
Detecting network intrusions

Michael Nørholt Petersen

Kongens Lyngby 2014

M.Sc.

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Matematiktorvet, building 303B,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3351

compute@compute.dtu.dk

www.compute.dtu.dk M.Sc.-2014

Acknowledgements

I would like to thank Associate Professor Christian W. Probst for his great
supervision. Always having time for me, and checking the quality of my work.

ii

Contents

Acknowledgements i

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 4
1.3 Objective and research question 4
1.4 Methodology . 5

1.4.1 Literature . 5
1.4.2 Procedure . 5
1.4.3 Evaluation . 6

1.5 Abbreviations and terminology 6
1.6 Thesis Outline . 7

2 Intrusion Detection System overview 9
2.1 Introduction . 10
2.2 Types . 10
2.3 Recent approaches . 13

2.3.1 Data mining techniques 14
2.3.2 Machine learning techniques 21
2.3.3 Hidden Markov Models 26
2.3.4 Honeypot . 31
2.3.5 Genetic algorithm . 33
2.3.6 Fuzzy Logic . 36

2.4 Attacks and threats . 39
2.4.1 Sources of cyber security threats 40
2.4.2 Types of cyber exploits 41
2.4.3 Multi step attack . 42
2.4.4 Polymorphic worm . 44

iv CONTENTS

2.5 Taxonomy . 48
2.6 Challenges . 48

3 Typical architecture of Intrusion Detection Systems 51
3.1 The Common Intrusion Detection Framework (CIDF) 51
3.2 Packet inspection . 53

3.2.1 Shallow Packet Inspection 54
3.2.2 Medium Packet Inspection 55
3.2.3 Deep Packet Inspection 55
3.2.4 Challenges . 56

3.3 Pattern matching algorithms . 57
3.3.1 Single-Keyword pattern matching algorithms 57
3.3.2 Multiple-Keyword pattern matching algorithms 58

3.4 Snort as an example . 58
3.4.1 Components . 59
3.4.2 Snort internals . 62
3.4.3 Re-examining the performance bottle neck in Snort and Bro 64
3.4.4 Snort improvement attempts 71

4 How to evaluate intrusion detection systems 79
4.1 Tools and data . 79

4.1.1 Testing tools . 80
4.1.2 Available datasets . 80

4.2 How have other tested? . 83
4.2.1 Performance evaluation of Snort and Suricata 83
4.2.2 A performance analysis of Snort and Suricata 85
4.2.3 Evaluating intrusion detection systems in high speed net-

works . 86
4.2.4 An analysis of packet fragmentation attacks vs Snort . . . 87

4.3 How will we test? . 88
4.3.1 Dataset problems . 89
4.3.2 Statistical calculations . 92

4.4 Evaluation . 94
4.4.1 Snort installation . 94
4.4.2 Snort usage . 95
4.4.3 Evaluating pytbull/snorby results 95
4.4.4 Summing up . 96
4.4.5 Other programs . 97

5 Best practice 101
5.1 Quantitatively measurable IDS characteristics 101
5.2 Challenges of IDS testing . 103
5.3 Appropriate tools to use . 104

5.3.1 Generating attacks . 105

CONTENTS v

5.3.2 Generating background tra�c 105
5.4 Suggested procedures . 106

6 Conclusion 109
6.1 The role of NIDS . 110
6.2 Answers to research questions . 112
6.3 Suggestions and improvements 114

A Pytbull and snorby results 117

Bibliography 125

vi CONTENTS

Chapter 1

Introduction

This thesis deals with Intrusion Detection Systems. It is called "Detecting
network intrusions", and is done at DTU Compute at the Technical University
of Denmark in ful�lment of the requirements for acquiring M.Sc. degree in
Computer Science and Engineering. The thesis has been supervised by Christian
W. Probst.

We wish to look at Intrusion Detection Systems from a critical perspective:
Can they really help protect against intrusions as promised? Is it possible to
make a trustworthy investigation of an Intrusion Detection System, �nding its
limitations? Is it possible to make an trustworthy best practice for testing
Intrusion Detection System?

1.1 Motivation

The basic de�nition of intrusion is that there can be performed a set of ac-
tions which compromise the security goals, namely integrity, con�dentiality or
availability of a computing and networking resource Hachmageddon.com [1] and
PWC [2]. Intrusion Detection is the process of identifying and responding to
intrusion activities. The internet has evolved rapidly and almost everyone has
access. As the use of the Internet rapidly grows, so does the possibility of an

2 Introduction

attack. As private users we use the Internet for backup, banking, and other
sensitive information handling. Businesses also handle a lot of sensitive infor-
mation within their internal networks. In most cases a �rewall has shown not
be su�cient, as absolutely secure systems are unobtainable.
Another issue is threats from insiders abusing their privileges. Also outdated
IDS database, and the issue that not all kind of intrusions are known, is a threat.
We have included �gures to give an impression on how widespread attacks cur-
rently are. They are taken from August 2013 and show attacks distributed
according to country, targets, motivation and techniques.

Figure 1.1: Charts from Hachmageddon.com [1]

(a) Attack distribution (b) Motivations

(c) Targets (d) Distribution of countries

Figure 1.1a: We can see that "unknown" attack technique is the one which has
the greatest share. Its especially not good for rule based ids that this technique
is evolving, because it has big trouble defending against such attacks.
Figure 1.1b: Cyber Crime leads the Motivation Behind Attacks chart with ap-
proximately half of the attacks recorded. Hacktivism is stable at 35% while the
growth of Cyber Warfare is related (once again) to the cyber skirmishes between
India and Pakistan.
Figure 1.1c: Governmental targets lead the Distribution of Target chart with
nearly 26%. Industry ranks at number two, while single individuals (victims es-
sentially of account hijackings) rank at number three. It is interestig to notice,

1.1 Motivation 3

among the organizations victims of Cyber Attacks, the predominance of targets
related to Political Parties, a consequence of the social protests exploding all
over the world in these troubled days.
Figure 1.1d: US, UK and India con�rm their top rank in the Country Distribu-
tion chart.

Figure 1.2: Attack sophistication vs. Intruder technical knowledge

Earlier, the intruders needed profound understanding of computers and networks
to launch attacks. However, today almost anyone can exploit the vulnerabilities
in a computer system due to the wide availability of attack tools (see �gure 1.2).

Figure 1.3: Security challenges taken from IBM Corporation [3]

Figure 1.3 shows a four-dimensional puzzle IBM Corporation [3]. It is added to
show the di�erent involved actors regarding security challenges.

4 Introduction

1.2 Scope

To begin with, the thesis referred to general IDS, mainly open-source programs.
By reviewing the newest articles in the �eld of IDS, we wanted to give a state
of the art overview, where we showed the di�erent techniques IDS use, how
the patterns are represented and detected. Besides that we wanted to select an
unspeci�ed number of IDS programs, and investigate for its limitations, pros and
cons, and lastly having a look at how they complemented each other. After some
iterations it showed, that is was not possible, so the thesis had to follow a new
direction. The new direction would contain; a state of the art overview, where
we show the di�erent techniques (IDS) use, how the patterns are represented
and detected. Lastly we would give a best practice regarding testing of IDS.
The things which are outside the scope of this thesis, are for instance use of other
environments such as neural network, wireless network and cloud computing.
Looking at �gure 2.21 there exist many combinations which are outside the
scope.

1.3 Objective and research question

The main task of this thesis is to give an state of the art IDS overview, including
explanation of recent approaches in the �eld of general IDS. Lastly give a best
practice regarding testing of IDS. The research questions that will be answered
during this thesis will be:

"Is it possible to make an trustworthy investigation of an Intrusion Detection
System which �nds its limitations?"

"Is it possible to make an trustworthy best practice for testing Intrusion Detec-
tion System?"

The sub questions that can be derived from the research questions are:

1. What is an IDS? - what is the typical architecture?

2. What sort of techniques does the IDS use, how is the patterns represented
and detected?

3. What is the common test approach for IDS?

4. Does an IDS cover all potential intrusions?

1.4 Methodology 5

5. What is the future prospects of IDS?

Reading this thesis will hopefully give an answer to these sub questions.

1.4 Methodology

This thesis is split into di�erent approaches, and they will be explained in the
next subsections.

1.4.1 Literature

The existing literature in the �eld of IDS will be cited as a basis for answering the
main research question and the listed sub questions. There exist many di�erent
scienti�c articles describing IDS, and an e�ort will be made to select the most
important, relevant and newest ones. Although the scienti�c articles is the key
distribution for this thesis, there also exist some relevant home pages and slides.
The places where the relevant articles will be found are Google search engine
and DTU Digital Library.

1.4.2 Procedure

To begin with we wanted to do the following:

At �rst we will use the KDD Cup 1999 Dataset to �nd the limitations of an
selected IDS. Besides that we will try to cover the following performance objec-
tives for our IDS:

• Broad Detection Range: for each intrusion in a broad range of known
intrusions, the IDS should be able to distinguish the intrusion from normal
behaviour.

• Economy in Resource Usage: the IDS should function without using
too much system resources such as main memory, CPU time, and disk
space.

• Resilience to Stress: the IDS should still function correctly under stress-
ful conditions in the system, such as a very high level of computing activity.

6 Introduction

The way we will cover them, is to make testing scenarios. To support the testing
scenarios which cover Broad Detection Range we will use statistical calcu-
lations, which base our performance tests on Accuracy, Sensitivity, Speci�city
and computational time FAR.

This approach were not possible to complete, so we decided to use Snort as an
example for an IDS. In addition we chose to make a test of Snort with pytbull
(is a python based �exible IDS/IPS testing framework), and based on the used
articles in this thesis, we will give a best practice when testing an IDS.

We will use an iterative approach, where it is possible to re-evaluate the proce-
dure, and make new choices.

1.4.3 Evaluation

We will look at the used tools, explain our experience with the installation and
the usage. Besides that we will make an evaluation of the testing, and list our
�ndings.

1.5 Abbreviations and terminology

IDS Intrusion Detection System: is a device or software application that mon-
itors network or system activities for malicious activities or policy viola-
tions and produces reports to a management station.

Data Mining Data Mining is the process of extracting patterns from data.

Machine Learning Is a branch of arti�cial intelligence, is about the construc-
tion and study of systems that can learn from data.

Detection Rate The detection rate is de�ned as the number of intrusion in-
stances detected by the system(True Positive) divided by the total number
of intrusion instances present in the test set.

Alert/Alarm A signal suggesting that a system has been or is being attacked.

1.6 Thesis Outline 7

False Positive is de�ned as total number of normal instances that were in-
correctly classi�ed as intrusions de�ned by the total number of normal
instances.

True Positive A legitimate attack which triggers an IDS to produce an alarm.

False Negative A failure of an IDS to detect an actual attack.

True Negative When no attack has taken place and no alarm is raised.

Firewall The network security door. A �rewall is not an IDS but their logs can
provide valuable IDS information. A �rewall works by blocking unwanted
connections based on rules or criteria, such as source address, ports etc.

Honeypot A honeypot is a system that can simulate one or many vulnerable
hosts, providing an easy target for the hacker to attack. The honeypot
should have no other role to ful�l, therefore all connection attempts are
deemed suspicious. Another purpose is delay attackers in their pursuit of
legitimate targets, causing the attacker to waste time on the honeypot,
whilst the original entry hole is secured, leaving the truly valuable assets
alone. Although one of the initial objectives of honeypots is as evidence-
gathering mechanisms in the prosecution of malicious hackers, there is
much talk of entrapment when deploying honeypots; however, does the
vulnerability of the honeypot necessarily give the hacker the right to at-
tack it? In order to reach the honeypot an attacker would have had to
circumvent at least one bona�de security device, provided the honeypot is
inside your network. In some countries law enforcement agencies cannot
prosecute using evidence from a honeypot.

1.6 Thesis Outline

This thesis is divided into 7 chapters plus appendix.

Chapter 1 called Introduction: It gives an basic understanding of what the
problem statement is and how we will come up with a solution.

Chapter 2 called Intrusion Detection System overview: It gives an impression
of what the recent IDS approaches are and challenges which lies ahead.

8 Introduction

Chapter 3 called Typical architecture of Intrusion Detection Systems: Gives a
basic understanding of how the di�erent components of the selected IDS works.

Chapter 4 called How to evaluate intrusion detection systems: It gives an
understanding of how others have tested and how we will test a given IDS.
Additionally, we give an evaluation of the given IDS.

Chapter 5 called Best practice: It contribute to give an advise for others who
have the intention of testing an IDS.

Chapter 6 called Conclusion: A �nal summary of the thesis, where we discuss
the role of NIDS, answer the research questions and suggest improvements.

Appendix A called Pytbull and snorby results Images from the programs pytbull
and snorby.

Chapter 2

Intrusion Detection System

overview

In this chapter we introduce IDS. We explain the di�erent types, and cover the
most important approaches used in relation to IDS. We also explain attacks and
threats, and focus on the two interesting threats such as multi-step attack and
polymorphic worm. Lastly we show a taxonomy of IDS and lastly list some of
the challenges regarding installing an IDS.

The chapter contribute to an overall background understanding of general IDS.
Besides that we have chosen to divide section 2.3 into theory and use of theory
in IDS context. The dividing has been done, so it is easier for the reader to
understand the section.

Support Vector Machine has been left out from section 2.3 because it was not
possible to �nd relevant articles. Besides that the Honeypot section only ex-
plains advantages/disadvantages with the use of Honeypots.

10 Intrusion Detection System overview

2.1 Introduction

An intrusion is de�ned to be a violation of the security policy of the system;
intrusion detection thus refers to the mechanisms that are developed to detect
violations of system security policy Chebrolu et al. [4].Intrusion detection is
based on the assumption that intrusive activities are noticeably di�erent from
normal system activities and thus detectable. Intrusion detection is not intro-
duced to replace prevention-based techniques such as authentication and access
control; instead, it is intended to complement existing security measures and de-
tect actions that bypass the security monitoring and control component of the
system. Intrusion detection is therefore considered as a second line of defence
for computer and network systems. Some of the important features an intrusion
detection system should posses include:

• Be fault tolerant and run continually with minimal human supervision.
The IDS must be able to recover from system crashes, either accidental or
caused by malicious activity.

• Posses the ability to resist subversion so that an attacker cannot disable
or modify the IDS easily. Furthermore, the IDS must be able to detect
any modi�cations forced on the IDS by an attacker.

• Impose minimal overhead on the system to avoid interfering with the nor-
mal operation of the system.

• Be easy to deploy: this can be achieved through portability to di�erent
architectures and operating systems, through simple installation mecha-
nisms, and by being easy to use by the operator.

• Be general enough to detect di�erent types of attacks and must not rec-
ognize any legitimate activity as an attack (false positives). At the same
time, the IDS must not fail to recognize any real attacks (false negatives).

2.2 Types

Network-based IDS (NIDS) is an intrusion detection system which moni-
tors network tra�c Deepa et al. [5] and Stallings [6]. It use the technique
like packet sni�ng, and analyse the collected network data, it tries to dis-
cover unauthorized access to a computer network. A typical NIDS facility
includes a number of sensors to monitor packet tra�c, one or more servers
for NIDS management functions, and one or more management consoles
for the human interface.

2.2 Types 11

The analysis of tra�c patterns to detect intrusions may be done at the sen-
sor, at the management server, or some combination of the two. Sensors
can be deployed in one of two modes: inline and passive. An inline sensor
is inserted into a network segment so that the tra�c that is monitoring
must pass through the sensor. One way to achieve an inline sensor is to
combine NIDS sensor logic with another network device, such as a �rewall
or a LAN switch. This approach has the advantage that no additional
separate hardware devices are needed; all that is required is NIDS sensor
software. An alternative is a stand-alone inline NIDS sensor. The primary
motivation for the use of inline sensors is to enable them to block an attack
when one is detected. In this case the device is performing both intrusion
detection and intrusion prevention functions. More commonly, passive
sensors are used. A passive sensor monitors a copy of network tra�c; the
actual tra�c does not pass through the device. From the point of view
of tra�c �ow, the passive sensor is more e�cient than the inline sensor,
because it does not add an extra handling step that contributes to packet
delay. NIDS makes use of signature detection and anomaly detection:

Signature detection The following lists examples of that types of attacks
that are suitable for signature detection:

• Application layer reconnaissance and attacks: Most NIDS
technologies analyze several dozen application protocols. Commonly
analyzed ones include Dynamic Host Con�guration Protocol (DHCP),
DNS, Finger, FTP, HTTP, Internet Message Access Protocol (IMAP),
Internet Relay Chat (IRC), Network File System (NFS), Post Of-
�ce Protocol (POP), rlogin/rsh, Remote Procedure Call (RPC), Ses-
sion Initiation Protocol (SIP), Server Message Block (SMB), SMTP,
SNMP, Telnet, and Trivial File Transfer Protocol (TFTP), as well as
database protocols, instant messaging applications, and peer-to-peer
�le sharing software. The NIDS is looking for attack patterns that
have been identi�ed as targeting these protocols. Examples of attack
include bu�er over�ows, password guessing, and malware transmis-
sion.

• Transport layer reconnaissance and attacks: NIDSs analyze
TCP and UDP tra�c and perhaps other transport layer protocols.
Examples of attacks are unusual packet fragmentation, scans for vul-
nerable ports, and TCP-speci�c attacks such as SYN �oods.

• Network layer reconnaissance and attacks: NIDSs typically
analyze IPv4, ICMP, and IGMP at this level. Examples of attacks
are spoofed IP addresses and illegal IP header values

• Unexpected application services: The NIDS attempts to de-
termine if the activity on a transport connection is consistent with

12 Intrusion Detection System overview

the expected application protocol. An example is a host running an
unauthorized application service.

• Policy violations: Examples include use of inappropriate Web sites
and use of forbidden application protocols.

Anomaly detection

• Denial-of-service (DoS) attacks: Such attacks involve either sig-
ni�cantly increased packet tra�c or signi�cantly increase connection
attempts, in an attempt to overwhelm the target system.

• Scanning: A scanning attack occurs when an attacker probes a
target network or system by sending di�erent kinds of packets. Using
the responses received from the target, the attacker can learn many
of the system's characteristics and vulnerabilities. Thus, a scanning
attack acts as a target identi�cation tool for an attacker. Scanning
can be detected by atypical �ow patterns at the application layer
(e.g., banner grabbing3), transport layer (e.g., TCP and UDP port
scanning), and network layer (e.g., ICMP scanning).

• Worms: Worms4 spreading among hosts can be detected in more
than one way. Some worms propagate quickly and use large amounts
of bandwidth. Worms can also be detected because they can cause
hosts to communicate with each other that typically do not, and they
can also cause hosts to use ports that they normally do not use. Many
worms also perform scanning.

Host-Based IDS is an intrusion detection system that monitors and analyses
the internals of a computing system as well as (in some cases) the network
packets on its network interfaces (just like a (NIDS) would do).

Stack-Based IDS is an intrusion detection system that examines the packets
as they go through the TCP/IP stack.

Protocol-Based IDS (PIDS) is an intrusion detection system which is typi-
cally installed on a web server, and is used in the monitoring and analysis
of the protocol in use by the computing system. A PIDS will monitor the
dynamic behaviour and state of the protocol and will typically consist of
a system or agent that would typically sit at the front end of a server,
monitoring and analysing the communication between a connected device
and the system it is protecting.

Graph-Based IDS is an intrusion detection system which detects intrusions
that involve connections between many hosts or nodes. A graph consists of
nodes representing the domains and edges representing the network tra�c
between them.

2.3 Recent approaches 13

2.3 Recent approaches

The section cover di�erent technologies which has been used in an IDS. The focus
is on the recent approaches, and the technologies has been categorised. Here we
brie�y sum up the di�erent articles linked with each technology approach:

• Data mining: Zhou et al. [8] has a module which match rules. This is the
detection engine, which uses K Means algorithm as the clustering analysis
algorithm. When an unknown attack gets detected the log module logs it,
and their feature extractor gets to work. It makes correlation analysis of
the data in the log, and conclude the new association rule, and add it to
the rule base. It uses Apriori algorithm correlation analysis.

• Machine learning: Natesan et al. [10] base their experiments on the
KDDCup 99 data set. They have proposed an Adaboost algorithm with
di�erent combination of weak classi�ers. The weak classi�ers such as Bayes
Net, Naive Bayes and Decision tree are used in three di�erent combinations
such as BN-NB, BN-DT and NB-DT with Adaboost algorithm to improve
the classi�cation accuracy.

• Hidden Markov Models: Ariu et al.[11] they address the problems in
payload analysis by proposing a novel solution where the HTTP payload
is analyzed using Hidden Markov Models. The proposed system is named
HMMPayl. Farhadi et al. [12] in order to extract useful information
from alerts they use an alert correlation algorithm, which is the process
of producing a more abstract and high-level view of intrusion occurrences
in the network from low-level IDS alerts.

• Honeypot: Bhumika [13] they list advantages and disadvantage of the
use of Honeypot.

• Genetic Algorithm: Dhak et al. [15] propose an IDS based on the use
of genetic algorithm. Their architecture is as follows: It starts from ini-
tial population generation from p�rewall.log �le generated by the �rewall
system. The packets are the �ltered out on the basis of rules. Then the
precised data packets go through several steps namely selection, crossover
and mutation operation. These processes gets generate best individuals.
The generated individuals are the veri�ed by the �tness function to gen-
erate the population for next generation.

• Fuzzy logic: Shanmugavadivu et al. [17] they propose a system which is
a designed fuzzy logic-based system for e�ectively identifying the intrusion
activities within a network. The proposed fuzzy logic-based system can be
able to detect an intrusion behaviour of the networks since the rule base

14 Intrusion Detection System overview

contains a better set of rules. Here, they have used automated strategy
for generation of fuzzy rules, which are obtained from the de�nite rules
using frequent items. The experiments and evaluations of the proposed
intrusion detection system are performed with the KDD Cup 99 intrusion
detection dataset.

