses of this abstract class �rst checks the expression
supplied. If the operator is a MJNegate, the compiler checks whether the
expression is a boolean type. If the operator is a MJUnaryMinus-operator,
the expression has to be equal to the integer type.

• MJParentheses: Type checks the expression inside the parentheses and
returns the type of this expression.



2.2 Analysis 17

• MJIdentifier: The type check method starts out by retrieving the corre-
sponding MJVariable from the scope stack in the IR-class. If the variable
is not in the scope, an exception is thrown. Afterwards the variable is
saved, binding the identi�er to the variable for later use. If the super key-
word is used it can be inferred that the identi�er is a MJSelector where
the declaration variable does not matter, as the declared variable will be
a �eld or a method.

• MJIfThenElseExpr: Similar to the MJIfElse-statement where the condi-
tion must be boolean. However, both the then-expression and the else-
expression are required to have the same type.

• MJNew: The type of the MJNew-expression along with all argument expres-
sions supplied are type checked. Afterwards the constructor is found by
using the class table in the IR-class and binding this to the MJNew state-
ment.

• MJMethodCallExpr: First it is checked whether the method identi�er is
an instance of MJSelector. If it is, the object part of the selector is type
checked and the corresponding class is found and used as the declaration
class. The �eld part of the MJSelector is used as the method name. All
argument expressions supplied to the method are then type checked and
the method is found by using the class table and bound to the method
call. If no method is found an exception is thrown.

• MJCast: The type of the cast and the identi�er to cast are both type
checked. Then it is checked whether the identi�er can be cast to the cast
type by checking whether the type of the identi�er is assignable to the
cast type.

• MJNoExpression: No type checking is necessary here.

• MJBoolean: Sets the type of the expression to the boolean type.

• MJInteger: Sets the type of the expression to the integer type.

• MJNull: Sets the type of the expression to the null type.

• MJString: Sets the type to the String type and type checks this type.

This concludes how all parts of the IR are type checked.

The next phase is the variable initialization check phase, where it is checked
whether the program requests variables which have not been initialized when
requested. The traversing order is the same as in the type checking phase except
that the MJType-class is not checked for variable initialization in any class.
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The program calls variable initialization on all classes. Each class then adds all
its �elds to a set that contains all initialized variables. The "this"-�eld is also
added to the set. The class then does a variable check on its methods, passing
the set with initialized variables as argument.
In the MJMethod, the parameters of the method are added to the set and the
MJBlock of the method is checked. Here, all variables declared in the beginning
of the block are checked followed by checking all statements of the block. A
MJVariable is checked by examining whether the variable is initialized when
being declared. If it is, the variable is added to the set of initialized variables.
As in the type check phase, the di�erent subclasses of MJStatement implement
the variable initialization check in di�erent ways. The overview is seen below:

• MJComment: There is nothing to check in this class. The IR method is
therefore overwritten with an empty method.

• MJAssign: The right hand side expression is checked �rst followed by the
identi�er on the left hand side. It is important that the right hand side is
checked before the left hand side, as the identi�er on the left side might
be used on the right hand side. If the left hand side is checked �rst, the
variable will be added to the set of initialized variables, making the right
hand side variable check pass even though the variable might not have
been initialized.

• MJIfElse: The condition is checked for variable initialization. Afterwards,
the then-block is checked with a copy of the set - variables only initialized
in the then-block should not be added to the initialized set outside the
then-block, as this block might be skipped. The same check is done on
the else-block if it is present, and the intersection of the then-set and the
else-set is computed and added to the initialized variables set. This is
done because the variable will be initialized after the MJIfElse-statement
if it is both initialized in the then-block and in the else-block.

• MJWhile: Similar to the MJIfElse without an else-block.

• MJMethodCallStmt: All arguments are checked and if the method iden-
ti�er is a MJSelector, it is checked that the object used for calling the
method is initialized.

• MJReturn: The return expression is checked for initialization.

• MJPrint: The parameter expression to the print statement is checked for
initialization.

• MJPrintln: Same as MJPrint

• MJBlock: This is explained above.
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The overview of the subclasses of MJExpression is seen below:

• MJBinaryOp: Checks the right hand side and the left hand side for variable
initialization.

• MJUnaryOp: Checks the argument for variable initialization.

• MJParentheses: Checks the expression.

• MJIdentifier: If the identi�er is the left hand side of an assign statement,
the variable bound in the type check phase is bound to the set of initialized
variables. If not, it is checked whether the variable bound to the identi�er
is contained in the set of initialized variables. If this is not the case, an
exception is thrown, as this means that an uninitialized variable is being
used.
If the identi�er is an instance of MJArray, the index is checked as well.
Note that individual elements of the array are not checked.

• MJIfThenElseExpr: Checks the condition and the then-expression and
else-expression.

• MJNew: Checks the list of arguments.

• MJMethodCallExpr: The same as MJMethodCallStmt.

• MJCast: Checks the identi�er to be cast.

• MJNoExpression: No checking is necessary here and the method is there-
fore empty.

• MJBoolean: Same as MJNoExpression.

• MJInteger: Same as MJNoExpression.

• MJNull: Same as MJNoExpression.

• MJString: Same as MJNoExpression.

Notice that the only place where it is possible for the compiler to fail is in the
MJIdentifier-class, as this is the only place where uninitialized variables might
be read.

The last part of the analyse phase is the second rewrite phase. This phase
traverses the IR tree and converts all MJIdentifier objects which are �elds
into MJSelectors, where the current class is set as the de�ning object and the
original identi�er is set as the �eld identi�er of the new selector.

The IR is now �nished being analysed and is sent to the code generator.
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2.2.2.4 Back end

The back end is responsible for converting the IR into the target language. The
target language for the original compiler is the LC3 assembler language. The
speci�cation for this processor is found in the ZIP-archive handed in with the
project, see Appendix D.
Initially a CODE-class is created. This class contains an initially empty list of
instructions, �elds corresponding to the eight registers of the LC3 processor,
and labels pointing to di�erent commonly used operations that should not be
written more than once. The CODE class also contains some useful operations
such as pushing to and popping from the stack memory, commenting, creating
labels, and of course printing all lines of code to an output �le.
The stack memory is maintained by using one of the registers as a stack pointer,
denoting the top of the stack. When data is pushed to the stack, a STR-
instruction of the LC3 is used which writes to a memory location speci�ed by
the stack pointer, and when data is popped, the LDR-instruction which reads
from a memory address speci�ed by the stack pointer is used. When a method is
invoked, the compiler makes space for a stack frame and the stack frame pointer
maintained in one of the registers is set to point at the old stack pointer, which
will be the beginning of the stack frame. Within the stack frame, there is made
space for the arguments of the method and for local variables. All arguments of
the method are also pushed into the stack frame. These, and any local variables
declared, can now be retrieved by using the stack frame pointer and an o�set.
The heap is more complex. When an object is created using the MJAssign-
statement, the right hand side �rst generates instructions. This MJNew-expression
calculates the size of the object that is to be created by calling getSize on the
corresponding class. The size is then pushed onto the stack and the Program
Counter (PC) then jumps to the new-routine added to the list of instructions
in MJProgram. This routine retrieves the required memory size from the stack
and creates a new heap pointer where the object can be stored and pushes this
pointer on the stack. The left hand side of the assign statement pushes the
stack frame address of the variable to the stack and the MJAssign then pops the
stack twice and saves the heap address in the variable address. When an object
is read from the heap, the heap pointer is retrieved from the memory address
speci�ed by the identi�er.
In the second rewrite phase of the analysis part of the compiler, all identi�ers
referring to �elds were rewritten to be MJSelectors instead. An object of this
type will therefore always be used when reading and writing �elds of a class.
First, the heap address of the containing object is retrieved. If the object ad-
dress is zero, a null pointer exception is thrown, as this implies that the object
is null. If not, the o�set of the variable is retrieved and this o�set is added to
the heap address, resulting in the address of the �eld. This address is pushed
onto the stack if the �eld is being written to. The MJAssign-statement will then
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write the right hand side to the address of the �eld. If the �eld is being read,
the value stored at the address of the �eld is then pushed onto the stack, ready
for being used in an expression.
Methods are handled by creating a new stack frame when being called as ex-
plained above. The result of the method (if any) is placed on top of the stack.
Each method is also assigned a LC3Label, which is used to �nd the requested
method. The instructions of the body of the method are then generated after
this label and given a return statement.
All instructions used by the compiler have a corresponding class in the
compiler.CODE.LC3-package. An abstract LC3-class is also de�ned which all in-
structions inherit from. This class de�nes an abstract toString-method, which
each instruction implements. The method is used to formulate how the class is
turned into a textual machine instruction. The list of machine instructions in
the CODE-class contains objects of type LC3, making it easy to use polymorphism
to iterate through the list and call the toString-method on each instruction in
order to create the full assembler instruction set.
The code generation of all IR-classes will not be explained in this report. Most of
the MJExpression-subclasses have a corresponding machine instruction. How-
ever, the control �ow statements of MiniJava, the MJIfElse and MJWhile state-
ments, are explained below.
The MJIfElse �rst generates code for the condition expression. The result of
this expression is popped from the stack and if the value is zero (hence false),
a jump is made to the label de�ned after the then-block. If an else-block is
de�ned, the processor executes the instructions of this block, which will be gen-
erated right after the false-label. If the condition evaluates to non-zero (hence
true), the PC continues and execute the then-block. If an else-block is present,
the PC jumps to the label de�ned after this block, thereby skipping it.
MJWhile also generates code for the condition �rst. The value is popped from
the stack and if non-zero, the PC continues and execute the code generated for
the body of the while statement. When the body is executed, the PC jumps
back to the condition and evaluates it again, creating the loop. If the condition
evaluates to zero, the PC jumps to the end of the while statement and continues
execution.

