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Summary (English)

This thesis deals with probabilistic methods for finding sparse solutions to ill-
posed linear inverse problems using both the single measurement vector (SMV)
formulation and multiple measurement vector (MMV) formulation. Specifically,
this thesis investigates the novel algorithm called approximate message passing
(AMP) and its Bayesian generalization called generalized approximate message
passing (GAMP). The AMP algorithm was initially proposed by Donoho et al.
(2009) to solve the linear inverse problem in the context of compressed sensing
and later generalized by Rangan (2010). Both algorithms are based on ap-
proximations of sum-product algorithm formulated for factors graphs. Through
numerical simulations, it is verified that the AMP algorithms are able to achieve
superior performance in terms of the sparsity under-sampling trade-off for the
basis pursuit problem, while maintaining a low computational complexity. More-
over, the GAMP framework is combined with the sparsity promoting spike and
slap prior to derive an inference algorithm for the inverse problem in the SMV
formulation. This algorithm is extended to the MMV formulation, which allows
the use of multiple measurement vectors by imposing a common sparsity pattern
on the measurement vectors. This method, which is coined AMP-MMV, pro-
vides soft estimates of both the solution and the underlying support. A thorough
numerical study verifies the benefits of the MMV formulation and compares it
to state-of-the-art methods. This comparison shows that the AMP-MMV is
able to match the recovery capabilities of these methods, while maintaining a
computational complexity that is linear in all problem dimensions. Yet another
model is considered, the AMP-DCS model, which relaxes the assumption of the
common sparsity pattern by assuming the sparsity pattern is slowly changing
over time according to a binary Markov chain. By means of numerical experi-
ments, it is demonstrated that this approach is preferable to the SMV approach.
For automatic tuning of the hyperparameters, Expectation-Maximization (EM)
algorithms are derived for both the SMV and MMV formulation.

Keywords: Inverse problems, Bayesian inference, AMP, GAMP, MMV, spar-
sity, message passing, sum-product algorithm, factor graphs
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Summary (Danish)

I denne afhandling undersøges statistiske metoder til løsning af underbestemte
lineære ligningssystemer ved brug af både single measurement vector (SMV)
modellen og multiple measurement vector (MMV) modellen. I afhandlingen
undersøges en ny algoritme kaldet approximate message passing (AMP), og
dens Bayesianske videreudvikling kaldet generalized approximate message pas-
sing (GAMP). AMP algoritmen er oprindeligt udviklet af Donoho et al. (2009) i
forbindelse med compressed sensing problemet og er senere generaliseret af Ran-
gan (2010). Begge algoritmer er baseret på approksimationer til sum-produkt
algoritmen formuleret for faktor grafer. Ved hjælp af numeriske simuleringer ve-
rificeres det, at AMP algoritmen opnår overlegne resultater ift. undersampling
og sparsity niveau, men stadig bibeholder en lav beregningsmæssig kompleksitet.
Ved at kombinere GAMP algoritmen med en Bernouilli-Gaussisk a priori forde-
ling udledes en algoritme til løsning af de før omtalte ligningssystemer. Denne
algoritme udvides også til MMV modellen, hvilket gør det muligt at bruge flere
observationsvektorer under antagelsen om konstant support. Den udvidede me-
tode, som kaldes AMP-MMV, kan både estimere selve løsningen, men også den
bagvedliggende support. Fordelene ved MMV modellen ift. SMV modellen efter-
vises via numeriske experimenter. Disse numeriske eksperimenter sammenligner
også AMP-MMV algoritmen med Bayesianske state-of-the-art metoder på en
systematisk måde. Denne sammenligning viser, at AMP-MMV algoritmen kan
opnå sammenlignelige resultater med state-of-the-art metoderne, men med en
signifikant lavere beregningsmæssig kompleksitet. Ydermere introduceres model-
len AMP-DCS, som antager at den bagvedliggende support for løsningerne æn-
drer sig langsomt som funktion af tid. I AMP-DCS algoritmen modelleres denne
antagelse med en binær Markov kæde. Modellen testes ved hjælp af omfattende
numeriske simuleringer og det eftervises at overlegne resultater kan opnås med
AMP-DCS modellen fremfor SMV tilgangen. Slutteligt beskrives Expectation-
Maximization (EM) algoritmer til at estimere hyperparametrene for de omtalte
modeller.
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Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Mathematical Modelling and Computation.

This thesis deals with probabilistic methods for solving the linear inverse prob-
lem. In particular, the approximate message passing framework and its gener-
alization are derived in detail. These derivations involve a quite high number of
equations and a lot of details and therefore some parts of this thesis might be a
bit ”heavy” reading. But it is the hope, that all these details might make these
algorithms more transparent and accessible. Besides the derivations, this thesis
also provides a thorough numerical study of the properties of these algorithms.

The project was carried out from September 2013 to February 2014.

Lyngby, 03-February-2014

Michael Riis Andersen
s112386
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Abbreviations

AMP Approximate message passing
ARD Automatic relevance determination
BG Bernoulli Gaussian
BP Basis Pursuit problem
BPDN Basis Pursuit De-noising problem
DCS Dynamic compressed sensing
EEG Electroencephalography
EM Expectation-Maximization
FOCUSS Focal underdetermined system solver
GAMP Generalized approximate message passing
I.I.D. Independent and identically distributed
LASSO Least absolute shrinkage and selection operator
MAP Maximum a posterior
MMSE Minimum mean squared error
MMV Multiple measurement vector
SBL Sparse bayesian learning
SMV Single measurement vector
SNR Signal-to-noise ratio
VG Variational garrote
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Nomenclature

AT Transpose of A

xk Value of x in the k’th iteration

m Number of equations/rows

n Number of unknowns/columns

k Number of non-zero elements in vector

δ Measure of under-determinacy of a linear system, defined as δ =
m/n.

ρ Measure of sparsity, defined as ρ = k/m

[m] Set of integers from 1 to m, i.e. [m] =
{
i
∣∣ i ∈ N, 1 ≤ i ≤ m

}
.

〈x〉 Average of vector x

Im m×m identity matrix

N
(
x|µ, σ2

)
Probability density function of Gaussian distribution with mean
µ and variance σ2 evaluated at x.

N
(
µ, σ2

)
Gaussian distributed random variable with mean µ and variance
σ2

E [X] Expected value of random variable X

V [X] Variance of random variable X

≡ Denotes an identity or definition

I [a] Indicator function for proposition a
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Chapter 1

Introduction

In the last two decades, sparsity and sparse models have been experiencing
a great increase in interest from the machine learning and signal processing
communities [Ela12] and the list of successful applications is numerous. One of
the successful applications is the problem of computing sparse solutions to linear
inverse problems, which is the topic of this thesis. Problems of this type arise in
many different applications in both science and engineering. A non-exhaustive
list of examples includes imaging problems [RS08], band-limited extrapolation
[CP91], stock market analysis [RZ96] and deconvolution or deblurring of images
[OBDF09].

In general, inverse problems refer to the task of the inferring the state of a system
that is not directly observable, but only available through a set of measurements.
These types of problems are often ill-posed, i.e. not well-posed, and according to
the french mathematician Jacques Hadamard, a well-posed problem is defined
as a problem for which:

1. a solution exists (existence)

2. the solution is unique (uniqueness)

3. the solution changes smoothly w.r.t. the initial conditions (stability)
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State of system Measurements
(x1, x2) (a)

Forward problem

Inverse problem

Figure 1.1: Illustration of the relation between the forward and inverse prob-
lem.

If a problem does not fulfil these three properties, it is ill-posed by definition.

These concepts are illustrated using the very simple task of computing the
arithmetic average of the two numbers x1 and x2. This problem is clearly
well-posed according to the Hadamard-definition, since a unique solution exists:
a = 1

2 (x1 + x2) and the solution is continuous w.r.t. both x1 and x2. If we
denote the problem of computing the average of the two numbers as the forward
problem, we can now consider the inverse problem. That is, given the arithmetic
average a, compute the two numbers x1 and x2, where (x1, x2) is now considered
the state of the system and a is the measurement, see figure 1.1. This inverse
problem has a solution, but it is not unique. In fact, every tuple of real numbers
(x1, x2), which satisfies the relation x1 = 2a− x2, is a solution. Therefore, the
particular problem of inferring (x1, x2) from a is a very simple example of an
ill-posed inverse problem. In general, given the state of the system it is rela-
tive easy to compute the measurements, whereas solving the inverse problem is
usually much more difficult.

1.1 Sparse Solutions to Linear Inverse Problems

The aim of this thesis is to investigate the framework of approximate mes-
sage passing [DMM09] for finding sparse solutions to linear inverse problems.
This work is mainly motivated by problem of source localization for electroen-
cephalography (EEG) [BML01, NS06], which aims to localize the sources of
neural electrical activity in the human brain using non-invasive measurements
of electromagnetic signals. Thus, the distribution of the neural electrical brain
activity is the desired state and the electromagnetic signals are the measure-
ments (see appendix D for more details). However, the methods and algorithms
discussed in this thesis apply to ill-posed linear inverse problems in general.
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Set of solutions

x1

x2

Set of measurements

y

Ax1

Ax2

(a) Ill-posed problem

Set of solutions

x1

x2

Set of measurements

y1

y2

Ax1

Ax2

(b) Ill-conditioned problem

Figure 1.2: (a) Illustration of an ill-posed problem, where more than one solu-
tion map to the same set of measurements. (b) Illustration of the
concept of an ill-conditioned problem, where two similar solutions
map to very different measurements.

Formally, a linear inverse problem has the following form:

y = Ax+ e, (1.1)

where y ∈ Rm is a vector of m measurements, A ∈ Rm×n is the so-called
forward matrix, e ∈ Rm is a corruptive noise vector and x ∈ Rn is the desired
state of the system. The objective is then to reconstruct x from the pair (A,y).
From this formulation, it is immediately seen that the (noiseless) measurements
are easily computed based on knowledge of the forward matrix A and the true
solution x.

For many problems of practical interest (including EEG source localization), the
number of measurements are much smaller than the dimension of the desired
state vector x, i.e. m << n, and this effectively makes the linear system of
equations in eq. (1.1) under-determined. This implies that, if a solution exists,
then it is not unique and therefore, the problem is indeed ill-posed according to
the Hadamard definition.

Besides being ill-posed, many linear inverse problems also provide another dif-
ficult challenge: they are ill-conditioned, meaning that the solution is highly
sensitive to small perturbations in the measurements. This is of course an un-
desirable characteristic for a noisy system. The ”degree” of illconditioned-ness
can be measured by the condition number1 of the forward matrix A, where
a high condition number implies that the problem is ill-conditioned. Figure
1.2 illustrates the differences between a problem being ill-posed and being ill-
conditioned.

Because of these issues, additional assumptions or constraints have to be im-
posed on the system in eq. 1.1 in order for it to be solved. Put another way, the

1The condition number of a matrix A is the ratio of the largest and smallest singular value
of A.
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systems needs to be regularized, where the classical approach is Tihkonov regu-
larization, in which solutions with smaller norms are preferred [TA77, McD09].
Another approach is to assume that the desired solution x is sparse [Ela12],
which is the approach taken in this thesis.

So what does it mean for x to be sparse and how does it help? It means that
most of the entries in x ∈ Rn is zero, or put another way: the energy of x is
concentrated in a small number of positions. The vector x is said to be k-sparse,
if it has at most k ≤ n non-zero entries. In the noiseless case, i.e. e = 0, and
under certain assumptions on the forward matrix A, it has been shown that
if x is sufficiently sparse compared to the undersamplingsratio, i.e. the ratio
m
n , then exact recovery of x is possible [CRT06, DT10]. Informally, the higher
degree of sparsity, i.e. the smaller k, the fewer samples are required to achieve
perfect reconstruction. This is referred to as the sparsity-undersampling trade-
off. Besides mathematical convenience, sparsity also has the advantage that
sparse models are usually easier to interpret than fully ”dense” models. But it is
important to stress that the location of the non-zero elements in x, also known
as the support of x, are usually not known in advance.

We now return to the simple problem of recovering (x1, x2) from the arithmetic
average a, for which we concluded an infinite number of solutions existed. Sup-
pose now that the desired solution (x1, x2) is 1-sparse, then it is easily seen that
(2a, 0) and (0, 2a) are the only solutions to the system. Thus, the solution is
still not unique, but the infinite set of solutions is effectively reduced to a set of
only 2 solutions.

However, many natural signals of interest do not have an exact sparse repre-
sentation, especially not under contamination of noise. But it turns out that
many signals can be well approximated by a sparse signal when represented in
a suitable basis. For instance, a signal dominated by a single sine-wave is well
approximated using a 1-sparse signal in suitable Fourier basis, many natural
images can be well approximated by a sparse signal using a Wavelet or Curvelet
representation [SFM10] and so on. Signals, which are well approximated by a
sparse signal in a known basis, are referred to as compressible signals.

A natural generalization of the linear inverse problem in eq. (1.1) is the so-called
multiple measurement vector problem (MMV) [CREKD05], where, as the name
suggests, multiple measurement vectors {yt} are available at consecutive time
steps t = 1, .., T :

yt = Atxt + et, (1.2)

In the context of the MMV problem, the formulation of the linear inverse prob-
lem in eq. (1.1) is referred to as a single measurement vector problem (SMV).
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Clearly, the MMV problem can be approached by solving T individual (SMV)
problems and nothing is gained. On the other hand, if the measurement vectors
{yt}Tt=1 are obtained within a small period of time, it is often reasonable to as-
sume that support of the solutions xt is constant w.r.t. time, i.e., the locations
of the non-zero elements in xt are the same for all t = 1, .., T . This is often
referred to as the common sparsity assumption [CREKD05] or joint sparsity as-
sumption [vdBF10]. In this case, the estimates of the solution vectors {xt}Tt=1

can be greatly improved by using multiple measurement vectors [ZR13, WR07].
However, note that index t does not necessarily have to be a time index. That
is, the evolution of the measurements {y1,y2, ...,yT } does not necessarily have
to be temporal, it can also be spatial etc. as long as it fits into the formulation
in eq. (1.2) and satisfies the common sparsity assumption. Here a temporal evo-
lution is assumed without loss of generality. A few examples of applications of
the MMV formulation are face recognition from video [MW12], through-the-wall
radar imagery [BTA11] and EEG-based source localization [ZR13].

By assuming the forward matrix A does not change with time index t, and by
concatenating the measurement vectors into a matrix, i.e. Y =

[
y1 y2 .. yT

]
∈

Rm×T , and similar for the solution vectors {xt}Tt=1 and error vectors {et}Tt=1

the MMV problem can be reformulated using matrices:

Y = AX +E, (1.3)

where Y ∈ Rm×T is the measurement matrix, E ∈ Rm×T is the error matrix and
X ∈ Rn×T is the desired solution matrix. Using this formulation, the common
sparsity assumption is then manifested as row sparsity ofX. The non-zero rows
of X are referred to as the true signals or sources .

Consider the case, where multiple measurement vectors are available, but the
underlying sparsity pattern is changing with time, i.e. the common sparsity
assumption is violated. If the sparsity patterns at two subsequent time steps
are independent, then the problem should be approached as independent SMV
problems. On the other hand, if the sparsity pattern is changing slowly with
time, it can be incorporated into the model. Such models are referred to as
MMV with dynamic support as opposed to MMV with static support. The use
of such models can be justified for many applications. For instance, this type of
model is appropriate for EEG source localization due to the dynamic nature of
the human brain [NS06, AM12].
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1.2 Literature Review

The purpose of this section is to give an overview of the literature regarding
the SMV and MMV problems. This section also serves to introduce some of
the terminology used in this thesis. First, sparse methods for solving the linear
inverse problem are discussed followed by a short review of methods for the
MMV extension.

In the noiseless case, the linear inverse problem and its variants are often referred
to as a basis pursuit problem, since the formulation is equivalent to finding the
best representation x of a signal y in an over-complete dictionary A [CDA08].
Similarly, the noisy version of the linear inverse problem is often referred to as
the basis pursuit de-noising problem. Also note, that a linear inverse problem of
the form in eq. 1.1 can equivalently be cast as a linear regression problem, where
A is the design matrix and x are the parameters or weights to be estimated.
Thus, the entire machinery of statistics and machine learning utilized to solve
problems of this form.

There exist a number of different approaches to the BP and BPDN problem,
where some of the major classes of methods are:

1. Pursuits methods / greedy methods

2. Optimization-based methods

3. Probabilistic methods

4. Brute force/combinatorial serach

Pursuit methods are greedy methods in the sense that they choose the most
beneficial step in each iteration. That is, the estimated solution x̂ is iteratively
improved by adapting the change in one or more components of solution that
yields the greatest improvement of the estimate according to some measure. One
of the simplest pursuit algorithms is the orthogonal matching pursuit-method
(OMP) [DMA97].

Starting from an empty solution, i.e. x̂ = 0, OMP iteratively identifies the fea-
ture, which shows strongest correlation with the residuals and then adds this
feature to the solution. The estimate x̂ is then updated in a least squares fash-
ion using the included features, after which the residuals are updated using the
new estimate. These steps are repeated until a stopping criteria is met. Several
extensions have been suggested for this method, i.e. the compressive sampling
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matching pursuit (CoSaMP) method [NT10], which allows the inclusion of mul-
tiple features as well as pruning of features in each iteration.

The pursuit methods are closely related to the iterative thresholding methods
[MD10], which can be subdivided into soft or hard thresholding methods. Both
types of methods alternates between steps of the form:

• Compute residuals: rk = y −Axk
• Update estimate: xk+1 = h(xk + κ · rk),

where rk is an estimate of the current residual, the function h determines the
thresholding policy and κ controls the step-size. These types of methods are
in general very simple and therefore also fast, but at the cost of suboptimal
performance in terms of the sparsity-undersampling trade-off [MD10].

We now turn the attention towards the optimization-based methods. Most of
the optimization-based methods can be divided into two stages. In the first
stage an optimization objective or cost function is designed to encourage the
desired behaviour of the solution, i.e. sparsity, temporal smoothness, spatial
smoothness and so on. In the second stage, either an existing optimization
scheme (line search, trust region etc.) is applied to the cost function or a new
optimization scheme is designed specifically to the given cost function.

For a vector x ∈ Rn, the pseudonorm2 or counting function ||·||0 : Rn → R
returns the number of non-zero elements and thus, is useful for describing the
degree of sparsity for a vector, i.e. of a vector x is k-sparse if and only if
||x||0 ≤ k.

In the search for sparse solutions, it is indeed tempting to try to minimize ||x||0
subject to a data fitting constraint, i.e. a least squares criterion:

min
x
||x||0 s.t. ||Ax− y||22 ≤ ε, 0 < ε, (1.4)

or one of the related problems

min
x
||Ax− y||22 s.t. ||x||0 ≤ s, (1.5)

min
x

1

2
||Ax− y||22 s.t. λ ||x||0 , (1.6)

However, these objective functions are both highly non-convex and non-smooth
and are therefore hard to optimize. One approach to circumvent this, is the

2It is not an actual norm, since ||αx||0 6= |α| · ||x||0 for α ∈ R
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Figure 1.3: Boundary of the unit balls for ||·||p for p = {0, 0.5, 1, 2}. Note,
how norm for p ≥ 1 can be considered as convex approximations
to the `0-pseudonorm.

convex relaxation approach, where the non-convex optimization objective is ap-
proximated by a convex function (see figure 1.3). The LASSO [Tib96] problem
is an example of such an approach and is given by:

min
x

1

2
||Ax− y||22 + λ ||x||1 , (1.7)

where λ is a hyperparameter controlling the trade-off between sparsity and fi-
delity of the fit. This is in general a robust approach, but it requires tun-
ing the regularization parameter λ. However, the closely related Least-angle
Regression-algorithms provides a fast way of computing the entire regulariza-
tion path [EHJT].

The minimum norm-methods are a subclass of the optimization-based methods.
In the noiseless case, the minimum 2-norm solution is simply the solution, which
minimizes to `2-norm subject to the constraint y = Ax. Several improvements
to this approach have been proposed. One is the re-weighted minimum norm
algorithm, which is also known as the FOCUSS3 algorithm [GR97]. Using an
initial estimate, the FOCUSS algorithm iteratively minimizes the re-weighted

norm
∑n
i=1,wi 6=0

(
xi

wi

)2

subject to the constraint y = Ax, where wi is the value
of xi in the previous iteration. This approach produces sparse solutions, because
if the i’th component of x is small in the k’th iteration, it is even smaller in
iteration k + 1 and so on. These methods can also be extended to the noisy
formulation, by introducing a regularization parameter and changing the hard
data constraint with a soft constraint [REC+10].

We now turn the attention to the class of probabilistic models. Most methods
in this class can also be divided into two stages. In the first stage a probabilistic

3FOcal Underdertermined System Solver
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model is set up by introducing to the necessary random variables and by specify-
ing the relationship between them and in the second stage, an inference method
is applied to the model. It is worth noting that many algorithms can be derived
from more than one perspective, i.e. the LASSO [Tib96] can both be derived
from the optimization perspective as well as from the probabilistic perspective.
Sometimes it is even beneficial to view a method from another perspective.

For the probabilistic models, we will mainly focus on Bayesian models, since
they allow the sparsity assumption to be incorporated using suitable prior dis-
tributions. In particular, a number of methods are based on the Bayesian frame-
work coined Automatic Relevance Determination (ARD) [Nea95, WN09] or on
the related Sparse Bayesian Learning (SBL) framework [Tip01]. In the ARD
framework, a Gaussian noise distribution is combined with a zero-mean Gaus-
sian prior on x, which is imposed to regularize the estimated solution. This
prior assigns individual variance hyperparameters toto each element in x, i.e.
the prior distribution has n individual variance parameters. By marginalizing
out the solution x, and applying the so-called evidence approximation [Bis06],
the marginal likelihood function of the measurements y conditioned on the hy-
perparameters is obtained and optimized with respect to these hyperparameters.
During this optimization, the individual variance hyperparameters of irrelevant
features will shrink towards 0 and thus effectively prune the corresponding of
the parameter of the model.

Another popular Bayesian approach is the use of a Bernoulli-Gaussian prior on
each xi [IR05]. That is, the prior distribution on x is assumed to be a mixture
of a Dirac delta function at zero and a Gaussian distribution. Under this prior,
xi has point mass at xi = 0 and therefore this is a sparsity promoting prior.
Because of the form of the density, this type of prior is also known as a ”spike
and slap”-prior.

The Variational Garrote (VG) [KG12] uses a prior similar to the ”spike and slap”-
prior, but instead the support variables are marginalized out and the posterior
distribution is obtained using a mean-field variational approximation [Bis06].
In [KG12], a single hyperparameter is controlling the sparsity of the solution.
This hyperparameter is tuned using a cross validation procedure. In [AHH13],
the VG model is extended to estimate the hyperparameter from the data using
an emperical Bayes approach. For more details about the VG approach, see
Appendix E.

Many models and algorithms for the SMV formulation have been extended to
the MMV formulation. In [CREKD05], Cotter et al. describe natural extensions
of the OMP and FOCUSS methods to the MMV formulation. Similarly, many
of the probabilistic methods have been extended as well. The SBL method
is also extended to the MMV formulaton resulting in the M-SBL [WR07] and
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TM-SBL methods [ZR13]. The model M-SBL proposed by Wipf et al. is a
straightforward extension to the MMV problem using SBL framework, where
each row of the source matrix X shares a common hyperparameter. In fact,
Wipf et al. showed that the M-SBL method implicitly minimizes the `2-norm
of each row in X. This way the pruning of the features become row-based. In
[ZR13], Zhang et al. introduced the TM-SBL model, which is a further extension
of the M-SBL model that takes temporal correlation of the non-zero sources into
account. The TM-SBL model assumes that each source, i.e. each row of X,
has the same correlation structure and Zhang et al. argues that TM-SBL only
differs from M-SBL by implicitly minimizing the Mahalanobis distance of the
rows of X instead of the `2-norm.

Many researchers have been working on deriving theoretical bounds and guar-
antees for when the inverse problem is solvable. We will not go into details here,
but the interested reader is referred to [EK12] for an overview. However, we will
review the concept of phase space and phase transitions introduced by Donoho
et al. [DT10]. Consider a noiseless linear inverse problem y = Ax, then define
the undersamplingsratio δ ∈ [0, 1] as the ratio of measurements and unknowns,
i.e. δ = m/n and the sparsity ρ ∈ [0, 1] as the ratio of non-zero elements and
measurements, i.e. ρ = k/m. Note also that the reciprocal values of ρ can be
interpreted as the number of measurements per parameter. Donoho et al. define
the phase space as the domain (δ, ρ) ∈ [0, 1]

2.

Many reconstruction algorithms exhibit a so-called phase transition in this
space. That is, the recovery performance of a given method partitions the phase
space into two regions: a solvable and an unsolvable region. The phase transi-
tion curve is then the boundary between these two regions. These curves then
provide a neat way of comparing the reconstruction performance for different
algorithm.

For a noiseless linear inverse problem with I.I.D. Gaussian forward matrix, the
phase transition curve for the LASSO can be computed analytically in large
system limit i.e. n,m → ∞ for m/n → δ and k/m → ρ using combinatorial
geometry [DT10, DT09, DMM11]. The asymptotic phase transition curve is
given by:

ρCG(δ) = max
z≥0

1− (2/δ)
[
(1 + z2)Φ(−z)− zφ(z)

]

1 + z2 − 2 [(1 + z2)Φ(−z)− zφ(z)]
(1.8)

where φ(z) and Φ(z) are the density and cumulative distribution of a standard-
ized Gaussian variable z, respectively. This curve is shown in figure 1.4, where
the region below the curve is solvable region. As one moves up and to the left
in the phase space, problems become more undersampled and less sparse and
therefore more difficult to solve. The curve ρCG(δ) thus provides a convenient
frame of reference when designing and investigating new methods.
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Figure 1.4: Asymptotic phase transition curve for `1 minimization predicted
by combinatorial geometry.

1.3 Problem Definition

As stated earlier, the topic of this thesis is linear inverse problems. Among
the many different approaches to these problems, Bayesian methods have been
shown to provide state-of-the-art recovery performance compared to other meth-
ods. However, a large portion of the Bayesian methods suffer from the fact, that
they are inherently slow, which limits their applicability on large-scale problems.
On the other end of the spectrum is the class of iterative threshold methods,
which are extremely fast but at the cost of suboptimal recovery performance.

But in 2009 David Donoho and his colleagues introduced a framework called
approximate message passing (AMP) [DMM09], which appear to offer the best
from both worlds. That is, AMP provides excellent recovery performance, while
maintaining low computational complexity. In 2010, Sundeep Rangan intro-
duced a generalization of this framework, called Generalized Approximate Mes-
sage Passing (GAMP) [Ran10], which allows the use of a broader class of models
with the same low computational complexity.

The main goal of this thesis is to analyze and derive the AMP and GAMP
frameworks. It is of great interest to investigate how these frameworks can
be utilized to construct algorithms, which are capable of doing rapid inference
in highly underdetermined noisy systems. The second goal of this thesis is
to explore how these algorithms can be extended to the MMV formulation. In
particular, it is of interest to investigate the properties of these methods in terms
of their sparsity-undersampling trade-off, robustness to noise and computational
complexity.
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1.4 Thesis Overview

The structure of the thesis is as follows. The thesis consists of 5 chapters
(including this introduction) and a number of appendices. Below is a short
description of each chapter.

• Chapter 1 is the introduction, including literature review and problem
definition.

• Chapter 2 provides a small introduction to message passing algorithm in
factor graphs, which also serves to introduce to necessary terminology
and notation. The rest of chapter 2 describes the theory for approximate
message passing (AMP) and the generalized approximate message pass-
ing algorithms (GAMP). Moreover, an inference algorithm (BG-AMP) is
derived based on GAMP and the Bernoulli-Gaussian prior.

• Chapter 3 extends the BG-AMP method from chapter 2 into two new al-
gorithms for the multiple measurement vector (MMV) formulation. The
first algorithm, AMP-MMV, assumes constant support, whereas the sec-
ond algorithm, AMP-DCS, assumes slowly changing support.

• Chapter 4 provides an extensive numerical study and discussion of the
methods introduced in chapter 2 and 3.

• Chapter 5 summarizes and concludes on the results.



Chapter 2

Theory: The Linear Inverse
Problem

The goal of this section is to describe the algorithms approximate message pass-
ing (AMP) and generalized approximate message passing (GAMP). Both of
these algorithms are based on message passings techniques in factors graphs.
Therefore, the first part of this chapter is devoted to introduce the basic termi-
nology of factor graphs and the associated inference technique called message
passing. The second part describes the theory behind the AMP algorithm,
whereas the third part describes the GAMP algorithm. Finally, the fourth sec-
tion introduces an algorithm called BG-AMP, which is derived using the GAMP
framework. Before diving into the theory of these algorithms, we briefly review
a few concepts related to basic statistical inference.

The objective is to solve a linear inverse problem of the form:

y = Ax+ e (2.1)

where y ∈ Rm is a measurement vector, x ∈ Rn is the desired solution vector,
e ∈ Rm is a vector of measurements errors andA ∈ Rm×n is the forward matrix,
where it is assumed that m < n such that the system is under-determined.

There are different approaches to statistical inference, where maximum like-
lihood estimation (ML), maximum a posteriori estimation estimation (MAP),



14 Theory: The Linear Inverse Problem

minimal mean square error estimation and Bayesian inference are commonly
used [Bis06]. The likelihood of a set of parameters x is the probability of the
observed data given the particular set of parameters x, or put another way, it
is the probability of the data conditioned on the parameters x. Now suppose
the likelihood is given by p(y|x), where y is the observed data and x is the
parameters. Then, as the name suggest, the principle of maximum likelihood is
to choose the parameters such that the likelihood function is maximized. That
is, the ML estimate is given by

x̂ML = argmax
x

p(y|x) (2.2)

where x is treated as a deterministic variable. Now suppose we treat x as a
random variable, then we can assign a prior distribution p(x) to x, which reflects
our prior beliefs or assumptions about x. For the remainder of this discussion,
let p(x

∣∣θ) be a parametric distribution, which is parametrized by θ. Since θ is a
parameter controlling the prior distribution, it is referred to as a hyperparameter

Bayes theorem [Bis06] now allows us to obtain an expression for the posterior
distribution of the parameters, i.e. the probability of the parameters x condi-
tioned on the observed values y:

p(x|y) =
p(y|x)p(x|θ)

p(y)
, (2.3)

where the term p(y) often is called the evidence or marginal likelihood. Note,
that the marginal likelihood is independent of x, and therefore

p(x|y) ∝ p(y|x)p(x|θ) (2.4)

Using this result, we can now state the MAP estimate as

x̂MAP = argmax
x

p(x|y) = argmax
x

p(y|x)p(x|θ) (2.5)

where θ is treated a deterministic variable. Thus, the MAP estimator is sim-
ilar to the ML estimator except for the prior distribution on the parameters.
However, the prior distribution can often be interpreted as regularization term
and does therefore often have a crucial effect on the final estimate. Next, we
consider the concept of Bayesian inference.

The basic philosophy of Bayesian inference is that all involved quantities are
considered to be random variables. Ideally, we would also assign a prior distri-
bution to the hyperparameter, i.e. p(θ). In the Bayesian paradigm, we are just
as interested in the associated uncertainty as in the estimate itself and therefore
we strive to acquire the entire posterior distribution p(x|y), and not only the
point estimates x̂ as in ML or MAP estimation. However, for many problems of



2.1 Inference using Factor Graphs 15

practical interest, exact inference in the Bayesian paradigm is often infeasible
due to analytically intractable integrals and therefore we often have to resort to
different approximation schemes.

The last type of inference, we will consider here, is the minimal mean square
error estimator. That is, the estimator which minimizes the mean error square
between the fitted value and the true value. Under mild conditions, the MMSE-
estimate is equal to the conditional expectation [Bis06]

x̂MMSE(y) = E
[
x
∣∣y
]

(2.6)

We are now ready to dive into the concepts of factor graphs and message passing.

2.1 Inference using Factor Graphs

Most of the methods used in this thesis are based on the so-called message
passing techniques [Pea88, Bis06, Bar11] for a graphical representation called a
factor graph [Loe04, LDH+07, Bis06, Bar11, Mac03] and therefore this section
serves to give a brief introduction to the basic methodology and terminology of
these concepts.

Informally, a factor graph1 is a graphical representation of the decomposition
of a global function f(x) into its local factors fa(xa). Consider a function
f(x1, x2, x3) and assume it decomposes as follows:

f(x1, x2, x3) = f1(x1, x2) · f2(x2, x3) · f3(x3) =
∏

a

fa(xa) (2.7)

where xa is the set of variables associated to the factor fa(·), i.e. x1 = (x1, x2).
Thus, the global function f(x1, x2, x3) decomposes into 3 local functions, where
each local function is a function of a subset of the variables. This thesis deals
with probabilistic models, and therefore the global function will be a joint dis-
tribution of interest, while the local factors will correspond to marginal and
conditional distributions. However, this framework is not restricted to proba-
bility distributions.

Formally, a factor graph is a bipartite graph consisting of a set of edges and
two disjoint sets of nodes: variables nodes and factor nodes. Each variable
node corresponds to a unique variable in the global function and is represented
by a circle. Each factor node corresponds to a unique factor function in the

1In the literature, there exists different kinds of factor graphs, but here we will adapt the
style and notation from [Bis06].
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f1(x1, x2) f2(x2, x3) f3(x3)

x1 x2 x3

Figure 2.1: Factor graph representation for the decomposition of the global
function in eq. (2.7). Each variable is uniquely represented by a
variable node (circles) and each factor function is uniquely rep-
resented by a factor node (black squares). An edge between a
variable node xj and factor node fa(·) indicates that the given
factor function fa(·) is a function of xj .

decomposition of the global function and is represented by a filled black square.
There is an edge between variable node xj and a factor node fa(·) if and only
if fa(·) is a function of xj . Note, that the edges are undirected. Using these
properties it is possible to translate the decomposition of a global function into
a factor graph and vice versa.

Figure 2.1 shows the corresponding factor graph representation of the decom-
position in eq. (2.7). Since f1(x1, x2) is a function of both x1 and x2, there are
edges from factor node f1(x1, x2) to variable nodes x1 and x2. The factor node
f3(x3) is only connected to variable node x3 due the factor function f3(x3) only
being a function of x3.

The Sum-Product Algorithm

We will now use the concept of factor graphs to introduce to the so-called
sum-product algorithm [KFL01, Bis06], which is a computationally efficient al-
gorithm for computing the marginal posterior distribution of any variable in a
factor graph. The algorithm was initially introduced in the form of the Belief
propagation in Bayesian networks [Pea88] by Judea Pearl in 1982, and later
generalized to the sum-product algorithm presented here.

The marginal posterior distributions obtained by the sum-product algorithm
is only exact when the underlying factor graph is a poly-tree [Bis06]. That
is, if the underlying factor graphs contains cycles or loops, the sum-product
algorithm is not guaranteed to produce exact inference. Nevertheless, for some
cyclic factor graphs the sum-product algorithm can be successfully applied in an
iterative manner to obtain approximate posterior distributions [FM98]. We will
make extensive use of this fact, when deriving the approximate message passing
algorithm.
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Figure 2.2: (a) Illustration of the messages involved in forming the message
from variable node xi to factor node fa. (b) Illustration of the
messages involved in forming the message from factor node fa to
variable node xi.

The sum-product algorithm for factor graphs essentially boils down to a set
of rule for propagating local ”messages” between the variable nodes and factor
nodes. It is out of the scope of this thesis to derive and prove the sum-product
algorithm, instead we simply state the resulting expression, but the derivations
can be found [Bis06, ch. 8]. First the necessary notation is introduced. The
sum-product algorithms involves two types of messages: messages from vari-
able nodes to factor nodes and messages from factor nodes to variables. Let
µxi→fa(xa)(xi) denote the local message sent from variable node xi to factor
node fa(xa) and similarly, let µfa(xa)→xi

(xi) denote the local message sent
from factor node fa(xa) to variable node xi. Both types of messages are func-
tions of the involved variable and the involved variable only. Furthermore, let
ne(x) be the set of neighbouring nodes at node x, e.g. ne(f2) = {x2, x3} and
ne(x3) = {f2, f3} for the factor graph in figure 2.1.

In the following it is assumed that all variables are discrete, but sum-product
algorithm applies equally well to continuous variable by exchanging the sums
with suitable integrals. Equipped with this notation we can now define these
messages. The message sent from non-leaf variable node xi to factor node fa is
given by

µxi→fa(xi) =
∏

b∈ne(xi)\fa
µfb→xi

(x), (2.8)

That is, the message sent from xi to fa is simply the product of incoming
messages at node xi, except the message from the target node fa. This is
illustrated in figure 2.2(a). From this definition, it is seen that if a variable node
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only has two neighbours it simply ”forwards” the incoming messages. If the
variable node xi is a leaf node, the message simply becomes the unit function:

µxi→fa(xi) = 1; (2.9)

The other type of message is from a non-leaf factor node fa to a variable node
xi and is given by:

µfa→xi
(xi) =

∑

x∀j 6=i


fa(xi, ...)

∏

j∈ne(x)\xi

µxj→fa(xj)


 (2.10)

where the sum is over all involved variables except xi. That is, the message from
factor node fa to variable node xi is given by the sum over the product of the
factor function fa itself and all the incoming messages, except the messages from
the target variable node xi. If the factor node fa is a leaf-node, the message
simply becomes the factor function itself:

µfa→xi
(xi) = fa(xi) (2.11)

Note, that the message associated with an edge from variable xi to factor fa
(and vice versa) is always a function of xi and only xi. Furthermore, due to the
recursive nature of the messages, a given node is only ”ready” to send its message
if it has received all the necessary incoming messages first, which explains why
the underlying factor graph must have tree structure. Otherwise, there would
be a ”circular dependency”.

Using the above expression for the messages, the main results can now be stated
as in Table 2.1.

Table 2.1: Sum-product rules for obtaining posterior distributions.

1. The (unnormalized) marginal posterior distribution of any variable xi
conditioned on the set of observed variables, is obtained by computing the
product of all incoming messages at node variable xi in the corresponding
factor graph.

2. If the subset of variables, xs = {xi, xj , xk, ..} has a common factor node
fs(xs), then the (unnormalized) joint posterior distribution of this subset
of variables conditioned on the set of observed variable is the product of
the common factor function fs(xs) and all the incoming messages at
factor node f(xs).

Suppose the goal is to determine the marginal posterior of a variable xj and
assume the underlying factor graph is a poly-tree. Then in order to start the
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Figure 2.3: Factor graph for the Markov model with x2 as designated root.
The variable x4 is an observed variable and can therefore be ab-
sorbed into the factor p(x4

∣∣x3).

recursion, the variable node xj can be interpreted as the root of tree. Then
starting from the leafs of the tree, the messages are propagated link by link
until the root node is reached from all leafs. Using this scheme ensures that
all necessary messages are available for computing the product of the incoming
message at node xj .

The following example illustrates the use of the sum-product algorithm for in-
ference in a simple Markov chain model. Consider the one dimensional discrete
time series {xt}4t=1 of length T = 4. By assuming the time series is generated
by a first order Markov chain [PK11], the joint probability of the time series
can be decomposed using the Markov property:

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3) (2.12)

where p(x1) is the initial probability distribution and p(xt|xt−1) are the so-called
one-step transition probabilities. Notice, that this distribution is decomposed
into 4 local factors.

Consider now the problem of computing the posterior distribution of x2 con-
ditioned on x4. The first step is to construct the corresponding factor graph
with x2 as designated root. The resulting factor graph is shown in figure 2.3,
where it is seen that the underlying factor graph is indeed a tree. Note that the
observed variable x4 is marked by a shaded circle, which is customary for ob-
served variables. Furthermore, since x4 = x̂4 is observed it can be considered as
a fixed variable and therefore be absorbed into the factor p(x̂4

∣∣x3), which then
becomes a function of x3 only. For this reason, it is not necessary to include
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the observed variables in factor graphs. However, in this thesis the observed
variable are shown anyway for completeness.

Following the sum-product algorithm, the factor nodes p(x1) and p(x̂4|x3) are
identified as leaf nodes. The messages can now be propagated from the leaf
nodes to the root. Starting from the right leaf, the message from the leaf node
p(x̂4|x3) to variable node x3 is then obtained using eq. (2.11):

µp(x̂4|x3)→x3
(x3) = p(x̂4|x3) (2.13)

and the message from variable node x3 to factor node p(x3|x2) is obtained using
eq. (2.8):

µx3→p(x3|x2)(x3) = µp(x̂4|x3)→x3
(x3) = p(x̂4|x3) (2.14)

Using definition (2.10), the message from factor node p(x3|x2) to variable node
x2 is given by the product of the factor function p(x3|x2) and the incoming
messages except the message from x2 and then summed over x3:

µp(x3|x2)→x2
(x2) =

∑

x3

p(x3|x2)µx3→p(x3|x2)(x3) (2.15)

Thus, the root is reached from the right leaf node. Similarly, starting from the
left leaf results in the following sequence of messages:

µp(x1)→x1
(x1) = p(x1) (2.16)

µx1→p(x2|x1)(x1) = µp(x1)→x1
(x1) = p(x1) (2.17)

µp(x2|x1)→x2
(x2) =

∑

x1

p(x2|x1)µx1→p(x2|x1)(x1) (2.18)

Finally, using the result in table 2.1 the marginal posterior is obtained as the
product of the incoming messages at node x2:

p(x2

∣∣x̂4) ∝ µp(x2|x1)→x2
(x2)µp(x3|x2)→x2

(x2) (2.19)

To verify this, the messages can be back-substituted into the above expression:

p(x2

∣∣x̂4) ∝ µp(x2|x1)→x2
(x2)µp(x3|x2)→x2

(x2)

=
∑

x1

p(x2|x1)µx1→p(x2|x1)(x1)
∑

x3

p(x3|x2)µx3→p(x3|x2)(x3)

=
∑

x1

p(x2|x1)p(x1)
∑

x3

p(x3|x2)p(x̂4|x3)

= p(x̂4|x2)p(x2) (2.20)

which is seen to be proportional to the true posterior distribution. The nor-
malization constant is easily obtained by summing over x2. Now suppose the
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problem is to obtain the marginal posterior distribution of all the latent vari-
able. In principle, the above procedure could be repeated for x1 and x3 as root
nodes, but then the same quantities would be recomputed multiple times. In-
stead, x2 is kept as the root node, but after propagating messages from the leaf
to the root, the messages are propagated from the root, i.e. variable node x2,
and back to the leafs. Then all messages in both direction are available and
any marginal posterior p(xj) is simply obtained as the product of the incoming
messages at node xj . That is, by selecting an arbitrary node as root node and
propagating all the messages from all leaf nodes to the root node and back to
the leaves again, we can obtain all the marginal posterior distributions in the
distribution in a very efficient manner [Bis06]. One very interesting aspect of
the sum-product algorithm is that a number of seemingly unrelated algorithms
can be interpreted as instances of the sum-product algorithm. For example,
both Kalman filtering [Bis06] and the forward/backward algorithm for Hidden
Markov Models [RJ86] can be shown to be instances of the sum-product algo-
rithm [KFL01]. In fact, the underlying factor graphs share the same topology.
Even more surprising, algorithm like Expectation-Maximization and the Fast
Fourier Transform can also be seen interpreted as instances of the sum-product
algorithm [KFL01, LDH+07].

As stated earlier, the sum-product message passing scheme is only guaranteed
to produce exact inference if the underlying factor graph is a poly-tree. But
since all messages are local, the exact same message passing scheme can be
applied in an iterative manner to cyclic factor graph. The loopy message passing
scheme is not guaranteed to produce exact inference nor converge, but empirical
evidence suggests that when it does converge, it produces accurate estimates of
the true posteriors [MWJ99]. In fact, the very successful procedure for decoding
the so-called turbo codes can be interpreted as an instance of the sum-product
algorithm operating in a loopy graph [MMC09].

