
Optimization for fast and safe
trajectories

Thierry Gruber

Kongens Lyngby 2013

M.Sc.-2013-115



DTU Compute

Technical University of Denmark

Matematiktorvet, building 303B,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3351

compute@compute.dtu.dk

www.compute.dtu.dk IMM-M.Sc.-2013-115



Abstract

The subject of this dissertation is optimizing the trajectory of a car on a highway.
The goal is to give decisions to the driver about what speed to adopt and when
to change lane in order to satisfy their desire for speed but still ensure safety.

A simulation framework has been programmed so that the car of study can
evolve in an environment that simulates real situations. Within this simulation
model, the goal is to �nd an optimal trajectory for the car of study. Optimal
trajectories can be retrieved o�ine, where time backtracking is possible: the A*
algorithm has been implemented to perform this search. But the aim is also
to �nd an online algorithm to assist the driver in real-time: an agent-oriented
algorithm has been programmed for a real-time assistance algorithm. Only
safety and time has been taken into account for the optimality criterion; for the
o�ine optimal search, safety is considered as a constraint and time is optimized.
Making safety constraints vary for several optimal searches provides a range of
optimal solutions that can be used as benchmarks to assess the performance of
the online algorithm.

The implemented programs work and are computationally achievable. The op-
timal searches provide a various range of trajectories which enable to choose the
best trade-o� between time and safety. The agents have shown to take good
decisions that make the trajectory safe and fast for basic tests. But when the
scenario gets more complex, they may take irrational decisions. Nevertheless,
this thesis shows the feasibility of such a program and provides a �rst �exible
framework to be improved.



ii



Preface

This thesis was prepared in ful�lment of the requirements for acquiring a M.Sc.
in Computer Science and Engineering at the Danmarks Tekniske Universitet.
It has been undertaken at the Centre for Accident Research & Road Safety of
Queensland (CARRS-Q) in Kelvin Grove, Australia, between June 3rd 2013 and
November 8th 2013. It has been supervised at CARRS-Q by Grégoire Larue and
Andry Rakotonirainy, and from DTU by Niels Kjølstad Poulsen.

The thesis deals with the optimization on time and safety of the trajectory of
a car on a highway. It presents the state-of-the-art, an implemented simulation
model, the analysis of this model and the results of the conducted scenario tests.

Kelvin Grove, 17-November-2013

Thierry Gruber



iv



Acknowledgements

The work underlying this thesis was supported by the Centre for Accident Re-
search & Road Safety of Queensland (CARRS-Q) and the Danmarks Tekniske
Universitet (DTU).

I would like to thank Grégoire for having set up this internship. He was very
trustful and let me work autonomously, still he kept me on the right track,
giving invaluable advices and feedback.

Thank you Andry for having supervised from a higher level, given the broad
directions to take and being always opened to discussions.

Niels was thousands of kilometres away, though he kept track of my work and
provided me good insights on control theory, although the internship did not
end up focusing on that part.

I would like to thank all the people from CARRSQ who made my stay there an
interesting and enjoyable experience.



vi



Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 The driving task . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Types of transports . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Towards autonomous vehicles . . . . . . . . . . . . . . . . 2

1.2 Optimization for safe and fast trajectories . . . . . . . . . . . . . 3
1.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Research methodology . . . . . . . . . . . . . . . . . . . . 5

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State-of-the-art 7
2.1 Existing models for Driver and Vehicle . . . . . . . . . . . . . . . 7

2.1.1 Driver models . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Longitudinal Control Models . . . . . . . . . . . . . . . . 11
2.1.3 Other models . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Trajectory optimization . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Optimal trajectory search . . . . . . . . . . . . . . . . . . 15
2.2.2 Online algorithms for suboptimal solution . . . . . . . . . 17

3 Description of the model and the algorithms 25
3.1 Description of the integrated model . . . . . . . . . . . . . . . . . 25

3.1.1 Task Environment of the problem . . . . . . . . . . . . . 26
3.1.2 Driving rules . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Other precisions about the model . . . . . . . . . . . . . . 34



viii CONTENTS

3.2 Online agent-oriented algorithm . . . . . . . . . . . . . . . . . . . 37
3.2.1 Agent structure . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Decision process . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Online Algorithm . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Optimal search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Problem and algorithm de�nitions . . . . . . . . . . . . . 47
3.3.2 Application of the algorithm . . . . . . . . . . . . . . . . 51

4 Results and Analysis 53
4.1 Model's validation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Rules to be respected . . . . . . . . . . . . . . . . . . . . 54
4.1.2 Desired features . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Analysis of the optimal search . . . . . . . . . . . . . . . . . . . . 64
4.2.1 Purpose of the optimal search . . . . . . . . . . . . . . . . 64
4.2.2 Use of the optimal search . . . . . . . . . . . . . . . . . . 64
4.2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.4 Flaws of the optimal search . . . . . . . . . . . . . . . . . 66

4.3 Evaluation and comparison of the agents . . . . . . . . . . . . . . 69
4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Test scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Macroscopic simulation . . . . . . . . . . . . . . . . . . . 91

5 Conclusion 95

A LCM Comparisons 97
A.1 Validation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.1.1 Acceleration performance . . . . . . . . . . . . . . . . . . 98
A.1.2 Deceleration performance . . . . . . . . . . . . . . . . . . 98
A.1.3 Car-following performance . . . . . . . . . . . . . . . . . . 98

A.2 Tests on the models . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2.1 Newell's model . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2.2 Gipps' model . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.2.3 Intelligent Driver Model . . . . . . . . . . . . . . . . . . . 106
A.2.4 Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B Calculation and Implementation details 113
B.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B.1.1 Physically sound safe distance . . . . . . . . . . . . . . . . 113
B.1.2 Discretization error . . . . . . . . . . . . . . . . . . . . . . 114

B.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 115
B.2.1 Wait for percepts when changing lane . . . . . . . . . . . 115

Bibliography 117



Chapter 1

Introduction

The �rst section presents the motivation of the problem and why the driving
task is crucial in our society. The second section will discuss about what aspects
of this problem are dealt with and what goal is meant to be achieved. The third
section describes the methodology and the structure of the present report.

1.1 The driving task

1.1.1 Types of transports

Transporting people and good has been an increasingly essential and chal-
lenging human need. Today the world is organized under a mobile paradigm
thus transport needs to be e�ciently handled. New approaches of transport
are explored to ensure its sustainability in a fast-paced changing world, espe-
cially considering speed, safety, comfort and environmental concerns. One can
distinguish three main kinds of transports [Van12]: mass transport, individ-
ual transport and digital transport. Mass transport refers to systems that are
able to carry a large amount of people, such as buses, trains and ships. In-
dividual transport, instead, corresponds to smaller systems that are able to
transport one or a few passengers, such as cars, trucks and bicycles. The latter



2 Introduction

has been exponentially growing since the popularization of the internet. It can
be an alternative to some physical transports such as shown by videoconfer-
encing or distance education. However, it cannot replace the inherent need of
physical transport; instead physical transport is predicted to keep growing as
digital technologies have indeed a counterpart, trigger more physical transac-
tions and contacts and need physical infrastructures. Mass transport is safer
and more environmental-friendly than individual transport. Nevertheless in-
dividual transport is preferred to mass transport: in the EU in 2010, 72.4%
of passenger-kilometres are travelled by car and 72.5% of tonne-kilometres for
inland good transport were travelled by truck. Indeed mass transport is logis-
tically ine�cient for individual purposes as it regularly halts, and has speci�c
routes that may not deserve the targeted destination.

Whereas bicycle is �exible, environmental-friendly and favoured by a growing
number of cities such as Copenhagen or Amsterdam, it does not suit to all peo-
ple and longer distances. Individual transport systems are the most favoured
especially for their �exibility and comfort and despite their risk. But risk is high
and �gures show that mortality on roads is serious. As given by the Australian
Automobile Association (AAA) [Ass13], the economic cost of road crashes in
Australia is $27 billion each year. The World Health Organization (WHO) es-
timated that in 2010, 1.2 million people were killed worldwide in road crashes
and 50 million people were injured [Org10]. Still according to WHO, projections
indicate that these �gures will increase by about 65% over the next 20 years un-
less major changes are made in prevention and road safety. 95% of all accidents
on roads are caused by drivers' errors such as miscalculation, drowsiness and
driver impairments (for instance alcohol or speeding) [Shi78]. By getting safer
and more e�cient, intelligent systems seem a good trade-o� between �exible
individual transport systems and safe, e�cient mass transport systems. Still,
one must keep in mind that there could be other problems triggered by use of
such techniques (for instance software-related) and they may not be suitable for
all situations � for instance if everybody uses his car in town, it may trigger
some tra�c congestion.

1.1.2 Towards autonomous vehicles

Vehicle automation has been increasingly developed through Advanced Driver
Assistance Systems (ADAS) for the automotive industry for half a century now.
Shaout et al. (2011) [SCA11] traced the history of such systems. One of the
earliest and most remarkable modern embedded systems was the Apollo Guid-
ance Computer created at MIT in 1966 and used by NASA in late 1960s on
the Apollo Space Program. Since then research in this �eld has kept increasing



1.2 Optimization for safe and fast trajectories 3

and been largely used in the automotive industry. These systems are naturally
real-time and multitasking. They are getting more numerous and complex in
order to face the crucial need of improving safety on roads. Below is a list of the
most common systems that exist and are put in mass production nowadays. It
is not meant to be exhaustive but rather to show how diverse these systems are.
Dates when the systems were developed in the automotive industry are given
in parenthesis and may di�er from the date when the systems were put in mass
production.

• (Adaptive) Cruise Control (1960s): automatic control of the speed of the
vehicle

• Autonomous Parking Assistance Systems (1990s): help the driver in ma-
noeuvring into parking spaces

• Precrash Systems (2000s): detect and alert the driver to imminent acci-
dents

• Drowsiness Detection Systems (2006): detect sleeping-patterns, alert the
driver and in emergency cases apply braking

• Blindspot Information Systems (2011): detect and alert the driver to pres-
ence of objects in areas they cannot see without turning head

• Lane Departure Warning System (2001): detect and alert the driver to
unintended lane change and may steer to correct trajectory

Driving assistance has been greatly improved for several decades and is still
a key research topic in di�erent domains of study such as control theory or
arti�cial intelligence applied to driving and road safety.

1.2 Optimization for safe and fast trajectories

1.2.1 Problem statement

Finding optimal trajectories is relevant to achieve fast and safe travels. How-
ever an algorithm that suits to every driving situation is complex to imple-
ment. There are actually di�erent approaches depending on the situation,
as shown by the di�erent designs and structures of the cars of the Stanford
teams for di�erent DARPA Challenges, organized by the Defense Advanced



4 Introduction

Figure 1.1: The hierarchical structure of the road user task (Michon, 1986) 1.1

Research Projects Agency (DARPA): Junior for the urban situation (Monte-
merlo et al., 2009) [MBB+09] and Stanley for the desert challenge (Thrun et
al., 2006) [TMD+06]. This problem focuses on the particular environment of a
highway; it is simpler than urban situations as sudden changes are less likely to
occur. So the aim of this thesis is to �nd an optimal trajectory for a car on a
highway of several lanes.

Based on the model of Michon (1986) [Mic86], given on Figure 1.1, the assis-
tance can be provided at three di�erent levels of skills and control.

• The higher level is the strategic level: it de�nes the general planning stage
of the trip. Path optimization is done based on tra�c information, road-
map con�guration and given goals of time and speed. As an example,
Junior from the DARPA Challenge [MBB+09] comports a global path
planner to ful�l the goals of this level.

• The medium level is the tactical level where the driver handles the pre-
vailing circumstances by manoeuvring controls for short laps of time: the
driver deals with the direct environment around the vehicle for up to some
hundreds meters. At this level the driver can choose to change lane, to
adapt speed and also to meet the general goal given by the higher level,
such as risk acceptance. Taking safe and intelligent decisions is crucial
to suggest to the driver a trajectory he accepts that respects tra�c and
safety rules.

� As an example, Stanley from the DARPA Challenge [TMD+06] was



1.2 Optimization for safe and fast trajectories 5

equipped with smart computer vision systems and a global map of
the trajectory. Its main task was to apply lateral o�sets and adapt
its speed to a �xed-based trajectory that was initially planned. By
intelligently choosing these parameters, Stanley could avoid obstacles
on the road at high speed and achieve fast progress along the course.