2.2.3 Making the compiler modular

Now that the three phases of the compiler have been analysed, it is possible to
begin to look at how to separate the di�erent modules into di�erent programs.
In order to do this, it should �rst be checked that the di�erent modules of the
compiler are loosely coupled and easy to separate.
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2.2.3.1 Internal modularity

External modularity is easier to achieve if it is �rst made sure that the compiler
is internally modular. In that way, it is possible to move the module into a new
program without making signi�cant changes.
As mentioned earlier, the compiler used in this project is split into three phases.
However, the compiler does not follow the architecture implied in �gure 2.1,
where the analysis and code generation are done in a separate module. Instead,
the di�erent IR-operations are de�ned in the IR itself. This makes it more
di�cult to implement new back ends, as every element in the IR would need
a new operation for code-generation. Furthermore this implementation also
makes the IR more messy, as analysis operations and back end operations are
in the same class. Finally, when separating the di�erent modules, a di�erent
IR-datastructure has to be provided for each module, as operations related to
one module should not be present in another module e.g. back end operations
in the front end module.
A solution to these problems would be to use the visitor design pattern[2]. The
pattern basically extract methods from di�erent classes and group them together
in one class. It would then be possible to place all analysis operations in one
visitor and all code generation operations in another, e�ectively encapsulating
both phases. Even pretty printing could be put into a visitor, making the IR
even more tidy. Additionally, if a new back end is needed, one could provide
a visitor with the desired code generation. This would also make it easier to
separate the di�erent parts of the compiler into di�erent modules.
However, this approach was used for the compiler in earlier versions and was
removed again because the users had trouble understanding the visitor pattern,
and too much time was used on understanding and learning how to use this
pattern. Therefore, the visitor pattern-approach was not well-suited for teaching
purposes, although one could argue that the visitor pattern is part of learning
about compilers, as this is a very frequent use of this pattern. When separating
the modules, it is therefore necessary to provide di�erent operations for the
IR-classes for the di�erent phases.

2.2.3.2 External modularity

In order to separate the modules, not only internally but also into di�erent
programs, each module has to read an input �le, process it, and write a �le
which is either the result or the input for the next program. The �le passed
from one part of the compiler to the next has to contain all necessary information
in order for the next part to continue the compiling process. All this information
is contained in the IR, so a �le format for e�ectively storing the IR is needed. As
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the IR has a tree structure, it seems appropriate to select a serialization format
which is also structured like a tree. Furthermore, the IR should be human
readable, both for debugging purposes and for the user to be able to investigate
the IR between each module.
Two serialization formats that ful�ll these requirements are XML and JSON.
For huge tree structures, XML is generally more readable because of the closing
tags. In XML, it is also easy to add meta data as attributes, separating this
from the actual data. For these reasons, XML is chosen as the �le format for the
IR and the �ow for the whole compiler is seen in �gure 2.4, where an XML-�le
is being transferred between each module.

Figure 2.4: The overall structure of the compiler

Several approaches to writing the IR as XML exists:

• Using an XML-library to write and read the XML for the IR.

• Writing an operation for each element in the IR that speci�es how that ele-
ment should be serialized. This method would also have the responsibility
of serializing the subelements of the element.

• Writing an operation for each element in a separate visitor.

• Writing a serializer which is completely separated from the IR using re-
�ection.

At a �rst glance, using a library seems most appropriate, as this solution would
not require time to create and debug a serializer. The most obvious choice would
be to use JAXB, a library included in the standard libraries of Java. However,
this library along with all other XML-libraries is dependent on having a list
of classes that the serializer should know about and either require annotations
on �elds, or public setters and getters for all �elds. As changes to the original
compiler should be avoided and the IR should be kept clean of anything related
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to serialization for teaching purposes, this might not be the best option. For
the same reason, writing all serialization logic in the IR is also a very in�exible
solution. If anything is to change about the IR, the serialization would also have
to change. Writing a visitor is also very in�exible, as this visitor would have to
know every IR-class and also need to have access to all �elds of the IR.
The last option is to use re�ection to create the serializer. Not only would this
make it possible to access and write to private �elds, the serializer would not
need to know anything about the IR at all if designed properly. Furthermore,
it would not be necessary to change much in the existing program, hence the
users would be well-separated from the serialization logic.
Re�ection is by some considered bad practice in programming as encapsulation
is broken and the performance in general is slow[3]. In this case performance is
not an issue, and the alternative would be to create public getters and setters.
By using re�ection, the �elds are still private when the users are using them.
In addition, as all �elds will be treated as a key (the �eld name) with a corre-
sponding value (the �eld value) of a speci�c type (the �eld type), the serializer
does not know anything about which class it is serializing. Therefore, the en-
capsulation is not broken, as all �elds are just treated as data to be serialized.
The Java library mentioned above also uses re�ection[4].
One of the consequences of making the compiler externally modular is that all
�elds in one module must have the same names as the corresponding �elds in
the next module. If not, the serializer would not know what �eld it should
deliver the data to. This is of course a problem when the compiler is going to
be used for teaching purposes, as all �elds would need to be present in advance,
or the students would need to know what they should call their �elds. An al-
ternative would be to use the order that the �elds are in, so that the �rst �eld
in one module corresponds to the �rst �eld in the next module. However, then
the users implementing the compiler would need to know what order to de�ne
their �elds in, which is hardly better and probably also more confusing. After
discussion this with Associate Professor Christian Probst, it was agreed that
a theoretical exercise prior to the implementation would make it acceptable to
de�ne the �elds for the users. In this exercise, the users will de�ne the �elds
that are necessary in the di�erent IR-elements, and when the program skeleton
is handed out, all �elds will be there in advance.
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2.3 Design

In this section, a model of the persistence layer is designed and described. By
creating a model, the output of the serializer is able to be read by the deserializer
as long as both modules are using the same model.

2.3.1 De�ning a formal syntax for the XML

Before the serializer can be created, a formal syntax for the XML should �rst
be de�ned. This will de�ne the legal building blocks of the XML-document and
ensure that all modules work with the same XML-elements and attributes.
In the IR datastructure, each �eld is one of following:

• A primitive such as a string or integer.

• An enumerable collection such as a list.

• A map.

• Another IR object.

The formal syntax should therefore support the above type of �elds.

Another problem that should be addressed is the fact that references are lost
when objects are serialized. When deserialized, all �elds will contain di�erent
instances of classes. This will create errors various places in the program. The
class table in the IR-class is one such example. When changes are made to a
class in the classtable, the corresponding class in the IR-datastructure will not
change, which will lead to errors. Therefore, the references need to be serialized
too. This can be done in XML by adding an ID-attribute to each object. The
ID can be used to de�ne which instance the object belongs to by letting all other
objects, belonging to the same reference, have the same ID. When deserializing,
the deserializer has to make sure that the same instance is used when assigning
�elds with the same ID.
As every instance only needs to be serialized once, there is no reason to seri-
alize an object unless its ID has not occured before. When an ID occurs in
an XML-element a second time, the content of the element is redundant and
should therefore be empty. However, for improved readability, a placeholder is
introduced, informing the reader that the content is already serialized earlier in
the document.
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As the element name on many of the XML-elements will be variable, neither the
Document Type De�nition (DTD)[5] nor XML Schema (XSD)[6] notations can
be used for this formal syntax. Instead, a more general context free grammar is
used, namely BNF, which is also used to de�ne the grammar of MiniJava. The
BNF is seen in �gure B.1 in Appendix B.
As the syntax implies, both objects, collections, and maps have ID-attributes.
Furthermore, the <ALREADYSERIALIZED>-tag de�nes the placeholder for objects
which are already serialized, and is only contained in the grammar for improved
readability. The <CLASSNAME> must denote an existing class, either in the cur-
rent program or in the java library, and <FIELDNAME> must denote a valid �eld
for the <CLASSNAME> that the tag belongs to. The <COLLECTIONCLASS> and
<MAPCLASS> tags must denote the concrete classes that were used as a collection
or map.
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2.4 Implementation

In this section the implementation of the serializer and deserializer is discussed
and explained along with the separation of the compiler into di�erent Java
projects. Furthermore, various implementation issues as well as the chosen
solutions to these are examined.

2.4.1 Structure of the serializer and deserializer

The implementation consists of two parts: Creating the serializer and creating
the deserializer. The job of the serializer is to write the formal syntax in �g-
ure B.1 found in Appendix B while the deserializer should read it. These two
processes should be separated into di�erent classes for two reasons. First of all,
both the serializer and deserializer will contain a lot of code, making it more
tidy to put each in its own class. Secondly, not all three modules need both a
serializer and a deserializer:

• The front end module only needs a serialize.

• The analysis-module needs both a serializer and a deserializer.

• The back end module only needs a deserializer.

When the two parts are in di�erent classes, the above requirements are easy
to satisfy. However, this will also introduce some redundancy, as the serial-
izer and deserializer are sharing some constants (like the <ALREADYSERIALIZED-
placeholder) and utility methods. To minimize this, an utility class is intro-
duced, containing these constants and methods. This class, along with its rela-
tion to the serializer and deserializer, is seen in �gure 2.5, where two constants
and two methods are contained in the class.

2.4.2 Serializing

The serializer should be able to transform the IR-datastructure into the XML
syntax de�ned in �gure B.1 found in Appendix B. According to this grammar,
the XML needs to start and end with a tag containing the name of the class that
the object being serialized is an instance of. The name of this class is retrieved
using re�ection, along with the id from the id-counter which will be zero at this
point. The starting and ending tags are then added.
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Figure 2.5: A class diagram illustrating how the serializer and deserializer are
related.

