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1 INTRODUCTION

In combined heat and power (CHP) plants conversion of up to 90% of
primary energy to electrical power and heat takes place. If there is a
demand for heat sufficiently close to the location of an electrical power
plant, then it is for this reason desirable to use a CHP plant rather than
separate electrical power and heat plants.

In Denmark more than 40% of the demand for space heating is supplied
from district heating plants. Of this, more than 40% is supplied by CHP
plants. There is therefore in the power supply system a need for operational
planning of the production of heat and electrical power. In this paper we
describe the problem of optimal unit commitment and economic dispatch
in a system with CHP plants. We describe the modeling of the system, the
optimization method and computational experience.

In the English language literature few descriptions of combined heat and
power systems scheduling are found. No survey of the international litera-
ture exists. We shall therefore briefly mention the relevant literature that
1s known to us, so that this may serve as the first survey in the field.

A description of the CHP technology and the international development of
district heating is found in Tourin (1978). A description of the physical and
technical aspects of cogeneration is given in Diamant (1970). Palmer (1981)
describe four energy conversion systems. Dobbs (1982) describes pricing
and investment decisions in connection with CHP. Jeffs (1983) surveys the
status of district heating in Denmark.

Simulation models are described in Larsen and Christensen (1983) and Ped-
ersen (1983). Description of cogeneration units and mathematical models
of them, suitable for optimization purposes, are given in Bengiamin (1983),
Jenkins and Fietz (1982), Marchand & al. (1983), Piittgen and MacGregor
(1989) and Verbruggen (1979). These papers are concerned with devel-
opment of optimal schedules for a single cogeneration system, under the
assumption that electrical power can be bought or sold unlimited at known
prices. Bengiamin (1983) and Verbruggen (1970) use a load curve tech-
nique, Bengiamin (1983), Piittgen and Macgregor (1989) and Marchand &
al. (1983) use linear programming models and techniques. Jenkins and
Fietz (1984) use a variety of techniques but conclude that only heuristics



and linear programming are practical. In these studies little emphasis is
given to the development of the unit commitment schedule.

In Beune (1990) the problem of simultaneous scheduling of the cogeneration
and the electrical power units is addressed. In this study, the optimization
method is a decomposition method. The optimization takes plase in an in-
terplay between the electrical power system (excluding cogeneration units)
and the cogeneration system. The coordination between the subsystems
is attained by the interchanges of information about marginal production
costs.

Harhammer (1982) and Rabensteiner (1987) describe a similar problem,
i.e., the optimal unit commitment and economic dispatch in a system con-
taining CHP plants. The modeling contain combinations of linear and
integer elements, and the optimization method is mixed integer program-
ming.

Olesen (1990) and Pedersen (1990) also describe versions of this problem.
The modeling is nonlinear, while the optimization is based on Lagrangean
relaxation. The present paper is based on the same research project as
these two papers.

2 DESCRIPTION OF THE UNITS

In the system under consideration there are two kinds of units: cogenera-
tion unit, i.e., units producing both electrical and heat power; and electrical
power units, producing electrical power only. We shall now specify mathe-
matical models of these units.

In time period t electrical power unit i produces p;. This production is
constrained to be either zero (i.e., the unit is off) or to be between the
positive lower limit 0 < p,, and the upper level p;, (in which case the unit
is on). Thus, we require p;s = 0 or p,, < pit < Py

The cost of production of one time period at level p;; of this unit is
PCOST;(p;it). This cost function is assumed to be a piecewise third order
polynominal for p,, < pit < Pit, and to have PCOST;(0) = 0. A typical
example is indicated in Figure 1.
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Figure 1. Production cost as a function of total energy production
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As seen we do not assume that PCOST;; is convex, nor do we assume that
it is continuous. The reason for discontinuity is that the unit uses both oil
and coal as fuel. The basic fuel is coal, but at low production levels oil is
added in order to secure a good burning process. At high production levels
oil may be added to increase production. Due to price differens between
coal and oil this implies discontinuities.

Two types of cogeneration units are included in the system. In the extraction-
condensing units steam is bled off along the turbine body to heat up circu-
lating water, which is then transported to the district heating network. In
the backpressure units the steam is let out from the turbine at a tempera-
ture which is higher than in a condensing unit, and then used for heating
up the district heating network water. The thermal efficiency of such units
may be 80 - 90%.