The Max-Sum Algorithm

Completely analogous to the sum-product algorithm, the max-product algo-
rithm is designed to compute the most likely variable configuration w.r.t. a
given probability distribution [Bis06]. That is,

xmax = max
x

p(x1, x2, .., xn) (2.21)

Loosely speaking, this algorithm simply correspond to exchanging the sum-
mation operators in the sum-product algorithm with maximization operators.
However, products of probabilities can result in very small numbers and since
computers only have finite accuracy, this can lead to numerical underflow. To
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avoid this issue, the max-product algorithm can be applied to the logarithm of
the probability distribution of interest. Since the logarithm is a monotonically
increasing function, the order of the maximization operator and the logarithm
can be exchanged, i.e. ln max

x
p(x) = max

x
ln p(x). Furthermore, when the loga-

rithm is applied to the product decomposition of the joint probability, it turns
into a sum decomposition. The resulting algorithms is therefore referred to as
the max-sum algorithm.

For non-leafs, the two types of messages then become:

µfa→xi(xi) = max
x1,x2,...


ln f(x1, x2, ...) +

∑

j 6=i
µxj→fa


 (2.22)

µxi→fa(xi) =
∑

b6=a
µfb→xi

(xi) (2.23)

while for leaf nodes:

µfa→xi
(xi) = ln f(xi) (2.24)

µxi→fa(xi) = 0 (2.25)

Using these messages, the exact same schedule as for the sum-product algorithm
can be used for the max-sum algorithm. However, the above approach would
simply return the probability of the most likely configuration of variables and
not the most likely configuration of variables itself. In order to obtain this
configuration of variables, it is necessary to keep track of the arguments, which
maximize each message during the propagation of the messages. Then it is
possible to backtrack each argument in a dynamic programming manner and
then obtain the desired configuration [Bis06]. However, we will not go into
details with this approach since it is not needed in this thesis.

This ends the introduction to message passing and factors graph and we are now
equipped with the necessary tools for deriving the framework of approximate
message passing.
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2.2 Approximate Message Passing

Now the attention is turned towards the approximate message passing (AMP)
algorithm introduced by Donoho et al. in [DMM09, DMM10]. AMP is a mes-
sage passing-based framework developed for solving the basis pursuit or the
basis pursuit de-noising problem in the context of compressed sensing [EK12].
AMP can also been seen as an instance of the class of iterative thresholding algo-
rithms (see literature review in section 1.2). However, AMP distinguishes itself
from the other algorithms in this class by having a significant better sparsity-
undersampling trade-off. In fact, Donoho et al. shows that in the high dimen-
sional limit n,m → ∞, m/n → δ the phase transition of AMP approaches
that achievable by `1-minimization, while maintaining low computational com-
plexity [DMM09].

Consider the linear system of equations Ax = y, where A ∈ Rm×n , y ∈ Rm
and x0 ∈ Rn is the true solution. It is assumed that the columns of A have been
scaled to unit `2-norm. In the remainder of this thesis, the undersamplingsratio
δ of a given problem will be defined as δ = m/n, k will denote the number
of non-zero elements in the true solution and the sparsity will be defined as
ρ = k/m. For the basis pursuit problem, the simple update equations for AMP
are then given by

xk+1 = η
(
ATzk + xt; τ̂k

)
, (2.26)

zk = y −Axk +
1

δ
zt−1

〈
η′
(
ATzt−1 + xt−1; τ̂ t−1

)〉
, (2.27)

τ̂k =
τ̂ t−1

δ

〈
η′
(
ATzt−1 + xk; τ̂ t−1

)〉
, (2.28)

where η (x, τ) is a soft thresholding function applied component-wise, η′ (x, τ) is
its derivative, 〈·〉 is the averaging operator and k is the iteration index. Due to
the form of the update equations, it is readily seen that this algorithm belongs
to the class of iterative thresholding algorithms.

Analogously, the update equations for the basis pursuit de-noising (BPDN)
problem, i.e. y = Ax+ e, are very similar:

xk+1 = η
(
ATzk + xk; λ+ γk

)
, (2.29)

zk = y −Axk +
1

δ
zt−1

〈
η′
(
ATzt−1 + xt−1; λ+ γt−1

)〉
, (2.30)

γk =
λ+ γt−1

δ

〈
η′
(
ATzt−1 + xk; λ+ γt−1

)〉
, (2.31)

where λ is the regularization parameter. By comparing the update equations
for BP and BPDN, it is seen that the two algorithms are identical for λ = 0 and
therefore we will only focus on the latter without loss of generality.
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Derivation of AMP

The purpose of this subsection is to the describe the derivation of AMP following
the approach in [DMM10]. Since the derivation is rather lengthy, it is divided
into 4 parts:

• Part 1: Derive exact update rules using the sum-product algorithm

• Part 2: Taking the large system limit

• Part 3: Taking the large β limit

• Part 4: Reducing the number of messages

We will now dive directly into the first part.

Part 1: Derive Update Rules using the Sum-Product Algorithm

First the underlying linear model is defined. It is assumed that the prior dis-
tribution over each component of the solution is a Laplace distribution with a
common hyperparameter β:

p (xi) =
βλ

2
exp (−βλ |xi|) , β ≥ 0 (2.32)

Similarly, the noise is assumed to be independent and Gaussian distributed, i.e.,
the likelihood function is given by:

p (y|x) = N
(
y
∣∣Ax, β−1Im

)
(2.33)

where Im is the m × m identity matrix and β is the precision of the noise.
Note, that in this model the prior distribution and the likelihood share the
hyperparameter β. This gives rise to the following joint distribution:

p (x,y) = p (y|x) p (x)

=

m∏

a=1

p (ya|x)

n∏

i=1

p (xi) (2.34)

Now the corresponding factor graph is set up, where x is considered a latent
variables and y an observed variable. The resulting factor graph is shown in
figure 2.4.



2.2 Approximate Message Passing 25

x1

x2

x3

...

xn

p(x1)

p(x2)

p(x3)

...

p(xn)

p (y1|x)

p (y2|x)

p (ym|x)

y1

y2

...

ym

Figure 2.4: Factor graph for the joint distribution given in eq. (2.34)

Inspecting the figure reveals that the factor graph contains multiple loops and
therefore it is necessary to resort to loopy message passing. The next step is
then to derive the loopy sum-product messages for the posterior of xi.

In remainder of this thesis, [m] will be used to denote the set of indices from
1 to m, i.e. [m] =

{
a
∣∣a ∈ N, 1 ≤ a ≤ m

}
. Furthermore, the variables i, j ∈ [n]

will be used as indices for variable nodes and the variables a, b ∈ [m] will be
used as indices for the factor nodes.

The sum-product algorithm states that the posterior marginal distribution over
xi conditioned on y is given by the product of the incoming messages at variable
node xi:

p (xi|y) = µp(xi)→xi
(xi)

∏

a

µp(ya|x)→xi
(xi) (2.35)

The sum-product rules decribed in section 2.1 are now used to derive the mes-
sages based on this factor graph. The message from p(xi) to xi is trivial, since
p(xi) is a leaf node

µp(xi)→xi
(xi) = pi(xi) =

βλ

2
exp (−βλ |xi|) (2.36)

That is, the message simply corresponds to the prior density. Next, the message
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from factor node p(ya
∣∣x) to variable node xi is given by

µp(ya|x)→xi
(xi) =

∫
p(ya

∣∣x)
∏

j 6=i
µxj→p(ya|x)(xj)dxj 6=i

=

∫
1√

2πβ−1
exp

[
−β

2
(ya − (Ax)a)

2

]∏

j 6=i
µxj→p(ya|x)(xj)dxj 6=i

∝
∫

exp

[
−β

2
(ya − (Ax)a)

2

]∏

j 6=i
µxj→p(ya|x)(xj) dxj 6=i (2.37)

where ∝ means equal up to a constant factor and the notation dxj 6=i means
integration over the set of variables

{
xj
∣∣j 6= i

}
. Finally, the message from vari-

able node xi to factor node p(ya
∣∣x) is then given by the product of incoming

messages at node xi, except the message from p(ya
∣∣x) itself:

µ
xi→p(ya

∣∣x)
(xi) = µp(xi)→xi

(xi)
∏

b6=a
µ
p(yb

∣∣x)→xi
(xi)

=
βλ

2
exp (−βλ |xi|)

∏

b 6=a
µ
p(yb

∣∣x)→xi
(xi)

∝ exp (−βλ |xi|)
∏

b 6=a
µ
p(yb

∣∣x)→xi
(xi) (2.38)

Inspection of the messages from variables xi to factors p(ya|x) shows that in
order to compute µxi→p(ya|x)(xi), the message µp(yb|x)→xi

(xi) is needed and
vice versa. This is a manifestation of the problem of message passing in loopy
factor graphs. However, resorting to loopy message passing yields the following
update scheme

µk+1
xi→ga(xi) ∝ exp (−βλ |xi|)

∏

b 6=a
µkgb→xi

(xi) (2.39)

µkga→xi
(xi) ∝

∫
exp

[
−β

2
(ya − (Ax)a)

2

]∏

j 6=i
µkxj→ga(xj) dxj 6=i (2.40)

where superscript k denotes iteration number. To ease the notation, the follow-
ing notation will be adopted in the remainder of the AMP derivation:

µkxi→p(ya|x)(xi) = µki→a(xi)

µkp(ya|x)→xi
(xi) = µka→i(xi) (2.41)

The goal is now to approximate the above message passing scheme.



2.2 Approximate Message Passing 27

Part 2: Taking the Large System Limit

It is now justified that the both types of messages can be well approximated
by simple parametric densities in the large system limit, i.e. when m,n → ∞
for m/n → δ. In particular, in this limit the messages from factor nodes to
variable nodes, µa→i(xi), are approximated by a Gaussian density and the mes-
sages from variable nodes to factor nodes are approximated by the product of
a Laplace density and a Gaussian density. Of course, linear systems with an
infinite number of equations and infinite number of unknowns are purely math-
ematical constructions. But for many linear systems of interest, the number of
unknowns is huge, e.g. the number of unknowns in imaging applications can be
of order of 106 [RS08].

The messages from the factor nodes to the variable nodes, i.e µa→xi(xi), are
first considered. Using a variant of the Berry-Esseen2 central limit theorem
[Dur04, DMM10], it is possible to show that in the limit n→∞, the messages
µa→i(xi) converge to a Gaussian distribution w.r.t. supremum norm. To show
this, define the mean and variance of a random variable distributed according
to density p(xi) ∝ µi→a(xi) as xki→a and 1

β τ
k
i→a, respectively:

xki→a ≡ E [xi] , for xi ∼ µxi→a(xi) (2.42)
1

β
τki→a ≡ V [xi] (2.43)

Next, notice that eq. (2.40) can be written as an expectation over the messages∏
j 6=i µ

k
j→a(xj) and rewritten as:

µka→xi
(xi) ∝ E

[
exp

(
−β

2
(ya − (Ax)a)

2

)]

= E


exp


−β

2


ya −Aaixi −

∑

j 6=i
Aajxj




2




 , (2.44)

where it is used that (Ax)a =
∑
iAaixi = Aaixi +

∑
j 6=iAajxj . Now define an

auxiliary variable Z and an auxiliary function hxi(z) as:

Z ≡ ya −
∑

j 6=i
Aajxj , hxi

(z) ≡ exp

[
β

2
(Aaixi − z)2

]
(2.45)

2The Berry-Esseen theorem is a variant of the central limit theorem, which quantifies the
rate at which a sum of random variables converge to a Gaussian density. This particular
variant is proved in the appendix in [DMM10].
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The mean and variance of Z are now easily computed using the linearity prop-
erties of the expectation operator. Denote the mean and variance as zka→i and
τ̂ka→i, respectively:

zka→i ≡ E [Z] = E [ya]−
∑

j 6=i
AajE [xj ] = ya −

∑

j 6=i
Aajx

k
j→a (2.46)

τ̂ka→i ≡ V [Z] = V [ya] +
∑

j 6=i
A2
ajV [xj ] =

1

β

∑

j 6=i
A2
ajτ

k
j→a (2.47)

Substituting the two definitions in eq. (2.45) into eq. (2.44) yields

µka→xi
(xi) ∝ E [hxi

(Z)] (2.48)

Now let W be a Gaussian distributed random variable with mean zka→t and
variance 1

β τ̂
k
a→i, i.e. the same mean and variance as Z, then the Berry-Esseen

central limit theorem (see appendix A.2) implies:

sup
xi∈R

∣∣µka→i(xi)− E [hxi
(W )]

∣∣ ≤ Ck

n
1
2

(
τ̂ka→i

) 3
2

(2.49)

where Ck is a constant. This implies that the messages µka→xi
(xi) will con-

verge to the function E [hxi
(W )] as n approach infinity. Thus, to show that the

messages µka→xi
(xi) converge to a Gaussian density, it is necessary to show that

E [hxi
(W )]∫

E [hxi(W )] dxi
(2.50)

corresponds to a Gaussian density.

Recall that W ∼ N
(
zka→t,

1
β τ̂

k
a→i

)
and consider the numerator of the above

expression:

E [hxi(W )] =

∫
hxi(W )N

(
W
∣∣zka→i,

τ̂ka→i
β

)
dW

=

∫
exp

[
β

2
(Aaix−W )

2

]
N
(
W
∣∣zka→i,

τ̂ka→i
β

)
dW

It is now used that the first factor corresponds to an unnormalized Gaussian
density and followed by an application of Gaussian multiplication rule (see ap-
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pendix A.1), we get:

E [hxi(W )] =

∫ √
2π

β
N
(
W
∣∣Aaixi,

1

β

)
N
(
W
∣∣zka→i,

τ̂ka→i
β

)
dW

=

√
2π

β

∫
N


W |

Aaixiβ +
zka→iβ

τ̂k
a→i

β + β
τ̂k
a→i

,
1

β + 1
τ̂k
a→i


N

(
0|Aaixi − zka→i,

1

β
+
τ̂ka→i
β

)
dW

=

√
2π

β
N
(

0|Aaixi − zka→i,
1

β
+
τ̂ka→i
β

)∫
N


W |

Aaixiβ +
zka→iβ

τ̂k
a→i

β + β
τ̂k
a→i

,
1

β + 1
τ̂k
a→i


 dW,

This is simplified using the fact that probability densities integrate to 1:

E [hxi
(W )] =

√
2π

β
N
(

0|Aaixi − zka→i,
1

β
+
τ̂ka→i
β

)

=

√
2π

β
N
(
Aaixi

∣∣zka→i,
1

β
+
τ̂ka→i
β

)
(2.51)

Using this results, the integral in denominator of eq. (2.50) is easily computed
by changing variable of integration to x̂i = Aaixi. This yields:

∫
E [hxi(W )] dxi =

1

Aai

√
2π

β
(2.52)

Now the expression in eq. (2.50) is easily computed by combining eq. (2.51)
and eq. (2.52):

E [hxi
(W )]∫

E [hxi
(W )] dxi

=

√
2π
β N

(
Aaixi

∣∣zka→i, 1
β +

τ̂k
a→i

β

)

1
Aai

√
2π
β

= AaiN
(
Aaixi

∣∣zka→i,
1 + τ̂ka→i

β

)
(2.53)

Note, that the factor Aai appears outside, because the density is defined over
Aaixi and not xi alone. Finally, by combining the inequality in eq. (2.49) with
the above in eq. (2.53), we conclude:

µka→i(xi) ∝ N
(
Aaixi

∣∣zka→i,
1 + τ̂ka→i

β

)
for n→∞ (2.54)

Thus, in the large system limit, the messages from factor nodes to variable nodes
simplifies to Gaussian densities parametrized by zka→i and τ̂ka→i.

Next, consider the messages from variable nodes to factor nodes, i.e. µi→a(xi).
For that purpose, define the family of densities fβ(x; s, b) by:

fβ(x; s, b) ≡ 1

Zβ
exp

[
−β |x| − β

2b
(s− x)

2

]
(2.55)



30 Theory: The Linear Inverse Problem

−4 −2 0 2 4

x

 

 

s = 0

s = 1

s = 2

(a)

−4 −2 0 2 4
x

 

 

b = 4

b = 1

b = 1/4

(b)

−4 −2 0 2 4
x

 

 

s = 0.5, beta = 1

s = 2.0, beta = 1

s = 0.5, beta = 10

s = 2.0, beta = 10

(c)

Figure 2.5: Plots of the density f for different values of the parameters, which
are shown in the legends. (a) the effects of varying the s-parameter
for b = β = 1. (b) the effect of varying β. It is seen that for large
β’s the distribution becomes more ”spiky”

This particular family of densities are recognized as a product of a Laplace
density and a Gaussian density and the figures 2.5(a)-(c) show the form of this
density for different parameter combinations. The idea is now to show that the
messages µi→a(xi) can be approximated by this density. Denote the mean and
variance of the density fβ(x; s, b) as Fβ(s, b) and Gβ(s, b), respectively:

Fβ(s, b) = E [X] , where X ∼ fβ(x; s, b) (2.56)
Gβ(s, b) = V [X] (2.57)

Recall from eq. (2.39), that the messages from variable node to factor nodes are
given by

µk+1
xi→ga(xi) ∝ exp (−βλ |xi|)

∏

b 6=a
µkb→i(xi)

Plugging in the result from eq. (2.53) and simplifying yields:

µk+1
i→a(xi) ∝ exp (−βλ |xi|)

∏

b 6=a
AbiN

(
Abixi

∣∣zkb→i,
1 + τ̂kb→i

β

)

= exp (−βλ |xi|)
∏

b 6=a

Abi√
2π

1+τ̂k
b→i

β

exp

[
− β

2
(
1 + τ̂ka→i

) (Abixi − zkb→i
)2
]

∝ exp


−βλ |xi| −

∑

b6=a

β

2
(
1 + τ̂ka→i

) (Abixi − zkb→i
)2

 (2.58)

The parameters τ̂ka→i, which are defined in eq. (2.47), do only depend on index i
through the ”missing term in the sum”. Moreover, the columns ofA are assumed
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to have unit `2-norm, and therefore the elements A2
ai are expected to be very

small for a large values of m. Hence, parameters τ̂ka→i can be approximated by a
common parameter τ̂k and this approximation is expected to become negligible
in the large system limit:

τ̂k = τ̂ka→i (2.59)

Substituting this approximation into eq. (2.58):

µk+1
i→a(xi) ∝ exp


−βλ |xi| −

β

2 (1 + τ̂k)

∑

b6=a

(
Abixi − zkb→i

)2



Expanding the term in the parenthesis and rearranging yields

µk+1
i→a(xi) ∝ exp


−βλ |xi| −

β

2 (1 + τ̂k)


x2

i

∑

b 6=a
A2
bi +

∑

b 6=a

(
zkb→i

)2 − 2xi
∑

b6=a
Abiz

k
b→i






Since zkb→i, as defined in eq. (2.46), is constant w.r.t. xi, the second term of the
exponent can be ”absorbed” by the normalization constant. The fact that the
columns of A have unit `2-norm implies that

∑
b6=aA

2
bi ≈ 1− 1

m . Inserting this
approximation yields:

µk+1
i→a(xi) ∝ exp


−βλ |xi| −

β

2 (1 + τ̂k)


x2

i −
x2
i

m
− 2xi

∑

b6=a
Abiz

k
b→i






When m is sufficiently large, the term x2
i

m becomes negligible. Ignoring the term
x2
i

m and completing the square over xi again yields:

µk+1
i→a(xi) ∝ exp


−βλ |xi| −

β

2 (1 + τ̂k)


xi −

∑

b 6=a
Abiz

k
b→i




2



The hyperparameter λ is positive by definition and can therefore be moved
inside the absolute value operator. Furthermore, by multiplying and dividing
by λ2 in the last term, we obtain

µk+1
i→a(xi) ∝ exp


−β |λxi| −

β

2λ2 (1 + τ̂k)


λxi − λ

∑

b6=a
Abiz

k
b→i




2



Then by comparing the above result with the family of densities in (2.55), it is
clear that:

µk+1
i→a(xi) ∝ λfβ


λxi

∣∣ λ
∑

b 6=a
Abiz

k
b→i, λ

2
(
1 + τ̂k

)

 (2.60)
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That is, it has now been shown that the messages from variable nodes to factor
nodes, i.e. µi→a(xi), can be described by the density fβ in the large system
limit.

Furthermore, using the definition of xki→a in eq. (2.42) and the definition of
1
β τ

k
i→a in eq. (2.43), we have that

xk+1
i→a =

1

λ
Fβ


λ

∑

b6=a
Abiz

k
b→i, λ

2
(
1 + τ̂k

)

 (2.61)

τ̂k+1
i→a =

β

λ2
Gβ


λ

∑

b 6=a
Abiz

k
b→i, λ

2
(
1 + τ̂k

)

 (2.62)

where the factors 1
λ and 1

λ2 appear because xi is scaled with λ on the right hand
side of eq. (2.60). Using the approximation τki→a = τk, we get

τ̂k+1 =
1

m

β

λ2

n∑

i=1

Gβ

(
λ
∑

b

Abiz
k
b→i, λ

2
(
1 + τ̂k

)
)

(2.63)

Notice, the summation is over n terms, but we divide by m to take into account
that we only have m degrees of freedom.

The two types of messages, i.e. µi→a(xi) and µa→i(xi), are now reduced to
simple parametric densities and thus, the message passing scheme has now been
greatly simplified.

Part 3: Taking the Large β Limit

We will now show that in limit β → ∞, the mean of the distribution fβ is
described by a soft thresholding function and similarly, the variance is described
by the derivative of this soft thresholding function. The integrals, which define
the mean and variance of the density fβ , are by definition:

Fβ (s, b) =

∫
x

1

Zβ
exp

[
−β |x| − β

2b
(x− s)2

]
dx (2.64)

Gβ(s, b) =

∫
(x− F(s, b))

2 1

Zβ
exp

(
−β |x| − β

2b
(x− s)2

)
dx (2.65)

First consider the expression for the mean value. In the limit β → ∞, the
exponential function in eq. (2.64) will approach a Dirac’s delta function at the
value of x, which maximizes the exponent, i.e. x∗. Hence, by the sift property
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of Dirac’s delta functions under integrals, the mean value is simply equal to the
value of x∗. That is,

lim
β→∞

Fβ (s, b) = x∗ = argmax
x

{
− |x| − 1

2b
(x− s)2

}

Next, by analyzing the partial derivative of − |x|− 1
2b (x− s)2 w.r.t. x for x < 0

and for 0 < x , it can be shown that x∗ is determined by:

x∗ =





s+ b, if − s > b

s− b, if s > b

0, if |s| < b





= sign(s) (|s| − b) (2.66)

To summarize, in the large β limit, we can write the mean value of the fβ(x; s, b)-
density as:

F(s, b) = x∗ = η(s, b) ≡ sign(s) (|s| − b) (2.67)

where η(s, b) is referred to as the soft thresholding function.

Next, consider Gβ(s, b), i.e. the variance of fβ(x; s, b), in the large β limit.
Analysing the exponential function in eq. (2.65) in the limit β → ∞, shows
that the density fβ can be approximated by a Laplace density and a Gaussian
density. In the case |s| < b, the first term −β |x| is the dominating term in
the exponent of the fβ-density. Therefore, the resulting density can be approx-
imated by an Laplace distribution with mean x∗ = 0 and variance 2

β2 . On the
contrary, when |s| ≥ b, the second term in the exponent is dominating and
therefore the resulting density can be approximated by a Gaussian distribution
with mean x∗ = sign(s) (|s| − b) and variance b

β .

From eq. (2.43), we have τki→a = βGβ(s, b), therefore we consider the limit of
βGβ(s, b). Therefore,

lim
β→∞

βGβ(s, b) =





lim
β→∞

β 2
β2 if |s| < b

lim
β→∞

β bβ if |s| ≥ b

=





0 if |s| < b

b if |s| ≥ b
= b · η′(s, b) (2.68)

Thus, it is seen that the mean and variance of the f(x; s, b)-densities can be
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Figure 2.6: (a) The left-most figure shows the function η(x, b) for b =
{0.5, 1, 1.5}, where it is seen that η(x, b) is equal the soft thresh-
olding function. (b) The right-most figure shows the (piecewise)
derivative of η(x, b) for b = {0.5, 1, 1.5}. As seen, it acts like a sim-
ply hard thresholding function, i.e. it is zero when the magnitude
of the first argument is smaller than b.

written in terms of the soft thresholding function and its (piecewise)3 deriva-
tive. Figure 2.6(a) shows a plot of eq. (2.66) for b = {0.5, 1, 1.5}, where it is
seen that η(x, b) indeed act as a soft thresholding function with threshold b.

We can now substitute these explicit expressions for the mean and variance
into the update equations. First we substitute the expression for the mean
value into eq. (2.61) to get

xk+1
i→a =

1

λ
η


λ

∑

b 6=a
Abiz

k
b→i, λ

2
(
1 + τ̂k

)



Notice, that for k > 0, it holds that kη(s, b) = η(ks, kb). Using this result yields:

xk+1
i→a = η


∑

b 6=a
Abiz

k
b→i, λ

(
1 + τ̂k

)



3η(·, ·) is not differentiable at 2 points (the kinks). But according [DMM09], this does not
change the results as long as the η (·, ·) is Lipschitz continuous, which indeed is the case
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Now we substitute the expression for the variance into eq. (2.63) to get

τ̂k+1 =
1

m

1

λ2

n∑

i=1

λ2
(
1 + τ̂k

)
η′
(
λ
∑

b

Abiz
k
b→i, λ

2
(
1 + τ̂k

)
)

=

(
1 + τ̂k

)

m

n∑

i=1

η′
(
λ
∑

b

Abiz
k
b→i, λ

2
(
1 + τ̂k

)
)

For k > 0, it holds that η′(s, b) = η′(ks, kb). Therefore,

τ̂k+1 =

(
1 + τ̂k

)

m

n∑

i=1

η′
(∑

b

Abiz
k
b→i, λ

(
1 + τ̂k

)
)

The message passing scheme has now been simplified to the following update
equations:

xk+1
i→a = η


∑

b 6=a
Abiz

k
b→i, λ

(
1 + τ̂k

)

 , zka→i = ya −

∑

j 6=i
Aajx

k
j→a (2.69)

τ̂k+1 =

(
1 + τ̂k

)

m

n∑

i=1

η′
(∑

b

Abiz
k
b→i, λ

(
1 + τ̂k

)
)

(2.70)

Later, this particular message passing scheme is referred to as the MP-scheme
(in contrast to AMP-scheme).

In each iterations we have to propagate 2mn messages, since we have m mes-
sages for each xi for i = 1..n and n messages for each za for a = 1..m. There-
fore, Donoho et al. [DMM10] introduces yet another approximation, which is
described in the following.

Part 4: Reducing the Number of Messages

By analysing the expression for xki→a in eq. (2.69), it is seen that xki→a only
depends weakly on index a, since the right hand side only depends on index a
through the ”missing” term in the sum. Analogously, the same is true for zka→i
and index i. The idea is therefore to assume xki→a and zka→i can be approximated
as follows:

xki→a = xki + ε · xki→a +O(1/m) (2.71)

zka→i = zka + ε · zka→i +O(1/m) (2.72)
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where ε << 1 is a positive small number. Neglecting the O(1/m) terms and
substituting these approximations into the expressions in eq. (2.69) leads to:

xki + ε · xki→a = η


∑

b 6=a
Abi

(
zkb + ε · zkb→i

)
, λ
(
1 + τ̂k

)



zka + ε · zka→i = ya −
∑

j 6=i
Aaj

(
xkj + ε · xkj→a

)

Using the fact that sums of the form
∑
j 6=i xj can be written as

∑
j xj − xi

yields:

xk+1
i + ε · xk+1

i→a = η

(∑

b

Abi
(
zkb + ε · zkb→i

)
−Aai

(
zka + ε · zka→i

)
, λ
(
1 + τ̂k

)
)

zka + ε · zk+1
a→i = ya −

∑

j

Aaj
(
xkj + ε · xkj→a

)
−Aai

(
xki + ε · xki→a

)

The terms Aai · ε · zka→i and Aai · ε ·xki→a are expected to be very small since Aai
is small in the large system limit and ε << 1 is small by definition and therefore
these terms are also dropped. The resulting expressions then become:

xk+1
i + ε · xk+1

i→a ≈ η
(∑

b

Abi
(
zkb + ε · zkb→i

)
−Aaizka , λ

(
1 + τ̂k

)
)

zka + ε · zk+1
a→i ≈ ya −

∑

j

Aaj
(
xkj + ε · xkj→a

)
−Aaixki

Next, the expression for xk+1 is approximated to first order around the point∑
bAbi

(
zkb + ε · zkb→i

)
:

xk+1
i + ε · xk+1

i→a ≈ η
(∑

b

Abi
(
zkb + ε · zkb→i

)
, λ
(
1 + τ̂k

)
)

−Aaizkaη′
(∑

b

Abi
(
zkb + ε · zkb→i

)
, λ
(
1 + τ̂k

)
)

zka + ε · zk+1
a→i ≈ ya −

∑

j

Aaj
(
xkj + ε · xkj→a

)
−Aaixki

Now by comparing the left hand side to the right hand side of the topmost
expression, it appears that the only dependence on index a on the right hand
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side is in the second term. Thus, we can make the following identifications:

xk+1
i = η

(∑

b

Abi
(
zkb + ε · zkb→i

)
, λ
(
1 + τ̂k

)
)

(2.73)

ε · xk+1
i→a = −Aaizka · η′

(∑

b

Abi
(
zkb + ε · zkb→i

)
, λ
(
1 + τ̂k

)
)

(2.74)

and similar identifications for zka

zka ≈ ya −
∑

j

Aaj
(
xkj + ε · xkj→a

)
(2.75)

ε · zk+1
a→i ≈ Aaixki (2.76)

Now we can substitute eq. (2.74) into eq. (2.75) and eq. (2.76) into eq. (2.73)
to get:

xk+1
i = η

(∑

b

Abi
(
zkb +Abix

k
i

)
, λ
(
1 + τ̂k

)
)

zka = ya −
∑

j

Aaj

(
xkj −Aajzka · η′

(∑

b

Abj
(
zkb +Abjx

k
j

)
, λ
(
1 + τ̂k

)
))

Expanding parenthesis in the expression for xk+1
i yields

xk+1
i ≈ η

(∑

b

Abiz
k
b + xki

∑

b

A2
bi, λ

(
1 + τ̂k

)
)

where it is used that xki is independent of b and can therefore be moved outside
the sum. Furthermore, since the columns of A are assumed to have unit `2-
norm, it holds that

∑
bA

2
bi = 1. Using this and rewriting the update equation

in vector form yields

xk+1 ≈ η
(
ATzk + xk, λ

(
1 + τ̂k

))

which is the update equation derived in [DMM10]. Next, we expand the paren-
thesis in the expression for zka :

zka ≈ ya −
∑

j

Aajx
k
j − zka

∑

j

A2
aj · η′

(∑

b

Abjz
k
b + xkj , λ

(
1 + τ̂k

)
)

(2.77)

where it is used that
∑
j A

2
aj = 1. Due to the large system limit, i.e. m,n→∞

for m
n = δ, using the law of large numbers and the normalization of the columns

of A, we can make the following approximation:

zka
∑

j

A2
aj · η′

(∑

b

Abjz
k
b + xkj , λ

(
1 + τ̂k

)
)
≈ 1

m
zka
∑

j

η′
(∑

b

Abjz
k
b + xkj , λ

(
1 + τ̂k

)
)
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Substituting this back into eq. (2.77) and rewriting the update equation in
vector form yields:

zk = y −Axk − 1

m
zk
∑

j

η′
(
Azk + xk, λ

(
1 + τ̂k

))

Writing the sum using the average operator 〈·〉 and using 1
δ = n

m , we get the
update equation in [DMM10]:

zk = y −Axk − 1

δ
zk
〈
η′
(
Azk + xk, λ

(
1 + τ̂k

))〉
(2.78)

Finally, from eq. (2.70) we have the update recursion for τ̂k+1:

τ̂k+1 =

(
1 + τ̂k

)

m

n∑

i=1

η′
(∑

b

Abiz
k
b→i, λ

(
1 + τ̂k

)
)

Using the same approximation as for xki , i.e.
∑
bAbiz

k
b→i ≈

∑
bA

bizkb + xi, and
using vector notation, we get the final update rule for τ̂

τ̂k+1 =

(
1 + τ̂k

)

δ

〈
η′
(
ATzk + xk, λ

(
1 + τ̂k

))〉
(2.79)

Finally, defining γk = λτ̂k gives rise to the following algorithm:

xk+1 = η
(
ATzk + xk, λ

(
1 + γ̂k

))
(2.80)

zk = y −Axk − 1

δ
zk
〈
η′
(
Azk + xk, λ+ γk

)〉
(2.81)

γk =

(
1 + γt−1

)

δ

〈
η′
(
ATzk−1 + xk−1, λ+ γk−1

)〉
(2.82)

It is now seen that this algorithm only requires propagating m + n messages
in each iteration. Thus, the dominating operations in each iteration is the two
matrix multiplications, Axk and ATzk, which both scale as O(mn). Therefore,
each iteration of this algorithm has complexity O(mn). This finalizes the last
step of the derivation. Note, when the update rules are considered for only one
iteration, all of the approximations are expected to be negligible in the large
system limit. But there is no theoretical guarantee that the errors do accumulate
over multiple iterations. However, Donoho et al. claim that it is highly unlikely
and it has not been observed despite massive numerical simulation studies.



2.2 Approximate Message Passing 39

Algorithm 1 AMP algorithm (AMP)
• Initialization: Set t = 0,x = 0, τk = 1 and z = y.
• repeat until stopping criteria:

xk = η
(
ATzk−1 + xk−1, λ+ γk−1

)
zk = y −Axk − 1

δ
zk−1

〈
η′
(
Azk−1 + xk−1, λ+ γk−1

)〉
γ̂k =

(1+γ̂k−1)
δ

〈
η′
(
ATzk + xk, λ+ γk−1

)〉
Increase k

The algorithm is summarized in Algorithm 1. Following the notation in [DMM10],
the algorithm will be referred to as AMP0 for λ = 0 and AMPA for λ > 0.

Comparing the algorithm to the standard form of iterative thresholding methods
(see literature review in section 1.2), it is seen that AMP distinguishes itself by
the last term in the update equation for the residuals, i.e. the term:

1

δ
zk−1

〈
η′
(
Azk−1 + xk−1, λ+ γk−1

)〉
(2.83)

Donoho et al. states that this term leads to a substantial increase in recovery
without increasing the computational complexity significantly [DMM10]. This
term can be interpreted as a momentum term or the Onsager reaction term
from statistical physics [DMM09].

Example: Toy Problem

The AMP0 algorithm is now illustrated using a small toy example. Consider
a noiseless problem with n = 1000, m = 200, and k = 8. That is, a linear
inverse problem with 1000 unknowns, 200 equations and the true solutions has
8 non-zero elements. Let the true solution x0 be:

x0 =
[
−4 −3 −2 −1 1 2 3 4 0 0..

]T
∈ Rn (2.84)

The measurements y are then generated using y = Ax0, whereAij ∼ N (0, 1/m).
Figure 2.7 shows the result of applying AMP0 to this problem. In particular,
figure (a) shows the estimated coefficients x̂ as a function of the iteration num-
ber. The dashed lines indicates the true coefficients. The estimated coefficients
are initialized at 0 in the first iteration and then they converge to their respec-
tive true values in approximately 15 iterations. Figure (b) shows the evolution
of the threshold parameter γ as a function of the iteration number.
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Figure 2.7: Illustration of the AMP0 algorithm using a noiseless toy problem
with n = 1000, δ = 0.2, k = 8. (a) The estimated coefficients as a
function of iterations. The dashed lines indicate the true values.
(b) The threshold parameter γk as a function of iterations.

The State Evolution Fxormalism

Although not considered in this thesis, another very interesting aspect of the
AMP algorithm is the associated state evolution (SE) formalism [BM10, DMM10,
DMM09]. That is, the parameter τ2

k (as in eq. (2.79)) can be considered as the
state of the algorithm and it turns out that this state behaves in a predictable
manner in the large system limit. For instance, consider using the AMP0 algo-
rithm on a noiseless problem of the form y = Ax. Then the state variable τ2

k is
accurately predicted by the following analytical expressions:

τ2
k+1 =

1

δ
E [η (X0 + τkZ, γk)−X0]

2 (2.85)

γk+1 =
γk
δ
E [η′ (X0 + τkZ, γk)] (2.86)

where X0 is a random variable distributed according to the true prior distribu-
tion of x and Z ∼ N (0, 1). For a Gaussian A matrix, the fixed points of the
recursion in eq. (2.85) can be used to predict whether the algorithm can solve
the current problem or not [DMM10]. In fact, Donoho et al. derives the phase
transition curve (see literature review in section 1.2) for the AMP algorithm
based on this state evolution formalism. This phase transition curve, ρSE(δ),
is shown to be identical to that derived from combinatorial geometry (CG) for
`1-minimization:

ρSE(δ) = ρCG(δ) = max
z≥0

1− (2/δ)
[
(1 + z2)Φ(−z)− zφ(z)

]

1 + z2 − 2 [(1 + z2)Φ(−z)− zφ(z)]
(2.87)
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where φ(z) and Φ(z) are the density and cumulative distribution of a standard-
ized Gaussian variable z, respectively. Moreover, they show that the theoretical
quantities agrees with empirical simulation.
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2.3 Generalized Approximate Message Passing

The AMP algorithm introduced in last section provide a method for solving the
BP or BPDN problem in an efficient manner. Sundeep Rangan has shown that
this framework can be generalized to handle essentially arbitrary prior distribu-
tions and arbitrary noise distributions. The only requirement for the two sets of
distributions are that they factorize. This generalized framework, Generalized
Approximate Message Passing (GAMP), is introduced in the paper [Ran10].
The flexibility of GAMP allows us to do efficient inference using sparsity pro-
moting prior distributions like the spike and slab prior [IR05]. Furthermore,
since the noise distribution is also arbitrary, the framework can also be used
for classification by using a binomial noise distribution [ZS14], but this is not
considered in this work, though.

Even though the flexibility of the model is greatly increased, the computational
complexity remains the same, namely O(nm). The GAMP framework can both
be configured to perform MAP estimation based on max-sum message passing
and it can be configured to perform MMSE estimation based on sum-product
message passing. The derivation of the GAMP framework is somewhat more
straightforward than the derivation of AMP. Here the derivation is mainly based
on Taylor approximations and an application of the Central Limit Theorem.

The GAMP algorithm is stated in Algorithm 2 in its most general form. How-
ever, Rangan also provides a simplified version of this algorithm, where the indi-
vidual variance parameters τ ri are exchanged for a common variance parameter
τ r and similar for τxi , τsa and τpa . This simplified version is listed in Algorithm
3. The first algorithm is referred to as GAMP1 algorithm, whereas the latter
is referred to as the GAMP2 algorithm. It can be shown the AMP algorithm
introduced by Donoho et al. is actually a special case of the GAMP algorithm.
In fact, the GAMP2 algorithm correspond to the AMP algorithm if the prior
and noise distribution is chosen to be Laplace and Gaussian, respectively (see
Appendix B.2 for more details).

Consider now the computational complexity of the two algorithms. Assum-
ing the scalar functions and their derivatives have closed form expressions,
the GAMP1 algorithm is dominated by two matrix multiplication involving A
and two matrix multiplications involving AT . Due to the scalar variances, the
GAMP2 algorithm only requires one multiplication of A and one multiplication
of AT . Thus, both GAMP1 and GAMP2 scale as O(mn), but the proportion-
ality constant of GAMP2 is half of the proportionality constant for GAMP1,
which can have a large impact for large systems of equations.

Before we dive into the derivation of the GAMP framework, we will spent a
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Algorithm 2 GAMP algorithm (GAMP1)
• Initialization:

Set k = 0 and ŝa(−1) = 0.
Set x̂0j and τ0j (k) based on type of inference (MAP/MMSE).

• repeat:
Step 1. For each a ∈ [m]: zka =

∑
j

Aaj x̂
k
j

τpa (k) =
∑
j

A2
ajτ

x
j (k)

p̂ka = zka − τpa (k)ŝk−1
a

Step 2. For each a ∈ [m]: ŝka = gout

(
p̂ka, ya, τ

p
a (k)

)
τsa(k) = −

∂

∂p̂
gout

(
p̂ka, ya, τ

p
a (k)

)

Step 3: For each i ∈ [n]: τri (k) =

(∑
a

A2
aiτ

s
a(k)

)−1

r̂ki = x̂ki + τri (k)
∑
a

Aaiŝ
k
a

Step 4: For each i ∈ [n]: x̂k+1
i = gin

(
r̂kj , qj , τ

r
i (k)

)
τxi (k + 1) = τrj (k)

∂

∂r̂
gin
(
r̂kj , qj , τ

r
i (k)

)

few moments discussing the algorithm itself and the involved quantities. Sup-
pose that the individual elements in x are independently distributed according
to p(xi|qi), where qi is a known hyperparameter. Similarly, suppose that the
measurements are independently distributed according to p(ya|x). The core of
the algorithm is what Rangan calls the two scalar functions: gin(·) and gout(·).
As we will see soon, these two functions depend on the functional forms of the
prior distribution p(xi|qi) and noise distribution p(ya|x) and whether we want
to do MAP inference or MMSE inference. Thus, these two functions control the
basic behaviour of the algorithm. As stated earlier, the GAMP framework can
handle essentially any prior and noise distribution. However, for the algorithms
to remain efficient, it is necessary that the scalar functions can be expressed in
closed form, which limits the range of applicable distributions a bit.

In the GAMP algorithm listed in Algorithm 2, x̂ki denotes that estimate of
the i’th element of x in the k’th iteration and τxi (k) can be interpreted as the
associated uncertainty of x̂ki . In fact, when the algorithm is running in MMSE
mode, τxi (k) can be interpreted as an approximation of the posterior variance of



44 Theory: The Linear Inverse Problem

Algorithm 3 GAMP algorithm w. scalar variances (GAMP2)
1. Initialization:

Set k = 0 and ŝa(−1) = 0.
Set x̂0 and τ0(k) based on type of inference (MAP/MMSE).

2. repeat:

Step 1. For each a ∈ [m]: τp(k) =

(
1

m

)
||A||2F τ

x(k)

p̂ka =
∑
j

Aaj x̂
k
j − τp(k)ŝk−1

a

Step 2. For each a ∈ [m]: ŝka = gout

(
p̂ka, ya, τ

p(k)
)

τs(k) = − 1

m

m∑
a=1

∂

∂p̂
gout

(
p̂ka, ya, τ

p(k)
)

Step 3: For each i ∈ [n]:
1

τr(k)
=

(
1

n

)
||A||2F τ

s(k)

r̂ki = x̂ki + τr(k)
∑
a

Aaiŝ
k
a

Step 4: For each i ∈ [n]: x̂k+1
i = gin

(
r̂kj , qj , τ

r(k)
)

τx(k + 1) = τr(k)
∂

∂r̂
gin
(
r̂kj , qj , τ

r(k)
)

x̂ki . The scalar functions for both MAP and MMSE estimation are summarized
in table 2.2.

Interpretation of the Scalar Functions for MAP Estimation

To use the GAMP algorithm for MAP inference, the input scalar function gin
is given as:

gin (r̂, q, τ r) = argmax
x

Fin (x, r̂, q, τ r) , (2.88)

where

Fin (x, r̂, q, τ r) ≡ fin (x, q)− 1

2τ r
(x− r̂)2 (2.89)

The function fin(x, q) is the logarithm of the prior density, i.e. fin (x, q) =
log [p(x|q)]. Therefore, gin (r̂, q, τ r) can interpreted as the MAP estimate under
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Table 2.2: Scalar functions for both MAP and MMSE estimation.