The method getXmlString, which takes an object as an argument, now seri-
alizes the IR-object. This is accomplished by serializing all the �elds of this
argument. To do this, the serializer �rst needs to have a way of accessing these.
Many of the �elds that are to be serialized are encapsulated. Furthermore, not
all of these �elds have getters and setters. Even if they did, writing the serializer
would be very cumbersome, as it would not be possible to treat every IR-object
the same way. Di�erent getters would have to be called for each objects. A way
around this, which also allows the serializer to treat every IR-object the same,
is re�ection.
One of the methods of the Object-object, is the method +getClass, which
returns the class of the object. Afterwards it is possible to extract all declared
�elds, including private �elds from this class. This is accomplished by using
the getAllFields-method de�ned in SerializationUtilities. Next, the se-
rializer loops through the �elds and set them to accessible by using the Field

method setAccessible(true). It is now possible to read and write these �elds
by supplying the object that the �elds are going to be read from. Note that
no changes are made to the actual �elds of the class, but only to the Field-
instance.2 The classes are therefore still encapsulated.
Now that the serializer is able to loop through the �elds, these can be serialized.
An opening tag is �rst added, where the tag name will be the name of the �eld.
Next, a tag containing the name of the class that the �eld holds is created. The
name of the class is read from the object contained in the �eld, if possible. If
the object is null the methodgetClass cannot be called from it. However, the
formal syntax de�nes that a tag with the name of the contained class instance
is needed. The name of the class which is allowed to be contained in the �eld
is therefore extracted by calling getType on the Field-object instead as this

2"A value of true indicates that the re�ected object should suppress Java language access
checking when it is used" - taken from the o�cial Java documentation[7].
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will never be null. The name of the resulting class is then used. The reason
for not using the latter approach in both cases is that this might not return
the actual class of the object, but rather a superclass. If the type of the �eld
is Object, it could hold any type of object deriving from this class. However,
this information is not important if the object is null, as no class is needed to
instantiate from.
The class name tag also needs an ID. In order to keep track on which objects
have already been serialized, a map is created in which every contained object
has a corresponding ID. Initially, the HashMap implementation was used as only
dictionary operations are going to be used (add, delete, contains). This resulted
in issues later during testing, as this implementation only checks whether the
objects return the same hash code and are equal during a lookup. The conse-
quence of this is that two references end up referring to the same object when
being deserialized, although the two references originally referred to two di�er-
ent objects. The IdentityHashMap-implementation was therefore used instead.
This class is implemented by checking if the objects have the same reference
using the ==-operator. Furthermore, the IdentityHashCode of the objects are
used instead of any overwritten hashcode-function[17]. If the object which is
currently being serializing is contained in the map, the ID of the class name tag
is set to be the ID already given the object, and the alreadySerialized-�ag
is set to true. If not, the ID-counter is incremented and a new ID is assigned
to the object and added to the classname-tag. This information is afterwards
saved in the map. If the object is null no ID is needed. A �eld is seen serialized
below:

<compiler.IR.IR id=0>

<program>

<compiler.IR.MJProgram id=1>

...

<compiler.IR.MJProgram>

</program>

</compiler.IR.IR>

Next, if the alreadySerialized-�ag was set to true, the
IS_ALREADY_SERIALIZED-placeholder string is inserted as the content of the
tag. Otherwise the getXmlStringGeneral-method is called, which returns the
XML-content for the object. This method depends on the type of the object:

• If the object is null the string constant NULLREF is returned. This is
used instead of the string "null" as this string might be used elsewhere,
especially in a compiler.
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• If the object is of a primitive type (one of the wrapper classes of Java or
the class String), the result of the toString-method is returned.

• If the object derives from Map the object is cast to a map, and the over-
loaded version of getXmlString-is called recursively with the object as
parameter and the result as return value.

• If the object derives from Collection, the object is cast to a collection
and the overloaded version of getXmlString-is called recursively with the
object as parameter and the result as return value.

• If none of the above recursively call getXmlString with the parameter
type Object and return the result.

In the early stages of this serializer all IR objects, including the support classes,
had a common interface, IRBase. This interface was empty, and the only pur-
pose of the class was to limit the objects accepted for serialization. The serializer
was later refactored, as it was noticed that the method used for serializing IR
objects could be used to serialize any object. With the addition of circular ref-
erences support, the serializer was more than �t to serialize arbitrary objects.
The overloaded method getXmlString taking a parameter of type Collection
iterates over the collection, giving each object in the collection an ID and seri-
alizing it by calling getXmlStringGeneral on it. The result is seen below:

...

<java.util.LinkedList id=23>

<compiler.IR.MJMethod id=24>

...

</compiler.IR.MJMethod>

<compiler.IR.MJMethod id=56>

...

</compiler.IR.MJMethod>

</java.util.LinkedList>

...

Similarly, the corresponding method taking a parameter of type Map iterates
over all keys and serialize these along with their corresponding mapped value,
giving both ID's if needed. The key and value are grouped together with a
KeyValuePair-tag as seen below:

...

<java.util.HashMap id=125>
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<KeyValuePair>

<Key>

...

</Key>

<Value>

...

</Value>

</KeyValuePair>

</java.util.HashMap>

...

The serializer is now able to turn the entire IR into an XML-string. However,
at this point there are still some special cases that should be taken care of.
First of all, circular references have to be considered. A circular reference exists
if a cycle is present in the object hierarchy. The recursion might never end if
there is a circular reference, as the program will be stuck in a recursive loop
until the program runs out of memory.
The IR-datastructure is a tree, and should in theory not have any circular
references. However, after debugging the IR, two circular references are found.
The �rst one exist because the superclass of the MiniJava-class Object is set to
be Object. The second circular reference is because the MiniJava-class String
have a �eld text with the type String.
The �rst problem is easy to deal with. The superclass of Object is changed to
the null-value, and a boolean �eld is added, indicating whether or not this class
is the root of the class hierarchy. The second problem is more di�cult. In a
normal compiler, the text-�eld would be of type char[], but this approach does
not work here as the compiler does not support characters as a primitive value.
Initially, the �eld is just commented out of the program as it was not assigned by
the compiler anyway and therefore rather useless. Later when circular references
are implemented (see below), the �eld is uncommented again.
Another type of circular reference is those caused by some static �elds. In some
objects in the compiler, a static �eld is assigned an object with the same type
as the class which the �eld belongs to.
In order to handle this, and also decrease the chance for future errors, the
serializer and deserializer should be adjusted to support circular references. At
this point the serializer can already handle circular references due to the ID-
attribute. When the serializer hits an object which is already serialized, or is
being serialized, it stops and uses the IS_ALREADY_SERIALIZED-placeholder as
content for the tag. The result of serializing a circular reference is seen below:

<compiler.IR.MJBoolean id=42>

<value>

<compiler.IR.MJBoolean$MJBooleanValues id=43>
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True

</compiler.IR.MJBoolean$MJBooleanValues>

</value>

<False>

...

</False>

<True>

<compiler.IR.MJBoolean id=42>

IS ALREADY SERIALIZED

</compiler.IR.MJBoolean>

</True>

</compiler.IR.MJBoolean>

This is why only the deserializer has to be changed in order to support circular
references, which will be covered in the next section.
Another special case is enums. No changes have to be made, but it should be
clari�ed that the classname for an enum consists of the class that it is contained
in followed by a $ and the enum name. An example is
compiler.IR.MJType$TypeEnum.
Finally, the getDeclaredFields called on a class to get the �elds does not in-
clude �elds de�ned in its superclasses. This is a problem for classes deriving
from MJBinaryOp for example, as the right-hand side and left-hand side expres-
sions are both declared in the superclass. To solve this, a recursive method
was created in SerializationUtilities, which also gets �elds from the super-
classes. This recursion is stopped when either the IR-class or the Object-class is
hit, as the �elds for the IR-class is not needed in subclasses. In order to support
overwriting of �elds, a �eld de�ned in a superclass is ignored if the class contain
a �eld with the same name.

2.4.3 Deserializing

Now that the whole IR is able to be written into an XML-�le, the next step is
to create a deserializer which is able to read the �le and recreate the IR from it.
First, a line counter variable is initialized, which is used to tell which line of the
�le is currently being deserialized, and a method is created which reads a line
from the �le and increases the counter. This is useful for exception messages
and debugging purposes, and the �le will be read only through this method. A
Scanner-object is used for parsing the xml-�le.
The �rst line is passed to the readXml-method. This method processes the line
by validating and reading the tag which contains a classname. This classname
is used to create a Class-object, which can be used to instantiate instances. If
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the tag contains an ID-attribute, this is read too. The content of the tag is then
deserialized. As in the serializer, this can be either a map, a collection, a prim-
itive, or an object. It can also be an enum, which has to be treated di�erently
from an object when deserializing.
When reading an object the deserializer �rst checks whether the content of the
tag equals the NULLREF-placeholder in SerializationUtilities. If it does,
the XML-tags are validated and null is returned. Otherwise it is known that
the content is an object of the type speci�ed by the enclosing tags. Using
re�ection, a new instance of the class read from the XML is created, and a
list of Fields from this class is retrieved using the helper operation de�ned in
SerializationUtilities. All these �elds are also set to accessible in order to
make it possible to assign them. Next, the names of the �elds listed as content of
the class-tag are read, and a matching �eld is found in the list of �elds of the in-
stantiated class. If none is found, an exception of the type XmlParseException
is thrown as this is an error in the XML. Afterwards, the content of the �eld
is read by recursively calling the method readXml. The object returned by this
method is then assigned to the �eld using re�ection. Fields are being read like
this until a closing tag appears for the object that the �elds belong to.
It is important to note that not all �elds of a class need to be in the XML. If
a �eld is missing in the XML, the corresponding �eld in the class will be left
unmodi�ed by the deserializer. A consequence of this is that it is possible to
safely add new �elds to the IR-classes without these being modi�ed. On the
other hand, removing �elds from the class that are in the XML is not possible
with this implementation. It would be possible to modify the deserializer to
skip the �eld if it was not in the class, but as the program is used for teaching
purposes and all the �elds that the users should use are present, it should not
be necessary to add more �elds which are not present in later modules. If the
users do this, the exercise have probably been solved in a wrong way that would
not work with the other parts anyway. Therefore, this check ensures that the
user does not add unnecessary �elds.
Another thing to be noted is that it is not possible to instantiate a class through
re�ection if it does not have a parameterless constructor. Not all the classes in
the IR have this, thus one would either have to be added, or each class would
have to be treated separately. As the �rst option is the most �exible and the
easiest one to implement, this was chosen. This also means that a parameterless
constructor is added to all existing IR-classes and that any new classes belong-
ing to the IR should have one too. If the class read from the XML is a primitive
type, an instance of that type is assigned to the �eld. In order to do this, the
class that the primitive belongs to is identi�ed, and an instance of the corre-
sponding wrapper class is instantiated. If the class belongs to the String-class,
the content might be equal to the NULLREF-placeholder. If this is the case, null
is returned.
A problem is encountered when the type of the class derives from Map or
Collection. Both of these classes have generic type arguments. In Java, gener-
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ics are implemented by type erasure[15], which erases all information about
generic types at compile-time. A Collection<String> will therefore end up
being an instance of the raw type Collection. As a consequence of this, generic
type information is not usable at run-time. The main reason for this implemen-
tation according to the o�cial Java documentation[15] is to make generic code
compatible with legacy code. Other languages like C# implement generics that
are readable at runtime[16], which is a very powerful tool when working with
re�ection.
The consequence of this implementation is that re�ection can not be used to
read the generic type arguments from generic collections and maps. Even if it
was, these would not be of much use, as another consequence of type erasure is
that it is not possible to instantiate any generic class at runtime. Instead, all
generic type parameters are set to the Object-type, making it possible to create
a non-generic map at runtime. The disadvantages of this is that it is possible
to put any kind of object into the map/collection before it is added as value to
a �eld, which will result in a run-time error at some point when the program
attempts to cast this object into the generic type. This is only a potential prob-
lem in the deserializer, however, as any attempt to put another object in the
map/collection de�ned in the IR will still result in a compiler error.
When an instance of a collection has been created, the deserializer keeps read-
ing objects until it hits the closing tag of the collection, after which the con-
structed collection is returned. Maps use the same approach for reading except
instead KeyValuePairs are read until the closing tag of the map is hit. Each
KeyValuePair consists of a key object and a value object which are put into
the instantiated map.
Finally, if the class is an enum, all possible enum values from the class are re-
trieved, and the deserializer iterates over these. If the value between the tags
of the class matches any of these, the enum value that matched is returned. A
parsing exception is thrown if no matching value was found.
A �owchart illustrating the relation between the di�erent methods in the deseri-
alizer is seen in �gure 2.6. A collection calls the readXml-method recursively on
all element, a map calls the readXml-method recursively on all keys and values,
and an object not matching any of the conditions call readXml on all contained
�elds.
In order to restore the references implied by the IDs of the XML, two maps are
monitoring the deserialization process. One contains objects that are already
deserialized, and the other contains objects that are currently being deserialized.
An object is added to the objectsBeingDeserialized-map before being dese-
rialized. When the object is fully deserialized it is removed from this map and
added to the deserializedObjectsMap. Both maps use the ID of the objects as
key. When a starting tag of a class is read, the deserializer checks if the object
is currently being deserialized. If it is, the deserializer has hit a circular refer-
ence, and the Field which is currently being serialized and the instance that the
�eld is belonging to are therefore saved. These data are saved in a container,
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Figure 2.6: The main �ow in the deserializer. The method readXml is the �rst
to be called.

