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Preface

This book aims to provide a unified treatment of how to establish on-line and short term (say
up to 36 hours) predictions of wind power. Wind power models and methods for obtaining
predictions for a single wind mill farm as well as predictions for a large region are considered.
Furthermore, it is demonstrated how to use meteorological forecasts as input to the models
in order to improve the predictions on longer horizons.

Models describing relations between the wind speed, wind direction and the wind power
are described. The book focuses on the statistical models; but also practical methods for
handling data and tools for implementing the models are considered.

Most of the models, methods and tools are developed by IMM!, ELSAM? and Sep? during
the Joule II project Wind Power Prediction Tool in Control Dispatch Centres. During this

project a system for on-line wind power predictions has been developed and implemented at
the ELSAM load dispatch centre.

Several people have contributed significantly by writing sections of the book: Henrik Madsen,
Ken Sejling, Torben S. Nielsen and Henrik Aa. Nielsen (IMM); Uffe S. Jensen, Henning Parbo
and Bjarne Korshgj (ELSAM); Nic Halberg, Eppie Pelgrum and René Beune (Sep).

H. Madsen,
February 1996

'Inst. Math. Modelling, Tech. Univ. of Denmark
*The Jutland-Funen Power Pool
*Dutch Electricity Generating Board
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Summary

This book describes operational methods and models for short term (say up to 36 hours)
prediction of wind speed and wind power. Most of the models are constructed for on-line
applications where an updated prediction is needed rather often (say every 30 minutes). A
major part of the models are self-learning, which means that they are easily ported to a new
site.

The models are developed during the Joule project Wind Power Prediction Tool in Control
Dispatch Centres and as a special follow up study of the project Integration of Wind Power
in the Danish Generation System (ELSAM, 1989) and the Joule project Furopean Wind
Power Integration Study (ELSAM, 1992). During these projects a software system for on-
line wind power predictions has been developed. The software is running on a computer
at ELSAM* and gives predictions of the total wind power in the ELSAM area 0.5 to 12
hours (alternatively 0.5 to 36 hours) ahead in half hourly steps. The predictions are given
with an estimate of the variance of the prediction error. The software is running under both
UNIX and VMS and a graphical user interface is implemented under both operating systems.
Furthermore, an off-line version of the software is installed both at Sep in Holland and at
ELSAM. This software runs under UNIX and DOS.

The on-line WPPT system has been used in the ELSAM dispatch centre since July 1994.
In periods it has been rather difficult to obtain an acceptable quality of the on-line mea-
surements in the seven wind mill parks. The economic value of the WPPT system for load
dispatch cannot be calculated at this moment. The operators conclude, however, that the
economic benefit will be positive both in normal operation situations and in failure situ-
ations. Furthermore, the operators conclude that the development of the WPPT system
should be continued and that meteorological forecasts should be integrated into the next
version of WPPT.

For the region controlled by ELSAM, measurements at seven reference wind farms form the
basis for an upscaling of predictions for the individual wind farms to on-line predictions of
the total wind power in the region. The measurements are collected every 5 minutes and
transferred to the ELSAM dispatch centre. The installed capacity of the seven wind farms
is 39 MW, which corresponds to about 10% of the total installed wind power capacity in the
ELSAM area.

Different methods for sampling are investigated. It is concluded that fast sampling followed

*ELSAM is responsible for production and transmission of electrical power in Jutland and Funen, Denmark
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by simple averaging is appropriate. In order to handle errors in the data, methods for
robust estimation and for detection of outliers (bad measurements) have been developed. If
measurements are classified as erroneous this is automatically indicated in the implemented
system.

The problem of estimating the total wind power in a region, like the ELSAM area, based on
the predictions of wind power in some wind farms is referred to as the upscaling problem.
Since the relation between the wind speed and the wind power is specific for a given brand
and type of mill, and since the types of private mills in general differ from the larger wind
mills in the seven wind farms, the upscaling must somehow depend on the wind speed. In
the report this is investigated using measurements from nearby private wind mills and wind
mills owned by companies under ELSAM. For the moment a very simple upscaling using a
constant is used in the implementation at ELSAM.

The best models and methods without the meteorological forecasts are implemented in both
an on-line and an off-line system. For the on-line system a graphical user interface is devel-
oped. Predictions from the on-line system are available in the ELSAM dispatch centre in
Skaerbaek. The off-line version is installed both at ELSAM and at Sep in Holland. The main
purpose of the off-line version is to provide a possibility for an investigation of the prediction
performance for different prediction horizons using historical data.

A major part of the research in the project has concentrated on finding the best mathematical
model for on-line predictions of the wind power. Both linear and non-linear models have
been formulated. Among the non-linear models neural networks have been considered. The
main investigation is based on data from about 3 months (July to September 1993) of half
hourly data of the wind speed and wind power from one of the wind farms. A preliminary
study has shown how meteorological forecasts can be used as input to the model to improve
the long term forecasts.

In the following a summary of the most important models is given.

e Models for Predictions of Wind Speed.

Both linear and non-linear models have been considered. The most promising non-
linear models are the bilinear model and the smooth threshold autoregressive model.
The non-linear models are, however, only slightly better than the linear AR(1) model.

o Models Relating the Wind Power Production to the Wind Speed.

Several types of functional relations have been considered. A comparison of the pre-
diction performance shows only a minor difference between some of the functional
relations; but the Compertz curve has been used in the implementations.

Models relating the power to the wind speed and the wind direction show a clear
and significant dependence on both variables. Using a Compertz curve where the
parameters show a trigonometric wind direction dependence a variance reduction on
24.5% and 42.6% was found for the two wind farms considered compared to models
with fixed parameters. Due to different physical layout of the farms it is quite natural
to expect a difference in the variance reduction between parks.
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In cases where the wind direction is missing it has been shown that an indirect met-
hod can be used where the residuals from the Compertz curve are described by an
ARMA(L,1) model. This is due to the persistence in the variations of the wind direc-
tion. Using this indirect method the further improvement by having measurements of
the wind direction is minimal.

The curves are used e.g. for estimating the actual number of wind turbines in operation.

Models for Multi-Step Prediction of Wind Power Production

Both models which take into account the relations to wind speed and models which
consider the wind power production alone have be considered. Models for multi-step
prediction, 0.5 hours to 36 hours ahead, are considered.

A rich class of models containing for instance auto-regression, moving averages, sea-
sonal auto-regression and deterministic diurnal variation has been considered, and an
optimal model is found for each prediction horizon. Also non-linear terms enter some
of the models. Models found as one-step prediction models and dedicated k-step pre-
diction models are found to give almost the same results.

A non-linear dependence on wind speed is significant for prediction horizons less than
or equal to 6 hours. For prediction horizons larger than 8 hours wind speed does not
enter the optimal model for prediction of wind power production. A deterministic
diurnal variation is seen in a summer period, but not in a (short) winter period. Com-
pared with the naive forecast, which corresponds to predicting the future value as the
most recently observed, the improvement is between 2% and 23% depending on the
prediction horizon.

A square root transformation of the power and the wind speed are found to give nearly
symmetrical confidence intervals. Hence, this transformation is used in calculating
confidence intervals of the prediction error.

The models are estimated using adaptive recursive least squares estimation with an
exponential forgetting. Based on the analysis a candidate for a best overall adaptive
k-step prediction model is suggested.

Model for Using Meteorological Forecasts

Most of the models are prepared for using meteorological forecasts as input. It is obvi-
ous that meteorological forecast will improve the predictions of wind power, especially
on horizons greater than, say, 12 hours.

A method for using meteorological forecasts which are available, say every 12 hour, is
suggested. Compared with the naive forecast the improvement is up to 36.6% depend-
ing on the prediction horizon.

Neural Network Models for Prediction of Wind Power Production

It is investigated whether neural networks, as a non-linear predictor, can be used
for predicting the wind power production. The structure of the feed-forward neural
network used is found using the Bayes Information Criterion. Only prediction horizons
up to 3 hours have been considered. It is found that the neural network is inferior in
prediction performance compared to both the naive predictor and the most promising
overall adaptive k-step prediction model found.




Chapter 1

Introduction

Recently several European countries have offered incentives for wind power, including Den-
mark, Germany, Italy, the Netherlands, Spaﬁn and the United Kingdom. In Denmark, for
instance, the politicians have announced goals to install further wind power plants such that
a total installed capacity of 1200 MW is reached in the year 2000. Table 1.1 shows estimates!
of wind power capacity for operational and projected installations in Europe.

The steady increase of wind energy being connected to the electrical grids not only in Europe,
but all over the world, makes it still more important to have forecasting methods and tools
for the prediction of wind power production in the day-to-day planning of operations and
also in long term planning studies.

This book contains a description of models and tools for short term (say up to 36 hours with
a time step of 0.5 hour) prediction of the wind power. Methods for both local predictions,
e.g. in a wind farm, and in a region, as e.g. the ELSAM? supply area, are described.

For load dispatching it is very important that the reliability of the predictions is known.
Therefore special attention is paid to the problem of finding reasonable confidence intervals
for the predictions.

Models for both wind speed and wind power are suggested. Most of the models are well
suited for on-line predictions for use in the short term planning. Also a simple method for
using meteorological forecasts as input to a model is suggested. This is, of course, important
for obtaining a reasonable prediction on horisons greater than, say, 24 hours,

Special emphasis is laid upon models that can be used as a simple and operational descrip-
tion of the correlations and variations. They need to be simple since the operators need
updated forecasts rather frequently, say every 30 minutes. The models are identified by
using statistical methods for dynamical systems and time series analysis. Both linear and
non-linear models have been formulated. Most of the models are adaptive or self-learning,
which implies that the models and the tools rather easily can be moved from system to

'Source: EPRI, IEA, AWEA and J.K. Vesterdal, ELSAM.
2The ELSAM supply area consists of a major part of Denmark, namely Jutland and Funen.




Amounts in MW
Year 1994 | 2000
Denmark 540 | 1200
Germany 643 | 1000
The Netherlands { 153 | 500
Ukraine 41 500
United Kingdom | 145 | 300
Sweden 381 300
Italy 22 | 300
Spain 73| 150
Greece 351 150
Ireland 7 150
Portugal 9 50
Belgium 7 50
Finland 6 20
Norway 4 5
Totals 1686 | 4975

Table 1.1: Estimates of installed wind power capacity for operational and projected instal-
lations in Europe

system.

An implementation of a method for on-line data collection and transmission is also described.
Software tools for both on-line and off-line short term prediction of wind power are developed
and described briefly.

It is believed that the models and methods presented are widely useful for short term pre-
dictions of wind power. The book is, however, also a summary report for the Joule project
Wind Power Prediction Tool in Central Dispatch Centres. A more detailed description of
this project can be found in (IMM, ELSAM, & SEP, 1995). The aim of the project has
been to develop, implement and test a forecasting model for the prediction of wind power
production to be used in the day-to-day planning of operations. In the ELSAM supply area
the installed power is around 400 MW of electric power, while the peak load is approximately
3500 MW.

1.1 Outline

The book addresses the following main topics:

e Description of measurements




e Irequency analysis of wind behaviour

e Models for predicting wind speed

e Models for predicting wind power

e Models for the relations between wind power and wind speed

o Models and methods for upscaling the predictions of some wind farms to a prediction
of the total power production of a region

e On-line and off-line software tools
e Hardware
e Practical experience
The most important data, and the wind and power measurements used in developing the

models, are described in Chapter 2. Other chapters use specific data, these are described in
the corresponding chapters.

In Chapter 3 the sampling frequency is discussed and, using spectral analysis, different
methods for sampling are investigated.

Hereafter follows the main part of the book, where a substantial No. of different models are
investigated. This is reported in Chapters 4 and 5.

Methods for upscaling predictions from few farms to a prediction for a total region are
discussed in Chapter 6.

In Chapter 7 both on-line and off-line software tools are described. This software is developed
during the Joule project Wind Power Prediction Tools in Central Dispatch Centres. Also
the hardware selected for this project is described.

Chapter 8 describes the practical experience so far with the hardware and software. Also
the value for load dispatching is briefly discussed.







Chapter 2

On-line Wind and Power
Measurements

2.1 The Seven Wind Farms

The on-line wind power prediction tool is developed and implemented on the basis of an
individual power prediction at each of the seven wind farms which have been selected to
give a good representation of the total wind power in the ELSAM area. Table 2.1 lists
the installed power and the number of wind mills for each of the seven farms. At Draby

Wind farm Number of Mills Power Capacity [kW]

Rya 23 2580 2099 + 3x200
Ngrrekeer Enge 78 17280 36x 130 + 42x 300
Hollandsbjerg 32 4500 30x130 + 2x300
Vedersg Keer 27 6075 27x225
Torrild 16 2700 15x150 + 1x450
Dreeby Fedsodde 11/12 2420/2640 11/12x220
Brens 8 3200 8x400

Table 2.1: Farm statistics.

Fedsodde one additional mill has been installed on October 26, 1993 so the installed power is

5




increased from 2420 to 2640 kW. Figure 2.1 shows the location of the seven reference farms.
Predictions of the total wind power in the Elsam area is obtained by a so-called upscaling
of the predictions for the individual farms.

2.2 The On-line Measurements

It was decided to measure wind speed and total power production in each of the seven reference
farms. The wind direction is not measured, although it is known to have a significant impact
on the power production. The importance of using the measurements of wind direction for
predictions is described in Chapter 4. This chapter also suggests a method for an indirect
description of the dependency of the wind direction. Using this method the drawback of not
having the wind direction available is shown to be minor.

The measurements for the on-line wind power prediction tool are sampled at five-minute
intervals, and the main model study is based on five minutely data collected from the begin-
ning of August until the beginning of December 1993. The collection of data has, however,
been going on since May 1993 and the quality of the data has increased during the period.

Some examples of the measurements are shown on figures later on in this chapter. The
figures show the measured wind speed and power during September 1993 for Ngrrekeer Enge,
Vedersg Kzer and Torrild. In these figures each measurement is shown as a dot. The range
of the ordinate axes are chosen so all measurements are shown on the figures (also obviously
erroneous measurements). By comparing the figures it is clearly seen that the wind speed
in East Jutland (Torrild) is less that the wind speed in West and North Jutland (Vedersg
Ker and Ngrrekeer Enge, respectively). A complete set of figures of the data used is found
in (IMM et al., 1995).

Furthermore, the figures demonstrate that it is possible, in general, to obtain data of a
reasonable quality. However, the constant wind speed during short periods for Ngrrekaeer
Enge and during a longer period period for Torrild indicates errors in the measuring system.

2.3 Examples of Errors in the Data

It is, of course, impossible to measure wind speed and power, and to transfer the data to
the central dispatch center, without any error. This section describes briefly some different
kinds of errors which were seen in the data.

e For some of the wind farms (Ry&, Ngrreker Enge, Hollandsbjerg, Torrild and Draby
Fedsodde) it is observed that the measurements remain on a constant level for longer
periods (An example is seen on Figure 2.2). These observations are clearly erroneous
as it is not at all likely that the wind speed nor the power are completely constant.
Ounly in situations where the wind speed is close to 0 m/s will the power be completely

6




Ngrreker Enge

Hollandsbjerg

@ Vedersp Keer

Dreaby Fedsodde |

L

Figure 2.1: Key map of the ELSAM supply area with the location of the seven reference
wind farms.
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constant at 0 kW.

Periods of erroneous constant wind speed and/or power can easily be detected. How-
ever, it is difficult to reconstruct the lacking measurements. Reconstruction of the
wind speed may be carried out by using both the time-wise correlation of the wind
speed at one wind farm and the spatial correlation between the wind speed at different
farms. From reliable wind speed measurements lacking power measurements may be
reconstructed by use of a suitable power-to-wind speed relation. These reconstructed
measurements may, however, deviate considerably from the true values.

® Single extreme measurements occur. However, these errors are easily detectable, and
they can also be substituted by reasonable values. That is, single errors are not crucial
for estimation of models and prediction as they can be handled by suitable techniques.

® It is only rare in the shown set of data that measurements are lacking. However, in
the on-line situation lacking observations may be seen more frequently.