Scalar function MAP MMSE

ẑ0 argmax
z
Fout (z, p̂, y, τp) E

[
z
∣∣p̂, y, τp

]

gout (p̂, y, τp) 1
τp (ẑ0 − p̂) 1

τp (ẑ0 − p̂)

−g′out (p̂, y, τp)
f ′′out(ẑ0,y)

τpf ′′out(ẑ0,y)−1

(
τp−V

[
z
∣∣p̂,y]

τp

)2

gin (r̂, q, τ r) argmax
x

Fin (z, r̂, q, τ r) E
[
x
∣∣r̂, q, τ r

]

τ rg′in (r̂, q, τ r) τr

1−τrf ′′in(x̂,q) V
[
x
∣∣r̂, q, τ r

]

the (unnormalized) posterior distribution given by:

p(x) ∝ exp [Fin (x, r̂, q, τ r)] (2.90)

In order words, we can interpret r̂ as a noise corrupted version of x. For MAP
inference, the output function gout (p̂, y, τp) is given by

gout (p̂, y, τp) =
1

τp
(ẑ0 − p̂) , ẑ0 = argmax

z
Fout (z, p̂, y, τp) (2.91)

where

Fout (z, p̂, y, τp) ≡ fout (z, y)− 1

2τp
(z − p̂)2

, (2.92)

where the function fout(y, z) is the logarithm of the noise distribution p(ya|za)
and za is the noise free output, i.e. za = (Ax)a. Thus, ẑ

0 can be interpreted as
the MAP estimate of a random variable Z given Y = y, where Z ∼ N (p̂, τp) and
Y ∼ p(y|z). For MAP estimation, the variables x̂i and τxi should be initialized
according to:

x̂0
i = argmax

xi

fin(xi, qi) τxi (0) =
1

f ′′in(x̂0
i , qi)

(2.93)

Interpretation of Scalars Function for MMSE Estimation

The GAMP algorithm can also provide approximative posterior distributions
for p(xi|y) and p(za|y), which in turn can be used for MMSE inference, i.e.

xMMSE
i =

∫
xi · p(xi|q,y)dxi (2.94)
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and similar for za. The GAMP approximation for the posterior distribution of
xi is given by:

p (xi|q,y) =
p(xi|q)N (xi|r̂, τ r)∫
p(xi|q)N (xi|r̂, τ r) dxi

(2.95)

As we will see soon, the input scalar function gin for MMSE estimation is simply
the conditional expectation of xi under this distribution, i.e.:

gin (r̂, q, τ r) = E
[
x
∣∣r̂, q, τ r

]
= xMMSE

i (2.96)

The scaled partial derivative of τ rg′in (r̂, q, τ r) w.r.t. r̂ is then the conditional
variance under this distribution:

τ rg′in (r̂, q, τ r) = V
[
x
∣∣r̂, q, τ r

]
(2.97)

Analogously, the posterior distribution of za is approximated by:

p
(
za
∣∣ya, q

)
=

p(ya|za, q)N
(
za
∣∣p̂, τp

)
∫
p(ya|za, q)N

(
za
∣∣p̂, τp

)
dza

(2.98)

The output scalar function is related to the conditional expectation of za under
this distribution:

gout (p̂, y, τp) =
1

τp
(ẑ0 − p̂) , ẑ0 = E

[
za
∣∣p̂, y, τp

]
. (2.99)

and the partial derivative of gout (p̂, y, τp) is related to the conditional variance
in a similar way. For MMSE estimation, the variables x̂i and τxi should be
initialized according to:

x̂0
i = E [xi|qi] τxi (0) = V [xi|qi] (2.100)

That is, x̂0
i and τxi (0) are initialized as the mean and variance of the prior

distribution.

The next two sections describe derivation of the GAMP framework using both
the max-sum algorithm and the sum-product algorithm. Since the two deriva-
tions have a large number of similarities, the derivation using max-sum is carried
out in detail, while for the sum-product case, only the differences are described.

Derivation of Max-Sum Algorithm for MAP Estimation

The purpose of this section is to derive the update equations for max-sum algo-
rithm and argue that the scalar functions gin(·) and gout(·) are determined by
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the prior distribution and the noise distribution, respectively. The derivation
given here follows the approach in [Ran10]. In the remainder of this chapter, it
is assumed that the columns of A are scaled such to have variance 1

m .

Both the prior distribution and the noise distribution have to factorize. That
is, the prior distribution on x have to have the form

p(x|q) =

n∏

i=1

p(xi|qi), (2.101)

where q are hyperparameters. The same holds true for the noise distribution,
which is given by

p(y|x) =

m∏

a=1

p(ya|x). (2.102)

The joint probability distribution can then be written as:

p (x,y|q) = p(y|x)p(x|q)

=

m∏

a=1

p(ya|x)

n∏

i=1

p (xi|qi) (2.103)

Using this decomposition, the corresponding factor graph can be set up. Due to
the use of the max-sum algorithm, the factors in the factor graph correspond to
the logarithm of the factor functions in the decomposition in eq. (2.103). The
logarithm of the i’th prior distribution is denoted fin,i and the logarithm of the
a’th noise distribution is fout,a. That is,

fin,i(xi) ≡ ln p(xi|qi) (2.104)
fout,a(ya, za) ≡ ln p(ya|za), (2.105)

where the auxiliary variable za is defined as za = (Ax)a, i.e. z = Ax. The
resulting factor graph is depicted in figure 2.8. As before, the factor graph
contains loops and therefore it is necessary to resort to loopy message passing.
In the next section, the max-sum update rules are derived based on this factor
graph.

Exact Max-Sum Message Passing Equations

We start from the leaf nodes and propagate messages towards to center of the
graph. The messages from the right-most leaf node, i.e. factor node fout,a, to
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Figure 2.8: Factor graph for GAMP model defined in eq. (2.103)

variable node xi is given by:

µfout,a→xi
(xi) = max

x\xi


fout(ya, za) +

∑

j 6=i
µxj→fout,a(xj)


 (2.106)

where the maximization is over the set of variables x\xi ≡ {xj : j ∈ [n] , j 6= i}.
Next, the messsage from the left-most leaf is considered. That is, the message
from factor node fin,i to variable node xi:

µfin,i→xi
(xi) = fin(xi, qi), (2.107)

Finally, the message from variable node xi to factor node fout,a is given by:

µxi→fout,a(xi) = µfin,i→xi(xi) +
∑

b6=a
µfout,b→xi(xi)

= fin(xi, qi) +
∑

b 6=a
µfout,b→xi(xi) (2.108)

Again, the two messages in eq. (2.106) and eq. (2.108) reveal the problem with
message passing in graphs with loops. Resorting to loopy message gives rise to
the following update equations:

µka→i (xi) = max
x\xi



fout (za, ya) +

∑

j 6=i
µkj→a (xj)



 (2.109)
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and

µk+1
i→a (xi) = fin (xi, qi) +

∑

b 6=a
µkb→i (xi) (2.110)

where k is the iteration index and za = (Ax)a. Note, that both types of mes-
sages are (unnormalized) functions on the entire real line. In general, additive
constants are not important, since we are dealing with logarithmic messages.
In the next section a series of approximation are introduced to simplified this
message passing scheme.

Approximation of the Max-Sum Messages

As stated above, the messages in eq. (2.109) and (2.110) are functions defined
on the entire real line. We will now introduce a set of approximations, which
reduces these messages to a few parameters.

First, define x̂ki→a as the value that maximizes the message from variable node
xi to factor node fout,a in the k’th iteration, i.e.

x̂ki→a ≡ argmax
xi

µki→a(xi) (2.111)

The terms µkj→a(xj) in eq. (2.109) are now approximated using a second order
Taylor approximation around the point x̂kj→a, i.e. around its maximum. This is
reasonable because the values of xj in the maximization in eq. (2.109) will be
close to x̂kj→a for small values of Aai due to za =

∑
iAaixi. This approximation

yields:

µkj→a (xj) ≈ µkj→a(x̂kj→a) +
∂

∂xj
µkj→a (xj)

∣∣
xj=x̂k

j→a

(xj − x̂kj→a)

+
1

2

∂2

∂x2
j

µkj→a (xj)
∣∣
xj=x̂k

j→a

(xj − x̂kj→a)2

= µkj→a(x̂kj→a) +
1

2

∂2

∂x2
j

µkj→a (xj)
∣∣
xj=x̂k

j→a

(xj − x̂kj→a)2

= µkj→a(x̂kj→a)− 1

2τxj→a

(
xj − x̂kj→a

)2
, (2.112)

where it is used that the first partial derivative is zero, when evaluated at the
maxima. The following definition is used in the above approximation:

1

τxj→a
≡ − ∂2

∂x2
j

µkj→a (xj)
∣∣
xj=x̂k

j→a

(2.113)
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Thus, τxj→a plays the role of the reciprocal negative curvature of the message
from variable node xj to factor node fout,a evaluated at its maxima. Note, that
the quantity τxj→a does also depend on the iteration number k, but to keep the
notation uncluttered, it is omitted if is it not strictly necessary.

An additional approximation in now introduced by assuming that τxj→a is inde-
pendent of a. That is, τxj→a = τxj for all a. Using this assumption, the messages
become:

µkj→a (xj) ≈ µkj→a(x̂kj→a)− 1

2τxj

(
xj − x̂kj→a

)2
(2.114)

The expression for the messages in eq. (2.114) is now substituted into eq.
(2.109):

µka→i (xi) ≈ max
x\xi



fout (za, ya) +

∑

j 6=i

[
µkxj→ga(x̂kj→a)− 1

2τxj
(xj − x̂j→a)

2

]


The terms µkj→a(x̂kj→a) do not depend on xi and can be absorbed by the nor-
malization constant. Therefore, the message simplifies to:

µka→i (xi) ≈ max
x\xi



fout (za, ya)−

∑

j 6=i

1

2τxj

(
xj − x̂kj→a

)2


 (2.115)

This optimization problem is now further simplified using a two step procedure.
The first step is to optimize to sum-term w.r.t. xj for j 6= i subject to the
constraint za = Aaixi +

∑
j 6=iAajxj , but for fixed values of xi and za. The

second step is then to optimize the result w.r.t. za.

To solve the first step, assume xi and za are fixed. Then the corresponding
optimization problem is given by:

J = min
x

∑

j 6=i

1

2τxj

(
xj − x̂kj→a

)2
subject to za = Aaixi +

∑

j 6=i
Aajxj , (2.116)

which is recognized as a least squares problem with an equality constraint. Such
a problem can be solved by introducing a Lagrange multiplier and forming the
Lagrangian function [NW06]:

f(x, λ) =
∑

j 6=i

1

2τxj

(
xj − x̂kj→a

)2
+ λ


za −Aaixi −

∑

j 6=i
Aajxj


 (2.117)

The procedure is now to compute the partial derivatives of f(x, λ) in eq. (2.117),
equating them to zero and solve the resulting system of equations. The long
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and tedious computation is shown in appendix B.1, but here we skip straight to
the result4:

J =
1

2

1∑
j 6=iA

2
ajτ

x
j


za −Aaixi −

∑

j 6=i
Aaj x̂

k
j→a




2

By introducing the following quantities:

p̂a→i ≡
∑

j 6=i
Aaj x̂

k
j→a τ̂pa→i ≡

∑

j 6=i
A2
ajτ

x
j , (2.118)

the solution of the least squares optimization problem can be written as:

J =
1

2τ̂pa→i
(za −Aaixi − p̂a→i)2 (2.119)

We have now solved the first of the two optimization steps. To solve the second
step, we insert the above result into eq. (2.115) and then maximize over za

µka→i (xi) ≈ max
za

{
fout (za, ya)− 1

2τ̂pa→i
(za − p̂a→i −Aaixi)2

}
(2.120)

Now, by defining the function:

H (p̂, y, τp) = max
z

{
fout (z, y)− 1

2τp
(z − p̂)2

}
, (2.121)

the message from factor node fout,a to variable node xi can be written as:

µka→i (xi) ≈ H (p̂a→i +Aaixi, ya, τ̂
p
a→i) (2.122)

We will now strive to simplify these messages even further. In particular, the
goal is to simplify the first argument in the function H(·) above. In order to do
that, we first introduce a few new definitions:

p̂a ≡
∑

i

Aaix̂i→a τpa ≡
∑

i

A2
aiτ

x
i (2.123)

Notice that these two new quantities do not depend on index i. Using these
new definitions, we can rewrite the expression for p̂a→i as:

p̂a→i =
∑

r 6=i
Aarx̂r→a =

∑

r

Aarx̂r→a −Aaix̂i→a = p̂a −Aaix̂i→a (2.124)

4There is a typo in the solution to this least squares problem in the paper [Ran10]. The
expression for J just below eq. (106) contains a summation operator, which is should not.
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and τ̂pa→i as:

τ̂pa→i =
∑

r 6=i
A2
arτ

x
r =

∑

j

A2
ajτ

x
j −A2

aiτi = τpa −A2
aiτ

x
i (2.125)

The results from eq. (2.124) and eq. (2.125) are now substituted into eq.
(2.122):

µka→i (xi) ≈ H
(
p̂a −Aaix̂ki→a +Aaixi, ya, τ

p
a −A2

aiτ
x
i

)
(2.126)

Now two new approximations are introduced. First, since the columns of A
are assumed to have variance 1

m , the elements A2
ai are expected to be small

and therefore we neglect the term A2
aiτ

x
i . Moreover, we will make the following

approximation: x̂ki→a = x̂ki . Applying these two approximations yields:

µka→i (xi) ≈ H
(
p̂a −Aaix̂ki +Aaixi, ya, τ

p
a

)

= H
(
p̂a +Aai

(
xi − x̂ki

)
, ya, τ

p
a

)
(2.127)

We will now introduce yet another approximation. That is, the expression in
eq. (2.127) is approximated by a second order expansion5 of eq. (2.127) around
the point p̂a:

µka→i (xi) ≈ H (p̂, ya, τ
p
a )
∣∣
p̂=p̂a

+
∂H (p̂, ya, τ

p
a )

∂p̂

∣∣
p̂=p̂a

[
Aai

(
xi − x̂ki

)]

+
1

2

∂2H (p̂, ya, τ
p
a )

∂p̂2

∣∣
p̂=p̂a

[
Aai

(
xi − x̂ki

)]2
(2.128)

The first term H (p̂, ya, τ
p
a )
∣∣
p̂=p̂a

is constant w.r.t. xi and can therefore be
absorbed into the constant:

µka→i (xi) ≈
∂H (p̂, ya, τ

p
a )

∂p̂

∣∣
p̂=p̂a

[
Aai

(
xi − x̂ki

)]

+
1

2

∂2H (p̂, ya, τ
p
a )

∂p̂2

∣∣
p̂=p̂a

[
Aai

(
xi − x̂ki

)]2
(2.129)

It turns out that the first and second partial derivatives are closely related to
one of the scalar functions in the algorithm, namely gout(·). But in order to
see this, we first need small detour to figure out how to actually compute these
partial derivatives.

To compute these partial derivatives, Sundeep Rangan uses the following re-
sults6. Let f : R → R be a function, let r, τ ∈ R be scalars and let k ∈ N be

5In the paper [Ran10], this approximation is described as a first order approximation.
6Rangan points out that Λf in eq. (2.132) can be interpreted as a quadratic variant of the

Legendre transformation [ZRM09] of f [Ran10].



2.3 Generalized Approximate Message Passing 53

natural number, then define the following functions:

(Lf) (x, r, τ) ≡ f(x)− 1

2τ
(r − x)2 (2.130)

(Γf) (r, τ) ≡ argmax
x

(Lf) (x, r, τ) (2.131)

(Λf) (r, τ) ≡ max
x

(Lf) (x, r, τ) (2.132)
(

Λ(k)f
)

(r, τ) ≡ ∂k

∂rk
(Λf) (r, τ), (2.133)

Now assume that f is twice differentiable and the above maximizations exists
and are unique. Then by defining x̂ = (Γf) (r, τ) and by using the above defini-
tions, it can be shown (straightforward proofs are given in the paper [Ran10])
that the following holds:

x̂ = (Γf) (r, τ) (2.134)
(

Λ(1)f
)

(r, τ) =
x̂− r
τ

(2.135)
(

Λ(2)f
)

(r, τ) =
f ′′(x̂)

1− τf ′′ (x̂)
(2.136)

∂

∂r
x̂ =

1

1− τf ′′ (x̂)
(2.137)

The idea is now to use the above properties to obtain expressions for the partial
derivatives of H. In order to do that, define the scalar function gout (p̂, y, τp) as
the partial derivative of H w.r.t. p̂. That is,

gout (p̂, y, τp) ≡ ∂

∂p̂
H(p̂, y, τp) (2.138)

Then by comparing the definition of the function H in eq. (2.121) with eq.
(2.130), it is seen that

(Lfout) (z, p̂, τp) = fout(z, y)− 1

2τp
(z − p̂)2 (2.139)

and therefore eq. (2.132) implies that the function H can be written as:

H (p̂, y, τp) ≈ max
z

{
fout (z, y)− 1

2τp
(z − p̂)2

}
= (Λfout (z, y)) (p̂, τp) (2.140)

This means that the function gout can be written as:

gout (p̂, y, τp) ≡ ∂

∂p̂
H(p̂, y, τp) =

∂

∂p̂
(Λfout (z, y)) (p̂, τp) (2.141)
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Then by applying the definition in eq. (2.133) and the property in eq. (2.135),
we get

gout (p̂, y, τp) =
ẑ0 − p̂
τp

(2.142)

where ẑ0 is given by

ẑ0 = (Γf) (p̂, τp) = argmax
z

{
fout(z, y)− 1

2τp
(z − p̂)2

}
(2.143)

Similarly, by using the result in eq. (2.136), we get an expression for the partial
derivative of gout (p̂, y, τp) w.r.t. p̂ as well:

∂

∂p̂
gout (p̂, y, τp) =

∂2

∂p̂2
H(p̂, y, τp)

=
f ′′out(ẑ

0, y)

1− τpf ′′out(ẑ0, y)
(2.144)

Using the expression for gout and its derivative, we can now compute the coef-
ficients for the Taylor expansion. For that purpose, we define

ŝa ≡ gout (p̂a, ya, τ
p
a ) (2.145)

τsa ≡ −
∂

∂p̂
gout (p̂a, ya, τ

p
a ) (2.146)

We now return from our detour and substitute ŝa and τsa into the Taylor expan-
sion in eq. (2.129) to get:

µka→i (xi) ≈ ŝaAai
(
xi − x̂ki

)
− τsa

2
A2
ai

(
xi − x̂ki

)2

Expanding the parentheses and rearranging:

µka→i (xi) = ŝaAaixi − ŝaAaix̂ki −
τsa
2
A2
ai

(
x2
i +

(
x̂ki
)2 − 2xix̂

k
i

)

=
(
ŝaAai + τsaA

2
aix̂

k
i

)
xi −

τsa
2
A2
aix

2
i − ŝaAaix̂ki +

τsa
2
A2
ai

(
x̂ki
)2

Since the terms ŝaAaix̂ki and τs
a

2 A
2
ai

(
x̂ki
)2 are constant w.r.t xi, they can be

absorbed into the normalization constant:

µka→i (xi) ≈
(
ŝaAai + τsaA

2
aix̂

k
i

)
xi −

τsa
2
A2
aix

2
i (2.147)

We have now managed to reduce the messages from factor node to variables
nodes from being a real function on the entire real line to a simply message,
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which is parametrized by {ŝa, τsa}. These parameters are obtained from the
scalar function gout and its partial derivative.

Now, we turn our attention to the messages from variable nodes to factor nodes
in order to obtain a similar simplification. In order to achieve this, we substitute
the above expression in eq. (2.147) into the expression for the messages from
variable nodes to factor nodes in eq. (2.110) and simplify:

µk+1
i→a (xi) ≈ fin (xi, qi) +

∑

b6=a

[(
ŝbAbi + τsbA

2
bix̂

k
i

)
xi −

τsb
2
A2
bix

2
i

]

= fin (xi, qi) +
∑

b6=a

(
ŝbAbi + τsbA

2
bix̂

k
i

)
xi −

1

2
x2
i

∑

b6=a
τsbA

2
bi

Now define τ ri→a as:

1

τ ri→a
≡
∑

b6=a
A2
biτ

s
b (2.148)

Inserting this definition yields:

µk+1
i→a (xi) ≈ fin (xi, qi) +

τ ri→a
τ ri→a

∑

b6=a

(
ŝbAbi + τsbA

2
bix̂

k
i

)
xi −

1

2
x2
i

1

τ ri→a
(2.149)

Furthermore, define r̂i→a as:

r̂i→a ≡ τ ri→a
∑

b 6=a

(
ŝbAbi + τsbA

2
bix̂

k
i

)
(2.150)

Substituting this into eq. (2.149) leads to:

µk+1
i→a (xi) ≈ fin (xi, qi) +

1

τ ri→a

(
r̂i→axi −

1

2
x2
i

)
(2.151)

We now rewrite the term in the parenthesis as follows:
(
r̂i→axi −

1

2
x2
i

)
= −1

2

(
x2
i − 2r̂i→axi

)

= −1

2

(
(r̂i→a − xi)2 − r̂2

i→a
)

= −1

2
(r̂i→a − xi)2

+ k1, (2.152)

where it is used that the term 1
2 r̂

2
i→a is constant w.r.t. xi. Next, substituting

the result from eq. (2.152) back into eq. (2.151) gives:

µk+1
i→a (xi) ≈ fin (xi, qi)−

1

2τ ri→a
(r̂i→a − xi)2 (2.153)
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where the constant k1 have been absorbed into the normalization constant.

The messages from variable nodes to factor nodes have now been considerably
simplified as well and we are now ready to define the second of the two scalar
functions, i.e. gin:

gin (r̂, q, τ r) ≡ argmax
x

{
fin (xi, qi)−

1

2τ ri→a
(r̂i→a − xi)2

}
(2.154)

By recalling the definition of x̂kj→a in eq. (2.111), it is seen that:

x̂i→a ≡ argmax
xi

µi→a(xi) = gin (r̂i→a, qi, τ
r
i→a) (2.155)

The quantities r̂i→a and τ ri→a are now approximated in analogy to the approx-
imations of the parameters pa→i and τa→i earlier. First we make the following
definitions:

τ ri =

[∑

a

A2
aiτ

s
a

]−1

, r̂i = x̂i + τ ri
∑

a

Aaiŝa (2.156)

Note, that these quantities are independent of index a. We can now approximate
τ ri→a (defined in eq. (2.148)) using these definitions:

τ ri→a =


∑

b6=a
A2
biτ

s
b



−1

≈
[∑

b

A2
biτ

s
b

]−1

≡ τ ri (2.157)

That is, we ignore the term A2
aiτ

s
a , which is of order O(A2

ai) and hence, this
approximation is also expected to become negligible, when the system size in-
crease. Consider now the expression for r̂i→a. Using a number of the previous
results, the expression for r̂i→a can be rewritten as follows:

r̂i→a = τ ri→a
∑

b 6=a

(
ŝbAbi + τsbA

2
bix̂i

)
(Using def. (2.150))

= τ ri→a
∑

b 6=a
ŝbAbi + τ ri→a

∑

b 6=a
τsbA

2
bix̂i

= τ ri→a
∑

b 6=a
ŝbAbi + x̂i (Using eq. (2.148))

= τ ri
∑

b6=a
ŝbAbi + x̂i (Using eq. (2.157))

= τ ri
∑

b6=a
ŝbAbi + r̂i − τ ri

∑

a

Aaiŝa (Using eq. (2.156))

= r̂i − τ ri Aaiŝa (2.158)
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Substituting the approximations for r̂i→a and τ ri→a back into the update equa-
tion yields:

µk+1
i→a (xi) ≈ fin (xi, qi)−

1

2τ ri
(r̂i − τ ri Aaiŝa − xi)2 (2.159)

We also substitute the approximations for r̂i→a and τ ri→a into the expression for
x̂i→a in eq. (2.155) to get:

x̂i→a = gin (r̂i→a, qi, τ
r
i→a)

= gin (r̂i − τ ri Aaiŝa, qi, τ ri ) (2.160)

The function gin (r̂i − τ ri Aaiŝa, qi, τ ri ) is now approximated using a first order
Taylor expansion around the point r̂i:

x̂i→a = gin (r̂i, qi, τ
r
i ) +

∂

∂r̂
gin (r̂, qi, τ

r
i )
∣∣
r̂=r̂j

(r̂i − τ ri Aaiŝa − r̂i)

= gin (r̂i, qi, τ
r
i )−Aaiŝaτ ri

∂

∂r̂
gin (r̂, qi, τ

r
i )
∣∣
r̂=r̂j

(2.161)

Based on this approximation, we will now introduce the last two definitions
needed to finish this derivation. Similar to the definition of x̂i→a in eq. (2.155),
define x̂i and Di as:

x̂i ≡ gin (r̂i, qi, τ
r
i ) (2.162)

Di ≡ τ ri
∂

∂r̂
gin (r̂, qi, τ

r
i )
∣∣
r̂=r̂j

(2.163)

Substituting x̂i and Di into the first order approximation in eq. (2.161) gives
rise to:

x̂i→a = x̂i −AaiŝaDi (2.164)

The expression for Di is now simplified as follows:

Di = τ ri
∂

∂r̂
(Γfin) (r̂i, τ

r
i ) Using eq. (2.132)

= τ ri
∂

∂r̂
x̂i Using def. (2.134)

= τ ri
1

1− τ ri f ′′in (x̂i, qi)
Using eq. (2.137) (2.165)

We will now show that 1
1−τr

i f
′′
in(x̂i)

is related to the second order partial derivative
of µi→a (xi) evaluated at x̂i. Taking the second order partial derivative of eq.
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(2.153) w.r.t. xi yields:

∂2

∂x2
i

µk+1
i→a (xi) =

∂

∂xi

[
f ′in (xi, qi) + 2

1

2τ ri→a
(r̂i→a − xi)

]

= f ′′in (xi, qi)−
1

τ ri→a

=
τ ri→af

′′
in (xi, qi)− 1

τ ri→a

= −
[

τ ri→a
1− τ ri→af ′′in (xi, qi)

]−1

(2.166)

Now by comparing eq. (2.165) and eq. (2.166), it is seen that Di can be written
as:

Di = −
[
∂2

∂x2
i

µk+1
i→a (x̂i)

]−1

,

which we in turn approximate using eq. (2.113):

Di ≈ τxi (2.167)

Now we substitute eq. 2.167 back into eq. (2.164) to get:

x̂i→a = x̂i −Aaiŝaτxi (2.168)

At last, we need to obtain update expressions for the τx and p̂a parameters. By
substituting the result from eq. (2.168) into eq. (2.123), we get the following
expression for p̂a:

p̂a =
∑

i

Aai (x̂i −Aaiŝaτxi )

=
∑

i

Aaix̂i − ŝa
∑

i

A2
aiτ

x
i

=
∑

i

Aaix̂i − ŝaτpa (Using def. (2.123)), (2.169)

which is the final update equation for p̂a. To get to update equation for τxi ,
we combine the definition of Di in eq. (2.163) with the approximation in eq.
(2.167) to give:

τxi ≈ τ ri
∂

∂r̂i
gin (r̂, qi, τ

r
i ) (2.170)

This step ends the derivation of GAMP for MAP estimation.
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By means of a series of approximations, the update equations from variable
nodes to factor node and vice versa were simplified to a set of parametrized
messages given by:

µk+1
i→a (xi) ≈ fin (xi, qi)−

1

2τ ri
(r̂i − τ ri Aaiŝa − xi)2

µka→i (xi) ≈
(
ŝaAai + τsaA

2
aix̂

k
i

)
xi −

τsa
2
A2
aix

2
i ,

where the parameters of these messages are τ ri , r̂i, ŝa, τsa , and x̂i. Furthermore,
the parameters are computed using the two scalar functions gin and gout, which
are determined from the prior and noise distribution, respectively. Algorithm 2
summarizes how to update the parameters.

Derivation of Sum-Product Algorithm for MMSE Estima-
tion

The objective of this subsection is to derive the GAMP algorithm for MMSE
estimation based on the sum-product algorithm. That is, we want to estimate

x̂mmse = E
[
x
∣∣y, q

]
. (2.171)

The decomposition of the joint distribution is the same as in the MAP-case
and therefore the topology of the underlying factor graph does not change.
Fortunately, this implies that many of the results from the MAP derivation can
be reused.

Exact Sum-Product Message Passing Equations

As before, the first step is to derive the exact messages based on the factor
graph in figure 2.9. We will follow the approach in [Ran10] and use logarithmic
message for the sum-product algorithm as well. Messages in the non-logarithmic
space will be denoted using a ”hat”, e.g. µ̂ and messages in the logarithmic space
will just be denoted µ.

Starting from the left leaves, the message from factor node p(xi|qi) to variable
node xi simplify becomes the factor function itself:

µ̂p(xi|qi)→xi
(xi) = p(xi|qi) (2.172)
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......
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Figure 2.9: Factor graph for the joint density in eq. (2.103) for MMSE esti-
mation

Next, the message from variable node xi to factor node p(ya|x) is given by:

µ̂xi→p(ya|x)(xi) =
∏

b6=a
µ̂p(yb|x)→xi

(xi)µ̂p(xi|qi)→xi
(xi)

=
∏

b6=a
µ̂p(yb|x)→xi

(xi)p(xi
∣∣qi) (2.173)

Transforming the messages to the logarithmic-space yields:

µxi→p(ya|x)(xi) = ln µ̂xi→p(ya|x)(xi)

=
∑

b 6=a
ln µ̂p(yb|x)→xi

(xi) + ln p(xi
∣∣qi)

=
∑

b 6=a
µp(yb|x)→xi

(xi) + fin,i(xi, qi) (2.174)

Note, that this message is identical to the corresponding message in the max-
sum GAMP algorithm. Consider now the messages in the other direction. The
message from factor node p(ya

∣∣za) to variable node xi becomes:

µ̂p(ya|za)→xi
(xi) =

∫
p(ya

∣∣za)µ̂ya→p(ya|za)(ya)
∏

j 6=i
µ̂xj→p(ya|za)(xj) dxj 6=i

=

∫
p(ya

∣∣za)
∏

j 6=i
µ̂xj→p(ya|za)(xj) dxj 6=i (2.175)

where za =
∑
iAaixi. The message in eq. (2.175) is equivalent to the expec-

tation of p(ya
∣∣za) over the variable za with xi being independently distributed
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according to pi→a(xi) ∝ µ̂xi→p(ya|x). That is,

µ̂p(ya|x)→xi
(xi) = E

[
p(ya

∣∣za)
]

(2.176)

Transforming the message to the logarithmic-space yields:

µp(ya|x)→xi
(xi) = ln µ̂p(ya|x)→xi

(xi)

= lnE
[
p(ya

∣∣za)
]

(2.177)

Thus, the two exact messages are given by:

µa→i(xi) = lnE
[
p(ya

∣∣za)
]

(2.178)

µi→a(xi) =
∑

b6=a
µb→xi(xi) + ln p(xi

∣∣qi) (2.179)

We can now write the final estimate of the marginal posterior distribution of xi
as

p(xj) ∝ exp [µi(xi)] , (2.180)

where µi(xi) is defined as:

µi(xi) ≡ fin,i(xi, qi) +
∑

i

µa→i(xi) (2.181)

The objective of the remainder of this section is to show how the two scalar
functions gin and gout must be defined in order to perform MMSE estimation
using GAMP algorithm.

Approximation the Sum-Product Messages

We will now apply a series of approximations to simplify the message passing
equations from above. In order to do that, we will need the following definitions:

x̂i ≡ E
[
xi
∣∣µi (·)

]
(2.182)

x̂i→a ≡ E
[
xi
∣∣µi→a (·)

]
(2.183)

τxi ≡ var
[
xi
∣∣µi (·)

]
(2.184)

τxi→a ≡ var
[
xi
∣∣µi→a (·)

]
(2.185)

where E
[
g(x)

∣∣µ (·)
]
means the expectation over x with density p(x) ∝ exp [µ(x)].

This means that x̂i→a and τxi→a are the mean and variance, respectively, of a
random variable xi with density ∝ exp [µi→a].



62 Theory: The Linear Inverse Problem

Consider the messages from factor nodes to variable nodes, i.e. eq. (2.178). In
this equation, the expectation is over za =

∑
j Aaixj and therefore, for large n

the central limit theorem suggests that za conditioned on xi is approximately
Gaussian distributed with mean and variance given by:

E [za] = Aaixi +
∑

j 6=i
AajE

[
xj
∣∣µi→a (·)

]
(2.186)

V [za] =
∑

j 6=i
A2
ajV

[
xj
∣∣µi→a (·)

]
(2.187)

where the variance of xi is zero since we are conditioning on xi. Therefore, we
have that

za
∣∣xi ∼ N (Aaixi +

∑

j 6=i
AajE

[
xj
∣∣µi→a (·)

]
,
∑

j 6=i
A2
aj V

[
xj
∣∣µi→a (·)

]
) (2.188)

Using the definitions in eq. (2.183) and eq. (2.185) from above, this can be
rewritten as

za
∣∣xi ∼ N (Aaixi +

∑

j 6=i
Aaj x̂i→a,

∑

j 6=i
A2
ajτ

x
i→a) (2.189)

Now recognize that we can use the definitions of p̂a→i and τ
p
a→i in eq. (2.118)

from earlier to write:

za
∣∣xi ∼ N

(
za
∣∣ p̂a→i +Aaixi, τ

p
a→i
)

(2.190)

This implies that the messages from factor nodes to variables nodes can be
written as:

µa→i(xi) = lnE
[
p(ya

∣∣za)
]

≈ ln

∫
p(ya

∣∣za)N
(
za
∣∣p̂a→i +Aaixi, τ

p
a→i
)
dza

Analogous to the derivation of the MAP algorithm, we now define the function
H as follows7:

H(p̂, y, τp) ≡ lnE
[
p(y
∣∣z)
]

(2.191)

where the expectation is over z ∼ N
(
z
∣∣ p̂, τp

)
. The message µa→i(xi) can now

be rewritten using H:

µa→i(xi) ≈ H(p̂a→i +Aaixi, ya, τ
p
a→i) (2.192)

We now recognize that the result above, i.e. eq. (2.192) has the exact same
form as eq. (2.122) from the MAP derivation. This means that we can apply

7Note, the expectation operator is missing in eq. (130) in the original paper [Ran10]
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the exact same approximations as we did in the MAP-case. Therefore, we can
approximate µa→i(xi) using the result in eq. (2.127). This yields:

µa→i(xi) ≈ H (p̂a +Aai (xi − x̂i) , ya, τpa ) (2.193)

Again, completely analogous to the MAP case, a second order approximation of
eq. (2.193) yields:

µa→i(xi) ≈ ŝaAai (xi − x̂i)−
1

2
τsa (Aai (xi − x̂i))2

, (2.194)

where gout(p̂, y, τp), ŝa and τsa are defined as in eq. (2.138), (2.145), and (2.146),
respectively.

The expression for the scalar function gout and its partial derivative ∂
∂p̂gout are

now computed. Using the definition of H in eq. (2.191), we get:

gout(p̂, y, τ
p) =

∂

∂p̂
H(p̂, y, τp)

=
1

E
[
p(y
∣∣z)
] ∂
∂p̂

E
[
p(y
∣∣z)
]

To ease the notation, let Z denote the normalization constant, i.e. Z = E
[
p(y
∣∣z)
]
:

gout(p̂, y, τ
p) =

∂

∂p̂
E
[
p(y
∣∣z)
]

=
1

Z

∫
p(y|z) ∂

∂p̂
N (z|p̂, τp) dz

=
1

Z

∫
p(y|z)z − p̂

τp
N (z|p̂, τp) dz

=
1

Z

1

τp

∫
zp(y|z)N (z|p̂, τp) dz − p̂

τp
1

Z

∫
p(y|z)N (z|p̂, τp) dz

=
1

τp
(
ẑ0 − p̂

)
, (2.195)

where

ẑ0 = E [z|p̂, τp] =

∫
zp(y|z)N (z|p̂, τp) dz∫
p(y|z)N (z|p̂, τp) dz

(2.196)

For the partial derivative of gout w.r.t. p̂, we get:

∂

∂p̂
gout(p̂, y, τ

p) =
1

τp

(
∂

∂p̂
ẑ0 − 1

)



64 Theory: The Linear Inverse Problem

Thus, we need to compute the partial derivative of ẑ0, which is given by:

∂

∂p̂
ẑ0 =

∫
zp(y|z)N (z|p̂, τp) dz∫
p(y|z)N (z|p̂, τp) dz

(2.197)

Applying the quotient rule for derivatives and using the fact that we can ex-
change the order of the derivative and the integration gives:

∂

∂p̂
ẑ0 =

1

τp
V [z|p̂, τp] , (2.198)

where the scaling 1/τp comes from the computing the partial derivative of the
Gaussian density:

∂

∂p̂
N (z|p̂, τp) =

z − p̂
τp
N
(
z
∣∣p̂, τp

)

Therefore, the partial derivative of the scalar function gout w.r.t p̂ becomes:

∂

∂p̂
gout(p̂, y, τ

p) =
1

τp

(
1

τp
V [z|p̂, τp]− 1

)
, (2.199)

Consider now the message update in the other direction. Inserting the approxi-
mation of the messages µa→i(xi) from eq. (2.194) into the expression µi→a(xi)
in eq.(2.179) yields:

µi→a(xi) =
∑

b 6=a
µb→i(xi) + ln p(xi

∣∣qi)

≈
∑

b 6=a

[(
Abiŝb −A2

biτ
s
b x̂i
)
xi −

τsb
2
A2
bix

2
i

]
+ ln p(xi

∣∣qi)

We can now repeat the exact same calculation as in the MAP case to obtain:

µki→a (xi) ≈ fin (xi, qi)−
1

2τ ri→a
(r̂i→a − xi)2

, (2.200)

where r̂i→a and τ ri→a are defined in eq. (2.150) and (2.148), respectively. Finally,
using the fact that µi→a(xi) = ln µ̂i→a(xi), we can write:

µ̂i→a(xi) ≈
1

Z
exp [µi→a(xi)]

=
1

Z
exp

[
fin (xi, qi)−

1

2τ ri→a
(r̂i→a − xi)2

]
(2.201)

where Z is a normalizing constant.
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We are now ready to define the second scalar function, gin, as:

gin(r̂, q, τ r) ≡ E
[
xi
∣∣µi→a (·)

]
(2.202)

where the expectation is over the density in eq. (2.201). Then by using definition
in eq. (2.183) and the result above, we have that:

x̂i→a ≡ E
[
xi
∣∣µi→a (·)

]
= gin(r̂i→a, qi, τ

r
i→a) (2.203)

Note, that this result has exactly the same form as the corresponding result
for the MAP-case given in eq. (2.160) and therefore we can apply the same
approximations to obtain the expression in eq. (2.162). The result is restated
here for convenience:

x̂i ≡ gin (r̂i, qi, τ
r
i ) ,

= E
[
xi
∣∣r̂i, qi, τ ri

]
(2.204)

where r̂i and τ ri are given in eq. (2.156) and eq. (2.157), respectively. Using a
similar line of arguments as for the calculation of the partial derivative of gout
in eq. (2.198), the partial derivative of gin w.r.t. r̂, is given by:

∂

∂r̂
gin (r̂i, qi, τ

r
i ) =

1

τ r
V [xi|r̂, τ r] , (2.205)

Thus, explicit expressions for the two scalar functions have been derived. This
finalizes the derivation of the GAMP algorithm for MMSE estimation. In the
next section, we will use the GAMP algorithm to derive an inference algorithm
for MMSE estimation.

2.4 Inference using a Bernoulli-Gaussian Prior

The goal of this section is to use the GAMP1 algorithm to derive an algorithm
for solving the linear inverse problem using a Bernoulli-Gaussian (BG) prior.
The BG prior, which is also known as the ”spike and slab” prior, is given by:

p(xi
∣∣q) = (1− λ) δ (xi) + λN

(
xi
∣∣ζ, ψ

)
(2.206)

where the λ ∈ [0, 1] is controlling the level of sparsity and ζ, ψ ∈ R are mean
and variance of the Gaussian component, respectively. Note, that the sparsity
parameter λ should not be confused with the sparsity ρ = k

m defined in section
2.2. However, λ can be interpreted as the expected number of non-zero elements
in the solution. Using this interpretation, we can write:

λ =
k

n
=

k

m

m

n
= ρ · δ (2.207)
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This particular kind of prior is also known as a sparsity promoting prior due
to the fact that for λ < 1, the resulting density has point mass at xi = 0, and
hence favours sparsity. In [VS13], Vila et al. introduces an extension of the
spike and slap prior, namely:

pGMM(xi
∣∣q) = (1− λ) δ (xi) + λ

L∑

`=1

ωN
(
xi
∣∣ζ`, ψ`

)
(2.208)

That is, the distribution of the active coefficients is a Gaussian Mixture Model
[Bis06] rather than a single Gaussian component. They argue that this approach
yields better performance in the cases, where the true prior distribution is more
complex than a simple Gaussian. However, for simplicity the approach taken
here is restricted to one Gaussian component only, i.e. the conventional spike
and slap prior, but we note that the extension to a Gaussian mixture model is
possible and a natural extension.

Another representation of the Bernoulli Gaussian distribution is that X is com-
posed as a product of two hidden random variables, a binary support variable
S ∼ Ber(λ), which is Bernoulli distributed with parameter λ and an amplitude
or coefficient variable θ ∼ N (ζ, ψ), which is Gaussian distributed with mean ζ
and variance ψ. That is,

xi = siθi ⇐⇒ p(xi
∣∣si, θi) =





δ (xi) if si = 0

δ (xi − θi) if si = 1
(2.209)

This representation will prove useful, when the model is extended to the multiple
measurement vector problem in the next section.

The specific values of the hyperparameters for the spike and slap prior have great
impact on the resulting performance of the algorithm. Therefore, following the
work in [VS13], we will derive an Expectation-Maximization scheme [DLR11] to
learn these hyperparameters from the data at hand. This algorithm is therefore
referred to as EMBGAMP. From the view point of GAMP, the hyperparameter
will be considered as known and fixed. Hence, this method can be classified as
an Emperical-Bayes approach.