ObjectFieldContainer, as this needs to be kept together. The container is
saved in a list as one object might have more than one circular reference. By
doing this, the reference can be recreated by assigning the deserialized object
to the saved �elds and instances once the IR has been deserialized.
If the circular reference occurs in a collection, a di�erent approach has to be
taken. First, the order of insertion in a list should not be changed, so a global
variable collectionIndex is used for remembering the position that the object
currently being deserialized should be inserted at. If a circular reference is hit,
the current value of collectionIndex is saved along with the list that the value
should be inserted in. The ObjectFieldContainer is used for this too, but in
this case the field-�eld is not used. Instead, an integer-�eld is added and
used for the collection index. An additional integer-�eld containing the type
of the container is also introduced, along with three integer constants, FIELD,
COLLECTION, and MAP, which are the possible types. By using the type-�eld, it
can be determined which �elds to use from the container.
When an object is deserialized, a list is obtained from the objectsBeingDeseria-
lizedMap by using the id of the deserialized object as key. This list of ObjectFieldContain- \verber+
represents all circular references contained in this object. If the container is of
type FIELD, the Field stored in the field-�eld and the instance stored in the
object-�eld can be used to assign the deserialized object to the �eld. If the
container is of type COLLECTION, the deserializer �rst has to check whether
the collection implements the List-interface. This is because the order mat-
ters for a list, whereas the order for a set is unde�ned. As the class hierarchy
for the Collection-collection contains no other data structures with a de�ned
order[18], the deserializer only needs to check for this interface. If the collection
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is a List, it is possible to cast it and use the add(int index, Object element)-
method declared by the List-interface to place the deserialized object at the
correct index. If the collection is not a list, the add-method de�ned by the
Collection-interface is used instead.
Circular references is not implemented for maps. The only maps being used in
the compiler are in the compiler.IR.support package, which are the last to be
listed in the XML. As these maps almost exclusively contain objects already
stored in the IR, these have already been serialized, circular references should
not be a problem. No problems with circular references in maps were found
using the test script written in section 2.5 either. If this were to be a problem,
however, it would be possible to implement by saving the key and value and
store these in a container similar to what was done for collections.
If the object is not currently being deserialized, it is checked if it was already
deserialized. If it was, the deserialized object is returned, which will recreate
the reference as it was in the original IR.

2.4.4 Separating the phases into di�erent projects

Now that a functional serializer and deserializer has been implemented, it is
possible to separate the di�erent modules of the compiler into di�erent projects.
Three new Java projects are therefore created, and are all described in this
section.

2.4.4.1 Front end

The �rst project, which is to be the compiler front end, is supplied with the
ANTLR-library required in order for the ANTLR-generated parser to work.
The following classes from the packages listed below are copied into the new
project from the compiler:

• compiler

� All classes

• compiler.Exceptions

� CompilerError

� ParseError

• compiler.Frontend
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� All classes

• compiler.IR

� All classes

• compiler.Phases

� Frontend

Notice that the support classes of the IR have been removed. As the custom se-
rializer allows new �elds in later phases, all �elds containing support classes have
been removed, as these are not used before the analysis phase. A lot of the excep-
tion classes have also been removed, as these are not used either, and the phases
that are not used have been removed from the compiler.Phases-package. In
addition, the new Serializer and SerializationUtilities-classes have been
added to the compiler-package.
All rewrite, type checking, variable initialization checking, and code generating
methods have been removed from the IR classes. The LC3-label de�ned in each
MJMethod has also been removed, as this �eld is only used in the backend. The
main compiler class has also been edited so that only the front end is called,
and a call to the serializer has also been inserted.

2.4.4.2 Analysis

The following classes from the packages listed below are copied into the new
analysis project from the compiler:

• compiler

� All classes

• compiler.Exceptions

� All classes except for ParseError and CodeGenException

• compiler.IR

� All classes

• compiler.IR.Support

� All classes

• compiler.Phases
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� Analysis

� Rewrite

The new Serializer, Deserializer, and SerializationUtilities-classes
have also been added to the compiler-package.
All code generating methods have been removed from the IR classes. The LC3-
label de�ned in each MJMethod has also been removed, as this �eld is only used
in the backend. The main compiler class has been edited with a call to the
deserializer to retrieve the IR. The call to the code generation phase has been
removed and a call to the serializer has also been inserted. Furthermore, the
XmlParseException has been added to the exception package.

2.4.4.3 Back end

The new back end project contains the following classes:

• compiler

� All classes

• compiler.CODE

� All classes

• compiler.CODE.LC3

� All classes

• compiler.Exceptions

� ClassNotFound

� CodeGenException

� CompilerError

• compiler.IR

� All classes

• compiler.IR.Support

� All classes

• compiler.Phases

� Analysis
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� Rewrite

The new Deserializer and SerializationUtilities-classes have also been
added to the compiler-package.
As the compiler is using the MJClassTable-support class in the back end to
locate the String-class, the ClassNotFound-exception is still required in the
compiler.Exceptions-package. All rewrite, type checking, and variable ini-
tialization checking methods have been removed from the IR classes. The main
compiler class has been edited with a call to the deserializer to retrieve the
IR. The calls to the other phases has also been removed. Furthermore, the
XmlParseException has been added to the exception package.
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2.5 Test

In this section the methods used for testing and debugging will be discussed and
explained. A few errors discovered in the compiler will also be examined and
�xed.

2.5.1 The approach used for testing

In the new compiler a layer of persistence has been introduced between each
module. This, and the fact that the layer is being maintained using a custom
serializer and deserializer, makes testing of the compiler vital. No behaviour
should have changed after these changes were introduced, which should be tested
for. Usually, this would be done by generating a number of test cases and check
if these behave as expected. However, the assembler code that results from
the compilation process is targeted a speci�c processor, the LC3, hence testing
whether the code works is di�cult without the LC3-processor, and an assembler
belonging to the LC3 would be needed as well. Hence, a di�erent and easier
approach is taken.
When the compiler was received from Associate Professor Christian Probst, 21
test �les were included with test programs. These programs cover all features
of the compiler except for some special cases. By assuming that this compiler
is working correct and generates error-free assembler code, all these test �les
can be compiled using the original compiler, generating correct assembler �les.
Afterwards, these �les can be compared with the output of compiling the same
test �les using the modi�ed compiler. If there are any di�erences between any
pair of �les, errors have been introduced.
In order to do this e�ectively, a tool for comparing �les and which can be
accessed from the command line is needed. By having access from the command
line, test scripts can be written later. The tool FileEqualityChecker included
in the attached archive (see Appendix D) was used for this. It is a simple tool
written in Java which reads through two �les and compare each line in the �rst
�le with the corresponding line in the second �le. If there is a di�erence, an
error along with a line number is returned. If not, a message con�rms that the
�les are equal.
In order to e�ectively test the �les, a batch �le doing the following is written:

1. Compile all test �les using the original compiler.

2. Compile all test �les using the new compiler (front end, analysis, and back
end).
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3. Compare the result of using the �rst compiler with the corresponding
result of using the second compiler.

The batch �le operates on a list of �le names, making it easy to add additional
test �les.
After running the batch �le, it is easy to inspect the result and see whether
any errors were introduced in the new compiler and where these errors are. It
is expected that some compiler errors will occur, as some of the test �les test
whether exceptions are thrown when they are supposed to. Errors, as shown in
�gure 2.7, are therefore accepted, as this error occur in both the original and
the new compiler, and the subsequent error in the back end occurs because no
output �le was produced by the analytical part.

Figure 2.7: An example of an expected error.

2.5.2 Errors in the original compiler

During the testing several errors were encountered and �xed. Most of these
resulted in changes in the implementation which is already covered in section
2.4. However, a few errors were encountered because of problems in the original
compiler as discussed below.
In �gure 2.8 the super-keyword does not work as it should. Instead, the keyword
is treated as an identi�er, which the compiler is unable to �nd, resulting in an
exception being thrown. After using the debugger of eclipse and examining the
code, the problem appeared to be the following code:

\footnotesize
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Figure 2.8: An error encountered by using the super-operator in a test pro-
gram to access content of the superclass.

if (this.name == "super") {

if (IR.currentMethod.isStatic()) {

throw new TypeCheckerException(

"super encountered in static method."