Lacking observations should be treated in the same way as detected erroneous measure-
ments. That is, when single measurements are absent they can easily be substituted,
but when they are lacking for longer periods it is more complicated and not without
introduction of errors to make a reconstruction. Furthermore, if measurements are
absent from all wind farms the reconstruction corresponds to the prediction situation,
and accordingly is followed by the same uncertainty.

@ For some of the wind farms (Ngrrekeer Enge, Hollandsbjerg and Torrild) the level of
the power measurements corresponding to zero production is below 0 kW and not con-
stant. This kind of error is not crucial for the estimation and prediction performance.
However, if it is due to a general bias of the power measurements it will lead to an
undesirable displacement of the estimated power curve.

® The wind speed at Draeby Fedsodde does in the first part of the shown period follow
a discretized pattern, and the power at this farm does for a certain period in August
seem to have the fault that it is shifted to 3000 kW, when it should be 0 kW. These

errors have in the later part been removed, and they are not likely to appear again.

e The wind speed measurements at Brgns seems to be erroneous in the way that it is
attracted to certain levels around 4, 7 and 14 m/s. This error in the measurements is
present in the whole period of data, and it is not possible to correct these errors. It is
likely that the errors are due to defective measuring equipment.

It is important for estimation and prediction of power that periods of lacking or erroneous
data are as short as possible. Robust techniques are able to handle erroneous data occurring
alone or in shorter periods. However, when correct measurements fail to appear for longer
periods the robust techniques cannot carry out a reliable reconstruction of erroneous data.
Consequently, it is important that the number and the lengths of periods of erroneous data
are kept at a minimum.

The quality of the measurements have improved considerably since 1993 for most of the wind
farms. This improvement is mostly due to an established weekly contact with the people

11




who are responsible for the data logging equipment at the individual farms. This means that
a much longer period of data of a higher quality is available today.

12




Chapter 3

Frequency Analysis of Wind
Behaviour

In this chapter a frequency analysis of the wind behaviour is carried out. The purpose is to
investigate and uncover the frequency contents of wind speed variations under such climatic
conditions that are prevalent in Denmark and the Netherlands.

The particular interest is how much dynamic information is lost when wind speed is sampled
at a given frequency. Furthermore, it is investigated whether it is imperative to use a faster
sampling frequency followed by prefiltering and subsampling to avoid unwanted consequences
of the aliasing effect, which otherwise will occur in the data.

Finally, some investigations are carried out to find a reasonable sampling procedure. Using
high frequency data various sampling procedures are investigated.

3.1 Wind Speed Measurements

The investigation is based on five separate periods of wind speed measurements collected in
Tjeereborg close to Esbjerg in Denmark. These measurements are sampled at f, = 25 Hz
meaning that all wind speed variations at frequencies below 12.5 Hz are preserved at the
proper location in the frequency domain.

The length of each period is one hour leading to 90,000 samples for each period. The time

and date of the first sample in each of the five periods are

I 16.44.04 at January 16, 1991. IV  13.35.39 at February 23, 1992.
IT 08.25.37 at February 14, 1991. 'V 07.39.20 at August 5, 1992,
IIT 12.28.09 at February 28, 1991.

The measurements were collected at a height of sixty meters with an anemometer placed
on a meteorology mast in the vicinity of the 2 MW wind turbine at Tjaereborg, Denmark.

13




The measurements are accurate to the first decimal corresponding to the measuring errors
having a zero mean uniform distribution over the interval (-0.05,0.05]. It is assumed that the
dynamics of the anemometer itself is negligible at the sample frequency of 25 Hz.

Time series plots of the wind speed for period II and IV are shown in Figures 3.1-3.2. These
two periods represent the extremes of the variation of all five periods. It is obvious that the
measurements for each period are specific to the weather condition prevailing at the very
hour when the measurements have been collected. The five periods differ with respect to the
level of the wind speed as well as to the variation of the wind speed.

The smoothed periodograms, which constitute estimates of the spectral densities, of the five
series in Figure 3.3 also show that there are differences among the five series. It is relevant
for these periodograms to know that the periodogram of a sequence of independent uniform
random variables on the interval [-0.05,0.05] is about -31.5 dB in the full frequency range.
It can be seen that for all series the periodogram approaches a level close to -31.5 dB for
increasing frequency, meaning that for such frequencies there is no frequency content in the
series apart from the independent random variation due to the measuring/round-off errors.

The extreme series is the second one, the periodogram of which reaches the noise level
(~ —31.5 dB) at a frequency near 2.5 Hz (0.1 x f,), and the fourth series, which seems to
have frequency contents up to 10 Hz. The reason that the second series does not seem to
have any substantial variation above 2.5 Hz might just be that the signal-to-noise ratio is
so low that the wind speed variations are covered by noise. Actually it is difficult to tell
whether the differences in the periodograms are caused by differences in the variances of the
series alone or if there are additional differences in the characteristics of the series.

The investigation is carried out for all the series, but only the results for the fourth series
are shown in the following.

3.2 Sampling Wind Speed for Prediction Purposes

Having the purpose of predicting wind speed and wind power production from 1 to 36 hours
ahead in mind, it is not appropriate to base prediction models on 25 Hz measurements.
Intuitively it is obvious that variations above a certain frequency will not be of influence to
the production of the wind turbine. The reason is that such fast wind variations will not
influence the energy transfer from wind to turbine, i.e., the turbine has a low-pass filtering
characteristic.

In order to be able to match standard meteorological data, which comes as 10-minute-
registrations, and production data (15-minute-registrations), it has been decided to prepare
the wind measuring equipment for 5-minute-registrations. The question is how the 5-minute-
registrations should be obtained to constitute the optimal basis for the prediction purpose.
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Figure 3.3: Smoothed periodograms for the five series.

3.2.1 Alasing

As seen from the periodograms of the previous section, it is given that wind speed measure-
ments may have frequency contents up to 10 Hz. When the wind speed is represented by
5-minute values, the high-frequency variations cannot be described. As a matter of fact for
5-minute values it is the case that only variations at frequencies below .00167 Hz (~ 1/600
s~!) can be observed. The upper limit on the frequency variations that can be observed is
known as the Nyquist frequency, see e.g. Bloomfield (1976), and it is given by 1/2T, where
T is the length of the sampling interval. Below is illustrated why this is the case and what
happens with frequency contents above the Nyquist frequency.

Suppose that the sampling interval is T, and that data consist of a pure cosine wave at
angular frequency w = 2r f. Hence the observations at tT" for integer values of ¢ will be

z, = coswiT. (3.1)

When increasing w from zero the wave oscillates more and more rapidly until at the Nyquist
frequency w = 7 /T, where the observations are

z, = cosmt = (=1)". (3.2)

This corresponds to the shown sampling of the lower wave in Figure 3.4. Increasing the wave
frequency further to a value, satisfying 7 /T < w < 27 /T, gives

z; = coswtT
2
= cos<2%—w’>tT , w':?ﬂ-——w
= cos(2nt — W'tT)
= cosw'tT. (3.3)
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Figure 3.4: 2.0 Hz sampling of sinusoids with frequencies 1, 3 and 5 Hz.

Similarly it can be shown that sinwtT = — sin w'tT. This means, given the sampling interval
T, the two signals

Acos(wt) + Bsin(wt) and  Acos(w't) — Bsin(w't),

apart from a phase shift, are indistinguishable, and they are said to be aliases of each other.
The same is said about the angular frequencies w and w’'. The same argumentation can be
carried through for any positive frequency, and it can be concluded that every frequency not
in the range 0 < w < «/T has an alias in that range. Figure 3.4 shows how the two upper
waves are aliases of the lower wave, when sampled as marked on the figure.

In the frequency domain the variation of the stationary continuous signal z(t) is described
by the spectral density, given as the Fourier transform of the auto covariance function, i.e.,

fe(w) = /_oo Y2(T)e"Tdr,  —00o <w < o0 (3.4)

oQ

where the auto covariance function is
¥=(7) = Cov[z(t),2(t + 7)) (3.5)
The spectral density of the sampled signal can be shown to be (Bloomfield, 1976)

ffwy= Y fr(w—mz%), —%<w<%. (3.6)

m=—00

It is clear that the spectral density of the sampled signal has contributions from the spectral
density of the continuous signal, which correspond to frequencies above 7/T. Consequently,
if the continuous signal has variations of frequencies above 7 /T, these will after sampling be
interpreted as contributions at lower frequencies.
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Figure 3.5: Definition of 6, € and § used in design of Nearly Equal Ripple filters.

3.2.2 Prefiltering

One way of avoiding the undesired down-folding of high-frequency aliases into the Nyquist
interval is to carry out the sampling at a sufficiently high frequency, considering the frequency
contents of the signal, and subsequently apply a presampling filter followed by subsampling of
the series. The purpose of the prefiltering is to remove the frequency contents that otherwise

would be folded into the interval —7/T < w < n/T, T being the sampling interval after
subsampling.

Kaiser & Reed (1977) describes algorithms for designing digital low-pass filters that comply
with given tolerances on the deviation from ideal filters. The output according to a given
set of filter weight coefficients b, is given by

Np
= Z by (3.7)
k=-N,

The frequency response function of the filter is

H(w)= Y be T, (3.8)

and the spectral density of the filtered signal is

T

T << (3.9)

i (w) = [H(W)Pf{ (w),

~| =

For symmetric weights, b, = b_, the phase shift of the filter is zero, and expressing the filter
in terms of a normalized frequency v = w /(7 /T, for which the Nyquist interval 0 < w < 7/T

18




maps to the interval 0 < v < 1, gives

Ny
H(v) =bo+ Y 2b; cos mkv. (3.10)

k=1

An ideal low-pass filter removes all variation at frequencies above a band width 3, i.e.

1, [p[<B
0, B<v<1

This ideal filter requires an infinite number of weight terms {b;}. Kaiser & Reed (1977)
remark that truncating the sequence of weights {b;} results in a bad approximation to the
ideal filter with considerable deviation at the band width frequency . Instead they propose
a filter, denoted Nearly Equal Ripple (NER) approximation, that has the effect of spreading
out the large approximation error, found at the band edge, over the whole of the pass and
stop bands. See Kaiser & Reed (1977) for the algorithm for designing the filter as well as
the Fortran code for its implementation. As input to the design algorithm must be given the
tolerances 6 and € on the deviation from the ideal filter along with the location of the band
width frequency £, see Figure 3.5.

3.2.3 Perefiltering the Wind Speed Measurements

In this section it is investigated whether the NER prefiltering has a valuable effect on the
wind speed measurements compared to either simple subsampling or average calculation.

The fact that the relation between the sampling interval of 0.04 s of the original measurements
and the desired 300 s of the final data is so considerable sets up heavy demands on the filter,
if it is desired that all variation above the Nyquist frequency, for T = 300 s, ought to be
removed in one single filtering step. This would require 8 = 75007, and consequently if
the stationary gain at w = 0 is desired to be within the e-tolerance, the é-tolerance must
be below 2/7500. To meet this demand, which indeed is a reasonable requirement, the flter
length N, should be above 6800.

A more reasonable procedure seems to be to divide up the prefiltering and subsampling in
a number of stages, where each stage consists of prefiltering followed by subsampling. This
could be implemented in three stages as follows

1. Apply the NER filter with (¢, 6, 5) = (0.02,0.02,0.04) on the 25 Hz measurements, and
then subsample every twenty of the filtered measurements. Hereby the resulting 1.25
Hz measurements contain effectively no frequency contents of the original series from
above 0.625 Hz. The reason that ‘the frequency of the subsampled series is placed
above 1 Hz, corresponding to the filter band width, is to avoid aliasing of frequency
contents from just above the filter band width, having in mind that the filter is not
ideal.
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Figure 3.6: Time domain anti-aliasing filter (¢,6,8) = (0.02,0.02,0.04).
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Figure 3.7: Frequency response characteristic of anti-aliasing filter (¢, 6, ) = (0.02,0.02,0.04)
and of a 25 observation equally weighted average.
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Figure 3.8: Smoothed periodogram of the fourth series, filtered and raw.

2. Apply the NER filter with (¢,6,5) = (0.02,0.02,0.05) on the 1.25 Hz measurements,
and then subsample every fifteen of the filtered measurements to give measurements
with sampling interval 12 s.

3. Finally apply the NER filter with (¢,6,8) = (0.02,0.02,0.04), and subsample every
twenty five of the filtered measurements. In this last stage the frequency of the sub-
sampled series matches the filter band width.

Figure 3.6 shows the weight sequence of the prefilter with (6,6,8) = (0.02,0.02,0.04), and
in Figure 3.7 is shown the amplitude of the frequency response of the filter. Similarly is
shown the frequency response of an average calculation corresponding to an equally weighted
smoothing of 25 neighbouring measurements. It is seen that the average indeed is a low-pass
filter, which, however, shows heavy deviations from the ideal filter with 8 = 0.04.

Figure 3.8 shows the smoothed periodogram of the fourth series before and after the series
has been run through the NER filter. A simular figure could have been shown for the second
series. It is seen that the filter has the desired effect of down-scaling the spectral density
with at least a factor 100 (~ —40 dB) for f/f, above 0.025. This frequency corresponds to
B+ 6/2 of the filter specification.

Figure 3.9 shows the smoothed periodogram of the filtered series after subsampling to 1 Hz
measurements. In the same figure is also shown the smoothed periodogram of the raw series
transferred to 1 Hz measurements using either pure subsampling or pure average calculation.
It is assumed that the periodogram of the filtered and subsampled series is the one closest
to the true spectral density of the signal in the Nyquist interval. The periodogram of the
pure subsampled series show considerable deviations from those of the filtered series. The
deviations are reasonably explained as down-folded frequency aliases of the raw series from
above the Nyquist frequency. The deviations tend to increase with frequency corresponding
to, as the scale is logarithmic, the aliased frequency contributions being additive effects. |
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Figure 3.9: Smoothed periodogram of the fourth series (1 Hz).

For the average of the raw series it is seen that the periodogram is below the periodograms of
the filtered series in the middle of the Nyquist interval. However, for frequencies approaching
the Nyquist frequency the two periodograms intersect, and the averaged series show to
have more spectral variation just below the Nyquist frequency. The explanation to this
result is probably that the equally weighted average is a low-pass filter, which deviates
from the ideal filter (3.11) in such a way that aliasing of variations above the Nyquist
frequency is not totally avoided, and variations below the Nyquist frequency are down-scaled
— see the frequency response in Figure 3.7. In Figure 3.10 is shown the periodogram of the
fourth series after filtering with § = 0.04, subsampling to 1.25 Hz, filtering with 8 = 0.05
and finally subsampling to 1/16 Hz. In the filtering stages is used (¢,6) = (0.02,0.02).
The periodogram is compared to the periodogram for subsampling of raw data and equally
weighted averages. The same comparison as for the 1 Hz measurements can be made. That is,
the pure subsamples have aliased contributions in the full range of the Nyquist interval, and
averaging has the effect of removing some spectral information for frequencies approaching
the Nyquist frequency and folding variation from above the Nyquist frequency down below.

It would be relevant to pursue the same comparisons for sampling interval T = 5 m. However,
for the one hour sequences there would only be twelve or less observations left, and this is
considered to be insufficient for the spectral analysis.

3.3 Conclusions

The spectral analysis presented in this chapter of five sequences of wind speed measurements
of one hour length sampled at 25 Hz has shown that the spectral density of 5-minute reg-
istrations of wind speed may have aliased contributions from frequencies up to 10 Hz if no
appropriate prefiltering is used.
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Figure 3.10: Smoothed periodogram of the fourth series (1/16 Hz).

The best reduction of aliased contributions is obtained by sampling fast (20-25 Hz) and
applying a filtering-subsampling procedure that makes use of a Nearly Equal Ripple filter
with a characteristic close to an ideal filter. Alternatively equally weighted averages could
be used. However, the low-pass filtering of the average calculation has clear deviations
from the ideal filter, having the unwanted consequence that relevant spectral information is
down-scaled and higher frequency contents are folded down into the Nyquist interval.