The coproduction unit i can in any time period ¢ produce p;; (electrical
power) and g;; (heat power). The production modes, i.e., the set of possible
combinations of p;; and g;;, is denoted by PMO;;. In Figures 2 - 3 typical
PMOQO;; are indicated. Figure 2 illustrates a backpressure unit. This is
characterized by the fact that there is a unique relationship between p;,
and g;;. Figure 3 illustrates an extraction unit. As seen, here there is no
fixed relationship between p;; and g¢;;.
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Figure 2. Production mode for a backpressure unit
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Figure 3. Production mode for an extraction unit



Observe that for coproduction units the maximal electrical power is not a
fixed number. Rather, it depends on the heat production g;;. Therefore we
indicate this maximum as B;;(git)-

The PMOs are characterized as follows. For g;; there holds 0 < @;; < ¢;¢.
For p;; there holds either p;; = 0 (in which case also ¢;; = 0) or

of, + adygie + 0y (4:0)” < pie <0+ Tgie + Ty (0ir)” (1)
where the a’s are given parameters.

We shall in the notation which follows consider the electrical power units
as special cases of cogeneration units. Thus, an electrical power unit has
PMO;; = {(pit, it) | (0 = pie ox p,, < Pir < Byp),¢it = 0}, with p, (git) =
p;, and P;;(¢it) = Pae-

By suitable specification of PMO;; we can indicate if unit ¢ must be on
in a specific time period ¢; in this case the point (pit,qit) = (0,0) is not
included in PMO;;. If conversely PM O, consists of only the point (0,0),
then unit i is not available at time period ¢. Finally, if PMO;; includes
both (0,0) and some other points, its unit commitment in time period ¢
remains to be determinated by optimization.

For a given value of (pit,qit) € PMOj;, the production cost can be calcu-
lated as follows. On the set PMO;; we have defined a number of socalled
iso-fuel curves. These curves represent point (p;s, git) where the total fuel
consumption is the same. We represent these curves by second order poly-
nomials. Thus, for a total fuel consumption of, say k, the values of (pis, ¢i¢)
that give this satisfy the equation

Ok 1k 2k 2
Pie = gy + gy Qe + oy (%) (2)
Here ofF,a}F and a2} are given parameters.
The iso-fuel curves are given for a certain number of different total fuel
consumptions. A fine grid will consist of maybe 10 curves, while a coarse
grid will consist of maybe 2 or 3 curves. The first curve corresponds to the

lower borderline of PMO;,, while the last curve corresponds to the upper
borderline of PM O;;, (see (1) and Figure 3).

For any given (p;t, ¢it) € PMO;; we can now find the cost as follows. First,
find the relevant iso-fuel curve (i.e., the relevant k and the coeflicients



o alF and o2 in (2)). Second, find the socalled equivalent power pro-

duction from (2) by setting git = 0. Third, calculate costs as in a electrical
power unit by using the equivalent power. If the total fuel consumption
does not correspond to an iso-fuel curve, we use linear interpolation be-
tween the two adjacent iso-fuel curves.

Apart from the production cost also a start cost is considered. This cost is
dependent on the unit commitment for unit <. If at time period t (p;s, gi¢) =
(0,0) (i.e., the unit is off) then no start cost occurs on unit 3. If p;; > 0
then a positive start cost occurs if and only if p;;_;) = 0. The magnitude
depends on the number of consecutive time periods the unit was off before
start. This magnitude is an increasing function up to a specific number of
time periods (the cooling time), after which it gets constant. Cooling times
are typical between 6 and 24 hours. We indicate the start costs for unit ¢
by SCOST;(ps).

3 DESCRIPTION OF THE SYSTEM

There are three types of restrictions which link the N units together. These
are the electrical power balance, the electrical power reserve constraint and
the heat power balance:

N
Y ope=d, t=1,T (3)
1=1
N
> Bula)d(pie) <rf, t=1,T (4)
i=1
N
Z‘h’t:d?! t=1T (5)
=1

Here d? is the demand for electrical power in time period ¢, and 7, where
dl <, is the electrical power spinning reserve requirement in time period
t. The expression §(p;) takes the value 0 if p;; = 0 and the value 1 if
0 < p;¢. T is the number of time periods.



In restriction (5) d% is the demand for heat power in time period ¢. We
have by the notation only indicated one district heating network, but it is
straightforward to model several district heat networks (and this has been
implemented).

Finally we have the expression for the total costs, to be minimized

N N T
ZSCOSTg(pi) + PCOST;(pit, it) (6)

i=1 =1 t=1

The problem then is to minimize (6) subject to restrictions (3) - (5),
(pit, git) € PMO;;, and conditions on the units’ initial state (on, or off
for a specified number of time periods).