2.3.1 Data mining techniques

2.3.1.1 Theory

It is currently used in a wide range of pro�ling practices, such as marketing,
surveillance, fraud detection, and scienti�c discovery D'silva et al. [7]. A pri-
mary reason for using data mining is to assist in the analysis of collections of
observations of behaviour. Data Mining is involved in four classes of tasks:

1. Clustering it is the task of discovering groups and structures in the data
that are in some way or another similar, without using known structures
in the data. It is an unsupervised machine learning mechanism for dis-
covering patterns in unlabelled data. It is used to label data and assign it
into clusters where each cluster consists of members that are quite simi-
lar. Members from di�erent clusters are di�erent from each other. Hence
clustering methods can be useful for classifying network data for detect-
ing intrusions. Clustering can be applied on both Anomaly detection and
Misuse detection.

Looking closer at clustering techniques used in IDS, there exist three
clustering techniques called K-Means clustering, Y-Means Clustering and
Fuzzy C-Means Clustering. All these algorithms reduce the false positive
rate and increase the detection rate of the intrusions.

K-Means Clustering is a hard partitioned clustering algorithm, and It
uses Euclidean distance as the similarity measure. Hard clustering means
that an item in a data set can belong to one and only one cluster at a
time. It is a clustering analysis algorithm that groups items based on
their feature values into K disjoint clusters such that the items in the
same cluster have similar attributes and those in di�erent clusters have
di�erent attributes.

Y-Means Clustering This technique automatically partitions a data
set into a reasonable number of clusters so as to classify the data items
into normal and abnormal clusters. The main advantage of Y-Means clus-
tering algorithm is that it overcomes the three shortcomings of K-means
algorithm namely dependency on the initial centroids, dependency on the

2.3 Recent approaches 15

number of clusters and degeneracy. Y-means clustering eliminates the
drawback of empty clusters. The main di�erence between Y-Means and
K-Means is that the number of clusters in Y-Means is a self-de�ned vari-
able instead of a user-de�ned constant. If the value of K is too small,
Y-Means increases the number of clusters by splitting clusters. On the
other hand, if value of K is too large, it decreases the number of clusters
by merging nearby clusters. Y-Means determines an appropriate value of
K by splitting and linking clusters even without any knowledge of item
distribution. This makes Y-Means an e�cient clustering technique for in-
trusion detection since the network log data is randomly distributed and
the value of K is di�cult to obtain manually. Y-means uses Euclidean
distance to evaluate the similarity between two items in the data set.

Fuzzy C-Means Clustering (FCM) is an unsupervised clustering al-
gorithm based on fuzzy set theory that allows an element to belong to
more than one cluster. The degree of membership of each data item to
the cluster is calculated which decides the cluster to which that data item
is supposed to belong. For each item, we have a coe�cient that speci�es
the membership degree of being in the kth cluster as follows:

Figure 2.1: Formula

where, dij - distance of i
th item from jth cluster, dik - distance of i

th item
from kth cluster and m - fuzzi�cation factor.

The existence of a data item in more than one cluster depends on the
fuzzi�cation value m de�ned by the user in the range of [0, 1] which deter-
mines the degree of fuzziness in the cluster. Thus, the items on the edge
of a cluster may be in the cluster to a lesser degree than the items in the
center of the cluster. When m reaches the value of 1 the algorithm works
like a crisp partitioning algorithm and for larger values of m the overlap-
ping of clusters tends to be more. The main objective of fuzzy clustering
algorithm is to partition the data into clusters so that the similarity of
data items within each cluster is maximized and the similarity of data
items in di�erent clusters is minimized. Moreover, it measures the quality
of partitioning that divides a dataset into C clusters.

2. Classi�cation it is the task of generalizing known structure to apply
to new data. Common algorithms include decision tree learning, nearest
neighbour, Naive Bayesian classi�cation, neural networks and support vec-
tor machines. It is a supervised learning technique. A classi�cation based

16 Intrusion Detection System overview

IDS will classify all the network tra�c into either normal or malicious.
Classi�cation technique is mostly used for anomaly detection.

3. Regression Attempts to �nd a function which models the data with the
last error.

4. Association rule learning Searches for relationship between variables.
For example a supermarket might gather data on customer purchasing
habits. Using association rule learning, the supermarket can determine
which products are frequently bought together and use this information
for marketing purposes. This is sometimes referred to as market basket
analysis. Association rule mining determines association rules and/or cor-
relation relationships among large set of data items. The mining process
of association rule can be divided into two steps as follows:

(a) Frequent Item set Generation, Generates all set of items whose sup-
port is greater than the speci�ed threshold called as minsupport.

(b) Association Rule Generation, From the previously generated frequent
item sets, it generates the association rules in the form of if then
statements that have con�dence greater than the speci�ed threshold
called as mincon�dence.

The basic steps for incorporating association rule for intrusion detection
is as follows:

(a) The network data is arranged into a database table where each row
represents an audit record and each column is a �eld of the audit
records.

(b) The intrusions and user activities shows frequent correlations among
the network data. Consistent behaviours in the network data can be
captured in association rules.

(c) Rules based on network data can continuously merge the rules from
a new run to aggregate rule set of all previous runs.

(d) Thus with the association rule, we get the capability to capture be-
haviour for correctly detecting intrusions and hence lowering the false
alarm rate.

2.3.1.2 Approach

Zhou et al. [8] they propose a IDS based on data mining technology. In �gure
2.2 we can see the structure diagram.

2.3 Recent approaches 17

Figure 2.2: Intrusion detection system structure diagram

System module function summary:

• Sni�er: Mainly acquire data, grab packets from network.

• Decoder: Mainly decode and analyze the datagram, store the results.

• Preprocessor: Transform the packet to the format for data mining, re-
structure and process code conversion before matching.

• Preliminary detection engine: Mainly �lter out normal network pack-
ets.

• Detection engine: Mainly match rule. It uses K Means algorithm as
the clustering analysis algorithm.

• Log records: Include packets information which produced by unknown
network normal behaviour and unknown intrusion behaviour.

• Feature extractor: Make correlation analysis of the data in a log, con-
clude the new association rule, and add it to the rule base. It uses Apriori
algorithm correlation analysis.

18 Intrusion Detection System overview

• Alarm: Transmit an alert when there is an abnormal behaviour.

The Work�ow: The work�ow of the intrusion detection system based on data
mining is introduced as follows. Firstly, the sni�er grabs network packets which
are analyzed by the decoder. Then preprocessor will process the parsing packets
by calling pretreatment function. Secondly, after through the preliminary de-
tection engine, normal packets will be discarded o�, and the abnormal packets
will be processed by detection engine. Through matching rule, it shows that
there are invaded behaviors when successful. At the same time, the system
will transmit an alert and prevent intrusion behavior. If it is not successful,
the new network normal behavior model will be recorded into log. Finally, the
system will make the correlation analysis for the log through the data mining
algorithm. If there is a new rule generation, it will be added to the rule base.
Feature extractor: The work�ow of preliminary detection engine using K
Means clustering analysis algorithm is shown in �gure 2.3.

Figure 2.3: The module Work�ow

Feature extractor: The aim of feature extractor is to mine association rules
through association rules mining algorithm. First it analyses the abnormal pack-
ets, which had been processed by the pretreatment; and then obtains potential
or new intrusion behaviour patterns through the Apriori association rules algo-
rithm and produces the corresponding association rule set; Finally it transforms
the rule into the intrusion detection rule and adds it to the rule base. The
module work�ow is shown in �gure 2.4.

2.3 Recent approaches 19

Figure 2.4: The module Work�ow

Results: From the four tables (Table 3 to 6 in �gure 2.5), the two important
parameters (cluster radius and threshold) have a great in�uence on the cluster-
ing and false detection rate. When threshold is �xed, as the clustering radius
increase, the network behaviour pattern classes become fewer. When cluster
radius is unchanged, as threshold value becomes lower, the false detection rate
becomes higher. Therefore, according to the needs and actual situation of prac-
tical applications, they need to adjust cluster radius and threshold to achieve
a satisfactory result. Aiming at weakness of self-adaptation ability, low false
alarm rate and high misinformation rate of the current most of the intrusion
detection system. This study has designed and implemented an intrusion detec-
tion system framework based on data mining technology, and has introduced the
process of correlation analysis data mining algorithm that how to construct into
the intrusion detection model. The test results have shown that the intrusion
detection based on data mining system, which overcomes certain limitations of
the intrusion detection system, provides self-adaptability, improves the detec-
tion e�ciency, and reduces the previous deviations caused by domain experts
hand writing mode.

20 Intrusion Detection System overview

Figure 2.5: Results

2.3 Recent approaches 21

2.3.2 Machine learning techniques

2.3.2.1 Theory

Machine learning is a branch of arti�cial intelligence, which is about the con-
struction and study of systems that can learn from data Amor et al. [9]. There
exist two techniques called decision tree and Bayesian network, and they will
now be explained.

Decision Tree A decision tree is composed of three basic elements:

1. decision node specifying a test attribute.

2. edge or branch corresponding to the one of the possible attribute values
which means one of the test attribute outcomes.

3. leaf which is also named an answer node, contains the class to which the
object belongs.

In decision trees, two major phases should be ensured:

• Building the tree Based on a given training set, a decision tree is built. It
consists of selecting for each decision node the appropriate test attribute
and also to de�ne the class labeling each leaf.

• Classi�cation In order to classify a new instance, we start by the root of
the decision tree, the we test the attribute speci�ed by this node. The
result of this test allows to move down the tree branch relative to the
attribute value of the given instance. This process will be repeated until a
leaf is encountered. The instance is then being classi�ed in the same class
as the one characterizing the reached leaf.

Bayesian Network Bayes networks are one of the most widely used graphical
models to represent and handle uncertain information. Bayes networks are
speci�ed by two components:

1. Graphical component is composed of a directed acyclic graph(DAG) where
vertices represent events and edges are relations between events.

22 Intrusion Detection System overview

2. Numerical component consisting in a quanti�cation of di�erent links in the
DAC by a conditional probability distribution of each node in the context
of its parents.

Naive Bayes are very simple Bayes networks which are composed of DAGs with
only one root node (called parent), representing the unobserved node, and sev-
eral children, corresponding to observed nodes, with the strong assumption of
independence among child nodes in the context of their parent.

2.3.2.2 Approach

Figure 2.6: Proposed work

The processes of the proposed system (�gure 2.6) is brie�y explained in the
following Natesan et al. [10]:

• Process 1: Preprocessing: For each network connection,the following
three major groups of features for detecting intrusions are extracted. They
are Basic features, Content features and Tra�c features.

2.3 Recent approaches 23

• Process 2: Instance Labeling: After extracting KDDCup 99 features
from each record, the instances are labeled as Normal or any one of the
attack category such as Dos, Probe, R2L and U2R.

• Process 3: Selection of weak classi�ers: The various weak classi�ers used
in their proposed system are Naive Bayes, Bayes Net and Decision Tree.
They have used the single weak classi�er along with the boosting algorithm
to improve the classi�cation accuracy.

• Process 4: Combining weak classi�ers: In order to improve the classi�ca-
tion accuracy further it has been proposed to combine two weak classi�ers
along with the boosting algorithm.

• Process 5: Building of strong classi�er: A strong classi�er is constructed
by combining two weak classi�ers and boosting algorithm. The strong
classi�er results in higher attack detection rate than single weak classi�er.

Results: The overall detection rate and false alarm rate of the three single weak
classi�ers are shown in �gure 2.7. Decision tree was able to give a high detection
rate in the case of DoS and Probe attacks and the Naive Bayes algorithm with
Adaboost (AdaBoost is a machine learning algorithm, can be used in conjunction
with many other learning algorithms to improve their performance. It calls a
weak classi�er repeatedly in a series of rounds.) detects the R2L and U2R
attacks comparatively better than other algorithms.

Figure 2.7: The attack detection rate of di�erent weak classi�ers

Figure 2.8: The false alarm rate of di�erent weak classi�ers

24 Intrusion Detection System overview

Figure 2.9: The attack detection rate of di�erent combinations of weak clas-
si�ers

The detection rate of the various attack categories by using the three di�erent
combinations of weak classi�ers with the Adaboost algorithm shown in �gure
2.9. It can be seen that, the performance of NB-DT combination with the
Adaboost algorithm is comparatively better than the other two combinations of
weak classi�ers.

2.3 Recent approaches 25

Figure 2.10: False alarm rate comparison

The false alarm rate of BN-NB combination of weak classi�er with Adaboost
decreases to 2.12%, but it shows an increase in the case of BN-DT and NB-DT
combinations of weak classi�ers as shown in �gure 2.10. The training time and
the testing time of various combinations of weak classi�ers with Adaboost is
shown in �gure 2.10. The NB-DT combination with the Adaboost took less
training time and testing time than other two combinations of weak classi�ers.

Summary: They have proposed an Adaboost algorithm with di�erent combina-
tion of weak classi�ers. The weak classi�ers such as Bayes Net, Naive Bayes and
Decision tree are used in three di�erent combinations such as BN-NB, BN-DT
and NB-DT with Adaboost algorithm to improve the classi�cation accuracy.
The various challenges of IDS such as attack detection rate, false alarm rate
and computional time for building robust, scalable and e�cient system are ad-
dressed. It is important to have a low false alarm rate for an IDS with higher
detection rate. The experiment result shows that the NB-DT combination with
Adaboost algorithm has a very low false-alarm rate with a high detection rate.
They have focused mainly to obtain better classi�cation though the time and
computational complexities are theoretically high. But practically the time and
computational complexities are reduced by processing speed of the computing
device.

26 Intrusion Detection System overview

Figure 2.11: Comparison with other algorithms

2.3.3 Hidden Markov Models

2.3.3.1 HMMPayl

Ariu et al.[11] they address the problems in payload analysis by proposing a novel
solution where the HTTP payload is analyzed using Hidden Markov Models.
The proposed system named HMMPayl, performs payload processing in three
steps as shown in �gure 2.12. First of all, the algorithm they propose for Feature
Extraction (step 1) allows the HMM to produce an e�ective statistical model
which is sensitive to the details of the attacks (e.g. the bytes that have a
particular value). Since HMM are particularly robust to noise, their use during
the Pattern Analysis phase (step 2) guarantees to have a system which is robust
to the presence of attacks (i.e., noise) in the training set. In the Classi�cation
phase (step 3) they adopted a Multiple Classi�er System approach, in order to
improve both the accuracy and the di�culty of evading the IDS.

2.3 Recent approaches 27

Figure 2.12: A simpli�ed scheme of HMMPayl

Theoretical background - Hidden Markov Models: Hidden Markov Mod-
els represent a very useful tool to model data-sequences, and to capture the
underlying structure of a set of strings of symbols. HMM is a stateful model,
where the states are not observable (hidden). Two probability density functions
are associated to each hidden state: one provides the probability of transition to
another state, the other provides the probability that a given symbol is emitted
from that state.

Theoretical background - Multiple classi�er systems: Multiple Classi�er
Systems (MCS) are widely used in Pattern Recognition applications as they
allow to obtain better performance than a single classi�er. Ariu et al. [11] they
use the MCS paradigm to combine di�erent HMM. A general schema of the
proposed HMM ensemble is shown in �gure 2.13. A payload xi is submitted
to an ensemble H = HMMj of K HMM, each HMMj produces an output sij
and their outputs are combined into a new output s∗i . Di�erent combination
strategies for building a MCS have been proposed in the literature. They can
be roughly subdivided into two main approaches, namely the Fusion approach,
and the Dynamic approach.

Figure 2.13: A general schema of a MCS based on HMM

Summary: Ariu et al. [11] they proposed an IDS designed to detect attacks

28 Intrusion Detection System overview

against, Web applications through the analysis of the HTTP payload by HMM.
First of all they proposed a new approach for extracting features which exploits
the power of HMM in modeling sequences of data. Reported experiments clearly
show that this approach provide a statistical model of the payload which is par-
ticularly accurate, as it allows detecting attacks e�ectively, while producing a
low rate of false alarms.
HMMPayl has been thoroughly tested on three di�erent datasets of normal
tra�c, and against four di�erent dataset of attacks. In particular, they have
showed that HMMPayl was able to outperform other solutions proposed in the
literature. In particular HMMPayl is e�ective against those attacks such as
Cross Site Scripting and SQL-Injection, whose payload statistic is no signi�-
cantly di�erent from that of normal tra�c. These attacks are particularly hard
to be detected, as the performance of IDS such as PAYL and McPAD clearly
show. In addition, they also showed that the high computational cost of HMM-
Payl can be signi�cantly reduced by randomly sampling a small percentage of
the sequences extracted from the payload, without signi�cantly a�ecting the
overall performance in terms of detection and false alarm rates. Moreover, as
HMMPayl relies on the Multiple Classi�er System paradigm, they tested the
performance attained by the ideal Score Selector as a measure of the maximum
gain in performance that could be attained by exploiting the complementarity
of the HMM, Experimental results show that the accuracy can be improved with
an accurate design of the fusion stage. It is clear that, despite the good results
attained in their experiments, the algorithm implemented by HMMPayl could
be further improved.
First of all, HMMPayl does not take into account the length of the payload. As
di�erent lengths of the payload produce signi�cantly di�erent statistics, cluster-
ing the payloads by length, and using a di�erent model for each cluster, would
improve the overall accuracy. The second improvement is related to the random
sampling strategy, as the whole sequence set could be randomly split among all
the classi�ers in the ensemble. In such a way all the information inside the pay-
load would be used, where a single HMM is asked to process a smaller number
of sequences. Finally, the third improvement is related to the use of trained
combination rules instead of a static rule to combine the HMM.

2.3.3.2 Alert correlation and prediction

When we are dealing with large networks with many sensors, we cope with
too many alerts �red from IDS sensors each day. Managing and analyzing such
amount of information is a di�cult task. There may be many redundant or false
positive alerts that need to be discarded. Therefore, in order to extract useful
information from these alerts they use an alert correlation algorithm, which is
the process of producing a more abstract and high-level view of intrusion occur-

2.3 Recent approaches 29

rences in the network from low-level IDS alerts. Alert correlation is also used
to detect sophisticated attacks, a multistep attack is de�ned as a sequence of
simple attacks that are performed successively to reach some goal. During each
step of the attack some vulnerability, which is the prerequisite of the next step,
is exploited. In other words, the attacker chains a couple of vulnerabilities and
their exploits to break through computer systems and escalate his privilege. In
such circumstances, IDSs generate alerts for each step of the attack. In fact,
they are not able to follow the chain of attacks and extract the whole scenario.
Getting advantage of alert correlation, it is possible to detect complex attack
scenarios out of alert sequences. In short, alert correlation can help the security
administrator to reduce the number of alerts, decrease the false-positive rate,
group alerts based on alert similarities, extract attack strategies, and predict
the next steps of the attacks.
Farhadi et al. [12] they propose an alert correlation system consisting of two
major and two minor components. Minor components are the Normalization
and the Preprocessing components that convert heterogeneous alerts to a uni-
�ed format and then remove redundant alerts. Major components are the ASEA
and the Plan Recognition components that extract current attack scenario and
predict the next attacker action. In the ASEA component, they used data
mining to correlate IDS alerts. The stream of attacks is received as input, and
attack scenarios are extracted using stream mining. While reducing the problem
of discovering attack strategies to a stream-mining problem has already been
studied in the literature, current data mining approaches seem insu�cient for
this purpose. They still need more e�cient algorithms as there are a plethora of
alerts and they need real-time responses to intrusions. In the Plan Recognition
component, they used HMM to predict the next attack class of the intruder
that is also known as plan recognition. The main objective of the attack plan
recognition is to arm the management with information supporting timely de-
cision making and incident responding. This helps to block the attack before it
happens and provides appropriate timing for organizing suitable actions.

Figure 2.14: Correlation process overview

The reference architecture: Figure 2.14 represents the integrated correlation

30 Intrusion Detection System overview

process in their solution.

1. Normalization and Pre-Processing They converts heterogeneous events
from varying sensors into a single standardized format which is accepted
by the other components.

2. Alert Fusion It combines alerts issued from di�erent sensors, but related
to the same activity.

3. Alert Veri�cation It takes an alert as an input and determines if the
suspicious corresponding attack is successfully performed. Failed attacks
are then labelled so that their e�ectiveness will be decreased in upcoming
correlation phases.

4. Thread Reconstruction It combines and series the attacks having the
same source and target addresses.

5. Attack Session Reconstruction Both network-based alerts and host-
based alerts that are related to the same attacks are gathered and associ-
ated.

6. Focus Recognition and Multi-step Correlation They deals with at-
tack that are potentially targeted at wide range of hosts in the enter-
prise. The "Focus Recognition" component identi�es those hosts to which
a considerable number of attacks are targeted or originated from. This
component hopefully detects port scanning attempts as well as Denial of
Service (DoS) attacks. The "Multi-step correlation" component identi�es
common attack patterns, which are composed of di�erent zones in the
network.

7. Impact Analysis It calculates the impact factors of current attacks on
the target network and assets.

8. Prioritization It ends the process with classifying events in di�erent
importance groups providing faster ability to �nd relevant information
about a speci�c host or site.