• The lower level is the control model where there is no decision but au-
tomatic action patterns. It directly interacts with the actuators and the
time laps for such changes are in milliseconds. Both Stanley and Junior
were equipped with such systems. Such methods enable very short-term
tasks such as lane keeping.

The highway is supposed to be straight and in�nitely long, which occult the
need of a complex high strategic level. The car targets a given abscissa Xgoal.
It is equivalent to being in the curvilinear lane coordinate system. This system
is generally used for such problems; for instance the car of the Stanford team
who won the DARPA challenge uses this coordinate system. The transformation
from one base to the other is not orthogonal and thus does not keep angles and
distances, however for highways where curvature values are low (under 1/500
m−1) errors introduced by these transformations are assumed to be negligible
with respect to perception and control errors. But for higher curvature these
assumptions are not valid [Van12]. Such cases are outside the scope of this
thesis. At the higher level, only goals concerning risk acceptance, depending on
the driver's pro�le, will be given. Control is supposed to be perfect so the lower
level is not considered either. Other driving inherent tasks such as perception
are supposed to be perfect. Therefore this problem focuses on the medium
level where tactical choices have to be taken to compute an e�cient trajectory.
For this thesis, optimality takes into account time and safety and depends on
driver's pro�les. It is assumed in the simulations that drivers follow exactly the
instructions from the software.

1.2.2 Research methodology

The goal was initially to �nd optimal trajectories considering that all speed
and positions of all the other vehicles were known in advance for the whole trip.
It is a �rst simpli�ed step; however useful since optimal trajectories cannot
be computed in real-time. Since this goal has been achieved and the assump-
tion of knowing everything in advance was extremely strong, the goal has been
pushed further in computing an "intelligent" trajectory online. What "intel-
ligent" means will be described in details later. The implementation aims at
showing feasibility of such a system by providing an adapted simulation frame-
work, and provides a �rst simple model to �nd a trajectory and to assess it. The



6 Introduction

car of interest evolves in an environment with other vehicles: it is unrealistic to
prede�ne the speeds and positions of the other vehicles as they should react to
changes in the environment, such as vehicles' movements, particularly the con-
trolled car. Hence these vehicles have been equipped with a car-following model
to simulate basic car behaviour. Optimal trajectories computation has been
adapted to this study framework; they are computed o�ine and will be used
as a benchmark to measure the performance of the "intelligent" online compu-
tation. Performance measurement of the online algorithms will be based on a
series of test scenarios. All the models have been programmed and integrated
together from scratch.

Notations The variable t is the time in seconds. The variables referring to
the car of study have a subscript i and this car is called the ego car, also the
driver of this car is called the ego driver. The variables referring to the car
directly in front and the one directly behind the controlled car have respectively
a subscript ft and bk. The variables referring to any car have no subscript.
The position is given by x in meters and refers to the front of the car, the
speed or velocity is given by v in meters per second, the acceleration is given
by a in meters per seconds squared. v is not to be mistaken with vmd which is
the maximum desired speed of a driver, or vmax which is the maximum speed
allowed on the road. The headway is the distance between a car and the car
directly in front: hk,ft(t) = xft(t)− Lft − xk(t) for the vehicle k. The lane ID
of the car is given by the variable l. The constants L and m respectively refers
to the length and the mass of the vehicle. Every driver has a constant reaction
time τ . g and b are respectively the maximum and minimum acceleration that
the vehicle is capable to reach. Other constants and variables will be detailed
when being introduced. For the object-oriented implementation, classes have
the pre�x HW for HighWay.

1.3 Structure of the thesis

To begin with this thesis reviews the state-of-the-art and the considered tech-
niques. Then it presents the structure of the models used and the algorithms to
perform optimal trajectories search and online "intelligent" assistance. Finally
in the results section, the implemented simulation framework and the algorith-
mic techniques are discussed based on simulation tests and models are compared
in order to measure the performance of the "intelligent" algorithms on a series
of test scenarios.



Chapter 2

State-of-the-art

This chapter �rst introduces the existing models that describe the driving com-
ponents and their interactions. In the second section techniques for trajectory
optimization are presented.

2.1 Existing models for Driver and Vehicle

This topic has been investigated and a review presented by Rakotonirainy et
al. (2007) [GRGN07]. This section �rst presents driver models, which relates to
decision making and risk assessment. Then longitudinal models are presented:
they model the speed or the acceleration of the vehicle depending on the vehicle
directly in front. So they simulate vehicle behaviour on a single lane, which is
needed for this problem. Finally other models are presented; they are mainly
related to the control layer. Those models will be brie�y presented not to restrict
the literature to the exclusive scope of the conducted implementation but also to
enable the reader to go further by providing the basis for future improvements.



8 State-of-the-art

2.1.1 Driver models

2.1.1.1 Decision making by risk assessment

Driving is a complex task and the driver is exposed to a certain risk at any
moment. There are two types of risk according to Glaser (2011) [GVGM11]):

• objective risk: refers to the probability of being involved in a crash and
the severity of that potential crash.

• subjective risk: refers to the driver's own assessment and depends on his
personality

Objective risk According to Glaser (2011) [GVGM11], a common approach
for assessing objective risk is to consider two criteria:

• the probability that the event occurs

• the severity of the resulting situation in case the event occurs

The latter has been extensively studied and researchers accept broadly the
common criterion of Energy Equivalent Speed (EES) (Mills et al., 1984 [MH84],
Zeidler et al., 1985 [ZSS85]). It expresses the deformation energy between two
vehicles colliding and is given by EES = 2·mi

mi+mft
·(vi(tcrash)−vft(tcrash)) where

tcrash is the time at which the collision occurs. The higher the EES is, the more
serious the crash is. Based empirically on data, a relation between EES and
probability of injuries have been given by Glaser et al. (2011) [GVGM11] and
is shown on Figure 3.1 of Section 3.1.1.1. It relates the EES to the probability
of a moderate injury (MAIS>2, Maximum Abbreviated Injury Scale).

The former criterion can be given by di�erent relevant indicators, that help
assessing how dangerous a situation is. The headway is the distance between
the ego car and the car directly in front: hi,ft(t) = xft(t) − Lft − xi(t). The
smaller the headway is, the more dangerous the situation is. However, this
indicator only can be highly misleading because danger depends also on the
speed of the vehicles. A headway of 10 meters is probably very dangerous on
a highway situation but can be safe in a city-driving situation. In the study of
Vogel (2002) [Vog02], two indicators are used. The �rst one is the time headway



2.1 Existing models for Driver and Vehicle 9

δT . It is measured by taking the di�erence of time between two vehicles reaching
the same position x: δTi,ft(x) = tft(x) − ti(x), with tk(x) the time at which
the vehicles k reaches the abscissa x. Vogel explains that short time headway
potentially generate dangerous situations therefore can be taken into account to
assess risk. He discusses also about the Time To Collision (TTC) criterion: it
is de�ned by the time that would pass until a crash occurs with a car in front
if both cars keep the same speeds. It is in�nite if the car in front is faster,

otherwise the TTC is: TTCi(t) =
hi,ft(t)

vi(t)−vft(t) . TTC actually indicates with

more precision the occurrence of a dangerous situation since speed is taken into
account.

Subjective risk Ranney (1994) [Ran94] gives a review of the models of driv-
ing behaviours: some of the most cited ones are the Zero-Risk Model, the Risk
Avoidance, the Task Capability and the Risk Homeostasis. Summalla and Naata-
neen (1988) [Sum88] suggest that the driver targets zero risk of crash, whereas
Svenson et al. (1985) [SFM85] assume that the driving task does not involve
risk assessment, and that hazardous situations only make the driver takes risk
into account for avoiding collisions. Fuller (2005) [Ful05] even claims that risk
of collision is not relevant and instead task di�culty is taken into account in the
decision-making process. According to Wilde (2001) [Wil01], a driver accepts
a certain risk threshold which varies between individuals. Factors taken into
account would be time, fuel, cost of a �ne and expected crash cost: this concept
is called Risk Homeostasis. It is a common concept for risk assessment on which
the team of Rakotonirainy has based their work [GRGN07]. I will consider a
model based on this concept as it is more general, �exible and able to take into
account diverse driver's pro�les. It could be easily adapted to other concepts,
by modifying the limits of risk and standardizing pro�les.

2.1.1.2 Driver's pro�les

Driver's pro�les is a concept related to Risk Homeostasis. They determine pat-
terns of driving behaviour and classify drivers depending on their most common
behaviour on the road. Risks thresholds can be associated to pro�les. Inspired
by the social theory work of Abric (2003) [Abr03] and based on questionnaires
on driver's preferred attitudes and mindsets, the French project LAVIA on In-
telligent Speed Adaptation (ISA) has derived three types of pro�les [LS11].
These pro�les are represented by the risk the driver is willing to take as a
function of the potential cost that this risk could trigger, as explained by Rako-
tonirainy [GRGN07]. These models are very simple since a driver may have
di�erent risk assessments depending on several factors, such as drowsiness or
even her mood. But they aim at giving a classi�cation and general behaviours,



10 State-of-the-art

Figure 2.1: Risk functions of di�erent driver pro�les

rather than providing a very accurate description of risk assessment. In order to
use this model, cost and the evaluation of risk need to be clearly de�ned. These
pro�les are shown on Figure 2.1 and are de�ned in this way:

(a) Careful driver: the driver maintains a constant level of risk independent
from the cost. For example, if the vehicle is blocked by a slow car in front
that makes the cost of the trip increases (as the time for the trip will be
longer), the driver will not take more risky decisions in order to overtake
and gain time.

(b) Disregarding driver: the driver accepts higher risk thresholds as the cost
increases. In the example described previously, the driver would consider
more risky decisions to overtake, achieve higher speed and reduce the cost
of the trip.

(c) Hedonistic/Pragmatic driver: conversely, this driver accepts higher risk
when the cost is low but reduces the risk threshold as cost increases. For
example, this driver will go at high speed on a highway but would decelerate
when approaching speed radar as the cost is potentially higher (the driver
is likely to get a �ne).

2.1.1.3 Other characteristics

Homeostatic and circadian processes represent sleep regulation of the human
body: they model driver's tiredness over time (Daan et al., 1984 [DBB84],
Borbet al., 1999 [BA99]). It could be taken into account to adapt the system
to the driver's attention, and adapt his characteristic (such as risk acceptance
level and reaction time) in function of his tiredness. However these are more
complex details that are not required by the scope of this study and they will
not be taken account in the model.



2.1 Existing models for Driver and Vehicle 11

2.1.2 Longitudinal Control Models

For our purpose, models on single lane are relevant as lateral position is dis-
cretized with lanes. Some of the most cited one are presented below. A study
has been conducted to select an appropriate longitudinal model for simulation in
the implemented program: it is presented in the last paragraph of this section.

2.1.2.1 Newell's model

Newell is one of the �rst to suggest a non-linear model for velocity-headway
relations in 1961 [New61]. He based his theory upon the work of Gazis et al.
(1959) [GHP59]: they state that the non-linearity is necessary at least to rep-
resent the steady-state relation between average velocity and average headway,
which was well-known for being non-linear. He suggests the formula:

vi(t+ τi) = vmd,i(1− e
− λi
vmd,i

·hi,ft(t)
)

with λi a parameter to be �xed. He explains that there is no special motivation
for it except that it has approximately the correct shape and is reasonably
simple.

2.1.2.2 Gipps' model

Gipps's model (1981) [Gip81] calculates a safe speed with respect to the pre-
ceding vehicle based on limits of the performance of the driver and the vehi-
cle. Gipps gives two inequalities to model the behaviour of the car. The �rst
constraint ensures that the speed will not exceed its driver's desired speed by
limiting the acceleration when the speed is too close to the desired speed. This
inequality is purely descriptive and has been elaborated to �t empirical obser-
vations. It prevails when the vehicle in front is too far.

vi(t+ τi) ≤ vi(t) + 2.5 · giτi(1−
vi(t)

vmd,i
)

√
0.025 +

vi(t)

vmd,i

The second constraint relates to braking. The vehicle should be able to stop
if the car in front performs an emergency braking. From physical equations,
considering the reaction time of the driver and the maximum decelerations of
the cars, the second inequation on the speed is given by:

vi(t+ τi) ≤ −biτi +

√
(τibi)2 + bi · hi,ft(t)− vi(t)τi +

vft(t)
2

bft



12 State-of-the-art

This model has shown to mimic well the behaviour of real tra�c, although it is
idealistic as no crashes would occur in such tra�c simulation.

