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Abstract

Modern digital hearing aids require and offer a great level of personalization. To-
day, this personalization is not performed based directly on what the user actually
perceives, but on a hearing-care professional’s interpretation of what the user ex-
plains about what is perceived. In this paper, an interactive personalization system
based on Gaussian process regression and active learning is proposed, which per-
sonalize the hearing aids based directly on what the user perceives. Preliminary
results demonstrate a significant difference between a truly personalized setting
obtained with the proposed system and a setting obtained by the current practice.

1 Introduction

Hearing aids (HAs) [1] are fitted by predetermined rules (prescriptions [1, Chapter 10]) given
frequency-dependent hearing thresholds—called an audiogram—of the hearing-impaired user.
These rules are based on years of practical experience and research of the human auditory sys-
tem, however nobody knows exactly how the fitted HAs sound like, except of course, the user. From
empirical studies, it is well-known [1, Chapter 12], that users with the same audiogram may benefit
from—and prefer—very different HA settings. Therefore, a hearing-care professional with years of
experience often needs to manually fine-tune the HAs beyond the predetermined prescription. This
fine tuning is typically based on oral feedback from the user [1, Chapter 12]. In effect, this feed-
back is the user’s oral translation of the perception using a description meaningful to the subject.
This description, however, might not necessarily give meaning to the hearing-care professional. It
is believed that HA users would benefit greatly if the HAs were adjusted and personalized based
directly on how the devices sounds—and not on a poorly aligned translation thereof. In this paper, a
machine-learning based personalization system is proposed, which adjusts hearing aid settings based
on user feedback, which mimics what the individual actually hears. From the user’s perspective, the
feedback is returned as a degree-of-preference rating between two different hearing aid settings. This
is an intuitive way of expressing what is perceived while inducing a low cognitive load compared
to conveying an oral response to a single setting. The feedback is used to learn a Gaussian process
regression model of the user’s latent objective function—the optimum of which corresponds to the
truly personalized setting. To quickly find this optimum, the GP model is repeatedly updated based
on the feedback from the user and subsequently used to select the next comparison to present to the
user using active learning. Fast convergence is an absolute requirement, because even quarters of an
hour of careful listening is a very demanding task—especially for most hearing aid users.

2 Personalization System

The personalization system is an interactive loop visualized in Fig. 1. The loop essentially contains
three parts: I) A modeling part where the user’s objective function is modeled by a Gaussian process
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Figure 1: (1): a new optimal setting
is determined based on the current
(probabilistic) estimate of the sub-
ject’s objective function. (2): the op-
timal setting is compared to the set-
ting which maximizes the current es-
timate of the subject’s objective func-
tion, and the subject assesses the de-
gree of preference between the two
settings. (3): the estimate of the sub-
ject’s objective function is updated
based on the recent assessment.

based on the feedback obtained, II) an active learning part setting op the next comparison based on
the current state of the model, and III) an user interface part.

2.1 Part I: Modeling the User’s Objective from Feedback

The modeling of the subject’s objective function is performed in a Bayesian non-parametric setup
based on Gaussian Processes (GPs) [2]. In the following, GP regression from degree of preference
observations will be explained. The GP framework is based on previous work found in [3].

2.1.1 Gaussian Process Prior

A Gaussian process (GP) defines a prior, f(x) ∼ GP (0, k(x, ·)θC ), over functions, f : RD →
R,x 7→ f(x), where k(·, ·)θC is a covariance function or kernel with parameters θC . In this paper,
a squared exponential (SE) kernel with individual length scales λd for each input dimension (ARD)
will be used, hence θC = {σf , λ1, ..., λD}. Given a finite set of function values (random variables),
f = [f(x1), ..., f(xn)]> for X = {xi ∈ RD|i = 1, ..., n}, the GP defines a joint distribution over
the function values as p(f |X ,θC) = N (0,K) , where [K]i,j = k(xi,xj)θC . By specifying the
likelihood p(Y|f ,θL) of some set of observations Y given the finite set of function values f the
posterior distribution over the function values f is given by Bayes formula

p(f |Y,X ,θ) =
p(Y|f ,θL)p(f |X ,θC)

p(Y|X ,θ)
=

p(Y|f ,θL)p(f |X ,θC)∫
p(Y|f ,θL)p(f |X ,θC)df

, (1)

where the hyper-parameters θ = {θL,θC} contain both likelihood and covariance parameters.

2.1.2 Beta likelihood

Following previous work [3], GP regression from pairwise continuous observations (degree of pref-
erence) is performed with a likelihood function based on a re-parameterized beta distribution. Con-
sider a set of pairwise observations Y = {yk ∈ (0, 1)|k = 1, ...,m} of the degree of preference
between two distinct inputs uk, vk ∈ {1, ..., n}, implying that xuk

,xvk ∈ X . With this formula-
tion, an dominant preference for the first option uk is reflected by yk → 0, whereas an dominant
preference for the second option vk is reflected by yk → 1 reflects. No preference is indicated by
yk = 0.5. A suitable likelihood function p(yk|fk) can now be constructed given the function val-
ues for the two input instances fk = [f(xuk

), f(xvk)]>, by re-parameterizing the beta distribution,
Beta ( · ;α, β), as p(yk|fk,θL) = Beta (yk; νζ(fk, σ), ν(1− ζ(fk, σ))) ,
where θL = {ν, σ} is the set of likelihood parameters, ν is a dispersion parameter around the mean
ζ(fk, σ), which is defined by