);

}

name = "this";

}

One of the errors is seen in �gure 2.8. The problem here is that two Strings are
compared using the ==-operator. This operator tests equality for primitive types,
but as String is an object, the operator instead checks whether the two strings
refer to the same object, which is not intended. One may wonder why this has
not been a problem before, but this is an example of the string interning used by
the Java String class as described by the documentation for the class[19]. This
implies that the String-class contains a pool of strings which is initially empty.
When a string literal is initialized, the string pool is checked. If this contains
a string equal to the one being initialized, the string from the pool is returned,
resulting in two string literals having the same reference. This is the reason why
the operator actually worked in the original compiler. However, if one of the
strings are created by calling the constructor from the String-class directly, the
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string will not be interned leading to the references being di�erent, and the ==-
operator returning false when comparing the two strings, even though they are
equal. This is what happens when strings are recreated in the deserializer. The
code was corrected easily by using the equals-method instead, which checks for
equal content and not equal references.
Another change made in the original compiler before circular references were
able to be handled, and which is already mentioned in section 2.4, is the change
of Object's superclass to null and the addition of the isTop-�eld. This will not
be changed back as the introduced solution is more intuitive, even though the
serializer and deserializer are able to support this circular reference after being
upgraded.
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2.6 Discussion

The serializer and deserializer constructed in this project encountered many is-
sues when being implemented, including loss of references, trouble with circular
references, and accessing private �elds. However, the result is a three-phase
compiler where no serialization annotations are present and with a very read-
able and searchable IR between each stage. The alternative would be to use
a serialization library, which would be much easier to apply, but would not be
as �exible and as loosely coupled as the serializer created in this project. In
a normal project, where development time equals development costs, creating
a serializer from scratch would be expensive and a library would most likely
be used. As the main purpose of the whole project is to provide a externally
modular compiler for educational purposes and money was out of the question,
the best solution was chosen regardless of the implementation time.
The current implementation of the serializer does not support arrays, as this is
a special type of object which does not inherit the Collection-interface. This
would be easy to implement in the same way collections were implemented, but
no array is used anywhere in the compiler at this point. As no new �elds are
added by the users, this should not be a problem.
In regards to the design, treating the collections and maps di�erent from other
objects might not have been necessary. Serializing objects in general was not
possible until the serializer was refactored to do so, which was the basis for
treating collections and maps in another way. The serializer could be refactored
to treat collections and maps like any other object, but the only advantage of
doing this would be a cleaner serializer and deserializer. The disadvantages
however would be an XML-�le which would be much less readable and have a
larger size. Consider a collection like LinkedList. This collection has a pointer
to the �rst element, which has a pointer to the second element and so on. The
tree structure for this would be much harder to read than the simple listing
of elements currently used in this project. All �elds of the map and collection
objects would also be serialized, which include a lot of information that do not
need to be passed on to the next module. In addition, support of arrays would
need to be implemented before this would be possible, as many data structures
implementing the Map and Collection-interfaces uses arrays in one way or an-
other.
As a custom serializer was used in this project, a lot of time has been spent lo-
cating and correcting errors. The test �les used to test the serializer covers most
functionality, but there might be some special cases in which an error occurs
due to an error in the serializer or deserializer, which it has not been tested for.
This is always a di�cult question; how much should software be tested before
all errors are discovered?
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As the tests covers most of the compiler features, more tests would most likely
just be redundant. However, if additional tests are required, these are easily
written and added to the test script as described in section 2.5.
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2.7 Conclusion

This part of the project resulted in a compiler which works exactly the same way
as the original compiler, but which is also externally modular. The compiler
uses a custom serializer and deserializer which are both easy to expand, and
minimal changes were introduced to the original compiler. The serializer and
deserializer are completely separated from the compiler and both are only called
by the Compiler-class once at most. The new compiler was also tested by using
the test �les for the original compiler. These were compiled using the original
compiler, and then by using the new compiler. The �les were then compared
pairwise. After �xing the errors discovered by testing, all pairs of �les ended up
being equal, con�rming that the compiler works as before for these test �les.



Chapter 3

Part 2: Creating a Lego

Mindstorm-module for the

compiler

3.1 Introduction

This second part of the project is going to continue the work of the �rst part
by providing a back end module for the compiler which can be used instead of
the back end module of the �rst part. This back end will be able to generate
executable code for the Lego Mindstorms EV3 robot.
In order to achieve this, the EV3 robot will be analysed and experimented on.
The goal here is to execute a hello world program on the EV3. Once this is
achieved, it is possible to design an API for the EV3 and use this and the
original back end as basis for implementing the new module. Afterwards, the
new EV3 compiler module will be tested, and the implementation and design
will be discussed.
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3.2 Analysis

This section covers the initial experimentation and analysis done on the EV3
brick and the associated software. The approach taken for assembling a hello
world EV3 assembler program and executing this on the EV3 is also explained.
Furthermore, the structure and data types of the EV3 assembler language will
be explained.

3.2.1 Creating and running a bytecode program on the

EV3

As a starting point, the EV3 should be able to run a simple hello world program.
To do this, some way of transferring �les to the EV3 is needed. This can be done
by using a Secure Digital memory card (SD-card) or by using a cable from the
computer to the device. As the computer used in this project does not contain
a SD-card reader, the latter approach is used.
Although one might have expected the EV3-device to appear as an external
storage device in Windows Explorer when connected to the computer, this is
not the case. However, the system con�rms by audio that a new device is
registered, hence it should be possible to transfer �les to the EV3.
For this reason, and for testing purposes, the software belonging to the EV3 is
downloaded1. This software allows one to create programs for the EV3, using a
drag-and-drop user interface. When running the program through the software,
the program is transferred to the EV3 brick automatically and run. A �le
explorer for the EV3 is also included, where it is possible to download �les from
Windows Explorer to the EV3. It should also be possible to transfer �les through
bluetooth or Wi� according to the user guide[8], but during this project, only
the �le browser of the EV3-software will be used.
Initially, the brick is tested, using the EV3-software. A simple program is built

Figure 3.1: A program made using the EV3 software.

that draws a circle and waits �ve seconds as seen in �gure 3.1. The software

1The software is free and can be downloaded at the Lego website[9].
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compiles the program into a hexadecimal �le with the extension .rbf, which is
transferred to the EV3. Here, the program does as expected and the EV3 shows
a �lled circle which disappears after �ve seconds.
The next step is to create programs for the EV3 without the EV3 software.
As the goal is to create a compiler which can compile MiniJava into assembler
instructions which can be assembled into a runnable program, two options exist:

• Installing leJOS on the EV3 brick. leJOS is a Java virtual machine, which
is able to run java byte code on the EV3.

• Finding documentation concerning byte code-instructions for the EV3,
and either �nding or creating an assembler.

Not a lot of experimenting has been done on the EV3 brick yet, as it is still very
new, thus the leJOS virtual machine at this point is unstable. Furthermore, it
requires a bootable SD-card and is di�cult to install[10].
The second approach is more clear if byte code documentation can be found.
After researching this, the �rmware documentation[11] was found. This site
contains all bytecodes and their corresponding hexadecimal-codes. It also in-
clude program examples which all state that a program header is needed. No
documentation exists for the program header, or how this header is converted
to hexadecimal, and as this is required, it is not possible to build an assembler
from this. However, after examining the site more, a section about the lmsasm
tool is found. This is an assembler which does the following (taken from the
�rmware documentation[12]):

1. Inserting the program and object headers

2. Translating the textual instructions to byte code values

3. Allocation of variables

4. Solving label jump addresses

5. Encoding of parametes in the byte code stream

6. Calculating sub call parameters

7. Generate an executable byte code �le

This means that the compiler can compile into textual instructions, which the
assembler can then convert into a .rbf-�le which can be run at the EV3-device.
The mentioned assembler is not found on the site however.
A git repository at [13] contains the source code for the EV3, including the
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assembler mentioned above. After downloading the repository, the assembler is
found in a stand-alone jar-�le. The hello-world program found in the �rmware
documentation[14] is put into a text �le with the �le extension .lms, and the
command below is run in a command prompt.
java -jar assembler.jar helloworld.lms

Initially, the assembler exits with an error, but after running the same command
in admin mode a .rbf-�le is created. Using the EV3-software, this is moved to
the EV3-device, and executed. The result is seen in �gure 3.2 where it is clear
that the program is executed as expected.

Figure 3.2: An assembled hello world byte code program running on the EV3

The assembler language assembled by the lmsasm tool is slightly di�erent than
the bytecode instruction set found at the �rmware documentation site[11]. The
assembler language is able to work with strings in a more straight forward way,
while the corresponding byte codes require a more low level approach using
arrays. After experimenting a bit, however, it is discovered that most of the
instructions on the site can be used as a lmsasm-instruction if the pre�x "op" is
removed (e.g. the bytecode opADD32(DATA32, DATA32) corresponds to the
lmsasm-instruction ADD32(DATA32, DATA32) ).
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3.2.2 The structure of an EV3 assembler program.

The structure of the EV3 assembler language is quite di�erent and more high
level than the byte code instructions used by the EV3. Each EV3 consists of at
least one vmthread and zero or more subcalls which both contain instructions.
The vmthreads are parallel running threads, making it fairly simple to imple-
ment threading for the EV3. The vmthread named main is the entry point for
the application. Subcalls can take parameters and return values, making them
ideal for methods.
No registers are used by the assembler language, nor is it possible to access the
memory directly. Instead, a type strong variable system is used for memory
management. The variable types available are all found on the website, but the
types used in this project are these: DATA8 DATA16 DATA32 DATAS Where the
DATA8-type corresponds to a character or boolean �ag, the DATA16 is an integer
and the DATA32 is a long integer. The DATAS is a string data type, corresponds
to an array of DATA8 (a character array) and takes an integer as argument in
order to specify the size of the containing string. The DATA32-variable will be
used as the data type for a normal integer.
These variables can be used as global variables and as local variables in met-
hods. Constants can also be used to de�ne values. A sample program showing
the program structure is found at the �rmware documentation site[21] and has
been included in �gure E.1 in Appendix E for convenience.

Textual bytecode programs which can be assembled to runnable .rbf-�les are
now able to be written.
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3.3 Design

In this section, the API which MiniJava will use for utilizing the special features
of the EV3 will be designed and examined.

3.3.1 Creating a MiniJava API for the EV3

The EV3 include special features like the display, motors and sensors, that are
not present on the LC3-processor that the compiler is currently generating code
for. For utilizing these features, an application programming interface (API)
need to be de�ned for the EV3.
The most intuitive would be to have a library with a set of static operations for
controlling the IR. Using a command like the following for showing text would
be very clean:
EV3.displayText(int x, int y, String text)

However, the compiler currently does not implement static methods in this way.
Instead, an object has to be created �rst, where the static method can then be
called from like seen below.