Summary: Farhadi et al. [12] they presented a system to correlate intrusion
alerts and extract attack scenarios as well as to predict the next attacker action.
They reduced the problem �nding multistage attacks to sequence mining and the
problem of �nding next attacker action to sequence modelling and prediction.
They used DARPA 2000, to evaluate system performance and accuracy. The
results show that the system can e�ciently extract the attack scenarios and
predict the attackers next action. The system has the following advantages:

2.3 Recent approaches 31

1. The ASEA is able to operate in real-time environments.

2. The simplicity of ASEA results in low memory consumption and compu-
tational overhead.

3. In contrast to previous approaches, the ASEA combines both prior knowl-
edge as well as statistical relationships to detect casual relationship.

4. The prediction component proposes an unsupervised method to predict
the next attacker action.

5. The prediction component does not require any knowledge of the net-
work topology, system vulnerabilities, and system con�gurations. Unlike
Bayesian based methods that usually rely on a prede�ned attack plan
library. HMM can perform in the absence of such information.

6. The prediction component performs high-level prediction; hence the model
is more robust against over-�tting. In contrast, other plan recognition
methods try to predict exactly the attackers next action.

2.3.4 Honeypot

2.3.4.1 Advantages and disadvantages

Bhumika [13] list the advantages of honeypots:

• Small Data Sets Hoeneypots only collect data when someone or some-
thing is interacting with them. Organizations that may log thousands
of alerts a day with traditional technologies will only log a hundred alerts
with honeypots. This makes the data honeypots collect much higher value,
easier to manage and simpler to analyze.

• Reduced False Positives One of the greatest challenges with with most
detection technologies is the generation of false positives or false alerts.
The larger the probability that a security technology produces a false pos-
itive the less likely the technology will be deployed. Hoenypots dramati-
cally reduce false positives. Any activity with honeypots is by de�nition
unauthorized, making it extremely e�cient at detecting attacks.

• Catching False Negatives Another challenge of traditional technologies
is failing to detect unknown attacks. This is a critical di�erence between
honeypots and traditional computer security technologies which rely upon
known signatures or upon statistical detection. Signature-based security

32 Intrusion Detection System overview

technologies by de�nition imply that "someone is going to get hurt" be-
fore the new attack is discovered and a signature is distributed. Statistical
detection also su�ers from probabilistic failures - there is some non-zero
probability that a new kind of attack is going to get undetected. Hon-
eypots on the other hand can easily identify and capture new attacks
against them. Any activity with the honeypot is an anomaly, making new
or unseen attacks easily stand out.

• Encryption It does not matter is an attack or malicious activity is en-
crypted, the honeypot will capture the activity. As more and more orga-
nizations adopt encryption within their environments (such as SSH,IPsec,
and SSL) this becomes a major issue. Honeypots can do this because the
encrypted probes and attacks interact with the honeypot as an end point,
where the activity is decrypted by the honeypot.

• IPv6 Hoenypots work in any IP environment, regardless of the IP proto-
col, including IPv6. IPv6 is the new IP standard that many organizations,
such as the Department of Defence, and many countries, such as Japan,
are actively adopting. Many current technologies, such as �rewalls or IDS
sensors, cannot handle IPv6.

• Highly Flexible Honeypots are extremely adaptable, with the ability
to be used in a variety of environments, everything from Social Security
Number embedded into a database, to an entire network of computers
designed to be broken into.

• Minimal Resources Honeypots require minimal resources, even on the
largest of networks. A simple, aging Pentium computer can monitor liter-
ally millions of IP addresses.

Bhumika [13] also list the disadvantages:

• Risk Honeypots are a security resource the bad guys to interact with,
there is a risk that an attacker could use a honeypot to attack or harm
other non-honeypot systems. This risk varies with the type of honeypot
used. For example, simple honeypotsn such as KFSensor have very little
risk. Honeynets, a more complex solution, have a great deal of risk. The
risk levels are variable for di�erent kinds of honeypot deployments. The
usual rule is that the more complicated the deception, the greater the
risk. Honeypots that are high-interaction such as Gen I Honeynets are
inherently more risky because there is an actual computer involved.

• Limited Field of View Honeypots only see or capture that which inter-
acts with them. They are not a passive device that captures activity to

2.3 Recent approaches 33

all other systems. Instead, they only have value when directly interacted
with. In many ways honeypots are like a microscope. They have a limited
�eld of view, but a �eld of view that gives them great detail of information.

• Discovery and Fingerprinting Though risk of discovery of a honey-
pot is small for script kiddies and worms, there is always a chance that
advanced blackhats would be able to discover the honeypot. A simple
mistake in the deception is all a savvy attacker needs to "�ngerprint" the
honeypot. This could be a misspelled word in one service emulation or
even a suspicious looking content in the honeypot. The hacker would be
able to �ag the honeypot as "dangerous" and in his next attacks, he would
most certainly bypass the honeypot. In fact, armed with the knowledge,
an advanced blackhat could even spoof attacks to the honeypot thus redi-
recting attention while he attacks other vulnerable systems in the network.

2.3.5 Genetic algorithm

2.3.5.1 Theory

In a genetic algorithm, a population of candidate solutions (called individuals,
creatures, or phenotypes) to an optimization problem is evolved toward better
solutions Wikipedia [14]. Each candidate solution has a set of properties (its
chromosomes or genotype) which can be mutated and altered; traditionally, so-
lutions are represented in binary as strings of 0s and 1s, but other encodings are
also possible.
The evolution usually starts from a population of randomly generated individ-
uals and is an iterative process, with the population in each iteration called a
generation. In each generation, the �tness of every individual in the population
is evaluated; the �tness is usually the value of the objective function in the
optimization problem being solved. The more �t individuals are stochastically
selected from the current population, and each individual's genome is modi�ed
(recombined and possibly randomly mutated) to form a new generation. The
new generation of candidate solutions is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when either a maximum num-
ber of generations has been produced, or a satisfactory �tness level has been
reached for the population.
A standard representation of each candidate solution is as an array of bits. Ar-
rays of other types and structures can be used in essentially the same way. The
main property that makes these genetic representations convenient is that their
parts are easily aligned due to their �xed size, which facilitates simple crossover
operations. Variable length representations may also be used, but crossover

34 Intrusion Detection System overview

implementation is more complex in this case. Tree-like representations are ex-
plored in genetic programming and graph-form representations are explored in
evolutionary programming; a mix of both linear chromosomes and trees is ex-
plored in gene expression programming. Once the genetic representation and
the �tness function are de�ned, a GA proceeds to initialize a population of so-
lutions and then to improve it through repetitive application of the mutation,
crossover, inversion and selection operators.

2.3.5.2 Approach

Genetic algorithms are a branch of evolutionary algorithms used in search and
optimization techniques. The three dominant functions of a genetic algorithm
i.e., selection, crossover and mutation correspond to the biological process: The
survival of the �ttest. In a genetic algorithm, there is a population of strings
(called chromosomes or the genotype of the genome), which encode and indent
solutions (called individuals, creatures, or phenotypes). Traditionally, solutions
are represented in binary as strings of 0s and 1s, but other encodings are also
possible. The evolution usually starts from a population of randomly generated
individuals and evolves over generations.
In each generation, the �tness of every individual in the population is evalu-
ated, multiple individuals are stochastically selected from the current popula-
tion (based on their �tness), and modi�ed (recombined and possibly randomly
mutated) to form a new population. The new population is then used in the next
iteration of the algorithm. Commonly, the algorithm terminates when either a
maximum number of individuals are there in a generation, or a satisfactory �t-
ness level has been reached for the population. If the algorithm has terminated
due to a maximum number of individuals, a satisfactory solution may or may
not have been reached.

System overview: The detail proposed architecture is shown in �gure 2.15.
It starts from initial population generation from p�rewall.log �le generated by
the �rewall system. The packets are the �ltered out on the basis of rules. Then
the precised data packets go through several steps namely selection, crossover
and mutation operation. These processes gets generate best individuals. The
generated individuals are the veri�ed by the �tness function to generate the
population for next generation.

2.3 Recent approaches 35

Figure 2.15: Detailed system architecture for GA-RIDS

Results: Dhak et al. [15] they have successfully evolved the rule set and pro�le
of network connection which can detect existing as well as new intrusions. So
now the system can be integrated with any of the IDS system to improve the
e�ciency and the performance of the same. The system can also be able to
integrate to the input to the �rewall system which can use the rule set de�ned
and generated by the system to block Intrusion. Dhak et al. [15] they have
discussed the GA processes and evolution operators also discussed the overall
implementation of GA into proposed system. The various operators like selec-
tion, crossover and mutation are also discussed. In proposed system they are
applying single �ltration to the system but in future their plan is to apply mul-
tiple �lters to enhance the system performance and to reduce time complexity
of execution. Again we are planning to apply the proposed system output to
the security system like Firewall machine to block the tra�c whose IP address
entries are made available to the p�rewall.log �le and which are detected as
vulnerable.

36 Intrusion Detection System overview

2.3.6 Fuzzy Logic

2.3.6.1 Theory

Fuzzy logic is a form of many-valued logic or probabilistic logic; it deals with
reasoning that is approximate rather than �xed and exact Wikipedia [16]. Com-
pared to traditional binary sets (where variables may take on true or false values)
fuzzy logic variables may have a truth value that ranges in degree between 0
and 1. Fuzzy logic has been extended to handle the concept of partial truth,
where the truth value may range between completely true and completely false.
Furthermore, when linguistic variables are used, these degrees may be managed
by speci�c functions. Irrationality can be described in terms of what is known
as the fuzzjective. Classical logic only permits propositions having a value of
truth or falsity. The notion of whether 1+1=2 is absolute, immutable, mathe-
matical truth. However, there exist certain propositions with variable answers,
such as asking various people to identify a color. The notion of truth doesn't fall
by the wayside, but rather a means of representing and reasoning over partial
knowledge is a�orded, by aggregating all possible outcomes into a dimensional
spectrum. Both degrees of truth and probabilities range between 0 and 1 and
hence may seem similar at �rst.

2.3.6.2 Approach

Shanmugavadivu et al. [17] they propose a system which is a designed fuzzy
logic-based system for e�ectively identifying the intrusion activities within a
network. The proposed fuzzy logic-based system can be able to detect an intru-
sion behaviour of the networks since the rule base contains a better set of rules.
Here, they have used automated strategy for generation of fuzzy rules, which
are obtained from the de�nite rules using frequent items. The experiments and
evaluations of the proposed intrusion detection system are performed with the
KDD Cup 99 intrusion detection dataset. The experimental results clearly show
that the proposed system achieved higher precision in identifying whether the
records are normal or attack one.

The di�erent steps involved in the proposed system for anomaly-based intrusion
detection (shown in �gure 2.16) are described as follows:

2.3 Recent approaches 37

Figure 2.16: The overall steps of the proposed IDS

Classi�cation of training data: The �rst component of the proposed system
is of classifying the input data into multiple classes by taking in mind the di�er-
ent attacks involved in the intrusion detection dataset. The dataset they have
taken for analysing the intrusion detection behaviour using the proposed system
is KDD-Cup 1999 data. Based on the analysis, the KDD-Cup 1999 data contains
four types of attacks and normal behaviour data with 41 attributes that have
both continuous and symbolic attributes. The proposed system is designed only
for the continuous attributes because the major attributes in KDD-Cup 1999
data are continuous in nature. Therefore, they have taken only the continuous
attributes for instance, 34 attributes from the input dataset by removing dis-
crete attributes Then, the dataset is divided into �ve subsets of classes based
on the class label. The class label describes several attacks, which comes under
four major attacks (Denial of Service, Remote to Local, U2R and Probe) along
with normal data. The �ve subsets of data are then used for generating a better
set of fuzzy rules automatically so that the fuzzy system can learn the rules
e�ectively.

38 Intrusion Detection System overview

Strategy for generation of fuzzy rules: In general, the fuzzy rules given
to the fuzzy system is done manually or by experts, who are given the rules by
analysing intrusion behaviour. But, in their case, it is very di�cult to generate
fuzzy rules manually due to the fact that the input data is huge and also having
more attributes. But, a few of researches are available in the literature for
automatically identifying of fuzzy rules in recent times. Motivated by this fact,
they make use of mining methods to identify a better set of rules. Here, de�nite
rules obtained from the single length frequent items are used to provide the
proper learning of fuzzy system.

Fuzzy decision module: Zadeh in the late 1960s introduced Fuzzy logic and
is known as the rediscovery of multivalued logic designed by Lukasiewicz. The
designed fuzzy system shown in �gure 2.17 contains 34 inputs and one output,
where inputs are related to the 34 attributes and output is related to the class
label (attack data or normal data). Here, thirty four-input, single-output of
Mamdani fuzzy inference system with centroid of area defuzzi�cation strategy
was used for this purpose. Here, each input fuzzy set de�ned in the fuzzy system
includes four membership functions (VL, L, M and H) and an output fuzzy set
contains two membership functions (L and H). Each membership function used
triangular function for fuzzi�cation strategy.

Figure 2.17: The designed Fuzzy system

Finding an appropriate classi�cation for a test input: For testing phase,
a test data from the KDD-cup 99 dataset is given to the designed fuzzy logic
system. At �rst, the test input data containing 34 attributes is applied to fuzzi-
�er, which converts 34 attributes (numerical variable) into linguistic variable
using the triangular membership function. The output of the fuzzi�er is fed to
the inference engine which in turn compares that particular input with the rule
base. Rule base is a knowledge base which contains a set of rules obtained from
the de�nite rules. The output of inference engine is one of the linguistic values
from the following set Low and High and then, it is converted by the defuzzi�er
as crisp values. The crisp value obtained from the fuzzy inference engine is

2.4 Attacks and threats 39

varied in between 0 to 2, where "0" denotes that the data is completely normal
and "1" speci�es the completely attacked data.

Results: The evaluation metrics are computed for both training and testing
dataset in the testing phase and the obtained result for all attacks and normal
data are given in �gure 2.18, which is the overall classi�cation performance of the
proposed system on KDD cup 99 dataset. By analysing the result, the overall
performance of the proposed system is improved signi�cantly and it achieves
more than 90

Figure 2.18: The classi�cation performance of the proposed IDS

2.4 Attacks and threats

Looking at IDS in the perspective of attacks and threats, one can wonder if it
really can help you protect against every known/unknown intrusion. The In-
crease in technology has brought more sophisticated intrusions, with which the
network security has become more challenging. Attackers might have di�erent
intentions and each attack might have di�erent level.
IDS such as Snort helps in detecting single step intrusions, but not in detect-
ing multistage / multi step attack and attacker behaviour. This attack and

40 Intrusion Detection System overview

polymorphic worm seems to stand out as potential intrusions an modern IDS
cannot detect. We will explain these two topics in more detail in section 2.4.3
and section 2.4.4.
First of all we will turn our focus on the sources of cyber security threats and
types of cyber exploits.

2.4.1 Sources of cyber security threats

First of all we list the sources of cyber security threats based on U. S. G. A.
O�ce [18]. We have:
Bot-network operators use a network, or bot-net, of compromised, remotely
controlled systems to coordinate attacks and to distribute phishing schemes,
spam, and malware attacks.
Criminal groups seek to attack systems for monetary gain. Speci�cally, or-
ganized criminal groups use spam, phishing, and spyware/malware to commit
identity theft and online fraud.
Hackers break into networks for the thrill of the challenge, bragging rights in
the hacking community, revenge, stalking others, and monetary gain, among
other reasons. While gaining unauthorized access once required a fair amount
of skill or computer knowledge, hackers can now download attack scripts and
protocols from the internet and launch them against victim sites. Thus, while
attack tools have become more sophisticated, they have also become easier to
use.
Insiders The disgruntled organization insider is a principal source of computer
crime. Insiders may not need a great deal of knowledge about computer in-
trusions because their knowledge of a target system often allows them to gain
unrestricted access to cause damage to the system or to steal system data. The
insider threat includes contractors hired by the organization, as well as employ-
ees who accidentally introduce malware into systems.
Nations use cyber tools as part of their information-gathering and espionage
activities. In addition, several nations are aggressively working to develop in-
formation warfare doctrine, programs, and capabilities.
Phishers Individuals, or small groups, execute phishing schemes in an attempt
to steal identities or information for monetary gain. Phishers may also use spam
and spyware/malware to accomplish their objectives.
Spammers Individuals or organizations distribute unsolicited e-mail with hid-
den or false information in order to sell products, conduct phishing schemes,
distribute spyware/malware, or attack organizations (i.e., denial of service).
Spyware/malware authors Individuals or organizations with malicious in-
tent carry out attacks against users by producing and distributing spyware and
malware. Several destructive computer viruses and worms have harmed �les
and hard drives, including the Melissa Macro Virus, the Explore.Zip worm, the

2.4 Attacks and threats 41

CIH (Chernobyl) Virus, Nimda, Code Red, Slammer, and Blaster.
Terrorists Terrorists seek to destroy, incapacitate, or exploit critical infras-
tructures in order to threaten national security, cause mass casualties, weaken
the U.S. economy, and damage public morale and con�dence. Terrorists may
use phishing schemes or spyware/malware in order to generate funds or gather
sensitive information.

2.4.2 Types of cyber exploits

Next we list the types of cyber exploits based on U. S. G. A. O�ce [18]. We
have:
Denial of service A method of attack from a single source that denies system
access to legitimate users by overwhelming the target computer with messages
and blocking legitimate tra�c. It can prevent a system from being able to ex-
change data with other systems or use the Internet.
Distributed denial of service A variant of the denial of service attack that
uses a coordinated attack from a distributed system of computers rather than
from a single source. It often makes use of worms to spread to multiple com-
puters that can then attack the target.
Exploit tools Publicly available and sophisticated tools that intruders of vari-
ous skill levels can use to determine vulnerabilities and gain entry into targeted
systems.
Logic bombs A form of sabotage in which a programmer inserts code that
causes the program to perform a destructive action when some triggering event
occurs, such as terminating the programmer's employment.
Phishing The creation and use of e-mails and Web sites-designed to look like
those of well-known legitimate businesses, �nancial institutions, and government
agencies�in order to deceive Internet users into disclosing their personal data,
such as bank and �nancial account information and passwords. The phishers
then use that information for criminal purposes, such as identity theft and fraud.
Sni�er Synonymous with packet sni�er. A program that intercepts routed data
and examines each packet in search of speci�ed information, such as passwords
transmitted in clear text.
Trojan horse A computer program that conceals harmful code. A Trojan horse
usually masquerades as a useful program that a user would wish to execute.
Virus A program that infects computer �les, usually executable programs, by
inserting a copy of itself into the �le. These copies are usually executed when
the infected �le is loaded into memory, allowing the virus to infect other �les.
Unlike a computer worm, a virus requires human involvement (usually unwit-
ting) to propagate.
Vishing A method of phishing based on voice-over-Internet-Protocol technol-
ogy and open- source call center software that have made it inexpensive for

42 Intrusion Detection System overview

scammers to set up phony call centers and criminals to send e-mail or text mes-
sages to potential victims, saying there has been a security problem, and they
need to call their bank to reactivate a credit or debit card, or send text mes-
sages to cell phones, instructing potential victims to contact fake online banks
to renew their accounts.
War driving A method of gaining entry into wireless computer networks us-
ing a laptop, antennas, and a wireless network adapter that involves patrolling
locations to gain unauthorized access.
Worm An independent computer program that reproduces by copying itself
from one system to another across a network. Unlike computer viruses, worms
do not require human involvement to propagate.
Zero-day exploit A cyber threat taking advantage of a security vulnerability
on the same day that the vulnerability becomes known to the general public
and for which there are no available �xes.

2.4.3 Multi step attack

Attacks have changed in form, function, and sophistication from just a few
years ago FireEye [19]. Next-generation threats utilize both mass-market mal-
ware designed to infect many systems as well as sophisticated, zero-day malware
to infect targeted systems. They blend multiple attack vectors cutting across
Web, email, and application-based attacks. And today's attacks are aimed at
getting valuable data assets sensitive �nancial information, intellectual prop-
erty, authentication credentials, insider information and each attack is often a
multi-staged e�ort to in�ltrate networks, spread, and ultimately ex-�ltrate the
valuable data.
From the common Zeus/Zbot infections to the targeted Stuxnet malware, cyber
attacks have proven e�ective at stealing sensitive data, causing �nancial loss,
and damaging corporate reputations. Cybercriminals are transacting billions of
dollars in cyber activities. Nation-states are using malware in cyber espionage
to spy on opposition activists and disrupt adversary's critical infrastructure.
Because of the high stakes, zero-day exploit development and other criminal ac-
tivities are well funded. This has led to an active underground ecosystem that
trades and sells access to systems residing within some of the most sensitive
networks in the world.

Next-generation threats are complex, cutting across multiple attack vectors
to maximize the chances of breaking through network defences. Multi-vector
attacks are typically delivered via the Web or email. They leverage applica-
tion or operating system vulnerabilities, exploiting the inability of conventional
network-protection mechanisms to provide a uni�ed defence. In addition to us-
ing multiple vectors, advanced targeted attacks also utilize multiple stages to

2.4 Attacks and threats 43

penetrate a network and then extract the valued information. This makes it far
more likely for attacks to go undetected. The �ve stages of the attack lifecycle
are as follows:

• Stage 1: System exploitation. The attack attempts to set up the frst
stage, and exploits the system using drive-by attacks in casual browsing.
Its often a blended attack delivered across the Web or email threat vectors,
with the email containing malicious URLs.

• Stage 2: Malware executable payloads are downloaded and long-term
control established. A single exploit translates into dozens of infections
on the same system. With exploitation successful, more malware executa-
bles�key loggers, Trojan backdoors, password crackers,and �le grabbers
are then downloaded. This means that criminals have now built long-
term control mechanisms into the system.