2.1.2.3 Intelligent Driver Model (IDM)

The Intelligent Driver Model has been presented by Treiber et al. (2000) [THH00].
It also expresses velocity as function of headway and desired speed. The ten-

dency to accelerate on a free road is captured by the term gi · (1− ( vi(t)vmd,i
)γ) and

the tendency to brake with deceleration while getting closer to the vehicle in

front is expressed by the term −gi(di,ft
∗(t)

di,ft(t)
)2 in the formula:

ai(t+ τi) = gi · (1− (
vi(t)

vmd,i
)γ − (

di,ft
∗(t)

di,ft(t)
)2)

γ is an adjustment parameter, di,ft = xft − xi is the spacing between the front
of the two cars and di,ft

∗ the desired spacing given by di,ft
∗ = vi(t) · τi + Lj +

max(0, ( vi
2(t)
2bi
− vj

2(t)
2bj

)). It varies dynamically and captures the concept of the

second Gipps' condition. This distance is the minimum safe distance for the car
to be able to stop in case of an emergency braking, as detailed in Section B.1.1
(Appendix B).

2.1.2.4 Field Theory's model

Ni (2013) [Ni13a] based his work on precedent models, included all the ones
detailed previously, and derived a "uni�ed model" from them. He considered
the driver-vehicle-environment system from a physical point of view and made
an analogy with forces in physics. In his model the acceleration varies positively
with a ��ow gravity� force, making the driver go forward along the road, and
negatively with a resistance force (due to the desired speed) and a repulsive
force from the car in front. The equivalence of the force derived from physics
can be for instance a stress in the driver's mind which makes them change their
action and so the motion of the car. His model agrees with the concepts detailed
above, and is actually the same as the intelligent driver model but the repulsive
force is exponential instead of quadratic:

ai(t+ τi) = gi · (1−
vi(t)

vmd,i
− e

di,ft
∗(t)−di,ft(t)
di,ft(t) )

with the same notation as the IDM. According to Ni, this model gives a good
ratio quality/complexity but tends to predict small estimates of acceleration.



2.1 Existing models for Driver and Vehicle 13

2.1.2.5 Other approaches

Other models exist for longitudinal control and tackle the problem from di�er-
ent points of view. Brackstone (1999) [BM99] gives an historical review and
Ni (2013) [Ni13b] refers to other models to elaborate his uni�ed theory. Par-
ticularly, another approach which has not been evoked is the rule-based one.
Kosonen (1999) [Kos99] has elaborated one in which depending on the situ-
ation, rules give a convenient speed to target. These rules are based on the
desired of speed, the headway and the previous states.

2.1.2.6 Evaluation of Longitudinal Models

Test simulations have led to an evaluation and a comparison of Newell's, Gipps',
IDM, and Field Theory models; this is presented in Appendix A. These models
are tested on three scenarios:

• acceleration on a free road from standstill until a desired speed

• deceleration until standstill to stop before an obstacle

• car-following on highway conditions (high speed)

Results have been compared to empirical data for acceleration and deceleration
performance. For the car-following performance, it has been checked whether
safe distances were respected. As explained in Appendix A, Newell's model lacks
of complexity while Gipps' and Ni's models give good performance but they are
all outperformed by the IDM. As a result IDM will be used in the simulation
program.

2.1.3 Other models

Other models are necessary for a more complex and accurate description of the
vehicle. They are not used in the model of this thesis but they are given here
as tracks to go further:

Bicycle model A simple and broadly accepted vehicle model is the bicycle
model (Peng and Tomizuka, 1990) [PT90]. The lateral dynamics are compressed
and the 4-wheels vehicle is simpli�ed to a 2-wheels one: one front wheel and one



14 State-of-the-art

rear wheel. There is neither pitch nor roll dynamics and the vehicle is assumed
to have planar motion.

Lateral models The lateral motion of the vehicle is given by a set of equa-
tions. There are di�erent formulations of lateral models (for example kine-
matic and dynamics) depending on what situation it is (lower or higher speeds)
and if simplifying assumptions are reasonable (for instance, slip angles of the
wheels at zero for lower speed). This has been studied and detailed by Wong
(2001) [Won01], Milliken (2003) [MKMM03] and di�erent situations have been
described by Rajamani (2011) [Raj11]. Abstract representations related to
driver's mind has been suggested by Ni (2013) [Ni13c]: he uses potential �elds
to describe the 'mental force' that makes the driver keeps lane.

Cognitive model This model of driver behaviour is within a framework
with underlying psychological theories based upon a two-way control paradigm
(Salvucci, 2006) [Sal06]. Driver's perception is reduced to a near point and a
far point. The steering angle and acceleration given as input by the driver are
derived from these parameters.

Optimal control models Kleinman et al. (1970) [KBL70] have pioneered
work in this topic, especially to develop the response characteristics of the human
operator due to an external noise input that disturb the driving environment.

Lane-changing models Gipps provides a pioneer model to simulate lane-
changing decisions (1986) [Gip86], but it focuses on urban tra�c situations.
Treiber et al. (2007) have extended the IDM model considering multi-lanes
scenarios and suggests a complex model that can be adapted to a more various
set of scenarios.

These models are outside the scope of this thesis since lateral position is
discretized with lane IDs, which supposes that the vehicle keeps lane perfectly.



2.2 Trajectory optimization 15

2.2 Trajectory optimization

Trajectory optimization is a very wide topic. A vast literature exists on such
algorithms and provides techniques for di�erent purposes. For this thesis, op-
timization will be based on time and safety. Some of these algorithms provide
optimal solutions but they require strong assumptions and are costly, while other
algorithms provide suboptimal but computationally achievable solutions.

2.2.1 Optimal trajectory search

2.2.1.1 Algorithms for optimal search

Finding an optimal trajectory supposes that the whole space of search is known.
For the driving problem, dynamic objects are present on the map: as a result the
space includes a time dimension. As a consequence real-time algorithms cannot
guarantee to �nd an optimal trajectory. Here are two ways for retrieving an
optimal trajectory for this problem:

• supposing that the trajectories of the other cars are known and �xed: the
whole space of search is known exactly. Any scenario could be retrieved a
posteriori and the algorithm be ran to �nd optimal trajectories. However
this is a very strong assumption for this problem as the other cars should
react to other vehicles' movements and may have di�erent behaviours if
the ego car has a di�erent behaviour. It is unrealistic and the optimal
solution retrieved would not be meaningful.

• supposing that the other cars follow a simulation model and run the algo-
rithm within this simulation frame only. This approach is more complex
as the environment varies and depends on the actions of the car. It cannot
be run on any scenario a posteriori. Instead, initial conditions are given,
and the algorithm runs within a simulation model: for example other cars
are modelled with IDM. It is more realistic, therefore this approach has
been chosen for the implementation.

Discretization Given a simulation model, �nding such an optimal trajectory
is relevant as it enables to compare and evaluate the performance of a real-time
algorithm. Russell and Norvig [RN09] give a review of AI techniques, including
search problems. Most of them suit discrete problems but the driving problem
is continuous as most of real problems. This task is complex, time is part of



16 State-of-the-art

search space and constraints and rules about vehicle and driver and tra�c need
to be respected. As a result, continuous techniques such as gradient-based, lin-
ear programming or convex optimization are not adapted. One way to avoid this
issue is to discretize the problem. Sampling-based techniques are appropriate
to adapt the problem but optimality may be lost depending on the technique.
However, by choosing appropriate discretization steps, the algorithm can com-
pute the solution in a reasonable time and give an "acceptable" suboptimal
solution. "Acceptable" means that errors are su�ciently low to be considered
negligible; it will be assessed when de�ning the model of the implementation.

There are di�erent ways to tackle the problem for discretization when the
space is at least two-dimensional ((x,y) coordinates), such as cell decomposi-
tion, exact cell decomposition or skeletonization. But the driving environment
is particular because longitudinally-oriented; besides for this thesis lateral po-
sitions are discretized on lanes. Environment sampling-based techniques are
particularly adapted for the driving task as Vanholme explains [Van12] while
referring to many projects based on it, including Stanley, the Stanford Robot
that won the DARPA Challenge [TMD+06]. Longitudinal speed is discretized
which gives a set of possible trajectories at any moment for each lane. The dis-
cretization step needs to be well chosen so that the algorithm has a reasonable
running time but still outputs an acceptable suboptimal solution.

2.2.1.2 Description of A*

For discrete optimal search problems, the A* algorithm is optimal if the heuristic
is admissible and consistent, and only more accurate/informed heuristic can
improve search. Other adapted algorithms such as IDA* could be used at a
low extra time cost if memory usage needs to be kept low. This thesis focuses
on the structure of A* as it is the standard algorithm for such search. The A*
algorithm is a best-�rst search extended from Dijkstra's algorithm. It �nds a
least-cost path from an initial node to one goal node. Its strength and advantage
over Dijkstra's is the use of heuristics that estimates the distance from a given
node to the closest goal node. The representation of a node is atomic: a node
is reduced to its associated cost. The cost f of a node n is given by

f(n) = g(n) + h(n)

with g(n) the e�ective path cost from the initial node to the node n, and h(n)
the heuristic cost of the node n.



2.2 Trajectory optimization 17

Heuristics A heuristic enables informed search to decide better what branches
to follow �rst, by evaluating the cost to a goal node. The heuristic needs to be
admissible so that A* e�ectively computes the shortest path. A heuristic h is
admissible if it never overestimates the cost of reaching a goal: it is optimistic.
For every node n, h(n) ≤ h∗(n) with h∗(n) the cost of the shortest path from n
to a goal node. If the heuristic h is admissible and consistent, A* is the optimal
best-�rst search algorithm as it �nds an optimal solution by expanding fewer
nodes. A heuristic h is consistent if for every edge (x, y) of the graph, where d
denotes the cost of that edge, h(x) ≤ d(x, y)+h(y); in other words the path cost
is estimated in an incremental way without taking any step back. If h(g) = 0
with g a goal node, an induction on the length of the best path from a node to the
goal node proves that a consistent heuristic is also admissible. Only the heuristic
could be improved to achieve a better performance algorithm. However, with
a more complex heuristic, the algorithm will take more time to compute the
successors of a node: that is why a trade-o� is needed between the accuracy of
the estimation and its computation cost.

Comparison to uninformed search The branching factor b is the average
number of successors nodes derived from a given node, and d the depth of the
optimal solution. The complexity of breadth-�rst search is O(bd). This is also
the worst-case performance of A*. However if the heuristic h is close enough
to the optimal heuristic h∗ (if |h(x)− h∗(x)| = O(log(h∗(x))) ), the complexity
is polynomial in d [Pea84]. That is why the A* algorithm can be a lot faster
but also requires a good heuristic to make it performs better than a simple
breadth-�rst search.

2.2.2 Online algorithms for suboptimal solution

For a real-time assistance, online algorithms need to be considered. They pro-
vide suboptimal solutions but the wide range of techniques enables to select
appropriate ones for a speci�c problem.

2.2.2.1 Locally optimal search

Vanholme (2012) [Van12] gives a review of such algorithms; all of them out-
put locally (sub)optimal solutions, considering only a short time length for the
trajectory computation. They are of two kinds: sampling-based or direct. The
former discretizes the solution space and select a best solution whereas the latter
directly outputs a trajectory and leaves out the evaluation step.



18 State-of-the-art

Figure 2.2: Manoeuvre grid representation

Environment-sampling-based An environment-based technique discretizes
longitudinal and lateral speed, computes several trajectories, evaluates them
based on a de�ned metrics and selects the best one. In the grid algorithm of
Glaser et al. (2011) [GVGM11], 3 possible manoeuvres are possible per lane:
braking, keeping the same speed or accelerating. Solutions at a given time result
in 9 possibilities which are represented on the manoeuvre grid on Figure 2.2.

Expert systems They are direct systems based on if-else rules. More elab-
orated versions are based on fuzzy logic as in the HAVEit project [Van12] or
probabilities, using Bayesian Networks. Running times are low and they are
more suited to accept tra�c rules and vehicles constraints. Besides they are in-
tuitive to understand and are based on human reasoning. However, the number
of rules should be high in order to capture most of driving situations and this is
not suited to unexpected behaviours. All situations cannot be considered and it
could result in hazardous decisions; moreover it is focused on the very present
and expert systems are not made for tactical level decisions.