Considering predictions it is clear that the presence of aliased spectral variations contributes
to the unpredictable part of the variations. It therefore has a negative effect on the prediction
quality leading to the conclusion that prefiltering is beneficial with respect to prediction of
wind speed.
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Chapter 4

Models for Predicting Wind Speed
and Power

This chapter presents the main results concerning linear and non linear parametric modelling
and prediction of the wind speed and the power at a wind farm. In Chapter 5 an alternative
method, namely the neural network approach, is considered.

The modelling will focus on models that are to be used for predicting the power output in
a wind farm on a relatively short horizon, say up to 36 hours ahead. In order to obtain a
prediction of the total wind power production in some geographical region (e.g. the ELSAM
supply area — see Figure 2.1), the predictions for the individual farms have to be extrapolated
to a prediction for the whole region. This problem, which is called the upscaling problem, is
discussed in Chapter 6.

Three conceptually different approaches for the formulation of the model that is to be used
for obtaining the predictions are investigated in the present chapter. The three different
approaches are

1. A model for the wind speed is used to calculate predictions of the wind speed. Another
model, describing the relation between wind speed and power for the wind farm in
consideration, is used to convert the wind speed predictions into power predictions.
That is, the power predictions are obtained by using two models estimated separately.

2. One model holding a description of both the correlation structure of the wind speed
and the relation between the wind speed and the power is used to obtain the power
predictions. That is, the model is a composition of the two models referred to above
with all the parameters being estimated simultaneously.

3. One model describing the correlation structure of the power and the cross correlation
between power and wind speed are used for calculating the predictions. This leads to
models which are linear in the parameters.

When it comes to estimation of the parameters of a model there are two possibilities. One
possibility is to estimate the model parameters off-line on a limited set of data. By doing
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this it is possible to estimate models being nonlinear in the parameters, and subsequently
carry out an evaluation of the model estimate. The disadvantage of this way of estimating
the model parameters is that when new data is collected and one wants to base the model
estimate also on these data, the model has to be re-estimated on the full set of data. The
off-line methods and models are described in Sections 4.1 to 4.4.

Alternatively, the model parameters can be estimated by recursive methods, e.g. the recursive
least squares algorithm, see Ljung (1987) and Section 4.5.1. These methods carry out the
estimation sequentially in such a way that the parameter estimate is updated stepwise as
data is sampled. This implies considerable savings of computer time, compared to the off-line
estimation techniques, especially when it is a demand that the influence of on-line data is to
be reflected in the model estimates immediately as they have been sampled. The recursive
estimation method is often called on-line estimation method.

Furthermore, by minor modifications of the recursive algorithms it is possible to obtain that
the estimation becomes adaptive. Hereby, the model estimate will be able to follow slow
changes in the system, for instance, changes in the number of wind mills being active in the
wind farm or even changes in the characteristics of the wind speed variations as the seasons
change.

The drawback of the recursive methods is, however, that it is problematic to estimate the
parameters of nonlinear models recursively, meaning that it cannot be guaranteed that pa-
rameter estimates will converge to the desired values. Therefore, for practical purposes the
possibility of using recursive estimation of models being nonlinear in the parameters is con-
sidered not to be preferable. The on-line — or recursive — models and methods are described
in Section 4.5.1.

The main contributions to the concept of modelling wind speed and power production given
in this chapter are

® Models for the dependence of power on wind speed and direction are formulated in
Section 4.2 using data from wind farms at Mors and Arg, respectively. For these
farms simultaneous measurements of power, wind speed and direction are available,
and therefore they can be used for carrying out an investigation of how the power
curve depends on the wind direction.

® Models for the relation between power and wind speed without having measurements
of the wind direction are found in Section 4.3 using data from the wind farm at Ved-
ersg Keer. The lacking measurements of the wind direction are compensated for by
modelling the correlation of the deviances of the observations from the power curve.

e Different linear as well as nonlinear models for the variation of the wind speed are
estimated on the same set of data from Vedersg Ker as used for the power curve
analysis. This is described in Section 4.4.

e Recursive estimation of linear models for wind speed is found in Section 4.5.2 and 4.5.3.
These models are used for predicting the wind speed, which then is transformed into
a prediction of the power.

e Recursive estimation of models for power which include a description of the dependency
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on wind speed is considered in Section 4.5.1. These models are formulated as explicit
predictors for the power and estimated adaptively and evaluated on the data from
Vedersp Kar, Dreby Fedsodde and Brens.

4.1 Least Squares Estimation

This section describes the least squares (LS) estimation method, which is used below for
off-line (non-recursive) estimation of the parameters # of linear as well as nonlinear models.
The process to be described by the model is denoted {y(1)}, and the prediction conditional
on given values of the parameters and on an appropriate set of observations (dependent on
the model) is denoted §(t). Accordingly the estimation is carried out by a minimization of
the criterion

1M1 , 11
) = — - ) — Go(t - = L2 '
VIO = F L300 - 5 = 5 3% (4.1
where N is the number of observations used for the estimation.

In this investigation the estimation is carried out by numerical minimization of the criterion
(4.1). The procedure for minimization is described in Melgaard & Madsen (1991). The
minimization routine provides the numerical approximation to the Hessian, H(B), obtained
in the minimum of the criterion,
i@y =200,
06?2 '0=4¢6

Based on the assumption of normal distributed white noise the covariance matrix for the
estimate of € is estimated by

(4.2)

— (A &3 A aq-1
Cov {6} = = [H(e)} , (4.3)
where
L 1 &,
0o =% Ze (7). (4.4)
i=1
The unbiased estimate of the standard deviation of the prediction errors is given by
1 & ,
62 = —— Y & 4.5
L&) (45)

with p being the number of estimated parameters.

Bayes Information Criterion (BIC') can be used as an indication of the optimal model choice
in the model giving the minimum value, see e.g. Harvey (1989). It is given by

BIC = Nlogé? 4 plog N. (4.6)

For more information on estimation of linear dynamic models see Abraham & Ledolter
(1983), Box & Jenkins (1976), Ljung & S6derstrém (1983), Séderstrém & Stoica (1989) and
Madsen (1989). In the following also some non-linear models are considered. Information on
modelling non-linear systems can be found in Tong (1990), Madsen (1985), Priestley (1988),
Robinson (1983) and Bard (1974).
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4.2 Models for the Dependence of Power on Wind Speed and
Direction

For a wind farm it is reasonable to expect that the power depends on both wind speed and
direction. First of all, it is clear that the the wind speed at each mill is affected by the
existence of other wind mills since the wind mills give shelter to each other. Furthermore,
the wind speed also depends on the surrounding landscape, e.g. vegetation and distance to
open see,

The purpose of the investigation in this chapter is to analyze the influence of the wind
direction. This investigation is carried out by using data from two wind farms at Mors
and /Erg, respectively. These data have been collected previous to this project and contain
measurements of power along with wind speed and direction. The sampling interval is one
minute, and the data are used without sub-sampling or averaging. The data from Mors are
sampled between December 30, 1989 and February 25, 1990 and contain 81093 observations.
Data from /AErg are sampled between January-15, 1990 and April 21, 1990 and contain 123350
observations.

The dependence of power p(¢) on wind speed w(t) is in this section assumed to be suitably
described by the basic model

p(t) = Lexp[—bexp[—kw(t)]] + e(?). (4.7)

with three parameters L, b and k. e(t) is the discrepancy between p(t) and the power value
prescribed by the model, and it is assumed to be an independent and identically distributed
random variable. The curve described by the first term on the right hand side of (4.7), i.e.
p*(t) = Lexp[—bexp[—kw(t)]], is called the Gompertz curve.

This model corresponds to a power-wind relation, where no wind direction dependence is
present. A reasonable way of introducing a wind direction dependence is by assuming that
each of the three parameters actually is a smooth function of the wind direction as indicated
by the following model formulation

p(t) = L(d(t)) exp[=b(d(t)) exp [-k(d(t))w(t)]] + e(t),  d(t) € [0,360], (4.8)

where d(t) is the direction of the wind. The direction dependence is modelled by trigono-
metric functions. Hereby it is insured that the parameter functions are continuous at all
wind directions.

2rd 2md . 4rd 47d
L(d) = LO +L1 sin (360) + L2 CcOoS <360> + L3 sin (%) + L4 cos (36_0)

6rd 87d 8rd
+ Ly sin 360) + Lg cos <360> + L7sin <360) + Lgcos (%>

(
+Lgsin <1O7rd) + Lqgcos <107rd> , (4.9)
(

360

wd 2rd 4rd dnd
b(d) =by +b;sin 5—) +b2cos<3 O> + bssin (360) + b, cos (%6)
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67rd 67{'d . 87rd 87Td
b —_— b — b —_— ==
+551n<360 + 6cos<36 >+ 78in (360>+b8cos<360>
+bg sin (IOMZ) + b (10ﬂd>
9 360 10 COS 360 (4.10)
. rd 27d . [4nd drd
l\,(d) = :l\,o +/u1 Sin (%-6) + ]\/2 CcOS (ﬁa) + ]1,3 sin (3@) + k4 COSs (5-66)
6md 6md . [ 8xd 87d
+k5 sin (%) + kg cos (%) + krsin (%6) + kg cos (5%-)
ko ssi (107”1) + ko co (10”) 411
g SII 360 10 COS 360 ( . )

Table 4.1 shows the results for the model estimates with and without trigonometric wind
direction dependence. Clear reductions in BIC are seen for both wind farms, when the
direction dependence is modelled, and only few parameter estimates are not significant.
Models with more terms have been tried out, but no serious improvements were found.
Furthermore, the variance reductions are 24.5% for Mors and 42.6% for Kro. The variations
with wind direction of the power curve estimates are illustrated on Figure 4.1.

The estimation results in this section have demonstrated a clear dependence on the wind
direction in the relation between wind speed and power at two wind farms. Moreover, it
has also been shown that the degree of direction dependence is different for the two wind
farms considered here. This is not unreasonable since the degree of direction dependence
must depend on the number of wind mills, the configuration of the wind farm and landscape
surrounding the wind farm. Accordingly, there may be considerable differences in the direc-
tion dependence for different wind farms. However, it is most likely that all wind farms have
some direction dependence.

4.3 Models for the Relation between Power and Wind Speed
without Direction Dependence

The models describing the relation between the power in a wind farm and the measured
wind speed are in this section assumed to be of the following form

p(t) = g (w(t)) + v(t), (4.12)
where the error v(t) is modelled by
Alg (1) = ClgMe(t) &
(I=aig™ = ran g )o(t) = (L+eq™ +- e ™)e(t) &
v(t) = ao(t—1) = = ap,v(t=na) = e(t)+cie(t—1)+ - +coe(t—n,) (4.13)

g (w(t)) represents a steady state relation between the wind speed and the power for the
wind farm. v(?) represents the difference between the steady state relation and the observed
power at time ¢ (noise), and C'(¢7')/A(q™") describes the correlation structure of the noise.
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Mors KEro
Statistic
Constant Trigonometric Constant Trigonometric
Lo 814.0 893.6 448.2 350.7
L, -240.2 -64.7
Lo 287.3 -100.9
L -206.2 -2.0
L4 396.7 -49.8
Ls -155.7 7.5
Le 309.4 -62.6
Lz -90.6 9.8
Ls 205.3 -36.2
Lg -4.7% 12.4
Lio 82.1 -44.9
bo 6.70 -0.2% 15.8 47.8
by 16.1 6.9
by -17.5 35.5
bs 22.7 -3.1
by -19.4 28.7
bs 22.9 2.0
be -16.0 22.7
by 17.3 -3.3
bg -12.0 23.3
be 5.6 3.3
bio 6.9 28.1
ko 0.277 0.01x 0.352 0.518
ks 0.36 0.042
ko -0.65 0.196
ks 0.39 -0.017
k4 -0.73 0.135
ks 0.28 -0.0003
ke -0.58 0.122
k+ 0.16 -0.015
ks -0.34 0.123
ko 0.02 0.008
k1o -0.13 0.143
BIC 647760 625302 920334 852243
62 [kW2] 54.252 47.142 41.702 31.602

Table 4.1: Estimation results. Estimates not significant on 5% -level of ¢-test are indicated

by a *.
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Figure 4.1: Power curve estimates for different values of the wind direction.
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As a consequence of not having access to the wind direction the differences between the
power curve and the actually observed power will turn out to be correlated to the same
extent as the wind direction is correlated. Consequently the lacking observations of wind
direction is partly compensated by modelling the correlation of the discrepancies between a
power curve, applying for all wind directions, and the actual power values.

Figure 4.2 shows the data used in the present investigation. The data consists of half-hour
averages of both wind speed and power from the wind farm at Vedersg Kzer. The data until
September 6 at 7.00 a.m. is used for estimation, and the rest of the data is used for validation,
Le., the estimated models are tested on this part of the data. The separation of the data
into an estimation set and a validation set is shown by the dotted line.

The wind farm at Vederss Keer has been chosen for this first part of the investigation as it
seems to be the wind farm with least contamination of errors in data.

The wind farm at Vedersp Keer consists of 27 wind mills with a total power capacity of 6075
kW. All of the wind mills are of the same brand (Vestas V27-225 kW), and they are given
to reach maximum power for wind speeds above 12 m/s.

Table 4.2 shows the results for the estimation of various choices of g(w(t)), A(¢~!) and
C(g™"). The least squares estimation method outlined in Section 4.1 is used. It is clear from
this table that the modelling of the correlation structure of the noise certainly pays off. The
only reasonable explanation to this result must be that there is a clear dependence on the
wind direction at the wind farm. The further conclusion from this table is that when the
noise correlation is modelled there is almost no difference between the results for the three
different power curve models. The logistic power curve (at the bottom) is slightly superior
to the other models.

4.3.1 Comparison of Models with and without Wind Direction Depen-
dence

An imperative question is now whether modelling of the correlation of the power curve error
is capable of replacing explicit modelling of the wind direction dependence. Therefore the
set of data from Mors and Arg, described in Section 4.2, is used for comparing modelling
results both with and without explicit modelling of direction dependence and with and
without modelling of error correlation. That is, in (4.12) g(w(?)) is either a simple Gompertz
parameterization (4.7) or it is the trigonometric version given by (4.8)-(4.11), and v(t) is
either not modelled or it is modelled by the ARMA(1,1) model

v(t) — av(t — 1) = e(t) + cre(t — 1). (4.14)

This choice of model structure for v(#) is based on the previous results shown in Table 4.2,
which indicates that it is sufficient. The model estimation is carried out on half hour averages
of the measurements from Mors and Arg (contrary to the estimation in Section 4.2).

Table 4.3 compares the prediction error variances for the four outlined modelling possibilities
and the two wind farms, respectively. From this table it is seen that both the explicit
modelling of the direction dependence and the modelling of the error correlation significantly
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Figure 4.2: Data used for estimation and validation.
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8061 exp {— 10.8 exp

(223)

5723 exp - 10.5 exp

(206)

5986 exp |- 11.0 exp
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5978 exp [ 11.0 exp

(208) {
5982 exp |- 1

(50) (19)

292 — 284 w(t)+ 71 w(t)
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(
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4835 / (1+ 1
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14054 =1~ 0.21 g2

(108)
4836 / <1+ 122 exp

Table 4.2: Modelling results for the relation between power and wind speed.




Modelling Mors Ero
of g9(w(?)) g(w(t))
v(t) Constant Trigonometric Constant Trigonometric
- 43.762 30.362 32.22° 24.082
ARMA(L1) 26.522 23.242 21.572 18.372

Table 4.3: Prediction error variance for model of the relation between power and wind speed.

improves the description of the relation between wind speed and power. Modelling of the
error correlation is obviously the most beneficial to the model fit. The table also shows that
even when the error correlation is modelled, there is still something to gain by modelling
the wind dependence by the trigonometric parameter profiles. This means that even though
modelling of error correlation is beneficial, and possibly compensates to some extent for
lacking wind direction values, the wind direction would still be beneficial, and consequently
it is a drawback for the modelling of the relation between wind and power, when wind
direction values are not available.