We see that the problem distinguishes itself from the classical electrical
power optimal unit commitment and economic dispatch problem. First,
because of the inclusion of cogeneration units and the constraints (5) and
(pit, git) € PMO;;. This is the qualitatively new feature of the model.
This has also consequences for constraint (4). Second, we work with more
complicated models of the units. Not only because they are two dimensional
for cogeneration units, but also because we do not make any assumptions
of convexity or continuity of PCOST;;.

4 SOLUTION METHOD

The problem defined in the previous sections has some similarity to the
classical unit commitment and economic dispatch problem. It therefore
seemed natural to apply methods which would be applicable to that prob-
lem.

We settled for Lagrangean relaxation because it seemed suited for the ad-
ditively separable constraints (3) - (4) - (5) and criterion (6). Moreover,
a number of articles reported on application of this method, and as the
project evolved, more appeared. See e.g. Muckstadt and Koenig (1977),
Bertsekas & al. (1983) and Merlin and Sandrin (1983).



The general idea in Lagrangean relaxation is well described in the literature
just referred to. We shall therefore only briefly sketch this technique.

We introduce Lagrange multipliers A, (to (3)), p¢ (to (4)) and w; (to (5)) for
t = 1,T. Relaxing (3), (4) and (5) and appending these constraints to the
criterion (6) we then have to solve, for given A = Ay, ..., Ar, p = (p1,..., pT)
and w = (wy,...,wr) the socalled relaxed problem:

N T
min Z SCOSTi(p:) + Z > PCOSTi(pit, git) (7)

=1 -1 t=1

N T
- Z Z()‘!pzf + pe6e(pit) Pt (qie) + wigie)

i=1 t=1
(pihqit)EPMOit) Z:I;N, t‘:]"T
If we denote the optimal criterion value in (7) by D(}, p,w) the socalled
dual problem is the following in the variables (A, p,w):

max D(}, p,w) (8)

A unconstrained
p>0
w unconstrained .

For any (A, p,w), D(A, p,w) is a lower bound on the optimal criterion value
in (3) - (6). The solution of (8) is performed by an iterative procedure, see
the references on Lagrangean relaxation cited, or e.g., Shor (1985).

We now turn to the solution of (7). We see that for fixed (), p,w) this
problem is decomposable, such that it can be solved by solving for each of
the N units independently of all the (N — 1) others.

For an electrical power unit ¢ the solution takes place in two phases. First
the optimal production level p;¢(Ai)* in period ¢ for given A;; is found under
the assumption that the unit is producing. This can be done as follows.
Given ); the optimal positive production level is

e at P, or



e at p,,, or
e at a point where PCOST;; is non-differentiable, or

e at a point where the gradient of PCOST;(pir) — Aipir vanishes.

Since we assumed PCOST;; to be a piecewise third order polynomial the
last case can be examined analytically. Therefore, p;;(A;:)* can be found
by a systematic examination of the finite number of all point satisfying any
of these criteria.

The second phase consists in finding the unit commitment. If unit ¢ is
off at time period t, the contribution to (7) is zero. If the unit is on, the
contribution is PCOSTy(pit(Ae)*) — Mepir(Ae)* — peD;y; additionally, there
may be a start cost. The optimal unit commitment is found by a systematic
search. To this, we use dynamic programming; again we refer to the quoted
literature on Lagrangean relaxation for a description of this.

For a cogeneration unit the idea is essentially the same. The first phase
is more difficult, though, since we have two variables, p;; and g;;, for each
unit in each time period.

The difficulty is resolved as follows. For each iso-fuel curve (see section
2) it is possible to find the optimal (p},,¢j;) this way. The expression to
minimize is
PCOST(pit, ¢it) — Aepit — pePir(€it) — wedie (9)
By using the expressions (1) and (2), (9) can be written
PCOST(pie, 4it) — Maly +aqie + oZf (:1)?) (10)
—pe(@F, + @y gie + oy (ie)”) — wigae
The first term is a constant, which is irrelevant for determination of the
optimal ¢;;. The optimal ¢;; can now be determined by comparing value
at the points q;; = 0, ¢;; = §;, and any stationary points of (10). Thus we

find the optimal g;; on this particular iso-fuel curve, and by using (2) then
also the optimal p;;.

By comparing optimal values of (10)vfor all iso-fuel curves, we find the
global optimum.



The second phase, in which the optimal unit commitment is found, is ex-
actly the same as for the electrical power units.