2.2.2.2 Towards more intelligent search

Locally optimal search techniques are not satisfying as they do not take into
account the big picture of the problem: they are blinkered to the very present
moment. More intelligent search techniques have been developed for a few
decades.



2.2 Trajectory optimization 19

Probability-based techniques In the driving task, many elements are un-
certain, as they depend on behaviours of the other cars. Uncertainty is inherent
to the driving task and thus is crucial to a safe and reliable system. Proba-
bilities over possible environment con�gurations or action outcomes are a way
to take into account uncertainty. Some of the driver/vehicle models, including
longitudinal, lateral and driver's models have been integrated together to target
a consistent model for the driving task, including probability-based techniques.
For instance, Cheng and Fujioka (1997) [CF97] propose a hierarchical drivel
model whose safety judgment is based on fuzzy logic. Fuzzy reasoning is close
to human thinking because truth values of booleans are not binary but range in
degree from 0 to 1. These techniques are based on a human built logic and are
not able to learn which make the model not suitable to adapt to new situations
and various environments. Another technique is Bayesian networks [SSW10]: it
is a data structure that incorporate probabilities and particularly dependencies
among variables. Such structures have been used for direct systems. It is a rel-
evant technique which is based on model conceptually understandable because
built by human and moreover designed to be able to learn and adapt. However,
these models are able to deliver decision for a particular task at a given moment.
They are not designed to planning and thinking at a higher level. They could
be used inside a more complex model able to plan and take decisions for speci�c
tasks at various tactical levels.

Planning algorithms Planning algorithms take the problem from a higher
perspective and elaborate a plan of actions in order to achieve one's goal. In
classical planning, the world is described with factor represented states which
enables a richer description than the atomic one in search problem, where the
state is reduced to a cost. Planning algorithms may suit because they are target-
ing the tactical layer this thesis aims to tackle. However they are generally used
for problems such as scheduling the operations of spacecraft, factories or mili-
tary campaigns, in which there are many di�erent de�ned tasks to accomplish
and available resources to consider. They are more suited for o�ine computa-
tion or in environment where objects are static. In the driving task, the world
is unpredictable and continuously evolving, which makes planning a sequence of
tasks in advance a tough challenge: decisions cannot be taken too much time
in advance. Besides only a few "planning" decisions need to be taken; instead
the acceleration needs to be calculated in real time. Nevertheless, getting a step
higher and trying to see further than an immediate decision is what a driver
actually does and this concept of rational and planned decisions is intrinsic to
the driving task. Such behaviour is realizable by agent-oriented programming.



20 State-of-the-art

2.2.2.3 Agent-oriented search

The concept of rational agent is widely used in arti�cial intelligence. An agent
perceives its environment through sensors and acts upon that environment
through actuators. A human driver is a human agent who meets these re-
quirements: a driver senses the road environment with his eyes, ears and other
organs and acts through his hands, legs and so on. A robotic driver can have
cameras and other sensors and acts in the environment by actuating motors to
help driving the car and display/tell a message to assist the driver. Between
perception and action, the agent needs to think and make right choices. It needs
to be rational and to do the `right thing'. Evaluating this 'right thing' is made
by performance measure; metric needs to be well designed in order to properly
assess agent's e�ciency. A rational agent should choose actions that are ex-
pected to maximize the performance measure given its percept sequence, metric
for the measure and the built-in knowledge it has. An agent is built on an agent
program that implements the agent function from percepts to action, and run
on devices that are the architecture. In the driving problem the architecture is
integrated computing devices to the cars with physical sensors and actuators.
Agents programs can be based on di�erent principles.

BDI model The Belief-Desire-Intention model is a common paradigm to de-
scribe components of an agent. It is used in many �elds including psychology,
economics, philosophy or arti�cial intelligence. The agents have three main
concepts:

• Beliefs: information the agent has about the world. They can be wrong.

• Desires: things that an agent would like to achieve. They can con�ict.

• Intentions: things that an agent has committed to achieving. More con-
crete than desires, they cannot con�ict, are possible and persistent. They
are usually based on a utility measure (internal performance measure).

Figure 2.3 shows the program design of such an agent. Beliefs are based upon
percepts and desires possibly re-evaluated upon them. Intentions are derived
from beliefs and desires and a plan is built in order to achieve these intentions.
The agent executes actions of the plan and impacts on the environment. Then
it gets new percepts and updates its beliefs. The program needs to be built
so that plans are wisely elaborated (no need to plan too much in advance),
possibly repaired (if something goes wrong, need contingency plans). Thus



2.2 Trajectory optimization 21

Figure 2.3: BDI model (AI course of DTU, 2012)

intentions need to be reconsidered but neither too seldom nor too often. An
e�cient trade-o� needs to be elaborated. Although this paradigm is common,
it comports its limitations: for example this model lacks of learning abilities, and
three attitudes may not be su�cient to fully describe a rational agent. Other
more �exible and universal models have been suggested, especially by Russell
and Norvig.

Modern classes of intelligent agents Russell and Norvig [RN09] group
agent programs in �ve classes that are nowadays the references for agent-oriented
programming:

Simple re�ex agent This agent selects an action based on the current percept
and condition-action rules. It is extremely simple but therefore lacks intelligence.
A little bit of non-observability can trigger serious issues.

Model-based agent One solution is to keep track of the part of the world it
cannot see now by using percept sequence (history of percepts) and a model of



22 State-of-the-art

Figure 2.4: A model-based, utility-based agent (Russell and Norvig,
2009 [RN09])

the environment in order to keep an internal state of the world even in case of
partial observability. For instance if the car in front brakes and blinks light, at
a given time t, braking lights can be o� but the agent has previously noticed
that the car was breaking and keeps this information in memory. Or this agent
would know that a car which is overtaking is supposed to keep higher speed.
These are called model-based agents.

Goal-based agent However an agent may have to take decisions based on a
given goal at moment t. A goal-based agent is conceptually di�erent as future
considerations are involved and thus a reasoning phase is needed to choose what
kind of action will help achieving the goal. The concept of goal is important
in the driving task: the destination targeted can vary and thus decisions (at
a junction for example) cannot be given by condition-rules and require instead
higher level considerations. Nevertheless goal-based agents lack of some kind
of performance measure ability since di�erent ways can lead to one destination;
some of them may be very long, or hazardous; a rational agent would choose its
actions according to these considerations.

Utility-based agent Utility-based agent overcome this problem and use util-
ity functions as internal performance measures. Such a function is rational if
it is in accordance with the external actual performance measure. This agent
maximizes the expected utility of the action outcomes. It sounds intuitive and



2.2 Trajectory optimization 23

Figure 2.5: A learning agent (Russell, 2009 [RN09])

simple but the challenge is to �nd good metrics, representation and reasoning.
Figure 2.4 shows such an agent: it uses a model of the world, along with a
utility function. However, such an agent cannot be autonomous because is en-
tirely dependent on the built-in knowledge and model that the agent designer
has programmed.

Learning agent Autonomy is crucial for an agent in order to adapt to dif-
ferent environment and unforeseen events. Partial or incorrect prior knowledge
should be corrected so that the agent can act better. This is done through learn-
ing: a learning agent is able to evaluate its performance, gets feedback from a
critic component based on performance standard. Its structure is shown on �g-
ure Figure 2.5. For example, reinforcement learning enables the agent to adopt
best strategy: a problem generator component makes it try new strategies; deci-
sions are taken then the agent rewards good decisions and gives penalty to bad
ones � according to performance measure and standard. Therefore the agent is
getting better over time, preferring decisions that were assessed as appropriate.

The utility-based agent suits to the requirements of the problem of study. It
simulates human behaviour based on a high level of decision-making, considering
performance measure. Moreover it could be augmented by a learning structure
which makes the agent capable of adapting to various environments and situ-
ations, and also achieving autonomy and getting better over time. However in
this thesis no study has been conducted to �nd good metrics for performance
measure. Therefore only a model-based agent will be used. It could be improved



24 State-of-the-art

into a model, utility-based agent with metrics de�ned. The goal is simple as the
agent needs to go as fast as possible, therefore the goal-structure of the agent is
trivial and the model will not focus on this part.



Chapter 3

Description of the model

and the algorithms

This chapter describes the implemented algorithms. The �rst section de�nes
the problem particularly its task environment, the driving rules to respect and
how these aspects are treated in the implementation. Then the second section
describes the agent-oriented online algorithm and the two implemented agents
and their decision process. The third section explains how the A* algorithm is
performed for the optimal search, and discusses about criteria of optimality.

3.1 Description of the integrated model

The integrated model built for this thesis is based on concepts and techniques
described previously that are relevant to this problem for the ego car. Models are
also used for the simulation of the other vehicles. As explained in Section 2.2.2.3,
agent-oriented programming suits this problem. Therefore the online algorithm
that has been implemented is based on this paradigm. The optimal search is
based on the structure of the online search. The simulation structure aims at be-
ing �exible, respecting driving rules and being realistic enough to get meaningful
results. Characteristics of this simulation model will be assessed in section 4.1.



26 Description of the model and the algorithms

3.1.1 Task Environment of the problem

Russell and Norvig [RN09] advocate to study �rst the task environment or
PEAS (for Performance, Environment, Actuators, Sensors) before designing a
problem related to Arti�cial Intelligence (A.I.) and particularly agents. This
section focuses on this approach.

3.1.1.1 Performance Measure

Performance measure enables to assess how good the system is according to
given criteria. It de�nes metrics and desirable qualities of the system. For
example in this problem, the trajectory aims at being:

• legal: speed limits respected, lane limits respected, etc.

• safe: in compliance with tra�c rules (safety distances, possibly keep lower
lane etc.)

• fast: minimize the time t to reach a given location (abscissa Xgoal)

Other criteria could be taken into account, such as minimizing fuel consumption,
comfort or wear and tear, but the program focuses on the above issues only. In
this problem, the goal is to reach a given abscissa Xgoal. Only trajectories
that, according to the decision process, should be legal and safe are considered.
Since lateral position is discretized and given only by lane IDs, cars always keep
lane and so only longitudinal control is relevant. Safety of a trajectory can be
assessed with the criteria detailed in Section 2.1.1.1. For the MAIS estimation,
there is not any explicit formula in the paper of Glaser, neither in the literature,
but the function p : EES → MAIS>2 = 1

1+e−0.2(EES−50) �ts reasonably well

the graphs Glaser presents [GVGM11]: the shape is similar, a probability of
0.5 is given for EES = 50 km/h, below 40 km/h the probability is under 0.1
and above 60 km/h the probability is above 0.9, as shown on Figure 3.1. It is
considered su�cient in the scope of this study.

At each moment, a virtual scenario is launched to assess risk: the car in front
brakes hardly and the ego car reacts after a reaction time to this change and
brakes hardly as well. In case there is no crash, the distance is retrieved between
the two cars when both are stopped. In case there is a crash, the EES and the
probability of an injury MAIS>2 are retrieved. These information, together
with the safety indicators detailed in section 2.1.1.1 are retrieved considering
the car in front, as a given car is only responsible for keeping safe distances with



3.1 Description of the integrated model 27

(a) (b)

Figure 3.1: EES and MAIS>2 scale for Glaser (a) and this model (b)

the car directly in front and not the one behind. However, when overtaking or
getting back the driver must keep a safe distance with the car on the new lane
hence in this case the criteria are retrieved both for the car in front and the car
behind. Two solutions have been considered to take these criteria into account:

• �xing a threshold limit and determine the percentage of time that the
situation is not considered as dangerous for a criterion, or

• retrieving the most extreme value of each of these criteria.