4.4 Models for Wind Speed

This section describes the formulation and off-line estimation of both linear and non-linear
models for wind speed. In the first place the simple linear models, namely the ARMA models,
are considered. These models are of the structure

AlgHw(t) = C(g7Me(t) &
(I-a1g7 = an,g7™)w(t) = (T+eg 4 cag™)e(t) &
v(t) —aqqw(t—-1)— - - e(t) + cre(t—1)+ -+ ¢, e(t—n.), (4.15)

1
an, w(t—mn,) =
where {e(t)} is assumed to white noise.

Furthermore, nonlinear extensions to the ARMA class of models are considered. An overview
of various nonlinear model structures can, for instance, be found in Tong (1990), Priestley
(1988) and in Madsen & Holst (1995). The nonlinear models considered in this investigation

seem to be best choices for describing the variations of wind speed. The nonlinear models
are the bilinear models of the following general structure

p r s
w(t) + Z aw(t—i)=a+ Z Z birw(t—j)e(t—k) + e(t), (4.16)
i=1 7=1k=1
and the smooth threshold autoregressive models
P
w(t) = ao + ) (hi (y(t) w(t—4)) + e(2), (4.17)
i=1
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where

bi
1+ exple; — diy]’
{y(1)} is a process determining the actual values of the autoregressive coefficients through
the smooth threshold k;. In this case this process is chosen as the first order filtered wind
speed

hi(y) = a; +

(4.18)

y(t) = ws(t) = fwy(t-1) + (1 = NHuw(?), (4.19)

of which the parameter f is estimated in the same step as the other parameters of the model.

Table 4.4 shows the results for a selection of the estimated models belonging to the classes
mentioned above. The figures in parenthesis above the estimated parameters are the esti-
mated standard deviations of the parameter estimates.

The immediate conclusion for the results in Table 4.4 is that only very little can be gained in
performance when increasing the model complexity beyond the first order AR model (seen
as the uppermost model in the list). The bilinear models as well as the smooth threshold
models do give a slightly better fit in the estimation, but when validating the estimated
models on a different set of data only the bilinear models are better than the AR(1) model.

Actually these results are rather disappointing as it seems to be obvious that the variations
of the wind speed cannot be sufficiently well described by models within the ARMA class.
However, it must be concluded that the nonlinear modelling approaches tried in this section
only result in a very slight improvement for the considered data.

4.5 Power Prediction using Recursive Estimation

This section describes some models and methods for power prediction which are well suited
for on-line purposes. The models are estimated using adaptive recursive estimation. The
adaptivity gives a possibility to account for (slow) variations in time of the parameters.
Hence, such methods can be used for taking into account the annual variation.

More specifically the following approaches are considered:

1. An overall model for wind speed followed by a transformation to power:
The wind speed is described by a model belonging to the class of ARMA models. This
model is estimated recursively using the one-step prediction errors and in an adaptive
way. At each time step the model is applied iteratively so a sequence of wind speed
predictions, reaching from one to 42 steps ahead, is obtained. The power predictions
are obtained by transferring the sequence of wind speed predictions into a sequence of
power predictions by using a fixed dynamic model for the relation between wind speed
and power. This approach is described in Section 4.5.2.

2. k-step prediction models for wind speed followed by a transformation to
power: Another approach, which is described in Section 4.5.3, is to estimate separate
prediction models for the wind speed for each prediction horizon. The estimation is
done adaptively and recursively. Again the power predictions are obtained using the
fixed dynamic model for the relation between wind speed and power.
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Model

e [kW]| BIC |5, [kW]
(.004)
w(t) =097 w(t-1) + e(t) 0.7080 | -2166 | 0.6654
(.02) (.02)
w(t) =0.98 w(t—1)~ 0.003 w(t-2) + e(t) 0.7081 | -2157 | 0.6654
(.004) (.02)
w(t) =0.97 w(t=1) + e(t)+ 0.004 e(t—1) 0.7081 | -2157 | 0.6654
(.004) (.02) (.006)
w(t) =0.97 w(t-1) + e(t)+ 0.009 e(t—1)— 0.02 w(t—1)e(t~1) 0.7068 | -2161 | 0.6638
(.004) (.01) (.01) (.005)
w(t) =097 w(t-1) + e(t)+ 0.003 w(t-1)e(t-1)- 0.03 w(t-2)e(t-1)+ 0.02 w(t-2)e(t-2) 0.7050 | -2169 | 0.6628
(.004) (.006) (.005)
w(t) =0.97 w(t~1) + e(t)- 0.03 w(t-2)e(t- 1)+002 w(t-2)e(t-2) 0.7049 | -2177 | 0.6629
(.004) (.005) (.005) (.02)
w(t) =097 w(t—1) + e(t)- 002 w(t-2e(t—1)+ 0.02 w(t-2)e(t-2)- 0.03 e(t-2) 0.7048 | -2171 | 0.6625 .
(.004) (.006) (.005) (.02) (.02)
w(t) =0.97 w(t—1) +e(t)- 0.02 w(t-2)e(t- 1)+002 w(t-2)e(t-2)- 0.01 e(t-1)~ 003e( 2)| 07049 |-2162| 0.6624
(.09) (.08) (.006) (.005) (.08)
w(t) =133 w(t-1)- 0.54 w(t-2) + e(t)- 0.02 w(t=2)e(t-1)+ 0.03 w(t-2)e(t-2)- 0.58e(t-1) | 0.7035 |-2174 | 0.6628
(.004) (-01)
w(t) = | 0.98 ~ —— w(t—1) +e(t) 0.7065 | -2147 | 0.6658
14exp { 12593- 2771 w,(t—l)]
(.005)
wy(t) = buwy(t-1) + (1-b)u(?), b=0.44
(.004)  (.001)
w(t):(0.97+0.002w,(t—1)>w(t—1)+e(t) 0.7076 | -2154 | 0.6651
. (4
wy(t) = bwg(t-1) + (1-b)w(t), b=05
(.006) (.005) (.08) (.07)
w(t) = a(t)w(t-1)- 0.02 w(t-2) + ()+003 w(t-2)e(t-1)- 0.53 w(t-2)e(t~2)- 0.50 e(t=1) | 0.6984 | -2188 | 0.7070

@
a(t) =10.93 ———(;m)———
14exp |2.6-— 23 w!(t—l)]
(02)

w(t) = buy(t-1) + (1-b)w(t),  b=-084

Table 4.4: Modelling results for the wind speed.
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3. k-step prediction models for power: A direct approach, where the power is de-
scribed by a linear model, which may or may not include a description of the relation
to the wind speed, is described in Section 4.5.4. The model is specific for the prediction
horizon, meaning that a number of models to be used for different prediction horizons
are estimated and evaluated. The models are estimated recursively and adaptively.

The adaptive recursive estimation technique is described in Section 4.5.1.

4.5.1 Adaptive Recursive Least Squares Estimation

In those cases, where the estimation is carried out recursively and adaptively, the recursive
least squares estimation method with exponential forgetting (Ljung, 1987) is used. This
method requires that the model can be formulated linearly in the parameters

y(t) = ()0 + e(1), (4.20)

where () is a vector of regressors, and 8 is the parameters of the model.

A Model for Predicting the Wind Power

Let us illustrate how a model, which in a subsequent section is suggested as a very reasonable
overall model for predicting the wind power (see (4.38), is written in the linear form given
in (4.20).

The model is an autoregressive model of the wind power production (p(t)), with wind speed
(w(t)) as an input variable. Furthermore, the model contains a deterministic harmonic with
period 24 h. The model is:

DETR) = 6o+ 01 y/p(0) + Ba/0T0) + (1) )
+  O4sin(2mh(t + k)/24) + 05 cos(2mh(t + k)/24) + e(t + k), )

where 6, ...,0; are the parameters for the horizon k. The running time index is ¢, k is the
prediction horizon, A(t) is the time of the 24 hour clock cycle at time ¢, and e(t) is white
noise with variance o?. Note, that although (4.21) is referreed to as the model, the equation
actually corresponds to one model for each prediction horizon.

The k-step prediction model (4.21) can be written in the linear form
y(t) = o ()8 + e(t), (4.22)

where y(t) = /p(t), and ) 1
vt~ k)
w=| V| (4.23)
sin(27h(t)/24)
cos(2mwh(t)/24) |
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Using this formulation it is clear that the model is linear in the parameters, which are given
by

0 = [,...,05]" (4.24)

The Recursive Least Squares Method

Conventionally the 1-step prediction errors are used for estimation using the recursive least
squares method, see e.g. (Ljung, 1987). Later on in this section we discuss how the method
can be extended to k-step prediction methods.

Using the method of adaptive recursive least squares with constant forgetting factor a
weighted sum of the squared prediction errors up to the present time is minimized. The
adaptivity is obtained by assigning the largest weight to the most resent observations. In
mathematical terms the estimates at time ¢ (6(¢)) are chosen to minimize

Vi(8(1)) = Z A7 (y(s) = ¢ ()8(1))%, (4.25)

where A is the forgetting factor and ¢7 (s)4(t) is the prediction using the parameter estimates
at time ¢. A comparison with the least squares estimation method considered previously in
Eq. 4.1 shows that, apart from some constants without any significance, the difference is the
exponential weighting of older observations by the term A'~°.

The choice of the forgetting factor A is determined by a trade-off between the needed ability
to track time-varying parameters and the noise sensitivity of the estimate. A low value of
A results in a system with a good ability to track time-varying parameters but a higher
sensitivity against noise or errors in the data. A typical choice of X is in the range 0.95 <
A < 0.999. The number of effective observations (or the number of observations kept in

“memory”) is given as
1
Noyj= —— 4.26

For A = 1 all previous observations contributes to each set of estimates with equal weight,
Le. the final estimates correspond to the estimates that would have been obtained using a
non-recursive least squares estimation procedure.

The adaptive recursive least squares algorithm is given by the following steps at time ¢

1. Calculation of prediction error using old estimate at time ¢ — 1:
§(tlt— 1) = y(¢) - ¢T (DAt - 1) (4.27)
2. An update of the covariance matrix of the parameter estimates is obtained using:

1 P( = Dy (DA (D P( = 1)
? (”:‘X(P“””‘ T (P~ Dor) > (429

The matrix P(t) constitutes, except from the factor ¢2, an estimate of the covariance
matrix of the parameter estimates at time t.
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3. Update of the parameter estimates:

6(2) =0t — 1) + P(t)e1 (1)1l 1) (4.29)

The algorithm has to be initialized. The initial estimates may be chosen quite arbitrarily —
often zero is used. The initial covariance matrix has to be chosen such that the variance of
the initial estimates is large — often selected as a diagonal matrix with all elements on the
diagonal set to 100 or 1000.

The 1-step prediction of y(t + 1) at time ¢ is calculated as

gt + 1J2) = T (t + 1B(1). (4.30)

In the application of the recursive least squares method for estimating the parameters of the
model (4.21) the predictions may be negative although they are predictions of the square-root
of the wind power production. In this case the predictions are set to zero. Note however that
the predictions used in the recursive estimation should be allowed to be negative. Otherwise
the estimation procedure may get unstable.

The Recursive Least Squares Method and k-step Predictions

If a prediction horizon larger than one is used for estimation purposes a choice between two
alternative ways of updating the estimates must be made.

o The estimates §(¢ — k) and the regressors wx(t) are used instead of 6(t — 1) and ¢, (1)
in the algorithm described above, or

e pseudo prediction errors are used in the update of estimates. The pseudo prediction
error at time t is calculated as

Gpscudo(tlt = k) = y(t) = @f (1)8(t - 1), (4.31)

from this equation it is seen that the pseudo prediction error corresponds to variables
known at time t — k (i.e. ¢f(¢)) and the most recent estimates (i.e. (¢ — 1)).

In both cases the true k-step prediction is calculated as

Gt + klt) = of (t + k)B(2). (4.32)

Using the true k-step prediction error in the update of the most recent estimates will result
in highly inappropriate estimates. This is due to the fact that the prediction error will give
a feed-back not corresponding to the estimates that are to be updated.

In the software, called the Wind Power Prediction Tool, which is described in Chapter 7,
the algorithm using pseudo prediction errors is implemented.
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4.5.2 Wind Speed Prediction Followed by Transformation to Power

In this section the model for wind speed is estimated by the adaptive recursive least squares
method and by considering a minization of the one-step predictions. Using the model,
predictions of wind speed reaching from one to e.g. 42 steps (21 hours) ahead can be
obtained.

With the purpose of finding the optimal model for predicting the wind speed a large number
of models have been investigated. The models tried belong to the following model class

w(t) = aw(t-1)+- -+ a, w(t-n,)+
biw(t—48)+ -+ b, p(t—ny,,—47) +
cre(t—1)+ -+ ¢, e(t—n.) +
fre(t=48) + -+ fu, e(t—n.,, —47) +

nr

Z (hoi_y sin(27rt;'/48) + ho; cos(27ti/48)) +

i=1

[+ e(t) (4.33)

These models contain the possibility of describing an autoregressive variation, a random
diurnal variation, a moving average variation and a deterministic diurnal variation. The
level-parameter [ is always contained in the model meaning that if all the other model orders
are zero the model consists of just a level (w(t) = I+e(¢)). Each polynomial is only contained
in the model if its corresponding order is greater than zero.

The sequence of predictions w(t+k|t),k € [1;42] obtained at each time step t by iterative
application of the model (4.33) is transferred into power prediction by using the model

1-0.28¢"!

p(t) = 5986 exp [—11.0 exp [-0.250w(¢)]] + we(t).

(4.34)
This model has previously been estimated (and found suitable) on a set of data from Vedersg
Ker. The estimation and evaluation is in this section carried out on a set of data, which
includes the set used previously, but is prolonged until October 11 at 7.00 a.m. Table 4.5
shows the obtained prediction performance for the model having the optimal performance at
each prediction horizon among a large number of model configurations. The table indicates
the values of the model orders which have been tried for each of the five model orders.
All combinations have been tried, meaning that the performance has been evaluated for 96
different wind speed models.

Also given in the table is the evaluated standard deviation of the prediction error (S.E.), and
the standard error (in percentage) scaled by the power capacity of the wind farm ((S.E.q).
The table also contains the standard deviation of the prediction errors obtained by the naive
predictor

pt+klt) = p(2). (4.35)

The forgetting factor, which turned out to give the lowest average squared prediction error,
is also shown in the table. A number of different forgetting factor were tried, and it turned
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Ty T,y e Teyq ng Naive
k A (0-3) | (0-2) | (0-1) | (0-1) | (0-1) | S.E. [kW] | S.E., | S.E. [kW]
1 0.9998 3 2 1 1 1 285.9 4.71 285.5
2 1 0.9998 2 2 1 0 1 406.6 6.69 412.1
4 | 0.9998 2 2 1 0 1 562.9 9.27 580.3
6 | 0.9998 3 1 1 1 1 680.6 11.20 714.0
12 ) 0.9998 3 1 1 1 1 918.3 15.12 1009.7
24 | 0.9998 2 1 1 0 1 1168.6 19.24 1364.8
42 1 0.9998 0 0 1 1 1 1303.6 21.46 1580.4

Table 4.5: Prediction performance for Vedersg Kar (early period) - Prediction of wind
speed using a one-step prediction model followed by transformation to power. The standard
deviation of the power is 1335.7 kW.

out that the optimal results in all cases were obtained for the largest of the tried forgetting
factors A = 0.9998. This means that it is not optimal, for this data set, to have any adaptivity
of importance in the estimation. One likely explanation is that the data set covers only a
minor part of the annual cycle. If, as expected, the dynamic of the wind variations were
different over the seasons it might be beneficial to have the adaptivity in the estimation.
That is, a longer period of data would be necessary to confirm this hypothesis.

4.5.3 k-step Prediction Models for Wind Speed Followed by Transforma-
tion to Power

Instead of estimating just one model for the wind speed, which then is used for prediction of
the complete sequence of wind speed variation 42 steps ahead, the wind speed at a specific
prediction horizon k& can be predicted by a k-step predictor by constructing a dedicated k-
step prediction model. This means that a number of models are to be estimated and used
for prediction in parallel to obtain a complete sequence of wind speed predictions.

The advantage could be that the parameters and even the model orders in (4.33), which
are optimal for prediction a specific number of steps £ ahead, are not the same for different
values of k. If this is the case the best prediction result would be obtained if the model
orders and parameters are determined and estimated in models which are used only for
specific prediction horizons.