• Stage 3: Malware calls back. As soon as the malware installs, attackers
have cracked the �rst step to establishing a control point from within or-
ganizational defences. Once in place, the malware calls back to criminal
servers for further instructions. The malware can also replicate and dis-
guise itself to avoid scans, turn o� anti-virus scanners, reinstall missing
components after a cleaning, or lie dormant for days or weeks. By using
callbacks from within the trusted network, malware communications are
allowed through the �rewall and will penetrate all the di�erent layers of
the network.

• Stage 4: Data ex-�ltration. Data acquired from infected servers is ex-
�ltrated via encrypted �les over a commonly allowed protocol, such as FTP
or HTTP, to an external compromised server controlled by the criminal.

• Stage 5: Malware spreads laterally. The criminal works to move beyond
the single system and establish long-term control within the network. The
advanced malware looks for mapped drives on infected laptops and desk-
tops, and can then spread laterally and deeper into network �le shares.
The malware will conduct reconnaissance: it will map out the network
infrastructure, determine key assets, and establish a network foothold on
target servers.

Firewalls: Firewalls allow generic http Web tra�c. Next-generation �rewalls
(NGFW) add layers of policy rules based on users and applications. NGFW
consolidate traditional protections such as anti-virus and IPS but do not add dy-
namic protection that can detect next- generation threat content or behaviour.

44 Intrusion Detection System overview

IPS: Signatures, packet inspection, DNS analysis, and heuristics will not detect
anything unusual in a zero-day exploit, especially if the code is heavily disguised
or delivered in stages.

Anti-virus and Web malware �ltering: Since the malware and the vulnera-
bility it exploits are unknown (zero-day), and the website has a clean reputation,
traditional anti-virus and Web �ters will let it pass. The volume of vulnerabil-
ities in browser plug-ins like Adobe and the exponential combinations of these
browsers with operating systems make it hard for anti-virus vendors to keep up.

Email spam �ltering: Spoofed phishing sites use dynamic domains and URLs,
so blacklisting lags behind criminal activities. It takes more than two days to
shut down the average phishing site. Malicious code can also be carried in on
laptops, USB devices, or via cloud-based �le sharing to infect a machine and
spread laterally when it connects into the network. It is common for mobile
systems to miss updates to DAT �es and patches, so they are vulnerable to
both known and unknown exploits. In general, even up-to-date machines can
be infected using zero-day exploits and social engineering techniques, especially
when the system is o� the corporate network.
Once in place, malware may replicate itself�with subtle changes to make each
instance look unique and disguise itself to avoid scans. Some will turn o� anti-
virus scanners, reinstall after a cleaning, or lie dormant for days or weeks.
Eventually, the code will phone home to the criminal for further instructions, a
new payload or to deliver login credentials, �nancial data, and other valuables.
Many compromised hosts provide a privileged base so the criminal can explore
further or expand his botnet with new victims.
Most companies dont analyse outbound tra�c for these malicious transmissions
and destinations. Those organizations that do monitor outbound transmissions
use tools that look for known bad actor addresses and regulated data.

2.4.4 Polymorphic worm

A polymorphic worm (PW) is a worm that changes its appearance with every
instance (based on Kolesnikov et al. [20]). As a result, byte sequences of di�er-
ent worm instances may look completely di�erent. However, the actual code of
the PW typically stays the same.
To change its appearance, a PW can use methods similar to those used by poly-
morphic viruses. One common method is to take the original code of a worm,
encrypt it with a random key, and generate a short decryptor for the key. The
polymorphic decryptor (PD) and the key changes with each instance. The code

2.4 Attacks and threats 45

of the worm does not. This operation is typically performed by the polymorphic
engine (PE), included as part of the worms code.
A sophisticated PW can mutate both itself and the exploits it uses. Possible
elements of such a PW include:

Attack vectors to penetrate systems. Sophisticated worms use many vec-
tors of attack. The set includes exploits for stack, heap, and other types of
over�ows, backdoors left by other worms, password sni�ng, Man-in-the-Middle
attacks, and so forth.

Invariants for attack vectors. A PE uses attack invariants to decide what
parts of an attack are volatile so they can be changed without preventing the at-
tack. One example of such invariants are the o�sets in an exploit for placing the
return addresses and handlers, e.g., Windows Structured Exception Handling-
based (SEH) exploitation.

Polymorphic Engine (PE). A PE will generate the mutated versions of the
PD and the attacks.

Worm body code. In a simple case, the worm's body might simply contain
code that selects an attack vector, generates a set of destinations, mutates the
attack and itself using the PE, then sends out the mutated instances.

Traditional signature based IDS, though e�ective for known attacks but failed to
handle the zero-day attack promptly. Recent works on polymorphic worms does
not guarantee accurate signature in presence of noise in suspicious �ow samples.
Paul et al. [21] they propose PolyS, an improved version of Hamsa, a network
based automated signature generation scheme to thwart zero- day polymorphic
worms. They contribute a novel architecture that reduces the noise in suspi-
cious tra�c pool, thus enhancing the accuracy of worm's signature. They also
propose a signature generation algorithm for successfully matching polymorphic
worm payload with higher speed and memory e�ciency.
The typically structure of a polymorphic worm is:

Protocol Framing: is necessary for branch down the code execution path,
where software vulnerability exist. The protocol framing string is invariant
across all instances of polymorphic worms.

46 Intrusion Detection System overview

Return Address: Return address or function pointers are the values used to
overwrite a jump target to redirect the server execution. Typically a 32 bit in-
teger, of which �rst 23-bit are normally same across all worm samples. Return
address is another invariant part in polymorphic worms.

Exploit Code: These invariant bytes are necessary for abusing vulnerability.
It also activates decryption routines and ensures identical malicious activities in
all attacks.
Encrypted worm code (Payload): It contains the code to perform malicious
activities. In presence of strong encryption routines, the worm payloads take
di�erent values in di�erent infection.

Decryption Routine: Its function is to decrypt the encrypted payload by
decryption key and passes the control to worms code to start execution. De-
cryption routines are obfuscated in di�erent instances of polymorphic worms.

Decryption Key: Worm payload is encrypted by polymorphic engines by dif-
ferent keys in di�erent instances. To decrypt the worms payload, corresponding
decryption key is required.

Wild Card bytes: These bytes may take any values without a�ecting the
functioning of worms and their spreading capabilities.

In summary, polymorphic worms have two classes of bytes; invariant and variant
bytes. Invariant bytes remain same across all instances of the worms while vari-
ant bytes change its value in every infection attempt. Typically variant bytes
are protocol framing string, exploit code and return address. The other compo-
nents are in general variant across di�erent instances of a polymorphic worm.

Li et al. [22] presents a survey and comparison of Internet worm detection and
containment schemes. They �rst identify worm characteristics through their
behaviour, and then classify worm detection algorithms based on the parame-
ters used in the algorithms. Furthermore, they analyze and compare di�erent
detection algorithms with reference to the worm characteristics by identifying
the type of worms that can and cannot be detected by these schemes. After
detecting the existence of worms, the next step is to contain them. This article
explores the current methods used to slow down or stop the spread of worms.
The locations to implement detection and containment, as well as the scope of
each of these systems/methods, are also explored in depth. Finally, this arti-

2.4 Attacks and threats 47

cle points out the remaining challenges of worm detection and future research
directions.

Figure 2.19: Categorization of worm characteristics

Figure 2.20: Categorization of Internet worm defence

The boxes in the two �gures 2.19 and 2.20 are the topics which the article Paul
et al. [22] cover. We will not explain the topics, because this would take to
much space, and in the end, not accomplish its purpose.

48 Intrusion Detection System overview

2.5 Taxonomy

Figure 2.21: An overview of IDS taxonomy

2.6 Challenges

Based on Hassan [23] we give an insight of which challenges there exist when a
company installs a IDS.

• Human Intervention - IDS technology itself is experiencing a lot of
enhancements. It is therefore very important for organizations to clearly

2.6 Challenges 49

de�ne their prospect from the IDS implementation. The IDS has not
reached a level where it does not require human interference. There exist
of course some automation features like reporting the administrator in case
of detection of a malicious activity, avoiding the malicious connection for a
con�gurable period of time, dynamically changing a routers access control
list in order to prevent a malicious connection etc. Therefore the security
administrator must investigate the attack once it is detected and reported,
determine how it occurred, correct the problem and take necessary action
to prevent the occurrence of the same attack in the future.

• Historical analysis - It is very important factor to monitor IDS logs
regularly on a daily basis. Today's IDS has not yet achieved the level
where it can provide historical analysis of the intrusive activities detected
over a span of time. This is still a manual activity. Hence it is vital for
an organization to have a distinct incident handling and response plan if
an intrusion is detected and reported by the IDS. Also, the organization
should have expert security personnel to handle this kind of situation.

• Deployment - The success of an IDS implementation depends to a large
degree on how it has been deployed. In most cases, it is required to
apply a fusion solution of network based and host based IDS to gain from
both cases. In fact one technology complements the other. This decision
can di�er from one organization to another. A network based IDS is an
instant choice for many organizations because of its capability to monitor
multiple systems and also the truth that it does not need a software to
be loaded on a production system di�erent from host based IDS. Some
organizations implement a hybrid solution. Organizations installing host
based IDS solution needs remember that the host based IDS software
is processor and memory challenging. So it is very important to have
su�cient available resources on a system before establishing a host based
sensor on it.

• Sensors - It is important to maintain sensor to manager ratio. There is no
strict rule for calculating this ratio. It depends upon how many di�erent
types of tra�c is monitored by each sensor and in which background.
Most of the organizations deploy a ratio of 10:1, while some organizations
maintain 20:1 and some others go for 15:1. It is very important to plan the
baseline strategy before starting the IDS implementation and avoid false
positives. A poorly con�gured IDS sensor may post a lot of false positive
ratios to the console and even a ratio of 10:1 or even enough better sensors
to the console ratio can be missing.

• False positive and negative alarms rate - It is not possible for a
IDS to be ideal because the network tra�c is so complicated. The erro-
neous results in IDS are divided into two types: false positives and false

50 Intrusion Detection System overview

negatives. False positives take place when the IDS erroneously identify a
problem with benign tra�c. False negatives occur when redundant tra�c
is overlooked by the IDS. Both create problems for security administrators
or practitioners and demands that the malicious threats must be detected
powerfully. A greater number of false positives are generally more accept-
able but can burden a security administrator with bulky amounts of data
to �lter through. However, because it is unnoticed, false negatives do not
provide a security administrator a chance to check the data. Therefore
IDS to be implemented should minimize both false positive and negative
alarms.

• Signature database - A common policy for IDS in detecting intrusions is
to remember signatures of known attacks. The signature patterns must be
acknowledged �rst. New threats are often unrecognisably by eminent and
popular IDS. Signatures can be masked as well. There exist a challenge
by the ongoing event between new attacks and detection systems. It is
therefore important to update the signature database every time a di�erent
kind of attack is detected and repair for the same is available.

• Monitor tra�c in large networks - It is important that the NIDS
is placed tactically correct in a network, or else attacks can avoid NIDS
sensors by passing through alternative ways in the network. Moreover,
though many IDS products available in the market are e�cient to distin-
guish di�erent types of attacks, they may fail to recognize attacks that
use many attack sources. Many IDS cannot cleverly correlate data from
numerous sources. Newer IDS technologies must in�uence integrated sys-
tems to increase an overview of distributed intrusive activity. Therefore
IDS must be able to successfully monitor tra�c in a large network.

Chapter 3

Typical architecture of

Intrusion Detection Systems

In this chapter we introduce the Common Intrusion Detection Framework (CIDF),
next we explain general packet inspection and list some pattern matching al-
gorithms. We select Snort as our main IDS, and therefore explain its di�erent
components. Lastly we go into more details about Snort, re-examining the
performance bottleneck and Snort improvements attempts.

The chapter contribute to give a basic understanding of general IDS architecture,
used pattern matching algorithms, and focus on Snorts architecture, internals
and improvements attempts.

3.1 The Common Intrusion Detection Framework
(CIDF)

The Common Intrusion Detection Framework (CIDF) is a recent standardiza-
tion e�ort, which began in early 1997 among all the DARPA-funded intrusion
detection projects (Pieprzyk et al. [24]). The idea of a common framework
arose when DARPA decided to make all the intrusion detection systems that

52 Typical architecture of Intrusion Detection Systems

was funding interoperate, and therefore make the bene�ts arising from these
projects more useful and accessible to the wider community.
Although initially con�ned within these DARPA projects, in April 1998 the
work of the CIDF community was put forward to the IETF (LA meeting) with
the aim of creating an IETF working group on CIDF. As mentioned in the CIDF
speci�cation document, the goal of the CIDF speci�cation is twofold:
1. The speci�cation should allow di�erent IDSs to interoperate and share infor-
mation as fully as possible.
2. The speci�cation should allow components of IDSs to be easily reused in a
contexts di�erent from those they were designed for.

All CIDF components deal in GIDOs (Generalized Intrusion Detection Objects)
that are represented via a standard common format. GIDOs are data that is
moved around in the intrusion detection system. GIDOs can represent events
that occurred in the system, analysis of those events, prescriptions to be carried
out, or queries about events.
The CIDF speci�cation covers a number of issues related to the creation of a
framework:

• A set of architectural conventions for how di�erent parts of IDSs can be
modeled as CIDF framework.

• A way to represent GIDOs, where they can: describe events that occurred
in the system. instruct an IDS to carry out some action. Query an IDS
as to what has occurred, or describe an IDS component.

• A way to encode GIDOs into streams of bytes suitable for transmission
over a network or storage in a �le.

• Protocols for CIDF components to �nd each other over a network and
exchange GIDOs.

• Application Programming Interfaces to reuse CIDF components.

3.2 Packet inspection 53

Figure 3.1: CIDF architecture

The CIDF architecture consists of four components: Event generators, Event
analyzers, Event databases and Response units (refCIDFArch). Figure 3.1 shows
the interconnection among these components. Event generator components col-
lect, �lter and convert event data. Analyzer components analyze any kind of
event data transmitted to them by any CIDF component. Database compo-
nents are the repositories for any kind of data when the storage is necessary.
Response components issue commands in response to attacks and carry out ac-
tions such as killing processes, resetting connections, altering �le permissions,
etc. CIDF is designed to be an open architectural standard. It is independent
of implementation languages, operating systems, and network protocols.

3.2 Packet inspection

Deep Packet Inspection (DPI) is a technology that enables the network owner
to analyse internet tra�c, through the network, in real-time and to di�erentiate
them according to their payload [25]. Since, this has to be done on real time
basis at the high speeds it cannot be implemented by software running on nor-
mal processors or switches. It has only become possible in the last few years
through advances in computer engineering and in pattern matching algorithms.
Originally the Internet protocols required the network routers to scan only the
header of an Internet Protocol (IP) packet. The packet header contains the ori-

54 Typical architecture of Intrusion Detection Systems

gin and destination address and other information relevant to moving the packet
across the network. The "payload" or content of the packet, which contains (all
or part of) the text, images, �les or applications transmitted by the user, was
not considered to be a concern of the network operator. DPI allows network
operators to scan the payload of IP packets as well as the header. DPI systems
use expressions to de�ne patterns of interest in network data streams. The
equipment is programmed to make decisions about how to handle the packet or
a stream of packets based on the recognition of a regular expression or pattern
in the payload. This allows networks to classify and control tra�c based on
the content, applications, and subscribers. Many of the functions provided by
DPI technology have been available before to limited extent depending on the
level of packet analysis. Packet inspection technologies that have been in use in
networking environments can be classi�ed in three classes. These three classes
are "shallow", "medium", and "deep" packet inspection. Figure 3.2 provides a
visual representation of the depth of inspection each of these technologies allows
for.

Figure 3.2: OSI model

3.2.1 Shallow Packet Inspection

Shallow packet inspection (SPI) examines the headers of the packets (which is
the information placed at the beginning of a block of data, such as the sender
and recipient's IP addresses), as opposed to the body or "payload" of the packet
[25]. This kind of packet inspection allows the communications to remain 'vir-
tually anonymous' since the content of the packets is not observed, and the
information in the header is used only to route the packet SPI technologies
drive the (relatively) simplistic �rewalls found in the recent generations of oper-
ating systems, such as Windows XP, Windows Vista, and OS X. These �rewalls

3.2 Packet inspection 55

stand between a particular client computer and the network that it is attached
to. They limit user-speci�ed content from either leaving, or being received by,
the client computer. When a server sends a packet to a client computer, SPI
technologies examine the packets header information and evaluate it against a
blacklist. These �rewalls, speci�cally, focus on the source and destination IP
address that the packet is trying to access. If the packets header information
is on the blacklist, the packet is not delivered. When SPI technology refuses to
deliver a packet, the technology simply refuses to pass it along without notify-
ing the source that the packet has been rejected. SPI cannot read beyond the
information contained in a header and focuses on the second and third layers in
the OSI model. SPI examines the senders and receivers IP address, the number
of packets that a message is broken into, the number of hops a packet can make
before routers stop forwarding it, and the synchronization data that allows for
reassembling the packets into a format that the receiving application can un-
derstand. SPI cannot read the session, presentation, or applications layers of
a packet; it is unable to peer inside a packets payload to survey the packets
contents.

3.2.2 Medium Packet Inspection

Medium Packet Inspection (MPI) is typically used to refer to "application prox-
ies", or devices that stand between end-users' computers and ISP/Internet gate-
ways [25]. These proxies can examine packet header information against their
loaded parse-list.When a packet enters the proxy, it is analyzed against a parse-
list that system administrators can easily update. A parse-list allows speci�c
packet-types to be allowed or disallowed based on their data format types and
associated location on the Internet, rather than on their IP address alone. MPI
devices can read the presentation layer of the packets payload and identify facets
of the application layer. Using MPI devices, administrators could prevent client
computers from receiving �ash �les from YouTube, or image �les from social
networking sites. MPI technologies can prioritize some packets over others by
examining the application commands that are located within the application
layerand the �le formats in the presentation layer. MPI devices su�er from
poor scalability which limits their usefulness for ISPs, where tens of thousands
of applications can be transmitting packets at any given moment.

3.2.3 Deep Packet Inspection

Deep Packet Inspection (DPI) technologies are intended to allow network op-
erators precisely to identify the origin and content of each packet of data that

56 Typical architecture of Intrusion Detection Systems

passes through the networking hubs [25].Whereas MPI devices have very limited
application awareness, DPI devices have the potential to look inside all tra�c
from a speci�c IP address, pick out the HTTP tra�c, then drill even further
down to capture tra�c headed to and from a speci�c mail server, and can then
reassemble e-mails as they are typed out by the user. DPI devices are designed
to determine what programs generate packets, in realtime, for hundreds of thou-
sands of transactions each second.

3.2.4 Challenges

When applying DPI on the network there exist some challenges AbuHmed et
al. [26]. In the following we list some of them:

• The search algorithm complexity: the complexity of the algorithm
and the operations of comparison against the signatures of intruder de-
crease the throughput of the system. Thus, search algorithms are the
main focus point in DPI researches, whereas matching process is resource
consuming. For example, the string matching routines in Snort account
for up to 70% of total execution time and 80% of instructions executed on
real traces.

• Increasing number of intruder signatures: attacks increases every
day and therefore there is need for new intruder signatures. Therefore,
the large number of signatures makes the task of IDS harder whereas the
matching process must inspect tra�c against all attacks �ngerprints.

• The overlapping of signatures: the signatures of attacks usually are
not general so the signatures can be categorized into groups according to
common properties like protocol type. For example http packet in Snort
has 1096 signatures. Therefore, there is a need for process the packets
before matching process.

• The location of signature unknown: due to verity types of attacks on
di�erent types of applications, the pattern of intruders is not localized in
speci�c place in the packet which means that the IDS must inspect all the
payload of the packet against the attacker signatures.

• Encrypted data: the data which is encrypted cannot be inspected by
DPI. However,there are some solutions to overcome this problem by plug-
ging the DPI component behind the decryption device.

3.3 Pattern matching algorithms 57

3.3 Pattern matching algorithms

We give in this section an brief explanation of single-keyword and multiple-
keyword pattern matching algorithms. These basic pattern matching algorithms
is used in IDS, when searching and detecting intrusions.

3.3.1 Single-Keyword pattern matching algorithms

Single keyword matching means locating all occurrences of a given pattern in
the input text string Aoe [27]. Next we will brie�y explain the well known
Single-keyword pattern algorithms there exist.

Brute Force Algorithm This approach scans the text from left to right and
checks the characters of the pattern character by character against the substring
of the text string beneath it. Let m and n be the lengths of the pattern and the
text. In the BF approach, the longest (worstcase) time required for determining
that the pattern does not occur in the text is O(mn).

Knuth-Morris-Pratt Algorithm The KMP algorithm scans the text from
left to right, using knowledge of the previous characters compared to determine
the next position of the pattern to use. The algorithm �rst reads the pattern
and in O(m) time constructs a table, called the next function, that determines
the number of characters to slide the pattern to the right in case of a mismatch
during the pattern matching process. The expected theoretical behaviour of the
KMP algorithm is O(n+m), and the next function takes O(m) space.

Boyer-Moore Algorithm The BM algorithm approach is the fastest pattern
matching algorithm for a single keyword in both theory and practice. The BM
compares characters in the pattern form right to left. If a mismatch occurs, the
algorithm computes a shift, that is, the amount by which the pattern is moved
to the right before a new matching is attempted. It also reprocesses the pattern
in order to produce the shift tables. The expected theoretical behaviour of the
BM is equal to that of the KMP, but many experimental results show that the
BM is faster than the KMP.

Karp-Rabin Algorithm The KR uses extra memory to advantage by treating
each possible m-character section (where m is the pattern length) of the text
string as a keyword in a standard hash table, computing the hash function of
it, and checking whether it equals the hash function of the pattern. Although
the KR algorithm is linear in the number of references to the text string per
characters passed, the substantially higher running time of this algorithm makes

58 Typical architecture of Intrusion Detection Systems

it unfeasible for pattern matching in strings.