The second option might be overly stringent however it is the safest as high
risks can be detected. Therefore this option has been chosen. However, it is
still interesting to have an overview of the danger during the whole trajectory.
A trajectory could be safe 99% of the time and extremely dangerous at one
precise moment, whereas another trajectory could never be very dangerous but
maintain a moderately high level of risk. Both of these trajectories are poten-
tially dangerous. So the percentage of time safe distances are respected is also
computed as it gives a risk indicator of the whole trajectory. Safe distances
will be dependent on driver's pro�le (subjective risk) and explained further in
paragraph 3.1.2.3. However, safety distances are programmed as constraints
(cf. Section 3.2.2) which means that they should almost (almost, because of
the uncertainty of predictions) be respected according to the agent's point of
view. But a distance assessed by "safe" by a risk taker may actually not be.
Therefore for the performance measure, safe distance will be evaluated from a
standard driver's point of view, which agrees with the approach from Russell and
Norvig [RN09]: "As a general rule, it is better to design performance measures



28 Description of the model and the algorithms

according to what one actually wants in the environment, rather than according
to how one thinks the agent should behave". Also, one should notice that since
perfect lane keeping is supposed, only rear-end collision avoidance is considered:
there is no lateral model, not any lateral risk evaluation criterion. To sum up,
these are the relevant criteria retrieved to assess the risk of a trajectory:

• sd%: percentage of time that safe distances are respected (from a standard
driver's point of view)

• TTCmin: lowest TTC during the trajectory, in s

• δTmin: lowest time headway during the trajectory, in s

• hmin: lowest headway during the trajectory, in m

• EESmax: highest EES during the trajectory, in m.s−2 (if a crash occurs
in a virtual scenario)

• p(MAIS>2)max: highest probability of injury MAIS>2 (if a crash occurs
in a virtual scenario)

• dmin: lowest distance with the car in front (in a virtual scenario, if a crash
never occurs)

TTC are considered safe for values larger than 5 s by Vogel [Vog02]. As ex-
plained in Section 3.1.2.3, time headway on highways should be above 2 − 3
seconds, which corresponds approximately to 70 meters of headway. EES is
considered high for values above 11 m/s, which is the point at which the sig-
moid increases suddenly from 0.1% of injury to 0.9% for 17 m/s. But if there
are non-NaN (EESmax, p(MAIS>2)max) values retrieved, it means that a crash
could occur which is criterion for a risky trajectory.

In order to assess if a trajectory is better than another, one should de�ne
metrics, probably depending on driver's pro�le. For instance it could be based on
fuzzy logic to mimic human reasoning. Also, one could give a performance score
to decisions based on these indicators, which would enable the agent to learn
through reinforcement learning techniques for instance. Which is better: to be
in a moderate danger during a long time or very safe all the time except during
a few seconds when the car is in a very risky situation? How many seconds are
worth winning by taking risk? The performance measure will highly depend on
the driver's pro�le. However it has not been implemented in this thesis. The
purpose was to retrieve relevant indicators that enable comparisons, as a �rst
step for feasibility purposes. A study dedicated to this performance measure is
needed to improve evaluation of the model and prepare the learning stage.



3.1 Description of the integrated model 29

3.1.1.2 Environment

The environment is a highway with a �xed number of lanes, a �xed speed
limit and it is in�nitely long. There is not any sign on the road and not any
external object that could distract or disturb the driver. The road conditions
are supposed to be normal. These are simplifying assumptions for a �rst model
in order to focus on the algorithm itself rather than geometry considerations.
Other cars are equipped with an agent structure and as such, they are able to
react to their close environment. For a basic simulation, they are equipped with
an IDM as this model has shown the best behaviour among longitudinal models
in Appendix A. They do not change lane for simpli�cation purposes. Each car is
given characteristics (as detailed in Section 3.1.2.1), initial conditions (physical
characteristics: position, speed, acceleration) and a maximum desired speed
vmd. Each IDM car has a driver with a reaction time τ . However, any agent
implementation can be put in any car of the simulation. Still following Russell
and Norvig's approach [RN09], environment's characteristics will be detailed
below. They relate to environment's criteria such as observability, determinism
or continuity.

Partially observable The observability is an important criterion for the de-
sign of the problem. In this model it is partially observable as the whole envi-
ronment is not known, moreover some information such what the other drivers
are planning to do are not known. There could be noise and inaccuracy in data,
even missing data, but it is not taken into account for this model as what is
known is supposed to be known with a perfect accuracy for simpli�cation pur-
poses. This partial observability is represented by the limited �eld of the sensors
(detailed in Section 3.1.1.4) and dealt with in the decision process of the agents,
which is detailed in Section 3.2.2.

Stochastic environment The ego car is deterministic as it is supposed that
the car reacts exactly to the input: there is one outcome from an action decided
by the agent. But after an action, the next overall state of the environment is
not determined as it does not depend only on the ego car but on other car's
behaviours as well. Several outcomes can occur from a given state, each of them
could be given a probability of occurrence. Thus the environment is stochastic.
This characteristic is somehow related to the unobservability of what the other
drivers are planning to do, and is taken into account in the decision process of the
agents. However in this model, there is no probability assignment for possible
outcomes that can occur from a given state, it is simpli�ed as explained in
Section 3.2.2.



30 Description of the model and the algorithms

Single Agent Each car can be considered as an agent for this problem, which
would make it a multi-agent problem. However the purpose of this thesis is
not to design an algorithm that makes them cooperate to optimize the overall
tra�c. In the near future all the cars should not be able to communicate and
automated cars will share road structures with standard cars. Therefore it is
relevant to focus on a single car problem. The problem is single-agent and the
behaviours of the other cars are modelled with IDM.

Sequential Decisions at time t will a�ect future decisions. Short-term actions
trigger long-term consequences: for example the decision to change lane. Acting
rationally is considering long term consequences and taking high level decisions,
so it con�rms that an agent structure is adapted to this problem.

Dynamic This problem is clearly not static as the other cars keep moving
- and also the ego car - while the agent is deliberating. Decisions are taken
very frequently in this dynamic environment; between two decisions, the same
acceleration is kept. When there is not any percept, speed is maintained. In
this model, the only moment when there is no percept is at the moment of a
lane change.

Continuous and discrete variables Most of the variables of the problem
are continuous. However data are sampled every time step dt and are therefore
discretized. Lateral position is discretized with lane IDs. In the process selecting
the appropriate acceleration, as explained in Section 3.2.2, a range of speeds are
tested which discretizes speed output possibilities.

Known The environment is known which means that the agent knows what
will be the outcome of its action (acceleration makes the car goes faster for
instance). In real life, road conditions could be di�cult (snow for instance)
and the agent would need to learn how the car reacts to steering angle and
acceleration. But road conditions are supposed to be standard so in this model
there is no need to adapt to di�erent environment conditions.

3.1.1.3 Actuators

The actuators for a car are the pedals and the steering wheel which make it
move on the road. Since lateral movement is discretized with lane IDs, the
actions to be taken contain two decisions:



3.1 Description of the integrated model 31

• acceleration/deceleration (continuous)

• lane changing

� overtake, or

� keep lane, or

� get back

3.1.1.4 Sensors

A driver can perceive and evaluate the distances with other vehicles, and also
their speed or acceleration. Perception may be incomplete as there are blind
spots and other vehicles or obstacles can obstruct the �eld of vision. There
exist distance sensors, speed sensors (Doppler radar for example) that can sup-
plement these data; acceleration could be derived from speed sensors. For this
model, it is simpli�ed and the car is able to perceive the distance to and the
speed of the vehicles directly in front and behind which are located on the left
lane, on the same lane and on the right lane, within 200 meters. This value
corresponds to the frontal area covered by the radar of Stanley [TMD+06]. The
radar could cover non-adjacent lanes but it would depend on obstacles on the
road (a car could obstruct vision): for simpli�cation purposes, only adjacent
lanes are considered in perception. A more complex model could consider the
other lanes for more informed decisions.

3.1.2 Driving rules

Actions to be taken must respect several sets of rules, considering system limits,
human characteristics and tra�c rules.

3.1.2.1 System rules

Since this model aims at tactical decisions, control is not part of it so the vehicle's
model is very simpli�ed. The car model is even simpler than a bicycle model.
It goes straight on a lane and can change lane in one time step. Characteristics
of a car are:

• m: mass, in kg



32 Description of the model and the algorithms

• L: length, in m

• g: maximum acceleration, in m.s−2

• b: maximum deceleration (absolute value), in m.s−2

• vcmax: maximum possible speed, in m.s−1

The acceleration chosen for an action must be in the interval [−b, g]. Also the
action is for [t, t+ dt]: the resulted speed at t+ dt cannot exceed the maximum
desired speed vmd and a fortiori the maximum speed allowed vmax - since for
legal reasons, vmd ≤ vmax.

3.1.2.2 Human rules

Human rules set the characteristics the system should comport in order to adapt
to and interact with human beings. They especially focus on the human-machine
interface [Van12]. In this model the driver is supposed to react exactly to what
the machine decides and this interface is not part of the simulation. Still, the
algorithm has been implemented to take into account human drivers. In this
model, a driver has four characteristics:

• τ : reaction time, in s

• θ: risk taking trait from −1 (very careful) to 1 (high risk taker)

• γ: ability and willingness to perform manoeuvres from −1 (very low) to 1
(very high)

• µ: willingness to go fast, from −1 to 1 (wants to go respectively from 20%
slower than vmax to vmax)

θ can be lower than −1 or larger than 1 (up to 3 for this model, as explained
later) but in that cases behaviours are extreme. For this model, µ can actually
be decreased down to −9 which is equivalent to targeting a null speed. But
most of drivers would have a µ value between −1 and 1.

Drivers' pro�les It is unclear how to properly de�ne a cost measure as it
depends on various criteria such as time, potential crash cost (on vehicles, road
infrastructure, injuries. . . ), potential �ne or comfort. Therefore the simplest



3.1 Description of the integrated model 33

Figure 3.2: Di�erent cautious driver pro�les

model for driver pro�le has been chosen in order to provide a �rst model de-
pending on driver's characteristics: all the drivers have a careful driver pro�le,
as shown on Figure 2.1. However the risk threshold varies and depends on
driver's characteristics detailed above: θ, µ are taken into account but not γ as
explained in Section 3.2.1.1.

On Figure 3.2 several driver pro�les are displayed. The blue one has high θ and
µ values while the red one is very careful: negative θ and desired speed below
the maximum speed allowed. Depending on their pro�les, drivers will accept or
not more hazardous trajectories and higher speeds. These limits are detailed in
Section 3.2.2.

3.1.2.3 Tra�c rules

Tra�c rules need to be respected to ensure legal and safe trajectories. Lanes
are always kept due to lateral discretization, which avoid cars to disrespect
rules related to it in this model. Driving should be on the right-most lane in
this model. Undertaking (overtaking on a lower lane) is allowed in Australia:
this rule has been implemented for this model. To adapt to a country where
it is prohibited, the algorithm could be modi�ed. For instance, speed could be
upper-bounded by the speeds of cars in front on higher lanes. Also safe distances
must be respected to ensure safe travels.



34 Description of the model and the algorithms

Safety distances The safe distance given by Gipps (1981) [Gip81] and de-
scribed in Section 2.1.2.2 is used. Furthermore, the IDM model which gave the
best performance in tests (cf. Appendix A) is based on this safety distance. This

distance is given by di,ft
∗(t) = vi(t) · τi+Lj +max(0, ( vi

2(t)
2bi
− vj

2(t)
2bj

)). It takes

system rules into account: a driver would have time to perform an emergency
braking at any time, as the headway is always long enough to let the driver
react and then brake until standstill complete stop, as detailed in Section B.1.1
of Appendix B. It is a consistent safety distance for a long term simulation: if
all the cars respect it, there would not be any accident except unexpected cir-
cumstances (something blocks suddenly the road for example). However, as the
driver acts after a reaction time τ , the agent needs to provide information in ad-
vance and needs to predict other cars' trajectories. Those predictions may lack
precision and safe distance could be underestimated. Moreover, this distance
gives a limit and could trigger short headway and stress on the driver. A general
rule of thumb in many countries is to let a time headway of 2 to 3 seconds with
the car in front (for example in Queensland, Australia [Gov10]). These two
criteria are relevant and characterize safe distances on highways. Therefore, in
the model a position is considered not safe if at least one of these criteria is not
respected. The latter depends on the parameter θj of driver j: at each moment

the agents take a decision to respect
hi,ft(t)
vi(t)

> 3− θj .

3.1.3 Other precisions about the model

3.1.3.1 Design of classes

The program is object-oriented. Most of the more important classes are given in
Section 3.2.1 on Figure 3.4, as they are related to the agent. Speci�c structures
for the optimal solutions algorithm will be described in Section 3.3. Other
general precisions are given in this section.

Physical Characteristics Physical characteristics are associated to a car in
the environment with hash maps that enable to retrieve these characteristics
from an agent or the object at a given location, as shown on Figure 3.4. Such
an object stores:

• the abscissa x of its front point

• the longitudinal speed v

• the longitudinal acceleration a



3.1 Description of the integrated model 35

• the lane l

• the xCell corresponding to x

� the environment is divided into cells of a given length for computation
purposes for the optimal search, as explained in Section 3.3. For
example if the cell length is 5 meters and x = 16 m, xCell = 3.