Although it is possible to write down explicitly how the k-step predictor is determined
from the model (4.33), and hereby determine the parameters in (4.33) having the optimal
performance for k-step prediction, it is not preferable to do this. The reason is that the
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k-step predictor is not linear in the parameters of the original model, and due to this the
use of recursive estimation methods would involve the introduction of approximations. The
consequence is that it can not be assured that the recursive estimation will work well.

Instead the k-step predictor can be reformulated in such a way that it is linear in the
parameters as given below

wit+k) = aw(t)+- - +a,, wit+l-ny,)+
brw(t+k—48)+ -+ by, p(t+k—n,,, —47) +
cre(t)+ -+ ey e(t+1-n,) +
Sre(t=48) + -+ fo, e(t—n.,,—47) +

ne

> (hai—1 sin(27ti /48) + hy; cos(2ti/48)) +

i=1

I+ e(t). (4.36)

This model is directly applicable for the calculation of predictions & step ahead, and it can
be estimated recursively and adaptively by use of the recursive least squares algorithm with
exponential forgetting.

Ty Ty Tle Teyy np Naive
k A (0-3) | (0-2) | (0-1) | (0-1) | (0-1) | S.E. [kW] | S.E.¢ | S.E. (kW]
1 | 0.9996 3 2 1 1 1 286.1 4.71 285.5
2 1 0.9996 1 1 0 1 1 407.4 6.71 412.1
4 | 0.9996 1 2 1 1 1 564.2 9.29 580.3
6 | 0.9996 3 1 1 1 1 683.1 11.24 714.0
12 1 0.9996 1 2 1 1 1 922.9 15.19 1009.7
24 | 0.9996 0 0 1 1 1 1177.7 19.39 1364.8
42 | 0.9996 0 0 1 0 1 1310.6 21.57 1580.4

Table 4.6: Prediction performance for Vedersg Ker (early period) - Prediction of wind
speed using separate k-step predictors followed by transformation to power. The standard
deviation of the power is 1335.7 kW.

Table 4.6 shows the prediction performance results when the k-step predictors are used and
transferred into power predictions via model (4.34). As previously, each polynomial is only
contained in the model if its corresponding order is greater than zero. In this case the largest
forgetting factor which was tried was A = 0.9996, showing that the degree of adaptivity is
not of so much importance.

Comparing the two tables 4.5 and 4.6 shows that the prediction performance is very much
the same. Actually the first approach seems to give a little better prediction result, but this

43




may be due to the difference in the largest (and optimal) forgetting factor which was tried.
It is also interesting to see that the standard deviation of the prediction errors obtained by
the naive predictor is not so much worse than for the optimal model. However, it is also
seen that the standard deviation of the prediction error for k = 42 is close to the standard
deviation of power variation for the same period. Consequently, using the prediction error
standard deviation as a measure of prediction performance, one might as well predict the
power by the average of the power.

4.5.4 Prediction by Using a Linear Model for Power

In this section the approach for obtaining predictions of the power is to use k-step prediction
models, which have the option of using the relation to wind speed or leave it out. All of the
models tried out belong to the following class of models

plt+k) = aip(t)+ -+ an,p(t+1-n,) +
bip(t+k—48)+ -+ b, p(t+k—n,,, —47) +
caw(t)+ -+ e wt+1-mny,) +
diw’(t) 4 -+ dp w0 (t+1-ny2) +
grw(t+k—48)+ -+ d,, w(t+k—47-n,,,) +
hie(t)+ -+ h, e(t+1-n,) +

Z (hai—1 sin(27t/48) 4 hy; cos(2mti/48)) +

i=1

I+ e(t+k) (4.37)

It is seen that the correlation between wind and power is described by the terms involving
Ny, Ny2 and n,,. If all these quantities are equal to zero the wind speed does not enter
the model. The squared wind speed is used as a possible explanatory variable to allow for a
modelling of a nonlinear relation between wind speed and power.

Table 4.7 shows the results when this model for different model orders and different & is
applied on the same set of data from Vedersg Ker used previously. The first row of the
table shows, in parenthesis, which model orders are tried. Furthermore, the table contains
the standard deviation of the prediction error for the optimal model orders and optimal
forgetting factor. Note that in this case the optimal forgetting factor has been found by use
of a numerical minimization for all the models tried out.

Comparing with the previous two tables, it is clear that the prediction performance is im-
proved by this approach. The increase in S.E. from the adaptive to the naive predictor is
between 2% and 23%.

It is interesting to note that for £ < 12 it is optimal to use observations of wind speed (also
squared) when predicting the power, whereas for £ > 16 the wind speed observations should
not be used. For all £ the optimal forgetting factor is equal to or close to 1 meaning that
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np Tpyg Ny N2 | Muwg, Ne ng Naive
k A (0-2) | (0-1) | (0-2) | (0-1) | (0-2) | (0-1) | (0-1) | S.E. (kW] | S.E. | S.E. [kW]
1 0.9988 1 0 2 1 0 0 1 279.8 4.61 285.5
2 | 0.9988 1 0 1 1 0 0 1 399.7 6.58 412.1
4 0.9987 1 0 1 1 0 0 1 550.8 9.07 580.3
6 0.9989 1 0 1 1 0 0 1 666.0 10.96 714.0
12 | 0.9990 1 0 1 1 0 0 1 897.8 14.78 1009.7
24 1 1.0000 1 0 0 0 0 0 1 1141.6 18.79 1364.8
42 1 0.9996 0 0 0 0 0 1 1 1284.1 21.14 1580.4

Table 4.7: Prediction performance for Vedersp Keer (early period). The standard deviation
of the power is 1335.7 kW.

the adaptivity is almost not beneficial to the prediction performance. The conclusion about
the forgetting factor will probably not hold for a longer set of data.

The same investigation is carried out on three newer set of data from Vedersg Ker, Draeby
Fedsodde and Brgns. These data were sampled in the period from December 15, 1993 to
January 24, 1994.

np Npyg Ny N2 | Nuwgg Te ng Naive

k A (0-2) | (0-1) | (0-2) | (0-1) | (0-2) | (0-1) | (0-1) | S.E. [kW] | S.E.g, | S.E. [kW]

2 | 0.9996 1 0 1 0 0 0 0 544.6 8.96 550.1
6 | 6.9990 1 0 1 0 0 0 0 919.8 15.14 944.2
24 | 0.9990 0 0 1 0 0 1 0 1653.5 27.22 1839.0
42 | 1.0000 0 0 0 0 0 0 0 1774.1 29.20 2185.4

Table 4.8: Prediction performance for Vedersp Kar. The standard deviation of the power is
1769.9 kW.

The results are shown in Tables 4.8-4.10 (and only for k = 2,6,24,42). It is clear that the
standard deviations for Vedersp Ker have increased considerably, which, however, must be
traced back to the higher degree of variation in wind speed and power for the later data
period. Also the optimal model orders are different for the two set of data, and furthermore,
there are differences in model orders for the three wind farms.

It is interesting to note that, since np = 0, the deterministic diurnal component does not
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np Npyg Ny T2 | Ny, Ne np Naive
k A (0-2) | (0-1) | (0-2) | (0-1) | (0-2) | (0-1) | (0-1) | S.E. [kW] | SE. | S.E. [kW]
2 | 0.9999 1 0 0 0 1 0 0 227.8 8.63 229.3
6 0.9980 2 0 0 0 0 1 0 367.1 13.91 371.7
24 | 1.0000 0 0 0 0 0 1 0 703.2 26.64 756.3
42 | 1.0000 0 0 0 0 0 1 0 766.5 29.03 916.8

Table 4.9: Prediction performance for Draeby Fedsodde. The standard deviation of the power
is 774.1 kW.

np Tpya Ny N2 | Mwg e np Naive
k A (0-2) | (0-1) | (0-2) | (0-1) | (0-2) | (0-1) | (0-1) | S.E. [kW] | S.E.5, | S.E. [kW]
2 | 0.9982 1 0 0 0 1 0 0 307.7 9.62 311.8
6 | 0.9984 1 0 1 0 1 0 0 479.2 14.98 496.6
24 | 0.9990 1 0 0 0 0 0 0 817.8 25.56 881.9
42 | 1.0000 0 0 0 0 0 1 0 918.8 28.71 1071.4

Table 4.10: Prediction performance for Brgns. The standard deviation of the power is 929.5
kW.

enter the optimal models for these newer data. The reason is most likely that the systematic
diurnal variation of the wind speed is missing (or week) during winter time.

4.5.5 A Candidate for the Best Overall Model

Based on the investigations above it is concluded that the following model leads to the best
overall performance

2m 27
VP + k) = aiy/p(t) + eiy/w )—}-dlw()—i—hlsm +h2cos—§+l+e(t+k) (4.38)

where e(t) is assumed to be Gaussian independent and identically distributed random vari-
ables. The square root transformation of power and wind speed is motivated by the skew
density of power and wind speed. Investigations have shown that the square root trans-
formation leads to a distribution of the prediction errors, which reasonably well can be
approximated by the Gaussian distribution. This implies that confidence intervals for the
predictions can be based on fractiles in the Gaussian distribution.

The model (4.38) is implemented in the Wind Power Prediction Tool (WPPT) described in
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Chapter 7. Although it has been found that the optimal forgetting factor is close to 1, it
has been decided to implement the forgetting A = 0.999. First of all, some adaptivity in the
estimation is desirable, and furthermore, the case that the optimal \ is so close to 1 may be
due to not having a longer period of data.

S.E. kW]
k Vedersg Keer 1 Vedersp Kaer 2 Brons Dreby Fedsodde
1 281.8 404.6 224 .4 162.2
2 402.4 549.1 314.9 237.7
4 555.1 755.3 420.6 326.2
6 671.3 945.6 499.7 406.2
12 906.1 1384.4 . 656.3 640.3
24 1167.2 1752.1 952.8 852.5
42 1326.0 2011.8 978.0 824.5

Table 4.11: Prediction performance for the best overall model.

Table 4.11 shows the standard deviation of the prediction error (calculated after having
transformed back to power values). This shows that for the chosen model and value of A
only a slightly worse standard deviation of the prediction error is obtained.

4.6 A Model using Meteorological Forecasts

Most of the models for wind power prediction are prepared for using meteorological forecasts
whenever they are available. This section describes or illustrates how meteorological forecasts
can be used as input to the model (4.38). More results on that subject are found in (Nielsen
& Madsen, 1995f).

The data used is a full one year data set from Vedersg Kar starting May 1st, 1994. The
meteorological forecasts are provided by the HIgh Resolution Limited Area Models-system
(HIRLAM) (see (Landberg, Watson, Halliday, Jorgensen, & Hilden, 1994)). New HIRLAM
forecasts are available every 12 hour for the next 36 hours and the resolution is 3 hours. The
forecasts used in the study described in the following are delivered by the Danish Meteoro-
logical Institute (DMI). HIRLAM provides forecasts in the free atmosphere (approx. 1 km
above the surface). This forecast is used for a transformation to the wind 10 m above the
ground using the geostrophic drag law combined with the logarithmic wind profile ((Land-
berg et al., 1994)). However, this transformation does not take into account local conditions,
as trees, buildings, etc. Therefore a simple (and preliminary) statistical model is used to
take into account the local conditions. The model found for calculating the prediction of the
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Naive Pred. | Stat. Model | Improvement
k S.E. [kW] S.E. [kW] %
6 889 771 13.3
12 1266 964 23.9
18 1526 1051 31.1
24 1703 1106 35.1
30 1819 1153 36.6
36 1889 1199 36.5
42 1928 1238 35.8
48 1954 1275 34.7

Table 4.12: Prediction performance for the statistical model using meteorological forecasts
as input

wind speed @(¢ + k|t) at the farm is

w(t+k) = aow(t)
+(bo + by Sin(ﬁgHIR) + by COS(‘;’HIR))'UA-’(t + k|t)yrr
+m 4 ey(t + k), (4.39)

where w is the wind speed in the farm, and qBHm and W(t + k|t)g;r are the transformed
HIRLAM forecasts for the direction and the wind speed, respectively. The term m is ac-
counting for the level of the wind, and e, is the prediction error. It is obvious that the model
can easily be improved by e.g. introducing a better angular dependency.

The predicted wind speed at the farm (¢ + k|t) is used as input in the model for finally
predicting the wind power. As a simple extension of (4.38) the following models are found
to give reasonable predictions

. 2mt 2wt
VP +k) = ai\/p(t) + ciy/w(t) + dyw(t) + hy sin Ty + hy cos Ty
+oi/O(t + k[t) + i (t + k|t) + 1 + ey (1 + k), (4.40)

The performance of the model (4.40) is shown in Table 4.12. In (Nielsen & Madsen, 1995f)
several other models are studied. For the same period, and hence the same data, the im-
provement of the model without meteorological forecasts (i.e. model (4.38)) compared to
the naive predictor is between 6% for k = 6 and 20% for k = 48.

4.7 Potential Improvements of the Models

The results shown in the previous section give a lower value of the performance of simple
statistical models. The models found are the one which were possible to formulate using
the rather limited amount of data available. However, it is clear that the models can be
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improved. This section is devoted to a description of the main areas, where improvements
are judged to have the largest impact on the quality of the predictions.

Compared to the implemented tool at ELSAM one key area is the use of meteorological
forecasts. The implemented system is capable of giving reasonable predictions 6 to 12 hours
ahead without using meteorological forecasts, but it is clear, as illustrated above, that on-line
forecasts from a meteorological service station can be used to improve the predictions for the
longer horizons. Forecasts up to 36 hours ahead would be useful in the production planing.

Another key activity is an optimization of the prediction models based on the data collected
during the trial period of the wind power prediction tool (in the following denoted “prediction
tool”). Most of the models presented in this book were found using only about 3 months of
data and furthermore the actual 3 months were a late summer period with a nearly constant
weather situation. With more data it would be of interest to find a model which is globally
optimal, i.e. a model which demonstrates optimal prediction performance all over the year.

The following subjects are of special interest in further model investigations:

e Optimal prediction models without using wind speed measurements. It has been expe-
rienced that the quality of the wind power production measurements is good, whereas
the quality of the wind speed measurements very often is less good. Since the wind
speed is included in the prediction models used today, a drop out of the wind speed
measurements means that the total prediction for that farm also drops out. For pro-
duction planning it is crucial that reliable predictions are available all the time and
it would therefore be beneficial to investigate the possibility of using models without
requirements for wind speed measurements in the prediction tool. Another incentive
for investigating such models is that the predominant part of the costs by establishing
on-line measurements for a wind farm are related to the measurement of wind speed.

e Identification of an optimal self-learning rate. Due to the short period of data available,
it has not been possible to find an optimal self-learning or adaption rate. The need for
the adaptation of the models is mainly due to the annual variation in the dynamical
behavior of the wind speed. Since more than one year of data now is available, 1t will
be possible to identify an optimal or reasonable self-learning rate (also called forgetting
factor).

e Multivariate models. As mentioned above, the model used in the prediction tool today
is based on data from a 3 months period with stable weather conditions and furthermore
only data from a few farms were available during the model investigation. Hence, it was
not possible to construct a multivariate model, i.e. a model which takes into account
the cross correlation between wind mill parks. However, it is clear that for instance a
change in the weather situation would parse gradually over the whole ELSAM supply
area. This means that changes in one region are likely to occur - with some time delay
- in the neighboring regions. Therefore it is obvious that a multivariate model will
improve the predictions.

o Input from meteorological forecasts. In this book some preliminary results about using
meteorological forecasts as input to the models are shown. The HIRLAM forecasts
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used as input were available only every 12 hour, and in 3 hour steps. More frequent
forecasts and a better resolution would most likely improve the prediction performance.
Furthermore, the models for transferring the output from HIRLAM to the wind farms
can be improved.

Another issue that must be considered in building wind power prediction tools is the number
of available measurement points. Today the prediction tool at ELSAM uses measurements
from 7 wind farms in the ELSAM supply area. It has been clear that more measurement
points, especially in the western part of Jutland, could give better forecasts.