Lagrangean relaxation does not in general provide an optimal solution,
and not even a feasible one. Therefore, after convergence of (A, p,w) to
within predefined tolerances, a feasible solution is constructed. This is
done by keeping the unit commitment fixed at the terminal value and then
modifying the production levels until (3) and (5) are fulfilled. In order for
this to be possible, the iterations in (A, p) are not considered converged
before simple checks have ensured that it will be possible to find a feasible
solution with the given unit commitment. In particular, it is checked that

(4) is fulfilled.

With fixed unit commitment the feasible solution is found as follows. For
(), p) kept at their terminal values, (pj;, ;) are found to solve optimally
the following problems for t = 1,T"

N
minz PCOST:i(pis, ait) — Aebie — PeDiy(Qie) (11)

=1
N
Z‘h‘t = dé’
i=1
(pit,9it) € PMOy,, 1=1,N

Then with g;; fixed at g}, the following problems are solved for ¢t = 1,T to
determine a new pj,:

N
minZPCOSTit(Pit;‘Jit) (12)
1=1
N
sz't = df
=1
(Pit,qf,,) S PMO“, 1= 1, N

As seen we partially decouple the heat and the electrical production, but
coordinate the two problem by the Lagrange multipliers (1, p,w).

The two problems (11) - (12) are solved by dynamic programming, dis-
cretizing production levels.

10



5 IMPLEMENTATION AND

EXPERIENCE

The modeling and solution methods were developed at The Institute of
Mathematical Statistics and Operations Research (IMSOR) at the Techni-
cal University of Denmark in close cooperation with the two major electrical
power cooperations in Denmark, ELKRAFT and ELSAM. The project was
initiated in 1984. In 1987 a prototype of the system was finished, since 1989
two real implementations have been in operation. One at ELKRAFT, used
for weakly scheduling and one at ELSAM, used for long term planning,
with a time horizon of up to one year. These implementations include
additional features, such as several district heating areas, interchange of
electrical power with neighboring countries, and simplified representations
of the electrical network. We refer to Pedersen (1990) and Olesen (1990)
for descriptions of and experiences with these implementations.

In general it is difficult to solve the dual problem (8). The method used
relies on subgradient methods. Although a firm theoretical basis exists for
these, see e.g. Shor (1985), we found that it was necessary to include a
good deal of experimental results in the updating formulas.

One of the specific points observed was that it was expedient to use a two
level updating structure for the Lagrange multipliers. In the outer loop
(X, p) were updated with fixed w. Then, with fixed (A, p) we iterated w in
the inner loop.

A heuristic argumentation for this can be given as follows. The number
of coproducing units is significantly smaller than the number of electrical
power units. Therefore the change in the optimal values of the left hand
sides at (3) and (4) is much more smooth, relatively, than the change in the
left hand side of (5) for the same changes in (A, p,w). In other words, the
solution was much more stable in relation to (3) and (4) than in relation
to (5).

The observed dual gap is defined as the cost of the feasible solution minus
the optimal value of the lower bound D(},p,w). The observed dual gap
is measure of the “closeness” of the found solutions criterion value to a

11



theoretical lower bound. An observed dual gap of zero would indicate that
the optimal solution was found.

We observed a dual gap of 1-3%, relative to the lower bound. This might
be expected from the literature quoted on Lagrangean relaxation. In par-
ticular, when there are few units, the gap may be relatively bigger, see
Bertsekas & al. (1983). In our case we have few coproduction units (down
to 2 or 3 in some of the runs).

As seen from Section 2 the model formulation of the individ units is very
detailed. In particular, we nowhere assume convexity. This was felt nec-
essary, in order to get realistic models. The disadvantage of this is that
computation times may be high. However, it will be fairly easy to simplify
the models by making suitable assumptions. We have implemented a so-
lution procedure based on quadratic, strictly convex cost curves, which is
much faster than the implementation for non-convex curves.

6 SUMMARY AND CONCLUSIONS

We have described a modeling and optimization scheme which handles
combined heat and power production. The basic idea on optimization is
the application of Lagrangean relaxation. This method is well established
for electrical power systems only. It is shown how Lagrangean relaxation
can be extended to handle also the heat production.

The basic modeling is fairly detailed in order to be able to handle realistic
systems. However, the basic optimization can benefit from a simplified
modeling, assuming convex production costs.

There are at present two fullscale implementations of our prototype in
practical operation. This shows that the basic idea is sound and that
practical requirements can be met under this scheme.

12
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