EV3 ev3 = new EV3();

ev3.displayText(int x, int y, String text)+.

An alternative would be to have some standard methods in the main class
so that the signature would be displayText(int x, int y, String text).
However, this makes it impossible to group the methods in a library class, and
may also con�ict with methods created with the same name. The static instance
method syntax shown above is therefore chosen for now.
Not all EV3 features will be implemented in this project. For now, the EV3 will
have the following API:

updateDisplay()

Updates the display.
clearDisplay()

Clears the display.
displayText(int x, int y, String text)

Print the string text at the speci�ed x and y coordinate. The updateDisplay()
has to be called before the text is shown.
wait(int milliseconds)

Waits the speci�ed amount of milliseconds before continuing execution.
waitForButtonPress()
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Halts the execution until the middle button of the EV3 is pushed.

Motor control is not in the API at the time of this project being turned in,
as it has not been possible to obtain a motor for testing. However, the API
de�ned above should be enough for testing and demonstrating the new EV3
backend.
Adding new operations to the API is fairly easy. The full feature set of the EV3
can be seen by examining the byte codes found at the byte code documentation
website[11]. Any feature that can be obtained by using a byte code or a combi-
nation of these can be added to the API. The implementation of new features
and how to bind these to the API operations are covered in section 3.4.4.
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3.4 Implementation

The new back end is now ready to be implemented. The implementation has
been greatly inspired by the current LC3 back end implementation. The back
end project made in the �rst part of the project is therefore copied, and the con-
tent of the compiler.CODE and compiler.CODE.LC3 packages is deleted. The
compiler.CODE.LC3 is renamed to compiler.CODE.EV3 and the content of all
code generation methods are commented out of the program for now. The out-
put �le type is also changed to the .lms �le extension. This results in a program
skeleton for implementing the back end.
Not all features of the original compiler will be implemented in this project.
Code generation for the object-oriented features of MiniJava has not been im-
plemented, nor is it possible to create arrays or methods. Most other features
have been implemented though, and the missing features are expected to be
implemented in a special course following this project (see section 4.1).

3.4.1 The basis

To begin with, a helper class analogous to the CODE-class of the LC3 back end
is created. This class is placed in the compiler.CODE-package. Two interfaces,
EV3 and EV3Instruction, are also created in the compiler.CODE.EV3-package.
The latter class will become the superclass for all instruction classes added later.
Both interfaces declare a toString-method that must be overwritten by the im-
plementer classes.
A Vector of EV3-objects is inserted into the CODE-class. The Vector-data struc-
ture is similar to an array list, but also allows control over the initial capacity
of the underlying array and the amount to increase the capacity with when the
array is full. All elements in this vector will implement the toString-method
de�ned in the EV3-class, which will return a string representation of the instruc-
tion. A vector of constants of type EV3const and two EV3const-�elds are also
added. These two constants will be assigned the values 1 and 0, and will be
used for representing true and false.
Because of the structure of the assembler program that the back end should
compile to, the only subclasses of the EV3-class is EV3main (The main vmthread),
EV3subcall (subcalls), EV3comment (comments), EV3variable (global variables),
and EV3const (constants), as these are the items allowed outside of vmthreads
or subcalls. This means that the EV3-vector can only contain objects of these
types. All instructions that are allowed inside vmthreads and subcalls are imple-
menting the EV3instruction-interface. Note that some items are allowed both
outside and inside a vmthread or subcall, for example variables (global and
local), and implement both interfaces. Each subcall and the main vmthread
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Figure 3.3: An overview of some important classes of the back end. Note that
all machine instructions used inside methods are implementing
the instruction-interface, and that only the methods involved in
writing the code to an output �le are shown in each class.

contain a vector of EV3instructions and of EV3variables. These two vectors
contain the instruction set and the local variables of the operation respectively.
The CODE-class also contains methods for commenting, a currentMethod �eld
containing the current subcall or vmthread to be code generated, and the
dump()-method which will create a PrintStream object, writing to the �le with
the output name de�ned in the main compiler class. The toString-method
is �rst called on all constants and prints the result of these to the output �le.
A string with instructions is then obtained from the MEMORY-class explained in
the next section, which is also printed to the �le. The method �nally calls the
toString()-method on all items in the EV3-vector, including the subcalls and
main vmthread. The toString()-methods in these classes will return a string
representation of the entire operation by calling the implemented toString()-
method on all EV3instructions of the vmthread or subcall. All instruction
strings are then written to the output �le. An overview of the classes involved
is seen in �gure 3.3.

3.4.2 Memory management

In the beginning stages of this back end, two global temporary variables were
declared for each data type. When a statement like a = 2 + 4 was evaluated,
the 2 would be saved in the �rst EV3DATA32-variable and the 4 would be saved in
the second. The plus operator would then apply the ADD32 operation to the two
temporary variables and save the result in the �rst temporary variable. This
would work for most basic expressions, but for a more complex expression tree,
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the number of temporary variables required would be unknown. A dynamic
memory structure like the stack in the LC3-back end is needed for the tempo-
rary variables.
Unlike the LC3 assembler language which is converting all data types into inte-
gers, allowing for a generic stack, the EV3 language have more than one type,
hence, more than one stack is needed. To keep track of temporary variables and
which of these that are in use, the MEMORY-class is created. This class contains
four array lists, one for each data type used in the assembler language. In ad-
dition, all lists have an index pointer, pointing to the top of the stack stored
inside the array list. When a temporary variable to write to is requested, the
appropriate push operation is called which then checks whether the appropriate
index pointer equals the size of the array list containing the requested variable
type. If it does, a new temporary variable is added to the array list and is then
retrieved, and the index pointer is incremented. The retrieved variable can then
be used to store data. If the index pointer is smaller than the size of the array,
the index pointer points to a temporary variable which is already created but
not currently in use. This variable is then returned.
If a temporary variable needs to be read from the stack, the index is �rst decre-
mented. The temporary variable at that index is then returned. This means
that all values saved in the temporary variables are meant to be stored once
and read once. If the index pointer is a negative value after decrementing, an
empty stack is being popped, and a CodeGenException is thrown.
One may ask why a stack data structure is not used for this instead of an array
list. If a stack is used, the temporary variables saved in the list will disappear
when popping the stack, resulting in those variables never being declared in the
destination �le. All variables that have been used in the stack need to be kept,
so that they will still be declared when the dump-method is called in the end of
the code generation phase.
As an example the expression 1+2*3, which is also used as an example in �gure
2.2, is examined. A new temporary variable would �rst be created to store the
number 1, followed by the back end storing it in the retrieved variable.
DATA32TMP[0] = 1.
Another temporary variable would then be created to store the number 2.
DATA32TMP[0] = 1

DATA32TMP[1] = 2

Then the right hand side of the multiplication is evaluated. DATA32TMP[0] = 1

DATA32TMP[1] = 2

DATA32TMP[2] = 3

The EV3DATA32-stack would then be popped twice, the values of the popped
variables retrieved, and the multiplication instruction would be used to multi-
ply the values. Then a temporary variable is reused by storing the result at the
index pointer which will now have the value 1. DATA32TMP[0] = 1

DATA32TMP[1] = 6

DATA32TMP[2] = 3
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Finally, two values are retrieved from the stack. These are added and the result
is stored at the position indicated by the stack pointer, which will now be 0 as
the stack is empty. DATA32TMP[0] = 7

DATA32TMP[1] = 6

DATA32TMP[2] = 3

The value 7 is now ready to be popped from the stack and used in a statement
or another expression.

This implementation makes the back end able to translate any expression into
EV3 assembler code without running out of temporary variables. The only
disadvantage is that the memory allocated for evaluating expressions will be
allocated for the rest of the program. In most cases, this amount will be small
however. The alternative would be to use dynamic arrays in the assembler
program to store these temporary variables. This would cost e�ciency however,
and is a bad option as the arrays would have to be constantly resized.

3.4.3 Code generation

All IR objects implementing a code generation method is traversed in the same
way as described in section 2.2.2.3. When MJMethod is processed, the method
name is checked. If this name equals the string "main", and the isEntry-�eld
is set to true, this must be the main method. An EV3main-object is therefore
created and added to the vector in CODE. The currentMethod of CODE is also set
to be the EV3main object.
In the MJBlock all variables declared in the block are �rst added to the current
method item. This is done by checking the types of the variables. If the type
is boolean, a DATA8-variable is added to the variable list of the currentMethod-
object. If the type is an integer, a DATA32-variable is added and if the type is a
string, a DATAS-variable is added.
String variables are implemented similar to the memory system described in
section 3.4.2. Each DATAS-object has two integer �elds: A length-�eld and an
inUse-�eld. The �rst one is the argument used to initialize the string when the
toString-method is called. The second �eld is used to keep track on how much
of this string variable which is currently in use. This allows the string variable to
be reused without having to create a new DATAS-object by resizing the variable
if needed.
If the variable is initialized when being declared, code is generated for the ex-
pression, which will leave the result on top of the stack corresponding to the
type of the expression. As the source code is type checked in the analyse phase,
the expression must be assignable to the variable. The temporary variable on
top of the stack corresponding to the type of the variable is then retrieved, and
a MOVE-command from the temporary variable to the declared variable is added.
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When all variables have been added code is generated for the statements of the
method. The code generation overview for these methods is seen below.

• MJComment: No code is generated for this.

• MJAssign: The method getVariable() in the CODE-class takes the name
of a variable and returns the MJvariable with that name. It should always
be possible to �nd a variable with that name, as the compiler in the analyse
phase checked whether any variables not declared is being used. Code is
then generated for the expression on the right hand side which is saved
on top of the appropriate stack. The value from the temporary variable
is then moved to the variable found.

• MJIfElse: The implementation of this statement is similar to the imple-
mentation found in the LC3-module. Code is generated for the condi-
tion expression �rst and then the temporary variable storing the result
is supplied to the EV3JR_FALSE-instruction which will be added to the
currentMethod-�eld. This instruction jumps to the speci�ed label if the
supplied variable is false. This label is placed after the this block. If an
else block is supplied, a label will be placed at the end of this block. This
makes it possible to skip the else-block if the condition is true by using a
EV3JR-instruction which unconditionally jumps to the label.

• MJWhile: Similar to the MJIfElse. The di�erence is that the PC uncondi-
tionally jump back to the condition evaluation after the body of the loop
have been executed. If the condition evaluates to false, the PC jumps past
the while-statement, continuing execution.