4.8 Conclusion

In this chapter linear as well as a number of linear and nonlinear dynamic models have been
applied primarily on wind speed data from Vedersg Kzer. The results showed that none of
the models tested gave any significant performance improvement compared to the models
belonging to the linear AR class.

Also different models for the relation between wind speed and power have been estimated
on data from Vedersp Ker. It turned out to be very important for the fit of the model
that the differences between the estimated power curve and the actual power observations
were modelled by an ARMA model. This is most likely due to these differences being highly
correlated as a consequence of a substantial wind direction dependence in the wind farm.
The different types of models for the power curve did, however, not show any clear differences
in results.

A class of linear models for the wind speed were estimated recursively and adaptively, and
subsequently the wind speed predictions were transferred to power predictions via an off-line
estimated power model. Similarly linear k-step predictors were estimated in the same way,
and the predictions were transferred into power predictions. The two approaches turned out
to have almost the same prediction performance.

A class of linear k-step predictors for the power were estimated recursively and adaptively.
Both models with and without the wind speed as explanatory variable were estimated. For
the shortest prediction horizons it seemed to be important to have the wind speed in the
vector of explanatory variables, whereas for prediction horizons exceeding something around
8-12 hours the wind speed observations should not be used in the power prediction.

The performance of a proposed reasonable overall model, which is selected for implementation
in the wind power prediction tool (see Chapter 7), is evaluated. This model is based on square
root transformations of power and wind speed. The evaluation is done using the standard
deviation of the prediction error criterion, and on this criterion the overall model turns
out to have a slightly worse performance compared to non-transformed observations. The
implemented model is prepared for taking into account meteorological forecasts of the wind
speed.
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Chapter 5

Neural Network for Wind Power
Prediction

In this chapter it is investigated whether simple neural networks can be used for k-step pre-
dictions of half-hour averages of wind power production and how they perform compared to
the adaptive k-step predictors based on models of the form (4.38). Furthermore comparisons
with the naive (or persistent) predictor are made. Comparisons are carried out for prediction
horizons k = 1,...,6, corresponding to 1/2 to 3 hour.

5.1 Neural Networks

Type of Neural Network

A feed-forward neural network with one hidden layer and without connections directly from
input to output is used, see e.g. (Ripley, 1994).

Suppose that observations (indexed by ¢) of the independent variables (indexed by 7) x;; and
the dependent variable y; are present. The dependence of y on z can then be modelled by a
neural network of the above type as follows:

Yi = 9o (ao + tho én (ah + ijhzij)) +e (5.1)
h=1 j=1

where w., are the weights on the connections from the hidden layer to the output layer, w.,
are the weights on the connections from the input layer to unit & in the hidden layer, a, is
the bias on the output unit, and «) are the biases on the hidden units. n, and n; are the
No. of hidden units and inputs, respectively. It is seen that the weights and the biases are
just parameters of the model. Considering (5.1) as a statistical model one would assume
that the e;’s are independently identically distributed.

The functions ¢,(-) and ¢,(-) are predefined functions associated with the units in the hidden
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and output layer, respectively. Most frequently these functions are sigmoid?, i.e. the output
of the network is restricted to the interval ]0, 1[. This is not desirable in this application since
the future output of the network is then somehow restricted to the range of observations in
the data set used for estimating the parameters. For this reason the output unit is chosen
to be linear (¢,(z) = 2).

Estimation of Parameters

Given the observations (y;, i1, Zis, . . ©3Zin;), © = 1,2,..., N and based on the formulation
(5.1) an obvious way to estimate the parameters is to choose

= [ao, sy Qnyy Wigy e v vy, Whpos Wity e vy wnj,nh]T (52)
so that
N
V(9) =D &), (5.3)
i=1
where
Tty njy
&(0) =yi— ¢, | a, + tho én | an + ijhfvij ) (5.4)
h=1 j=1

is minimized. Since the number of parameters is equal to ny(n; +2)+1 it is seen that when
the number of inputs and the number of hidden units are large the model will contain a
large No. of parameters. In this case the minimization of (5.3) may lead to a model which
fit the data used for estimation too well, i.e. the model adapts to the random part of the
observations.

The initial values of the estimates are rather important since the optimization problem may
contain local minima due to the fact that the model is non-linear in the parameters. For
this reason each model should be estimated several times using different initial parameter
estimates. Since it is rather difficult to suggest appropriate values it seems reasonable to
select these values at random. In this case the data is scaled to the interval [0, 1] (see below)
and according to the documentation on the software used (see Section 5.1, and (Ripley,
1994) or (Nielsen & Madsen, 1995¢)) it should be sufficient to sample from the U(—1,1)
distribution. In spite of this the U(-5,5) distribution is used in order to cover a wider
interval of initial parameter estimates.

Selection of Network Size
As mentioned earlier in this section the class of networks used is restricted to networks with
one hidden layer and the function corresponding to the output unit is chosen to be linear.

To use a neural network it remains to decide upon the independent variables to include in the
model and on the No. of hidden units. This may be done by using some kind of information

! Also called logistic functions.
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criteria. In this case the Bayes Information Criterion (BIC) is used, see (Schwarz, 1978).
With L*, n,, and N being the value of the likelihood function (see e.g. Rao (1965)) ini
the optimum, the No. of parameters, and the No. of observations used in the estimation
respectively, the criteria corresponds to chose the model so that ,

log L™ ~ %P—logN, (5.5)

is maximized. For a large class of linear time series models and other linear models with the
residuals being normally distributed and with constant variance the criteria is equivalent to
minimizing

BIC = Nlogé? + n,log N, (5.6)
where
1N ”
52 — _E 52(0 .
Ue N — ez( )3 (5 7)

is the maximum likelihood (ML) estimate of the variance of e;. Note that é; must be based

on ML estimates also. The prediction errors (é;(#)) based on data scaled to the interval [0, 1]
are used, see below.

In this case the procedure used for estimation of the parameters (see above) is not an ML
procedure. Hence the above procedure must be regarded as an approximation. Furthermore,
in (Schwarz, 1978) the derivation of (5.5) is based on the assumption that the observations
come from a Koopman-Darmois family.

In order not to investigate an excessive No. of models the criterion (5.6) is used to select an
appropriate No. of hidden units only. The independent variables are considered fixed, see
below.

Software

The software used is written by Professor of Applied Statistics, B.D. Ripley, University of Ox-
ford. The software can be obtained from StatLib by anonymous ftp from 1ib.stat.cmu. edu?.
The software is written for S-Plus and is briefly described in (Ripley, 1994).

The adaptive predictions are calculated by use of the software Off-line Wind Power Prediction
Tool, version 1.0, see (Nielsen & Madsen, 1995b) and (Nielsen & Madsen, 1995a).

5.2 Variables in the Models

As mentioned above the aim is to obtain k-step predictors using a neural network. The follow-
ing independent variables are used: The present wind power production (p,) scaled to approx-
imately [0, 1], the present wind speed (w;) scaled to approximately [0, 1], jsin(2mh, i /24)+ 1,
and 3cos(2mh;yi/24)+ 1. The wind power production k step ahead (p.4+) scaled to approx-
imately [0,1] is used as the dependent variable. Compare with (4.38).

?The software can also be obtained from markov.stats.ox.ac.uk
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5.3 Validation

The models are validated using a different data set than the one on which the selection of
the No. of hidden units and the estimation of parameters is based. This data set is called
the validation set,

The neural network model selected for each prediction horizon k is compared with the naive
k-step predictor (4.35). Furthermore the neural network predictors are compared with a pre-
dictor based on the model (4.38) estimated adaptively with a forgetting factor of 0.999. This
corresponds to the method recommended in Chapter 4. The estimation and the validation
set are just two parts of one time series. Therefore it is possible to allow the adaptive predic-
tions to settle before the validation is initiated. This method is chosen since this corresponds
to the real application.

Based on the validation set the k-step residuals (or prediction errors) are calculated on the
original scale and based on these the Root Mean Square (RMS) is calculated. For the

residuals (ry,7y,...,7y) the RMS of the residuals is defined as \/ﬁ ST,

5.4 Data

The data used in this investigation has been collected in the Vedersg Keer wind farm in the
ELSAM area during the period 2 July, 1993, 5.30 p.m. until 11 October, 1993, 7 a.m.. The
data until 6 September at 7 a.m. is used for estimation whereas the remaining data is used
for validation. The original sampling time is 5 minutes. Based on these values half-hourly
averages are calculated.

Some negative values of the half-hourly averages of wind speed and wind power production
occur. The minimum wind speed observed is -0.01674 m/s and the minimum wind power
production observed is -28.86 kW. All negative values are set to zero.

5.5 Results

Estimation

For prediction horizons (k) 1 to 6 (1/2 to 3 hours), neural networks with 1 to 5 hidden units
are considered. Fach estimation is performed 20 times with initial values of the parameters
sampled from the uniform distribution covering the interval [—5, 5].

In Figure 5.1 the resulting values of BIC are shown. Extremely high values clearly corre-
sponding to local minima are excluded from the plots. It is seen that for k£ = 1,2, 3 the lowest
value of BIC is observed for a network with three hidden units. For k = 4,6 a network with
four hidden units results in the lowest observed BIC, and for k¥ = 5 a network with five
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hidden units results in the lowest BIC®. The network size for which the minimum values of
BIC is observed and the actual minimum values are shown in Table 5.1.

k 1 2 3 4 5 6
Tmin 3 3 3 4 5 4
BIC,,;, || -18807 | -16680 | -15571 | -14730 | -14104 | -13638

Table 5.1: Minimum value of BIC observed for each horizon (k) and the corresponding
network size n,,;,.

In conclusion, a neural network with three hidden units is expected to be close to optimal
among the networks investigated for all horizons ranging from 1 to 3 steps. For prediction
horizons 4 and 6 a neural network with four hidden units is expected to be nearly optimal,
whereas for the 5-step predictions a network with five hidden units gives a marginal lower
minimum value of BIC than the network with. four hidden units.

It is seen from Figure 5.1 that for ¥ = 3,...,6 it is not evident, which size of the neural
network is truly optimal, i.e. a new investigation might change the size of the network for
which the minimum BIC is observed. This could be investigated with statistical tests but
since the interest is on the minimum rather than the mean or median this would require a
very large No. of estimations with random initial weights, making the investigation almost
infeasible (the user time on an HP9000/735 for investigating one horizon is up to two hours).

Validation

For all prediction horizons the neural network with the lowest BIC (see Table 5.1) is vali-
dated as described in Section 5.3. The program used and the output of the program can be
found in (Nielsen & Madsen, 1995¢). The results of the validation are shown in Table 5.2.

It is seen that the neural network models investigated are all inferior to both the naive
and the adaptive predictors. It is noted that the naive predictor is slightly better than the
adaptive for £ = 1,2,3. For k£ = 5,4,6 the adaptive predictor is better than the naive.
However, the ratio between RM S,4,p and RM S, 4y, as shown in Table 5.3, reveals that the
difference is minor.

Networks with One Hidden Unit

From the validation of the network of optimal size it is seen that the naive predictor performs
well compared to the other methods investigated. It is therefore peculiar that the selection
procedure does not lead to a selection of the most simple network; a network with one hidden
unit only. Therefore this kind of network is compared with the network selected according to
BIC. Results are indexed by opt and 1 for the optimal and the simple network, respectively.

3Confirmed by an inspection of the actual values.
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Table 5.2: Validation set; RM.S of prediction errors of the best neural network (see Table

3
No. of units in hidden layer

3
No. of units in hidden layer

Figure 5.1: Values of BIC, extreme (high) values excluded.

k| RMSy, | RMSpaive | RM Sadap
(kW) (kW) (kW)
1 297.6 261.7 262.8
2 448.6 375.7 377.0
3 534.9 440.9 442.0
4 621.2 507.6 507.5
5 678.4 569.2 565.1
6 705.8 623.1 614.1

5.1), naive, and adaptive predictor.
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k 1 2 3 4 5 6

RMS
s 114 | 119 | 1.21 | 1.22 | 1.19 | 1.13

Flxse |l 1,00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.99

RM Snaive

Table 5.3: RM S-ratio when comparing with the naive predictor.

The parameters of each model are estimated 20 times with random initial parameter esti-
mates and the estimates corresponding to the lowest value of BIC are selected, i.e. the same
procedure as for the optimal network is used.

The results based on the estimation and on the validation set are shown in Table 5.4, together
with the results corresponding to the network selected according to BIC.

Estimation set Validation set

k|| BIC,,, | BIC, RMS,,, | RMS, || k RMS,,, | RMS,

(kW) (kW) (kW) (kW)
1] -18807 | -18793 | 284.7 289.7 || 1 297.6 268.8
2 || -16680 | -16597 | 398.8 4104 || 2 448.6 411.6
3| -15571 | -15452 | 475.2 491.8 || 3 534.9 523.3
4 || -14730 | -14575 | 538.6 565.0 || 4 621.2 622.8
5 || -14104 | -13923 | 590.0 626.2 || 5 678.4 699.9
6 || -13638 | -13430 | 639.9 676.9 || 6 705.8 758.3

Table 5.4: Estimation and validation set; comparison of optimal network with a network
with one hidden unit (BIC of models and RM S of prediction errors).

From the table it is seen that for & = 1,2, 3 the neural network with one hidden unit actually
performs better on the validation set than the network selected according to BIC. However,
comparing Table 5.4 with Table 5.2 it is seen that the neural network with one hidden unit
is inferior to the naive and the adaptive predictor.

5.6 Conclusion

The type of neural networks investigated is inferior in prediction performance to both the
adaptive predictor and the simple naive predictor for the prediction horizons investigated
(1/2 to 3 hours).

For the prediction horizons investigated the naive predictor performs better than the adaptive
predictor for the short prediction horizons (up to 11 hour). However, the difference between
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the two predictors is minor. For horizons larger than 2 hours the adaptive predictor is better
than the naive.

It is seen that the estimation of parameters in neural networks is complicated, since the
estimates are dependent on the initial estimates. For this reason it is recommended to
perform the estimation several times with initial parameter estimates chosen at random.

5.7 Discussion

For one particular set of parameters the autoregressive model corresponds to the naive pre-
dictor. It is therefore peculiar that the adaptive predictor does not perform strictly better
than the naive predictor.

One obvious reason why this possibility exists is that when using the adaptive predictor six
parameters have to be estimated. Another possible reason is that the correlation structure
in the validation data set differs from the correlation structure of the estimation data set.
This hypothesis is consistent with the results in Chapter 4, in which the comparison of the
adaptive and naive predictor is performed on the union of the estimation and validation data
set.

Apart from the non-linear response of the hidden units, a neural network predictor also
includes the naive predictor. The reason why the neural network predictor performs consid-
erably worse than the naive and the adaptive predictors is probably that: (i) The estimation
of the parameters in the neural network is not adaptive, (ii) the No. of parameters in the
neural network is large (seven or larger), and/or (ili) the non-linear response of the hidden
units is inappropriate for wind power predictions.

For the low horizons investigated the naive predictor performs slightly better than the adap-
tive predictor based on the autoregressive model. For the larger horizons the adaptive pre-
dictor is slightly superior. For very large horizons a simple profile? will probably be the best
predictor. The adaptive predictor processes the characteristic of being able to interpolate
between the extremes. For this reason the adaptive predictor is attractive.

The largest No. of hidden units investigated is five. In most cases the optimal network size is
found to be less than five. Since the sum of the squared prediction errors for the estimation
data set is a non-increasing function of the No. of hidden units BIC will have one minimum
only. Therefore the maximum size of the networks investigated is sufficient.

For further discussion see (IMM et al., 1995).

“The profile will probably contain harmonics corresponding to daily and yearly periods.
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Chapter 6

Predicting the Wind Power in a
Region — The Upscaling Problem

The problem of estimating the total power in the ELSAM supply area when knowing the
power in seven wind farms is referred to as the upscaling problem. In this chapter it is
investigated how to carry out the transformation from values of wind and power at the seven
wind farms to an estimate of the total wind power contribution.

Different aspects are to be taken into account, or at least consideration, in the investigation
and decision on the approach for carrying out the upscaling. First of all, it is evident that
the wind speed locally is influenced by the surrounding landscape, and also by the location
in relation to the dominating wind direction and the North Sea. This means that the wind
speed variations at one of the wind farms cannot be used as a representation of the wind speed
at a specific wind farm/mill located away from the seven wind farms without introducing a
source of error.