The noise is assumed to be independent, zero-mean, and Gaussian distributed
with variance σ2. Thus, the set of hyperparameters for this model then becomes
q =

[
λ, ζ, ψ, σ2

]
. Using GAMP in MMSE mode, the approximated posterior

distribution of xi is obtain using eq. (2.95):

p(xi|y, q) ≡ 1

Z
px(xi

∣∣q)N
(
xi
∣∣ r̂i, τ ri

)
(2.210)
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where Z is the normalization term given by

Z =

∫
px
(
xi
∣∣q
)
N
(
xi
∣∣ r̂i, τ ri

)
dxi (2.211)

Now by plugging eq. (2.206) into eq. (2.210) and simplifying, we obtain

p(xi|y, q) =
1

Z

(
(1− λ) δ(xi) + λN

(
xi
∣∣ζ, ψ

))
N
(
xi
∣∣ r̂i, τ ri

)

=
1

Z
(1− λ) δ(xi)N

(
xi
∣∣ r̂i, τ ri

)
+

1

Z
λN

(
xi
∣∣ζ, ψ

)
N
(
xi
∣∣ r̂i, τ ri

)

Invoking the Gaussian multiplication rule (see Appendix A.1) yields:

px|y(xi|y, q) =
1

Z
(1− λ) δ(xi)N

(
xi
∣∣ r̂i, τ ri

)

+
1

Z
λN

(
x
∣∣
ζ
ψ + r̂i

τr
i

1
ψ + 1

τr
i

,
1

1
ψ + 1

τr
i

)
N
(
0
∣∣ ζ + r̂i, ψ + τ ri

)

It is seen that the approximate posterior density also has the form of a spike
and slap density. We now introduce the following definitions for the posterior
mean and variance of the ”slap”-part of the posterior density for xi:

γi =

ζ
ψ + r̂i

τr
i

1
ψ + 1

τr
i

νi =
1

1
ψ + 1

τr
i

(2.212)

Similarly, we define πi to be the posterior probability of the i’th coefficient being
active, i.e. πi = p(si = 1

∣∣y, q). Substituting in these definitions gives:

px|y(xi|y, q) = (1− πi) δ(xi) + πiN
(
xi
∣∣γi, νi

)
(2.213)

To obtain an expression for πi, we first compute the normalization factor Z.
The calculation is tedious, but straightforward:

Z =

∫
(1− λ) δ(xi)N

(
xi
∣∣ r̂i, τ ri

)
+ λN

(
xi
∣∣ζ, ψ

)
N
(
xi
∣∣ r̂i, τ ri

)
dxi

= (1− λ)N
(
0
∣∣ r̂i, τ ri

)
+ λN

(
0
∣∣ ζ − r̂i, ψ + τ ri

) ∫
N
(
xi
∣∣
ζ
ψ + r̂i

τr
i

1
ψ + 1

τr
i

,
1

1
ψ + 1

τr
i

)
dxi

= (1− λ)N
(
0
∣∣ r̂i, τ ri

)
+ λN

(
0
∣∣ ζ − r̂i, ψ + τ ri

)
(2.214)

We can now substitute the normalization Z into the expression for the marginal
posterior distribution of xi as given in eq. (2.210):

px|y(xi|y, q) =
(1− λ) δ(xi)N

(
xi
∣∣ r̂i, τ ri

)
+ λN

(
x
∣∣γn, νn

)

(1− λ)N
(
0
∣∣ r̂i, τ ri

)
+ λN

(
0
∣∣ ζ − r̂i, ψ + τ ri

) (2.215)
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Figure 2.10: Plots of the posterior activation probability πi for ζ = 0, ψ = 1
as a function of λ (left) and r̂ (right).

Now comparing coefficients in eq. (2.213) and eq. (2.215) and solving for πi
yields:

1− πi =
(1− λ)N

(
0
∣∣ r̂i, τ ri

)

(1− λ)N
(
0
∣∣ r̂i, τ ri

)
+ λN

(
0
∣∣ ζ − r̂i, ψ + τ ri

)

⇐⇒ πi =
1

1 +
(1−λ)N

(
0
∣∣ r̂i,τr

i

)
λN

(
0
∣∣ ζ−r̂i,ψ+τr

i

)
(2.216)

In order to investigate how this algorithm works, figure 2.10 shows two plots
of the posterior activation probability πi as a function of λ and r̂, respectively.
It is seen that the posterior activation probability behaves as one might expect
intuitively. The left-most plot shows πi as a function of λ for r̂ = 1. It is seen
that the smaller value of τ r, i.e. the less uncertainty about x̂i, the higher value
of πi. The right-most plot shows πi as a function of r̂, and it is seen that for
small λ, the posterior probability of activation is also small close to r = 0, and
increases rapidly when the magnitude of r̂ exceeds a threshold value.

Computing the Scalar Functions

We have now established closed form expressions for the approximate posterior
quantities using the GAMP approximation. The next step is to compute the
two required scalar functions and their partial derivatives. Consider the input
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function, gin(r̂, q, τ r), which is given by:

gin(r̂, q, τ r) = E [xi|r̂, τ r]

=

∫
xi
[
(1− πi) δ(xi) + πiN

(
xi
∣∣γi, νi

)]
dxi

Applying the linearity property of integrals yields:

gin(r̂, q, τ r) = (1− πi)
∫
xi δ(xi) dxi + πi

∫
xiN

(
xi
∣∣γi, νi

)
dx

Using the sift property of Dirac delta function under an integral, it is seen that
the first term evaluates to zero. The integral in the second term simply evaluates
to the mean of the Gaussian density, i.e. γi:

gin(r̂, q, τ r) = πiγi (2.217)

Next we need to determine the conditional variance, which is defined as:

V
[
X|R̂ = r̂, Q̂ = q

]
=

∫
(xi − πiγi)2 [

(1− πi) δ(xi) + πiN
(
xi
∣∣γi, νi

)]
dxi

Using a similar line of arguments as for the mean, we get:

V
[
X|R̂ = r̂, Q̂ = q

]
=

∫
(xi − πiγi)2

(1− πi) δ(xi) + (xi − πiγi)2
πiN

(
xi
∣∣γi, νi

)
dxi

= (1− πi)
∫

(xi − πiγi)2
δ(xi)dxi + πi

∫
(xi − πiγi)2N

(
xi
∣∣γi, νi

)
dxi

= π
(
γ2 − πγ2 + ν

)
(2.218)

where it is used that
∫
x2N

(
x|µ, σ2

)
= σ2 + µ2. The partial derivative of the

scalar function gin(r̂, q, τp) then becomes

∂

∂r̂
gin =

1

τ r
V [xi|r̂, τ r]

=
1

τ r
πi
(
γ2 − πγ2 + ν

)
(2.219)

Finally, we need to compute the output functions from eq. (2.195). For conve-
nience, the definition is restated here:

gout (p̂, y, τp) ≡ 1

τp
(
ẑ0 − p̂

)
, ẑ0 ≡ E [z|p̂, y, τp] (2.220)

The variables p̂ and τp are readily available from the GAMP approximation,
therefore we only have to determine an expression for ẑ0. Since the noise is
assumed to be Gaussian, the posterior of z conditioned on y is proportional to:

p(z
∣∣y) ∝ N

(
y|z, σ2

)
N
(
z
∣∣p̂, τp

)
(2.221)
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and since both factors are Gaussian, the resulting posterior distribution is also
Gaussian. The moments of this posterior distribution is then easily obtained
using standard formulas for Gaussian distributions [Bis06, ch. 2.3]

p(z
∣∣y) = N

(
z
∣∣ẑ0, τz

)
(2.222)

where

ẑ0 = τz
(
y

σ2
+

p̂

τp

)
, τz =

τpσ2

τp + σ2
(2.223)

Therefore the desired conditional expectation becomes:

E [z|p̂, y, τp] =

∫
zN

(
z|ẑ0, τz

)
dz = ẑ0 (2.224)

We can now compute partial derivative of gout(p̂, y, τp) w.r.t. p̂ using eq. (2.197):

∂

∂p̂
gout(p̂, y, τ

p) ≡ 1

τp

(
1

τp
V [z|p̂, τp]− 1

)

=
1

τp

(
1

τp
τz − 1

)
(2.225)

After defining the two scalar functions, we can now simply apply the GAMP
algorithm in Algorithm 2. The initial values of x̂1

i , ∀i ∈ [n] should be initialized
as the mean of the prior. Similarly, the variances τxi (1) should be initialized as
the variance of the prior. The BG-AMP algorithm is summarized in Algorithm
4.

Regarding the stopping criteria, one can either stop when a fixed number of
iterations is reached or when it converges in the relative difference of the norm
of the estimate of x, or both. By relative difference of norm is meant the
following quantity:

∣∣∣∣x̂k − x̂k−1
∣∣∣∣2

2

||x̂k||22
. (2.226)

We have now derived an algorithm for sparse inference under the spike and slap
prior based on a set of known hyperparameters. Sometimes it is possible to
give some rough estimate of the hyperparameters, while other times it is not.
But in either case, it is likely that the hyperparameters will benefit from some
tuning. In the following we will derive a set of EM-based update equations for
the hyperparameters based on the work in [VS13]. When the hyperparameters
are learned using the EM scheme, the algorithm is referred to as EMBGAMP.
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Algorithm 4 BGAMP algorithm (BGAMP)
• Initialize

Set all x̂1i as the mean value of the prior
Set all variances τxi (1) as the the variance of the prior
Set all s0i = 0.

• repeat until stopping criteria:

Step 1. For each a ∈ [m]: zka =
∑
j

Aaj x̂
k
j

τpa (k) =
∑
j

A2
ajτ

x
j (k)

p̂ka = zka − τpa (k)ŝk−1
a

Step 2. For each a ∈ [m]: τza (k) = V
[
za
∣∣y, p̂ka, τpa (k)]

ẑ(k) = E
[
za
∣∣y, p̂ka, τpa (k)]

ŝka =
ẑka − p̂ka
τpa (k)

τsa(k) =
1

τpa (k)

(
1− τza (k)

τpa (k)

)

Step 3: For each i ∈ [n]: τri (k) =

(∑
a

A2
aiτ

s
a(k)

)−1

r̂ki = x̂ki + τri (k)
∑
a

Aaiŝ
k
a

Step 4: For each i ∈ [n]: x̂k+1
i = E

[
xi
∣∣y, r̂ki , τri (k)]

τxi (k + 1) = V
[
xi
∣∣y, r̂ki , τri (k)]
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Learning the Hyperparameter using Expectation Maximiza-
tion

The Expectation-Maximization (EM) framework [Bis06, DLR11] is an iterative
method for likelihood optimization in probabilistic models with latent or hidden
variables. The EM algorithm increases a lower bound on the likelihood p(y

∣∣q)
in each iterations, and therefore it is guaranteed to converge to a stationary
point, i.e. a local maxima or a saddle point. The EM algorithm proceed by
alternately doing the so-called E-steps and M-steps. As we will see soon, the
E-step corresponds to computing an expectation, which is then maximized in
the M-step. Hence, the name of the algorithm.

Let p(y
∣∣q) be the likelihood given the hyperparameters q. Then for any proba-

bility density function p(x), the following decomposition holds

ln p(y
∣∣q) = ln p(y

∣∣q)

∫
p (x) dx

=

∫
p (x) ln

(
p
(
x,y

∣∣q
)

p (x)

p (x)

p
(
x
∣∣y
∣∣q
)
)

dx

=

∫
p (x) ln

(
p
(
x,y

∣∣q
)

p (x)

)
dx+

∫
p (x) ln

(
p (x)

p
(
x
∣∣y
∣∣q
)
)

dx

=

∫
p (x) ln

(
p
(
x,y

∣∣q
))

dx−
∫
p (x) ln (p (x)) dx+

∫
p (x) ln

(
p (x)

p
(
x
∣∣y
∣∣q
)
)

dx

= Ep
[
ln p

(
x,y

∣∣q
)]

+H (p(x)) +KL
(
p (x) , p

(
x
∣∣y; q

))

where H(p(x)) is recognized as the entropy, KL(p1(x), p2(x)) is the Kullbach-
Leibler (KL) divergence [Mac03] between the two distributions p1(x) and p2(x).
Then by defining

Lp (y; q) = Ep [ln p (x,y; q)] +H (p) , (2.227)

we can write the likelihood of y given q as:

ln p(y
∣∣q) = Lp (y; q) +KL

(
p (x) p

(
x
∣∣y; q

))
, (2.228)

Informally, the KL divergence measures the ”distance” between two probability
density functions and can be considered a pseudo-metric for probability density
functions, but it is not a true metric due to lack of symmetric. But for any p1 and
p2, the KL divergence is non-negative, i.e. KL(p1, p2) ≥ 0 and KL(p1, p2) = 0
if and only if p1(x) = p2(x).

Since the KL divergence is non-negative, we can consider L (y; q) in eq. (2.228)
as a lower bound on the likelihood ln p(y

∣∣q). Thus, we can optimize the likeli-
hood by iteratively performing the following two steps. In the first step (E-step),
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Figure 2.11: Illustration of optimization of some hyperparameter θ using EM.
The blue curve is the likelihood p(y|q), θold (red cross) denotes
the initial value of the hyperparameter. Then by executing the
first E-step, the lower bound Lp(y

∣∣qold) (red curve) is obtained.
Next, maximizing Lp(y

∣∣q) w.r.t. q and leads to θnew (green
cross). Performing another E-step yields the new and improved
bound Lp(y

∣∣qnew) (green).

we optimize L (y; q) w.r.t. p(x) for a fixed q and in the second step (M-step),
we maximize L (y; q) w.r.t q using p(x) from the E-step. For the E-step, the
non-negativity of the KL divergence implies that L (y; q) is maximized when
KL

(
p (x) , p

(
x
∣∣y; q

))
= 0. This is indeed the case, when p (x) = p

(
x
∣∣y; q

)
.

The E-step therefore becomes:

pnew (x) = p
(
x
∣∣y; qj

)
(2.229)

That is, when p(x) is equal to the true posterior of x conditioned on q and y.
Since the entropy is independent of the current values of hyperparameters, the
maximization in the M-step is given by:

qnew = argmax
q

Epnew [ln p (x,y; q)] (2.230)

This process is illustrated in figure 2.11. Here, θ is some hyperparameter to
be optimized and the blue curve is the likelihood p(y|q). Let θold (red cross)
denote the initial value of the parameter. Then by executing the first E-step,
we obtain the lower bound Lp(y

∣∣qold) corresponding to the red curve. Next,
we maximize Lp(y

∣∣q) w.r.t. q and obtain θnew (green cross). We now perform
another E-step and obtain Lp(y

∣∣qnew) corresponding to the green curve and so
on. It is seen that the likelihood is increased in each step.

However, the true posterior under the current model is intractable and therefore
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Vila et al. uses the approximate posterior provided by GAMP instead of the
true posterior. That is, in the E-step for learning the hyperparameters of the
prior, the following approximate posterior is used

p̂(x
∣∣y, q) =

n∏

i=1

p(xi|y, q) (2.231)

When learning the noise variance, the following approximate posterior of z is
used in the E-step:

p̂(z
∣∣y, q) =

m∏

a=1

p(za
∣∣y, q) (2.232)

Both approximate posteriors are readily available after running GAMP.

Furthermore, due to the underlying model, the joint optimization in eq. (2.230)
is difficult to perform. Therefore, we will adopt a coordinate-wise maximization
scheme for the M-step as in [VS13]. This approach can interpreted as the incre-
mental version of the EM-algorithm [NH98], in which only one hyperparameter
is update at a time, while the remaining are held fixed. This means that the
EM-updates will be of the form:

λnew = argmax
λ

Epnew [ln p (x,y; q)] (2.233)

where λ is used as example.

Learning Noise Variance

To carry out the M-step for the noise variance, we take the partial derivative of
the lower bound Lp̂(y|q) w.r.t. σ2. First, we use the fact that the joint density
p
(
x,y

∣∣q
)
can be decomposed into p (y;x, q) p(x|q):

∂

∂σ2
L
(
y
∣∣q
)

=
∂

∂σ2

(
E
[
ln p

(
x,y

∣∣q
)]

+H (p)
)

=
∂

∂σ2

(
E
[
ln p

(
y
∣∣x, q

)
p(x
∣∣q)
]

+H (p)
)

=
∂

∂σ2
E
[
ln p

(
y
∣∣x, q

)
C1

]
+

∂

∂σ2
C2 (2.234)
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where it is used that both p(x|q) and H(p) are independent on σ2 and can
therefore be treated as constants:

∂

∂σ2
L (y; q) = C1

∂

∂σ2
E
[
ln p

(
y
∣∣x, q

)]

= C1
∂

∂σ2
E

[
m∑

a=1

ln p
(
ya
∣∣x, q

)
]

= C1

m∑

a=1

∂

∂σ2
E
[
ln p

(
ya
∣∣x, q

)]

= C1

m∑

a=1

∂

∂σ2

∫
p(za|ya) ln p

(
ya
∣∣x, q

)
dza

Using Leibniz’ rule for derivatives of integrals, the partial derivative operator
can be moved inside the integral:

∂

∂σ2
L (y; q) ∝ C1

m∑

a=1

∫
p(za|ya)

∂

∂σ2
ln p

(
ya
∣∣x, q

)
dza, (2.235)

where it is also used that p(za|ya) is independent of σ2. Now computing the
partial derivative w.r.t. σ2 is straightforward:

∂

∂σ2
ln p

(
ya
∣∣x, q

)
=

∂

∂σ2
ln

[
1√

2πσ2
exp

(
− (ya − za)

2

2σ2

)]

= − 1

2σ2
+

(ya − za)
2

2 (σ2)
2

=
1

2

(
(ya − za)

2

(σ2)
2 − 1

σ2

)

Plugging this result back into eq. (2.235) and rearranging yields:

∂

∂σ2
L (y; q) ∝ C1

1

2

m∑

a=1

∫
p(za|ya)

(
(ya − za)

2

(σ2)
2 − 1

σ2

)
dza

= C1
1

2

1

(σ2)
2

m∑

a=1

∫
p(za|ya) (ya − za)

2 dza − C1
1

2

1

σ2

m∑

a=1

∫
p(za|ya) dza

= C1
1

2

1

(σ2)
2

m∑

a=1

∫
N
(
za
∣∣ẑa, τza

)
(ya − za)

2 dza − C1
1

2

1

σ2

m∑

a=1

∫
N
(
za
∣∣ẑa, τza

)
dza
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The integrals are now easily evaluated and the resulting expression is equated
to zero:

∂

∂σ2
L (y; q) ∝ C1

1

2

1

(σ2)
2

m∑

a=1

(
y2
a + τza + ẑ2

a − 2yaẑa
)
− C1

1

2

1

σ2
m

= C1
1

2

1

(σ2)
2

m∑

a=1

[
(ya − ẑa)

2
+ τza

]
− C1

1

2

1

σ2
m = 0

and finally, solving for σ2 gives the update equation:

σ2
new =

1

m

m∑

a=1

[
(ya − ẑa)

2
+ τza

]

Learning the Sparsity Rate

We now repeat the above procedure in order to derive an update equation for
learning the sparsity rate λ. However, we have to pay special attention since we
have to deal with derivatives of Dirac’s delta functions. As before, it is used that
the joint density p (x,y|q) can be decomposed to p (y|x, q) p(x|q), but now the
first factor, i.e. p (y;x, q), can be treated as a constant since it is independent
of λ. Therefore,

∂

∂λ
L (y; q) ∝

n∑

i=1

∂

∂λ
E
[
ln p

(
xi
∣∣q
)]

=

n∑

i=1

∂

∂λ

∫
p(xi|y, q) ln p

(
xi
∣∣q
)
dxi (2.236)

In order to apply the Leibniz’ rule for exchanging the order of the partial deriva-
tive and the integration, it is necessary for both the integrand and its derivative
to be continuous w.r.t. λ. But since the prior density p

(
xi
∣∣q
)
is a mixture of

a Dirac delta component and a Gaussian component, this does not hold. But
in order to justify the application of the rule anyway, the Dirac delta function
can be approximated by the continuous function N (x|0, ε) for small positive ε.
This effectively makes the integrand and its partial derivative continuous w.r.t.
λ and hence, the Leibniz rule becomes applicable.

∂

∂λ
L (y; q) ∝

n∑

i=1

∫
p(xi|y, q)

∂

∂λ
ln p

(
xi
∣∣q
)

(2.237)

To compute the partial derivative w.r.t λ, it is necessary to use the same approx-
imation of the Dirac delta function, i.e. p(xi|q) = (1−λ)N (x|0, ε)+λN (x|ζ, ψ).
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This leads to:

∂

∂λ
ln p

(
xi
∣∣q
)
dxi =

1

p(xi|q)

∂

∂λ
[(1− λ)N (x|0, ε) + λN (x|ζ, ψ)]

=
−N (x|0, ε) +N (x|ζ, ψ)

p(xi|q)
(2.238)

By taking the limit ε→ 0, we have N (x|0, ε)→ δ(x). Therefore:

∂

∂λ
ln p

(
xi
∣∣q
)

=
−δ(xi) +N (xi|ζ, ψ)

(1− λ)δ(xi) + λN (xi|ζ, ψ)

=
−1 + N (xi|ζ,ψ)

δ(xi)

(1− λ) + λ N (xi|ζ,ψ)
δ(xi)

(2.239)

By analyzing the equations above, it is seen that:

∂

∂λ
ln p

(
xi
∣∣q
)

=





−1
1−λ xi = 0

1
λ xi 6= 0

(2.240)

Vila et al. now employs a neat trick to handle this situation. By introducing
the closed ball Bε ≡ [−ε; ε] and its complement, B̄ε ≡ R \ βε, the domain of
integration in eq. (2.237) can be splitted into Bε and B̄ε. Thus,

∂

∂λ
L (y; q) ∝

n∑

i=1

∫

B
p(xi|y, q)

∂

∂λ
ln p

(
xi
∣∣q
)

+

n∑

i=1

∫

B̄
p(xi|y, q)

∂

∂λ
ln p

(
xi
∣∣q
)

(2.241)

Then using eq. (2.240), taking the limit ε → 0 and equating the resulting
expression to 0 yields:

lim
ε→0

∂

∂λ
L (y; q)) ∝ − 1

1− λ
n∑

i=1

∫

B
p(xi|y, q) dxi +

1

λ

n∑

i=1

∫

B̄
p(xi|y, q)dxi = 0

= − 1

1− λ
n∑

i=1

(1− πi) +
1

λ

n∑

i=1

πi = 0 (2.242)

Finally, solving for λ yields the intuitive update rule:

λnew =
1

n

n∑

i=1

πi (2.243)

That is, the updated sparsity rate is simply equal to the mean of the posterior
activation probabilities.
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Learning the Mean

Next, the update rule for the mean ζ of the Gaussian component of the prior is
derived. Starting from eq. (2.236) and applying the same approximation to the
Dirac delta function, we arrive at

∂

∂ζ
L (y; q) ∝

n∑

i=1

∂

∂ζ

∫
p(xi|y, q) ln p

(
xi
∣∣q
)
dxi

=

n∑

i=1

∫
p(xi|y, q)

∂

∂ζ
ln p

(
xi
∣∣q
)
dxi (2.244)

Using a similar line of arguments as above, we reach:

∂

∂ζ
ln p

(
xi
∣∣q
)

=
1

p(xi|q)

∂

∂ζ
[(1− λ)δ(xi) + λN (xi|ζ, ψ)]

=
1

p(xi|q)
λ
∂

∂ζ
N (xi|ζ, ψ)

=
1

p(xi|q)

xi − ζ
ψ

λN (xi|ζ, ψ)

=





0 xi = 0

xi−ζ
ψ x 6= 0

(2.245)

Plugging this results into eq. (2.244), and again splitting the domain of inte-
gration into the two intervals B and B̄ yields:

lim
ε→0

[
n∑

i=1

∫

B
p(xi|y, q)0 dxi +

n∑

i=1

∫

B̄
p(xi|y, q)

xi − ζ
ψ

dxi

]

= lim
ε→0

n∑

i=1

∫

B̄
p(xi|y, q)

xi − ζ
ψ

dxi

=
1

ψ

n∑

i=1

lim
ε→0

∫

B̄
xip(xi|y, q) dxi − ζ

n∑

i=1

lim
ε→0

∫

B̄
p(xi|y, q)dxi (2.246)

Equating to zero and solving for ζ gives:

ζ =

∑n
i=1 lim

ε→0

∫
B̄ xip(xi|y, q)dxi

∑n
i=1 lim

ε→0

∫
B̄ p(xi|y, q) dxi

=

∑n
i=1 πiγi∑n
i=1 πi
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Now in the update rule for λ was: λnew = 1
n

∑n
i=1 πi, and therefore we can write

ζnew =
1

λnewn

n∑

i=1

πiγi, (2.247)

That is, ζ is updated using the mean of the active coefficients since the product
λn can be interpreted as the effective number of active weights.

Learning the Variance

We now derive an update equation for the last hyperparameter, i.e. the variance
of Gaussian component in the prior. Similar to eq. (2.248), the partial derivative
of L (y; q) w.r.t. ψ becomes:

∂

∂ψ
L (y; q) ∝

n∑

i=1

∫
p(xi|y, q)

∂

∂ψ
ln p

(
xi
∣∣q
)
dxi (2.248)

where
∂

∂ψ
ln p

(
xi
∣∣q
)

=
1

p(xi
∣∣q)

∂

∂ψ
[(1− λ)δ(xi) + λN (xi|ζ, ψ)]

=
1

p(xi
∣∣q)

λ
∂

∂ψ
N (xi|ζ, ψ)

=
λN (xi|ζ, ψ)

p(xi
∣∣q)

1

2

[
(x− ζ)

2

ψ2
− 1

ψ

]

=





0 xi = 0

1
2

[
(x−ζ)2
ψ2 − 1

ψ

]
xi 6= 0

, (2.249)

where the partial derivative of N
(
xi
∣∣ζ, ψ

)
is obtained using the product rule.

Plugging this result into eq. (2.248) and splitting the domain of integration into
B and B̄ yields:

∂

∂ψ
L (y; q) ∝

n∑

i=1

lim
ε→0

∫

B̄
p(xi|y, q)

1

2

[
(x− ζ)

2

ψ2
− 1

ψ

]
dxi +

n∑

i=1

lim
ε→0

∫

B
p(xi|y, q)0 dxi

=

n∑

i=1

lim
ε→0

∫

B̄
p(xi|y, q)

1

2

[
(x− ζ)

2

ψ2
− 1

ψ

]
dxi

=
1

2

1

ψ2

n∑

i=1

lim
ε→0

∫

B̄
p(xi|y, q) (x− ζ)

2 dxi −
1

2

1

ψ

n∑

i=1

lim
ε→0

∫

B̄
p(xi|y, q)dxi

=
1

2

1

ψ2

n∑

i=1

lim
ε→0

∫

B̄
p(xi|y, q) (x− ζ)

2 dxi −
1

2

1

ψ

n∑

i=1

πi



80 Theory: The Linear Inverse Problem

Expanding the parenthesis: (x− ζ)
2

= x2
i + ζ2 − 2xiζ and carrying out the

integration for each term gives:

∂

∂ψ
L (y; q) ∝=

1

1

1

ψ2

n∑

i=1

[
πi
(
νi + γi + ζ2 − 2ζγi

)]
− 1

2

1

ψ

n∑

i=1

πi (2.250)

and finally, equating the resulting expression to zero and solving for ψ:

ψnew =
1∑n
i=1 πi

n∑

i=1

[
πi
(
νi + γi + ζ2 − 2ζγi

)]

=
1

λnewn

n∑

i=1

[
πi (ζ − γi)2

+ νi

]
, (2.251)

which is the last update equation for the EM scheme.

Initialization of the Hyperparameters

Since the EM-algorithm is only guaranteed to converge to a stationary point,
the initialization of the hyperparameter often have a crucial effect on the per-
formance. In [VS13], Vila et al. provide an initialization scheme, which are
claimed to provide good empirical results. They suggest that the initial sparsity
rate λ0 is set equal to the theoretical phase transition curve for `1 minimization
(see Literature Review in sec. 1.2). That is,

λ0 = δ · ρSE(δ) (2.252)

We have to multiply by δ to convert from ρ-sparsity to λ-sparsity. Furthermore,
if an initial estimate of the signal-to-noise ratio is available SNR0, the variances
of the noise and the variance of the ”slap”-component should be initialized as:

σ2
0 =

||y||22
(SNR0 + 1)m

ψ0 =
||y||22 −mσ2

0

||A||2F λ0
(2.253)

If an estimate of the SNR is not available, they just put SNR0 = 100 (not in dB).
Finally, the mean value of the ”slap”-component is simply initialized as ζ0 = 0.
The entire EMBGAMP algorithm is summarized in Algorithm 5. Notice, the
complete EMBGAMP algorithm has two layers of nested iterations. The inner
layer is the GAMP-iterations and the outer layer is the EM-iterations.

Example: Toy Problem

The EMBGAMP procedure is now illustrated using an example similar to the
one used in the AMP example in section 2.2. Consider a noisy problem with
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Algorithm 5 EMBGAMP algorithm (EMBGAMP)
• Initialize the hyperparameters:

σ2
0 =

||y||22
(SNR0 + 1)m

λ0 = δ · ρSE(δ)

ψ0 =
||y||22 −mσ2

0

||A||2F λ0

ζ0 = 0

• repeat until stopping criteria:
Run BG-AMP and obtain the quantities: x̂,π, ẑ, τ z,γ,ν
Test for convergence or for maximum number of iterations
If not converged, update hyperparameters:

λnew =
1

n

n∑
i=1

πi

ζnew =
1

λnewn

n∑
i=1

πiγi

ψnew =
1

λnewn

n∑
i=1

[
πi (ζ − γi)2 + νi

]
σ2

new =
1

m

m∑
a=1

[
(ya − ẑa)2 + τza

]
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n = 1000, m = 100, k = 8 and SNR= 20dB. Let the true solution x0 be defined
as:

x0 =
[
−4 −3 −2 −1 1 2 3 4 0 0..

]T
∈ Rn (2.254)

The measurements are generated using y = Ax0 + e, where Aai are I.I.D. as
Aai ∼ N (0, 1/m) and ea is I.I.D. as ea ∼ N

(
0, σ2

)
, where σ2 is scaled to yield

SNR= 20dB. Figure 2.12(a) shows the estimated coefficients of x̂ as a function
of the EM iterations, when the EMBGAMP algorithm is applied to the problem.
The dashed lines indicates the true coefficients. The estimated coefficients are
initialized at 0. It is seen that they converge in approximately 4 EM iterations
to values close to the true values. Figure 2.12(b) shows the evolution of the
hyperparameter λ, which is also seen to converge to a value close to the true
value. The figures 2.12(c)-(e) show similar plots for the remaining hyperparame-
ter, where it is seen that all the estimated hyperparameters converge reasonable
values. Keep in mind that due to k = 8, the algorithm has only 8 samples to
estimate the prior statistics.
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Figure 2.12: Illustration of the EMBGAMP using a toy problem with dimen-
sions: n = 1000, δ = 0.1, k = 8, SNR= 20dB. It is shown how
the estimated solution and hyperparameter evolve as a function
of EM iterations. The dashed lines indicates true values
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Chapter 3

Theory: The Multiple
Measurement Vector

Problem

The aim of this chapter is to extend the BG-AMP algorithm and the accom-
panying Expectation-Maximization scheme to the MMV formulation. In par-
ticular, two different algorithms will be derived: AMP-MMV and AMP-DCS.
The AMP-MMV algorithm (section 3.1) extends the BG-AMP algorithm to the
MMV problem using the common sparsity assumption, while the AMP-DCS
algorithm (section 3.2) is designed to handle problems, where the support is
assumed to change slowly over time.

3.1 AMP-MMV: Assuming Static Support

The BG-AMP algorithm was derived by combining the GAMP algorithm with a
Bernoulli-Gaussian prior distribution. In this section, this algorithm is extended
to the multiple measurement vector problem (MMV) using the common sparsity
assumption (see literature review in chapter 1.2) based on the work of Ziniel et
al. in [ZS13b]. The extended algorithm is referred to as AMP-MMV.
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Consider the consecutive sequence of linear inverse problems at time t = 1, .., T :

yt = Axt + et for t = 1, .., T (3.1)

Assuming that the forward matrix A does not depend on the time index t, the
measurement vectors {yt}Tt=1 can be concatenated into a measurement matrix
Y ∈ Rm×T , the true solution vectors {xt}Tt=1 can be concatenated into a so-
lution matrix X ∈ Rn×T and errors vector {et}Tt=1 are stacked into an error
matrix E ∈ Rm×T . Using this notation the MMV problem can be reformulated
as:

Y = AX +E (3.2)

The common sparsity assumption implies that the support of the solutions
{xt}Tt=1 is constant in time. Let sti be an indicator variable for the support
of xti and let θti be the corresponding coefficient or amplitude. The common
sparsity assumption then implies that:

sti = si ∀t ∈ [T ] (3.3)

Therefore, the i’th entry of the signal xt at time t can be decomposed as:

xti = siθ
t
i ⇐⇒ p(xti

∣∣si, θti) =





δ (xti) if si = 0

δ (xti − θti) if si = 1
, (3.4)

where it is noted that the support variables si do not depend on the time index
t.

It is also reasonable to assume that the coefficients of the estimated solution,
θti , contain some degree of correlation across time. Assuming independence
of correlated measurement vectors have been shown to degrade performance
[ZR13]. Hence, it is of interest to model this temporal correlation structure
as well. However, the degree of correlation is usually not known in advance
and therefore have to be modelled as well. Ziniel et al. implements temporal
correlation using a stationary first-order Gauss-Markov process of the form

θti = (1− α)
(
θt−1
i − ζ

)
+ αwti + ζ, (3.5)

where ζ ∈ R is the mean of the process, wti ∼ N (0, ρ) is the driving process and
α ∈ [0, 1] governs the degree of temporal correlation of the process. It is seen
that when α takes the extreme value 1, the process is simply uncorrelated noise
and we have θti ∼ N (ζ, ρ) and in the other extreme, i.e. α = 0, the process is
constant. The relation in eq. (3.5) implies that the conditional density of θt
conditioned on θt−1 is given by

p(θt
∣∣θt−1) = N

(
θt
∣∣ (1− α)

(
θt−1 − ζ

)
+ ζ, α2ρ

)
(3.6)
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This shows that the process satisfies the Markov property [PK11]. The condi-
tional densities are Gaussian for all values of t ∈ [T ] and this implies that the
process indeed is a Gaussian process [Bis06]. Hence, the name of the process.

Due to the construction of this particular signal model, there exists a non-zero
coefficient θti for xti even when si = 0. Consequently, the coefficient θti should
be interpreted as being the coefficient of xti given si = 1.
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Figure 3.1: Realizations of the Gauss-Markov process, which models the tem-
poral correlation of the coefficients. Each plot shows 3 instances
generated from a Gauss-Markov process with parameters ζ = 0
and ρ = 0.1. The values of α for the three different plots are
0.01, 0.10, 0.90, respectively.

Figure 3.1 shows realizations of the Gauss-Markov process for the different values
of α ∈ {0.01, 0.10, 0.90}. Each of the three subplots shows three instances of the
process for the parameters ζ = 0 and ρ = 0.1. In the left-most plot, α = 0.01
and it is seen that the process is almost constant. The realizations in the center
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plot is for α = 0.10 and a high degree of temporal correlation is observed. On
the contrary, the right-most plot shows 3 realizations for α = 0.9 and here it is
seen that the observed processes almost resembles independent noise.

Similar to the BG-AMP model, let λ denote the marginal probability of a vari-
able being active, i.e. λ ≡ p(si = 1). This leads to a marginal prior distribution
on xti given by:

p(xti) = (1− λ)δ(xti) + λN
(
xti
∣∣ζ, σ2

c

)
, (3.7)

where σ2
c = αρ

2−α is the steady-state variance of the coefficients, θti . The noise is
still assumed to be independent and Gaussian distribution with noise parameter
σ2.

Let s be a binary vector indicating the locations of support, i.e. s =
[
s1 s2 . . . sn

]

and let θ̄ ∈ Rn×T be a matrix containing the signal coefficients, i.e. θ̄it = θti .
Then the complete joint density is given by:

p(X,Y , s, θ̄) =

T∏

t=1

p(yt|xt)p(xt|s,θt)p(s)p(θt
∣∣θt−1)

=

T∏

t=1

(
m∏

a=1

p(yta|xt)
n∏

i=1

p(xti|si, θti)p(θti
∣∣θt−1
i )

)
n∏

i=1

p(si)

where p(θ1
i |θ0

i ) = N
(
θti
∣∣ζ, σ2

c

)
for all i.

Figure 3.2 shows the resulting factor graph for T = 3. But note that for the
sake of visual clarity, the dependencies between two consecutive time steps are
only included for variables st1 and θt1 for t = 1, 2, 3, but the remaining variables
do, of course, have similar connections. The factor graph consists of multiple
subgraphs corresponding to each time frame t (red boxes) and a set of nodes
implementing the temporal structure, i.e. the constant support and temporal
correlation of the coefficients.

Notice, the subgraphs inside the blue boxes correspond exactly to the factor
graph for the BG-AMP model from the previous section and the BG-AMP
algorithm expects a prior of the form given in eq. (3.7). The idea is therefore
to use conventional sum-product message passing to propagate messages across
time frames to update the ”local priors”, i.e. the factor nodes p(xti

∣∣θti , si) inside
the blue boxes, and then use BG-AMP algorithm handle the message passing
within the blue boxes. This idea of using AMP as a component in a larger
algorithm has earlier been used by Philip Schniter in [Sch10].

Because the factor graph in figure 3.2 contains multiple loops, there are many
ways to schedule the messages. Ziniel et al. discusses two different scheduling
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Figure 3.2: Factor graph for MMVmodel. For the visual sake of clarity, the de-
pendencies between two consecutive time frames are only included
for the si and θti variables for xt1 for t = 1, 2, 3. The messages
propagated within the blue boxes are handled using the GAMP
framework, while the remaining messages are handled explicitly.
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schemes, which are claimed to provide good empirical convergence properties
[ZS13a]. That is, the serial and the parallel scheduling schemes. For both
schemes, the message passing process is divided into the four phases, which are
common for both scheduling schemes. The two schemes then only differ in the
order of execution of those four phases. The phases are given the names: (into),
(within), (out) and (across).

The (into) phase is responsible for setting up the local prior. That is, the
current belief about the support and the coefficients is updated by propagating
the messages from variable nodes si and θti ∀i into frame t. The (within) phase
simply corresponds to running the BG-AMP algorithm using the updated local
prior, i.e. in this phase the estimate of xt is refined using (s,θt,yt). In the
(out) phase, the current estimate of xt is used to update the belief about the
support and the coefficients by propagating messages from node xti to the node
si and θti for all i. In the last phase, (across), the current belief is propagated
between consecutive frames. That is, messages are sent from θti to either θt+1

i

or θt−1
i .

In the serial scheduling scheme, the time frames (the big dashed boxes in figure
3.2) are processed in a sequential manner. First, the messages are propagated
into the first frame, i.e. t = 1 by executing the (into)-phase, then the mea-
surements for this time frame are processed in the (within) phase, followed by
the execution of the (out)-phase and finally, the messages propagated to the
consecutive frame, i.e. frame t = 2 in the (across) phase. This sequence is then
repeated until the final frame t = T is reached. This entire sequence is denoted
a forward pass. If the data are available offline, the messages can also be prop-
agated back again. That is, we propagate messages from time frame t = T to
time frame t = T − 1 in the same manner until we reach the first frame again,
i.e. t = 1. When we reach frame t = 1 again, we have completed a complete
forward/backward pass. The process can be interpreted as a smoothing process
and it can be repeated until parameters converge or until a maximum number
of iterations is reached. The serial scheme also provide the potential for causal
filtering of MMV signals by only performing the forward pass. This is very
usable in online applications like real-time EEG.

In the parallel scheme, the (into)-phase is executed for all frames t = 1, .., T
simultaneously, then the(within)-phases are executed for all the frames and fol-
lowed by the (out) phases for all the frames. Then the (across)-phases are
executed starting from frame t = 1, and the propagating messages all the way
to frame t = T . After reaching frame t = T , the (across)-phases are now exe-
cuted in the opposite order. That is, starting from frame t = T and ending in
frame t = 1. Once both the forward and backward pass have been completed,
a single iteration of parallel AMP-MMV has been completed. In this thesis, we
will limit ourselves to consider the serial scheme, since this also enables causal
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filtering of the data.

The following subsections describes how the messages for the four phases are
derived using the sum-product algorithm. We will focus on a single variable xti
at time 1 < t < T in the forward direction, i.e. from time t to time t+ 1.

The (into) Phase

p(xti
∣∣θti , si)

si

p(si)

θti

p(θt+1
i |θti)

p(θti |θ
t−1
i )

p(xri
∣∣θri , si)∀r 6= t:

Ber(si
∣∣λ) Ber(si

∣∣−→π ti)

N (xti
∣∣−→ξ ti,

−→
ψ t
i)

Ber(si
∣∣←−π ti)

N (θti
∣∣←−η ti,←−κ ti)

N (θti
∣∣−→η ti,−→κ ti)

Figure 3.3: The factor sub graph for the (into) phase for the variable xti at
time t.

Figure 3.3 shows the corresponding subgraph for the (into)-phase as well as the
functional form and parametrization of the message associated to each edge of
the subgraph. Since messages are propagated along most edges in both direc-
tions, arrows indicate the current direction of a given message for the specific
phase.

Consider the message from variable node si to factor node p(xti
∣∣θti , si). As

we will see soon, this message corresponds to a Bernoulli density and can be
parametrized by −→π , which denotes the probability of si = 1 under this density.

Applying the standard sum-product rules gives rise to the following message:

µ
si→p(xt

i

∣∣θti ,si)(si) = µp(si)→si(si)
∏

r 6=t
µ
p(xr

i

∣∣θri ,si)→si(si)

= [(1− λ) (1− si) + λsi]
∏

r 6=
[(1−←−π ri ) (1− si) +←−π ri si]
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Note that all ”cross terms”, i.e. terms including both si and (1− si), will be
zero since si ∈ {0, 1}. Therefore,

µ
si→p(xt

i

∣∣θti ,si)(si) =


(1− λ)

∏

r 6=
(1−←−π ri )


 (1− si) +


λ
∏

r 6=t

←−π ri


 si

∝ (1−−→π ti)(1− si) +−→π tisi (3.8)

Thus, this message is proportional to a Bernoulli density parametrized by −→π ti
given by:

−→π ti =
λ
∏
r 6=t
←−π ri

(1− λ)
∏
r 6=t (1−←−π ri ) + λ

∏
r 6=t
←−π ri

(3.9)

Informally, this probability is updated by combining the belief from prior p(si)
with the current beliefs from the other time frames. When processing the first
frame, i.e. t = 1, we have no knowledge about the subsequent frames and
therefore the parameters are initialized by ←−π ti = 0.5 for all i ∈ [n] and t ∈ [T ].
This implies that −→π 1

i = λ for all i.

Next, we consider the message from variable node θti to factor node p(xti
∣∣θti , si).

This message contains the combined belief about θti from the previous and the
subsequent time frame:

µ
θti→p(xt

i

∣∣θti ,si)(θ
t
i) = µp(θt−1

i )→θti (θ
t
i)µp(θt+1

i )→θti (θ
t
i)

= N
(
θti
∣∣−→η ti,−→κ ti

)
N
(
θti
∣∣←−η ti,←−κ ti

)

∝ N
(
θti |
−→
ξ ti,
−→
ψ t
i

)
, (3.10)

where the parameters,
−→
ξ ti and

−→
ψ t
i, are easily obtained using the Gaussian mul-

tiplication rule (see Appendix A.1):

−→
ξ ti =

(−→η ti−→κ ti
+
←−η ti←−κ ti

)
· −→ψ t

i

−→
ψ t
i =

1
1−→κ t
i

+ 1←−κ t
i

(3.11)

Analogous to support probabilities, when processing the first frame, i.e. t = 1,
we have no knowledge of subsequent frames and therefore, we use the following
initialization to avoid any influence from the parameters for the subsequent
frames:

←−η ti = 0 ←−κ ti =∞ ∀i ∈ [n] ,∀t ∈ [T ] (3.12)

and for the first frame, i.e. t = 1, we simply use the hyperparameters of the
marginal prior:

−→η t1 = ζ −→κ t1 =
αρ

2− α,
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This completes the (into) phase. That is, executing the (into) phase simply
corresponds updating the parameters using eq. (3.9), eq. (3.10), and eq. (3.11).
We will now move on to the (within) phase.

The (within) Phase

This phase simple correspond to running the BG-AMP algorithm (Algorithm 4)
using the hyperparameters obtained from the (into)-phase (−→π ti,

−→
ξ ti,
−→
ψ t
i),∀i ∈ [n]

and the noise variance σ2. However, the BG-AMP algorithm was based on
GAMP1. Here we will utilize the GAMP2 algorithm rather than GAMP1 due
to the significantly increased complexity. Thus, from the BG-AMP algorithm,
we obtain r̂ti and the corresponding scalar variances τ r(t).

The (out) Phase

p(xti
∣∣θti , si)

si

θti

Ber(si
∣∣←−π ti)

N
(
θti |
←−
ξ ti,
←−
ψ t
i

)

N
(
xti
∣∣r̂ti , τ r(t)

)

Figure 3.4: The factor sub graph for the (out) phase for the variable xti at
time t.