Scenario A scenario initializes the simulation. It gives the number of lanes,
the maximum speed allowed, the list of agents and their initial physical char-
acteristics. Then these agents evolve in the environment according to their
implementation model.

Simulation Result The simulation result is created at the beginning and
updated during the simulation for the online algorithm, and retrieved at the
end for the optimal search. It stores the history of states of the environment
and computes the trajectory's criteria given in Section 3.1.1.1 a posteriori.

3.1.3.2 Visual representation of trajectories

Figure 3.3: Trajectory representation

Since the information about performance measure retrieved from a trajectory
does not fully describe it, graphs are derived to represent trajectories. They will



36 Description of the model and the algorithms

be used when presenting results in order to show the trajectory. The abscissa
is x in meters, cars travel from left to right. The ordinate is the lane index,
lane borders are represented in red. The lowest lane (coded as 1) is the lane
that cars are supposed to keep if not overtaking. A coloured line represent a
trajectory and each point a position at a given time t multiple of dt. The ego
car is traced in blue on the example on Figure 3.3. If the ego car changes lane
at time t, a doubloon will be created on the graph for the other trajectories
with a point below the position at time t (for instance on the �gure, for t = 3).
If another car changes lane at time t, a doubloon will be created on the graph
for all the trajectories with a point above the position at time t (for instance
on the �gure, for t = 4 the yellow car overtake). These visual tricks are very
handy to have an overall visualization of the trajectories on only one image.
The visualization is good for short-time scenarios but should be improved for
longer ones or scenarios with a high number of cars, otherwise there are too
many overlaps and it is hard to distinguish trajectories and understand what
happens.



3.2 Online agent-oriented algorithm 37

3.2 Online agent-oriented algorithm

This section describes how the online algorithm works. As explained previously,
it is agent-oriented and uses the structure already described. The agent struc-
ture has been based on the work of Ravi Mohan in collaboration with Russell
and Norvig (2009) [RN09]: they provide a code architecture for such problems
and appropriate interfaces for the objects.

3.2.1 Agent structure

The class diagram on Figure 3.4 shows the agent's structure. The agent per-
ceives the environment through the method getPerceptSeenBy acting on the
current environment. A new HWEnviroment is created and stored in the list
state_history, which is the percept sequence: the history of data position and
speed of all the cars around. This information gathering helps the agent to
choose which action to perform, as explained in Section 3.2.3. A driver agent
corresponds to a car and a human driver. It implements the interface DriverA-
gent, which is abstract and is a generalization of the classes Greedy_HWAgent
and BDI_HWAgent. They are detailed below.

3.2.1.1 Greedy Agent

The Greedy Agent has a straightforward strategy. It evaluates the maximum
speed the car can reach, below the maximum desired speed of the driver vmd,
on each lane, and chooses the fastest solution. If the agent can go as fast as
possible on two lanes, the decision that targets the lower lane will be chosen.
As a result, it minimizes time locally until the next time step. A penalty could
be added for changing lanes but it has not been implemented to keep the model
simple. A particular study should be conducted to evaluate an adequate penalty
to take this into account. In that case the attribute γ of the agent would be
used to make the penalty varying depending on the driver. γ is not used in this
model.



38 Description of the model and the algorithms

Figure 3.4: Class Diagram centred on the Agent



3.2 Online agent-oriented algorithm 39

3.2.1.2 BDI Agent

A Belief-Desire-Intention (BDI) Agent (cf. Section 2.2.2.3) with a simple intelli-
gence has been implemented to provide a more rational behaviour than the one
of the Greedy Agent. Its characteristics are:

• Beliefs: the history of states of the world he knows through his percepts.

• Desires: 4 di�erent desires have been programmed:

� keepLane: if it wants to keep the same lane

� overtake: if it wants to overtake the car in front

� keepOvertaking : if it wants to keep overtaking a car. As soon as it
starts overtaking, its desire switches automatically to keepOvertaking.
Then it may want to overtake a car and get to a higher lane again;
hence keepOvertaking and overtake are two distinct desires.

� getBack : if it wants to get back on a lower lane, to �nish overtaking

• Intentions: In this model desires and intentions are the same: intentions
are directly derived from desires.

In this model, the desire to go fast is implicit, as the highest possible acceler-
ation on each lane is computed. In a more complex model, it could con�ict with
getBack if the number of lanes on the highway is reduced from 3 to 2 and if there
is a car on a lower lane for example. In that case the intention derived from
goFast and getBack could be keepLaneAndReduceSpeed. Hence desires would
be di�erent from intentions in such a model. However the model of this thesis
is very simple for a �rst attempt to model a BDI Agent. The desire is updated
every time step, based on previous percepts. The scheme of updateDesire() is:

if frontCarIsSlow() and thereIsAHigherLane()

desire= overtake;

else if thereIsALowerLane() and noCarInFrontOnLowerLane()

desire= getBack;

else if desire == overtake || desire == keepOvertaking

desire= keepOvertaking;

else

desire= keepLane;

end if



40 Description of the model and the algorithms

A car in front is supposed to be slow if it goes at less than 90% of the maxi-
mum desired speed of the ego driver. There is no particular motivation for this
threshold as the purpose of this implementation is to show a di�erent behaviour
but not provide a convenient and usable program for a real application. In this
model, only the last percept is taken into account. It would be interesting to
build a more intelligent reasoning taking into account the history of percepts,
and also to elaborate more the reasoning. For example, it would be interesting
to make the agent adapt its speed to achieve the desire he wants (instead of
always targeting a maximal speed) as suggested in the previous section. The
implemented behaviour aims at showing that with the concept of overtaking im-
plemented in the agent's structure, it can perform better than a Greedy Agent in
some situations. Lane changing decision is based on a few information gathering:
the decision model is simple for a �rst integrated model.

3.2.2 Decision process

The aim of a decision is to give an acceleration to take at time t and keep it
until t+dt, when a new decision will be taken. It is equivalent to target a speed
v(t+dt) supposing that the acceleration is kept constant during this time lapse.
These choices of acceleration should give a trajectory that is safe and satis�es
the agent's intentions.

3.2.2.1 Model-based but not utility-based agents

This decision process is more complex than a re�ex agent's one. It is not limited
to the only information gathered as the decision is not based directly on the po-
sition and speed of the other cars as retrieved by the sensors. Instead, the agent
reacts to what the environment is predicted to be one step further predicting
the location of other cars at that time. Therefore the agent is model-based. In
order to be a utility-based agent also, the decision process for choosing what
action to perform should be based on an internal utility function in agreement
with the performance measure. Further studies are required to evaluate an ap-
propriate utility function. The implemented agents, the Greedy Agent and the
BDI Agent, are not utility-based. Instead, it has been implicitly programmed
that the agent must go fast and safely. The former has been done by selecting
the highest possible acceleration on each lane when evaluating possible actions.
Then the choice of the action depends on the agent: for the Greedy Agent, best
is to go fast. For the BDI Agent, best is to achieve its desires (go fast and change
lane if intended and possible). The latter has been programmed as constraints.
A given acceleration is possible if the agent predicts that it will keep a safe



3.2 Online agent-oriented algorithm 41

distance until next time step. As a result, any action that would not respect it,
according to the model, is never given to the driver. Besides, for both agents,
contingency plans are considered; in case the intention cannot be satis�ed, it
would mean that safe distance with the car directly in front is too low for any
acceleration even −b. In that case an emergency braking is considered and the
car decelerates at −b on the same lane.

3.2.2.2 Decision process scheme

Figure 3.5: Visualization of predictions for the Decision Process

The driver has a reaction time τ . Therefore the agent needs to give information
to him at time τ second before the driver actually acts. As the environment
is dynamic, the agent needs to predict at time t what the environment will be
like at time t+ τ . The agent has a built-in model to make it predict the future
environment state. As shown on Figure 3.5 two predictions are made at time t:

• time t + τ : the environment state at the moment the agent will take the
action

• time t+ τ + dt: the environment state for the other cars at the next time
step



42 Description of the model and the algorithms

Figure 3.6: Movement between t and t+ dt

In the implementation, at time t, for each driver agent j, chooseAction is invoked
on the driver agentj , with its perceived environment at time t and the intention
of the agent j as parameters. The agent j decides to take an action that the
driver j will do at time t+ τj . This action is supposed instantaneous as shown
on Figure 3.6. Therefore if the driver changes lane, distances must be safe on
the current lane and the new lane: that is why positions on all adjacent lanes
are considered for the ego car on Figure 3.5.

The decision scheme is given by the activity diagram on Figure 3.7. Based on
these predictions, and depending on his intention and pro�le, the agent takes an
appropriate decision to give to the driver. For instance, if the agent intents to
go as fast as possible, Take Fast-intended decision is chosen on Figure 3.7. The
end of the decision process for this particular intention is given by the activity
diagram on Figure 3.8. The process is very similar for other intentions, and
even simpler, as preferred targeted lanes are put �rst on the list (the higher lane
for overtaking for example). Being on a lane l on predicted state at time t+ τ
must be safe to consider an action on that lane. Then, several accelerations are
considered from t+τ to t+τ+dt as shown on Figure 3.5, and the highest possible
one according to safety conditions is kept for that lane. These accelerations are
considered from the minimum of g and the acceleration that targets the desired
maximum speed, down to the maximum of b and the acceleration that targets a
null speed. It is discretized as, due to the form of the equation, there is no direct
formula giving the targeted acceleration. As a result the acceleration output is
not exactly the highest (or lowest) possible. However discretization is made on
speed with a sampling of dv = 1 m.s−1, which results in a negligible error as
detailed in Section B.1.2 of Appendix B.

In these predictions, the car is predicted to be at one speci�c position at time
t + τ and t + τ + dt. Another way would be to give a probability distribution



3.2 Online agent-oriented algorithm 43

Figure 3.7: Decision Process Scheme

on the road. Based on this probability a decision could be assessed to be more
or less dangerous. This design would be very di�erent from the one used in
the model because not based on a threshold. Possible techniques to do so are
segmented cones, as suggested by Greene et al. (2011) [GLR+11], or Kalman
�lters. However it would require further studies and evaluation of risk, and
that measure could be integrated in the evaluation of the utility function. As
explained previously, the focus has not been made on this part for this thesis.
Therefore a threshold-based model is used.

Prediction Model The prediction model that has been implemented sup-
poses that the other cars keep the same lane and speed. It is very basic because
based only on the last percept. Based on a history of percepts, one could imple-
ment a more sophisticated model in order to reduce errors. Even if predictions
are made on short term (maximum of τ + dt which is approximately 1-1.5 s in
this model), if a car j has a constant speed and then performs an emergency
braking at −bj = −8 m.s−2 during 1.5 seconds, the resulted errors on his po-
sition is 12 m which can be dangerous. But sudden changes are taken into
account with the safety distance of Gipps: respecting this distance gives time
for the driver to perform an emergency braking if needed. Therefore, supposing
that the cars keep the same speed seems reasonable for a �rst simple model.



44 Description of the model and the algorithms

Figure 3.8: End of Decision Scheme for Fastest action

3.2.3 Online Algorithm

For the online algorithm, every agent acts in real time based on its percepts
and implemented intelligence. After initialization, the program enters a loop in
which the agents act every time step. This loop is described by the sequence
diagram on Figure 3.9. A time limit has been �xed to avoid in�nite loop in
case of failure. While the goal is not achieved - or the time limit not passed
- every agent chooses an action according to its percepts, taking into account
the reaction time of its associated driver. At time t, the current environment is
perceived with getPerceptSeenBy, chooseIntention retrieves the intention of the
agent and an action is chosen, that will be done at time t + τ by the driver.
For example, a Greedy Agent will always have the intention to go the fastest
possible, while a BDI Agent may want to overtake or keep lane for instances,
depending on the perceived environment. Finally the agent j acts in the current
environment, doing the action the agent had decided τ second before.