Furthermore, the relation between wind speed and power (the power curve) is specific for
a given brand and type of mill. This implies that the ratio of the total wind power for the
ELSAM system to the wind power at the seven wind farms depends on the wind speed (for
an assumption of an overall valid wind speed). The consequence of this fact is that the
upscaling must somehow depend on the wind speed.

Finally, the configuration of the mills in wind farms implies that the wind speed at each of
the mills is influenced by the other mills for which reason the shape of the power curve for a
wind farm, consisting of a number of identical mills, is different from the shape of the power
curve for one of such mills.

In this chapter the relationship between power and wind speed is investigated for different
wind farms. This makes it possible to evaluate whether the scaled power production from
one wind farm can be used as an estimator for the power production for nearby sited wind
farms. Later an alternative upscaling method using a central wind speed measurement and
low frequency energy readings from the windmills sited in an area is suggested but not
investigated.
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6.1 Relations Between Nearby Wind Farms

Previous analyses have exposed that there are considerable differences in the utilization time
for different wind farms. The utilization time is given as the amount of energy for a given

period divided by the power capacity. There may be different explanations to this fact, some
of which are mentioned above.

Oddesund K Vadpfr() >
Hollandsbjerg

o Vedersg Keer

Velling Meersk/Tandpibe
Torrild e

W

Figure 6.1: A key map of the ELSAM supply area with marking of the seven reference wind
farms as well as the wind farms considered in this chapter.

The purpose of the present investigation is to determine the relation between the power
utilization and the wind speed (the power utilization curve) for a number of different wind
farms. The power utilization is defined as the actual power outlet divided by the power
capacity of the wind farm, and is introduced to make the results for the different wind farms
comparable. Having estimated the power utilization curves it may be concluded whether the
different utilization times can be explained by differences in wind energy conditions or by
differences in the efficiency of the wind farms.

The present analysis is based on power measurements from a number of wind farms all
located in the north-western part of Jutland, including one of the seven wind farms, along
with wind speed measurements at two of the reference wind farms located in this area.
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The wind farms in question are

Wind farm Number of Mills | Power Capacity (kW]
Veders¢ Keer 27 6075
Velling Maersk 65 9985
Vadum 4 1650
Sydthy Kabellaug 25 5625
Oddesund Nord 20 1100
Tendpibe 30 2250

Vedersg Keer is one of the seven reference farms from which the upscaling is to be made.
Furthermore, Velling Mzrsk and Vadum are owned by power companies owned by ELSAM
whereas the three other farms are privately owned. The special thing about Sydthy Kabellaug
is that the windmills are placed on a straight line, parallel and close to the bank of Limfjorden,
with such intermediate distances that the wind speed at one mill is not influenced by the
other mills.

Figure 6.1 shows the location of the wind farms.

6.1.1 Data

The data used in the present investigation consists of 15 minute average values of the wind
speed at Vedersp Kar and Ngrrekar Enge as well as the power utilization at Vedersg Keer,
Sydthy Kabellaug, Velling Mersk, Tendpibe, Vadum and Oddesund Nord. Data is sampled
in the period from 6 August at 10.15 a.m. to 8 September at 1.15 a.m. 1993.

6.1.2 Model

The model used to describe the relation between wind and power utilization is chosen as
P.(t) = Mexp (—bexp (—k - w(t))) + e(t) (6.1)

where P.(?) is the power utilization, and w(t) is the wind speed. It is a problem that it is
only at Vedersg Keer that locally collected wind speed observations are available. However,
the wind speed observations at Vedersg Ker and Ngrrekzer Enge are used to represent the
wind speed according to the following weighting scheme

w(t) = VleK(t— 1) + Vzwvx(t) + szvx(t+1) +
vawyp(t—1) + vswye(t) + vewyg(t+1) (6.2)
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where wyk(t) and wyg(t) are the wind speeds at Vedersg Ker and Norrekeer Enge, respec-
tively, and where the following restriction is used

Vit vst+uvstvg+rs 4 ve =1 (6.3)

By estimating this expression for the wind speed a weighting in time and a weighting between
the two wind speed observations are introduced. Hereby an approximation to the delays in
the distribution of the wind speed variations is possible. Furthermore, representing the wind
speed by a weighted average may imply a smoothing and down-weighting of noise in the
wind speed variation, which is advantageous for the relation to power utilization.

6.1.3 Estimation
The parameters of the model
0 = M b k VW -Vy V3 Vg Vg Vg (64)

are estimated by the least squares method, i.e. the parameter estimates § are found as the
parameters minimizing the criterion

- 715 (R0-20) = T T e

where N is the number of observations used in the estimation.

(6.5)

w“—a
wl

An approximation to the variance of the estimated power utilization curve based on a lin-
earization of (6.1) around the parameter estimates is

ﬁr[P,(w)]:@iag’i) . Cov {9}( ) (6.6)

where Cov {9} is estimated as described in Section 4.1. Under the assumption of uncorre-
lated estimates (6.6) is reduced to

P

Var[P.(w)] ~ (8?]&‘”))21@41\2] + <8Pégw))zvar[13] + (8%2w)>~1/ar[fc] (6.7)

6.1.4 Results

Table 6.1 lists the estimation results for the six different wind farms. Clearly the best fit is
obtained for Vedersg Keer, and most of the weight on wind speed measurements is on the
simultaneous wind speed measured at Vedersg Kar. For the rest of the wind farms the fit
of the model is not as good as for Vedersg Keer. This is reasonable as no local wind speed
measurements have been available at these farms. It also seems to be the case that the
standard deviation of the prediction error increases with the distance from the wind farm to
the nearest wind speed measurement.
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Weighting of Wind Speed

Vedersg Keer Norreker Enge
Wind Farm be M b 2 t-1 t 141 | t—1 t t+1
Vedersg Keer 0.048 1.31 | 10.5 | 0.227 | 0.14 0.64 0.13 0.04 0.03 0.02

Sydthy Kabellaug || 0.119 |} 0.98 | 11.9 | 0.358 | 0.26 | 0.13 0.37 | 0.09 0.02 0.13

Velling Mersk 0.083 || 1.32 | 10.8 | 0.248 | 0.51 0.19 0.29 0.03 0.00 { -0.02

Teendpibe 0.090 |} 1.13 | 11.2 | 0.273 | 0.53 | 0.17 | 0.31 0.02 | -0.02 | -0.01

Vadum 0.117 |f 0.89 | 10.9 | 0.279 | 0.15 | -0.06 | -0.09 | 0.56 0.24 0.20

Oddesund Nord 0.122 J| 0.93 | 17.9 | 0.421 | 0.29 | 0.11 0.33 0.15 0.05 0.07

Table 6.1: Modeling results.

Apart from Vadum it is the case that most weight is given to the wind speed measurement
at Vedersg Keer. This may be explained by the assumption that the dominating wind speed
comes from the western direction for all of the wind farms except for Vadum, where the wind
speed may be dominated from the northern direction and consequently is better represented
by the wind speed measurement at Ngrrekeer Enge.

The upper part of Figure 6.2 shows the estimated power utilization curves for the six wind
farms, and for comparison is shown the specification for the windmill, which is the only type
of mill used at Vedersg Ker and Sydthy Kabellaug. Figure 6.3 and the lower part of Figure
6.2 show the curve estimates for Veders¢ Ker, Sydthy Kabellaug and Velling Maersk along
with curves corresponding to plus/minus one standard deviation. The curves are shown for
the interval where wind speed values actually have been observed.

First of all, considerable differences in the curve estimates are seen. The power utilization
curve for Vedersg Keer is clearly below the curve corresponding to the specification of the
type of mill which is the only type used in this wind farm. The most reasonable explanation
to this result is that the windmills give shelter to each other, meaning that the wind speed
at the mills which are sheltered by other mills is lower than the unaffected wind speed.

For Sydthy Kabellaug it is seen that the curve estimate is clearly above the specification
when the wind speed is in the lower range. This could have the explanation that the actual
wind speed at the wind farm is badly represented by the measured wind speed at Vedersg
Ker and Ngrreker Enge. Looking at the location of Sydthy Kabellaug it is likely that the
wind speed in general is higher, implying that the wind speed used in the model estimation
has been too low compared to the real wind speed. If this is the case the estimated curve
should be pulled to the right in the interval between zero and maximum utilization, which
would imply the curve estimate to have a better agreement with the specification.
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Estimated Power Utilization Curves
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Figure 6.2: Estimate power curves for all wind farms (above) and for Vedersg Keer (below)
with confidence bands (4 one standard deviation).
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Figure 6.3: Estimated power curves for Sydthy Kabellaug with confidence bands (£ one
standard deviation).

6.1.5 Conclusion

The main conclusion to the results of the present analysis is that the power utilization at one
wind farm cannot be used as a representation of the power utilization at other wind farms
without appropriate rescaling in both the wind speed direction and the power direction. This
can be necessary even if the wind farms are within close distance,

The estimates of the power utilization curve for different wind farms have shown to be
significantly different. Possible explanations to these differences are

e The energy in the wind at the farm is influenced by the surrounding landscape and the
distance to open sea.

e The number of windmills in a farm and the configuration of the farm are characteristics,
which are determining for the power curve.

@ The power curve for a single mill depends on brand and type.
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6.2 Upscaling Using Area Energy Readings

This section draws up a simplified model for the relation between a wind speed measurement
and the corresponding power production for windmills placed in the same area and suggests
a solution to the power upscaling problem based on this simplified model.

A simplified model between a remote wind speed measurement and the power production
from an individual windmill is derived. Subsequently this model is extended to describe the
relationship between one wind speed measurement and the wind power production in an
entire area.

6.2.1 Modeling a Single Windmill

The power curve for a specific windmill is often parameterized using the following functional
relationship between power output and wind speed

P(t) = M - exp(—b - exp(—k - w(t))) (6.8)

where P() is the power output at time ¢, w(t) is the wind speed at time t, M is the power
capacity for the considered windmill and b,k are form parameters. M,b and k are either
supplied by the manufacturer of the windmill or easily found using the specified power curve
for the windmill.

The wind speed experienced by the individual mills in a group at a given moment is different
due to disturbances from the surroundings and the physical extent of the group. In a certain
height (H,.;) over the ground the influence of the disturbances is negligible, and the low pass
filtered wind speed at that height can in a (small) local area be regarded as being uniformly
distributed. In the following such an area will be referred to as a sub area.

The wind in a local area is considered to be a turbulent flow over a rough surface. For a
given wind direction the local wind speed as a function of height can be written as

w(h,t) = Kie(h) - wpep(t) 0.0 < Kippe(h) <1.0 (6.9)
h
N Hey * Wres () for 0.0 < h < H,y (6.10)
Wres(t) for H..y < h

where w(h,t) is the local wind speed in height h, Kj,.(h) is the wind speed scaling factor,
Wres is the local wind speed in height H,.; and H,.; is the height, in which the influence
from local disturbances on the wind speed can be regarded as negligible (see Figure 6.4). An
important assumption here is that H,.; is constant and thereby independent of w,.;.

It should be noticed that this model does not cover the effect of changing wind directions.
For a single windmill this is a serious shortcoming, whereas when considering all mills in an
area, the effect of a change in wind direction to some extent will be averaged out! due to
the different local conditions for each mill.

' As the windmills presumably are sited with consideration for the predominant wind direction, the aver-
aging will only partly remove the effect of a change in wind direction.
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Figure 6.4: Wind Speed vs. Height

The power capacity for a windmill can with reason be assumed independent of the siting of
the mill. Using (6.8) and (6.10) the power output from a single mill as a function of w,,; is
then written as

P(t) = M -exp(—b - exp(~k - Z—"i— cWees (1)) + e(t) (6.11)

where Ay, is the height from ground to hub center ( assumed less than H,.;) and e(t) is
a noise term. The relation between a measured wind speed in the sub area and the power
output from a mill placed on a different location in the same sub area can now be expressed
as

P(t) = M-exp(«—b-exp(——k-gh"b “Wres (1)) + e(2)

refl
hmea

cWee () + et
Hoops #(1) + e(t)

Wmea(t)

M -exp(=b-exp(—k - Wneq(t))) + (1) ; P me Moy (6.12)

P(t
= ( ) hmea 'Hrefl

where H,.;y and H,.;, are the local reference heights at the windmill, respectively, the wind
speed measurement, and A, is the height from ground to the wind speed instrument. It is
noticed that separating mill and wind speed measurement only affects the k parameter from
(6.8), whereas the M and b parameters supplied by the mill manufacture still are valid.

If related measurements of wind speed and mill power are available, it is a trivial task to
estimate k (see Section 6.1), but for most of the windmills in a sub area only readings of the
total energy supplied to the grid over a specific period (eg. 1 month) will be available.

The relation between a (monthly) energy reading and a time series of wind speed measure-
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ments can be expressed as

E = iP(i)-TS
i=1 .,
= To- M-} (exp(~b-exp(=k - wnea(d))) + €(1))
P o |
S = 2L exP(=bexp(—k wnea(i)) + € (1) (6.13)

i=1

where E is the monthly energy reading, N, is the number of samples in the current period
and 7 is the sampling period. An estimate for k can be found using an estimation technique
as described previously.

6.2.2 Modeling an Entire Area

In this section it is assumed that it is possible to divide ELSAM’s supply area into 7 sub
areas each including one of the 7 wind farms in such a way that the wind speed in H,.; over
the local wind farm can be regarded as being representative for the wind speed in the sub
area.

This assumption will only be valid during stable or slowly changing weather conditions due
to the large area covered by the wind measurement from each wind farm.

Furthermore, it is assumed that the sum of power curves from several windmills of different
types and brands can be sufficiently represented by the power curve model used for a single
windmill (See Equation (6.8)). The validity of this assumption depends on the windmill
population, eg. if the population mainly consists of two mill types with very different power
curves, the sum of the power curves cannot be approximated by (6.8), whereas the assump-
tion will be much more reasonable in a population with more evenly spread power curve
characteristics.

When the scope is changed from modelling the dependence between a sub area wind speed
measurement and power output from individual windmills in this area to modelling the
dependence between a sub area wind speed and the total power output from all mills in the
area, a few modifications have to be applied to the scheme suggested in Section 6.2.1, as
none of the M, b and k parameters used when calculating the power curve for the area are
known exactly anymore.

On-line estimation of all the parameters in the non-linear model (6.8) might prove to be
cumbersome and if any of the estimated parameters within reason can be assumed known
the convergence properties for the parameter estimation in the summed power curves are
likely to benefit from a reduction in the number of estimated parameters. The power capacity
from a windmill can, as previously stated, with reason be assumed to be independent of the
siting of the mill. This means that the power capacity from a group of windmills can be
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written as .
My=K, > M 0.0< K, <1.0 (6.14)
izl ’
where M, is the total power capacity for the group, M; is the power capacity for farm 7 and
K, is a factor taking into account that some of the mills in the group will be stopped for
maintenance, etc. It is here suggested that the value of K, is based on ELSAM'’s experience
from their own wind farms.

Initially the two form parameters b and k have to be found off-line using least square estima-
tion with a criterion as described in Section 6.1. By fixing b to the value estimated off-line
the on-line estimation of the power curve will remain as in Section 6.2.1.

The advantage of this estimation scheme compared to on-line estimation of all three power
curve parameters is that the shape of the power curve will remain well defined during on-line
operation of the WPPT program.

6.2.3 Conclusion

In this section it is suggested that the estimation and prediction of the total power in the
ELSAM supply area, as a first approach, are based on the wind speed measurements from
the 7 wind farms.