3.3.2 Multiple-Keyword pattern matching algorithms

Aho-Corasick Algorithm This algorithm is multipattern matching algorithm
which locates all the occurrence of a set of patterns in a text of string Hasib et al.
[28]. It �rst creates deterministic �nite automata for all the prede�ned patterns
and then by using automaton, it processes a text in a single pass. It consists
of constructing a �nite state pattern matching automata from the patterns and
then using the pattern matching automata to process the text string in a single
pass.

Commentz Walter Algorithm It combines the Boyer-Moore technique with
the Aho-Corasick algorithm. In preprocessing stage, di�ering from Aho-Corasick
algorithm, Commentz Walter algorithm constructs a converse state machine
from the patterns to be matched. Each patten to be matched adds states to the
machine, starting from right side and going to the �rst character of the pattern,
and combining the same node. In searching stage, Commentz Walter algorithm
uses the idea of Boyer-Moore algorithm. The length of matching window is the
minimum pattern length. In matching window is the minimum pattern length.
In matching window, Commentz Walter scans the characters of the pattern from
right to left beginning with the rightmost one. In case of a mismatch it uses a
precomputed shift table to shift the window to the right.

Rabin-Karp Algorithm It calculates a hash value for the pattern, and for
each M-character subsequence of text to be compared Khan et al. [29]. If the
hash values are unequal, the algorithm will calculate the hash value for next
M-character sequence. If the hash values are equal, the algorithm will do a
Brute Force comparison between the pattern and the M-character sequence. In
this way, there is only one comparison per text subsequence, and Brute Force is
only needed when hash values match.

3.4 Snort as an example

Snort is an open source NIDS using among other signatures to detect intrusions,
and has become the de facto standard for IPS. It is selected as our example,
which we want to investigate. We look at its components, into its internals,
re-examings the performance bottle neck, and lastly give examples of Snort
improvements.

3.4 Snort as an example 59

3.4.1 Components

Snort's architecture consists of four basic components: The sni�er, preprocessor,
the detection engine and the output Syngress [30].

Figure 3.3: Figure of Snort architecture

3.4.1.1 Packet sni�er

A packet sni�er is a device used to tap into networks. It works in a similar
fashion to a telephone wiretap, but its used for data networks instead of voice
networks. In the case of the Internet, this usually consists of IP tra�c, but in
local LANs and legacy networks, it can be other protocols suites, such as IPX
and AppleTalk tra�c. Because IP tra�c consists of many di�erent higher-level
protocols, many sni�ers analyze the various network protocols to interpret the
packets into something human-readable. Packet sni�ers have vaious uses:

• Network analysis and troubleshooting

• Performance analysis and benchmarking

• Eavesdropping for clear-text passwords and other interesting tidbits of
data

Encrypting your network tra�c can prevent people from being able to sni�
your packets into something readable. The sni�er needs to be set up to obtain
as many packets as possible. As a sni�er, Snort can save the packets to be
processed and viewed later as a packet logger. See �gure 3.4.

60 Typical architecture of Intrusion Detection Systems

Figure 3.4: Figure of Snorts sni�er component

3.4.1.2 Preprocessor

A preprocessor takes the raw packets and checks them against certain plug-ins.
These plug-ins check for a certain type of behaviour from the packet. Once the
packet is determined to have a particular type of behaviour, it is then sent to
the detection engine. From �gure 3.5, you can see how the preprocessor uses its
plug-ins to check a packet. Snort supports many kind of preprocessors and their
attendant plug-ins, covering many commonly used protocols as well as larger-
view protocol issues such as IP fragmentation handling, port scanning and �ow
control, and deep inspection of richly featured protocols. This is an incredibly
useful feature for an IDS because plug-ins can be enabled and disabled as they
are needed at the preprocessor level, allocating computational resources and
generating alerts at the level optimal for your network.

Figure 3.5: Figure of Snorts preprocessor component

3.4 Snort as an example 61

3.4.1.3 Detection engine

Once packets have been handled by all enabled preprocessors, they are handed
o� to the detection engine. The detection engine is the meat of the signature-
based IDS in Snort. The detection engine takes the data that comes from the
preprocessor and its plug-ins, and that data is checked through a set of rules.
If the rules match the data in the packet, they are sent to the alert processor.
The rules themselves consist of two parts:

• The rule header The rule header is basically the action to take, type of
network packet (TCP,UDP,ICMP, and so forth), source and destination
IP addresses, and ports.

• The rule option The option is the content in the packet that should
make the packet match the rule.

The detection engine and its rules are the largest portion of new information
to learn and understand with Snort. Snort has a particular syntax that it uses
with its rules. Rule syntax can involve the type of protocol, the content, the
length, the header, and other various elements, including garbage characters for
de�ning bu�er over�ow rules.

3.4.1.4 Alerting component

After the Snort data goes through the detection engine, it needs to go out
somewhere. If the data matches a rule in the detection engine, an alert is
triggered. Alerts can be sent to a log �le, through a network connection, through
UNIX sockets or Windows Popup (SMB), or SNMP traps. The alerts can also
be stored in an SQL database such as MySQL and Postgres. See �gure 3.6.

62 Typical architecture of Intrusion Detection Systems

Figure 3.6: Figure of Snorts alerting component

3.4.2 Snort internals

As mentioned in section 3.4.1.3 the snort rules consist of two parts, namely rule
header and rule option (based on Sen [31]). (1) Rule header: This has a static
de�nition and i composed of the 5 tuple as shown. It must be present in every
rule. (2) Rule options: This has variable de�nitions. It is not always present,
and it has more than 50 options available to account for di�erent requirements
in the description of possible rules.

Figure 3.7: Rule syntax

Snort 2.0 uses a High Performance Multi-Rule Inspection engine for detecting
patterns. Packets are �rst analyzed by the Rule Optimizer to select the appro-
priate set of rules for inspection. The Multi-Rule Inspection engine searches
for rule matches, builds a queue of detected rule matches, and selects best rule
match for logging. The process of inspecting Network tra�c for matches may
be described in these three steps:

3.4 Snort as an example 63

(1) Rule Optimization to produce e�cient rule sets for inspection.
(2) Set based inspection algorithms that perform high-speed multi-pattern con-
tent searches.
(3) Parameterized inspection techniques which allow for complicated pattern
inspection.

Figure 3.8: Rule syntax

Rule Sets and Search Types used in general by snort are the four categories of
rules for testing: (1) Protocol Field Rules (2)Generic Content Rules (3) Packet
anomaly Rules (4) IP Rules.

The whole process cycle that Snort takes, starts from taking in the rule �les,
constructing the state machine, and the walking through it and searching for
pattern matches with the input strings. It may be represented as shown in �gure
3.9.

64 Typical architecture of Intrusion Detection Systems

Figure 3.9: Diagram of the pattern matching module of snort

At the heart of Snort lies the pattern matching algorithm. It has been estimated
that almost 70-80 percent of the time spent by snort in pattern detection. There-
fore, it is important to improve the e�ciency of pattern matching algorithm.

3.4.3 Re-examining the performance bottle neck in Snort
and Bro

Designing a high-speed network intrusion detection system (NIDS) has attracted
much attention in recent years due to ever-increasing amount of network tra�c
and ever-complicated attacks. Numerous studies have been focused on accel-
erating pattern matching for a high-speed design because some early studies
observed that pattern matching is a performance bottleneck. However, the ef-
fectiveness of such acceleration has been challenged recently. Po-ChingLin et al.
[32] therefore re-examines the performance bottleneck by pro�ling two popular
NIDSs, Snort and Bro with various types of network tra�c in detail. In the
pro�ling, they �nd pattern matching can dominant the Snort execution if the
entire packet payloads in the connections are scanned, while executing the policy
scripts is an obvious bottleneck in the Bro execution. The work suggest three
promising directions towards a high-speed NIDS design for future research: a
method to precisely specify the possible locations of the signatures in long con-
nections, a compiler to transform the policy scripts to e�cient binary codes for
execution, and an e�cient design of connection tracking and packet reassembly.

In addition to pro�ling the decoding and preprocessing stages, they have divided
the rule matching of Snort into the following stages to study the signi�cance of
pattern matching:

3.4 Snort as an example 65

• mpse: Snort searches a bu�er of application payload for a group of pat-
terns associated with the application protocols. This stages name, mpse,
denotes multiple pattern matching searching engine because the search
executes a multiple string matching algorithm.

• Rule tree matching: Snort veri�es the other rule options in the detection
rules whose selected patterns are found in the mpse stage. If the veri�ca-
tion result is positive, a rule match will be asserted.

• pcre: This stage performs regular expression matching when Snort veri�es
the pcre rule option because matching regular expressions is commonly
considered to be a heavy part in deep packet inspection. Although this
stage is part of rule tree matching, they measured its execution time sep-
arately from that of rule tree matching due to its importance.

• others: This stage involves the other processing in rule matching, such as
raising an alert or reading the initial con�gurations.

3.4.3.1 Baseline pro�ling with normal tra�c

• The proportion of the mpse stage in the total execution can vary signi�-
cantly, depending on the input packet traces and the system con�guration
that speci�es how deep to look into in a connection. In other words, speed-
ing up pattern matching can have only limited contributions to the overall
performance in certain conditions. Precisely specifying the possible loca-
tions of the patterns in the long connections will be helpful to the overall
performance.

• The mpse stage is e�ective for �ltering out the rules that cannot be
matched, so the execution time in the rule tree matching, including the
pcre stage, is mostly rather short. Speci�cally, accelerating regular ex-
pression matching therefore contributes little to speed up Snort for nor-
mal network tra�c. While the observation is plausibly true for normal
tra�c, they point out that regular expression matching can be still very
important because it is not always possible to �nd a substring in a reg-
ular expression to write it in the content option for fast �ltering, and an
attacker may deliberately forge the packet payload with a signature in the
content option to force the execution of regular expression matching.

• The preprocessing stage consumes a noticeable proportion of time. Fig-
ure 3.10 summarizes the top three time-consuming preprocessors for each
application protocol, and the stream5 preprocessor ranks the �rst in each
row, suggesting tracking the TCP/UDP �ows and packet reassembly be a
target for acceleration, in addition to pattern matching. Besides stream5,

66 Typical architecture of Intrusion Detection Systems

they also �nd the preprocessors for decoding the commands or �elds in the
application protocols, e.g. http_inspect and SMTP_detect, may also take
a noticeable proportion of time, meaning protocol parsing is the second
target to be accelerated in the preprocessing. Snort tracks the error pack-
ets returned from the target hosts when detecting port scanning with low
sensitivity in the default con�guration. They noticed that the P2P tra�c
involves many ICMP "port unreachable" packets due to the UDP packets
destined for incorrect port numbers. The packets can raise the tracking of
error packets in the port_scan_detect preprocessor and should account
for the higher proportion of execution time in the preprocessing.

Figure 3.10: The top three time-consuming preprocessors

3.4.3.2 Pro�ling with abnormal network tra�c

The network tra�c in section 3.4.3.1 is all normal, but it is common that ab-
normal or even malicious tra�c is mixed in real network tra�c. Therefore, they
have also measured the Snort performance to see the impact when Snort process
abnormal network tra�c.
Splitting packets into small IP fragments and TCP segments is a well-known
method to evade NIDS detection. Modern NIDSs have been equipped with the
capability of reassembling the split packets to counter the evasion. Snort comes
with two preprocessors, frag3 and stream5, to reassemble IP fragments and TCP
segments. In this pro�ling, they have deliberately split packets from the tra�c
during a period of web browsing into IP fragments and TCP segments using
fragroute to test the performance of both preprocessors in Snort.
Figure 3.11 summarizes the execution time and the proportions for the pro-
cessing stages. For IP fragments, Snort collects and reassembles them before
scanning the packet payloads. The preprocessing stage occupies a relatively
large proportion, meaning that the stage can heavy when reassembling a num-
ber of IP fragments. Similarly, handling a number of small TCP segments also

3.4 Snort as an example 67

makes the preprocessing stage a heavy component in the Snort Execution.

Figure 3.11: The execution time in each Snort stage for split packets (in CPU
cycles)

They also experimented with the ISCX dataset which involves malicious packet
traces for evaluating intrusion detection. They used the malicious traces of
HTTP denial of service, distributed denial of service using an IRC botnet, and
brute force SSH in the pro�ling 1. The pro�ling results are presented in �g-
ure 3.12. On average, the proportion of the execution time in the mpse stage
amounts to nearly one-third, and the preprocessing stage also takes nearly one-
third of the total execution time. The results show that speeding up pattern
matching alone is insu�cient for a high-speed design even for malicious packet
traces. When looking into the preprocessing stage, they found stream5 is the
most time-consuming preprocessor for the three malicious traces, and takes
53.31% of the preprocessing time on average.
To sum up, even for the malicious packet traces that are publicly available and
picked for their pro�ling, pattern matching in the mpse stage takes at most
around two thirds of the total execution time.

Figure 3.12: The execution time in each Snort stage for the ISCX dataset (in
CPU cycles)

3.4.3.3 Pro�ling with di�erent system con�gurations

Among the preceding experiments,they are most interested in how the pro�ling
result will be di�erent if the payloads in an entire connection are scanned.In this
regard,for example, Snort provides the server_�owdepth con�guration option

1www.iscx.ca/dataset

www.iscx.ca/dataset

68 Typical architecture of Intrusion Detection Systems

for the http_inspect preprocessor to set the depth to look into.If the option
value is 0, Snort will scan the entire tra�c from the server to the client,which
amounts to the majority of HTTP tra�c. Snort also provides the data_chan
option for the ftp_telnet preprocessor.If this option is turned o�, Snort will
inspect all of the packets for data transfer. Figure 3.13 compares the pro�ling
results from Snort running with the HTTP and FTP tra�c, based on the default
con�guration and that inspecting the entire connection. The comparison implies
that slightly modifying the system con�guration will result in a signi�cantly
di�erent result.The mpse stage becomes dominant in the total execution time
if Snort scans the entire packet payloads in the HTTP and FTP connections.
The throughput for the HTTP tra�c decreases from 83.3 MB/s to 15.38 MB/s,
and that for the FTP tra�c decreases from 63.49 MB/s to 32.08 MB/s.

Figure 3.13: Comparison of Snort execution with the default and new con�g-
uration (execution time in CPU cycles)

3.4.3.4 Analysing the factors in pattern matching

According to the preceding pro�ling, pattern matching can dominate the exe-
cution time if every packet payload is scanned. Besides the algorithm design,
two factors can determine the scanning time of pattern matching: the payload
length and the number of patterns in a group.
For the pro�ling, they used the packet traces of 20 GB from the NCTU Beta-
Site, a bulk repository of daily network tra�c in a campus. Figure 3.14 presents
the relationship between the scanning time and the payload up to 64 kB. As
expected, the scanning time is generally proportional to the payload length,
except hundreds of outliers, which are just a relatively small proportion of the
total number of payloads. This observation is consistent with that Snort runs
pattern matching by tracking a �nite state machine, and the time complexity is
linear to the payload length.

3.4 Snort as an example 69

Figure 3.14: The relationship between the scanning time and the payload
length)

When looking into the relationship between the average scanning time per char-
acter in the payload and the number of patterns simultaneously scanned in a
group, as presented in �gure 3.15(a), they found that the per-character scanning
time can vary wildly, even though the average time slightly increases with the
number of patterns in a group. They investigated the hit rates of the L1 cache,
as presented in �gure 3.15(b), and found that the variation of the hit rates for
a given pattern group has a larger e�ect on the scanning time than the sizes
of pattern groups, even though the average hit rates slightly decrease with the
increasing number of patterns in a group.

70 Typical architecture of Intrusion Detection Systems

Figure 3.15: The relationship between the per-character scanning time and
the sizes of pattern groups. (a) The scanning time vs. the sizes
of pattern groups and (b) the L1 cache hit rates vs. the sizes of
pattern groups)

3.4.3.5 Pro�ling with the bulk network tra�c

They also demonstrate that the aggregate of the execution time derived from
individual sample packet traces can be used to predict the results when pro�ling
with the bulk network tra�c in a real environment. They divided the packet
traces of 20 GB from the NCTU BetaSite into 10 subsets according to the hash-
ing values from the source/destination IP addresses and the source/destination
ports, and then measured the execution time in the Snort stages for each subset.
Figure 3.16 compares the aggregate execution time for the subsets and the time
for the original bulk tra�c.The aggregate time in every stage except the prepro-
cessing is close to the execution time in the same stage for the bulk tra�c. Note
that the mpse stage dominates the execution time for the bulk tra�c. To verify
the heavy-tailed nature in the bulk tra�c, a connection is de�ned to be long if
the total payloads in either direction are longer than k bytes. If k = 100.000
the number of long connections is only 0.55% of the total number of connec-
tions, but the payloads in the long connections account for 98.70% of the total
payloads in bytes. In other words, the large volume of the bulk tra�c is almost
contributed by the long connections.
Figure 3.17 summarizes the composition of application protocols in the long con-
nections. The protocols marked OTHER are those not recognized by the port
numbers, such as those from P2P applications and on-line games, and they con-
tribute 76.58% of the payloads in bytes. Since the entire payloads are scanned
in the long connections , as speci�ed in some of the rules, executing the mpse
stage is expensive. They believe that is why past studies have claimed pattern
matching is a bottleneck in the NIDS processing. If the rules can be re�ned to
avoid scanning the entire payloads in the long connections by precisely locating

3.4 Snort as an example 71

the possible occurrences of malicious content in the payloads, the performance of
Snort can be improved signi�cantly, and the false positives can be also reduced.

Figure 3.16: Comparison of the aggregate execution time for the subsets of
packet traces and the time for the original bulk tra�c (in CPU
cycles)

Figure 3.17: The composition of application protocols in the long connections

3.4.4 Snort improvement attempts

3.4.4.1 Snort rule indexing

As explained in section 3.4.1.3 the Snort program uses rules to detect potential
malicious packets. Because the portion of malicious packets is usually small,
it is not e�cient to examine incoming packets with all Snort rules. Kang [33]
they apply two indexing methods to Snort rules, Pre�x Indexing and Random
Indexing, to reduce the number of rules to be examined. They focus on the idea
that they can apply indexing method to grouped Snort rules. Indexing method
is a method which commonly is used to �nd a certain item from a large set of
data. An index is a substring which is part of a Snort rule signature. Each
index points to a subset of Snort rules, which have signatures that include the
index; therefore the Snort rules are arranged into several groups according to
indices. Before the packet inspection stage, the rules are pre-processed to create

72 Typical architecture of Intrusion Detection Systems

indices and group the rules together. One of the main issues in indexing is how
to choose substrings from signatures of Snort rules when building indices. The
indices for PI(Pre�x Indexing) are determined by extracting �rst N bytes of
strings from each Snort rule signature. To use the �rst N bytes as an index is
e�cient in cases that the beginning of rule signatures within a ruleset shares a
number of common strings. While PI is the simplest way to group Snort rules
with indices, grouping with other substrings that appear in the middle of Snort
rule signatures could be more appropriate in some cases. Based on this intuition,
they derived a naive approach which selects indices randomly from signatures
of the Snort rules. They called this naive approach as Random Indexing (RI).
RI extracts an N-byte substring from arbitrary point of Snort rule signatures.
See �gure 3.18 it shows the di�erence between PI and RI, when applied to the
same Snort ruleset.

Figure 3.18: Figure of Random Pre�xing and Pre�x Indexing

Experiments To obtain their experimental results they used Snort 2.9.0.0.
Snort has a number of rule �les which are divided into several categories by
the types of attacks. They conducted the experiments with Web-cgi ruleset,
by applying the two indexing methods. Web-cgi ruleset includes 371 rules to
detect the attacks on CGI programs. The total length of signatures for the
web-cgi ruleset is 4.686 bytes, with the average of 12.63 bytes per rule. They
introduce three statistical values for the performance estimation: the number
of indices(NI), the average number of rules per index(ANPI) and the maximum
number of rules per index(MNPI). NI refers to the size of the entire indices,
which is related to the amount of strings to be examined with an input packet;
therefore if NI decreases, the packet inspection process can have better per-
formance. ANPI is another important factor of performance as it has a close
relationship with the amount of strings to be inspected; the fewer the strings,
the less it takes for the deep packet inspection. They found that the appropri-
ate value for ANPI is between 1.5 and 1.8, experimentally. MNPI has e�ects
on the deep packet inspection time, especially for the worst case. If the size of
MNPI, M, is signi�cantly large, the worst case time required for the deep packet
inspection increases as the the packet inspection involves at least M times of

3.4 Snort as an example 73

comparison to the input packet. To summarize, an indexing result with smaller
MNPI, especially which has a close value to ANPI, shows the best performance
in the packet inspection. Figure 3.19 shows the experimental results of the two
indexing methods on web-cgi ruleset, where the length of each index is set to
4 bytes. The two methods, PI and RI show similar results in most cases. The
best case of RI has the smallest MNPI, whose value is also close to ANPI; there-
fore the indexing with RI, in its best case, provides a fairly equally distributed
result. Other results with bigger MNPI values mean that their rule groupings
were biased to a certain index. If the biased index is matched, a large number
of rules should by fully examined, causing longer deep packet inspection time.