ζ(fk, σ) = Φ

(
f(xvk)− f(xuk

)√
2σ

)
, (2)

where Φ(·) is the standard normal cumulative density function—with zero mean and unit variance—
and σ is a slope parameter. By assuming that observations are independent given the latent function
values f , the likelihood can be written as p(Y|f ,θL) =

∏m
k=1 p(yk|fk,θL), which is plugged into

Eq. 1 together with the GP prior from Eq. 2.1.1 to complete the Bayesian model.
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2.1.3 Inference and Prediction

The Gaussian process model outlined above is not analytical tractable due to the Beta-like likelihood
function from Eq. 2.1.2. Instead, approximate inference based on the Laplace approximation [2,
Section 3.4] is performed as in [3], giving

p(f |Y,X ,θ) ≈ q(f |Y,X ,θ) = N
(
f̂ ,
(
W + K−1

)−1)
(3)

where f̂ is the maximum of the posterior (mode) and [W]i,j = −
∑m
k=1

∂2 log p(yk|fkθL)
∂f(xi)∂f(xj)

. Note, that
unlike traditional classification and regression problems, W does not become diagonal due to the
pairwise structure. For further details, see [4].

For (hyper) parameter optimization, traditional ML-II optimization [2, Chapter 5.2] results in large
length scales with few observations (< 20) available. This is an undesirable property in combination
with active learning. Therefore, a half-student’s-t prior is placed on critical hyper-parameters, result-
ing in the evidence q(Y|X ,θ) of the Laplace approximation being augmented with a extra term (see
[5] for similar use). The resulting MAP-II scheme for hyper parameter optimization is therefore:

θMAP-II = arg max
θ
{log q(Y|X ,θ) + log p(θ)} , (4)

where σf ∼ δ(σf = 4), λd ∼ half-St(·|6, 100) and σ, (ν − 2) ∼ half-St(·|6, 10) with

half-St(z; ξ, s) ∝
(

1 +
1

ξ

(z
s

)2)−(ξ+1)/2

. (5)

The predictive distribution p(f∗|Y,X ,X∗,θ) of the function values f∗ = [f(x∗1), ..., f(x∗o)]
> at new

input locations X∗ = {x∗l ∈ RD|l = 1, ..., o} is given by
p(f∗|Y,X ,X∗,θ) = N (µ∗,Σ∗) , (6)

µ∗ = k>∗
(
W + K−1

)
f̂ (7)

Σ∗ = K∗ − k>∗ (I + WK)
−1

Wk∗. (8)
Predicting preference relations y∗ are not of interest in the present paper, but are considered in [4].

2.2 Part II: Efficient Sequential Design for Faster personalization

In most machine learning algorithms sequential design (or active learning) aims at maximizing the
generalization performance of a model in terms of a specific measure of performance. In this
work, the generalization performance is not of particular importance. Instead, the aim is to find
the maximum—ideally the global one—of the unknown objective function. For this, a bivariate
version of the expected improvement [6] (EI) is used given by

EI = σIφ

(
µI
σI

)
+ µIΦ

(
µI
σI

)
(9)

with µI = [µ∗]l− [µ∗]max, and σ2
I = [Σ∗]l,l + [Σ∗]max,max− 2 · [Σ∗]l,max. The EI is optimized with

a gradient descent method with 5 random initializations. By using only 5 random initializations, a
little more exploration is build into the sequential designs for robustness.

2.3 Part III: Interface

The system relies on the degree-of-preference paradigm discussed earlier, and the user interface (PC
screen) presents two options to the user, A and B, as illustrated in Fig. 1. The user can now listen
to both options, and finally select to which degree A or B is preferences by dragging the sliders to
either side.

3 Preliminary Results

The feasibility of the system was evaluated in an experiment where the personalization system was
used to find the preferred settings of HAs with several HA users. The preliminary results 1 in Fig. 2

1A full analysis of the results is currently in preparation
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show a long-term spectra of the sound pressure level (SPL) at the eardrum of a HA user wearing
HAs while listening to a piece of music. Each spectrum corresponds to a particular four parameter
setting of the HAs. The spectra labeled test 1 and test 2 correspond to two HA settings obtained
for the user with the personalized system. The spectrum labeled ”prescription” corresponds to the
setting resulting from current practice using the user’s audiogram and the prescription. In a separate
test, it was validated that the setting of ”Test 2” is significantly (p0 < 0.05) preferred over the setting
resulting from the prescription. The system takes about 10 minutes to discover the preferred setting.
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(a) Left Ear
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(b) Right Ear
Figure 2: KEMAR measurements of long-term power spectra of the sound pressure level at the
eardrum of a HA user wearing HAs while listening to a piece of music. The user’s thresholds at four
distinct frequencies are marked with black dotes.

4 Discussion & Conclusion

In this paper, a machine learning based personalization system has been proposed directly addressing
a fundamental issue of hearing aid personalization, namely, that the fine-tuning process should be
based directly an what the hearing impaired perceives. The proposed personalization system appears
to be both fast and robust in finding personalized HA settings, that are significantly preferred over
standard prescription based first-fit settings. Hence, the system could possibly be a useful fine-tuning
supplement in clinics. The system could easily be extended to support other types of user feedback
with the Gaussian process framework, such as rankings [7] or absolute scorings [8], instead of
pairwise comparisons, although in general, the latter is probably preferable due to its low cognitive
load. The proposed Gaussian process based framework is applicable for other than personalization.
By changing the active learning criterion to for instance BALD [9], the framework could be used to
generalize—in constrast to optimize—the latent objective function over all settings.
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