After completing the (within) phase, the updated beliefs must be propagated
out of the current time frame. The relevant subgraph is shown in figure 3.4. For
the messages from variable node xti to factor node p(xti

∣∣θti , si), the results from
the BG-AMP algorithm is used. That is,

µ
xt
i→p(xt

i

∣∣θti ,si)(x
t
i) = N

(
xti
∣∣r̂ti , τ r(y)

)
(3.13)

The message from factor node p(xti
∣∣θti , si) to variable node si can now be com-
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puted:

µ
p(xt

i

∣∣θti ,si)→si(si) =

∫
p(xti

∣∣θti , si)µθti→p(xt
i

∣∣θti ,si)(θ
t
i)µxt

i→p(xt
i

∣∣θti ,si)(x
t
i) dx

t
i dθ

t
i

=

∫
δ
(
xti − siθti

)
N
(
θti |
−→
ξ ,
−→
ψ
)
N
(
xti
∣∣r̂ti , τ r(t)

)
dxti dθ

t
i

=

∫
N
(
θti |
−→
ξ ,
−→
ψ
)
N
(
siθ

t
i

∣∣r̂ti , τ r(t)
)
dθti ,

where the sift property of Dirac’s delta function is used in the last step. Before
the integration over θti is carried out, the expression is divided into the two cases
si = 0 and si = 1, respectively, and then the Gaussian multiplication rule is
applied (see Appendix A.1). This leads to

µ
p(xt

i

∣∣θti ,si)→si(si) = N
(
0
∣∣r̂ti , τ r(t)

)
(1− si) +N

(
0
∣∣r̂ti −

−→
ξ , τ r(t) +

−→
ψ t
i

)
si

∝
(
1−←−π ti

)
(1− si) +←−π tisi, (3.14)

where ←−π ti is given by1

←−π ti =
N
(

0
∣∣r̂ti −

−→
ξ ti, τ

r(t) +
−→
ψ t
i

)

N
(
0
∣∣r̂ti , τ r(t)

)
+N

(
0
∣∣r̂ti −

−→
ξ ti, τ

r(t) +
−→
ψ t
i

) (3.15)

where we note the similarity to the posterior activation probability derived in
eq. (2.216).

For the message from the factor node p(xti
∣∣θti , si) to variable θti , the sum-product

rules yields:

µ
p(xt

i

∣∣θti ,si)→θti (θ
t
i) =

∑

si

∫
δ
(
xti − siθti

)
N
(
xti
∣∣r̂ti , τ r(t)

) [(
1−−→π ti

)
(1− si) +−→π tisi

]
dxti

=
(
1−−→π ti

)
N
(
0
∣∣r̂ti , τ r(t)

)
+−→π tiN

(
θti
∣∣r̂ti , τ r(t)

)
(3.16)

We now notice that the message is improper, i.e. it is not normalizable due to
the first term being constant w.r.t. θti . As Ziniel et al. point out in [ZS13b],
this is caused by the fact that for si = 0, xti does not provide any information
about the coefficient θti .

To avoid this issue Ziniel et al. consider the signal model si ∈ {0, 1} as the
limiting case of the model si ∈ {ε, 1} for ε→ 0. Then according to [ZS13b], for

1In both papers [ZS13b, ZS13a] in the definition of γ, there seem to be missing a factor,
1
2
, inside the exponential.
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any fixed positive ε, the normalized message become:

µ̄
p(xt

i

∣∣θti ,si)→θti (θ
t
i) =

(
1− Ω

(−→π ti
))
N
(
θti
∣∣1
ε
r̂ti ,

1

ε2
τ r(t)

)
+ Ω

(−→π ti
)
N
(
θti
∣∣r̂ti , τ r(t)

)
,

(3.17)

where the function Ω(π) is defined as:

Ω(π) ≡ ε2π

(1− π) + ε2π
(3.18)
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Figure 3.5: Plot of Ωε(π) for 3 different values of ε ∈ {0.25, 0.10, 0.01}. It
is seen that as ε approaches 0, the function Ωε(π) becomes an
indicator function, I [π = 1].

Figure 3.5 shows a plot of Ω(π) for 3 different values of ε ∈ {0.25, 0.10, 0.01}. It
is seen that the function behaves intuitively pleasing, since Ω(π) approach an
indicator function with argument π = 1 when ε approach 0. That is, Ω(π) →
I [π = 1] for ε→ 0. Ziniel et al. advocates using a small value for ε, like ε = 10−7

[ZS13b].

This message is now normalizable and recognized as a Gaussian mixture with
two components. However, when a Gaussian mixture is propagated along a given
edge, it leads to an exponential growth in the number of mixture components
for subsequent edges, which is of course intractable.

To solve this issue, Ziniel et al. approximates this message using a single Gaus-
sian component2. This is justified by the fact that for ε << 1, the function Ω(π)

2This is sometimes referred to as a Gaussian sum approximation. [AS72]
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behaves like an indicator function and therefore one of the Gaussian components
are likely to have negligible mass. The approximation is implemented by using
a second order Taylor approximation to message around the point r̂ti and the
details are described in Appendix C.1. The resulting message then becomes

µ̄
p(xt

i

∣∣θti ,si)→θti (θ
t
i) = N

(
θti
∣∣←−ξ ti,

←−
ψ t
i

)
, (3.19)

where the parameters,
←−
ξ ti and

←−
ψ t
i, are obtained from the second order approx-

imation.

The (across) Phase

p(xti
∣∣θti , si)

θti

p(θt+1
i

∣∣θti)

p(θti
∣∣θt−1
i )

θt+1
i

N
(
θti
∣∣←−ξ ti,

←−
ψ t
i

)
N
(
θti
∣∣−→η ti,−→κ ti

)

N
(
θt+1
i

∣∣−→η t+1
i ,−→κ t+1

i

)

Figure 3.6: The sub graph for the (across) phase for the variable xti at time t.

The final phase, (across), is responsible to implementing the common sparsity
assumption and the temporal correlation of the coefficients. The relevant sub-
graph is shown in figure 3.6, where we only need to determine the message from
the factor node p(θt+1

i

∣∣θti) to variable node θt+1
i . The remaining messages have

already been computed during the previous phases. The sum-product gives the
message:

µ
p(θt+1

i

∣∣θti)→θt+1
i

(
θt+1
i

)
=

∫
p(θt+1

i

∣∣θti)µp(θti
∣∣θt−1

i )→θti

(
θti
)
µ
p(xt

i

∣∣θti ,si)→θti
(
θti
)
dθti

=

∫
N
(
θt+1
i

∣∣ (1− α)
(
θti − ζ

)
+ ζ, α2ρ

)
N
(
θti
∣∣−→η ti,−→κ ti

)
N
(
θti
∣∣←−ξ ti,

←−
ψ t
i

)
dθti

where the conditional density p(θt+1
i

∣∣θti) is given in eq. (3.6). The integration
is straightforward since all the involved quantities are Gaussian:

µ
p(θt+1

i

∣∣θti)→θt+1
i

(
θt+1
i

)
= N

(
θt+1
i

∣∣−→η t+1
i ,−→κ t+1

i

)
(3.20)
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with

−→η t+1
i = (1− α)

(−→η ti−→κ ti
+

←−
ξ ti←−
ψ t
i

)(−→κ ti ·
←−
ξ ti

−→κ ti +
←−
ξ ti

)
+ αζ (3.21)

−→κ t+1
i = (1− α)

2

(−→κ ti ·
←−
ξ ti

−→κ ti +
←−
ξ ti

)
+ α2ρ (3.22)

This finishes the forward part of the algorithm. Due to the symmetry, the
update equations for a backward pass of the algorithm have exactly the form
as in the forward pass, except we update the variables (

←−
λ ,←−η , ←−κ ) instead of

(
−→
λ ,−→η , −→κ ) and so on. Hence, we will not spent time deriving the backward

part of the algorithm.

Table 3.1 gives an overview over the messages, their parametrization and ini-
tialization, while the algorithm for computing a forward pass is summarized in
Algorithm 63.

Due to the use of the sum-product algorithm, it is possible to obtain estimates of
the support variables si by computing the posterior distribution of the support
conditioned on the observation, i.e. p(s

∣∣Y ). This is easily obtained using the
sum-product rules (see table 2.1 in section 2.1):

p(si
∣∣Y ) ∝ µp(si)→si(si)

T∏

t=1

µ
p(xt

i

∣∣θti ,si)→si(si)

= Ber(si
∣∣λ)

T∏

t=1

Ber(si
∣∣←−π ti) (3.23)

Then a MAP estimate of the support s can be extracted from the above distri-
bution with a minimal amount of computation.

We now consider the computational complexity of the AMP-MMV algorithm.
By analyzing the algorithm, it is immediately seen that for a fixed value of t = t̂,
the phases: (into), (out) and (across) do not scale with m, but they all scale
linearly w.r.t. n. Furthermore, the (within) phase has the same computational
complexity as BG-AMP, which is O(mn). The computational complexity per
time frame therefore becomes O(mn). To complete an entire forward pass, we
have to repeat the above T times. Therefore, the computational complexity
for an entire forward pass then scales as O(mnT ) and performing multiple for-
ward/backward iterations do not change that. Although it does change the

3A more compact description of the algorithm is available in [ZS13b]. Notice, the (within)
part is stated slightly different in the paper, due to the fact than their derivation is based on
[Sch10] rather than [VS13].



98 Theory: The Multiple Measurement Vector Problem

Table 3.1: Messages at time step t including their initialization for all 4 phases.

Phase From To Functional form Initialization

(Into)
p(si) si Ber(si

∣∣λ)

p(xri
∣∣θri , si) si Ber(si

∣∣←−π ri ) ←−π ri = 0.5

si p(xti
∣∣θti , si) Ber(si

∣∣−→π ri )
p(θti

∣∣θt−1
i ) θti N

(
θti
∣∣−→η ti,−→κ ti

)

p(θt+1
i

∣∣θti) θti N
(
θti
∣∣←−η ti,←−κ ti

) ←−η ti = 0,←−κ ti =∞
θti p(xti

∣∣θti , si) N
(
xti
∣∣−→ξ ti,

−→
ψ t
i

)

(Within) BG-AMP

(Out)

xti p(xti
∣∣θti , si) N

(
xti
∣∣r̂ti , τ r(t)

)

p(xti
∣∣θti , si) si Ber(si

∣∣←−π ti)
p(xti

∣∣θti , si) θti N
(
θti
∣∣←−ξ ti,

←−
ψ t
i

)

(Across) p(θt+1
i |θti) θti N

(
θt+1
i

∣∣−→η t+1
i ,−→κ t+1

i

)
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Algorithm 6 The forward part AMP-MMV algorithm (AMP-MMV)
• For fixed values of hyperparameters λ, σ2, ζ, ψ, ρ and α.
• For each t = 1..T , do

(into)-phase. ∀i ∈ [n]:

−→π ti =
λ
∏
r 6=t
←−π ri

(1− λ)∏r 6=t (1−←−π ri ) + λ
∏
r 6=t
←−π ri

−→
ξ ti =

(−→η ti−→κ ti +
←−η ti←−κ ti

)
· −→ψ t

i,
−→
ψ t
i =

1
1
−→κ t

i
+ 1
←−κ t

i

(within) phase.

Use hyperparameters:
(−→π ti,−→ξ ti,−→ψ t

i, σ
2
)
.

Initialize BG-AMP as x̂ti = 0, τx(t) =
100

n
·
n∑
i=1

−→
ψ t
i

Obtain
(
r̂ti , τ

r(t)
)
, ∀i ∈ [n] using BG-AMP (scalar variances)

(out) phase: For each i ∈ [n]:

←−π ti =
N
(
0
∣∣r̂ti −−→ξ ti, τr(t) +−→ψ t

i

)
N
(
0
∣∣r̂ti , τr(t))+N (0∣∣r̂ti −−→ξ ti, τr(t) +−→ψ t

i

)
(←−
ξ ti,
←−
ψ t
i

)
= taylor approximation

(−→π ti, r̂ti , τr(t))
(across) phase: For each i ∈ [n]:

−→η t+1
i = (1− α)

(−→η ti−→κ ti +
←−
ξ ti←−
ψ t
i

)(−→κ ti · ←−ξ ti
−→κ ti +

←−
ξ ti

)
+ αζ

−→κ t+1
i = (1− α)2

(−→κ ti · ←−ξ ti
−→κ ti +

←−
ξ ti

)
+ α2ρ
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proportionality constant. Therefore, we conclude that the AMP-MMV algo-
rithm scales linearly in all problem dimensions.

Learning the Hyperparameters using EM

In the AMP-MMV algorithm described above, the hyperparameters are consid-
ered to be fixed and known in advance. But it is likely that all or some of the
hyperparameter requires tuning. Analogous to the EM-BG-AMP algorithm, we
will now describe a set of Expectation-Maximization (see section 2.4) update
equations for the hyperparameters of the model based on the work in [ZS13b].
We will update the same coordinatewise maximization scheme as used for the
BG-AMP model.

Because of the introduction of the hidden variable sti and θti , we need the pos-
terior distributions p(sti

∣∣Y ) and p(θti
∣∣Y ) to compute the E-steps for the hy-

perparameters for the prior. Fortunately, these are readily obtained using the
sum-product rules (see table 2.1 in section 2.1). The posterior distribution of
the support is given in eq. (3.23), while the posterior for the coefficients are
obtained as follows:

p(θti
∣∣Y ) ∝ µ

p(θti

∣∣θt−1
i )→θti

(
θti
)
µ
p(θt+1

i

∣∣θti)→θti

(
θti
)
µp(xt

i|θti ,si)→θti

(
θti
)

= N
(
θti
∣∣←−η ti,←−κ ti

)
N
(
θti
∣∣−→η ti,−→κ ti

)
N
(
θti
∣∣←−ξ ti,

←−
ψ t
i

)
(3.24)

Similarly, for estimating the correlation parameter α, we will need the joint
posterior p(θti , θ

t−1
i

∣∣Y ). But since the two involved variables share a common
factor node, this distribution is also easily obtained as the product of the factor
function and the incoming messages at the factor node (see table 2.1 in section
2.1):

p
(
θti , θ

t−1
i

∣∣Y
)
∝ p

(
θti
∣∣θt−1
i

)
· µ

θti→p
(
θti

∣∣θt−1
i

)(θti) · µθt−1
i →p

(
θti

∣∣θt−1
i

)(θt−1
i )

= p
(
θti
∣∣θt−1
i

)
· N

(
θt−1
i

∣∣−→η t−1
i ,−→κ t−1

i

)
N
(
θt−1
i

∣∣←−ξ t−1
i ,
←−
ψ t−1
i

)
· N

(
θti
∣∣←−η ti,←−κ ti

)
,

(3.25)

where p
(
θti
∣∣θt−1
i

)
is given by eq. (3.6). Note that all quantities involved in the

computations of the posteriors are already available, and therefore the E-step is
essentially ”free” in the context. This really emphasizes the power and flexibility
of the message passing approach.

The derivation of the EM-based update equation follows the same approach
as described for the EM-BG-AMP model. The details are described in the
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Appendix C.2, but here we simply state resulting update equations:

σ2
new =

1

Tm

T∑
t=1

n∑
i=1

[
(yta − zta)2 + τza

]
(3.26)

λnew =
1

n

n∑
i=1

λ
∏T
t=1
←−π ti

(1− λ)∏T
t=1 (1−←−π ti) + λ

∏T
t=1
←−π ti

(3.27)

ζnew =

(
(T − 1)n

ρ
+

n

σ2
c

)−1
(

1

σ2
c

n∑
i=1

θ̂1i +
1

αρ

T∑
t=2

n∑
i=1

[
θ̂ti − (1− α)θ̂t−1

i

])
(3.28)

ρ =
1

α2(T − 1)N

T∑
t=2

n∑
i=1

[
θ̃ti +

(
θ̂ti

)2
− 2ζαθ̂t + (1− α)2

(
θ̃t−1
i + θ̂t−1

i

)
+ ζ2α2

+ 2ζα(1− α)θ̂t−1
i − 2(1− α)E

(
θtiθ

t−1
i

∣∣Y )] (3.29)

αnew =
b−

√
b2 + 4N(T − 1)c

2N(T − 1)
(3.30)

where

b =
1

ρ

T∑
t=2

n∑
i=1

(
E
[
θtiθ

t−1
i

∣∣Y ]− ζ (θ̂ti − θ̂t−1
i

)
−
(
θ̂t−1
i + θ̃t−1

i

))
(3.31)

c =
1

ρ

T∑
t=2

n∑
i=1

((
θ̂ti + θ̃ti

)
− 2E

[
θtiθ

t−1
i

∣∣Y ]+ (θ̂t−1
i + θ̃t−1

i

))
(3.32)

θ̂ti = θ̃ti

(−→η ti−→κ ti +
←−η ti←−κ ti

+

←−
ξ ti←−
ψ t
i

)
(3.33)

θ̃ti =

(
1
−→κ ti

+
1
←−κ ti

+
1
←−
ψ t
i

)−1

(3.34)

where E
[
θtiθ

t−1
i

∣∣Y
]
is obtained from pairwise Gaussian posterior distributions

in eq. (3.25).

For multimodal likelihood functions, the initialization of the hyperparameters
can have a crucial effect on the results obtained using the EM-algorithm. There-
fore, if prior knowledge about the hyperparameter are available, it should be
used. Otherwise, initial estimates can be obtained by extracting simple statistic
from the measurements Y as described in the EM-BG-AMP algorithm.

Ziniel et al. suggests that the correlation parameter α and the variance parame-
ter ρ are not updated in the same iteration. This is due to the fact that the two
parameter are tightly coupled, since the conditional variance of θti given θ

t−1
i is

given by:

V
[
θti
∣∣θt−1
i

]
= α2ρ (3.35)
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Therefore, if both α and ρ has been initialized with too small values, the
EM algorithm will overcompensate by producing too large values for both pa-
rameters and this can lead to oscillatory behaviour [ZS13b]. Furthermore,
Ziniel et al. recommend initializing the variance parameters of AMP using:
τx(t) = 100

n ·
∑n
i=1

−→
ψ t
i, which also adopt here.

When the AMP-MMV algorithm is used in conjunction with the EM update
rules, the resulting algorithm will be denoted EM-AMP-MMV. This algorithm
proceeds as follows. Based on the initial values of the hyperparameters, a for-
ward/backward pass is completed. After completing the first pass, the approxi-
mate posterior distributions of the random variables si and θsi are now available.
Using these posterior distributions, the hyperparameters are updated using the
EM-scheme. The sequence of a forward/backward pass followed by the EM up-
dates will be referred to as EM or smoothing iterations. This process is then
repeated until a maximum number of EM iterations are used or until some
stopping criteria are satisfied. For the stopping criteria, we will use:

∣∣∣
∣∣∣X̂k − X̂k−1

∣∣∣
∣∣∣
2

F∣∣∣
∣∣∣X̂k

∣∣∣
∣∣∣
2

F

≤ τstop. (3.36)

where ||·||F is the Frobenius norm.

Example: Toy Problem

To illustrate how the EM-AMP-MMV algorithm works, we will now use it to
solve a toy MMV problem of the Y = AX +E. In this example, the problem
size is n = 100, the undersamplingsratio is δ = 0.15, the sparsity is ρ = 0.3 and
the number of measurement vectors is T = 100. The forward matrix A is I.I.D.
Gaussian, where the columns have been scaled to have unit `2-norm. The true
solution X has 5 non-zero rows, i.e. 5 non-zero sources. These 5 sources are
sinusoidal with slightly different frequency. The error matrix E is also I.I.D.
Gaussian, where the variance has been scaled to yield a signal-to-noise ratio of
SNR= 20dB.

The true sources signal are shown in figure 3.7(a). The figure clearly shows
that the true sources have constant support over time. The forward matrix A
and the measurement matrix Y are then fed to the EM-AMP-MMV algorithm.
The resulting estimate of the sources is shown in figure (b), where it is seen
that the algorithm correctly estimates the support. Figure (c) shows how one
of the active sources evolves as a function iterations. The green curve is the
corresponding true source. It is seen that after the first EM iteration, the
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estimated signal is simply 0 for values of T (black curve), but after 8 EM iteration
the estimated signal has taken the form of a sine wave and after 10 iterations
the estimated signal has converged to its final values.
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(b) Estimated sources
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Figure 3.7: Illustration of the EM-AMP-MMV algorithm. The algorithm is
applied to a toy problem with dimension n = 100, undersam-
plingsratio δ = 0.15, sparsity ρ = 0.3, SNR = 20dB, and then
number of measurement vectors are T = 100. The true solution
X has 5 non-zero sources, which are all sinusoidal with slightly
different frequency.
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3.2 AMP-DCS: Assuming Dynamic Support

The AMP-MMV algorithm was designed to handle the MMV problem using
the common sparsity assumption. The purpose of this section is to relax this
assumption and extend the algorithm to handle MMV problems with slowly
changing support. We will incorporate the assumed dynamic structure of the
support into the prior of AMP-MMV model similar to the work of Ziniel et
al. in [ZS13a]. Ziniel et al. suggested this model for the purpose of dynamic
compressed sensing and therefore the model is referred to as AMP-DCS.

The common sparsity assumption in the AMP-MMV implies that a given sup-
port variable si is shared across time for all {xti}

T
t=1. In contrast, we will now

introduce an individual support variable sti for each xti and then assume that
the support for each source signal, i.e. {sti}

T
t=1 evolve according to a 2-state

discrete Markov chain [PK11]. Except for the assumptions on the support, the
underlying models for AMP-DCS and AMP-MMV model are identical.

Consider the Markov prior on the support. The support for each row of the
solution is assumed to evolve according to an independent, but identical Markov
chain. A Markov chain is characterized by an initial probability distribution
p(s1

i = 1) = λ and the transitional probabilities:

P =


p00 p01

p10 p11


 (3.37)

where, p01 = p(sti = 1
∣∣st−1
i = 0) etc. Since P is a stochastic matrix, each

row must sum to 1. We will assume that the Markov chain is operating in
steady-state and therefore the Markov chain can be fully characterized by two
parameters, which we will denote λ and p10. The parameter λ is the marginal
probability of p(s = 1) = λ and the latter is the probability of a transition from
s = 1 to s = 0, i.e. p10 = p(st+1 = 0|st = 1). The steady state condition also
implies4 p01 = λp10/(1− λ). The remaining two diagonal elements p00 and p11

are determined by the fact that the rows of P sum to 1.

The parameter p10 controls how the chain evolves over time. For sufficiently
small values of p10, the chain exhibits near static support over time. But when
p10 increases, the chain will change state more often and thus support becomes
”more dynamic”. This is illustrated in figure 3.8, which shows two realizations of

4The steady-state assumption implies: P T

1− λ

λ

 =

1− λ

λ

. The expression for p10 is

then obtained by solving the eigenvalue problem.
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(b) p10 = 0.2

Figure 3.8: Realizations of the Markov prior for the support with different
values of p10 = p(sti = 0|st−1

i = 1) for n = 100, λ = 0.06, T = 20

the Markov prior for λ = 0.06 and for p10 = {0.2, 0.02}. In the left-most figure,
it is seen that for the small value of p10, the support is nearly static, whereas
the right-most figure shows that the sources ”turn on and off” as a result of the
larger value of p10. Note, that 1/p10 is the expected length of a consecutive
sequence of ones.

As for the AMP-MMV, the noise is assumed to be I.I.D. Gaussian and the
coefficients θti are assumed to evolve according to the Gauss-Markov process
specified in eq. (3.5). Using these assumptions, the joint density for this model
is given by

p(X,Y ,S,θ) =

T∏

t=1

p(yt|xt)p(xt|s,θt)p(st|st−1)p(θt
∣∣θt−1)

=

T∏

t=1

(
m∏

a=1

p(yta|xt)
n∏

i=1

p(xti|si, θti)p(sti|st−1
i )p(θti

∣∣θt−1
i )

)
(3.38)

where p(s1
i |s0

i ) = p(s1
i ) = λ. It is seen that this decomposition is similarly to the

corresponding joint density for the AMP-MMV. Hence, the incorporation of the
dynamic support does only imply small changes in the underlying factor graph,
which is shown in figure 3.9. As before, only the first three time frames are
shown, i.e. t = 1, 2, 3. Moreover, the dependencies across time for the support
and coefficients variables, i.e. sti and θti , are only shown for the first variable xt1
to improve visual clarity. But the remaining variables do, of course, have the
similar dependencies across time.

Due to the similarity of the underlying factor graphs for the AMP-MMV model
and the AMP-DCS model, the majority of the resulting update equations are
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Figure 3.9: The factor graph for the MMV model with dynamic support. The
corresponding joint density is given in eq. (3.38). The dependen-
cies across time for the hidden variables, i.e. st1 and θt1, are only
shown for the first variable x1 to improve visual clarity. But the
remaining variables have the same dependencies.
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identical. Therefore, in this section we will only describe the update equations,
which are different from the AMP-MMV algorithm. Completely analogous to
the AMP-MMV case, the message passing scheme is divided into the four phases.
The phases (into), (out) and (across) have minor differences compared to the
AMP-MMV case, while the phase (within) is exactly the same as in the AMP-
MMV and is therefore not described here. As before, we consider the case for
some intermediate t and an arbitrary i in the forward direction.

The (into) Phase for AMP-DCS

p(xti
∣∣θti , si)sti

p(sti|s
t−1
i )

θti

p(θt+1
i |θti)

p(θti |θ
t−1
i )

p(st+1
i |sti)

Ber(sti
∣∣−→λti) Ber(sti

∣∣−→πti )

N (xti
∣∣−→ξ ,−→ψ )Ber(sti

∣∣←−λti)

N (θti
∣∣←−η ,←−κ )

N (θti
∣∣−→η ,−→κ )

Figure 3.10: The sub graph for the (into) phase for the variable xti at time t.

Figure 3.10 shows the factor graph for the (into)-phase for the model with
dynamic support. It is seen that each of the support variables sti only are
connected to the time frame one step ahead, i.e. t+ 1 and one step behind, i.e.
t − 1. Applying the sum-product rules, the message from variable node sti to
factor node p(xti

∣∣θti , sti) gives rise to the following update equation:

−→π ti =

←−
λ ti ·
−→
λ ti

(1−←−λ ti)(1−
−→
λ ti) +

←−
λ ti ·
−→
λ ti

(3.39)

Informally, the belief of sti being active is simply the combined belief of the
neighbouring frames. For t = 1,

−→
λ ti is initialized as the marginal probability of

s = 1, i.e.
−→
λ 1
i = λ for all i.
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p(xti
∣∣θti , si)sti

θti

Ber(sti
∣∣←−π ti)

N
(
θti |
←−
ξ ti,
←−
ψ t
i

)

N
(
xti
∣∣r̂ti , τ r(t)

)

Figure 3.11: The sub graph for the (out) phase for the variable xti at time t.

The (out) Phase for AMP-DCS

Figure 3.11 shows the corresponding subgraph for the (out)-phase. It is seen that
the topology of the subgraph is exactly the same as for the AMP-MMV case.
The only change is that si changes to sti. Therefore, the message from factor
node p(xti|θti , sti) to variable node sti is unchanged. For the message from factor
node p(xti|θti , sti) to variable node θti in the AMP-MMV case, we introduced a
Taylor approximation due to normalization problems of the true message in eq.
(3.16). Based on empirical evidence Ziniel et al. argue that this approach does
only perform well for values of p10 < 0.025 [ZS13a]. To circumvent this, they
suggest a simple threshold approximation of the message in eq. (3.17). Thus,
for p10 > 0.025:

(←−
ξ ti,
←−
ψ t
i

)
=





(
1
ε r̂
t
k,

1
ε2 τ

r(t)
)
, if −→π ti ≤ τ

(r̂tk, τ
r(t)) , if −→π ti > τ

(3.40)

and for p10 ≤ 0.025, the second order approximation from AMP-MMV case is
used.

The (acrosss) Phase for AMP-DCS

As before, this phase is response for implementing the dependencies across time,
which in this case is the Markov chain on the support variables and the Gauss-
Markov process on the coefficients. Figure 3.12 shows the subgraph for the
(across)-phase. The part of the subgraph related to the coefficients is unchanged
compared the to AMP-MMV case and therefore the update rule for θti is identical
to those of AMP-MMV. However, the update equation for the probability ←−π ti
does changes, as we will see now. Applying the sum-product rules to the message
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p(xti
∣∣θti , sti)

θti

p(θt+1
i

∣∣θti)

p(θti
∣∣θt−1
i )

θt+1
i

sti

p(sti|s
t−1
i )

p(st+1
i |sti)

st+1
i

N
(
θti
∣∣←−ξ ti,

←−
ψ t
i

)
N
(
θti
∣∣−→η ti,−→κ ti

)

N
(
θt+1
i

∣∣−→η t+1
i ,−→κ t+1

i

)

Ber(sti
∣∣−→λ ti) Ber(sti

∣∣←−π ti)

Ber(st+1
i

∣∣−→λ t+1
i )

Figure 3.12: The sub graph for the (across) phase for the variable xti at time
t.

from factor node p(st+1
i |sti) to variable node st+1

i yields:

µp(st+1
i |sti)→s

t+1
i

(st+1
i ) =

∑

sti

p(st+1
i |sti)µsti→p(st+1

i |sti)(s
t
i)

The message from variable node sti to factor node p(st+1
i |sti) is simply the prod-

uct of the two incoming messages at node sti and is therefore the product of two
Bernoulli distributions. Substituting this into the above expression results in:

µp(st+1
i |sti)→s

t+1
i

(st+1
i ) ∝

∑

sti

p(st+1
i |sti)

[
(1−←−π ti)(1−

−→
λ ti)(1− sti) +←−π ti

−→
λ tis

t
i

]

(3.41)

Computing the sum over sti using the transitional probabilities P and rearrang-
ing gives:

µp(st+1
i |sti)→s

t+1
i

(st+1
i ) ∝

[
p00(1−←−π ti)(1−

−→
λ ti) + p10

←−π ti
−→
λ ti

]
(1− st+1

i )

+
[
p11
←−π ti
−→
λ ti + p01(1−←−π ti)(1−

−→
λ ti)
]
st+1
i

= (1−−→λ t+1
i )(1− sti) +

−→
λ t+1
i sti (3.42)

where

−→
λ t+1
i =

p11
←−π ti
−→
λ ti + p01(1−←−π ti)(1−

−→
λ ti)

p00(1−←−π ti)(1−
−→
λ ti) + p10

←−π ti
−→
λ ti + p11

←−π ti
−→
λ ti + p01(1−←−π ti)(1−

−→
λ ti)
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Using that p00 + p01 = 1 and p10 + p11 = 1, the above reduces to:

−→
λ t+1
i =

p01(1−←−π ti)(1−
−→
λ ti) + p11

←−π ti
−→
λ ti

(1−←−π ti)(1−
−→
λ ti) +←−π ti

−→
λ ti

This finishes the derivation of the update equations for AMP-DCS method. The
forward part of the algorithm is summarized in Algorithm 7. Due to symmetry,
the update rules for the backward pass have the same form as for the forward
pass, except that we have to update

←−
λ t−1
i instead of

←−
λ t+1
i etc.

Learning the Hyperparameters using EM

The EM algorithm described for the AMP-MMV algorithm is also extended to
handle the AMP-DCS model. Due to the large similarity of the two models,
most of the update equations for the hyperparameters are identical. The only
difference is a new update expression for λ and the update expression for the
transition probability p10. Here we simply state the update equations, but the
details are given in Appendix C.3. The initialization and convergence consider-
ations etc. described for the AMP-MMV model also apply to this model.

The new update equation for the sparsity rate λ is given by:

λnew =
1

n

n∑

i=1

−→
λ 1
i

←−
λ 1
i
←−π 1
i

(1−−→λ 1
i )(1−

←−
λ 1
i )(1−←−π 1

i ) +
−→
λ 1
i

←−
λ 1
i
←−π 1
i

(3.43)

and the update equation for the transition probability p10 is given by:

pnew10 =

∑T
t=2

∑n
i=1 E

[
st−1
i

]
−∑T

t=2

∑n
i=1 E

[
st−1
i sti

]
∑T
t=2

∑n
i=1 E

[
st−1
i

] , (3.44)

where the moments in the latter equations are obtained from the posterior of sti
and st−1

i conditioned on Y :

p(sti, s
t−1
i

∣∣Y ) ∝ p(sti|st−1
i ) · µst−1

i →p(sti|s
t−1
i )(s

t−1
i ) · µsti→p(sti|st−1

i )(s
t
i) (3.45)

Example: Toy Problem

The AMP-DCS algorithm is now illustrated using a simple toy problem of the
form Y = AX + E. In this example, the problem size is n = 200, the under-
samplingratio is δ = 0.1, the sparsity is ρ = 0.3 and the number of measurement
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Algorithm 7 The forward part AMP-DCS algorithm (AMP-DCS)
• For fixed values of hyperparameters λ, p10, σ2, ζ, ψ, ρ, and α.
• For each t = 1..T , do

(into)-phase. ∀i ∈ [n]:

−→π ti =
←−
λ ti ·
−→
λ ti

(1−←−λ ti)(1−
−→
λ ti) +

←−
λ ti ·
−→
λ ti

−→
ξ ti =

(−→η ti−→κ ti +
←−η ti←−κ ti

)
· −→ψ t

i,
−→
ψ t
i =

1
1
−→κ t

i
+ 1
←−κ t

i

(within) phase.

Use hyperparameters:
(−→π ti,−→ξ ti,−→ψ t

i, σ
2
)
.

Initialize BG-AMP as x̂ti = 0, τx(t) = 100 ·
n∑
i=1

−→
ψ t
i

Obtain
(
r̂ti , τ

r(t)
)
, ∀i ∈ [n] using BG-AMP (scalar variances)

(out) phase: For each i ∈ [n]:

←−π ti =
N
(
0
∣∣r̂ti −−→ξ ti, τr(t) +−→ψ t

i

)
N
(
0
∣∣r̂ti , τr(t))+N (0∣∣r̂ti −−→ξ ti, τr(t) +−→ψ t

i

)
(←−
ξ ti,
←−
ψ t
i

)
= taylor approximation

(−→π ti, r̂ti , τr(t))
(out) phase: For each i ∈ [n]:

←−π ti =
N
(
0
∣∣r̂ti −−→ξ ti, τr(t) +−→ψ t

i

)
N
(
0
∣∣r̂ti , τr(t))+N (0∣∣r̂ti −−→ξ ti, τr(t) +−→ψ t

i

)
if p10 ≤ 0.025(←−

ξ ti,
←−
ψ t
i

)
= taylor approximation

(−→π ti, r̂ti , τr(t))
else(←−

ξ ti,
←−
ψ t
i

)
=


(
1
ε
r̂tk,

1
ε2
τr(t)

)
, if −→π ti ≤ τ(

r̂tk, τ
r(t)

)
, if −→π ti > τ

(across) phase: For each i ∈ [n]:

−→η t+1
i = (1− α)

(−→η ti−→κ ti +
←−
ξ ti←−
ψ t
i

)(−→κ ti · ←−ξ ti
−→κ ti +

←−
ξ ti

)
+ αζ

−→κ t+1
i = (1− α)2

(−→κ ti · ←−ξ ti
−→κ ti +

←−
ξ ti

)
+ α2ρ

−→
λ t+1
i =

p01(1−←−π ti)(1−
−→
λ ti) + p11

←−π ti
−→
λ ti

(1−←−π ti)(1−
−→
λ ti) +

←−π ti
−→
λ ti
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vectors is T = 50. The forward matrix A is I.I.D. Gaussian, where the columns
have been scaled to have unit `2-norm. The true solution X = Sθ̄ is generated
as follows. The support S is sampled from the Markov prior with the hyperpa-
rameters λ = δρ and p10 = 1/20. This implies that average number of active
sources is λ · n = 6. The coefficients θ̄ are sine waves. That is, each row of θ̄
corresponding sinusoidal signal with slightly frequency. The resulting solution
matrix X is shown in figure 3.13(a), where it is clearly that the common spar-
sity assumption is violated. The error matrix E is I.I.D. Gaussian, where the
variance has been scaled to yield a signal-to-noise ratio of SNR= 20dB. The
EM-AMP-DCS algorithm is then used to reconstruct X from A and Y .

The estimated solution X̂ is shown in figure 3.13(b), where it is seen that the
AMP-DCS method is capable of estimating sources, which are only active in a
proportion of the signal. By comparing the figure (a) and (b), the estimated
support is very close to the true support. Figure (c) shows the evolution of 200th
source as a function of the number of EM iterations superimposed with the true
source. It is seen that the estimated sources is zero after the first iteration
(black curve), but then it gradually approaches to the true source and after 25
iterations the estimated source is pretty close to the true source. Although it
fails to detect the small negative peak at t = 48.
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Figure 3.13: Illustration of the EM-AMP-DCS algorithm using a toy problem.
The problem is generated using n = 200, δ = 0.1, ρ = 0.3, λ =
δρ, T = 50, ζ = 0, ψ = 1, T = 50, p10 = 1/20, α = 0.9 and solved
using EM-DCS-AMP. (a) The true sources (b) Estimated sources
(c) Evolution of an arbitrary active source as a function of EM
iterations.



Chapter 4

Numerical Experiments

In order to analyze the performance and the properties of the algorithms de-
scribed in chapter 2 and chapter 3, a series of numerical experiments have been
designed and conducted.

This chapter is divided into six subsections. The first three subsections are de-
voted to investigate the algorithms for the single measurement problem (SMV).
Specifically, in section 4.1 a number of small experiments are set up to examine
the properties of the AMP0 algorithm. Section 4.2 describes an experiment,
which is used to determine the empirical phase transition curves for AMP0 and
EM-BG-AMP for noiseless problems. Section 4.3 considers noisy problems and
compares the EM-BG-AMP algorithm to other reconstruction algorithms.

The last three subsections addresses algorithms for the MMV formulation, where
sections 4.4 and 4.5 consider the AMP-MMV and AMP-DCS algorithms, respec-
tively. Finally, section 4.6 describes a simulation, which is designed the mimic
the true properties of an EEG inverse problem.

Recall, that for a linear inverse problem of the form y = Ax + e, the under-
samplingratio is defined as δ = m/n and the sparsity is defined as ρ = k/m,
where k is the true number of non-zero elements in x. We will make extensive
use of these definitions throughout this chapter. All experiments are based on
synthetic data and all simulations are performed in Matlab R2013a 64 bit.
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4.1 Analysis of the AMP Algorithm

This section is devoted to the explore the properties of the AMP-algorithm,
which was derived in section 2.2.

Performance vs. Problem Size

The AMP algorithm was derived using the large system limit, i.e. n,m→∞ for
m/n→ δ. It is therefore of particular interest to investigate the performance of
the algorithm as a function of the problem size n. If the method only is able to
recover the solution for extremely large systems, e.g. n > 107, the applicability
to practical problems will be limited. Although, the asymptotic properties are
still of theoretical interest.

The first experiment is therefore designed to investigate the significance of the
problem size n in a noiseless setting. That is, in this experiment the algorithm
AMP0 is applied to a series of problems with different size n. To quantify the
performance of the algorithm, we will define the criteria of success in terms the
relative error:

||x0 − x̂||2
||x0||2

≤ τsuccess, (4.1)

where x0 is the true solution, x̂ is the estimated solution and τsuccess is a thresh-
old parameter. That is, we say that the specific problem instance has been
successfully solved, if the relative error of estimate solution is smaller than the
threshold τsuccess. This criteria is meaningful, since the experiment is conducted
in a noiseless setting. For the threshold parameter we will use τsuccess = 10−2

as in [MD10] to facilitate comparison.

Define the success variable Sr ∈ {0, 1} as Sr = 1 if and only if the r’th run
is a success. The average of {Sr}Rr=1 can then be interpreted as the empirical
probability of success.

We will therefore measure the empirical probability of success as a function
of the problem size n. The experiment is conducted as follows. The degree
of sparsity is fixed to ρ = 1

20 . Then for a specific set of values for n and δ,
the forward matrix is generated by sampling the elements Aai from an I.I.D.
Gaussian distribution and then scaling the columns of A to unit `2-norm. The
number of non-zero components in the true solution x0 is fixed to the nearest
integer to k = ρ · δ · n and the coefficients of all non-zero elements are fixed
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to 1 for simplicity. The measurements for each problem instances y are then
generated using y = Ax0.
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Figure 4.1: Performance vs. problem size for AMP0 in a noiseless setting. The
problems are generated using Gaussian I.I.D. forward matrices,
where the columns have been scaled to unit `2-norm. The sparsity
is fixed to ρ = 1

20 , and thus the number of non-zero elements in x0

is fixed to nearest integer to k = ρδn. The coefficients of all non-
zero elements are chosen to 1. The measurements for each problem
instance are then generated using y = Ax0 and recovered using
AMP0. The results are averaged over R = 100 runs.

For 4 different values of δ, we then sweep over the problem size n in the interval
[100, 2000] with a step size of 100. For each value of n, the AMP0 algorithm
is then applied to the resulting problem. The maximum number of allowed
iterations is fixed to 500 with the possibility of early stopping, if

∣∣∣∣x̂k − x̂k−1
∣∣∣∣

2

||xk||2
≤ 10−6 (4.2)

where k is the iteration number. This process is repeated R = 100 times for
each value of n and δ.

Figure 4.1 shows the estimated probabilities of success as a function of n. As
expected a clear dependency on the problem size n as well as δ is seen. For
the highest undersamplingsratio, i.e. δ = 0.5, the problem size has to be at
least n = 500 for perfect recovery, while for the lowest undersamplingsratio, i.e.
δ = 0.2, the problem size n has to be larger than 1250. The dependencies on
both n and δ are expected since derivation of AMP0 is based on approximations,
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whose quality depends on both n and m. Despite this dependency, it is worth
noting that the AMP0 algorithm provides perfect recovery at the computational
cost O(mn) for even small/medium scale systems as small as n = 500. This
makes the AMP-framework very applicable to medium and large scale problems
since the approximations are only expected to become better as the problem
size increases.
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Figure 4.2: Performance vs. problem size for AMP0 and MP in a noiseless
setting. The problems are generated using Gaussian I.I.D. forward
matrices, where the columns have been scaled to unit `2-norm.
The undersamplings rati is fixed to 0.5 and the sparsity is fixed to
ρ = 1

20 , and thus the number of non-zero elements in x0 is fixed
to nearest integer to k = ρδn. The coefficients of all non-zero
elements are fixed to 1. The measurements is then generated as
y = Ax0 and recovered using AMP0 and MP. The results are
averaged over R = 20 runs.

In the derivation of the AMP-algorithm, a series of approximations were applied
to a set of message passing update equations. In order to gain further insight
into this algorithm, the next experiment is designed to examine the properties
of the last approximation, in which the number of messages was reduced from
2mn to m + n. The message passing (MP) algorithm with 2mn messages is
given in eq. (2.69) and eq. (2.70) and will be referred to as MP (in contrast to
AMP) in the following.

Since the AMP scheme is an approximation to the MP scheme, it is natural
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to expect better performance from the MP scheme, but at the cost of higher
computational complexity. First, we compare to the two schemes using an
experiment similar to the one conducted in the previous section. However, δ is
fixed to δ = 0.5 and the results are averaged over R = 20 runs.

The result is shown in figure 4.1. It is seen that the MP scheme seems to require
a much larger problem size than AMP0 in order to achieve perfect recovery.
Although not conclusive, this result suggests that the approximation of the MP
scheme into the AMP scheme has a positive effect on the sensitivity to the
problem size n. This is perhaps due to the fact that the MP scheme has a much
higher number of parameters to estimated in each iteration compared to the
AMP scheme.
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Figure 4.3: Evolution of the AMP and MP messages sent from the first vari-
able x1 to the factor nodes. The data are generated from a noise-
less problem with parameters n = 2000, δ = 0.5 and ρ = 1/20.
The coefficients of the non-zero weights are fixed to 1.