• MJMethodCallStmt: Not fully implemented. Custom methods can not
be used. However, the EV3 API de�ned in section 3.3.1 can be used as
explained in section 3.4.4.

• MJReturn: Not implemented

• MJPrint: No reason to implement this, as the displayText()-method
already exists for displaying text. The reason that this method is not
reused for this is that no arguments for the position of the text is supplied.
If these parameters should be added, the front end would have to be
changed, which should be avoided.

• MJPrintln: Same as MJPrint.

• MJBlock: The MJBlock is already explained earlier in this section.

Below is an overview of which expression classes which have been implemented.
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• MJBinaryOp: All subclasses of this class have a corresponding EV3instruc-
tion class. As described in the example in section 3.4.2 left and right hand
side expressions are evaluated �rst. Two variables are then popped from
the stack that corresponds to the type of the operators arguments and are
processed using the appropriate instruction. The result is pushed onto the
stack which contains variables having the same type as the result value of
the expression. A MJLess-expression will therefore pop two values from
the DATA32-stack and push the result onto the DATA8-stack. It is impor-
tant to remember that if the left hand side is evaluated �rst, the �rst
value popped from the stack will be the right hand side argument, and
the second value popped will be the left hand side.
A special case is the concatenation operator. Two string variables are re-
trieved from the EV3DATAS-stack. The inUse-�elds of the two variables are
added and the inUse-�eld of the destination variable is set to the sum in
order to make sure that the destination variable has enough space for the
concatenated string.

• MJUnaryOp: Not implemented.

• MJParentheses: Generates code for the content of the parentheses.

• MJIdentifier: First the EV3variable corresponding to the identi�er is
found, by calling the getVariable()-method in the CODE-class with the
identi�er name as the argument. After retrieving the variable, the data
type of this variable is checked. An EV3MOVE-instruction is then added
which will move the content of the retrieved variable to the temporary
variable retrieved from the appropriate stack. In the case of an EV3DATAS-
type, the inUse-�eld of the temporary variable has to be set to the value
of the inUse-�eld of the variable retrieved, thereby making sure that the
temporary string variable is big enough. When setting the inUse-�eld, the
length of the EV3DATAS-variable is increased if inUse is greater than the
current length.

• MJIfThenElseExpr: The same as the MJIfElse except the else is not
optional.

• MJNew: Not implemented.

• MJMethodCallExpr: Not implemented.

• MJCast: Generates code for the identi�er to be cast.

• MJNoExpression: No code generation is necessary here and the method is
therefore empty.

• MJBoolean: Pushes the Const0-value on top of the EV3DATA8-stack if false
or the Const1-value if true.
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• MJInteger: Pushes the value of the integer on top of the EV3DATA32-stack.

• MJNull: Not implemented.

• MJString: First the quotes which the string is surrounded by are removed.
Then a temporary EV3DATAS-variable is retrieved, and the inUse-�eld is
set to be the length of the string. The string is the put on top of the
EV3DATAS-stack.

3.4.4 The API

The compiler is now able to generate code for the EV3 for many of the features
of the MiniJava language. The next step is to support the operations de�ned
by the API in section 3.3.1.
Two main options exist for implementing the operations. The �rst is to change
the front end and add new IR-classes for these operations, similar to the way the
System.out.print-statement is handled in the original compiler. This would
require a lot of work, and every time that a new operation is added the front
end, analysis part and back end would all have to be changed quite a lot.
The second option is to add a isEV3Method boolean �ag to the MJMethod-class.
An EV3 MiniJava class would then be added to the list of classes in MJProgram,
similar to the way the MiniJava String and Object classes are added. This
class would contain all the EV3 operations, and have the isEV3Method-�ag set.
These methods are then able to be treated di�erent from normal methods in
the back end. In addition, implementing new operations is easy, as type check-
ing and value initialization checks are already done for the MJMethod-class and
method calls. The operations can be added to the EV3 MiniJava class, and
the code generation class of MJMethodCallStmt or MJMethodCallExpr is then
changed, depending on whether the method returns a value.
The analyse part of the compiler has to be changed in both options, as the type
checking would halt the compiling process if these methods are not declared
somewhere in the program. This seems fair as new functionality is added to
the compiler, and not just a new target language. One may argue that the �rst
approach would be more clean than the second one, as the MJMethod class is
being used in two di�erent ways in the second option. However, considering the
advantages of doing so, the second option is chosen.
None of the operations of the API have return values, hence, the MJMethodCall-
Expr-class does not need to be changed. It is therefore only necessary to alter
the code generation of the MJMethodCallStmt-class. This is done by checking
whether the target method bound in the analysis phase is an EV3Method. If
it is, a switch-statement is used to switch between the code generation for the
di�erent operations. The implementations are seen below:
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clearDisplay():
An EV3UI_CLEAR-instruction is added to the instruction list, which clears the
display of the EV3 by �lling the whole display with the background color.

updateDisplay():
An EV3UI_UPDATE-instruction is added.

displayText(int x, int y, String text):
Code is generated for the second argument �rst. Then the �rst argument, and
at last the last argument. This will leave the �rst argument on top of the
EV3DATA32-stack followed by the second argument, and the string variable to
display will be on top of the EV3DATAS-stack. An EV3UI_TEXT-instruction is
then generated which instructs the display to draw the string at the speci�ed x
and y coordinate.

wait(int milliseconds):
Code for the argument is generated �rst. In order to wait, a timer variable
is needed in the assembler code. This timer variable is requested through the
getVariable()-method in the CODE-class in case that it has already been added.
If this variable has not been added yet, one is added and used along with the
evaluated method argument for an EV3TIMER_WAIT-instruction. This instruc-
tion saves the value of the method argument into the timer variable and will
start decrementing it. An EV3TIMER_READY-instruction with the timer variable
as argument is also needed. This instruction will halt execution until the timer
variable has the value 0.

waitForButtonPress():
An EV3UI_WAITFORBUTTON-instruction is added, which halts execution until the
button on the EV3 is pressed

Some problems with the EV3 types are encountered when implementing these
methods. The DATA32-type is used for integers in the program. However, some of
the assembler instructions take a DATA16-variable as an argument, hence the in-
teger can not be supplied directly. A byte code for solving this is found however;
the instruction MOVE32_16, which moves a DATA32-variable to a DATA16 vari-
able. This makes it possible to move variables from the EV3DATA32-stack to the
EV3DATA16-stack. Before adding the instruction requiring DATA16-arguments,
an EV3MOVE-instruction is added, which will move the EV3DATA32-arguments to
the EV3DATA16 stack, casting them in the process. The EV3MOVE-class has sev-
eral constructors which will add the correct instruction depending on the data
types supplied.

The implementation of the back end is now �nished. As mentioned earlier, not
all features are implemented yet



62 Part 2: Creating a Lego Mindstorm-module for the compiler

3.5 Test

Generating automated tests for the EV3 is not as easy as it was to generate
tests for the �rst part of the project. No output �les to compare with exists.
Instead, the .lms �les outputted by the compiler must be checked manually by
inspecting these. If the program displays any output, it is also possible to test
the program by assembling it and running it on the EV3. If any type errors or
syntax errors exist, the assembler will not generate an output �le.
If an e�ective and automated test method were to be constructed, a script
merging all .lms-�les into one could be written. All programs could then be
executed sequentially with a delay between each program, making it easier to
test the programs on the EV3. The MiniJava test �les and the output �les
obtained by compiling are found in the attached archive (see appendix D).

- The DoesItWork.java �le contains a program which uses most of the imple-
mented features including string concatenation, if-statements, while-loops,
the EV3 timer, the EV3 display, the EV3 wait-for-button command, the
comparison and plus operators, identi�ers and assignment. This test pro-
gram can be run on the EV3 and works as expected.

- The Expressions.java �le tests the memory system along with all binary
operators by providing a long expression with many operators:
int result = (1*5+2*5*3-4) < 40 && (true == true && true);

As it is not possible to concatenate an integer to a string at this point,
it is not possible to show the result on the EV3 display. However, the
important result of this test is the number of temporary variables declared
in the .lms �le, which should be three DATA8-variables for evaluating the
boolean parts of the expression, and three DATA32-variables for evaluating
the integer parts. This matches the actual declarations seen in the .lms
�le.

The debugger in eclipse have also been used for locating errors when the com-
piler produced unexpected result code. In order to compile these �les without
having to run all three modules separately, a batch script was also written which
executes all three modules sequentially, which is included in the attached archive
(see appendix D.
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3.6 Discussion

As mentioned earlier, not all features of the compiler have had code generation
implemented for the EV3 in this project, nor have a lot of EV3 features been
implemented. The project have been focusing on creating the most important
parts of the new back end in a proper way. The memory management system
implemented ensures that expressions can be evaluated without any problems,
and the class hierarchy of the back end makes it easy to add new instructions
and use these. It was never expected that the back end would be completed in
this project, but this project has built a strong basis for �nishing it.
In order to implement the EV3 back end, it was also necessary to add a new
EV3 analysis module. Few changes were made in this module compared to
the analysis part used by the LC3, but these changes were necessary. If the
goal was to target a new assembler language and not add any new features to
the compiler, no changes would be necessary to introduce to other parts of the
compiler. However, as the EV3 has features that the LC3 does not support,
these changes needed to be made in order to utilize these extra features.
The current API bind all operations to the EV3 MiniJava object. When more
operations are added to the API it would make sense at some point to distribute
these operations between more objects. This would mean a display library in
a class Display, an Audio-class containing sound control and a Motor-class for
motion control. This would be even more intuitive if static methods could be
called directly from classes.
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3.7 Conclusion

In this second part of the project, a new back end has been developed which is
able to be substituted into the existing compiler and compile MiniJava source
code into EV3 assembler code. It is then possible to assemble the assembler code
by using an assembler, which will result in a .rbf �le which can be executed on
the EV3. A corresponding analysis module must be present too in order to
use special features of the EV3 like the display and buttons. The back end
module includes a memory management system similar to a stack which was
developed in order to evaluate arbitrary large expressions without running out
of temporary variables. This system, along with the rest of the implementation,
makes it easy to complete the compiler, hopefully resulting in a very motivating
and exciting tool for learning about compilers and robots.
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Conclusion