An upscaling based on a scheme as outlined below has been described

o The ELSAM supply area has to be divided into 7 sub areas each including a wind
farm in such a way that the wind speed measurement from the individual wind farms
is representative for the sub areas.

e The monthly energy data from all installed mills in the ELSAM supply area has to be
summarized for each of the 7 sub areas.

e An off-line estimation of the power curve parameters for each sub area has to be
carried out before the installation of the WPPT program on site. The data used
for the estimation is all periods where both wind speed and total power production
measurements are available.

o The on-line estimation of the power curve parameters for each sub area will be based
on data feed into the WPPT program once a month. Only a subset of the power curve
parameters will be estimated on-line.
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Chapter 7

Tools for Wind Power Prediction

This chapter describes both an on-line and an off-line system for predictions of the power
production. The main part of the chapter is, however, devoted to a description of the
main principles used in the on-line program system Wind Power Prediction Tool (WPPT).
This system is implemented in the ELSAM supply area, and the hardware used from the
measuring points to the dispatch center, is also described. In Section 7.4 an off-line version
of the program is briefly described.

The purpose of WPPT is to provide on-line calculations and presentations of predictions of
the power production in a region (like ELSAM) with a horizon ranging from 0.5 up to 36
hours. The predictions should be prepared for use in the production planning at a central
dispatch unit. All the examples given in this chapter concerns the ELSAM case, but the
system is built such that it rather easily can be changed for operating in another system.

The presentation part of WPPT (in the following denoted WPPT-P) is completely separated
from the calculation/numerical part of WPPT (in the following denoted WPPT-N). The pre-
sentation part of WPPT is implemented as a menu driven graphical interface. The interface
enables the operators to get on-line presentations of predictions as well as the observed
(measured) values from the reference wind farms used in the calculation of the predictions.

The numerical part of WPPT is based on a modular system, where the individual modules
can be combined in different ways to suit the needs of the system in question. Most of this
chapter is devoted to a description of the principles employed in WPPT-P (Sec. 7.1) and
WPPT-N (Sec. 7.2). A more thorough description of this software system is given in a set
of manuals for WPPT (See (Nielsen & Madsen, 1995¢), and (Nielsen & Madsen, 1995d)).

7.1 The Presentation Module (WPPT-P)

This section gives a short description of WPPT-P. WPPT-P is developed in the programming
language C under UNIX (HP-UX). The graphical user interface is based on Motif 1.1 and
“Version 11.4 of the X Window System” from MIT.
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Figure 7.1: An overview of modules and the flow of data in WPPT.
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Wherever it has been possible, the presentation module has been built using standard Motif
elements, and it is assumed that the user of the program is familiar with the workings of a
Motif user interface in general (menus, bottoms, labels, input-windows, etc.)

The observations of the wind speed and the power production at the seven wind farms are
available in ASCII files as half hour averages. In WPPT-P it is possible simply to have
a graphical on-line presentation of these observations as well as an on-line presentation of
various prediction related plots. Fig. 7.2 shows the main window of the program with a short
description of its different elements.

7.1.1 The Main Window

The important parts of the main window are the menu-bar and the value fields with ob-
servations and predictions. All other parts are permanent labels and descriptions. As it is
seen from the figure, the following wind farms are considered: Brgns, Draby, Vedersg Keer,
Norrekeer Enge, Hollandsb jerg, Torrild og Ry4 .

The Menu Structure

The menu bar provides the possibility of 3 alternative choices of menus: “Observations”,
“Predictions”, and “Default-Display”. Under these menus further sub-menus are found, as
illustrated in Fig. 7.3. Sec. 7.1.2 shows window examples from all the sub-menus found
in Fig. 7.3. The examples cover plot windows (output) as well as dialogue windows (in-
put/output).

The Current Value Fields

For the purpose of a possible supervision, the observations are shown in value fields in the
main menu. If a value is found to be invalid ! the background of that value field changes
from green to red. For all the wind farms both the wind speed and the power production are
shown as indicated in Fig. 7.2. Furthermore, the predictions for selected horizons between
0.5 and 36 hours are shown. All the displayed values are updated every half hour.

7.1.2 Plots Provided by WPPT-P

The figures in this section contain examples of plot windows and dialogue windows in WPPT-
P. The menu choice number in the figure captions corresponds to the numbered choice of
menus in Fig, 7.3.

The depicted windows can be separated into two groups; the plot and dialogue windows
associated with the observations from the reference wind farms (Fig. 7.4 to Fig. 7.6), and

' A value is declared invalid, if it violates some predefined limits, eg. a high limit
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Program title

L. Menu bar

On-line 5 min. obs.
of wind speed
in a named park

On-line 5 min. obs.
of power production
in a named park

| Prediction of total
wind power prodoction
- —  inthe ELSAM area

On-line 5 min. obs
of wind power production
- total for all 7 parks

Figure 7.2: Main window in Wind Power Prediction Tool. (The arrows and the text on the
right is not a part of the window — but serves as explanation.)
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Figure 7.3: Menutree in Wind Power Prediction Tool. The numbers given in [_] are used for
references.

the plot and dialogue windows associated with the predictions (Fig. 7.7 to Fig. 7.10). The
rest of this section contains a short description of the windows in each group.

Observation Windows

The wind observation windows (7 in total) plot wind speed versus time for each reference
wind farm. The wind speed values displayed are 30 minutes average values and the plots
cover the last 4 days of observations (192 observations). In the power observation windows
(7 in total) the observed power and estimated expected power? are depicted versus time for
each reference wind farm. The curves for observed and expected power are based on 30
minutes average values and the plots cover the last 4 days (192 observations).

Additionally the power observation plot windows contain 2 text fields below the actual plots

2The expected power is calculated using a gompertz representation of the representative power curve for
each wind farm.
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Figure 7.4: Menu choice in Figure 7.3.

displaying the estimated currently running power (i.e. the number of running wind turbines
as a percentage) in the wind farm as well as the number of MW represented by the wind
farm in the up-scaling.

The total power window (not shown) plots the “observed” power for the ELSAM supply
area versus time. The curve is based on an up-scaling of the 30 min. average values for the
reference wind farms.

The power versus wind windows (7 in total) plot observed power and expected power versus
observed wind speed for each reference wind farm. The plots are based on 30 minutes average
values for power and wind displayed as dots and the plots cover the last 4 days of observation.
The expected power is drawn as an estimated power curve using a gompertz representation
of the power curve.

Some observations dialogue boxes (one for each farm) are introduced for changing the in-
stalled power for each of the reference wind farms. If the installed power is set to 0.0 kW
the wind farm is disregarded in the up-scaling as described in (Nielsen & Madsen, 1995¢).

Prediction Windows

The prediction window plots the power predictions for the ELSAM supply area versus time.
The plot is updated every 30 minutes. The plot contains 4(3) curves:

e The “observed” power in the ELSAM supply area 3 hours back in time.
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Figure 7.5: Menu choice | 2| in Figure 7.3.

e The power prediction for the ELSAM supply area with a configurable prediction hori-
zon (configurable between 30 minutes and 36 hours) given as the 50% quantile in the
distribution for the predictions.

e The minimum expected power in the ELSAM supply area as a configurable quantile
in the distribution of the predictions (configurable between 1% and 20%).

e The maximum expected power in the ELSAM supply area as a configurable quantile
in the distribution of the predictions (configurable between 99% and 80%).

The historical prediction window shows the historical power predictions for the ELSAM
supply area for a selected prediction horizon (configurable between 30 minutes and 36 hours)
and the observed power in the ELSAM supply area versus time thereby enabling a visual
evaluation of the quality of the predictions.

The quantile window plots quantiles in the distribution for the current power predictions
in the ELSAM supply area versus time where the curve for the quantile selected as the
minimum expected power in the prediction plot is drawn in a different colour. The plot
covers the same prediction horizon as selected for the prediction plot and is updated every
30 minutes. The prediction dialogue box is used to change the configurable settings in the
prediction displays. The dialogue box manages the different display settings through the
following controls:

o A push button activated menu labelled “Main Prediction Quantile” used for selecting
the quantile in the distribution of the power predictions used as minimum expected
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Power Production vs. Wind Speed

Figure 7.6: Menu choice in Figure 7.3.

power in the prediction plot. The following percentages are selectable: 1.0%, 5.0%,
10.0%, 20.0%, and 50.0%.

o A slider labelled “Maximum Prediction Horizon” used to select the prediction horizon
in the prediction plot. The selectable prediction horizon range between 1 step (= 30
minutes) and 72 steps (= 36 hours).

o A slider labelled “Horizon in Prediction History” used to select the prediction horizon
displayed in the historical prediction plot. The select-able prediction horizon range
between 1 step (=~ 30 minutes) and 72 steps (=~ 36 hours).
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Figure 7.8: Menu choice in Figure 7.3.
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Figure 7.10: Menu choice in Figure 7.3.
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7.2 The Calculation Module (WPPT-N)

7.2.1 The Basic Program Layout

The calculation module (WPPT-N) has been implemented using a modular programming
technique. Each functionality has been placed in its own module and all data exchange
between the modules is done through a database. The program structure employs two

Control Function Control Object 1
Process Function 1 Process Object 1

Calc./Data Mani. Process Object 2

Process Function 2
Time Series

Calc./Data Mani=———= | Matrices

Event List

Figure 7.11: Main program structure

function templates, a control function template and a process function template, both with
associated data structures (see Fig. 7.11).

The control function takes care of the time handling necessary in a real time system with
a fixed execution frequency. Furthermore, the execution order for the process functions is
determined by the control function. The associated data structure is called a control object.

All calculations and data manipulations are carried out by the process functions. Before
any data manipulations take place a local copy of the necessary data objects ® is made
from the database. All data manipulations are then carried out on the local copies and
when finished, the changed data objects are transferred back into the database. The data
structure associated with the process function is called a process object.

Both control functions and process functions have access to a common event message list
where all incidents of interest to the operators are logged thereby enabling the operators to
trace the operation of the system.

®Data objects are of type time series or matrix
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7.3 Hardware Used from the Measuring Points to the Load
Dispatch Centre

This section describes briefly the hardware used in the ELSAM implementation of the wind
power prediction tool. It describes the hardware used from the measuring points at the wind
farms to the hardware selected at the load dispatch centre.

At the seven reference wind farms in the ELSAM supply area (see Figure 2.1) the wind speed
and the power production are measured on-line.

7.3.1 Measurement and Data Transmission Equipment

A data collection device has been installed locally in each wind farm, and the device has

been connected to the public alarm network. All data are transmitted via this network to
the ELSAM load dispatch center.

Wind speed and wind power production are measured continuously in the wind farms. Both
measurements are given as analogous signals (0 - 20 mA). The signals are fed into the local
data collection device. The device prepares the data as five-minute integrated values which
are transmitted to ELSAM. The integrated values are saved locally for the next 30 hours. It
means that data can be retransmitted, if necessary.

7.3.2 Hardware in the Load Dispatch Centre

The transmitted data are collected at the ELSAM load dispatch centre. The data collection
system is a Pentium PC running OS/2. The communication between the PC and the public
alarm network is established as a 1200 Bd modem connection. The integrated five-minute
values are packed and saved at the ELSAM data network.

The wind power prediction tool itself is running on a VAX computer using the data saved
on the ELSAM network for the final prediction calculations.

7.4 Off-line Wind Power Prediction Software.

An off-line version of the software, which only includes the estimation and prediction part of
the on-line version, has been developed. Fore more detailed information about the program
the reader is referred to (Nielsen & Madsen, 1995b) and (Nielsen & Madsen, 1995a).

The software is written in ANSI C and has been tested under the UNIX systems: HP/HP-
UX, DEC/OSF1, IMB/AIX, SGI/IRIX, and on a 486 PC running Linux. Furthermore,
the program has been tested under DOS. Due to the limitations of this system the software
cannot handle very large amounts of data when running under DOS. The program is running
from the command line of a standard ASCII-oriented terminal or window.
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Chapter 8

Practical Experience

In this chapter some practical experience of the implementation of the on-line version of the
Wind Power Prediction Tool (WPPT) at ELSAM is stated. A separate section describes the
practical value of the tool for load dispatching. Finally, a section describing some practical
experience of the use of the off-line version of WPPT at Sep is included. The figures of this
section are illustrative for the general behavior of the predictions.

8.1 On-line Wind Power Prediction

The separation of the software in a calculation module and a presentation (graphics) module
has been very useful. WPPT was originally developed on a UNIX computer; but at ELSAM
it was decided to implement WPPT on a VAX computer. The implementation of the calcu-
lation module on the VAX computer went well while only parts of the presentation module
are implemented.

It has been quite difficult to obtain an acceptable quality of the on-line measurements of
power production and wind speed in the seven reference wind farms. This is primarily due
to the quality of the measuring equipment. However, also organisational matters play a role,
since it has been experienced that maintenance and repair of the wind farms done by the
wind farm operators are of vital importance to a prediction tool.

The problems with the on-line measurements were partly foreseen. Therefore methods for
taking into account missing data and errors in the data are developed during the project.
Software modules are implemented in WPPT so that errors are automatically detected and
corrected. This is further described in the manual (Nielsen & Madsen, 1995d).

It is concluded that new equipment must be installed in the future and that the measurement
points should be moved to the accounting points in the electrical network. The power
production can easily be measured here, but more reliable wind speed equipment must be
installed close to the accounting points.
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8.1.1 Value for Load Dispatching

Due to the relatively high amount of energy produced by wind mills in the ELSAM supply
area a tool is needed for short term predictions of the wind power production at the load
dispatch center. Furthermore, the need will be even more prominent in the future due to
the decision that the amount of wind energy should be more than doubled during the next
five years (see Table 1.1).

Untill now it has been difficult to judge the economic value due to the previously mentioned
equipment problems. It is clear that high quality equipment must be installed once the wind
power prediction tool is to go into normal commercial operation.

The WPPT tool has improved the knowledge of the operators concerning the behaviour of
wind power due to the systematic collection and evaluation of wind speed data and power
production data. This information is continuously available to the operators.

For the moment, when on-line meteorogical forecasts are not available, it seems as if the 36
hour prediction horizon is too ambitious, because the information value of the prediction 36
hours ahead is very small. So it has been decided to concentrate on prediction with a 12 hour
horizon. The evaluation from the operations department points to the fact that the weekly
load dispatching will not change due to the use of an even very good prediction model.

The economic benefit will come from the situation with normal operation conditions where
a good wind power prediction with a e.g. 12 hours horizon will enable the operators to take
into account the wind production on beforehand instead of regulating the running units as
a consequence of an experienced wind production. Hence the economic value of a prediction
tool is found on the short term horizon.

Economic benefits are also coming from failure situations where a power plant unit is lost,
e.g. Friday afternoon. If the prediction of wind power is sufficient and stable for the next 6
or 8 hours the operators might decide not to start up a reserve unit.

The operators conclude that the development of the WPPT system must be continued and
that meteorological forecasts should be included into the WPPT model.

8.2 Off-line Software Used on Dutch Data

The off-line version of the wind power prediction tool was applied to data collected at Sep’s
experimental wind farm at Sexbierum in the Northern part of the Netherlands. The total
installed capacity equals 5400 kW. The data were collected from March 2nd until June 1st
1992. The sampling interval is 10 minutes. Three values were considered corrupt, these are
replaced by values found by interpolation. The range of the wind speed measurements is 0.1
- 25.5 m/s, with 50% of the values ranging from 5.3 to 10.1 m/s.

The off-line wind power prediction tool is used to calculate one and six hour predictions
based on hourly averages. A forgetting factor of 0.999 is used. The prediction results are
shown on Figure 8.1.
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Figure 8.1: One and six hour prediction of wind power production for the period March 2nd
until June 1st 1992, versus No. of hours from the start of March 2nd 1992.
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It is noted that the six hour prediction shows large fluctuations in the beginning of the period -
the maximum value predicted is 11114 kW. This phenomenon is expected since the parameter
estimates have to reach reasonable values before the predictions become appropriate. On
the figures it is clearly seen that the prediction procedure gives most weight to the present
observation when predicting the future value of the wind power production.

The Root Mean Square (RMS) of the prediction error when skipping the first 500 values
is calculated. For the one hour predictions an RMS of 412 kW is obtained compared with
417 kW for the persistent predictor. The values for the six hour predictions are 1042 kW
and 1133 kW, respectively. For one hour predictions the persistent predictor performs about
1% worse than the implemented predictor, for six hour predictions the persistent predictor
performs 9% worse than the implemented predictor. The corresponding values calculated
from table 4.7 in Chapter 4 are 2% and 7%, respectively.
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