Recall that the messages from variable nodes to factor nodes in the AMP scheme
are independent of the index of the factor nodes, whereas the corresponding mes-
sages in the MP scheme are indeed dependent on the index of the factor nodes.
We will now examine how the messages of two algorithms evolve as a function
of iterations. In particular, we will compare the evolution of the messages sent
from the first variable node, i.e. x1 in both AMP and MP. Since the messages
in the MP scheme depends on the factor node index, the average message will
be used. That is, we compare xAMP

1 to 1
m

∑m
a=1 x

MP
i→a. The parameters of the

problem are chosen to δ = 0.5, ρ = 0.05 for n = 2000 such that MP algorithm
actually converges, cf. figure 4.2.

The result is shown in figure 4.3(a)-(b). The values of both messages fluctuates
heavily during the first 25 iterations, after which they both converge to a value
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Figure 4.4: Evolution of relative errors for the AMP and MP schemes. The
data are generated from a noiseless problem with parameters n =
2000, δ = 0.5 and ρ = 1/20. The coefficients of the non-zero
weights are fixed to 1.
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Figure 4.5: Evolution of threshold parameter γ for the AMP and MP scheme.
The data are generated from a noiseless problem with parameters
n = 2000, δ = 0.5 and ρ = 1/20. The coefficients of the non-zero
weights are fixed to 1.
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close to the true value. Figure 4.3b zooms in on the region of interest for the
last 25 iterations. This figure also depicts the variation within the MP messages
by plotting ±2 standard deviations of the messages (black dashed line). Note,
that the values of the AMP messages (blue curve) are actually closer to the true
value (green line) than the MP messages (red curve).

Figure 4.4(a) shows the relative error as a function of iterations for the two meth-
ods. The two curves have very similar shapes and both seem to converge after
approximate 30 iterations. However, figure 4.4(b) shows the logarithm of the
same curves and here it is seen that the MP method actually reaches a plateau,
while the AMP curve decreases steadily. A similar phenomena is observed on
figure 4.5(a)-(b), which shows the evolution of the threshold parameter for the
AMP and MP schemes. In the first 25 iterations, the two curves are almost
inseparable, but after approximately 30 iterations the threshold parameter for
MP reaches a plateau. These observations are consistent with the observations
from figure 4.3(b).
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Figure 4.6: Run time for AMP and MP as a function of iterations. The
data are generated from a noiseless problem with parameters
n = 2000, δ = 0.5 and ρ = 1/20. The coefficients of the non-
zero weights are fixed to 1.

Finally, figure 4.6(a) shows the run time in seconds as a function of iterations for
both methods and figure 4.6(b) shows the ratio of the two run times. Of course,
the observed run times are heavily dependent on the specific implementation and
the specific hardware details. Therefore, we are not interested in the absolute
values of the run times, but only the relative values. The left-most figure shows
that the average run time for MP is approximately 80 times higher than the run
time of AMP.

Thus, this little experiment suggests that the approximation, in which the num-
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ber of messages is reduced from 2mn tom+n, does not degrade the performance
of the algorithm significantly. In fact, for this particular type of problem the
recovery performance is increased, while giving a significant reduction in run
time. However, for larger problems the recovery performance of MP is expected
to be equal to or better than AMP, but at the cost of significantly higher com-
putational complexity.

4.2 Phase Transition Curves

In general, the difficulty of a linear inverse problem increases when the number
of samples decrease or when the number of non-zero elements increase. Hence, it
is of great interest to develop methods, which have a good performance in terms
of the sparsity and under-sampling trade-off. As stated earlier (see Literature
review section 1.2), many methods for solving linear inverse problems exhibit
a sharp phase transition, which effectively partitions the (δ, ρ)-plane into an
unsolvable and a solvable region. The boundary between these two regions,
i.e. the phase transition curve, then provides a principled way of comparing
performance in terms of the undersampling sparsity trade-off.

We will now estimate the empirical phase transition curve for AMP0 and com-
pare it to EM-BG-AMP, Bayesian Variational Garrote (VG) [AHH13], and FO-
CUSS [GR97] methods. The minimum `2 norm estimated is used as the initial
estimate for the FOCUSS method. Although, the methods VG and EM-BG-
AMP are not designed for the noiseless setting, they are included in the com-
parison anyway since they do not require any parameter tuning1. In real life
applications, the measurements are often heavily contaminated with noise, but
it is still interesting to investigate the performance in the noiseless case since it
provides a bound on the achievable performance. That is, if a given problem is
unsolvable in the noiseless setting, we should not hope to be able to solve it in
the noisy setting.

The phase transition curve is estimated using the same approach as described
in [MD10] and the procedure is as follows. The problem size is fixed to n = 500,
while the sparsity ρ and the undersamplingsratio δ are sampled equidistant in
the interval [0.05, 0.95] in steps of 0.05. For each (δ, ρ)-pair, R = 50 problems
are generated and then attempted solved using the method under examination.
Each problem instance is generated using an I.I.D. Gaussian forward matrix
A of suitable size, where the columns have been scaled to unit `2-norm. The
number of non-zero elements in the true solution x0 is set to the nearest integer

1The original Variational Garrote [KG12] requires tuning of the sparsity controlling pa-
rameter, but the Bayesian extension used here learns the degree of sparsity from the data.
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to k = δ · ρ · n and the coefficients of non-zero entries are fixed to 1. Noiseless
measurements are then generated using y = Ax0. If the estimated solution of
the r’th problem instance satisfies the criteria in eq. (4.1), we set Sr(δ, ρ) = 1.
Otherwise, we set Sr(δ, ρ) = 0. For each (δ, ρ)-pair, we can now define the
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Figure 4.7: Example of how to estimate the phase transition point for a spe-
cific value of δ. The blue points corresponds to the estimated
probabilities of success. A generalized linear model is then fitted
to these points (green curve) and the value of ρ, for which the
probability is equal to 0.5 is said to be the phase transition point
ρ∗(δ).

empirical probability of success as

S(δ, ρ) =
1

R

R∑

r=1

Sr(δ, ρ) (4.3)

For a specific value of δ = δ̂, we can now consider S(δ̂, ρ) as a function of ρ, and
then fit a generalized linear model [MT11] of the form:

logit
[
S(δ̂, ρ)

]
= a+ bρ (4.4)

Then the finite-n phase transition point ρ∗(δ̂) is defined as the value of ρ, for
which the probability of success is equal to 50%. Using the GLM model, this
point is easily computed as ρ∗

(
δ̂
)

= −a/b. Figure 4.7 shows an example of this
for a specific value of δ. The blue points correspond to the empirical probabilities
and the green curve is the fitted GLM model. The red cross then indicates
the point, ρ∗(δ̂) = 0.38, where the probability is equal to 50% according to
the model. This process is then repeated for all values of δ and then ρ∗(δ)
corresponds to the empirical phase transition curve.
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Note, that the choice of problem size, i.e. n = 500, may cause trouble for
the AMP0 method for low values of δ. But this is a necessary trade-off, since
these kinds of experiments are indeed computational demanding and very time
consuming2.

The maximum number of allowed iterations for AMP0, EM-BG-AMP, FOCUSS,
and VG Bayes are fixed to 500, 60, 60, 500, respectively, which are well above the
necessary number of iterations for all methods. All with the possibility of early
stopping, if the criteria in eq. (4.2) is satisfied. The actual number of iterations
used and CPU run time are also measured for each (δ, ρ)-pair for each methods.
The results are shown in figures 4.8(a)-(l). The first column shows the estimated
probability of success for each (δ, ρ)-pair superimposed with the estimated phase
transition (dashed black line) and the theoretical phase transition curve for `1
minimization (green).

By inspecting the left-most column, it is seen that all methods exhibit a sharp
phase transition. Clearly, the EM-BG-AMP provides the best phase transition
curve. A closer look on the figure (a), reveals that there is some ”ripple” in the
”solvable” region for the AMP0 method. This may be caused by the fact that
the problem size is only n = 500. In figure (b), it appears that the number of
iterations is approximately constant for sufficiently low values of ρ, but increases
when ρ approaches the phase transition point. In the unsolvable region above
the curve, it simply spends the maximum number of iterations. The same
pattern is reflected in figure (c), which shows the CPU run time in seconds. But
note the scale of figure (c) compared to (f),(i), and (l). AMP0 is magnitudes
faster than VG and FOCUSS. Furthermore, it is worth mentioning that even
if the EM-BG-AMP method is running the EM update scheme, it is still much
faster than both FOCUSS and VG. Notice also the remarkable small number of
iterations used for the FOCUSS methods as shown in figure (h).

The four estimated phase transition curves are all shown in figure 4.9 to facilitate
comparison. The estimated phase transition curve for AMP0 is close to the
theoretical curve for the `1 minimization approach as expected. However, for
δ < 0.1 the curve drops significantly compared to the theoretical curve. This
is a property of the thresholding policy used in the AMP0 method. The same
phenomena is seen in [DMM10] and is confirmed in [Mal13]. Donoho et al.
have developed another thresholding policy, which does not suffer from this
issue [DMM09]. Instead of using τk or γk as threshold parameter in the k’th
iteration, they use λσk as threshold parameter, where λ is tuning parameter and
σk is an estimate of mean square error of the current estimate xk. When λ is
optimally tuned, this approach is referred to as Optimally tuned AMP [DMM09].

2For R = 50 and the specific resolution of δ and ρ, we have to solve 19 · 19 · 50 = 18050
inverse problems to estimate the phase transition curve for one of the methods.
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Figure 4.8: Comparison of the methods AMP0, EM-BG-AMP, FOCUSS and
VG. Data are generated using n = 500, Gaussian I.I.D forward
matrix, and the coefficients of all non-zero weights are fixed to 1.
The values of δ and ρ are both sampled equidistant in the interval
[0.05; 0.95]. The results are averaged over R = 50 runs. Left
column: Estimated probability of success. Mid column: Number
of iterations. Right column: Run time in seconds.
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Figure 4.9 also clearly shows that the curve for EM-BG-AMP is well above all
the other curves for all values of δ except for the point δ = 0.05. Furthermore,
for δ ≥ 0.7, the EM-BG-AMP method provides perfect reconstruction for all
values of ρ ∈ [0.05, 0.95]. This is quite impressive, but perhaps not so useful in
practice since many problems of interest are located in the opposite corner of
the diagram, i.e. the lower left corner.
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Figure 4.9: Estimated phase transition curves for the methods AMP0, EM-
BG-AMP, VG Bayes, FOCUSS and GAMP2. The data are gen-
erated using n = 500, Gaussian I.I.D forward matrix, and the
coefficients of all non-zero weights are fixed to 1. The values of
δ and ρ are both sampled equidistant in the interval [0.05; 0.95].
The results are averaged over R = 50 runs.

We now consider the run times of the 4 different algorithms. The dominating
operation in the AMP algorithm is forming the matrix-vector products involving
A and AT , so AMP scales linearly w.r.t. both m and n, i.e. O(mn). In each
iteration of both VG and FOCUSS, it is necessary to solve a linear system of
equations, which scale as O(mn2). It is therefore expected that AMP0 and EM-
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(a)

Figure 4.10: The logarithm of the run time for AMP0, EM-BG-AMP, VG
Bayes and FOCUSS. The data are generated as described in fig-
ure 4.9.
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BG-AMP are faster than the two other methods. This is confirmed by the figure
4.10, which shows the natural logarithm of the CPU run time as function of both
δ and ρ for the four methods. The natural logarithm is used because of the large
difference in magnitudes. For almost all values of δ and ρ, the figure shows the
following ordering: AMP0 < EMBGAMP < FOCUSS < VG. Again, CPU run
time is heavily affected by the specific implementation and hardware details and
therefore one should be cautious to draw conclusions. Here we simply note that
the observed run times are consistent with the expected results.

Before we move on to the analyzing the performance of the methods in a noisy
setting, we briefly discuss the GAMP algorithm. Two variants of the GAMP
algorithm, GAMP1 and GAMP2, have been introduced, where GAMP2 is a
simplified version of GAMP1. It was argued that AMP0 can be seen as a
special case of GAMP2 with specific choices of the scalar functions gin and
gout. Figure 4.9 also shows the estimated phase transition curve for GAMP2,
where the scalar functions have been chosen to match the AMP0 algorithm (see
Appendix B.2). As seen on the figure, the phase transition curves for GAMP2
(black curve) and AMP0 (red curve) agree nicely for all values of δ.
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Figure 4.11: Estimated phase transition curves for GAMP1 and GAMP2,
where the scalar function have been chosen as described in Ap-
pendix B.2. The data are generated the same way as described
in 4.9.

Moreover, figure 4.11(a) compares GAMP1 (red curve) and GAMP2 (blue curve)
using these particular scalar functions. The data are generated in the same way
as for the other phase transition curves described above. It is seen that the
two curves are almost identical, but a careful look at the figure reveals that
the red curve is slightly higher than the blue for most values of δ. This is also
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Figure 4.12: Number of iterations used and CPU run time for GAMP1 &
GAMP2. The data are generated the same way as described in
4.9, except the sparsity is fixed to ρ = 0.1.
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formally confirmed using a paired t-test, which yields a p-value of p = 4.2710−4.
Therefore, using a significance level of 1%, we reject the null hypothesis that
the difference of the two curves has zero mean. However, as Rangan points out
in [Ran10], this difference is expected to become insignificant when the problem
size n increases.

Regarding the computational complexity, the dominating operation in both
GAMP1 and GAMP2 is the matrix-vector products involving A. GAMP1 re-
quires forming four of such products, while GAMP2 only requires two of such
products. Figure 4.12(a) shows the number of iterations used in GAMP1 and
GAMP2 and figure 4.12(b) shows the CPU run time for the two methods. The
data are generated the same way as described above, except that sparsity is fixed
at ρ = 0.1. It is seen that the two methods require roughly the same number
of iterations to converge. The peak around δ = 0.15 is due to the transition
between the unsolvable and solvable region. For small values of δ, the run times
for the two methods are similar, but as δ increases the difference in run time
between the two methods become large. Finally, figure (c) shows the run time
per iteration for the two methods and here it is clearly seen that the proportion-
ality constant for GAMP1 is approximately twice the size of the proportionality
constant of GAMP2. The same tendency is exptected for the problem size n.
This suggests that for problems with relative large δ, one should use GAMP2
rather than GAMP1 as expected.

Using the numerical experiments in this section, it has been shown that the
AMP-based methods, AMP0 and EMBGAMP, outperform FOCUSS and VG
both in terms of the phase transition curve and run time.

4.3 Noisy Problems

The purpose of this section is to examine the performance of the AMP meth-
ods, when the measurements are contaminated with noise. Both the AMPA
algorithm and EM-BG-AMP algorithm are designed to handle noisy problems.
However, the AMPA algorithm requires manually tuning of the regularization
parameter λ, while the EMBG-AMP method automatically tunes the hyperpa-
rameter using an Expectation-Maximization scheme. In addition, the experi-
ments in the noiseless case showed that the phase transition curve for EM-BG-
AMP is superior to that of AMP0. Therefore, we will focus on the EM-BG-AMP
method in this section.

Vila et al. have published a Matlab toolbox implementing the algorithm EM-
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BG-AMP3, which is based on the GAMP Matlab toolbox by Sundeep Rangan4.
This implementation is used for all simulations involving the EM-BG-AMP
methods.

In the noisy case, exact recovery is unlikely and therefore we cannot expect the
coefficients of the estimated solution to converge to the true solution. Instead of
labelling each run as successful or unsuccessfull as in the previous experiments,
we will quantify the performance of an algorithm in terms of the Normalized
Mean Square Error (NMSE) and the so-called F-measure from Information Re-
trieval [Rij79]. The NMSE measure is given by

NMSE =
||x0 − x̂||22
||x0||22

(4.5)

The F-measure, also known as the F1-score, corresponds to the harmonic mean
of the precision and recall :

F = 2
precision · recall
precision + recall

, (4.6)

where precision is the fraction of true non-zero elements detected by the algo-
rithm and recall is the fraction of true zero-elements detected by the algorithm.
The F-measure will be used to quantify a given algorithms ability to estimate the
correct location of the non-zero entries, i.e. the support of the solution. Note,
F = 1 if and only if the support of the entire solution is correctly detected.

For the EM-BG-AMP method, we can estimate the support using the posterior
probabilities of the support variables. That is, we will use the following MAP
estimate:

∀i ∈ [n] : ŝi = argmax
si

p(si
∣∣Y ) (4.7)

Sensitivity of Hyperparameters of BG-AMP

The BG-AMP method has four hyperparameters, where three of them governs
the prior distribution on the entries in the solution x and the fourth is the
noise variance. This aim of this experiment is to investigate how the specific
value of a given hyperparameter influence the performance of the algorithm.
That is, how sensitive is the algorithm to the specific values of the individual
hyperparameters. It should be stressed that the EM update scheme is not used
in this experiment.

3 http://www2.ece.ohio-state.edu/~vilaj/EMGMAMP/EMGMAMP.html
4http://gampmatlab.wikia.com/wiki/Generalized_Approximate_Message_Passing

http://www2.ece.ohio-state.edu/~vilaj/EMGMAMP/EMGMAMP.html
http://gampmatlab.wikia.com/wiki/Generalized_Approximate_Message_Passing
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In the BG-AMP algorithm, the prior distribution on each of the elements xi is
assumed to have the form:

p(xi|q) = (1− λ) δ(xi) + λN
(
xi
∣∣ζ, ψ

)
(4.8)

For this experiment the problem size is fixed to n = 500, undersamplingsratio
δ = 1

4 and the sparsity is fixed to 1
4 . Then R = 100 problem instances are

generated as y = Ax0 + e. The true solutions x0 are sampled from the prior
in eq. (4.8) with parameters λ = δρ = 1

16 , ζ = 0 and ψ = 1. The forward
matrices A are I.I.D. Gaussian, where the columns have been scaled to unit `2-
norm. The noise vectors e are generated from an multivariate isotropic Gaussian
distribution N

(
0, 10−3Im

)
.

We will now investigate the influence of the sparsity parameter λ. To do this,
we fix the other hyperparameter, i.e. ζ, ψ and σ2, to the their respective true
values and then sweep over λ in the range 10−10 to 1. Figure 4.13(a)-(b) show
the NMSE and F-measure as a function of λ. The green vertical line indicates
the true value of the hyperparameter. The thin dashed blue line show the result
for one problem instance, while the solid blue line shows the result averaged
over all R = 100 problem instances. Figures (c)-(d) show the same plots for the
noise variance σ2. Figure 4.14(a)-(b) show the same plots for the mean of the
”slap” component ζ and finally figure 4.14(c)-(d) show the same plots for the
variance of the ”slap” component ψ. Note the different type of axis for each of
the hyperparameter.

From the figures, it is clear that the optimal performance, both in terms of
NMSE and F-measure, is obtained when the values of the hyperparameters are
equal to their true values as expected. For the three hyperparameters related to
the prior, i.e. λ, ζ and ψ, there is a relative large range of values, which results
in optimal or near optimal performance. For instance, the BG-AMP method
yields an F-measure close to 1, as long as λ is in the range

[
10−7, 0.5

]
. At this

point, it is important to emphasize that the other hyperparameters are fixed to
their true values. But these plots still suggest that the algorithm is not that
sensitive to the values of the hyperparameters of the prior. However, this is not
as clear for the noise variance. The figures (c) and (d) show that the algorithm
is a bit more sensitive to the value of the noise variance σ2 than the remaining
hyperparameters.

Figure 4.14(a) and (b) show that the performance of the algorithm is heavy
fluctuating when ζ is far away from the true value. This is likely to be caused
by numerical issues since the value of a Gaussian probability density function
is extremely small when evaluated more than 5 standard deviations away from
its mean. Figure 4.14(c) and (d) suggest that the exact value of the variance
of the ”slap” component is not important as long as the ”slap” density is broad
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Figure 4.13: Sensitivity of λ and σ2. The data is generated using n = 500,
δ = 1

4 , ρ = 1
4 , λ = 1

16 , ζ = 0, ψ = 1 and σ2 = 10−3. (a)-(b) show
NMSE and F as a function of λ, while the remaining parameters
are fixed at the true values. The solid blue line is the average
value over 100 runs, whereas the dashed line correspond to one
instance and the dashed green line indicates the true value. (c)-
(d) show similar plots for σ2.
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Figure 4.14: Sensitivity of ζ and ψ. The data is generated using n = 500,
δ = 1

4 , ρ = 1
4 , λ = 1

16 , ζ = 0, ψ = 1 and σ2 = 10−3. (a)-(b) show
NMSE and F as a function of ζ, while the remaining parameters
are fixed at the true values. The solid blue line is the average
value over 100 runs, whereas the dashed line correspond to one
instance and the dashed green line indicates the true value. (c)-
(d) show similar plots for ψ.
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enough to cover the range of coefficients. Furthermore, it is also expected that
as the value of ψ increases, the sensitivity to ζ decreases.
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Learning the Hyperparameters using EM

We will now consider the process of learning the hyperparameters using the EM
update scheme. In particular, since the EM algorithm is only guaranteed to
converge to a local maxima (or saddle point), we will investigate the algorithms
sensitivity to the initial values. In order to do this, an experiment is set up
with the same parameters as above, but now some of the hyperparameters are
initialized to ”wrong” values and then updated using the EM updates rules using
the EM-BG-AMP algorithm.
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Figure 4.15: Learning of the sparsity rate λ and the noise variance σ2. The
data set is generated from a model with the following parameters:
n = 2000, δ = 1

4 , ρ = 1
4 , λ = 1

16 , ζ = 0, ψ = 1 and σ2 = 10−3.
Except for λ and σ2, the algorithm is provided with perfect prior
knowledge. (a) shows the true values and the 4 initial points
(b) shows the trajectories of λk for each of the initial points (c)
shows a similar figure for σ2(k).
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The mean and variance of the ”slap” component are initialized to the true val-
ues, while we consider different initializations for the pair (λ, σ2). The four
different points initializations (P1-P4) along with the true values (green cross)
are shown in figure 4.15(a). The trajectory of the sparsity parameter λ is shown
as a function of EM iterations in figure (b) and figure (c) show a similar plot
for the noise variance σ2. Each color corresponds to a different point of initial-
ization and the green lines mark the true values. Observe that only the two
initializations starting from point P3 and point P4 do actually converge.

Consider first the initialization at point P1 (red), where both the sparsity pa-
rameter and the noise variance are too high. The EM-algorithm converges to
a solution where λ has a relatively large value and the noise variance has a
very small value as shown in figure (b). This can be interpreted as a case of
overfitting, since most of the resulting coefficients are active, i.e. x̂i 6= 0.

The opposite situation happens when the algorithm is initialized at point P2
(blue). Here the sparsity parameter is too low and the noise variance is too
high. As seen on figure (b) the sparsity parameter drops quickly during the first
iterations and never ”returns”, while the noise variance converges at a relatively
large value. This configuration correspond to a local maxima, where all coeffi-
cients are inactive, i.e. x̂i = 0, ∀i ∈ [n], and the noise variance explains all the
variation in the data.

Finally, we see that when the algorithm is initialized at point P3 and P4, the
estimated values of the hyperparameters converges to the true values. It is
remarkable that the trajectories for the noise variance are identical for most of
the iterations even if the initial values are very different.

Figure 4.15(b)-(c) show the trajectories of the two hyperparameters λ and σ2

vs. number of EM iterations for the 4 different initial points shown in figure
4.15a. It is seen that the blue curve and the red curve seem to converge to
poor local maximas. The initial point for the blue curve corresponds to very
low sparsity rate and large noise variance and it converges to a solution, where
all the variation in the data is explained by the noise. Next, we see that the
red curve converges to a solution with a high sparsity rate and very low noise
variance, which suggests overfitting. But the trajectories for the black and
purple curves converge nicely to the true solution.

The fact that different initializations converge to the exact same point suggests
that there is bassin of attraction in the (λ, σ2)-space, in which the solutions con-
verge to the same points. In order to investigate this further, a new experiment
is set up. The space (λ, σ2) is sampled on a regular grid with 15 points along
each dimension. For every grid point R = 10 problems are generated and solved
using EM-BG-AMP, where λ and σ2 is initialized according to the current grid
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Figure 4.16: Euclidean distance in R2 between the estimated parameters λ̂, σ̂2

and corresponding true values. Same conditions as above, but
averaged over R = 10 runs. (a) ζ, ψ are fixed at true (b) Initial
values for ζ0 = 0.5, ψ0 = 10 and updated using EM

point. The mean and variance of the ”slap” component is still initialized to the
true values. As a measure of performance, we will use the euclidean distance
between the estimated hyperparameters (λ̂, σ̂2) and the true hyperparameters
(λ, σ2). The result is shown in figure 4.16(a). The entire experiment is repeated
one more time, except now we initialize (ζ, ψ) as ζ = 0.5 and ψ = 10, both of
which are ”incorrect” values.

As expected, both figure (a) and (b) show a large bassin of attraction, where
the estimated hyperparameters are close to the true values. Additionally, figure
(b) verifies that initialization of (ζ, ψ) is not crucial for the result. At least not
when the initial value of ψ is large.

Performance of EM-BG-AMP vs. LASSO vs. VG

This subsection describes an experiment, whose purpose is to compare the per-
formance of EM-BG-AMP to other methods. In particular, we will compare
EM-BG-AMP to the LASSO [Tib96] and the Variational Garrote [KG12]. The
LASSO is widely known and used as reference for many experiments and is
therefore relevant in a comparison. The Variational Garrote is a new promising
method, which have been shown to outperform the LASSO on multiple occasions
[KG12, HSH13]. For the LASSO, we will use the Least Angle Regression-variant
(LARS) [EHJT], which is implemented by Karl Sjostrans in the Matlab tool-
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box [Sjö05]. The LARS algorithm computes the entire regularization path of
LASSO in an efficient manner. For the Variational Garrote (VG), we will use
the implementation in the FieldTrip Matlab toolbox [OFMS11]. In order to
tune the regularization parameter γ for VG, 15% of the samples are used for
hold-out cross validation5 [TSK06]. For EM-BG-AMP, the maximum number
of EM iterations is fixed to 60, while the maximum number of AMP iterations
is fixed to 25.

The experiment is conducted as follows. The data are generated from a model
of the form y = Ax0 + e. The problem size is again fixed to n = 500 and the
forward matrix is I.I.D Gaussian, where the columns have been scaled to unit
`2-norm. The true solutions x0 are generated such that they have k = ρ ·m (or
closest integer) non-zero entries6, and the coefficients of the non-zero entries are
sampled from a zero-mean Gaussian distribution with unit variance. The noise is
sampled from an isotropic multivariate Gaussian distribution, e ∼ N

(
0, σ2Im

)
.

The noise variance σ2 is scaled to fit a desired signal-to-noise ratio (SNR) using:

SNRdB = 10 log10

V [Ax0]

V [e]
(4.9)

The undersamplingsratio δ is sampled 30 times with equal spacing in the inter-
val [0.025, 0.5], the sparsity ρ is chosen to be ρ ∈ {0.10, 0.15, 0.20} and the SNR
is chosen to SNR ∈ {10dB, 15dB, 20dB}. For each combination of (δ, ρ, SNR),
we generate R = 100 problem instances and solve them using EM-BG-AMP,
LASSO and VG. The hyperparameters of EM-BG-AMP are initialized as de-
scribed in Algorithm 5.

The results are shown in figure 4.17(a)-(f). The red curves correspond to EM-
BG-AMP, the green curves are VG and the blue curves are LASSO. The markers
on each line indicate the current sparsity, i.e. a cross is ρ = 0.10, a circle is ρ =
0.15 and a square is ρ = 0.20. In each of the six figures and for all three methods,
it is seen that the performance improves when the sparsity parameter ρ decreases
and when the signal-to-noise ratio increases as expected. Furthermore, we also
see that in all six figures EM-BG-AMP outperforms VG and VG outperforms
the LASSO. Inspecting figure (b), it is seen that for δ > 0.2, the F-measure for
both VG and EM-BG-AMP are approximate 0.9 for all three degrees of sparsity.
This implies that both methods recovers most of the correct non-zero entries
in x0. But by inspecting the range where δ < 0.2, it is seen that the degree
of sparsity has huge impact on the performance of VG, while it has much less

5Here we tune the regularization parameter γ using cross validation rather than learning
it from the data, since personal experience has shown that the cross validation is more robust
to noise.

6Ideally, the number of non-zero components should be sampled from a Binomial prior
distribution with parameter λ = ρδ, but for small values of δ this approach results in many
realization of x0, where all entries are inactive.
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Figure 4.17: Comparison of EM-BG-AMP, LASSO and VG for different un-
dersamplingsratios, sparsity levels and signal to noise ratios.
Data are generated using a I.I.D. Gaussian forward matrix A,
the solutions x0 are generated such that they have k = ρ · δ · n
non-zero entries and the coefficients of the non-zero elements are
samples from a N (0, 1) distribution. The results are averaged
over R = 100 runs.
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Figure 4.18: Comparison of run times for the EM-BG-AMP, LASSO and VG.
The details of the experiment are the same as for figure 4.17

.

effect on the performance of EM-BG-AMP. The is an important detail, since
the performance on problem with a very high degree over undersampling, i.e.
very small δ, is crucial for applications like EEG imaging.

The CPU run times for this experiment is shown in figures 4.18(a)-(b) for SNR=
10dB and SNR= 20dB. The plot shows the logarithm of the run times measured
in seconds. It is seen that for small values of δ, the LARS-algorithm is by far
the fastest method, although it performance poorly in terms of NMSE and F-
measure. It also appears that for small values of δ, the EM-BG-AMP method
is the slowest of three methods, but it clearly has the best scaling in terms of δ.
For δ > 0.2 EM-BG-AMP outperfroms VG in terms of run time. Also note that
the degree of sparsity ρ has greater influence on the run time for EM-BG-AMP
than for the two other algorithm.

The prior distribution on x in VG and EM-BG-AMP are very similar. Recall,
that each entry of the solution xi can be decomposed into a support variable
si ∈ {0, 1} and a coefficient variable θi ∈ R, where xi = si · θi. The VG model
assumes a Bernoulli prior distribution on each si and an improper constant dis-
tribution on each coefficient θi. The Bernoulli distribution is parametrized using
a common regularization parameter γ, which is tuned using hold-out cross val-
idation. The posterior distribution p(x|y) is then obtained using a mean-field
variational approximation. The EM-BG-AMP model also imposes a Bernoulli
distribution on each si, while a Gaussian distribution is imposed on the coef-
ficients θi. But here the desired posterior p(x|y) is obtained using the GAMP
approximation and the hyperparameters are estimated from the data using EM
scheme. Given the similarities of the two models, it is interesting to speculate
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what actual causes the difference in performance.

First, the effective number of measurements available for VG is m̂ = 0.85m,
since 15% of the samples are used for cross validation. This implies that

δ̂ =
m̂

n
=

0.85m

n
= 0.85δ (4.10)

ρ̂ =
k

m̂
=

k

0.85m
=

1

0.85
ρ ≈ 1.17ρ (4.11)

We can interpret this as the effective undersamplingsratio is decreased, while the
effective sparsity parameter is increased and thus making the underlying inverse
problem more difficult to solve (see the estimated phase transition curves in
section 4.2). Second, the VG model assumes an uninformative (improper) con-
stant distribution on the coefficients, while the EM-BG-AMP models assumes
a Gaussian distribution on the coefficients. From a philosophical and theoreti-
cal point of view, the uninformative constant distribution is appealing since no
prior information on the coefficients is available, but perhaps the Gaussian dis-
tribution in the EM-BG-AMP model also has a regularization effect as in Ridge
regression [McD09]. Third, two different types of approximations are used in
order to obtain the desired posterior distribution. It might be that the AMP ap-
proximation has better inherent properties than the mean-field approximation
used in the VG method for this particular type of problem.

4.4 Multiple Measurement Vector Problems with
Static Support

The goal of this section is to examine the properties of the AMP-MMV al-
gorithm. Justin ziniel et al. [ZS13b] have implemented the EM-AMP-MMV
model in a Matlab toolbox7, which we will utilize for all experiments involving
the AMP-MMV model.

Three different experiments are carried out using the EM-AMP-MMV model.
The first experiment simply illustrates the effect of having multiple measurement
vectors available, while the second experiment investigates the influence of the
number of EM iterations for EM-AMP-MMV. Finally, in the third experiment
the performance of EM-AMP-MMV is compared to TM-SBL [ZR13], M-SBL
[WR07] and M-FOCUSS [CREKD05] in a systematic fashion.

All three methods (TM-SBL, M-SBL, M-FOCUSS) are available in the Matlab
7http://www2.ece.ohio-state.edu/~zinielj/mmv/

http://www2.ece.ohio-state.edu/~zinielj/mmv/
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toolbox implemented by Zhilin Zhang8. To facilitate comparison, the TM-SBL,
M-SBL and M-FOCUSS are configured the same way as in [ZS13b]. For the
TM-SBL methods, the noise parameter is configured according to the current
SNR:

noise =





small if 22dB < SNR

mild if 6dB < SNR < 22dB

large if SNR < 6dB

For the M-SBL method, the regularization parameter is estimated from the data
and the initial choice of the regularization parameter is fixed to λ = 10−3. The
pruning threshold is set to 10−2, the convergence tolerance is set to 10−8 and the
maximum allowed number of iterations is 2000. For the M-FOCUSS method,
we simplify fix the regularization parameter to the true noise variance, which is
an optimal or near optimal value. This configuration is identical to the config-
uration used in [ZS13b] and is used throughout all the following experiments.

For the AMP-MMV method, we can use the posterior probabilities of si = 1,
to make a MAP estimate of the support, i.e.

∀i ∈ [n] : ŝi = argmax
si

p(si
∣∣Y ) (4.12)

But such posterior quantities are not available for the other three methods.
Instead, we will use a rather optimistic estimate of the support. Let k denote
the number of non-zero rows in the true solution matrix X. We will then
compute the `2-norm of each row of the estimated solution matrix X̂ and use
the location of k rows with the largest `2-norms as the support estimate. In
practice, the true value of k is unknown, so this estimate is indeed optimistic.
However, this type of estimate is used in [ZS13b, ZR13] and therefore it is also
adopted here to facilitate comparison.

In the following experiments, we consider the noisy MMV problem of the form:

Y = AX +E (4.13)

where X =
[
x1 x2 . . . xT

]
is the true solution. To quantify the perfor-

mance of the algorithms, the NMSE measure is extended to the Time Normal-
ized Mean Square Error (TNMSE), which is given by:

TNMSE =
1

T

T∑

t=1

||xt − x̂t||22
||xt||22

, (4.14)

8http://dsp.ucsd.edu/~zhilin/TMSBL.html

http://dsp.ucsd.edu/~zhilin/TMSBL.html
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where xt are the true solutions and x̂t are the estimated solutions. To quantify
the support recovery capabilities of the algorithms, the F-measure will still be
used, but now the precision and recall are computed for the entire matrix X̂
instead of the vectors x̂t.

The Effect of Multiple Measurement Vectors

The first experiment is designed to illustrate the benefit of having multiple
measurement vectors available. The experiment is conducted as follows. The
problem size is fixed to n = 1000 and the sparsity is fixed to ρ = 0.3. The
undersamplingsratio δ is then sampled 10 times in the interval [0.01, 0.15] with
equal spacing. Then using an I.I.D. Gaussian forward matrix A, where the
columns have been scaled to unit `2-norm, we generate measurements using

yt = Axt + et (4.15)

where the true solutions xt are sampled from the prior of AMP-MMV model
with the following hyperparameters

ζ = 0 , ψ = 1, α = 0.9, λ = ρδ, σ2
c = 1 (4.16)

Recall that the prior model of AMP-MMV is:

p(si = 1) = λ

p(θti) = N
(
θti
∣∣ζ, σ2

c

)

with the temporal evolution of the coefficients

θt = (1− α)
(
θt−1 − ζ

)
+ αwt + ζ

where the variance of the driving noise wt ∼ N (0, ρ) is determined by relation
σ2
c = αρ

2−α . The noise variance σ
2 is scaled such that the signal to noise ratio for

each time frame is SNR = 20dB. Then for each value of T in T ∈ {1, 2, 4, 8},
we generate R = 100 problems . When T = 1, the BG-AMP method is used
and for T > 1, the AMP-MMV method is used.

Both methods are given perfect prior information. The number of AMP iter-
ations is fixed to 25 and the number of EM iterations is fixed to 15 for both
methods. Figure 4.19 shows a plot of TNMSE and F -measure as a function
of undersamplingsratio δ and figure 4.20 shows the same, but as a function of
the signal-to-noise ratio. In the latter case the undersamplingsratio is fixed to
δ = 0.2.

Inspecting the figures clearly reveals that for a fixed value of δ or SNR, the re-
covery performance increases when more measurement vectors are available. For
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Figure 4.19: Performance measures, TMNSE and F -measure, as a function
of undersamplingsratio δ for data sampled from the model:
n = 1000, ρ = 0.3 and σ2 is scaled s.t. the SNR for each times-
lice is approximately 20dB. The true parameters for the prior
model is ζ = 0, ψ = 1 and α = 0.9. or T = 1, the EM-BG-AMP
routine is used and for T > 1 the AMP-MMV routine is used.
Both methods have perfect prior information. For both meth-
ods, a maximum of 15 EM iterations and 25 AMP iterations are
allowed. The results are averaged over R = 100 runs.
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Figure 4.20: Performance measures, TMNSE and F -measure, as a function of
SNR for data sampled from the model: n = 1000, ρ = 0.3 and
δ = 0.2. The true parameters for the prior model is ζ = 0, ψ = 1
and α = 0.9. or T = 1, the EM-BG-AMP routine is used and
for T > 1 the AMP-MMV routine is used. Both methods have
perfect prior information. For both methods, a maximum of 15
EM iterations and 25 AMP iterations are allowed. The results
are averaged over R = 100 runs.

instance, figure 4.19(b) shows that for δ = 0.06, the F-measure is approximately
0.5 for T = 1, but for T = 8 the F-measure is almost 1. A similar phenomena
is observed for the TNMSE on figure (a). Consider now figure 4.20(a). Here it
is seen that for T = 1, we need a signal-to-noise ratio of approximately 20dB
to obtain an F-measure of approximately 0.8, while for T = 8, we can settle for
SNR≈ 3dB to achieve the same F-measure.

This simple experiment illustrates that problems, that are impossible to solve
in the case T = 1 due to a high degree of undersampling, become solvable as
T increases. Informally, as T grows we can use more and more information to
estimate the support of the solution and thus the problems become easier to
solve.

Number of Smoothing Iterations

The next experiment is set up to investigate the effect of the number of EM iter-
ations in the EM-AMP-MMV model. In this experiment the data are generated
using the same procedure as described for the previous experiment. The param-
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eters of the experiment are also the same except, here δ is in range [0.02, 0.4]
and the number of measurement vectors is fixed to T = 4. For each value of
δ, we generate R = 100 problems and solve them using EM-AMP-MMV with
a different number of EM iterations. The hyperparameters are initialized as
follows:

λ = ρSE(δ) · δ, ζ = 0, σ2
c = 1.5, σ2

e = 0.5, α = 0.5, (4.17)

where ρSE(δ) is the theoretical phase transition curve for `1 minimization (see
literature review 1.2). In order to have a frame of reference, the result for the
M-SBL method is also included in the graph. The results are shown in figure
4.21.
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Figure 4.21: The effect of the number of smoothing iterations with MSBL as
reference. The data are generated using the following parameters:
n = 1000, ρ = 0.3, SNR = 20dB, zeta = 0, ψ = 1, α = 0.9. The
results are averaged over R = 100 runs.
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It is clearly seen that 4 EM iterations is far from sufficient for the estimated
hyperparameters to converge to reasonable values. On the other hand, no im-
provement is achieved when the number of EM iterations is increased from 16 to
24. Therefore, in the following experiments, we will set the maximum number
of allowed EM iteration to at least 15.

Performance vs. Other Algorithms

In this experiment, the EM-AMP-MMV algorithm is compared to the MSBL,
TM-SBL and M-FOCUSS algorithms in a systematic fashion. The performance
will be measured using TNMSE and F-measure as a function of undersam-
plingsratio δ, sparsity ρ, signal-to-noise ratio SNR and number of measurement
vectors T .

In all simulations, the data are generated using an I.I.D. Gaussian forward
matrix, where the columns have been scaled to unit `2-norm and n = 1000,
T = 4, δ = 0.2, and ρ = 0.3. This is the base set up for all the experiments
is this subsection. If not specified otherwise, these parameters are used in all
the simulations. For each t = 1, .., T , the noise variance is scaled to provide
a fixed SNR of 20dB. The true solutions X are sampled from the prior of the
AMP-MMV model with the following hyperparameters:

λ = ρδ, ζ = 0 σ2
c = 1 α = 0.1 (4.18)

The EM-AMP-MMV algorithm is configured to use 25 AMP-iterations, 15
EM/smoothing iterations and with the following initialization of the param-
eters:

λ(0) = ρse(δ) · δ, ζ(0) = 0, σ2
c (0) = 1.5, σ2

e(0) = 0.5, α(0) = 0.9 (4.19)

The reasoning behind this particular choice of initial values are as follows. The
initial estimate should be reasonable such that the EM-scheme has a change to
converge to a decent maxima, but the initial estimates should not be too close to
the true values, since that would give the EM-AMP-MMV algorithm an unfair
”edge” compared to the other algorithms. All results are averaged over R = 100
runs.

The figures 4.22(a)-(c) show the TNMSE, F-measure and CPU run times for
the four methods as a function of the undersamplingsratio δ, respectively. As
expected, the performance of all four methods degrade as the problem becomes
more and more undersampled. Figure (a) and (b) show that the M-FOCUSS
method has the highest error and lowest F-measure for most values of δ.
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Figure 4.22: Performance vs. undersamplingsratio. The data are generated
using an I.I.D. Gaussian forward matrix and the following pa-
rameters: n = 1000, ρ = 0.3, T = 4, SNR = 20dB, ζ = 0, ψ = 1,
α = 0.1. The resuls are averaged over R = 100 runs.
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Moreover, the figures show that for problems with a high degree of undersam-
pling, i.e. δ < 0.1, the TM-SBL method outperforms the other methods both
in terms of TNMSE and F-measure. But for δ > 0.1, the M-SBL outperform
the other methods. This suggests that the TM-SBL has a model bias, which
improves the solutions for small amounts of data, but restricts the model as
more data become available. For both TNMSE and F-measure, the difference
in performance between M-SBL and EM-AMP-MMV is rather small.

Figure (c) reveals the problem with many SBL-based methods. In terms of run
time, the EM-AMP-MMV clearly outperforms the other methods. The com-
putational complexity for each iteration of the EM-AMP-MMV method scales
linearly in all problem dimensions, i.e. O(mnT ) . In the underdetermined set-
ting, i.e. m < n, the computational complexity of M-FOCUSS and M-SBL
are both O(nm2) for each iteration [WR07], while TM-SBL has the extra com-
putational load of estimating the correlation structure of the sources [ZR13].
The ordering of the analytical computational complexities of the methods are
therefore consistent with the observed run times in figure (c).

Figures 4.23(a)-(c) show the TNMSE, F-measure and CPU run times for the
4 methods as a function of the sparsity ρ. As a sanity check, we see that
the performance of all the methods decrease as ρ increases. Figure (a) shows
that for ρ < 0.1, the TNMSE error of the four methods are very similar. But
for 0.1 < ρ < 0.3, the M-SBL and EM-AMP-MMV outperform the two other
methods. For 0.3 < ρ the two SBL-based methods achieves the lowest errors.