In case the agent j has changed lane between t and t− τj , its percepts have not
been updated on the new lane and so the decisions taken between t and t−τj are
not valid. In that case the driver keeps lane and speed, as shown on Figure 3.10.
Implementation details are provided in Section B.2.1 of Appendix B. The action
is supposed to be instantaneous once the decision is taken, in other words the



3.2 Online agent-oriented algorithm 45

Figure 3.9: Sequence Diagram: Online loop over time



46 Description of the model and the algorithms

Figure 3.10: Perception-Action example

lane change and the acceleration is immediate after t, as shown on Figure 3.6.
The agents are acting simultaneously in the current environment. Finally, it
is checked whether the goal is achieved; if not, the loop goes on. This is done
every dt (sampling time), and all the tauj are multiple of dt, so that the times
of perception and action match the time steps. During this process, a complete
state history is stored so that relevant information about the trajectory can be
computed later, as explained is Section 3.1.3.1.



3.3 Optimal search 47

3.3 Optimal search

As explained in Section 2.2.1, the A* algorithm is the fastest algorithm to �nd an
optimal solution. This optimal search will be used o�ine, within the simulation
framework, to assess performance of the online algorithm.

3.3.1 Problem and algorithm de�nitions

3.3.1.1 Discretization

The time is discretized by sampling time every dt second. The sampling tech-
nique used is environment-based sampling, as explained in Section 2.2.1.1. At
time t corresponds an environment state with physical characteristics, including
the abscissa x, associated to objects (only cars so far), and between two time
steps the acceleration is supposed to be constant. The problem is de�ned by:

• the list of driver agents

• initial conditions from which the initial node is constructed

• a goal: reach a given abscissa Xgoal for this thesis

A node is de�ned by:

• tn: the number of time steps to reach the node. tn = t
dt with t the e�ective

time in seconds and dt the sampling time

• state a node state that stores

� the corresponding environment

� a list of percepts associated to each agent at this moment

• parent: the parent node from where this node was derived

• action: the action from the parent node to this node

• pathCost: f(n) = g(n) + h(n) with f , g and h detailed in section 3.3.1.2

A node also stores other information needed to wait for getting new percepts
when changing lane: this is detailed in Section B.2.1 of Appendix B. It also
stores the number of time the car has changed lane to overtake, in order to
avoid a "ping pong" e�ect on lanes: it will be explained in Section 4.2.4.1.



48 Description of the model and the algorithms

3.3.1.2 Cost and heuristic

The cost function of a A* algorithm is described in Section 2.2.1.2.

E�ective path cost The e�ective path cost g(n) of a node n is given by the
time spent so far: g(n) = tn ·dt. To avoid a "ping pong" e�ect, a penalty associ-
ated to lane changing has been added and it will be explained in Section 4.2.4.1.

Heuristic cost The heuristic cost h(n) associated to node n is the time for
the ego agent to reach Xgoal if the driver goes at her maximum desired speed
vmd. It is consistent since it can only increase with distance. Therefore it is also
admissible. It underestimates the time to get from a given node n to a goal node.
However, it does not take into account possible obstacles on the road which
makes the information hardly useful if the car is blocked by slower cars in front.
If the ego car has to decelerate because of a slow car, it cannot reach vmd and
a large part of the graph will be explored. The search will be almost equivalent
to an uninformed search until the car is able to travel at vmd, which can induce
a large complexity, in the worst case O(bd) as explained in Section 2.2.1.2.
Nevertheless it seems hard to �nd a better heuristic without need of costly
computation. Indeed, foreseeing slow cars and giving a better estimation of
the maximum speed at each moment for the car would be equivalent to solving
the problem. Due to these computation's problems, adapted variations of the
algorithm can be implemented, making the algorithm lose in complexity but
gain in computation time. It will be detailed in the next section.

3.3.1.3 Algorithm implementation

The basic A* algorithm is a tree search. However, it can be turned into a graph
search in order to avoid considering several times a same state. To do so, a hash
set of visited nodes is stored. A node is considered already visited if the car has
the same physical characteristic x, v and l at that moment t. Therefore a same
state is not visited twice and the complexity is improved at a low memory cost.
The pseudo-code of the graph-search A* algorithm is:

path = aStarSearch(scenario) {

queue=PriorityQueue<Node>;

initialNode = Node(scenario);

visitedNodes = HashSet<Node>;

queue.add(initialNode);



3.3 Optimal search 49

visitedNodes.add(initialNode);

while (!queue.isEmpty())

node = queue.poll();

if (node.isGoal())

return node.getPath();

end if

successors = node.expand();

for n in successors

if not visitedNodes.contains(n)

queue.add(n);

visitedNodes.add(n);

end if

end for

end while

return null;

}

Successors When expanding a node, all the actions of the other cars are ac-
curately predicted by the algorithm. To do so, the same process as the online
search loop is simulated for each agent in order to retrieve what action they
would take in that situation. Which enables the optimal search to know pre-
cisely where the other cars will be at time t + dt and then choose a trajectory
that perfectly respects safety criteria. Complexity exponentially increases with
the branching factor b, then b needs to be kept low in order to perform the
computation search. It has been chosen to keep 3 possible accelerations for each
lane, as the manoeuvre grid model of Glaser suggests (cf. Section 2.2.2.1). 3
trajectories per lane seems the minimum to consider as it enables the car to
keep the same speed, accelerate or decelerate. Considering less trajectories may
cut much better solutions: assuming that a car cannot decelerate, or cannot
keep speed is too strong. However, considering more trajectories would lead to
high complexity as it is exponential in b. On a lane l, if the highest possible
acceleration is a2 > 0 and the lowest possible acceleration is a1 < 0, then every
acceleration in between is possible. For the optimal search, a1, 0 and a2 are
kept. In case both highest and lowest acceleration are either positive or nega-
tive, a1,

a1
a2

and a2 are kept to have a range of 3 possibilities in that case as well.
Therefore from a position the car is able to perform 9 di�erent actions, which
provides a range of possibilities to consider various trajectories.



50 Description of the model and the algorithms

Optimality of A* The algorithm is guaranteed to �nd an optimal solution.
But as explained in Section 2.2.1.2, A* is polynomial only if the heuristic respects
|h(x) − h∗(x)| = O(log(h∗(x))) with h∗ the actual cost. It is not the case here
as if there are slow cars, the ego agent may be blocked and search a large part of
the graph. As a result, it may take a lot of time to compute a solution. To face
this problem, the problem can be relaxed: the algorithm will not �nd an optimal
solution but it will be able to compute a solution faster. Three possible solutions
have been considered to relax the problem and make it computationally possible:

1. Increase dt to decrease the depth of the best solution

2. Decrease the number of successors per nodes

3. Use hybrid A*

Worst-case complexity of A* is O(db) with b the branching factor (number of
successors for a node, here 9 maximum) and d the depth of the best solution. The

�rst solution divide d by 2 and the complexity is then O((d2 )
b
) = O(d

b

2b
) = O(db):

the gain is not substantial and the order of magnitude is the same. For the
second solution, reducing its possible acceleration to 3 possible ones at each
state is already a strong assumption. Reducing it to 2 would mean that the
car is either not able to accelerate, decelerate or keep the same speed: which
is too strong. Hence it has not been considered as the loss of optimality may
be huge if the car has less than 3 options per lane. The third solution is to use
hybrid A*: so far, a node is considered already visited if the ego agent has the
same physical characteristics x, l and v at the same time step t. Instead, a node
can be considered already visited if the coordinates had already been reached
(only x, l and t are considered). It can be even more simpli�ed, by discretizing
space. Instead of considering every possible x, the road is represented as a grid
of cells. Each cell has a length xCell and a node is considered visited if the
car has already reached a cell (xCell, l) at time t. The larger xCell is, the
more A* loses in optimality. This adapted algorithm is called hybrid A*. This
technique has been used to face complexity issues. xCell has been set to λ · dt
meters with λ = 5 m.s−1. As a result, successors of a node where the speed
di�erence is less than 5 m.s−1 are considered equivalent, and generally if a node
np corresponding to the cell and time step of a given node n has already been
expanded, the node n is not expanded. It avoids considering di�erent similar
solutions such as (accelerate, accelerate, decelerate) and (accelerate, decelerate,
accelerate) with a margin of 2.5m for dt = 0.5. It has been set to 5 since dt = 0.5
s and 2.5 m it is negligible compared to safe gap distances on highways (at least
30 meters), and it seems reasonable though not too restrictive to consider at
time t that two solutions with a di�erence of 5 m.s−1 are equivalent - reminded
that only three accelerations are considered at time t. This technique may be



3.3 Optimal search 51

used if optimal solutions cannot be found because of a too large complexity of
the initial A* algorithm in particular scenarios.

3.3.2 Application of the algorithm

The solution given by A* is considered optimal in this problem if the path cost if
the lowest possible. Path cost takes only time into account, and safety is used as
a constraint. It is interesting to know if by changing the safety criterion (lower
headway allowed) a large gain of time can be achieved. A driver could accept a
more hazardous trajectory if the resulted gain of time is appreciable. To do so,
the A* algorithm can be launched with several combinations of θ and µ values
for the ego agent. Several optimal solutions will be computed that will enable to
consider several kind of trajectories, from a more hazardous but fast trajectory
to a safer but slower trajectory. As explained previously further studies should
be conducted to de�ne metrics and assess automatically what trajectory is better
for a driver. In the tests of this thesis, it will be discussed what trajectories seem
best and they will be compared to the trajectory computed by the online search,
based on an analysis of the trajectories' criteria retrieved. In case the scenario
triggers a too high complexity, the extensions of the model explained above
enable to get suboptimal trajectories.



52 Description of the model and the algorithms



Chapter 4

Results and Analysis

This section presents the analysis of the model and the results of the conducted
studies. The �rst part explains what criteria are to be assessed to validate the
model and its compliance to what is expected from such a framework. In the
second part, the optimal search method will be discussed and tested. In the
third part, online agent's behaviours will be tested, compared to each other and
to optimal solutions.

4.1 Model's validation

This model has been described in Chapter 3. It has been implemented in or-
der to provide a consistent study framework to study intelligent behaviours of
agents. It must have �exibility to enable several tests to be conducted, and the
implementation must also enable the model to be improved with other features.
Also it must respect rules: the system must be ethically valid in order to be
accepted for driving assistance.



54 Results and Analysis

4.1.1 Rules to be respected

The implementation should be in accordance with several sets of rules. Van-
holme [Van12] gives a review of the rules that must be respected, according to
consensus such as the Vienna Convention on Road Tra�c.

4.1.1.1 Tra�c rules

Tra�c rules should be respected so that users can safely share roads. This
section enumerates the main rules that have should be taken into account and
explains whether the algorithm comply with them. Tests presented in this
section have been run with the online algorithm; same results would apply
to the optimal search as evaluation of safety and acceptance for a trajectory is
based on the same rules. If not speci�ed, the parameters for a car are m = 1800
m.s−1, L = 4.5 m, g = 5 m.s−1 and b = 8 m/s−2 and for a driver τ = 1 s,
θ = 0 and µ = 1, and the agent is a Greedy Agent. If not speci�ed, results
are the same for the BDI Agent as its behaviour only di�er for overtaking-
related decisions. On a single lane scenario, decisions are the same for both
agents. Simulation tests have been run for the optimal search corresponding to
the same (θ,µ) parameters. Speed limit is set to 35 m.s−1. Tables sum up the
trajectory evaluation criteria detailed in Section 3.1.1.1.

Respect speed limits In order to respect safe limits, the parameter µ of
the driver needs to be inferior to 1 (maximum desired speed of the driver is
vmd = vmax in that case), since the agent will regulate its speed based on vmd.
If µ > 1, the speed limits may not be respected. However if µ ≤ 1 they are
respected as shown by the scenario test below. In this acceleration scenario
test, the road is free and the agent targets the speed vmd = vmax = 35 m.s−1.
Figure 4.1 shows its speed and acceleration as functions of time. Speed never
exceeds the maximum speed allowed; the driver is supposed to follow exactly the
instructions given by the agent, so the agent knows at time t what acceleration
to give for time t + tau in order to respect this limit until time t + tau + dt
(cf. Section 3.2.2). The optimal search computes a similar trajectory, that
di�ers only at the beginning because no reaction time is considered, as shown
on Figure 4.2. One should notice that the acceleration from standstill is not
realistic, as explained in Appendix A. But the purpose is to go as fast as possible,
so the acceleration is maximal to reach as fast as possible the maximum speed.



4.1 Model's validation 55

(a) (b)

Figure 4.1: Speed and Acceleration, Acceleration test (agent)

(a) (b)

Figure 4.2: Speed and Acceleration, Acceleration test (optimal)

Keep safe distance The agent should be able to brake until standstill- which
is keeping safe distance with a stopped car - and also to keep safe distance in a
tra�c situation to be able to perform a safe emergency braking if needed.