Figure 3.19: Figure of statistical values of web-cgi ruleset

To evaluate the performance of packet examination, they estimated the total
amount of strings to be examined for an input packet, since the total number
of bytes of strings is a critical factor of the performance in the attack detection
process, regardless of the string matching approach being used. The smaller
the total number of bytes of strings to be examined becomes, the shorter the
packet examination time would be taken. They estimate the performance of the
index selection algorithm, by calculating the total number of bytes of strings
to be examined. The total number of bytes of strings (TBS) is the sum of the
number of bytes of all indices (NBI) and the number of bytes of signatures in
the Snort rules matched indices (NBR). NBI is the number of indices times
the length of the index, as the whole indices should be examined during the
inspection. NBR is the sum of the length of the rule signatures that are pointed
to by matched indices. To calculate NBR, they need to know which index was
matched, because only the rules that are linked to the index will be examined;
however, every time the inspection proceeds, di�erent indices will be matched
according to incoming packets. There is no way to foresee the indices will
be matched unless the packet inspection is actually conducted; therefore they
formularized the following equation: NBR = The number of Matched Indices x
ANPI x The Average Length of Signatures. They also calculate the average case
by measuring the average of the best and worst cases. The equation is: TBS
(x) = NI x The Length of the Index + The Number of Rules for x% of Indices
x The Average Length of Signatures per Rule.

74 Typical architecture of Intrusion Detection Systems

Figure 3.20: Figure of the estimation of the amount of strings to be examined
for web-cgi ruleset

Figure 3.20 shows the results of the simulation for the web-cgi ruleset: Figure
3.20 (a) is for the average case and �gure 3.20 (b) for the worst case. The
Y axis represents TBS and the X axis represents the percentage of matched
indices for an input packet. As can be seen in the graphs, the two index se-
lection algorithms show better performance than the original Snort. RI shows
unpredictable performance, showing two di�erent aspects: in the best case, the
performance of RI is almost equal to PI but, in the worst case, its performance is
far worse than PI. This improvement is a result of having smaller MNPI. It can
be said that the rules are well distributed into groups, which also implies that
the amount of strings to be examined is normalized. Summary In the paper
they applied two indexing methods, PI and RI that extracts indices from Snort
rule signatures, to reduce the number of rules to be examined. They conducted
a number of experiments, which showed signi�cant improvement to the packet
inspection, reducing the number of strings to be matched to around 26% of the
original Snort.

3.4.4.2 Hybrid IDS using Snort with Naive Bayes

This project starts with analysis network packets by using Snort as 1st phase to
detect the entire KDD cup 99 dataset based on Signature based IDS. The 2nd
phase use the anomaly detection engine that will be based on Naive Bayes algo-
rithm, J48graft Decision Tree algorithm and Bayes Net algorithm. All the three
anomaly detection engines will detect the attacks based on their algorithms.
After all the three analysis are done, the researcher makes comparison between
all the results in order to evaluate performance of the Hybrid IDS using Snort
and Naive Bayes algorithm. In �gure 3.21 the general design is showed, which
illustrates the whole procedure of this research.

3.4 Snort as an example 75

Figure 3.21: General design of the research

Accuracy Accuracy is the proportion of correct classi�cation classes namely
True Positive(TP) and True Negative(TN) over the total number classi�cations.

76 Typical architecture of Intrusion Detection Systems

Figure 3.22: Rate of Accuracy between All the Three Algorithms

Figure 3.22 compares the rate of accurate and inaccurate classi�ed instances
between all the three algorithms. It can be seen clearly that the rate of accuracy
with runs J48graft shows better result than the other two algorithms which is
99.96%. This is because of the ability of J48graft to construct tree and classify
instance correctly among all the classes type.

Detection Rate The total detected detected attacks amongst all the scanned
data is called detection rate.

Figure 3.23: The average of detection rate and unknown detection rate for All
the Three Algorithms

As shown in �gure 3.23 the average detection rate and unknown detection rate
between the three algorithms. According to the result the average of the detec-
tion rate by Naive Bayes is above that of the average rate of detection by Bayes
Net and J48graft algorithm respectively. In contrast the unknown detection rate
by uses J48graft is much higher than the unknown detection rate by uses Bayes
Net and Naive Bayes respectively because the process of learning and classi�ca-

3.4 Snort as an example 77

tion is feeble with uses J48graft to the classes that had been represented by a
small number of connections.

False alarm rate False alarm rate is the proportion of normal data which is
falsely detected and labeled as an attack.

Figure 3.24: The average of False Alarm Rate for All the Three Algorithms

It can be seen clearly from the graph that the average is zero with runs J48graft
while the average is slightly di�erent by runs bayes net and by runs naive bayes
algorithm. As stated by the average value, J48graft is better than Bayes Net
and Naive Bayes algorithm respectively in term of false alarm rate. This slight
di�erence of the average of false alarm rate is because of the ability of the
J48graft to constructed tree and classi�es connections better than bayes net
and naive bayes respectively.

78 Typical architecture of Intrusion Detection Systems

Chapter 4

How to evaluate intrusion

detection systems

This chapter presents the parts in which you can evaluate IDS's. The parts
consist of tools and data, hereby an explanation of the available testing tools,
and available datasets. In addition, four relevant articles will brie�y be explained
focusing on Snort test setup. The last part consist of, how we will test and an
evaluation based on the IDS/IPS testing framework called pytbull.

We want to evaluate IDS, so it is possible to clarify the limitations.

The chapter contribute to give an answer to, how to evaluate intrusion detection
systems.

4.1 Tools and data

The section looks at the di�erent possible testing tools such as pytbull etc. ,and
the available datasets such as KDD cup 1999 dataset etc.

80 How to evaluate intrusion detection systems

4.1.1 Testing tools

If you use Google and search for "intrusion detection system testing tool/frame-
work" you will get many hits. When you try to �nd a suitable tool to use, only
1 is suitable, and it is called pytbull.

Pytbull Pytbull is a python based �exible IDS/IPS testing framework shipped
with more than 300 tests, grouped in 9 modules, covering a large scope of attacks
(clientSideAttacks, testRules, badTra�c, fragmentedPackets, multipleFailed-
Logins, evasionTechniques, shellCodes, denialOfService, pcapReplay). Besides
that it is automatic, and free. 1

Other testing tools exist, and they are:

1. BackTrack: is a distribution based on the Ubuntu Linux distribution
aimed at digital forensics and penetration testing use.
BackTrack arranges tools into 12 categories: Information gathering, Vul-
nerability assessment, Exploitation tools, Privilege escalation, Maintaining
access, Reverse engineering, RFID tools, Stress testing Forensics, Report-
ing tools, Services, Miscellaneous. 2

2. Kali Linux: is a Debian-derived Linux distribution designed for digital
forensics and penetration testing. It is maintained and funded by O�ensive
Security Ltd. developed by rewriting BackTrack, their previous forensics
Linux distribution 3.

3. Metasploit: is a computer security project that provides information
about security vulnerabilities and aids in penetration testing and IDS sig-
nature development 4.

4.1.2 Available datasets

In this section we will brie�y explain some of the datasets for testing IDS's.

1http://pytbull.sourceforge.net/
2http://www.backtrack-linux.org/
3http://www.kali.org/
4http://www.metasploit.com/

http://pytbull.sourceforge.net/
http://www.backtrack-linux.org/
http://www.kali.org/
http://www.metasploit.com/

4.1 Tools and data 81

4.1.2.1 KDD cup 1999 dataset

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and
managed by MIT Lincoln Labs (Nadiammai et al. [34]). The objective was to
survey and evaluate research in intrusion detection. A standard set of data in-
cludes a wide variety of intrusions simulated in a military network environment.
The DARPA 1998 dataset includes training data with seven weeks of network
tra�c and two weeks of testing data providing two million connection records.
A connection is a sequence of TCP packets starting and ending at some well
de�ned times, between source IP address to a target IP address with some well
de�ned protocol. Each connection is categorized as normal, or as an attack,
with one speci�c attack type. The training dataset is classi�ed into �ve subsets
namely Denial of service attack, Remote to Local attack, User to Root attack,
Probe attacks and normal data. Each record is categorized as normal or attack,
with exactly one particular attack type. They are classi�ed as follows:

• DOS (Denial of service attack) Denial of service (DOS) is class of attack
where an attacker makes a computing or memory resource too busy or too
full to handle legitimate requests, thus denying legitimate user access to
a machine.

• R2L (Remote to local (user) attack) A remote to local (R2L) attack is a
class of attacks where an attacker sends packets to a machine over network,
then exploits the machine's vulnerability to illegally gain local access to a
machine.

• U2R (User to root attack) User to root (U2R) attacks is a class of attacks
where an attacker starts with access to a normal user account on the
system and is able to exploit vulnerability to gain root access to the system.

• Probing (Surveillance and other probing) Probing is class of attacks
where an attacker scans a network to gather information or �nd known
vulnerabilities. An attacker with map of machine and services that are
available on a network can use the information to notice for exploit.

4.1.2.2 NSL-KDD dataset

NSL-KDD is a data set suggested to solve some of the inherent problems of
the KDD'99 dataset 5. Furthermore, the number of records in the NSL-KDD
train and test sets are reasonable. This advantage makes it a�ordable to run

5http://nsl.cs.unb.ca/NSL-KDD/

http://nsl.cs.unb.ca/NSL-KDD/

82 How to evaluate intrusion detection systems

the experiments on the complete set without the need to randomly select a
small portion. Consequently, evaluation results of di�erent research work will
be consistent and comparable.

The NSL-KDD dataset has the following advantages over the original KDD data
set:

• It does not include redundant records in the train set, so the classi�ers
will not be biased towards more frequent records.

• There are no duplicate records in the proposed test sets; therefore, the
performance of the learners are not biased by the methods which have
better detection rates on frequent records.

• The number of selected records from each of level di�culty group is in-
versely proportional to the percentage of records in the original KDD data
set. As a result, the classi�cation rates of distinct machine learning meth-
ods vary in a wider range, which makes it more e�cient to have an accurate
evaluation of di�erent learning techniques.

4.1.2.3 UNB ISCX Intrusion Detection evaluation dataset

In network intrusion detection system(IDS), anomaly-based approaches in par-
ticular su�er from accurate evaluation, comparison, and deployment which orig-
inates from the scarcity of adequate datasets. Many such datasets are internal
and cannot be shared due to privacy issues, others are heavily anonymized
and do not re�ect current trends, or they lack certain statistical characteristics.
These de�ciencies are primarily the reasons why a perfect dataset is yet to exist.
Thus, researchers must resort to datasets which they can obtain that are often
suboptimal. As network behaviors and patterns change and intrusions evolve,
it has very much become necessary to move away from static and one-time
datasets toward more dynamically generated datasets which not only re�ect the
current tra�c compositions and intrusions, but are also modi�able, extensible,
and reproducible.
At ISCX 6, a systematic approach to generate the required datasets is intro-
duced to address this need. The underlying notion is based on the concept of
pro�les which contain detailed descriptions of intrusions and abstract distribu-
tion models for applications, protocols, or lower level network entities. Real
traces are analyzed to create pro�les for agents that generate real tra�c for
HTTP, SMTP, SSH, IMAP, POP3, and FTP. In this regard, a set of guide-
lines is established to outline valid datasets, which set the basis for generating

6Information Security Centre of Excellence: http://www.iscx.ca/

http://www.iscx.ca/

4.2 How have other tested? 83

pro�les. These guidelines are vital for the e�ectiveness of the dataset in terms
of realism, evaluation capabilities, total capture, completeness, and malicious
activity. The pro�les are then employed in an experiment to generate the de-
sirable dataset in a testbed environment. Various multi-stage attacks scenarios
were subsequently carried out to supply the anomalous portion of the dataset.
The intend for this dataset is to assist various researchers in acquiring datasets
of this kind for testing, evaluation, and comparison purposes, through sharing
the generated datasets and pro�les.
To simulate user behavior, the behaviors of their Center's users were abstracted
into pro�les. Agents were then programmed to execute them, e�ectively mim-
icking user activity. Attack scenarios were then designed and executed to ex-
press real-world cases of malicious behavior. They were applied in real-time
from physical devices via human assistance; therefore, avoiding any unintended
characteristics of post-merging network attacks with real-time background traf-
�c. The resulting arrangement has the obvious bene�t of allowing the network
traces to be labeled. This is believed to simplify the evaluation of intrusion
detection systems and provide more realistic and comprehensive benchmarks 7.

4.2 How have other tested?

In this section we will cover relevant articles, which focus on testing IDS. We will
not list the article's results and conclusions, because the main goal is to explain
the techniques and tools that the authors has used for testing the relevant IDS.

4.2.1 Performance evaluation of Snort and Suricata

Alhomoud et al. [35] they have tested and analysed the performance of Snort
and Suricata. Both programs were implemented in three di�erent platforms
(ESXi virtual server, Linux 2.6 and FreeBSD) to simulate a real environment.

7http://www.iscx.ca/datasets and http://ali.shiravi.com/84

http://www.iscx.ca/datasets
http://ali.shiravi.com/84

84 How to evaluate intrusion detection systems

Figure 4.1: Network design setup

Figure 4.2: Network component speci�cations

Test scenarios were designed to test the performance of Suricata and Snort on
di�erent operating systems. Both IDS were subject to the same tests and under
the exact same conditions. In order to get more accurate results, all scenarios
were tested with packet sizes (1470, 1024, 512) for both TCP and UDP. The
test was performed for the speed ranging from 250Mbps to 2.0Gbps. In all the
scenarios Suricata and Snort were con�gured to load and run similar number of
rules to monitor.

4.2 How have other tested? 85

4.2.2 A performance analysis of Snort and Suricata

Recently, there has been shift to multi-core processors and consequently multi-
threaded application design. Suricata is a multithreaded open source NIDPS,
being developed via the Open Information Security Forum (OISF). Day et al.
[36] describes an experiment, comprising of a series of innovative tests to estab-
lish whether Suricata shows an increase in accuracy and system performance
over the de facto standard, single threaded NIDPS Snort.
Figure 4.3 8, illustrates some of the metrics that constitute capacity.

Figure 4.3: Metrics of Capacity

The test-bed was setup in a virtual environment, facilitating experiment porta-
bility and security. It also allowed for faster experiment initialisation. This was
necessary for frequent repetition and re-con�guration of the experiment tests.
Vmware workstation 6.5 was used as the virtualisation platform, largely due to
superior IO and disk performance over competitors Virtual Box and Virtual PC.
Snort and Suricata were con�gured to run using identical rule-sets.
It was decided to capture background tra�c from a busy universities web and
application server. This was then merged with exploit tra�c, created using the
Metasploit Framework. The Metasploit Framework contains a total of 587 ex-
ploit modules, allowing attack data to be easily generated in quantity.
The capacity of a NIDPS is closely connected to the CPU capacity of the sys-
tem. Thus, Snort and Suricata should be subjected to CPU impairment, to
evaluate their e�ciency under stressful conditions. VMware was used to allow
the number of logical and physical cores to be reduced. The cores themselves
were stressed by generating threads, causing an adjustable and measureable

8informed by Hall and Wiley "Capacity Veri�cation for High Speed Network Intrusion

Detection Systems"

86 How to evaluate intrusion detection systems

workload. This was performed using the application cpulimit, which generates
con�gurable workloads across the processor, allowing for the total amount of
stress applied by each thread, to be limited by a percentage of the CPU capac-
ity.
The following resources were monitored: CPU utilisation, memory utilisation,
persistent storage bandwidth and network interface bandwidth. This was per-
formed using the Linux command line utility dstat.

4.2.3 Evaluating intrusion detection systems in high speed
networks

Alserhani et al. [37] they have focused on signature-based IDS with an emphasis
on evaluating their performance in high-speed tra�c conditions. They have
selected Snort as a test platform because of its popularity and status as a de
facto IDS standard.

The test bench setup is as follows: The network is composed of six machines
using ProCurve Series 2900 switch as shown in 4.4. The test bench comprises a
number of high performance PCs running open source tools to generate back-
ground tra�c, run attack signatures and monitor network performance. The
hardware description of the network is shown in 4.5. Snort was also tested for
its accuracy on the di�erent operating systems (OS) platforms (Windows and
Linux). The platforms were tested by injecting a mixture of heavy network
tra�c and scripted attacks through the Snort host. Snort.conf in its default
con�guration was selected for evaluation. The performance of Snort was also
evaluated under the following variant conditions:

• Generating attacks from di�erent operating system hosts.

• Varying tra�c payload, protocol and attack tra�c in di�erent scenarios.

• Subjecting it to hardware constraints of virtual machine con�gurations.

4.2 How have other tested? 87

Figure 4.4: Test Bench

Figure 4.5: Network component speci�cations

4.2.4 An analysis of packet fragmentation attacks vs Snort

Fu et al. [38], Snort IDS was tested. VMware virtual machines were used as
both the host and victim. Other tools were also implemented in order to gen-
erate attacks against the IDS. The experiment results show the performance of
Snort IDS when it was being attacked, and the ability of Snort to detect attacks

88 How to evaluate intrusion detection systems

in di�erent ways.
This research started with the creation of a virtual network using the virtu-
alization software VMware workstation 6.0. In order to carry on the pack-
ets fragmentation attacks experiments, three virtual machines were included in
the network. One victim, one attacker, and one test machine were created in
VMware workstation. The attacker generated the attacks and sent them to the
victim, in order to test the Snort IDS installed on the victim. Test machine was
used to record the packets sent in the network, in order to analyze and replay
the packets.
A variety of tools were installed and con�gured in three virtual machines. The
victim was equipped with sni�ng tool Wireshark and intrusion detection tool
Snort IDS for recording the network tra�c and testing the intrusion detection
capability. Testing tool Metasploit framework and scanning tool Nmap were
running on the attacker for exploiting the vulnerabilities of the victim. Attack
packets were generated by Scapy, which was also installed in the attacker, Tcp-
dump was installed in the test machine, it was used to capture and save the
packets sent in the network. Tcpreplay was also carried by the test machine, for
replaying the collected network tra�c.

4.3 How will we test?

Searching the Internet wont give us a standard testing methodology for IDS.
We base our approach on some existing suggestions Puketza et al. [39] and
Nadiammai et al. [34].

We will try to cover the following performance objectives for our IDS:

• Broad Detection Range: for each intrusion in a broad range of known
intrusions, the IDS should be able to distinguish the intrusion from normal
behaviour.

• Economy in Resource Usage: the IDS should function without using
too much system resources such as main memory, CPU time, and disk
space.

• Resilience to Stress: the IDS should still function correctly under stress-
ful conditions in the system, such as a very high level of computing activity.

We will design test scenarios to cover these objectives. To support the testing
scenarios which cover Broad Detection Range we will use statistical calcu-

4.3 How will we test? 89

lations, which base our performance tests on Accuracy, Sensitivity, Speci�city
and computational time FAR, see section 4.3.2.

We will use these software tools:

• Tcpreplay 4.0 Tcpreplay is a suite of BSD GPLv3 licensed tools written
by Aaron Turner for UNIX (and Win32 under Cygwin) operating systems
which gives you the ability to use previously captured tra�c in libpcap
format to test a variety of network devices. It allows you to classify tra�c
as client or server, rewrite Layer 2, 3 and 4 headers and �nally replay the
tra�c back onto the network and through other devices such as switches,
routers, �rewalls, NIDS and IPS's We will use it to simulate an attacker.
9

• OstinatoOstinato is an open-source, cross-platform network packet crafter/
tra�c generator and analyzer with a friendly GUI. Craft and send packets
of several streams with di�erent protocols at di�erent rates. Ostinato aims
to be "Wireshark in Reverse" and become complementary to Wireshark.
We will use it to simulate background tra�c. 10

• Snorby 2.6.2 Snorby is an open-source ruby on rails application for net-
working security monitoring. It integrates with intrusion detection sys-
tems like Snort, Suricata and Sagan. 11

Besides these tests we will have a look at Pytbull mentioned in section 4.1.1.

4.3.1 Dataset problems

Complex and new cases of intrusions, new bugs, security issues and vulnerabili-
ties are evolving everyday for a number of reasons. Consequently, researchers in
the domains of Intrusion Detection Systems and Intrusion Prevention Systems
constantly design new methods to lessen the aforementioned security issues.
However, getting suitable datasets for evaluating various research designs in
these domains is a major challenge for the research community, vendors and
data donors over the years. As a result, most intrusion detection and preven-
tion methodologies are evaluated using wrong categories of datasets because the
limitations of each category of evaluative datasets are unknown.
Nehinbe [40] list some issues regarding the use of datasets. They are:

9http://tcpreplay.synfin.net/
10https://code.google.com/p/ostinato/
11https://snorby.org/

http://tcpreplay.synfin.net/
https://code.google.com/p/ostinato/
https://snorby.org/

90 How to evaluate intrusion detection systems

Data privacy issues:
Data privacy that subsumes security policies, sensitivity of realistic data, risks in
disclosing digital information and lack of trust are factors that do not allow re-
alistic data to be shared among users, industries and research community. Con-
sequently, most corporate organizations rarely disclose the lessons they learned
from previous computer attacks to the research community. Thus, most research
designs are not often tested with realistic problems.

Getting approval from data owner:
Getting access to some real datasets may require researchers to apply for ap-
provals from the custodian of the datasets. Some data donors such as Cooper-
ative Association for Internet Data Analysis (CAIDA) often require intending
users to sign undertaken or Acceptable Use Policies (AUP) that contain restric-
tions to the time of usage and information that can be published regarding the
datasets (CAIDA, 2011). In CAIDA (2011), Acceptable Use Policies is granted
to registered academic, non-pro�t researchers, government and CAIDA mem-
bers. Some data donors restrict users to di�erent segments of the datasets.
Moreover, experience shows that some approvals from the data donors can take
bureaucratic processes to secure which may not happen during the time frame of
the research. In other words, approvals to authorize the usage of some datasets
are frequently delayed

Scope of evaluative datasets:
Intrusive datasets often vary from one network segment to another. Apart from
the fact that there is variability in the patterns of computer attacks across the
globe, the issue of activities that should be classi�ed as normal and abnormal
tra�cs are subjective in some cases. For these reasons, most publicly available
datasets rapidly become obsolete, and unsuitable for making strong scienti�c
claims.