This project has studied and examined an existing compiler, and reviewed the
options for making this compiler externally modular. A custom XML-serializer
was built to write the intermediate representation of the program into a �le, and
a matching XML-deserializer was built in order to recreate the intermediate rep-
resentation from the �le. The result is a compiler consisting of three separate
parts which are only connected through the �le which is passed between the
modules. With a few modi�cations, the serializer would also be able to be used
as a general purpose loosely coupled XML-serializer if this was needed. For now,
this part of the project resulted in a three-part compiler which will hopefully be
a powerful tool for compiler education.
The compiler was then expanded with a back end for generating code for the
Lego Mindstorm EV3 robot. Documentation for the assembler language was
found on the internet, and the new back end was then implemented to con-
vert the intermediate representation into the assembler language speci�ed by
the documentation. By using an assembler downloaded from the internet, this
code was able to be assembled into a binary �le and executed on the EV3. The
fact that the compiled code is executable on the EV3 will hopefully be a strong
motivating factor when this module is used for education.
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4.1 Further work

This project will be continued in a special course in the spring of 2014 supervised
by Associate Professor Christian Probst, where the new back end is expected
to be completed. All current features of the compiler will be able to generate
code to the EV3. This includes objects and �elds, arrays, unary operators and
method calls. The front end may also be enhanced to support static methods
without having to create an object in order to allow for a more intuitive EV3
API.
The EV3 API will be extended so that more features of the EV3 are available, in
particular motor and sensor control and perhaps audio. This would require more
test programs which could also be used for introducing students to program the
EV3 through MiniJava. Communication with the EV3 through Wi� might also
be a topic of interest.
Enhancing the analyse phase could also be done, implementing assignment of
the �elds of the MiniJava String class and making use the public modi�er.
The serializer could also be extended to support arrays and be made completely
generic. This serializer could then be uploaded to the internet as a open source
serialization library, hopefully helping other people lacking a loosely coupled
lightweight Java library for serialization without the use of annotations.
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Appendix A

Notation

The notation used for the context free grammars de�ned in this project is given
below.

• A production for a variable has the syntax shown below. Literals are
enclosed in quotation marks and references to other variables can be used.
Spaces between items mean that any number of spaces, tabs, or new lines
are allowed.
<production-name> ::= "literal" <another-production>

• A variable can have several productions by using the or-operator.
<production-name> ::= "production one"

| "production two"

• The closure (*) operator can be used to express zero or more occurrences
of a variable.
<production-name> ::= <repeated-variable>*

• Parentheses are used in order to group variables and literals.
<production-name> ::= (<repeated-variable> "repeatedliteral")*

• Parentheses can also be used with the or-operator.
<production-name> ::= ( "this" | "or this") "but definitely this"
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• Square brackets are used to express that the item is optional.
<production-name> ::= ["maybe this"] "but definitely this"

This is equivalent to
<production-name> ::= "maybe this" "but definitely this"

| "but definitely this"

The notation for the regular expressions used in this project is given below.

• A range of values is de�ned between two parentheses.
('f'..'h') (the letters from f to h).

• The ? operator means zero or one occurence of a character.
'a'? 'b' (either ab or b).

• The or operator and closure operator are allowed in regular expressions as
well.
('a' | 'b')* (any combination of a's and b's)

• The + operator is used as a "one-or-more"-operator.
('a' | 'b')+ (Any non-empty combination of a's and b's.)
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Grammars

<object> ::= "<" <CLASSNAME> " id=" <INTEGER> ">"

(<field>*|<ALREADYSERIALIZED>) "</" <CLASSNAME> ">"

| "<" <CLASSNAME> " id=" <INTEGER> ">" (<field>*|<ALREADYSERIALIZED>)

"</" <CLASSNAME> ">" null "</" <CLASSNAME> ">"

<field> ::= "<" <FIELDNAME> ">" <fieldcontent> "</" <FIELDNAME> ">"

<fieldcontent> ::= <object> | <primitive> | <collection> | <map>

<primitive> ::= "<" <PRIMITIVENAME> ">" <PRIMITIVEDATA> "</" <PRIMITIVENAME ">"

<collection> ::= "<" <COLLECTIONCLASS> " id=" <INTEGER> ">"

(<fieldcontent>*|<ALREADYSERIALIZED>) "</" <COLLECTIONCLASS> ">"

<map> ::= "<" <MAPCLASS> " id=" <INTEGER> ">"

(<mapelement>*|<ALREADYSERIALIZED>) "</" <MAPCLASS> ">"

<mapelement> ::= "<KeyValuePair>" <mapkey> <mapvalue> "</KeyValuePair>"

<mapkey> ::= "<key>" <fieldcontent> "</key>"

<mapvalue> ::= "<value>" <fieldcontent> "</value>"

Figure B.1: The BNF for the formal syntax of the serialization format.
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<program> ::= <main-class> <class>*

<main-class> ::= "class" <IDENTIFIER> "{"

"public" "static" "void" <IDENTIFIER> "(" "String[]"

<IDENTIFIER> ")" <block>

<class> ::= "class" <IDENTIFIER> ["extends" <IDENTIFIER>] "{"

<var-declaration>* <constructor-declaration>* <method-declaration>*

<block> ::= "{" <var-declaration>* <statement>* "}"

<var-declaration> ::= <type> <IDENTIFIER> ["=" <expression>] ";"

<type> ::= "boolean" | "int" [ "[]" ] | <IDENTIFIER>

<method> ::= ["public"] ["static"] <return-type> <IDENTIFIER> "("

[<type> <IDENTIFIER> ("," <type> <IDENTIFIER>)* ] ")" "{"

<var-declaration>* <statement>* "return" [<expression>] ";" "}"

<constructor> ::= ["public"] ["static"] <IDENTIFIER> "(" [<type> <IDENTIFIER>

("," <type> <IDENTIFIER>)* ] ")" "{"

<var-declaration>* [<constructor-call>]

<statement>* "return" ";" "}"

<return-type> ::= <type> | "void"

<constructor-call> ::= ("super" | "this") "(" [<expression> ("," <expression>)* ] ")" ";"

<statement> ::= <COMMENT>

| <block> |

| "if" "(" <expression> ")" <block> ["else" <block>]

| "while" "(" <expression> ")" <block>

| <id> "=" <expression> ";"

| "System.out.println" "(" <expression> ")"

| "System.out.print" "(" <expression> ")"

| <id> "(" [<expression> ("," <expression>)*] ")" ";"

<expression> ::= <level-1> ("&&" <level-1>)*

<level-1> ::= <level-2> ("==" <level-2>)*

<level-2> ::= <level-3> ("<" <level-3>)*

<level-3> ::= <level-4> (("+" | "-") <level-4>)*

<level-4> ::= <level-5> ("*" <level-5>)*

<level-5> ::= "-" <level-5>

| "!" <level-5>

| "new" "int" "[" <expression> "]"

| "new" <IDENTIFIER> "(" [<expression> ("," <expression>)*] ")"

| <id>

| <id> "[" <expression> "]"

| <id> "(" [<expression> ("," <expression>)* ] ")"

| "(" <expression> ["?" <expression> ":" <expression>] ")"

| "(" <IDENTIFIER> ")" <id>

| "true"

| "false"

| "null"

| <INTEGER>

| <STRING>

<id> ::= <IDENTIFIER> | <this-id> "." <IDENTIFIER>

<this-id> ::= "this" | "super" | <IDENTIFIER>

Figure B.2: The BNF grammar for MiniJava used in the project.
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Diagrams
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Figure C.1: The �rst part of the overview of the original compiler.
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Figure C.2: The second part of the overview of the compiler. The class hier-
archy of the expression class is seen here.
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Appendix D

The attached archive

A zip-archive is handed in with this project and contains the following directories
and �les:

• Part 1

� Jar �les

∗ FileEqualityChecker.jar
The program used for testing equality of �les. Invoked with two
�le paths.

∗ MiniJavaCompiler_Analysis.jar
The analysis part of the compiler.

∗ MiniJavaCompiler_Backend.jar
The back end part of the compiler.

∗ MiniJavaCompiler_Frontend.jar
The front end of the compiler.

∗ MiniJavaCompiler_Original.jar
The original compiler before any enhancing was done.

� Source

∗ The sources of the jar �les mentioned under Jar �les. These can
be imported into an eclipse project.
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� Test

∗ Test �les along with the test script and all necessary jar �les to
run the test script.

• Part 2

� Assembler

∗ The lmsasm-tool described in the second part of the project.
This tool assembles .lms �les into runnable .rbf �les. This tool
has to be run from the command line in admin mode.

� Jar �les

∗ MiniJavaCompiler_MindstormAnalysis.jar
The new EV3 analysis module.

∗ MiniJavaCompiler_MindstormBackend.jar
The new EV3 back end module.

∗ MiniJavaCompiler_Frontend.jar
The front end of the compiler, the same as in part 1.

� Source

∗ Sources of the jar �les in the Jar �les directory. These can be
imported into an eclipse project.

� Test

∗ Test programs and the compile batch script. This directory also
contains the jar �les necessary to run the compile script along
with the .xml and .lms �les produced by running the script.
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Programs
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// Constants are declared in between

// objects (vmthread and subcall)

define MY_GLOBAL_CONSTANT 100 // MY_GLOBAL_CONSTANT equals 100

// Global variables are declared

// in between objects

DATAF MyGlobalFloat // MyGlobalFloat is of the type float

vmthread MAIN // All programs must start with the

// "main" thread object

// (more vmthread's are allowed)

{

// Local variables are declared

// inside objects and are only valid here

DATA8 MyLocalByte // MyLocalByte is of the type signed byte

Loop: // Labels are local and only recognised

// inside the object (Symbolic names

// can be reused in other objects)

CALL(MySubcall,MyLocalByte) // Call MySubcall with one parameter

MOVE8_F(MyLocalByte,MyGlobalFloat) // Assign the return parameter value

// from MySubcall to MyGlobalFloat

JR(Loop) // Jump unconditional to label "Loop"

}

subcall MySubcall // Sub calls are all global objects

{

IO_8 MyParameter // Declare sub call parameters

DATA8 MyLocalVariable // Declare sub call local variables

MOVE8_8(MY_GLOBAL_CONSTANT,MyLocalVariable) // Initialise MyLocalVariable

MOVE8_8(MyLocalVariable,MyParameter) // Return the value of MyLocalVariable

// in parameter MyParameter

}

Figure E.1: The program structure of an EV3 assembler program.[21]
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