By inspecting figure (b), it is seen that for sufficiently sparse problems, i.e.
small ρ, all four methods are able to recover the true support of the solution.
But as the sparsity parameter ρ becomes greater than 0.2, the performance of
all methods degrade significantly. Note, that for ρ > 0.3.5, the F-measure of
EM-AMP-MMV drops rapidly compared to the other methods. This is likely
to explained to the optimistic estimate of the support for the other methods.
Figure 4.23(c) basically tells the same story as in figure 4.22(c).

Figures 4.24(a)-(c) show the TNMSE, F-measure and CPU run times for the
four methods as a function of the number of measurement vectors T . For the
MMV problem, there are different ways of obtaining more data. One can either
increase the number of measurement per measurement vector, i.e. increase m,
or one can increase the number of measurement vectors, i.e. increase T . With
this comment in mind, we now compare the results in figure 4.24 to the results in
figure 4.22. We see that increasing T essentially has the same effect as increasing
m, which is of course one of the main benefits of the MMV formulation.

Consider this in the context of EEG imaging (see appendix D for more details).
There are multiple reasons for keeping the number of electrodes m as low as
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Figure 4.23: Performance vs. sparsity. The data are generated using an
I.I.D. Gaussian forward matrix and the following parameters:
n = 1000, δ = 0.2, T = 4, SNR = 20dB, ζ = 0, ψ = 1, α = 0.1.
The results are averaged over R = 100 runs.
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Figure 4.24: Performance vs. T. The data are generated using an I.I.D. Gaus-
sian forward matrix and the following parameters: n = 1000,
δ = 0.2, ρ = 0.3, SNR = 20dB, ζ = 0, ψ = 1, α = 0.1. The
results are averaged over R = 100 runs.
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possible, e.g. the surface area of the human scalp is rather small, it is time
consuming to attach the electrodes properly etc. But once the electrodes are at-
tached, multiple measurement vectors can easily be obtained without extra cost.
However, the underlying dynamic nature of the brain enforces a relatively low
bound on T . That is, if T becomes too large, the common sparsity assumption
is no longer valid. But as seen in the figure, increasing T by two has tremendous
effect on the recovery performance for all of the methods.

From figure 4.24(c) we also note that the M-FOCUSS methods actually becomes
faster than EM-AMP-MMV for sufficiently large T . But keep in mind that in
this experiment, we simply use the optimal regularization parameter for M-
FOCUSS. That is, if the regularization parameter was to be tuned using cross-
validation or similar, it would increase the run time significantly. Notice also
the discontinuity in the curve for the TM-SBL method.

Figures 4.25(a)-(c) show the TNMSE, F-measure and CPU run times for the
four methods as a function of the signal-to-noise ratio. At first glance figure (a)
seems to suggest that EM-AMP-MMV is much better than the other methods
in terms of TNMSE. But this is not the case since TNMSE= 0dB amounts
a relative error of 1. Thus, the EM-AMP-MMV simply returns xti = 0 for
all i and t, which is indeed desired compared to returning a useless non-zero
solution. The evolution of the TNMSE and F-measure for all four methods are
comparable and for this particular problem configuration, all four methods are
virtually useless when the signal-to-noise ratio are below approximately 10dB.

Finally, figures 4.26(a)-(c) show the TNMSE, F-measure and CPU run times
for the four methods as a function of the inverse correlation parameter α. It
is seen that when ≈≈ 1, i.e. no correlation, all four methods are capable of
reconstruction the underlying solution. But as α decrease, i.e. the temporal
correlation increase, the performance of all four methods degrade, both in terms
of TNMSE and F-measure. However, we note that EM-AMP-MMV algorithm
is performing significantly better than the remaining three models for α < 10−2.

We will now summarize on the results in figures 4.22, 4.23, 4.24, 4.25 and 4.26. In
the big picture, the performance in terms of TNMSE and F-measure for M-SBL,
TM-SBL and EM-AMP-MMV are roughly the same, but the EM-AMP-MMV
method are much faster than the other three methods. TM-SBL or M-SBL are
able to achieve a slightly better TNMSE error, but it is at the cost of a huge
increase in run time. We also note that the results are consistent with the results
obtained in [ZS13b].
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Figure 4.25: Performance vs. signal-to-noise ratio. The data are generated
using an I.I.D. Gaussian forward matrix and the following pa-
rameters: n = 1000, δ = 0.2, ρ = 0.3, T = 4, ζ = 0, ψ = 1,
α = 0.1. The results are averaged over R = 100 runs.
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Figure 4.26: Performance vs. inverse correlation parameter α. The data are
generated using an I.I.D. Gaussian forward matrix and the fol-
lowing parameters: n = 1000, δ = 0.2, ρ = 0.3, T = 4, ζ = 0,
ψ = 1, SNR= 20dB. The results are averaged over R = 100
runs.
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4.5 Multiple Measurement Vector Problems with
Dynamic Support

The aim of this section is to investigate the performance of the EM-AMP-DCS
method. Justin ziniel et al. [ZS13a] have implemented the EM-AMP-DCS
model in a Matlab toolbox9, which we will utilize for all experiments involving
EM-AMP-DCS model.

We will again utilize TNMSE and F-measure to quantify the performance. For
the EM-AMP-DCS model, we will estimate the support as follows:

∀i ∈ [n] ,∀t ∈ [T ] : ŝti = argmax
sti

p(sti
∣∣Y ) (4.20)

Performance of EM-AMP-DCS vs. EM-BG-AMP

In this experiment, the EM-AMP-DCS method is compared to the EM-BG-
AMP method on problem with slowly changing support. Ideally, the perfor-
mance of the EM-AMP-DCS model should be compared to other models, which
also mode the evolution of the support. But the existence of such models is
very limited and therefore we have to settle for the comparison with the EM-
BG-AMP model.

We will now describe a series of numerical experiments similar to those, which
were carried out for the AMP-MMV model in the last section. The only major
difference is that the support of the true solutions X is no longer constant, but
now it evolves according to a 2-state discrete Markov chain governed by the
sparsity parameter λ and the transitional probability p10 = p(sti = 0|st−1

i = 1).

We will investigate how the TNMSE and F-measure of the EM-AMP-DCS be-
haves as a function of the undersamplingsratio δ, the degree of sparsity ρ, the
signal-to-noise ratio SNR and the transitional probability p10.

In all simulations, the data are generated using an I.I.D. Gaussian forward ma-
trix, where the columns have been scaled to unit `2-norm with the configuration
n = 1000, T = 20, δ = 0.1, and ρ = 0.3. This is the base set up for all the
experiments in this subsection. If not specified otherwise, these parameters are
used in all the simulations. For each t = 1, .., T , the noise variance is scaled to
provide a fixed SNR of 20dB. The true solutions X are sampled from the prior

9http://www2.ece.ohio-state.edu/~zinielj/dcs/index.html

http://www2.ece.ohio-state.edu/~zinielj/dcs/index.html
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of the AMP-DCS model with the following hyperparameters:

ζ = 0 , ψ = 1, α = 0.1, λ = ρδ, σ2
c = 1, p10 = 0.05 (4.21)

Suppose the i’th source is active a time t and let L denote the number of
consecutive frames, where the i’th source remain active. Since the activity of
the sources evolve according to a 2-state Markov chain, it implies that L follows a
geometrical distribution, where the corresponding mean and variance are given
by E [L] = 1

p10
V [L] = 1−p10

(p10)2 , respectively [PK11]. For the current choice of
p10 = 0.05, we have

E [L] = 20 = T

V [L] = 380

Using the geometric distribution, we easily obtain the probabilities p(L < 5) =
0.186, p(L < 10) = 0.370, p(L < 15) = 0.512. Therefore, given the high number
of sources, i.e. n = 1000, the common sparsity assumption is likely not to be
fulfilled even when the expected length is equal to the number of measurement
vectors.

For a proper comparison, the hyperparameters shared by the two models are
initialized to the same values:

ζ = 0 , ψ = 1.5, λ = ρse(δ) · δ, σ2 = 0.5 (4.22)

The hyperparameters specific to the EM-AMP-DCS models are initialized as
follows:

α = 0.5, p10 = 0.1, σ2
c = 1.5 (4.23)

These values are used in all simulations in the rest of this subsection. The
EM-AMP-DCS was configured to perform at least 25 EM iterations, since it
is hypothesized that it needs more iterations than the EM-AMP-MMV model
due to the increased flexibility. The maximum number of EM iterations for
both EM-AMP-DCS and EM-BG-AMP is fixed to 100. The number of AMP
iterations for both methods is fixed to 25.

In the first experiment, the undersamplingsratio δ is sampled in the interval
from 0.02 to 0.3 and the results are shown in figure 4.27. The advantage of
using the EM-AMP-DCS compared to EM-BG-AMP is clearly seen from these
figures. For all values of δ, the EM-AMP-DCS algorithm outperforms the SMV
approach both in terms of TNMSE and F-measure. It is seen that, the EM-
AMP-DCS method needs the undersamplingsratio δ to be larger than 0.1 to
recover the true support, while the EM-BG-AMP peaks at F ≈ 0.8 for even
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Figure 4.27: Performance vs. undersamplingsratio. The data are generated
using an I.I.D. Gaussian forward matrix and using the parameters
n = 1000, ρ = 0.3, SNR= 20dB, T = 20. Underlying true signal:
ζ = 0, ψ = 1, α = 0.9, p10 = 0.05. The results are averaged over
R = 100 runs.
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Figure 4.28: The first 250 rows of the true support and the estimated sup-
port for EM-AMP-DCS for δ = 0.025, n = 1000, ρ = 0.3,
SNR= 20dB, T = 20. Underlying true signal: ζ = 0, ψ = 1, α =
0.9, p10 = 0.05.
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higher values of δ. The errors bars in the figure indicate a bit more variation in
these results compared to the corresponding plots for the AMP-MMV model.
This is probably due the high variance of L.

In order to understand the type of errors made by the EM-AMP-DCS algo-
rithm, we will investigate one of the problem instances generated in the above
experiment. Figures 4.28(a)-(b) show the first 250 rows of true support and
the estimated support, respectively, for one problem instance, where δ = 0.025.
In this region, the average F-measure for EM-AMP-DCS is approximately 0.5.
Based on these plots, it is seen that the algorithm tends to produce false nega-
tives, when it is not able to recover the support perfectly.
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Figure 4.29: Performance vs. sparsity ρ: The data are generated using an
I.I.D. Gaussian forward matrix and using the parameters n =
1000, δ = 0.1, SNR = 20dB, T = 20. Underlying true signal:
ζ = 0, ψ = 1, α = 0.9, p10 = 0.05. The results are averaged over
R = 100 runs.

In the next experiment, the sparsity ρ is sampled in the interval from 0.1 to 0.5
and the results are shown in figures 4.29(a)-(b). It is seen that for all values
of ρ, the TNMSE error is lower for EM-AMP-DCS than for EM-BG-AMP.
Moreover, for small values of ρ, i.e. a small number of non-zero elements in
X, both algorithms are able to achieve an F-measure of 0.9 or higher. But as
the ρ increases, the F-measure for EM-BG-AMP drops, while the F-measure for
EM-AMP-DCS is much more stable.

Figure 4.30 shows the first 250 rows of the true support and the estimated
support for EM-AMP-DCS for one problem instance, where ρ = 0.5. Again, it
is seen that the EM-AMP-DCS algorithm produces false negatives, when it is
not able to recover the support perfectly.
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Figure 4.30: The first 250 rows of the true support and the estimated support
for EM-AMP-DCS for ρ = 0.5. n = 1000, δ = 0.1, SNR= 20dB,
T = 20. Underlying true signal: ζ = 0, ψ = 1, α = 0.9, p10 =
0.05.
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Figure 4.31: Performance vs. SNR: The problem data generated using an
I.I.D. Gaussian forward matrix and using the parameters n =
1000, δ = 0.1, ρ = 0.3, T = 20. Underlying true signal: ζ =
0, ψ = 1, α = 0.9, p10 = 0.05. The results are averaged over
R = 100 runs.
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Figures 4.31(a)-(b) show TNMSE and the F-measure as a function of the signal-
to-noise ratio is sampled in the interval −5dB to 25dB. Again, it is seen that
the EM-AMP-DCS outperforms the EM-BG-AMP method on both TNMSE
and F-measure for all values of the signal-to-noise ratio. But figure (b) also
shows that even with T = 20, we need at least a signal-to-noise ratio of 10-15
dB to produce decent results.
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Figure 4.32: Performance vs. p10. The data are generated using an I.I.D.
Gaussian forward matrix and using the parameters n = 1000, δ =
0.1, ρ = 0.3, SNR= 20dB, T = 20. Underlying true signal: ζ =
0, ψ = 1, α = 0.9. The results are averaged over R = 100 runs.

In the last experiment in this subsection, the transition probability p10 is sam-
pled in the interval from 10−3 to 0.8 and the results are shown in figures 4.32(a)-
(b). As expected for small values of p10, the EM-AMP-DCS model clearly out-
performs the EM-BG-AMP model, but interestingly, for approximate p10 > 0.35
the EM-BG-AMP method actually outperforms the EM-AMP-DCS method.
The performance of the EM-AMP-DCS method was expected to be worst at
approximate p10 = 0.5, where the uncertainty of the Markov model is highest.
Furthermore, the performance curves were expected to be approximately sym-
metric around the point p10 = 0.5. But this is clearly not the case. However,
the observed curves might be caused by the EM algorithm getting stuck in a
poor local maxima due to the fact that the hyperparameter p̂10 is initialized as
p̂0

10 = 0.1 independent of the true value of p10.

Thus, we conclude that when the support is changing sufficiently slow, the EM-
AMP-DCS model outperforms the EM-BG-AMP in all aspects. But on the
other hand, if the support is changing too fast, the EM-BG-AMP model and
the SMV approach should be preferred.



162 Numerical Experiments
C

h
a
n
n
e
l 
in

d
e
x

Time t

 

 

5 10 15 20

50

100

150

200

250 0

0.2

0.4

0.6

0.8

1

(a) True support
C

h
a
n
n
e
l 
in

d
e
x

Time t

 

 

5 10 15 20

50

100

150

200

250 0

0.2

0.4

0.6

0.8

1

(b) Estimated support

Figure 4.33: The first 250 rows of the true support and the estimated support
for EM-AMP-DCS for ρ = 0.3. n = 1000, δ = 0.1, SNR= 20dB,
T = 20. Underlying true signal: ζ = 0, ψ = 1, α = 0.9, p10 = 0.7.

4.6 EEG Source Localization

The purpose of this very last experiment is to simulate an EEG source localiza-
tion problem (see appendix D for more details). In particular, an experiment is
set up to mimic the configuration of a real EEG inverse problem with n = 8196
sources, m = 128 measurements, and T = 100 measurement vectors. We will
simulate a source signals X with an average of 20 active sources, generate the
measurements Y , and then try to recover the true sources using EM-AMP-DCS
and EM-BG-AMP.

The forward matrices in all simulations so far in this thesis have been Gaussian
I.I.D. matrices. Gaussian matrices with independent elements are almost surely
orthogonal and well-behaved, but this is not the case with real forward matrices.
In fact, EEG forward matrices derived from head models are often heavily ill-
conditioned. We will therefore perform the entire experiment twice. First,
the experiment is performed with an I.I.D. Gaussian forward matrix and then
the entire experiment is repeated using a real EEG forward matrix obtained
from a head model. This comparison is intended to illustrate and quantify the
significance of the forward matrix. The specific real EEG matrix is obtained
from OpenMEEG [GPOC10]. The exact same source signals X and noise E
will be used for both experiments.

The true source signals X are generated as follows. First the support of the so-
lution S is generated using the 2-state Markov Chain from the prior distribution
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of AMP-DCS with the following parameters:

λ =
20

8196
, p10 =

1

40

Thus, this particular value of λ correspond to an average of 20 active sources at
any given time t. The coefficients of these sources are then generated using sine
waves with frequencies sampled uniformly in the interval 5Hz to 30Hz using a
sampling frequency of 250Hz. The amplitude of the sine waves are fixed to 1.
The measurements are then generated as:

yt = Axt0 + et ∀t ∈ [T ]

The noise is zero-mean, isotropic Gaussian noise, where the variance has been
scaled to provide an fixed signal-to-noise ratio of SNR= 12dB.

The undersamplingratio δ and sparsity level of this particular configuration
corresponds to:

δ =
m

n
= 0.0156, ρ = δ−1λ = 0.1562 (4.24)

By comparing these values to the phase transition curve in figure 4.9, it is
seen that this particular problem is difficult to solve, especially using the SMV
approach.

Due to the dimension of the source matrix (X ∈ R8196×100), it is practically
impossible to visualize the entire matrix X. Therefore, we only show rows
of X, which have active coefficients for at least one value of t. Moreover, for
visualization purposes the rows ofX are sorted according to the degree of source
activity such that the first row corresponds to the source with most active time
frames. That is, the rows are sorted according to

∑T
t=1 s

t
i in descending order.

Note, that this does not affect the performance of the algorithms. Figure 4.34(a)
shows the true active sources X.

For a proper comparison, the hyperparameters shared by the two models are
initialized to the same values:

ζ = 0 , ψ = 1, λ = ρse(δ) · δ, σ2 = 0.1 (4.25)

The hyperparameters specific to the EM-AMP-DCS models are initialized as
follows:

α = 0.1, p10 = 0.1, σ2
c = 1 (4.26)

These values are used in all simulations in the rest of this subsection. The
EM-AMP-DCS was configured to perform at least 25 EM iterations, since it is
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hypothesis that it needs more iterations than the EM-AMP-MMV model due to
the increased flexibility. The maximum number of EM iterations for both EM-
AMP-DCS and EM-BG-AMP is fixed to 100. The number of AMP iterations
is fixed to 25 for both methods.
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Figure 4.34: Visualization of the active sources, i.e. sources which are ac-
tive for at least one value of t. FDCS = 0.996, FSMV = 0.284,
TNMSEDCS = −44.954dB, TNMSESMV = −20.941dB

We now consider the task of reconstructing the sources based on the measure-
ments generated using the I.I.D. Gaussian forward matrixA, where the columns
have been scaled to unit `2-norm. Figures 4.34(b) and (c) show the signals re-
covered using EM-AMP-DCS and EM-BG-AMP, respectively. By comparing
figure (a), (b), and (c), it is not difficult to see that the reconstruction using
EM-AMP-DCS is more accurate than the reconstruction using EM-BG-AMP.

We now take a closer look on three of the reconstructed active sources, see
figure 4.35. The figures show three randomly selected active sources and their
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Figure 4.35: Example of the reconstruction of three active sources
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corresponding reconstructions. Here it is seen how EM-AMP-DCS is capable
of turning sources on and off as needed, while EM-BG-AMP only succeed to
recover a small portion of the true signal.
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Figure 4.36: F-measure as a function of time for the EEG example

Figure 4.36 shows the F-measure for both methods as a function of time t.
Consistent with figure 4.35, it is seen that EM-AMP-DCS provides a decent
reconstruction for most values of t, while the F-measure for EM-BG-AMP fluc-
tuates heavily around F ≈ 0.5.

Using a 3D model of the brain, we will now visualize how the reconstructed
sources look at the time steps indicated by the red circles on figure 4.36. These
visualizations are shown in figure 4.37, which contain four rows and three
columns. The first row corresponds to the time t1 = 11, the second row corre-
spond to the time t2 = 25, the third row correspond to the time t3 = 46 and
the fourth row correspond to the time t4 = 71. The left-most column shows the
true source for the given value of t, while the center column shows the sources
estimated by EM-AMP-DCS and the right-most column shows the sources es-
timated by EM-BG-AMP. The green circles indicate the areas, which should
contain the true active sources and the red arrows indicate false positives. It is
seen that the EM-AMP-DCS algorithm nicely reconstructs the location of the
true sources, while the EM-BG-AMP algorithm only succeed to reconstruct the
true sources in one of the four time steps.

The entire experiment is now repeated with the forward matrix obtained from
OpenMEEG. The forward matrix has been scaled such that the columns have
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(a) True sources (b) EM-DCS-AMP (c) EM-BG-AMP

(d) True sources (e) EM-DCS-AMP (f) EM-BG-AMP

(g) True sources (h) EM-DCS-AMP (i) EM-BG-AMP

(j) True sources (k) EM-DCS-AMP (l) EM-BG-AMP
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Figure 4.37: Visualization of the sources obtained using the Gaussian matrix.
The four rows correspond to different values of t = 11, 25, 46, 71.
The left column correspond to the true sources, the mid column
correspond to the sources obtained using EM-AMP-DCS and the
right column correspond to the sources obtained using EM-BG-
AMP.
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Figure 4.38: Visualization of the active sources, i.e. sources which are active
for at least one value of t. FSMV = 0.091, TNMSESMV =
0.0149dB
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Figure 4.39: Real EEG forward matrix: Example of the reconstruction of
three active sources
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unit `2-norm, before the measurements were generated. Figures 4.38 and 4.39
show the reconstructed sources using both EM-AMP-DCS and EM-BG-AMP.
It is seen that the two estimated solutions are very different from the solutions
obtained from the Gaussian forward matrix. Here, the EM-AMP-DCS simply
fails to due numerical overflow. After the first EM iteration, most of the esti-
mated values in X̂ are of order 1043. Thus, despite both algorithms have shown
excellent recovery capabilities, they are both virtually useless when applied to
a real forward matrix. Table 4.1 compared the results for the two experiments.

The coherence and the condition number for the two forward matrices are:

Cond(Areal) = 3.8060 · 1015 Coherence(Areal) = 0.9998

Cond(Agauss) = 1.2727 Coherence(Agauss) = 0.4779

The coherence is computed as: max
i,j
|〈ai,aj〉|, where the 〈·, ·〉 is the Euclidean

inner product and ai are the i’th column of A. The condition number shows
that the real EEG forward matrix is indeed severely ill-conditioned and the
coherence measure imply that there are at least two columns in the real EEG
forward matrix, that are almost parallel.

Method TNMSE [dB] F TNMSE [dB] F

Gaussian A Real EEG A

AMP-DCS -44.954 0.996 - -
EM-BG-AMP -20.941 0.284 0.0149 0.091

Table 4.1: Comparison of the results from the experiment with a real EEG
forward matrix vs. the experiment with a I.I.D Gaussian forward
matrix.

This experiment emphasizes the importance of the forward matrix. It is clearly
seen that the properties of the forward matrix can have a crucial effect of the
recovery performance. Moreover, this experiment suggests that we should not
have too high hopes for solving the EEG source localization problem using this
particular configuration. However, there are several ways to reduce the difficulty
of the problem. The signal to noise ratio of raw EEG signals are often very low,
i.e. 0-12dB. But the effective SNR can be significantly increased by a series
of preprocessing steps including simple band-pass filtering [NS06], artefacts re-
moval [ZRZ+08] and independent component analysis [ZWF01]. Furthermore,
using a basis function approach can effectively reduce the dimension of the prob-
lem, since the number of basis functions is usually smaller than the number of
sources. In the context of source localization, both spatial and temporal basis
functions are used [BG97, SAS+13].
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This ends the chapter on numerical experiments conducted in this thesis.



Chapter 5

Conclusion

This thesis has examined message passing-based methods for the purpose of
solving underdetermined linear inverse problems. More specifically, problems
where the number of measurements m is much smaller than the number of
equations n. The approximate message passing algorithm (AMP) has been
derived by applying a series of approximations to the sum-product algorithm.
Central to these approximations is the assumption of the large system limit, i.e
m,n→∞ form/n→ δ. Despite this assumption, it has been shown empirically
that the AMP algorithm is capable of solving linear systems as small as n = 500
for an undersamplingsratio of m/n = 0.5.

The generalized approximate message passing algorithm (GAMP), which is a
Bayesian generalization of the AMP algorithm, has also been derived. The
GAMP algorithm allows the use of a broad class of prior and noise distribu-
tions for both MMSE and MAP estimation. It has been shown analytically and
verified experimentally that the AMP algorithm indeed is as a special case of
GAMP algorithm. In fact, the GAMP algorithm correspond to the AMP algo-
rithm, if the prior distribution is chosen to be a Laplace distribution and the
noise distribution is chosen to be Gaussian.

The EM-BG-AMP algorithm is derived for solving the linear inverse problem
in the SMV formulation by combining the GAMP algorithm with a Gaussian
noise distribution and a Bernoulli-Gaussian prior distribution. This algorithm
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is complemented by an Expectation-Maximization (EM) scheme for automatic
tuning of the hyperparameters. Moreover, the EM-BG-AMP algorithm provides
both MMSE estimates of the desired solution as well as MAP estimates of the
underlying support.

The performance of AMP and EM-BG-AMP have been quantified in terms of
the sparsity undersampling trade-off using empirical phase transition curves for
noiseless problems with Gaussian forward matrices. These curves show that the
EM-BG-AMP method outperforms both AMP, Bayesian VG and FOCUSS in
terms of the sparsity undersampling trade-off. The estimated curve for AMP
largely agrees with the theoretical asymptotic curve for `1 minimization as pre-
dicted by the state evolution formalism, except for undersamplingratios smaller
than approximately 0.1.

The CPU run times for these four methods were also measured and the following
order was observed: AMP < EM-BG-AMP < FOCUSS < Bayesian VG, where
AMP is the fastest method. The analytical computational complexities of these
methods agree with the observed order.

Additionally, using normalized mean square error and F-measure as performance
measures, it is demonstrated that the EM-BG-AMP algorithm outperforms the
Variational Garrote and LASSO methods in terms of undersamplingsratio, spar-
sity level and signal-to-noise ratio. Therefore, it can be concluded that the
EM-BG-AMP algorithm provides superior recovery performance in both the
noiseless and noisy setting.

The EM-AMP-MMV algorithm is derived by extending the EM-BG-AMP algo-
rithm and the accompanying EM algorithm to the multiple measurement vector
(MMV) formulation using the common sparsity assumption. This algorithm
also models the temporal correlation of the coefficients of the solution using a
first order stationary Gauss-Markov process. The benefits of the MMV formu-
lation compared to the SMV formulation is demonstrated through a numerical
experiment using synthetic data. Problems, which were unsolvable in the SMV
formulation, became solvable in the MMV formulation, when the number of
measurement vectors was increased.

The EM-AMP-MMV method is compared to M-FOCUSS and the state-of-the-
art Bayesian methods, M-SBL and TM-SBL, in a systematic manner. The
four methods are compared in terms of undersamplingsratio, sparsity, signal-to-
noise-ratio, number of measurement vectors and run time. The main conclusion
from these experiments is that the recovery performance of EM-AMP-MMV is
comparable to the recovery performance of the state-of-the-art methods, but
the computational complexity of EM-AMP-MMV is much lower than the other
methods. In fact, the EM-AMP-MMV algorithm scales linearly in all prob-
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lem dimensions. The linear complexity allows the EM-AMP-MMV algorithm
to be applied to large-scale problems, where methods like TM-SBL and M-
SBL are simply infeasible. However, for problems with small sample sizes, the
recovery performance of TM-SBL and M-SBL were slightly better than EM-
AMP-MMV, but at the cost of a considerably increase in run time. Therefore,
we conclude that for most MMV problems the EM-AMP-MMV algorithm is
preferable. Especially, for problems where recovery performance and speed are
equally important.

The last model considered in this thesis is the EM-AMP-DCS model. This model
extends the EM-AMP-MMV model by relaxing the assumption of a constant
sparsity pattern to a slowly changing sparsity pattern. The EM-AMP-DCS al-
gorithm models the slowly changing support of the underlying solution using
binary Markov chains. The hyperparameters of this model, including the tran-
sitional probabilities for the Markov chain, are estimated from the data using
an EM update scheme. Using numerical simulations, it was shown that the
EM-AMP-DCS model is superior to the EM-BG-AMP model in terms of under-
samplingsratio, sparsity and signal to noise ratio given the support is changing
sufficient slow. However, the SMV approach, i.e. EM-BG-AMP, was found to
be superior, if the support of the underlying solution is changing too fast.

The EM-BG-AMP and EM-AMP-DCS algorithms were applied to a severly un-
derdetermined EEG source localization problem with synthetic sources. Using a
configuration with 8196 sources, 128 measurements, 100 measurement vectors,
20 active harmonic sources and a Gaussian forward matrix, it was shown that
the EM-AMP-DCS algorithm was able to reconstruct the underlying sources al-
most perfectly, while the EM-BG-AMP method was only able to recover a small
portion of the true sources. The entire experiment was repeated using severely
ill-conditioned EEG forward matrix extracted from a head model, and it was
shown that neither of the algorithms were able to recover the true sources.

Overall, approximate message passing-based methods for both the SMV and
MMV formulation have been shown to yield high performance in terms of the
undersampling sparsity trade-off, while maintaining linear computational com-
plexity.

5.1 Future work

This thesis is concluded with a list of interesting topics to examine in the future:

• The EM-AMP-DCS algorithm was not able to solve the simulated EEG
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source localization problem, probably due to a combination of a strongly
illconditioned forward matrix and a highly underdetermined system. It
would therefore be interesting to combine the AMP algorithms with a
basis function approach to reduce the effective dimension of the problem.

• The phase transition curves for single measurement vector problems con-
stitute a systematic way of comparing the performance of different re-
construction algorithms. To the author’s best knowledge, there exist no
systematic way of comparing recovery performance for MMV problems.
But it would indeed be fruitful to have a principled way of comparing per-
formance for MMV algorithm, like ”phase diagrams for MMV problems”.

• The AMP-MMV and AMP-DCS models offer the possibility of causal
filtering of MMV signals. The recovery performance for such an approach
is expected to be suboptimal compared to the smoothing approach, but
the reduced computational complexity has large potential in real-time and
online applications.



Appendix A

AMP
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A.1 Gaussian Multiplication Rule

This appendix proofs the Gaussian multiplication rule, i.e. the multiplication of the probability
density function of two independent univariate Gaussian distributions over the same variable x:

N (x |a,A)N (x |b, B) = N
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x |

a
A + b

B
1
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B
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1

1
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)
N (0 |a− b, A+ B) (A.1)

We start by inserting the definition of the densities:
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Now tedious, but straightforward manipulations of the two last terms lead to:
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We can now plug the above result in eq. (A.3) back into eq. (A.2):
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Now consider the argument of the exponent of a third Gaussian distribution over x with mean µ
and variance σ
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µ

σ2
=
a

A
+

b

B
⇐⇒ µ =

(
a

A
+

b

B

)
· σ2

=
a
A + b

B
1
A + 1

B

Therefore, we get

N (x |a,A)N (x |b, B) =
1√
2πA

1√
2πB

exp

(
− (x− µ)2

2σ2

)
exp

(
− 1

2

(0− (a− b))2
A+ B

)

Then the normalization terms are rewritten:

1√
2πA

1√
2πB

=
1√

(2π)2 AB

=
1√

(2π)2 ABA+B
A+B

=
1√

(2π)2 (A+ B) AB
A+B

=
1√

(2π)2 (A+ B) 1
1
A

+ 1
B

=
1√

2π (A+ B)

1√
2πσ2

(A.5)

Therefore:

N (x |a,A)N (x |b, B) =

1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
1√

2π (A+ B)
exp

(
− 1

2

(0− (a− b))2
A+ B

)

= N
(
x |

a
A + b

B
1
A + 1

B

, A

)
N (0 |a− b, A+ B) , (A.6)

which is the desired result.
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A.2 Application of the Berry-Esseen Theorem

The Berry-Esseen theorem is variant of the central limit therem and it is stated
and proved in appendix A in [DMM10]. It implies the following for Z and hxi(z)
as defined in eq. (2.45):

|E [hxi
(Z)]− E [hxi

(W )]| ≤ ||h′||∞
Ct

n
1
2 (τ̂ ta→i)

3
2

=
C ′t

n
1
2 (τ̂ ta→i)

3
2

(A.7)

To use this result, consider:

∣∣µta→i(xi)− E [hxi
(W )]

∣∣ =

∣∣∣∣
E [hxi

(Z)]∫
E [hxi(Z)] dxi

− E [hxi
(W )]∫

E [hxi(W )] dxi

∣∣∣∣

We can now rewrite the right hand side as follows. First the terms are put on
a common denominator:

∣∣∣∣
E [hxi

(Z)]∫
E [hxi

(Z)] dxi
− E [hxi

(W )]∫
E [hxi

(W )] dxi

∣∣∣∣

=

∣∣∣∣
E [hxi

(Z)]
∫
E [hxi

(W )] dxi − E [hxi
(W )]

∫
E [hxi

(Z)] dxi∫
E [hxi

(Z)] dxi
∫
E [hxi

(W )] dxi

∣∣∣∣

We can now add and subtract the term E [hxi
(W )]

∫
E [hxi

(W )] dxi in the nom-
inator and rearrange to get:
∣∣∣∣

E [hxi
(Z)]∫

E [hxi
(W )] dxi

− E [hxi
(W )]∫

E [hxi
(W )] dxi

∣∣∣∣

=

∣∣∣∣
E [hxi

(Z)]− E [hxi
(W )]∫

E [hxi
(Z)] dxi

+

∫
E [hxi

(W )] dxi −
∫
E [hxi

(Z)] dxi∫
E [hxi

(W )] dxi
∫
E [hxi

(Z)] dxi
E [hxi(W )]

∣∣∣∣

Applying the triangle inequality
∣∣∣∣

E [hxi
(Z)]∫

E [hxi
(W )] dxi

− E [hxi
(W )]∫

E [hxi
(W )] dxi

∣∣∣∣

≤
∣∣∣∣
E [hxi

(Z)]− E [hxi
(W )]∫

E [hxi
(Z)] dxi

∣∣∣∣+

∣∣∣∣
∫
E [hxi

(W )] dxi −
∫
E [hxi

(Z)] dxi∫
E [hxi

(W )] dxi
∫
E [hxi

(Z)] dxi
E [hxi(W )]

∣∣∣∣

Since the two normalization integrals integrate to the same, the second term is
equal to 0 and we get

∣∣∣∣
E [hxi

(Z)]∫
E [hxi

(Z)] dxi
− E [hxi

(W )]∫
E [hxi

(W )] dxi

∣∣∣∣ ≤
∣∣∣∣
E [hxi

(Z)]− E [hxi
(W )]∫

E [hxi
(Z)] dxi

∣∣∣∣
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Finally, taking the supremum and applying the Berry-Esseen theorem yields

sup
xi

∣∣µta→i(xi)− E [hxi
(W )]

∣∣ ≤ sup
xi

∣∣∣∣
E [hxi(Z)]− E [hxi(W )]∫

E [hxi
(Z)] dxi

∣∣∣∣

≤ Ct

n
1
2 (τ̂ ta→i)

3
2

(A.8)
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B.1 Solving the Least Squares Problem for GAMP

The purpose of this appendix is to describe the steps in the solution of the
optimization problem given by:

J = min
x

∑

j 6=i

1

2τxj

(
xj − x̂kj→a

)2
subject to za = Aaixi +

∑

j 6=i
Aajxj , (B.1)

where xi and za are fixed. This is recognized as a least squares problem with an
equality constraint and can thus be solved by introducing Lagrange multipliers
and forming the Lagrangian function [NW06]:

f(x, λ) =
∑

j 6=i

1

2τxj

(
xj − x̂kj→a

)2
+ λ


za −Aaixi −

∑

j 6=i
Aajxj


 (B.2)

Computing partial derivative w.r.t. xk equating to zero yields:

∂

∂xk
f(x, λ) =

1

τxk
xk −

1

τxk
x̂kk→a − λAak = 0

⇐⇒ xk = x̂kk→a + λτxkAak (B.3)

And the same for λ:

∂

∂λ
f(x, λ) = za −Aaixi −

∑

j 6=i
Aajxj = 0 (B.4)

Substituting eq. (B.3) into the sum in eq. (B.4) and expanding:

∂

∂λ
f = za −Aaixi −

∑

j 6=i
Aaj

(
x̂kj→a + λτxj Aaj

)
= 0

= za −Aaixi −
∑

j 6=i
Aaj x̂

k
j→a − λ

∑

j 6=i
A2
ajτ

x
j = 0 (B.5)

Solving for λ yields:

za −Aaixi −
∑

j 6=i
Aaj x̂

k
j→a − λ

∑

j 6=i
A2
ajτ

x
j = 0

⇐⇒ za −Aaixi −
∑

j 6=i
Aaj x̂

k
j→a = λ

∑

j 6=i
A2
ajτ

x
j

⇐⇒ λ =
za −Aaixi −

∑
j 6=iAaj x̂

k
j→a∑

j 6=iA
2
ajτ

x
j

(B.6)
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Now we substitute eq. (B.3) into (B.1):

J =
∑

j 6=i

1

2τxj

(
x̂kj→a + λτxj Aaj − x̂kj→a

)2

and substituting the expression for λ in eq. (B.6) into this expression and
rearranging

J =
∑

j 6=i

1

2τxj

(
x̂kj→a + τxj Aaj

za −Aaixi −
∑
j 6=iAaj x̂

k
j→a∑

j 6=iA
2
ajτ

x
j

− x̂kj→a

)2

=
∑

j 6=i

1

2τxj

(
τxj Aaj

za −Aaixi −
∑
j 6=iAaj x̂

k
j→a∑

j 6=iA
2
ajτ

x
j

)2

=
∑

j 6=i

1

2τxj

(
τxj
)2
A2
aj

(
za −Aaixi −

∑
j 6=iAaj x̂

k
j→a∑

j 6=iA
2
ajτ

x
j

)2

=
1

2

∑

j 6=i
τxj A

2
aj

1
(∑

j 6=iA
2
ajτ

x
j

)2


za −Aaixi −

∑

j 6=i
Aaj x̂

k
j→a




2

Changing summation index for two of the sums on the r.h.s to avoid mixing the
indices:

J =
1

2

∑

j 6=i
A2
ajτ

x
j

1
(∑

r 6=iA
2
arτ

x
r

)2


za −Aaixi −

∑

r 6=i
Aarx̂

k
r→a




2

Now we recognize that the three terms in the parenthesis does not depend on
index j and can therefore be moved outside the sum:

J =
1

2


za −Aaixi −

∑

r 6=i
Aarx̂

k
r→a




2 ∑
j 6=iA

2
ajτ

x
j(∑

r 6=iA
2
arτ

x
r

)2

Cancelling the sums of A2
ajτ

x
j and rearranging yields:

J =
1

2


za −Aaixi −

∑

r 6=i
Aarx̂

k
r→a




2

1∑
r 6=iA

2
arτ

x
r

=
1

2

1∑
r 6=iA

2
arτ

x
r


za −Aaixi −

∑

r 6=i
Aarx̂

k
r→a




2

,

which is the solution to the least squares problem in eq. (B.1).
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B.2 AMP as a Special Case of GAMP

The purpose of this section is to show the relation between the AMP algorithm
and the GAMP2 algorithm with specific choice of distributions. The update
equations from AMP0 is:

xt+1 = η
(
ATzt + xt; τ t

)

zt = y −Axt +
1

δ
zt−1

〈
η′
(
ATzt−1 + xt−1; τ t−1

)〉

τ t =
τ

δ

〈
η′
(
ATzt−1 + xt; τ t−1

)〉

We will now argue that the GAMP2 algorithm with scalar variances and for
specific choices of the input and output distribution is closely related to the
AMP0 algorithm.

We assume that the columns of A have unit `2 norm. Furthermore, we assume
the prior distribution is a Laplace distribution with parameter β and the output
noise is zero-mean Gaussian noise with variance σ2 = 1

β . Therefore, we have

fin (x, q) = ln p (x|q) = lnLaplace(x;β) = ln
β

2
− β |x|

fout (z, y) = ln p (y|z) = lnN
(
y; z, σ2

)
= −1

2
ln
(
2πσ2

)
− 1

2σ2
(y − z)2

We can now compute the output threshold scalar function gout:

gout (p̂, y, τp) ≡ 1

τp

(
argmax

z

{
fout (z, y)− 1

2τp
(z − p̂)2

}
− p̂
)

=
1

τp

(
argmax

z

{
−1

2
ln
(
2πσ2

)
− 1

2σ2
(y − z)2 − 1

2τp
(z − p̂)2

}
− p̂
)

=
1

τp

(
argmax

z

{
− 1

2σ2
(y − z)2 − 1

2τp
(z − p̂)2

}
− p̂
)

We now take the derivative of the inner part, setting it equal to 0 and solve for
z:

∂

∂z
=

1

σ2
(y − z)− 1

τp
(z − p̂) = 0

⇐⇒ − z
(

1

σ2
+

1

τp

)
+

1

σ2
y +

1

τp
p̂ = 0

⇐⇒ z

(
1

σ2
+

1

τp

)
=

1

σ2
y +

1

τp
p̂

⇐⇒ z =
1
σ2 y + 1

τp p̂
1
σ2 + 1

τp

=
τpy + σ2p̂

τp + σ2
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By substituting back, we get:

gout (p̂, y, τp) =
1

τp

(
τpy + σ2p̂

τp + σ2
− p̂
)

=
y − p̂
τp + σ2

and

− ∂

∂p̂
gout (p̂, y, τp) =

1

τp + σ2

Next, we consider the variance parameters τp, τ r, τx and τs. To keep the nota-
tion uncluttered, we omit the iteration index k. For τp, we have

τp =
1

m
||A||2F τx

(a)
=

1

m
nτx

(b)
= δ−1τx (B.7)

where it is used for (a) that ||A||2F = n when the columns of A has unit `2-norm
and for (b) it is used that δ = m

n . For τ
s:

τs = − 1

m

m∑

i=1

∂

∂p̂
gout (p̂i, yi, τ

p) =
1

m

m∑

i=1

1

τp + σ2
=

1

τp + σ2
=

1

δ−1τx + σ2

Using the result for τs, we get for τ r

1

τ r
=

1

n
||A||2F τs =

n

n
τs =

1

τp + σ2

⇐⇒ τ r = τp + σ2 = δ−1τx + σ2

That is, using these assumptions we can express all the variance parameters in
terms of τx.