Di�erent research objectives:
The aims, objectives and methods of the studies are factors that also in�u-
ence the choice of datasets that will be suitable for evaluating models that are
designed to investigate intrusion detection and prevention problems. The NSL-
KDD dataset is not suitable for investigating redundant alerts that are common
problems in real networks because of the limited size of the dataset. Di�erent
researchers frequently use novel methods to investigate the same aims and ob-
jectives. As a result of this, researchers often tweak network traces in most cases
to suit the objectives of their studies. By doing so, some researchers use series of
data mining procedures such as data pre-processing and data cleaning to lessen
the challenges in matching data with the objectives of the studies. Apart from
resource utilization in terms of time and e�orts, the researchers may not possess
adequate knowledge necessary to enable that the new datasets become perfect

4.3 How will we test? 91

replica of the original datasets. Hence, original quality of the datasets is often
lost. This is the major reason why most of the research �ndings in the domains
of the IDSs and IPSs are very di�cult to be repeated by other researchers in
order to validate scienti�c claims.

Problem of documentations:
Most of the o�-line datasets that are available for the researchers in the domains
of the IDSs and the IPSs lack proper documentations. There is insu�cient in-
formation about the network environment at which most of the datasets are
simulated. The kinds of intrusions that are simulated, the mission of the in-
truders, operating systems of the attacking and destination machines, the size
of the packets and other vital information that may assist analysts are not
often disclosed by the data donors. Additionally, the limitations and main us-
age of each o�-line dataset are not frequently published by the donors. Hence,
many researchers tend to adapt network datasets for purposes that contravene
the scope of the datasets. Another problem is that the IDS models that use
the KDD 1999 and the KDD 1998 datasets that were properly labelled by the
donor, recorded low performance evaluations due to the inherent �aws in the
datasets. Hence, accurate interpretations of the results of evaluations conducted
with the publicly available datasets are major challenges for the users.

Understanding the datasets:
Most data donors do not publish the level of success of the intruders in the
datasets. Thus, high level of expertise is often required to isolate failed at-
tacks and attacks that need countermeasures from each other whenever these
categories of attacks are present in the same dataset. Hence, the e�cacies of
the existing intrusion aggregations are debatable because they have the tenden-
cies to erroneously cluster failed attacks and true positives that can achieve the
objectives of the attackers together

Data labellings:
Some available datasets are manually labelled datasets while some are packet
traces without identities. Some trace �les are background e�ects of some attacks
collected in synthetic networks. Hence, donors such as the Shmoo group often
warn users strongly about the validity of the datasets downloaded from their
repository.

Availability of evaluative datasets:
Another emerging threat to the usage of Internet traces is that most trace �les
are not readily available for evaluating IDSs and IPSs designs without being
pre-processed (Nehinbe, 2011).This is because most of the available Internet
traces are tcpdump �les that were logged and compressed in Packet Capture
(PCAP) formats.Most IDSs such as Snort in IDS mode and Bro, and IPS such
as Snortin Inlinemode are unable to decode zip �les until each of the �les is

92 How to evaluate intrusion detection systems

correctly pre-processed into a readable format that the device can sni�.

Discrepancies in evaluative datasets:
Experiences working with some of the datasets show that they have some dis-
crepancies due to missing attributes and values. These are usual problems when
ever intrusive datasets are collected from di�erent operating systems, di�erent
networks and di�erent locations.Consequently, selecting a suitable method for
eliminating discrepancies in intrusive datasets is a central problem in the usage
of the IDSs and the IPSsfor safeguarding computer infrastructure.

4.3.1.1 Available dataset conclusion

Based on the above, we now comment on how useful the three datasets men-
tioned in section 4.1.2 are:

KDD Cup 1999 Dataset:
Looking at the o�cial site 12 we can see that the last update of the dataset was
in October 28, 1999. Besides this the available �les are di�cult to use. The
data is available in simple text �les, with no src/dest ip-addresses, and ports.
It is not possible to replay this �le to test a given IDS. If it had been a pcap �le
then we could have used a tool like Tcpreplay.

UNB ISCX Intrusion Detection Evaluation Dataset:
Looking at the datasets homepage 13, and reading the article regarding the
creation of the dataset, it was not possible to get access to this dataset. We
requested an Academic License Agreement but did not create a reaction from
the vendors.

4.3.2 Statistical calculations

Nadiammai et al. [34], we base our performance tests on Accuracy, Sensitivity,
Speci�city and computational time FAR.

Accuracy is the total number of detected attacks among all the other attack

12http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
13http://www.iscx.ca/datasets

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.iscx.ca/datasets

4.3 How will we test? 93

data:

TP + TN

TP + TN + FP + FN
(4.1)

Sensitivity is the possibility that it is possible to predict positive instances.

TP

TP + FN
(4.2)

Speci�city is the possibility that it is possible to predict negative instances.

TN

TN + FP
(4.3)

False Alarm Rate speci�es the total of normal data that are mistakenly taken
as attack.

FP

FP + TN
× 100 (4.4)

Figure 4.6: Table of metrics for intrusion evaluation

The confusion matrix (see �gure 4.6) is a visualized tool typically used in clas-
si�cation method and it is said to be a matching matrix in clustering method.

94 How to evaluate intrusion detection systems

4.4 Evaluation

In this section we evaluate. We focus on the installation/usage experience with
Snort, pytbull/snorby results, and installation/usage experience with pytbull
and snorby.

4.4.1 Snort installation

The victim machine had Ubuntu 10.04 installed, and the �rst version of Snort
which was installed were 2.8.5.2-2build1 which was from 2010-04-06. It was
installed with Synaptic Package Manager. There exist 3 di�erent categories of
accessing the Snort ruleset 14:

1. The subscriber release (payble, and has the current version of the rulesets
"2955").

2. The registered user release (free of charge for 30 days, does not have the
current version).

3. The Community release (is free and is updated on a daily basis, but does
only contain a subset of the o�cial ruleset)

To use the (2) we had to remove the Ubuntu version of Snort, and install the
current version 2.9.5.5. When running pytbull (see section 4.4.5.1) in the begin-
ning the detection was not good by Snort. So in order to improve the detection
we searched for rulesets. We found ETOpen Ruleset 15 which is an excellent
antimalware IDS/IPS ruleset. This and the community rules (3) were added
to Snort, and then the detection got better (the results from pytbull showed
more green and orange, see section 4.4.5.1). We had added following rulesets:
default, community, snort ruleset version 2953 and ETOpen ruleset. We also
tried "pulledpork" 16 to get the newest rulesets, but this action was not di�erent
from getting the rulesets by your self.

14http://www.snort.org/snort-rules/?
15http://www.emergingthreats.net/open-source/etopen-ruleset/
16https://code.google.com/p/pulledpork/

http://www.snort.org/snort-rules/?
http://www.emergingthreats.net/open-source/etopen-ruleset/
https://code.google.com/p/pulledpork/

4.4 Evaluation 95

4.4.2 Snort usage

When Snort was installed you had to adjust the con�g �le and the rulesets to
�t to your environment. Searching the internet there were many suggestions
for installing Snort etc. Therefore there should be Snort setup �les to test if
the rules was added correctly so Snort detected intrusion attempts. These tests
should determine if Snort had reached its highest security level.

4.4.3 Evaluating pytbull/snorby results

It is hard to evaluate the results, because:

1. The attack signature names in Snorby does not match the test names in
pytbull (no explanation of attacks, what the actual test case tests for).

2. At some test results pytbull does not show any "color" (detection result).

3. There is no explanation of why the test result has been assigned the actual
detection color.

4. We don't know how many alert events pytbull should generate at snort.

By asking the head developer of pytbull we have clari�ed some issues.

Assignment of protection color: Each test can have a "pattern" de�ned in
the payloads, as follows:

s e l f . payloads . append ([
' {TEST_NAME} ' ,
'command ' ,
{COMMAND_ARGS_ARRAY} ,
' {PATTERN} '

])

When pytbull receives the log from snort, it extracts the part that correspond to
the test that was just performed and sees whether it matches the "pattern". In
this case, the test is considered as successful and the color is green. In the case
something else has been received, the color will be orange. And when nothing
is received at all, the color is red.

96 How to evaluate intrusion detection systems

No test color: In the case pytbull receives an alert from the IDS that does
not match the expected pattern or if not pattern was speci�ed for the test, the
color is orange.

Pytbull extracting alerts from IDS: It gathers the IDS log �le after each
test and performs a di� of this �le between 2 tests to only extract the new alerts
generated by the IDS. The new alerts are considered as generated by the test.

Now we look at �gures from chapter A. Looking at �gure A.1 we can see that
there are no red color (no detection). That is good, but some of the tests are not
included because they have not been assigned a color. In �gure A.2, A.3 and
A.4 we have listed the detailed section of the tests which has been executed.
Looking at �gure A.5 we can see a list of the discovered/matched intrusions
by Snort, which snorby has picked up from its database (containing logs from
Snort). Snort has logged many alerts called "frag3: Fragments smaller than
con�gured min fragment length". The signature called "Snort Alert [...]" is
because the event couldn't be found in the naming �les. At �gure A.6 we can
see how many alerts Snort has generated (High/Medium/Low severity), and a
distribution of the di�erent alert signatures. In �gure A.7 we have added the
High severity alerts (only one occurrence in all of the events), so it can give
an impression of which alerts Snort labels as High severity. In �gure A.8 we
have listed the frag3 which is labelled as Medium severity. At �rst not all of
the test modules could be executed, because some of them stopped because of
error. After we �xed these errors we got the test results shown in �gure A.9,
A.10, A.11 and A.12 We could not execute two test modules IP Reputation
and Client Side Attacks. IP Reputation had to connect to the Internet at the
same time the actual computer was connected to the local network. The Client
Side Attacks module did not work, even though a server instance was executed
correctly on the victim computer.

4.4.4 Summing up

Based on the experiments and �ndings above, we brie�y summarize pros and
cons for Snort :
Pros: Snort is quickly installed and running on the network. Snort rules are
fairly easy to write, where the syntax is straightforward. Snort has good support
available 17. Snort supports multiple formats, and last and not least, its free.

Cons: Snort rules must be developed carefully. This is necessary to reduce the
number of false alarms of information generated and to reduce the amount of

17 Snort homepage: http://www.snort.org/

http://www.snort.org/

4.4 Evaluation 97

information logged.

4.4.5 Other programs

In this section we evaluate pytbull and snorby, focusing on installation and
usage.

4.4.5.1 Pytbull installation

The installation of the program was straight forward, based on instructions
you could easily install the client and server. The instructions can be seen on
pytbulls homepage 18. The program "ncrack" was needed to be installed on the
client, so the bruteForce test module could run. The installation of the "ncrack"
requires additional packages.

4.4.5.2 Pytbull usage

The program's usage instructions is insu�cient, it contains only one example of
starting the program from a terminal. So in order to get to know the available
terminal arguments we looked in the pytbull code. It was easy to misunderstand
the program, because it starts with a ipv6 warning, and then the menu. You
could interpret this as a problem, and that the tests have not been executed. It
turns out that the tests wasn't executed, it was only the initialization. Another
issue was about the ftp on the server (victim machine), there was no documenta-
tion about setting users and password on the pytbull homepage. One bad thing
about the pytbull program is that you could not save or export your results.
Every time you run pytbull it will erase your previous results.

18http://pytbull.sourceforge.net/index.php?page=documentation

http://pytbull.sourceforge.net/index.php?page=documentation

98 How to evaluate intrusion detection systems

(a) Overview (b) Diagrams

(c) Results (d) Alert

Figure 4.7: Pictures of pytbull

4.4 Evaluation 99

4.4.5.3 Snorby installation and usage

The keyword for this installation was "dependencies" between di�erent packages.
It has a nice look, and has easy understandable menus. Some times when you
use the program your login fails. This must be a bug in the program. When
you delete your discovered sensors you need to reboot the computer and this is
a bit annoying. Snorby has some prede�ned categories of signatures but it fails
to classify the alerts signatures which have been found by Snort.

100 How to evaluate intrusion detection systems

Chapter 5

Best practice

In this chapter we �rst cover measurable IDS characteristics and challenges
of IDS testing. Next we list the appropriate tools to use, and suggest test
procedures.

This chapter contribute, to give an advise for others who have the intention of
testing an IDS.

5.1 Quantitatively measurable IDS characteris-
tics

In this section we list a partial set of measurements that can be made on IDSs
Mell et al. [41]. The focus is speci�cally upon those measurements that are
quantitative and that relate to detection accuracy:

• Coverage: This measurement determines which attacks an IDS can de-
tect under ideal conditions. For signature-based systems, this would sim-
ply consist of counting the number of signatures and mapping them to
a standard naming scheme. For non signature based systems, one would

102 Best practice

need to determine which attacks out of the set of all known attacks could
be detected by a particular methodology.

• Probability of False Alarms: This measurement determines the rate
of false positives produced by an IDS in a given environment during a
particular time frame. A false positive or false alarm is an alert caused by
normal non malicious background tra�c.

• Probability of Detection: This measurement determines the rate of
attacks detected correctly by an IDS in a given environment during a
particular time frame. The di�culty in measuring the detection rate is
that the success of an IDS is largely dependent upon the set of attacks
used during the test.

• Resistance to Attacks Directed at the IDS: This measurement demon-
strates how resistant an IDS is to an attacker's attempt to disrupt the
correct operation of the IDS. Attacks against an IDS may take the form
of:

1. Sending a large amount of non attack tra�c with volume exceeding
the IDSs processing capability. With too much tra�c to process, an
IDS may drop packets and be unable to detect attacks.

2. Sending to the IDS non attack packets that are specially crafted to
trigger many signatures within the IDS, thereby overwhelming the
IDSs human operator with false positives or crashing alert processing
or display tools.

3. Sending to the IDS a large number of attack packets intended to
distract the IDSs human operator while the attacker instigates a real
attack hidden under the smokescreen created by the multitude of
other attacks.

4. Sending to the IDS packets containing data that exploit a vulnera-
bility within the IDS processing algorithms. Such attacks will only
be successful if the IDS contains a known coding error that can be
exploited by a clever attacker. Fortunately, very few IDSs have had
known exploitable bu�er over�ows or other vulnerabilities .

• Ability to Handle High Bandwidth Tra�c: This measurement demon-
strates how well an IDS will function when presented with a large volume
of tra�c. Most network-based IDSs will begin to drop packets as the traf-
�c volume increases, thereby causing the IDS to miss a percentage of the
attacks.

• Ability to Correlate Events: This measurement demonstrates how well
an IDS correlates attack events. These events may be gathered from IDSs,
routers, �rewalls, application logs, or a wide variety of other devices.

5.2 Challenges of IDS testing 103

• Ability to Detect Never Before Seen Attacks: This measurement
demonstrates how well an IDS can detect attacks that have not occurred
before. For commercial systems, it is generally not useful to take this mea-
surement since their signature-based technology can only detect attacks
that had occurred previously.

• Ability to Identify an Attack:This measurement demonstrates how
well an IDS can identify the attack that it has detected by labeling each
attack with a common name or vulnerability name or by assigning the
attack to a category.

• Ability to Determine Attack Success: This measurement demon-
strates if the IDS can determine the success of attacks from remote sites
that give the attacker higher- level privileges on the attacked system. In
current network environments, many remote privilege- gaining attacks (or
probes) fail and do not damage the system attacked.

• Capacity Veri�cation for NIDS: The NIDS demands higher- level pro-
tocol awareness than other network devices such as switches and routers;
it has the ability of inspection into the deeper level of network packets.

• Other Measurements: There are other measurements, such as ease of
use, ease of maintenance, deployments issues, resource requirements, avail-
ability and quality of support etc. These measurements are not directly
related to the IDS performance but may be more signi�cant in many com-
mercial situations.

5.2 Challenges of IDS testing

There are several aspects of IDSs that make IDS testing challenging Mell et al.
[41].

• Di�culties in collecting attack scripts and victim software: One
problem that has inhibited progress in this �eld is the di�culty of col-
lecting attack scripts and victim software. It is di�cult and expensive to
collect a large number of attack scripts. While such scripts are widely
available on the Internet, it takes time to �nd relevant scripts to a par-
ticular testing environment. Once a script is identi�ed, it takes roughly
one person week to review the code, test the exploit, determine where the
attack leaves evidence, automate the attack, and integrate it into a testing
environment.

104 Best practice

• Di�ering requirements for testing signature based vs. anomaly
based IDSs: Although most commercial IDSs are signature based, many
research systems are anomaly-based, and it would be ideal if an IDS testing
methodology would work for both of them. This is especially important
since we would like to compare the performance of upcoming research
systems to existing commercial ones.

• Di�ering requirements for testing network based vs. host based
IDSs: Testing host based IDSs presents some di�culties not present when
testing network based IDSs. In particular, network based IDSs can be
tested in an o�ine manner by creating a log �le containing TCP tra�c
and then replaying that tra�c to IDSs.This is convenient as all of the IDSs
do not have to be tested at the same time, and the repeatability of the test
is easy to achieve. Alternately, host based IDSs use a variety of system
inputs in order to determine whether or not a system is under attack. This
set of inputs changes between IDSs. Also, host based IDSs are designed to
monitor a host as opposed to a single data feed (like network based IDSs).
This makes it di�cult to replay activity from log �les in order to test a
host based IDS. Since it is di�cult to test a host based IDS in an o�ine
manner, researchers must explore more di�cult realtime testing. Realtime
testing presents problems of repeatability and consistency between runs.

• Four approaches to using background tra�c in IDS tests: Most
IDS testing approaches can be classi�ed in one of four categories with re-
gard to their use of background tra�c: testing using no background traf-
�c/logs, testing using real tra�c/logs, testing using sanitized tra�c/logs,
and testing using simulated tra�c/logs. While there may be other valid
approaches, most researchers �nd it necessary to choose among these cat-
egories when designing their experiments. Furthermore, it is not yet clear
which approach is the most e�ective for testing IDSs since each has unique
advantages and disadvantages.

1. Testing using no background tra�c/logs

2. Testing using real tra�c/logs

3. Testing using sanitized tra�c/logs

4. Testing by generating tra�c on a testbed network

5.3 Appropriate tools to use

This section highlight, the tools which can be used, when testing an IDS.

5.3 Appropriate tools to use 105

5.3.1 Generating attacks

Here we list suggested available tools, which are able to generate attacks:

1. BackTrack: is a distribution based on the Ubuntu Linux distribution
aimed at digital forensics and penetration testing use.
BackTrack arranges tools into 12 categories: Information gathering, Vul-
nerability assessment, Exploitation tools, Privilege escalation, Maintaining
access, Reverse engineering, RFID tools, Stress testing Forensics, Report-
ing tools, Services, Miscellaneous. 1

2. Kali Linux: is a Debian-derived Linux distribution designed for digital
forensics and penetration testing. It is maintained and funded by O�ensive
Security Ltd. developed by rewriting BackTrack, their previous forensics
Linux distribution. 2

3. Metasploit: is a computer security project that provides information
about security vulnerabilities and aids in penetration testing and IDS sig-
nature development. 3

4. Pytbull: is an Intrusion Detection/Prevention System (IDS/IPS) Testing
Framework for Snort, Suricata and any IDS/IPS that generates an alert
�le. It can be used to test the detection and blocking capabilities of an
IDS/IPS and to validate con�g. 4

5.3.2 Generating background tra�c

Here we list suggested available tools, which are able to generate background
tra�c:

1. Ostinato is an open-source, cross-platform network packet crafter/tra�c
generator and analyzer with a friendly GUI. Craft and send packets of
several streams with di�erent protocols at di�erent rates. Ostinato aims
to be "Wireshark in Reverse" and become complementary to Wireshark.
5

1http://www.backtrack-linux.org/
2http://www.kali.org/
3http://www.metasploit.com/
4http://pytbull.sourceforge.net/index.php?page=home
5https://code.google.com/p/ostinato/

http://www.backtrack-linux.org/
http://www.kali.org/
http://www.metasploit.com/
http://pytbull.sourceforge.net/index.php?page=home
https://code.google.com/p/ostinato/

106 Best practice

Looking at Botta et al. [42] there exist several generation platforms such as:
Seagull, Timix, Rude/Crude, TG, Mgen, Kute, Brute, LiTGen, Network tra�c
generator, NetSpec, Netperf, Iperf, TCPivo, TCPreplay, TCPopera, ParaSynTG,
UniLoG, Swing and Mace.

5.4 Suggested procedures

In this section we give a �nal procedure suggestion in order to give a best
practice, when testing an IDS.
Firstly we sum up, the articles from section 4.2:

Alhomoud et al. [35] from section 4.2.1
Setup/environment: Use of physical hardware.
Metrics: Test of performance: di�erent packet size, di�erent speed,

Day et al. [36] from section 4.2.2
Setup/environment: Use of virtual environment.
Metrics: Evaluation of e�ciency under stressful conditions. Following
resources were monitored: CPU utilisation, memory utilisation, persistent
storage bandwidth and network interface bandwidth

Alserhani et al. [37] from section 4.2.3
Setup/environment: Use of physical hardware.
Metrics: Test of performance.

Fu et al. [38] from section 4.2.4
Setup/environment: Use of virtual environment.
Metrics: Tested with di�erent types of attacks, transmission rates, and
various packet fragment sizes.

Based on the four articles which test Snort and the rest of this thesis, we can
suggest the following check-list:

1: Determine the type of the target IDS.
We know that an IDS can only be passive, and not active, because then it would
be an IPS. Another thing is that the IDS can also be either network-based
or host-based, and knowledge-based or signature-based. For a more detailed
overview you can look at �gure 2.21.

2: Determine the testing setup/environment.
As seen in the four selected articles, there is no speci�c choice, if it should

5.4 Suggested procedures 107

be psychical hardware or virtual environment. It depends on, if there exist a
budget or not which can give you the right resources for testing. It also depends
on which metrics you decide to test for. Money or not and selected metrics's
we will suggest a virtual environment, which hopefully can give you a realistic
scenario. Some bene�ts are: Isolation, Standardization, Consolidation, Ease
of Testing and Mobility 6. Some drawbacks are: Virtual machine is not that
e�cient as a real one when accessing the hardware. When multiple virtual
machines are simultaneously running on a host computer, each virtual machine
may introduce an unstable performance, which depends on the workload on the
system by other running virtual machines. 7

3: Determine the testing/evaluation metrics.
This depends on the two previous points, and you can choice to re-examine
metrics's which already has been tested/evaluated.

6http://www.devx.com/vmspecialreport/Article/30383
7http://www.serial-server.net/virtual-machine/

http://www.devx.com/vmspecialreport/Article/30383
http://www.serial-server.net/virtual-machine/

108 Best practice

Chapter 6

Conclusion

In this project we wanted to look at IDS in an critical perspective, and the
creation of this thesis has not convinced us, to be less critically regarding IDS.

The objective of this thesis was initially to select open source IDS, and �nd their
limitations, pros/cons, and see how they complement each other.

During the project we discovered that our �rst plan, involving test with a dataset
(KDD cup 1999), was not possible to ful�l. Some of the reasons for this outcome,
were that the dataset had many shortcomings, it was not available as a replay
�le, and the data was not complete. When turning to other datasets, it showed
that the availability of these datasets was lacking. Most of the datasets were
not public available, not particular relevant with attacks, the project within the
dataset was created was stopped, no documentation and numbers for amount
of certain network tra�c so you could make statistical calculations.

The main outcome of this thesis was later reconsidered, and the new direction
was therefore to give an best practice of testing IDS.

The main contributions of this thesis are:

1. Proposed an overview of recent IDS techniques approaches, listing of at-
tacks and threats, and explanation of challenges regarding IDS.

110 Conclusion

2. Explained the typical architecture of IDS, and used Snort as an example.

3. Explained how to evaluate IDS.

4. Proposed a best practice for testing an IDS.

5. Given a concluding remark about the role of NIDS, answers to the research
questions, and provided suggestions and improvements.

We know that threats and attacks against the users computer system evolve
rapidly every day, but the focus should be mixed. None of the viewed articles
in this thesis look at attacks against the IDS itself. This issue just show that
security in general is very complex, and the goal of a "secure" computer system
is very hard.

Most of the articles which were deselected, proposed new methods but failed to
prove that it actual worked. Besides that, some critic should be pointed at the
used articles in this thesis. Not all of the articles are from the period 2012-2013,
so their arguments could be outdated, because of new intrusions which evolve
every day.

When working with rule based IDS, it turns out that the more rules the better
protection, but is it really possible to check for everything, one could doubt this.
In addition, testing an IDS has shown to be almost impossible because of the
lack of available datasets and standard test procedures.

6.1 The role of NIDS

Network security is often a primary concern when building a network infrastruc-
ture. Security management for networks is di�erent for all kinds of situations.
A home or small o�ce may only require basic security while large businesses
may require high-maintenance and advanced software and hardware to prevent
malicious attacks from hacking and spamming.
By reading the article McHugh et al. [43], we can use some of its main points
to support our discussion. First of all, we encounter the phrase "Defense in
Depth", and the de�nition is:

"Defense in Depth is a strategy used by many corporations to maintain security.
It is used to help prevent attackers from getting into the network by putting up
multiple barriers around the network to slow down the attack. This strategy
was developed by National Security Agent or NSA to help with security. This
strategy would be using another idea called layered security, which would be using

6.1 The role of NIDS 111

Firewalls and other associated technologies to mitigate and prevent an attack.
Depending on the technology these technologies would be used to defend against,
malware, DDOS, spoo�ng, intruders, and many other types of attacks on a
system. This also includes a plan on what would happen if an attack were
to occur, and what the corporation should do in this type of event. However,
Defense in Depth does not only apply to corporation it also applies to every
day users. Typical users can also have a Defense in Depth strategy just in case
something happens on their network or computer system." 1

Figure 6.1: Defense in depth layers

Figure 6.1 shows the di�erent layers of Defense in Depth. NIDS can be de-
ployed in one of the layers, and therefore complement other security measures.
It should be considered as a 2nd line of defence, and a burglar alarm, which
noti�es the administrator.
When adding a NIDS to your network infrastructure it is not just a plug and
play, where it works immediately as intended. No, it needs the right con�gura-
tion and placement. Regarding placement the webpage 2 suggest three possible
locations. The �rst is where the NIDS is outside the perimeter of the �rewall,
see �gure 6.2. The next is where the NIDS is deployed such that it monitors
the tra�c that traverses any given link within the network, see �gure 6.3. The
last suggestion is where the NIDS is installed in every host, just like anti-virus.
So every host has an inbuilt NIDS attached to all of its network interfaces.

1cited from http://www.personal.psu.edu/dhl5025/Assignment6.html
2http://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/

http://www.personal.psu.edu/dhl5025/Assignment6.html
http://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/

112 Conclusion

Figure 6.2: A NIDS as an early detection system

Figure 6.3: NIDS in complete deployment mode

When deploying an NIDS it requires a broad understanding of computer se-
curity. Besides that the use of technology alone is not su�cient to maintain
network security. An organization must attract, train, and retain quali�ed tech-
nical sta� to operate and maintain intrusion detection technologies. In today's
market, quali�ed intrusion analysts and system/network administrators who are
knowledgeable about and experienced in computer security are hard to �nd.

There will always be pros and cons when making a decision, and regarding the
deployment of NIDS it is no exception. You must determine that the pros is
weighted higher than the cons.

6.2 Answers to research questions

What is an IDS? - what is the typical architecture?
It is a device or a software application that monitors network or system
activities for malicious activities or policy violations and produces reports
to, for instance an administrator. As explained in section 3.1 about CIDF,
it consist of four components: Event generators, Event analyzers, Event
databases and Response units. These components serve as the base for
modern IDS, and can be extended to �t the actual implementation.

6.2 Answers to research questions 113

What sort of techniques does the IDS use?
As explained in section 2.3, which consist of recent approaches within IDS,
the techniques used has been categorized in this thesis. The categories
are: Data Mining, Machine Learning, Hidden Markov Models, Honeypot,
Genetic Algorithm and Fuzzy Logic.

How is the patterns represented and detected?
Looking at Snort as an example, an FSM is generated from the set of
strings extracted from the Snort rule database. The FSM matches multi-
ple strings at the same time based on the Aho-Corasick string matching
algorithm. The single-keyword and multiple-keyword pattern matching
algorithms which an IDS can use can be seen in section 3.3. Even though
many IDS use multiple-keyword pattern matching it has been decided that
it is properly not su�cient to use. When the workload is very high be-
cause of the inspection of every network packets, another possibility is to
use hardware for the pattern matching.

What is the common test approach for IDS?
As summarized in section 5.4, about the articles regarding testing Snort,
it shows that the choice of test environment is either physical hardware or
virtualization. It depends on, the available resources, such as money.
Regarding evaluation metrics, they are adapted to the speci�c case, where
the researchers use there own evaluation criteria to check the actual re-
quirements of the new theory or extending existing IDS with new func-
tionality.
So currently, there do not exist a common test approach for IDS.

Does an IDS cover all potential intrusions?
We have looked at NIDS, and my opinion is that it is not possible to
detect all potential intrusions. For instance the placement of the NIDS
determines the role, and what its purpose is. It depends on the circum-
stances, and the NIDS can't fully detect zero-day exploits. Another weak-
ness of the NIDS is when the network speed increases, the NIDS might
discard/drop packets.

What is the future prospects of IDS?
Its a question that is hard to answer, because non of the used articles
explains this.

"Is it possible to make an trustworthy investigation of an Intrusion Detection
System which �nds its limitations?"

Answer: No, but if you have money and therefore the required resources it
might be possible. In addition, speci�c researchers might have a private dataset
available, which represent a realistic network scenario.

114 Conclusion

"Is it possible to make an trustworthy best practice for testing Intrusion Detec-
tion System?"

Answer: In this thesis we have tried to give an best practice, and the focus has
been on, giving some guidelines on what to decide, when testing an IDS. The
best practice has been based on the knowledge we have gained by the articles
in this thesis.

6.3 Suggestions and improvements

When reading the relevant articles for this thesis, and by using tools, we have
given it a thought, and thereby listed some suggestions and improvements:

Central IDS web community
It was very annoying that relevant articles about IDS were hard to �nd,
where some was found by luck. It could be very helpful and informative
to have a community on the web, which contained categorized relevant
articles about IDS, the state of the art IDS information, and for instance
links or reviews about how to test IDS.

De facto standard (shared) dataset for testing IDS
As mentioned in earlier section it was not possible to get a relevant and
useful dataset for testing Snort for its limitations. It could be nice if
someone could create a dataset which were accessible for every relevant
researchers, and for the public. People could therefore contribute to this
dataset, and get closer to handle all of the modern intrusions/attacks.

Runnable security check of Snort
One could be in doubt, whether Snort was con�gured the right way, and
therefore had the correct security level. It could be nice if the vendors of
Snort, had made a security check script that an user could run. The script
could check for speci�c intrusions that as a standard the Snort program
should detect.

Improvements for Pytbull
There should be an included �le or on the homepage, about how and
what it tests for. The next version of Pytbull is under development, and
it should have the functionality of exporting or save previous results.

GUI for Snort Rules
Currently the rules for Snort is placed in regular text �les. It could be

6.3 Suggestions and improvements 115

convenient to have the rules placed in a database. In addition a GUI
could be used to get an overview of the rules, and maybe create new ones
or modify existing ones.

Documented test of Snort
As a student which is interested in a more detailed explanation of the
Snort architecture, it could be helpful to have documentation of this on
the Snort webpage. Besides that it could be good if the vendors of Snort
had made documentation of testing Snort, so it could convince the users,
that it really could help detecting intrusions.
Another issue related to the documentation is that there are many poten-
tial customers for the results of quantitative evaluations of IDS accuracy.
Acquisition managers need such information to improve the process of
system selection, which is too often based only on the claims of the ven-
dors and limited-scope reviews in trade magazines. Security analysts who
review the output of IDSs would like to know the likelihood that alerts
will result when particular kinds of attacks are initiated. Finally, R and
D program managers need to understand the strengths and weaknesses
of currently available systems, so that they can e�ectively focus research
e�orts on improving systems, and measure their progress.

A standard for test methodology for IDS
It would be helpful for the researches whose research �eld is IDS, to have
a standard test methodology which they could follow. The standard could
just be a base for own extending procedures.

A standard for evaluation metrics for IDS
It would also be helpful for the researches for IDS to have a standard for
evaluation metrics for IDS. In this way, they could have speci�c perfor-
mance requirements that the current IDS should comply with, when for
instance extending with new functionality.

116 Conclusion

Appendix A

Pytbull and snorby results

Figure A.1: Report from pytbull

118 Pytbull and snorby results

Figure A.2: Details from pytbull

Figure A.3: Details from pytbull

119

Figure A.4: Details from pytbull

120 Pytbull and snorby results

Figure A.5: Signature results from snorby

Figure A.6: Graph from snorby

121

Figure A.7: Highest classi�cation of events from snorby

Figure A.8: Middle classi�cation of events from snorby

122 Pytbull and snorby results

Figure A.9: Report from pytbull

Figure A.10: Details from pytbull

123

Figure A.11: Signature results from snorby

Figure A.12: Middle classi�cation of events from snorby

124 Pytbull and snorby results

Bibliography

[1] Hackmageddon.com, �Cyber attacks statistics,� http://hackmageddon.
com/2013-cyber-attacks-statistics/, Aug 2013.

[2] PWC, �Cybercrime protecting against the growing threat,� unknown, 2004.

[3] I. Corporation, �Ibm qradar security intelligence,� 2013.

[4] S. Chebrolu, A. Abraham, and J. P. Thomas, �Feature deduction and en-
semble design of intrusion detection systems,� Computers and Security,
2004.

[5] A. J. Deepa and D. V. Kavitha, �A comprehensive survey on approaches to
intrusion detection system,� in Procedia Engineering, 2012.

[6] W. Stallings, �Introduction to network-based intrusion detection,� http:
//www.informit.com/articles/article.aspx?p=782118, Aug 2007.

[7] M. D'silva and D. Vora, �Comperative study of data mining techniques
enhance intrusion detection,� International journal of engineering research
and applications, 2013.

[8] Q. Zhou and Y. Zhao, �The design and implementation of ids based on data
mining technology,� Research journal of applied sciences engineering and
technology, 2013.

[9] N. B. Amor, S. Benferhat, and Z. Elouedi, �Naive bayes vs decision trees
in intrusion detection systems,� unknown journal.

[10] P. Natesan, P. Balasubramanie, and G. Gowrison, �Improving attack de-
tection rate in network intrusion detection using adaboost algorithm with

http://hackmageddon.com/2013-cyber-attacks-statistics/
http://hackmageddon.com/2013-cyber-attacks-statistics/
http://www.informit.com/articles/article.aspx?p=782118
http://www.informit.com/articles/article.aspx?p=782118

126 BIBLIOGRAPHY

mutiple weak classi�ers,� Journal of information and computational sci-
ence, 2012.

[11] D. Ariu, R. Tronci, and G. Giacinto, �Hmmpayl: An intrusion detection
system based on hidden markov models,� Computers and Security, 2010.

[12] H. Farhadi, M. AmirHaeri, and M. Khansari, �Alert correlation and pre-
diction using data mining and hmm,� Information Security, 2011.

[13] V. S. Bhumika, �Use of honeypots to increase awareness regarding network
security,� IJRTE, 2012.

[14] Wikipedia, �Genetic algorihm,� http://en.wikipedia.org/wiki/Genetic_
algorithm, Aug 2013.

[15] B. S. Dhak and S. Lade, �An evolutionary approach to intrusion detection
system using genetic algorithm,� ijetae, 2012.

[16] Wikipedia, �Fuzzy logic,� http://en.wikipedia.org/wiki/Fuzzy_logic, Aug
2013.

[17] R. Shanmugavadivu and D. N. Nagarajan, �Network intrusion detection
system using fuzzy logic,� IJCSE.

[18] U. S. G. A. O�ce, �United states faces challenges in addressing global
cybersecurity and governance,� unknown journal, 2010.

[19] FireEye, �Advanced targeted attacks,� unknown journal.

[20] O. Kolesnikov and W. Lee, �Advanced polymorphic worms: evading ids by
blending in with normal tra�c,� 2004.

[21] S. Paul and B. K. Mishra, �Polys: Network-based signature generation for
zero-day polymorphic worms,� International journal of grid and distributed
computing, vol.6, no. 4, 2013.

[22] P. Li, M. Salour, and X. Su, �A survey of internet worm detection and
containment,� 1st Quarter 2008, Volume 10, No. 1, 2008.

[23] M. M. M. Hassan, �Current studies on intrusion detection system, genetic
algorithm and fuzzy logic,� International Journal of Distributed and par-
rallel Systems, 2013.

[24] J. Pieprzyk, T. Hardjono, and J. Seberry, �Fundamentals of computer
security,� http://books.google.dk/books?id=NH-m8L0R3rYC&printsec=
frontcover&hl=da#v=onepage&q=CIDF&f=false, 2003.

[25] unknown author, �White paper on deep packet inspection,� unknown jour-
nal.

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Fuzzy_logic
http://books.google.dk/books?id=NH-m8L0R3rYC&printsec=frontcover&hl=da#v=onepage&q=CIDF&f=false
http://books.google.dk/books?id=NH-m8L0R3rYC&printsec=frontcover&hl=da#v=onepage&q=CIDF&f=false

BIBLIOGRAPHY 127

[26] T. AbuHmed, A. Mohaisen, and D. Nyang, �Deep packet inspection for
intrusion detection systems a survey,� unknown journal.

[27] J. ichi Aoe, �Computer algorithms string pattern matching strategies,� un-
known journal, 1994.

[28] S. Hasib, M. Motwani, and A. Saxena, �Importance of aho corasick string
matching algorithm in real world applications,� IJCSIT, 2013.

[29] Z. A. Khan and R. K. Pateriya, �Mutiple pattern string matching method-
ologies a comparative analysis,� unknown journal, 2012.

[30] Syngress, How to cheat at con�guring open source security tools. Syngress,
2007.

[31] S. Sen, �Performance characterization and improvement of snort as an ids,�
Lucent Technologies, Tech. Rep., 2006.

[32] Po-ChingLin and Jia-HauLee, �Re-examining the performance bottleneck
in a nids with detailed pro�ling,� Journal of Network and Computer Ap-
plications 36, 2012.

[33] B. Kang, H. S. Kim, J. S. Yang, and E. G. Im, �Rule indexing for e�cient
intrusion detection systems,� unknown journal, 2012.

[34] G. Nadiammai and M. Hemalatha, �An enhanced rule approach for network
intrusion detection using e�cient data adapted decision tree algorithm,�
Jorunal of theoretical and applied information technology, 2013.

[35] A. Alhomoud, R. Munir, J. P. Disso, I. Awan, and A. Al-Dhelaan, �Perfor-
mance evaluation study of intrusion detection systems,� The 2nd interna-
tional conference on ambient systems, networks and technologies, 2011.

[36] D. J. Day and B. M. Burns, �A performance analysis of snort and suricata
network intrusion detection and prevention engines,� The Fifth Interna-
tional Conference on Digital Society, 2011.

[37] F. Alserhani, M. Akhlaq, I. U. Awan, J. Mellor, A. J. Cullen, and P. Mir-
chandani, �Evaluating intrusion detection systems in high speed networks,�
Fifth international conference on information assurance and security, 2009.

[38] T. Fu and T.-S. Chou, �An analysis of packet fragmentation attacks vs.
snort intrusion detection system,� International Journal of Computer En-
gineering Science (IJCES), 2012.

[39] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson, �A
methodology for testing intrusion detection systems,� 17th National com-
puter security conference in Baltimore, 1996.

128 BIBLIOGRAPHY

[40] J. O. Nehinbe, �A critical evaluation of datasets for investigating idss and
ipss researches,� Proceedings of the 2011 10th IEEE International Confer-
ence On Cybernetic Intelligent Systems, September 1-2, London, UK, 2012.

[41] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, �An overview
of issues in testing intrusion detection system,� U.S. Department of Com-
merce, 2003.

[42] A. Botta, A. Dainotti, and A. Pescape, �A tool for the generation of realistic
network workload for emerging networking scenarios,� Elsevier, 2012.

[43] J. McHugh, A. Christie, and J. Allen, �The role of intrusion detection
system,� IEEE Software, 2000.

	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Scope
	1.3 Objective and research question
	1.4 Methodology
	1.4.1 Literature
	1.4.2 Procedure
	1.4.3 Evaluation

	1.5 Abbreviations and terminology
	1.6 Thesis Outline

	2 Intrusion Detection System overview
	2.1 Introduction
	2.2 Types
	2.3 Recent approaches
	2.3.1 Data mining techniques
	2.3.2 Machine learning techniques
	2.3.3 Hidden Markov Models
	2.3.4 Honeypot
	2.3.5 Genetic algorithm
	2.3.6 Fuzzy Logic

	2.4 Attacks and threats
	2.4.1 Sources of cyber security threats
	2.4.2 Types of cyber exploits
	2.4.3 Multi step attack
	2.4.4 Polymorphic worm

	2.5 Taxonomy
	2.6 Challenges

	3 Typical architecture of Intrusion Detection Systems
	3.1 The Common Intrusion Detection Framework (CIDF)
	3.2 Packet inspection
	3.2.1 Shallow Packet Inspection
	3.2.2 Medium Packet Inspection
	3.2.3 Deep Packet Inspection
	3.2.4 Challenges

	3.3 Pattern matching algorithms
	3.3.1 Single-Keyword pattern matching algorithms
	3.3.2 Multiple-Keyword pattern matching algorithms

	3.4 Snort as an example
	3.4.1 Components
	3.4.2 Snort internals
	3.4.3 Re-examining the performance bottle neck in Snort and Bro
	3.4.4 Snort improvement attempts

	4 How to evaluate intrusion detection systems
	4.1 Tools and data
	4.1.1 Testing tools
	4.1.2 Available datasets

	4.2 How have other tested?
	4.2.1 Performance evaluation of Snort and Suricata
	4.2.2 A performance analysis of Snort and Suricata
	4.2.3 Evaluating intrusion detection systems in high speed networks
	4.2.4 An analysis of packet fragmentation attacks vs Snort

	4.3 How will we test?
	4.3.1 Dataset problems
	4.3.2 Statistical calculations

	4.4 Evaluation
	4.4.1 Snort installation
	4.4.2 Snort usage
	4.4.3 Evaluating pytbull/snorby results
	4.4.4 Summing up
	4.4.5 Other programs

	5 Best practice
	5.1 Quantitatively measurable IDS characteristics
	5.2 Challenges of IDS testing
	5.3 Appropriate tools to use
	5.3.1 Generating attacks
	5.3.2 Generating background traffic

	5.4 Suggested procedures

	6 Conclusion
	6.1 The role of NIDS
	6.2 Answers to research questions
	6.3 Suggestions and improvements

	A Pytbull and snorby results
	Bibliography