Based on fin, we can determine the input scalar function gin:

gin (r̂, q, τ r) ≡ argmax
x

{
fin(x, q)− 1

2τ r
(r̂ − x)

2

}

= argmax
x

{
ln
β

2
− β |x| − 1

2τ r
(r̂ − x)

2

}

= argmax
x

{
−β |x| − 1

2τ r
(r̂ − x)

2

}

In the above, we would like to the large β → ∞ limit as done in the AMP
derivation. But in order to do that we need to rewrite the above such that β is
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a factor on each of the two terms. Hence, we need to show that 1
τr ∝ β. We

have

1

τ r
=

1

τp + σ2
=

1

δ−1τx + σ2

(a)
=

1

δ−1τx + 1
β

=
β

β
δ τ

x + 1

where it is used for (a) that σ2 = 1
β . Therefore, we need τx ∝ β−1. Using the

expression for the variances parameter from above, we can rewrite the expression
for τx as follows:

τx =
τ r

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r)

=
τp + σ2

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r)

=
δ−1τx + σ2

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r)

=
δ−1τx

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r) +
σ2

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r)

⇐⇒ τx


1− δ−1

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r)


 =

σ2

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r)

⇐⇒ τx =
σ2

n

∑n
j=1

∂
∂r̂gin (r̂j , τ

r)

1− δ−1

n

∑n
j=1

∂
∂r̂gin (r̂j , τ r)

Finally, we reduce and again use the fact that σ2 = 1
β :

τx = σ2

∑n
j=1

∂
∂r̂gin (r̂j , τ

r)

n− 1
δ

∑n
j=1

∂
∂r̂gin (r̂j , τ r)

=
1

β

∑n
j=1

∂
∂r̂gin (r̂j , τ

r)

n− 1
δ

∑n
j=1

∂
∂r̂gin (r̂j , τ r)

⇒ τx ∝ 1

β

as desired. Thus, for the specific choice of prior, the input gin(·) becomes the
soft thresholding function in the large β limit.
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Consider now the expression for τ r ŝi:

τ r ŝi = τ rgout (p̂i, yi, τ
p) = τ r

yi − p̂i
τ r

= yi − p̂i

= yi −
∑

j

Aij x̂j − τpŝi

= yi −
∑

j

Aij x̂j −
1

δ
τxŝi

= yi −
∑

j

Aij x̂j −
1

δ
τ r ŝi

1

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r)

= yi −
∑

j

Aij x̂j −
1

δ
τ r ŝi

〈
∂

∂r̂
gin (r̂j , τ

r)

〉

Hence, we have that the quantity τ rs is equivalent to z in Donoho’s AMP0. We
now consider the expression for r̂j :

r̂k = x̂k + τ r
m∑

i=1

Aikŝi = x̂k +

m∑

i=1

Aikτ
r ŝi

Inserting this result into the expression for x̂j yields:

x̂j = gin (r̂j , τ
r)

= gin

(
x̂k +

m∑

i=1

Aikτ
r ŝi ; τ r

)

Thus, this update equation has the same functional form as in Donoho’s AMP0
given gin is the soft thresholding function. Finally, we consider the expression
for the threshold τ r

τ r =
1

β
+

1

δ
τx

=
1

β
+
τ r(t)

δ

1

n

n∑

j=1

∂

∂r̂
gin (r̂j , τ

r)

=
1

β
+
τ r(t)

δ

〈
∂

∂r̂
gin (r̂j , τ

r)

〉

Therefore, in the limit β →∞, τ r has the same role as the threshold in AMP0.
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C.1 Taylor Approximation for AMP-MMV

This appendix describes the Taylor approximation to one of the messages in
the AMP-MMV algorithm. The objective here is to do a second order Taylor
expansion of the f(θ) w.r.t θ around φ, where

f(θ) = − ln g(θ) = − ln µ̂
p(xt

i

∣∣θti ,si)→θti (θ
t
i)

=
(
1− Ω

(−→π ti
))
N
(
θti
∣∣1
ε
φti,

1

ε2

t)
+ Ω

(−→π ti
)
N
(
θti
∣∣φt, ct

)
,

Thus,

f ≈ −f(φ)− ∂f(θ)

∂θ

∣∣
θ=φ

(θ − φ)− 1

2

∂2f(θ)

∂θ2

∣∣
θ=φ

(θ − φ)
2

= K − 1

2

∂2f(θ)

∂θ2

∣∣
θ=φ

θ2 +

(
φ
∂2f(θ)

∂θ2

∣∣
θ=φ
− ∂f(θ)

∂θ

∣∣
θ=φ

)
θ (C.1)

A second Taylor approximation of the logarithm of a function can be interpreted
a Gaussian approximation to the function. Denote this Gaussian by N

(
θ
∣∣ξ, ψ

)
:

lnN
(
θ
∣∣−→ξ ,−→ψ

)
= K − θ2

2
−→
ψ
−
−→
ξ 2

2
−→
ψ

+
θ
−→
ξ

ψ
(C.2)

By comparing the two expression, we make the following identifications:

1

ψ
=
∂2f(θ)

∂θ2

∣∣
θ=φ

ξ = φ− ψ∂f(θ)

∂θ

∣∣
θ=φ

(C.3)

So task is really to determine the first and second order partial derivatives. The
first partial derivative of f is obtained as:

∂

∂θ
f(θ) =

g′(θ)
g(θ)

(C.4)

and the second

∂2

∂θ2
f(θ) =

g′′(θ)g(θ)− g′(θ)2

g(θ)2
(C.5)
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C.2 EM Update Equations for the AMP-MMV
model

The purpose of this appendix is to describe the derivation of the EM update
rules for the MMV-AMP model described in section 3.1.

Learning the Noise Variance

The approach is the same as for the noise variance for the BG-AMP model
described in section 2.4. Therefore, similar to eq. (2.234), we get

∂

∂σ2
L(Y

∣∣q) =
∂

∂σ2
E
[
ln p(X,Y

∣∣q)
]

Inserting the joint density:

∂

∂σ2
L(Y

∣∣q) =
∂

∂σ2
E

[
ln

(
T∏

t=1

[
m∏

a=1

p(yta|xt)
n∏

i=1

p(xti|θti , si)p(θti |θt−1
i )

]
n∏

i=1

p(si)

)]

=
∂

∂σ2
E

[
T∑

t=1

(
ln p(yt

∣∣xt) +

n∑

i=1

ln p(xti
∣∣θti , si) +

n∑

i=1

ln p(θti
∣∣θt−1
i )

)
+ ln

n∏

i=1

p(si)

]

(C.6)

The only term depending on the noise variance σ2 is ln p(yt
∣∣xt) and therefore:

∂

∂σ2
L(Y

∣∣q) =
∂

∂σ2
E

[
T∑

t=1

ln p(yt
∣∣xt
]

=
∂

∂σ2
E

[
T∑

t=1

n∑

i=1

ln p(yta
∣∣xt)

]

=

T∑

t=1

n∑

i=1

∂

∂σ2
E
[
ln p(yta

∣∣xt)
]

=

T∑

t=1

n∑

i=1

∂

∂σ2

∫
p(zta

∣∣yta) ln p(yta
∣∣xt) dzta
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Exchanging the order of the partial derivative and integration:

∂

∂σ2
L(Y

∣∣q) =

T∑

t=1

n∑

i=1

∫
p(zta

∣∣yta)
∂

∂σ2
ln p(yta

∣∣xt) dzta

=

T∑

t=1

n∑

i=1

∫
p(zta

∣∣yta)

(
1

2

[
(yta − zta)

2

(σ2)
2 − 1

σ2

])
dzta

The integration is now straightforward and yields:

∂

∂σ2
L(Y

∣∣q) =
1

2

1

(σ2)
2

T∑

t=1

n∑

i=1

[(
yta − zta

)2
+ τza

]
− 1

2

1

σ2

T∑

t=1

n∑

i=1

1 = 0 (C.7)

Solving for σ2 now give the update rule:

σ2
new =

1

Tm

T∑

t=1

n∑

i=1

[
(yta − zta)2 + τza

]
(C.8)

Learning the Sparsity λ

For the E-step, we first obtain the posterior distribution over si given the current
model. The is readily obtained by computing the product of the incoming
messages at node si in the factor graph shown in figure 3.2:

p(si
∣∣Y ) = µp(si)→si(si)

T∏

t=1

µ
p(xt

i

∣∣θti ,si)→si(si)

= Ber(si
∣∣λ)

T∏

t=1

Ber(si
∣∣←−π ti)

=

[
(1− λ)

T∏

t=1

(
1−←−π ti

)
]

(1− si) +

[
λ

T∏

t=1

←−π ti

]
si

=
(
1− βti

)
(1− si) + βtisi (C.9)

where

βi =
λ
∏T
t=1
←−π ti

(1− λ)
∏T
t=1 (1−←−π ti) + λ

∏T
t=1
←−π ti

(C.10)
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Taking the partial derivative of the bound function w.r.t. λ:

∂

∂λ
L (Y ; q) =

∂

∂λ
E

[
ln

T∏

t=1

p
(
yt
∣∣xt
)
p(xt

∣∣q)

]

=
∂

∂λ
E

[
T∑

t=1

[
ln p(yt

∣∣xt) +

n∑

i=1

ln p(xti
∣∣θti , si) +

n∑

i=1

ln p(θti
∣∣θt−1
i )

]
+ ln

n∏

i=1

p(si)

]

The p(si)-terms are the only terms depending on λ, therefore

∂

∂λ
L (Y ; q) =

n∑

i=1

∂

∂λ
E [ln p(si)]

=

n∑

i=1

E
[
∂

∂λ
ln p(si)

]

=

n∑

i=1

∑

si

[(1− βi)(1− si) + βisi]
∂

∂λ
ln p(si)

The partial derivative evaluates to

∂

∂λ
ln p(si) =

1

p(si)
(2s− 1)

=





−1
1−λ if s = 0

1
λ if s = 1

(C.11)

Inserting this into eq. (C.11) and plugging in the expression for the posterior
distribution yields:

∂

∂λ
L (Y ; q) =

n∑

i=1

[
(1− βti )

−1

1− λ + βti
1

λ

]
= 0 (C.12)

Solving for λ yields the update equation:

λnew =
1

n

n∑

i=1

βti (C.13)

and substituting in the expression for β:

λnew =
1

n

n∑

i=1

λ
∏T
t=1
←−π ti

(1− λ)
∏T
t=1 (1−←−π ti) + λ

∏T
t=1
←−π ti

(C.14)
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Learning the Mean ζ

Formally, we need the pair-wise joint p
(
θti , θ

t−1
i

∣∣Y
)
, but later when we have to

compute the M-step, θti and θ
t−1
i appear only in linear combinations, so the can

settle for the marginals p
(
θti
∣∣Y
)
. Therefore, for the E-step:

p(θti
∣∣Y ) = µ

p(θti

∣∣θt−1
i )→θti

(
θti
)
µ
p(θt+1

i

∣∣θti)→θti

(
θti
)
µp(xt

i|θti ,si)→θti

(
θti
)

= N
(
θti
∣∣←−η ti,←−κ ti

)
N
(
θti
∣∣−→η ti,−→κ ti

)
N
(
θti
∣∣←−ξ ti,

←−
ψ t
i

)

∝ N
(
θti
∣∣θ̂ti , θ̃ti

)
(C.15)

where θ̂ti and θ̃ti are obtained by 2 applications of the Gaussian multiplication
rule, respectively:

θ̂ti = θ̃ti

(−→η ti−→κ ti
+
←−η ti←−κ ti

+

←−
ξ ti←−
ψ t
i

)
θ̃ti =

(
1
−→κ ti

+
1
←−κ ti

+
1
←−
ψ t
i

)−1

(C.16)

For the M-step:

∂

∂ζ
L(y|q) =

∂

∂ζ
E
[
p(X,Y

∣∣q)
]

=
∂

∂ζ
E

[
ln

T∏

t=1

[
p(yt

∣∣xt)
n∏

i=1

p(xti
∣∣θti , si)p(θti

∣∣θt−1
i )

]
n∏

i=1

p(si)

]

= C

T∑

t=1

n∑

i=1

∂

∂ζ
E
[
ln p(θti

∣∣θt−1
i )

]

= C

T∑

t=1

n∑

i=1

∫
p(θti , θ

t−1
i

∣∣Y )
∂

∂ζ
ln p(θti

∣∣θt−1
i )dθti (C.17)

where p(θti
∣∣θt−1
i ) is given by eq. (3.6) and eq. (3.7) for t > 1 and t = 1,

respectively. Computing the partial derivatives yields:

∂

∂ζ
L(y|q) = C

n∑

i=1

∫
p(θ1

i , θ
t−1
i

∣∣Y )
θ1
i − ζ
σ2
c

dθ1
i dθ

t−1
i

+ C

T∑

t=1

n∑

i=1

∫
p(θti , θ

t−1
i

∣∣Y )
1

αρ

[
θti − (1− α)

(
θt−1
i − ζ

)
− ζ
]
dθti dθ

t−1
i

= C
1

σ2
c

n∑

i=1

[
θ̂1
i − ζ

]
+ C

T∑

t=2

n∑

i=1

1

αρ

[
θ̂ti − (1− α)θ̂t−1

i − αζ
]
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Equating the above equation to zero and solving for ζ then yields the update
equation:

ζnew =

(
(T − 1)n

ρ
+

n

σ2
c

)−1
(

1

σ2
c

n∑

i=1

θ̂1
i +

1

αρ

T∑

t=2

n∑

i=1

[
θ̂ti − (1− α)θ̂t−1

i

])

(C.18)

Learning the Variance ρ

To derive the update rule for the variance parameter ρ, we do need the pairwise
posterior p

(
θti , θ

t−1
i

∣∣Y
)
, which is readily obtained:

p
(
θti , θ

t−1
i

∣∣Y
)

= p
(
θti
∣∣θt−1
i

)
· µ

θti→p
(
θti

∣∣θt−1
i

)(θti) · µθt−1
i →p

(
θti

∣∣θt−1
i

)(θt−1
i )

= p
(
θti
∣∣θt−1
i

)
· N

(
θt−1
i

∣∣−→η t−1
i ,−→κ t−1

i

)
N
(
θt−1
i

∣∣←−ξ t−1
i ,
←−
ψ t−1
i

)
· N

(
θti
∣∣←−η ti,←−κ ti

)

(C.19)

Similar to eq. (C.17), we get the M-step:

∂

∂ρ
L(y|q) = C

T∑

t=1

n∑

i=1

∫
p(θti , θ

t−1
i

∣∣Y )
∂

∂ρ
ln p(θti

∣∣θt−1
i ) dθtiθ

t−1
i

The partial derivative w.r.t ρ for t > 1 is

∂

∂ρ
ln p(θti

∣∣θt−1
i ) =

(
θti − (1− α)

(
θt−1
i − ζ

)
− ζ
)2 − α2ρ

2α4ρ2
(C.20)

and for t = 1:
∂

∂ρ
ln p(θti

∣∣θt−1
i ) = 0 (C.21)

since the conditional density p(θti
∣∣θt−1
i ) is independent of ρ. Inserting the partial

derivatives, equating to zero, and solving for ρ yields:

ρ =
1

α2(T − 1)N

T∑
t=2

n∑
i=1

[
E
[(
θti
)2 ∣∣Y ]− 2ζαθ̂t + (1− α)2

(
E
[(
θt−1
i

)2 ∣∣Y ])+ ζ2α2

+ 2ζα(1− α)θ̂t−1
i − 2(1− α)E

(
θtiθ

t−1
i

∣∣Y )] (C.22)

which is equivalent to:

ρ =
1

α2(T − 1)N

T∑
t=2

n∑
i=1

[
θ̃ti +

(
θ̂ti

)2
− 2ζαθ̂t + (1− α)2

(
θ̃t−1
i + θ̂t−1

i

)
+ ζ2α2

+ 2ζα(1− α)θ̂t−1
i − 2(1− α)E

(
θtiθ

t−1
i

∣∣Y )] (C.23)
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Learning the Correlation Parameter α

Similar to eq. (C.17), we get

∂

∂α
L(y|q) = C

T∑

t=1

n∑

i=1

∫
p(θti , θ

t−1
i

∣∣Y )
∂

∂α
ln p(θti

∣∣θt−1
i )dθti dθ

t−1
i

For t > 1, the partial derivative is:

∂

∂α
ln p(θti

∣∣θt−1
i ) = − 1

α3ρ

(
α2ρ− αθtiθt−1

i + αζθti + α
(
θt−1
i

)2 − αζθt−1
i −

(
θti
)2

− 2θtiθ
t−1
i −

(
θt−1
i

)2)
(C.24)

and for t = 1, the partial derivative is 0. Plugging the derivative back in,
equating to zero and solving for α yields the update equation:

αnew =
b−

√
b2 + 4N(T − 1)c

2N(T − 1)
(C.25)

with

b =
1

ρ

T∑

t=2

n∑

i=1

(
E
[
θtiθ

t−1
i

∣∣Y
]
− ζ

(
E
[
θti
∣∣Y
]
− E

[
θt−1
i

∣∣Y
])
− E

[(
θt−1
i

)2 ∣∣Y
])

(C.26)

and

c =
1

ρ

T∑

t=2

n∑

i=1

(
E
[(
θti
)2 ∣∣Y

]
− 2E

[
θtiθ

t−1
i

∣∣Y
]

+ E
[(
θt−1
i

)2 ∣∣Y
])

(C.27)
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C.3 EM Update Equation for AMP-DCS

The purpose of this appendix is to describe to EM update rule specific to the
AMP-DCS model. For more details of the general approach, cf. section 2.4 and
appendix C.2.

Learning the Sparsity

It is seen from figure 3.10, that the posterior of sti given the measurements Y is
given by:

p(sti
∣∣Y ) = µp(sti|s

t−1
i )→sti(s

t
i) · µp(st+1

i |sti)→sti(s
t
i) · µp(xt

i|θti ,sti)→sti(s
t
i)

Inserting the three messages and reducing leads to a posterior of the form:

p(sti
∣∣Y ) ∝

[
(1−−→λ ti)(1−

←−
λ ti)(1−←−π ti)

]
(1− sti) +

[−→
λ ti
←−
λ ti
←−π ti
]
sti (C.28)

Taking the partial derivative of the bound function w.r.t. λ:

∂

∂λ
L (Y ; q) =

∂

∂λ
E

[
ln

T∏

t=1

p
(
yt
∣∣xt
)
p(xt

∣∣q)

]

=
∂

∂λ
E

[
T∑

t=1

[
ln p(yt

∣∣xt) +

n∑

i=1

ln p(xti
∣∣θti , si) +

n∑

i=1

ln p(θti
∣∣θt−1
i ) +

n∑

i=1

ln p(sti|st−1
i )

]]

The only terms depending on λ is the prior on the support variables for t = 1,
therefore we get

∂

∂λ
L (Y ; q) =

∂

∂λ
E

[
n∑

i=1

ln p(s1
i |s0

i )

]

where p(s1
i |s0

i ) = p(si) = Ber(λ). Following the approach the same approach
for the AMP-MMV model (see appendix C.2), we get the update equation:

λnew =
1

n

n∑

i=1

−→
λ 1
i

←−
λ 1
i
←−π 1
i

(1−−→λ 1
i )(1−

←−
λ 1
i )(1−←−π 1

i ) +
−→
λ 1
i

←−
λ 1
i
←−π 1
i

(C.29)
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Learning the transitional probability

The relevant posterior distribution is obtained from the sum-product algorithm:
E-step:

p(sti, s
t−1
i

∣∣Y ) = p(sti|st−1
i ) · µst−1

i →p(sti|s
t−1
i )(s

t−1
i ) · µsti→p(sti|st−1

i )(s
t
i)

= p(sti|st−1
i )Ber

(
st−1
i

∣∣−→λ t−1
i

)
Ber

(
st−1
i

∣∣←−π t−1
i

)
Ber

(
sti
∣∣−→λ ti

)
Ber

(
sti
∣∣←−π ti

)

(C.30)

Taking the partial derivative of the bound function w.r.t. p10:

∂

∂p10
L (Y ; q) =

∂

∂p10
E

[
T∑

t=2

n∑

i=1

ln p(sti|st−1
i )

]

= E

[
T∑

t=2

n∑

i=1

∂

∂p10
ln p(sti|st−1

i )

]
(C.31)

where it is used that the only terms, which depend on p10 is ln p(sti|st−1
i ) for

t > 1. In order to compute the derivative, we utilize that p(sti|st−1
i ) can be

written as:

p(sti|st−1
i ) = (1− st−1

i )(1− sti) · p00 + (1− st−1
i )sti · p01 + st−1

i (1− sti) · p10 + st−1
i sti · p11

Using the expression above and the fact that p10 + p11 = 1, the derivative is
easily evaluated as:

∂

∂p10
ln p(sti|st−1

i ) =
1

p(sti|st−1
i )

∂

∂p10
p(sti|st−1

i )

=
st−1
i (1− sti)− st−1

i sti
p(sti|st−1

i )

From the numerator, it is seen that the term st−1
i (1 − sti) is only non-zero if

st−1 = 1 and sti = 0 and the term st−1
i sti is only non-zero if both variable are

equal to 1. Therefore, we can write:

∂

∂p10
ln p(sti|st−1

i ) =
st−1
i (1− sti)

p10
− st−1

i sti
1− p10

(C.32)

Plugging this back into eq. C.31 and rearranging:

∂

∂p10
L (Y ; q) =

T∑

t=2

n∑

i=1

(
1

p10
E
[
st−1
i (1− sti)

]
− 1

1− p10
E
[
st−1
i sti

])

=

T∑

t=2

n∑

i=1

(
1

p10
E
[
st−1
i

]
− 1

p10
E
[
st−1
i sti

]
− 1

1− p10
E
[
st−1
i sti

])
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Finally, putting the expression equal to zero and solving for p10 yields the update
equation:

pnew10 =

∑T
t=2

∑n
i=1 E

[
st−1
i

]
−∑T

t=2

∑n
i=1 E

[
st−1
i sti

]
∑T
t=2

∑n
i=1 E

[
st−1
i

] , (C.33)

where the moments are obtained from the distribution in eq. C.30.
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EEG Source Localization



202 EEG Source Localization

The purpose of this appendix is motivate the study of the linear inverse prob-
lems by giving a brief introduction to source localization based on electroen-
cephalography (EEG). Furthermore, we will argue that the underlying problem
indeed is linear. This introduction is by no means intended to be a thorough
introduction to field of EEG, but instead the interested reader are referred to
[BML01, NS06, Mic09] for details and references.

A scalp EEG recording is a multivariate time series consisting of measurements
of electromagnetic fields generated by the human brain. The electric potentials
are measured between pairs of electrodes attached directly to the skin on the
scalp of a human [NS06]. EEG recordings are non-invasive, cheap and portable,
which makes EEG an attractive tool and compared to other non-invasive meth-
ods, like functional magnetic resonance imagery (fMRI) and positron emission
tomography (PET) [BML01]. Moreover, EEG has significantly higher temporal
resolution, but lower spatial resolution than fMRI and PET [BML01].

For many years, EEG has served as an important clinical tool for neurological
diseases, e.g. epilepsies [NS06]. A more recent application of EEG is the problem
of source localization. The goal is here to locate and identify the brain regions
whose neural activations generated the electric potentials measured at the scalp.
Thus, in this application the electric scalp potentials are not of direct interest
themselves, but rather the sources that generated them. For this reason, this
is known as the source localization problem. Locating and identifying the EEG
sources are important for both clinical applications [PHC08] and for increasing
the basic understanding of how the human brain works. In the framework
of inverse problems, the underlying sources constitute the hidden state and
the scalp potentials constitute the measurements. Thus, given knowledge of
the sources, the forward problem amounts to compute the resulting electric
potentials, while the inverse problem amounts to estimating the sources based
on the measured potentials. This is illustrated in figure D.1.

In order to solve the source localization problem, it is necessary to model the
relationship between the measured potentials and the underlying sources of in-
terest. To achieve this, the desired current distribution of the brain can be ap-
proximated using the equivalent current dipole model, which assumes that the
current distribution can be represented using a discrete set of current dipoles,
i.e. a current source and a current sink [BML01]. These point sources give rise
to electromagnetic fields since the head (brain tissue, skull, scalp etc.) behaves
a volume conductor. Using an appropriate model for the head, Maxwell’s equa-
tions governs the relationship between the orientations and magnitudes of the
dipoles and the measured potentials at the surface of the scalp. In most studies
the frequency content of interest is below 100Hz and consequently, the governing
equations can be significantly simplified using the quasi-static approximation of
Maxwell’s equations [BML01].
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Dipole sources Electric potentials

Forward problem

Inverse problem

Figure D.1: Illustration of the forward-inverse relationship for EEG source
localization. Inspired from [Sta08]

The task of computing the resulting scalp potentials given knowledge of point
sources is the EEG forward problem. Solving the forward problem includes ob-
taining a suitable head model, which describes the geometry and conductivity
of the human head. Head models vary from simple nested concentric spher-
ical shells with homogeneous conductivity to realistic head models extracted
from magnetic resonance or computer tomography imagery [HVG+07]. For suf-
ficiently simple models, analytically solutions exist to the forward problem, but
for more complex head models numerical methods are required [MLL99].

Due to the quasi-static approximation, the relationship between the magnitude
of a dipole source x and a scalp potential y is given by

y(r) = a(r,p, θ)x (D.1)

where r is the measurement position, p is the dipole position, θ is the dipole
orientation, x is the dipole magnitude and a(r,p, θ) is obtained from the solution
of Maxwell’s equations [BML01]. Note that y(r) is only linear w.r.t. the dipole
magnitude x. Using linear superposition, the relationship between multiple
sources {xi}ni=1 and multiple scalp potentials {ya}ma=1 can be expressed as:




y(r1)

y(r2)
...

y(rm)




︸ ︷︷ ︸
y

=




a(r1,p1, θ1) . . . a(r1,pn, θn)
...

. . .
...

a(rm,p1, θ1) . . . a(rm,pn, θn)




︸ ︷︷ ︸
A




x1

x2

...

xn




︸ ︷︷ ︸
x

Thus, the underlying problem is indeed linear and therefore the source localiza-
tion problem belongs to the class of linear inverse problems.
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The number of electrodes can be as low 1 and as many as 256, while the number
of sources be as high 300000 [BLP+12], but typically the number of measure-
ments is in order of tens and the number of sources is in the order of thousands
[NS06]. Furthermore, adjacent electrodes often fail to provide independent infor-
mation due to strong correlations [GYO+04]. Therefore, the source localization
problem is ill-posed by nature.

Imposing sparsity on the estimated sources is convenient from a mathemati-
cal point of view because of the ill-posed nature of the problem. But recent
evidence suggests that sparsity in fact is a reasonable assumption [OPD+12],
e.g. in [GKH12] it is argued that during a given cognitive task only a few re-
gion a activated simultaneously. However, in [NS06], it is stated that even if
the true underlying source are not sparse, it would be natural to aim to re-
trieve the most active sources. Thus, the EEG source localization problem is
well suited for the sparsity framework. Furthermore, the dynamic nature of the
EEG sources [NS06, AM12] makes the problem suitable for MMV models with
dynamic support
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ABSTRACT
The Variational Garrote is a promising new approach for
sparse solutions of ill-posed linear inverse problems (Kappen
and Gomez, 2012). We reformulate the prior of the Varia-
tional Garrote to follow a simple Binomial law and assign a
Beta hyper-prior on the parameter. With the new prior the
Variational Garrote, we show, has a wide range of parameter
values for which it at the same time provides low test error
and high retrieval of the true feature locations. Furthermore,
the new form of the prior and associated hyper-prior leads
to a simple update rule in a Bayesian variational inference
scheme for its hyperparameter. As a second contribution
we provide evidence that the new procedure can improve on
cross-validation of the parameters and we find that the new
formulation of the prior outperforms the original formulation
when both are cross-validated to determine hyperparameters.

Index Terms— Ill-posed inverse problem, linear regres-
sion, Variational Garrote

1. INTRODUCTION

Finding robust and accurate solutions to ill-posed linear in-
verse problems is of both theoretical and practical impor-
tance. A great variety of methods have been proposed. A
large and useful class of methods is based on sparse repre-
sentations assuming that only a small subset of the under-
determined variables are non-zero or alternatively that a
small number of linear combinations of these variables are
non-zero. Finding such subsets leads to hard combinatorial
optimization in general, therefore a number of approxima-
tions have been proposed, e.g., convex relaxations such as
the widely used LASSO [1]. Convex relaxations, however,
suffer from well-known issues with consistency and lack of
precision [2]. Automatic Relevance Determination (ARD)
is a popular alternative, aiming directly at the combinatorial
problem [3]. The basic idea is to use adaptive regularization
so that weak features experience large regularization, hence

This work is funded in part by the Danish Lundbeckfonden through the
Center for Integrated Molecular Brain Imaging (www.cimbi.dk).

are pruned, see e.g. [4]. The so-called Variational Garrote
stands out by providing a simple yet, principled approach for
direct subset feature selection based on a variational approxi-
mation to the posterior distribution over subsets [5], see also
the related work in [6]. In the original formulation the Varia-
tional Garrote is based on two hyperparameters representing
a prior belief in sparsity and the noise level, respectively, and
it was proposed to cross-validate the former while the second
was inferred [5].

Here we make two contributions to improve our under-
standing of the Variational Garrote and hopefully make it even
more useful in practical applications. The first contribution is
a simple reformulation of the sparsity promoting prior, the
proposed form involves a hyperparameter which can be di-
rectly interpreted as the prior sparsity rate, and furthermore
leads to very a simple update equation if we attempt to make
inference for hyperparameter. The second contribution is an
evaluation of the Variational Garrote with inferred and cross-
validated hyperparameters. In particular, we compare with
the convex relaxation approach LASSO and with the ARD
approach for direct solution of the combinational problem.
We find empirical evidence that there is a significant range of
hyperparameters for which ARD and the Variational Garotte
can find near-optimal solutions, both in terms of mean square
test error, and in terms of location of the non-zero variables.

2. THE VARIATIONAL GARROTE

We study a general linear regression setting. Let D =
{xµ, yµ|µ = 1...p} be a data set, where xµ is an n-dimensional
feature vector and yµ is a scalar response variable to be mod-
eled. The Variational Garrote generative model as introduced
in [5] is then given by

yµ =

n∑

i=1

wisix
µ
i + ξµ (1)

where wi is the i’th weight and ξµ for µ = 1..p are assumed
to be independent and normal distributed with zero mean and
variance σ2 = β−1, i.e. ξ ∼ N

(
0, β−1

)
. The variables si ∈

978-1-4799-1180-6/13/$31.00 c©2013 IEEE
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Fig. 1. Variational Garrote: Mean square error and F-measure
as a function of α. Inference is based on p = 50 sam-
ples from the linear model y = wTx + ξ, where x is an
N = 100 dimensional feature vector sampled from a Nor-
mal distribution (x ∼ N100 (0, I)). The true weights w are
given by w =

[
1 1 1 1 1 0 ... 0

]T ∈ R100 and
ξ ∼ N (0, 0.1). The test set comprised ptest = 400 samples.

{0, 1} are latent binary selector variables, which determine
the set of features used in the model. That is, the i’th weight is
removed from the model when si = 0. The prior distribution
over the latent variable s proposed by [5] is

p (s|γ) =
n∏

i=1

p (si|γ) with p (si|γ) =
exp (γsi)

1 + exp(γ)
. (2)

In this representation γ < 0 implies that the prior belief in
si = 1 is below 0.5 and therefore the model is biased towards
a sparse solution.

The joint posterior distribution of s, w and β conditioned
on the data set D is then,

P (s,w, β|D, γ) =
P (D|s,w, β)P (w, β)P (s|γ)

P (D|γ)
(3)

where P (w, β) is the prior distribution over the weights and
the precision parameter and is for simplicity assumed to be
an improper uniform distribution, i.e., P (w, β) ∝ 1. Fur-
thermore, we note that the denominator of the right hand side,
P (D|γ), does not depend on the parameters,

P (s,w, β|D, γ) ∝ P (D|s,w, β)P (s|γ) (4)

Since the posterior distribution of w and β conditioned on the
data is our main interest, we follow the Bayesian paradigm
and marginalize out the s variable

P (w, β|D, γ) ∝
∑

s

P (D|s,w, β)P (s|γ) . (5)
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Fig. 2. LASSO: Mean square error and F-measure as a func-
tion of λ. Estimation is based on p = 50 samples from the
linear model y = wTx + ξ, where x is an N = 100 di-
mensional feature vector sampled from a Normal distribution
(x ∼ N100 (0, I)). The true weights w are given by w =[
1 1 1 1 1 0 ... 0

]T ∈ R100 and ξ ∼ N (0, 0.1).
The test set comprised ptest = 400 samples. We used the
toolbox implemented by Sjostrand to estimate the LASSO [7]

Exact inference is infeasible due to the discrete nature of s
(involves averaging over 2n binary configurations) and there-
fore we resort to an approximation.

In particular, we apply a variational approximation intro-
ducing a fully factorized variational distribution over s. That
is,

q (s) =
n∏

i=1

qi (si) (6)

where qi (si) = misi + (1−mi) (1− si). By Jensen’s in-
equality [8], we obtain

ln (P (D|s,w, β)P (s|γ))

≥ −
∑

s

q (s) ln

(
q (s)

P (D|s,w, β)P (s|γ)

)

≡ −F (q,w, β) ,

where F (q,w, β) is the variational free energy. Minimiz-
ing the variational free energy (hence, maximizing the lower
bound on the marginal likelihood) yields the following update
equations [5]:

w = (χ′)
−1

b, χ′ji = miχji + (1−mi)χjjδij (7)

mi = σ

(
γ +

βp

2
χiiw

2
i

)
(8)

1

β
= σ2

y −
∑

i

miwibi, (9)



where χ is the second moment matrix of the input features,
σ() is the sigmoid function, and b is the input-output covari-
ance.

2.1. Re-parametrization of the prior

The prior distribution on s in (2) is simply a product of in-
dependent Bernoulli distributions, where the corresponding
probability of si = 1 is parameterized by γ:

p (si = 1|γ) =
exp (γ)

1 + exp(γ)
(10)

Due to the functional relationship, the interpretation of γ is
less transparent and inference can lead to complex non-linear
equations for the parameter. Therefore we propose a more
simple parametrization of the prior distribution given by,

p (si|α) = αsi + (1− α) (1− si) , α ∈ [0, 1] , (11)

see also the different but related formulation in [6]. Hence,
p (si = 1|α) = α. Thus, p (s|α) becomes a Binomial distri-
bution. As there is a close correspondence between the two
priors

γ = ln

(
α

1− α

)
, (12)

the new parametrization only implies minor changes in the
variational approximation, e.g., the update equation for the
variational means becomes

mi = σ

(
ln

(
α

1− α

)
+
βp

2
χiiw

2
i

)
(13)

2.2. Learning α

Sinceα is a probability, we naturally assign a Beta-distribution
as the prior distribution over α

P (α|a, b) =
Γ (a+ b)

Γ (a) Γ (b)
αa−1 (1− α)

b−1 (14)

where a and b are hyper-hyperparameters.
With this assignment the posterior becomes

P (w, α, β|D) ∝
∑

s

P (D|s,w, β)P (s|α)P (α) (15)

and the variational free energy becomes

F (q,w, α, β) =
∑

s

q (s) ln

(
q (s)

P (D|s,w, β)P (s|α)P (α)

)

(16)

Minimizing the variational free energy w.r.t. α yields an intu-
itive update rule,

α =

∑n
i mi + a− 1

n+ a+ b− 2
(17)

As
∑n
i mi is the expected number of non-zero weights the

two hyper-hyperparameters a−1 and b−1 can be interpreted
as pseudo-observations (beta-binomial model), such that a−1
and b − 1 are pseudo-counts of non-zero and zero weights,
respectively.

10
−2

10
0

10
2

1

2

3

4

5

M
S

E

β
10

−2
10

0
10

2
0

0.25

0.5

0.75

1

F
 M

e
a
s
u
re

Fig. 3. ARD: Mean square error and F-measure as a func-
tion of β. Inference is based on p = 50 samples from the
linear model y = wTx + ξ, where x is an N = 100 di-
mensional feature vector sampled from a Normal distribution
(x ∼ N100 (0, I)). The true weights w are given by w =[
1 1 1 1 1 0 ... 0

]T ∈ R100 and ξ ∼ N (0, 0.1).
The test set comprised ptest = 400 samples. For details of
the ARD inference procedure see [8]

3. NUMERICAL EXPERIMENTS

To illustrate the role of the reformulated prior we carry out
three experiments: the first comparing the Variational Gar-
rote with two widely used standard methods as in the origi-
nal work [5] and in the second we investigate the feasibility
of learning the hyperparameter α and compare it with cross-
validation over α and γ respectively. Finally, in a third experi-
ment we make a more complete exploration of the connection
between number of samples, sparsity of the ”true” weight vec-
tor used to generate data, and performance.

3.1. Experiment 1

In the first experiment, we compare the Variational Garrote to
the LASSO [1] and to a sparse linear regression model using
an ARD prior [3, 9, 4]. Both of these methods have a sin-
gle hyperparameter (the penalty control λ for LASSO and the

2Figure 4 is slightly different from the corresponding figure in the pub-
lished version. This is due to an minor scaling error resulting in worse per-
formance of the two CV-based methods.
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Fig. 4. Normalized mean square error as a function of num-
ber of non-zero features. The features x ∼ N100 (0, I) and
the noise ξ ∼ N

(
0, σ2

0

)
are both normal. Here we vary the

number of non-zero coefficients in the true model’s weights
w. The magnitudes of all non-zero coefficients are fixed to
value 1, while the true noise variance σ2

0 is scaled to provide
a fixed signal-to-noise ratio as we increase the number of true
non-zero parameters. We compare three models, namely the
Variational Garrote with the conventional parametrization γ
and the new α both estimated by hold-out cross-validation
and the Variational Garrote with α inferred from data with
a Beta(1,99) hyper-prior. All results are averaged over 100
runs, n = 100 p = 50, ptest = 400. 2

noise precision β for ARD) and we can compare the perfor-
mance as we vary these parameter with the results of varying
the prior parameter α for VG, The three methods are com-
pared by means of test set Mean Square Error (MSE) and the
F-measure of the feature selection process given as [10],

F =
2 · precision · recall
precision + recall

(18)

where precision (positive predictive value) is the fraction of
non-zero weights found by the algorithm that are also non-
zero in the true model, while recall (sensitivity) is the fraction
of non-zeros in the true model that have been identified by the
algorithm.

We generate p = 50 samples from the model y =
wTx + ξ, where x is an N = 100 dimensional feature
vector sampled from an isotropic multivariate Normal distri-
bution, i.e. x ∼ N100 (0, I), the weights w are given by w =[
1 1 1 1 1 0 ... 0

]T ∈ R100 and ξ ∼ N (0, 0.1).
Furthermore, we generate an additional ptest = 400 samples
from the same model, which is used as an independent test
set. For each method and for each value of their hyperparam-
eters, the mean square test error and F-measure are computed.
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Fig. 5. F-measure as a function of number of non-zero fea-
tures. The features x ∼ N100 (0, I) and the noise ξ ∼
N
(
0, σ2

0

)
are both normal. Here we vary the number of non-

zero coefficients in the true model’s weights w. The magni-
tudes of all non-zero coefficients are fixed to value 1, while
the true noise variance σ2

0 is scaled to provide a fixed signal-
to-noise ratio as we increase the number of true non-zero pa-
rameters. We compare three models, namely the Variational
Garrote with the conventional parametrization γ and the new
α both estimated by hold-out cross-validation and the Vari-
ational Garrote with α inferred from data with a Beta(1,99)
hyper-prior. All results are averaged over 100 runs, n = 100,
and p = 50.

Figures 1, 2 and 3 show the resulting plots for VG, LASSO
and ARD, respectively. Inspecting Figure 2 we see that both
the Mean Square Error and the F-measure are critically de-
pendent on the strength of the regularizer λ, indeed there
is a narrow interval around λ = 10 where both the Mean
Square Error is low and the F-measure is high, but no value
for which they both are optimal. On the other hand we learn
from Figure 3 that in the ARD there are about two decades of
values of the noise precision for which the F-measure reaches
its optimal value (F=1) and for a significant part of this range
the Mean Square Error on the test data is simultaneously
minimized. Similarly for the Variational Garrote we see in
Figure 1 that there there is an even wider range of almost four
decades of the hyperparameter for which the correct model is
identified, hence F=1 and the test Mean Square Error is low.
This result is promising, and lead us to hypothesize that it
may be possible to infer the hyperparameter α from data.

3.2. Experiment 2

The second experiment is designed precisely to investigate
the possibility of learning hyperparameter α directly from the
data. We assign a Beta-distribution as given in (14) with pa-
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(c) Number of estimated weights

Fig. 6. Number of estimated components as a function of
non-zero features. The features x ∼ N100 (0, I) and the
noise ξ ∼ N

(
0, σ2

0

)
are both normal. Here we vary the

number of non-zero coefficients in the true model’s weights
w. The magnitudes of all non-zero coefficients are fixed to
value 1, while the true noise variance σ2

0 is scaled to provide
a fixed signal-to-noise ratio as we increase the number of true
non-zero parameters. We compare three models, namely the
Variational Garrote with the conventional parametrization γ
and the new α both estimated by hold-out cross-validation
and the Variational Garrote with α inferred from data with
a Beta(1,99) hyper-prior. All results are averaged over 100
runs, n = 100, and p = 50.

rameters a = 1 and b = 99, i.e., invoking a (hyper-)prior
assuming strong sparsity. We generate a fixed number p = 50
samples from the model y = wTx + ξ. The features x ∼
N100 (0, I) and the noise ξ ∼ N

(
0, σ2

0

)
are both normal as

in experiment 1, but now we vary the number of non-zero
coefficients in the model weights w. The magnitudes of all
non-zero coefficients are again fixed to value 1, while the true
noise variance σ2

0 is scaled to provide a fixed signal-to-noise
as we increase the number of true non-zero parameters. We
compare three models, namely the Variational Garrote with
the conventional parametrization γ and the new α both esti-
mated by hold-out cross-validation and the Variational Gar-
rote with α inferred from data. All results are average over
100 runs.

The test Mean Square Error normalized by the noise vari-
ance is presented as a function of non-zero weights in figure 4
for the three models, for further reference we also plot the er-
ror of the true solution. The Bayesian model outperforms both
cross-validated models as hypothesized since the hyper-prior
conforms with the sparse data generating true model [4, 11].
In addition we see that the new prior formulation seems to

Fig. 7. α inferred from the data as a function of number of
non-zero features and no. of samples. Samples are generated
from the model y = wTx + ξ. The features x ∼ N100 (0, I)
and the noise ξ ∼ N

(
0, σ2

0

)
. But now we vary both the

number of non-zero coefficients in the model and the no. of
samples n used to estimate the model. The magnitudes of all
non-zero coefficients are still fixed to value 1, while the true
noise variance σ2

0 is scaled to provide a fixed signal-to-noise
as we increase the number of true non-zero parameters.

provide the best performance of the two cross-validated mod-
els when more than five of the hundred parameters in the true
model are non-zero.

In Figure 5 we show the F-measure for the three models
as the true model becomes denser. Here we find that all three
models have close to optimal retrieval of the true locations up
till around seven of the hundred weights are non-zero. The
cross-validated γ model seems to be bit more stable. How-
ever, as the true models become denser only the Bayesian
inference model can maintain high F, while in the range 7-
14 non-zero weights the cross-validated αmodel outperforms
the γ model significantly.

The results of the Figures 4 and 5 can in part be un-
derstood when we plot in Figure 6 the number of estimated
weights as a function of number of non-zero features. Here
we learn that the cross-validated models focusing on MSE be-
come too conservative and thereby under-estimate the number
of non-zero weights.

3.3. Experiment 3

The aim of the third experiment is to investigate further the
properties of the Bayesian model. We generate n samples
from the model y = wTx + ξ. The features x ∼ N100 (0, I)
and the noise ξ ∼ N

(
0, σ2

0

)
. But now we vary both the num-

ber of non-zero coefficients in the model and the number of
samples n to explore learnability more generally. The mag-
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Fig. 8. F-measure as a function of number of non-zero fea-
tures and no. of samples. Samples are generated from the
model y = wTx + ξ. The features x ∼ N100 (0, I) and
the noise ξ ∼ N

(
0, σ2

0

)
. But now we vary both the number

of non-zero coefficients in the model and the no. of samples
n used to estimate the model. The magnitudes of all non-
zero coefficients are still fixed to value 1, while the true noise
variance σ2

0 is scaled to provide a fixed signal-to-noise as we
increase the number of true non-zero parameters.

nitudes of all non-zero coefficients are still fixed to value 1,
while the true noise variance σ2

0 is scaled to provide a fixed
signal-to-noise as we increase the number of true non-zero
parameters.

Figure 7 shows the value of α inferred from the data as
a function of the number of non-zero coefficients and sam-
ple size, while in Figure 8 we show the corresponding F-
measures, which reveals that very accurate feature locations
are found for a sample size abaout three times the number of
true non-zero parameters, while still much smaller than the
number of features p < n.

4. CONCLUSION

We reformulated the prior of the Variational Garrote to follow
a simple Binomial law and assigned a Beta hyper-prior on the
parameter. With the new prior the Variational Garrote has a
wide range of parameter values for which it at the same time
provides for low test error and high retrieval of the true fea-
ture locations. Furthermore, the new prior formulation leads
to a simple update rule in Bayesian variational inference for
the hyperparameter. In a second simulation study we pro-
vided evidence that the new procedure can improve on cross-
validation of the parameters. We also found that the new
formulation of the prior outperforms the original formulation
when both are cross-validated to determine their respective
hyperparameters. Finally, we found that the Bayesian scheme
produces very accurate feature locations when the number of

true non-zeros is small, allowing for good performance even
when the system formally is ill-posed p < n.
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