In the braking scenario test, there is a car stopped 400 m in front of the initial
position of the ego car and the ego car travels at the desired speed of the ego
driver. Figure 4.3 shows its speed and acceleration. The agent manages to stop.
At the end of the simulation, the car stands at 0.75 meters from the stopped
car, after a smooth braking that starts around 15 seconds before full stop of the
ego car and about 150 meters before the obstacle. This is a realistic and desired
behaviour as explained in Appendix A. Results do not depend on θ since the
vehicle in front is stopped and Gipps' criterion is the same for any θ in this
model. For this test, the goal of the optimal search has been set to target the
abscissa which is 0.75 meter behind the stopped car, so that the algorithm can
�nd a solution. Results are similar as shown on Figure 4.4.



56 Results and Analysis

(a) (b)

Figure 4.3: Speed and Acceleration, Braking test (agent)

(a) (b)

Figure 4.4: Speed and Acceleration, Braking test (optimal)

In the car-following scenario test, there is a car 250 m in front of the initial
position of the ego car, they are traveling both at 30 m.s−1 but the ego agent
desires to travel at the maximum speed allowed (µ = 1) while the car in front
desires to travel at a speed 20% lower (µ = −1). Table 4.1 sums up the tra-
jectory's criteria, and Figure 4.5 shows its speed and acceleration. The driver
was standard in this simulation, so decisions were taken in order to respect safe
trajectories. As a result, safe distances are respected 100% of the time. The
lowest tolerated δT (time headway) was 3 s and throughout the trajectory the
lowest is δTmin = 3.07 s which is in accordance with the driver's risk taking
trait θ. The TTC is high (always superior to 15 s) as standard critical values
for TTC are 5 s: the car adapts his speed well in order not to trigger a potential
dangerous situation. Therefore, if the car in front braked hard at any moment, a
crash would never occur (NaN values for EESmax and p(MAIS>2)max) and in
the worst case the ego car would stop at standstill at about dmin = 40 m before
the car in front. This behaviour is safe. It is very similar for the optimal search,
which is normal as the agent aims at each moment to go the fastest possible: if



4.1 Model's validation 57

there is one lane only, it is optimal.

Results
time 66.0 s
#lane changes 0
sd% 100.0 %
TTCmin 15.04 s
δTmin 3.07 s
hmin 85.83 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 39.82 m

Table 4.1: Results for the Car-following test (agent, θ = 0)

(a) (b)

Figure 4.5: Speed and Acceleration, Car-following test (agent, θ = 0)

However, as θ increases, the driver accepts lowest headway and thus takes more
dangerous decisions. Similar simulation tests have been run with θ = 1 (lowest
tolerated δT = 2 s) and θ = 3 (lowest tolerated δT = 0 s). For a safe application,
θ should not be higher than 1 as a minimum of 2 seconds of time headway is
advocated by governments (for example in Queensland [Gov10]). The simulation
is run with θ = 3 for test purposes. Speed and acceleration pro�les are similar
in all cases. However, trajectories' results di�er as shown on Figure 4.2 (θ = 1)
and Figure 4.3 (θ = 3).

As soon as the ego car is close enough to the car in front, it keeps approximately
the same headway, which is unsafe from a standard driver's perspective (taken
into account to assess if a distance is safe in the results, as explained in Sec-
tion 3.1.1.1): from that moment safe distances are never respected. However, if
the car in front was braking at its maximum deceleration until standstill, a crash



58 Results and Analysis

Results
time 64.5 s
#lane changes 0
sd% 34.0 %
TTCmin 13.55 s
δTmin 2.05 s
hmin 57.33 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 17.08 m

Table 4.2: Results for the Car-following test (agent, θ = 1)

Results
time 64.0 s
#lane changes 0
sd% 34.0 %
TTCmin 13.55 s
δTmin 1.31 s
hmin 36.83 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 2.2 m

Table 4.3: Results for the Car-following test (agent, θ = 3)

would never occur even for θ = 3, where in the worst case the ego car would stop
at standstill 2 meters before the car in front. This is due to the Gipps' safety
criteria which does not depend on θ. Therefore decisions are taken in order that
the headway is never smaller than the limit given by Gipps, which results in
physically sound safe distances, as detailed in Section B.1.1 of Appendix B.

Be responsible for the gap with the car directly in front The driver
is responsible only for the gap with the car directly in front, excepts when he
changes lane. It has been taken into account and when taking a decision, the
car considers only the distance with the car directly in front - except when it
changes lane and in that case both gaps, front and backwards, are checked if
acceptable. It will be veri�ed in simulation test of Section 4.3: decisions will
still be safe even when changing lane. As a result, all EES values are NaN in
the results tables.



4.1 Model's validation 59

Keep a lower lane when possible This criterion has been taken into ac-
count for both agents, as explained in Section 3.2.1. It will be veri�ed in simu-
lation test of Section 4.3 where both agents will be compared on more complex
scenarios.

These two last rules will be tested in Section 4.2 for the optimal search and
Section 4.3 for the agents as compliance to tra�c rules depends on driver's
behaviour, therefore on the intelligence implemented and not the model itself.

4.1.1.2 System rules

Cars are systems with physical limits. It must be programmed as constraint in
the program as it is not possible to exceed these limits. Cars must comply with
the following rules:

• Acceleration should be comprised between −b and g

• Speed should be inferior to the maximum possible speed of the car

• Speed should be superior to the minimum possible speed of the car

• Perception should be limited

• Trajectories should be physically feasible for the car

Acceleration is bounded, thus the algorithm can only output accelerations that
are in accordance with the car's characteristics. Speed is also upper bounded
in the model and cannot exceed vcmax: if the acceleration of an action is too
high, it is re-adjusted to target the maximum possible speed. It is also lower
bounded: the minimum possible speed is theoretically negative but for simpli�-
cation purposes, negative speeds are not consider on highways for this problem.
Perception of the agent in the online simulation is limited by the characteristic
of the sensors and is detailed in Section 3.1.1.4. But the lateral movement has
not been modelled. It triggers issues for trajectories to be physically possible. A
car is considered to be on a given lane: the model considers that the car changes
lane instantaneously. This simpli�cation was made to focus on the decisions to
take rather than �nding the perfect suitability of the trajectory for the car. For
a usable application the solution must be realistic and realizable by a physical
car but it exists smoothing trajectory techniques that could be used, such as
the one for Stanley [TMD+06]. It was not within the scope of this thesis.



60 Results and Analysis

4.1.1.3 Human rules

Human rules describe especially the relation and interface between the system
and the human driver. In case of fully automated driving, the human driver can
choose what style of driving to take (similar to driving pro�les) and whether to
turn on the automated driving mode. In case of assisted driving, the system
must let a degree of freedom to the human driver and takes into account that
the reaction from the human driver may not be conform to what was planned.
In this thesis, simulation is run in a fully automated driving mode as the driver
reacts exactly to what is decided by the agent - which enables to focus on the
decision process. Still, the system should adapt to:

• Di�erent possible driving pro�les

• Reaction time of drivers (either human reaction/execution or system exe-
cution time)

These rules are respected thanks to the �exibility of the model. Di�erent driving
pro�les can be set in driver's characteristics: it will be tested in Section 4.2 as
several trajectories are proposed for the optimal search, which di�er from the
characteristics of the driver set up. Reaction time can vary and is also taken
into account, as shown on Figure 4.6 where dt = 0.2 s.

(a) (b)

Figure 4.6: Reaction time of 0 s (a) and 1 s (b)

In this scenario the blue car overtakes the green car. The yellow car reacts that
there is a slower vehicle in front and changes lane in order to overtake it after
a reaction time. As explained by Figure 3.6 in Section 3.2.3, the car acts just
after the displayed point. Figure 4.6 shows this behaviour: the model can adapt
to di�erent reaction time and each driver has his own reaction time.



4.1 Model's validation 61

4.1.2 Desired features

4.1.2.1 Flexibility

The program must be �exible in order to enable various possible simulations
and also to be improved. The object-oriented architecture of the program en-
ables easy changes to some particular components. For example, safety thresh-
olds or system limits can be changed from one car to another. As another
example, the simulation framework uses IDM models to simulate other cars'
behaviours. Using another model just requires to change the agent's type. For
instance, if all the IDM models are changed into Greedy Agents, and if the main
agent is a Greedy Agent, the simulation is a macro simulation of Greedy Agents
and shows its macroscopic behaviour. Other more complex simulation models
could be used with the IDM model, especially for lane changing. Besides, if a
performance measure is implemented, it can be plugged to the agent's structure
in order to make it take more rational decisions and even learn. As a result,
although the model has limits, additional features could be plugged in which is
desirable for a simulation framework.

However, the program has limits on �exibility. The number of lanes cannot
be changed in this �rst version: it would require changes in the design of the
program. Also positions of cars are given only by their front abscissa x: so
accurate perception cannot be performed if lengths of cars vary - which is the
case in real life.

4.1.2.2 Computationally possible

Computation time for optimal search will be discussed in Section 4.2. For the
online algorithm, time elapsed during one agent loop (cf. Figure 3.9 in Sec-
tion 3.2.3) has been averaged over all the passages through the loop of the whole
complex scenario of Section 4.3.2.4 for each kind of agent (Greedy or BDI ). It
has been done �ve times for each agent, and the average of these running times
has been calculated: results are shown on Table 4.4. Tests have been run on
Eclipse Juno (4.2.2) with jre 7. One computation at t is done in about 0.1 ms
which is satisfying for a real-time application, provided that the sampling time
is at least an order of magnitude bigger.



62 Results and Analysis

Results average
Greedy Agent 115.690 86.821 82.651 94.494 100.999 96.131
BDI Agent 108.401 104.689 100.322 97.880 98.494 101.957

Table 4.4: Running time in micro seconds of an online decision

4.1.2.3 Appropriate sampling time

In the model, the sampling time dt is �xed and cars take decisions every δt = dt.
It simulates a continuous process of decision taking. The sampling time needs to
be relatively small since the environment in dynamic: cars evolve fast and con-
tinuously. As a result the model has been implemented to support a sampling
time dt that can divide reaction time of the drivers, that are typically below 2
seconds. So the times of perception and action match the time steps. A small
sampling time enables the agent to take more informed decisions. Moreover,
as explained in the section above, the computation time is about 0.1 ms which
enables dt to be as small as about 1 ms (one order of magnitude bigger). How-
ever, changes in the environment are not that frequent: a car at 40 m/s travels
only 2 meters in 0.05 s. Since gap distances are meant to be large (more than
20 m), it is negligible and decisions can be taken at down to 20 Hz: which is the
highest frequency at which Stanley was able to compute decisions ([TMD+06]).
Nevertheless, the model of this thesis is threshold-based to decide what acceler-
ation to take: at each time step the algorithm computes an acceleration to take
from the time t to the time t+ dt in order to reach a targeted acceleration (cf.
Section 3.2.2). If dt is too small (about 50 ms for example) the algorithm will
take decisions for very short terms which can result in saw-teeth decisions, as
shown on Figure 4.7). This graphs corresponds to a scenario where the lane of
the ego car is blocked and it needs to brake and wait for the lower lane to be
free to change lane.

Therefore, a bigger dt will be considered. A car at 40 m/s travels 20 meters
in 0.5 s. Gap distances are meant to be even larger than 80 m at that speed;
moreover the algorithm takes into account that an emergency braking may occur
(cf. B.1.1 related to Gipps' safety distance). Therefore a sampling time of
dt = 0.5 s is acceptable. As it has shown good behaviour, tests are run with
dt = 0.5 s.



4.1 Model's validation 63

(a) (b)

Figure 4.7: Acceleration in case of hard braking for dt = 0.05 s (a) and dt =
0.5 s (b)

4.1.2.4 Accuracy of cars' positions

The longitudinal position of a car is given by the abscissa x of its front.
Although the car has a length, only its front point is considered in the description
of the environment. As a result, detection of crash is not adapted to this design
and has not been implemented. It is also not adapted to exactly percept 200
meters in front and behind. For example, if the ego car is at x = 0 and the
car directly in front at x = 203 m and has a length of 5 m, it is not detected,
although the back of the car is within 200 meters. However, it is not crucial in
the model to detect cars at 200 or 195 m, it could even vary in a real situation,
so this �aw is minor. A more adapted model would be store the whole position
of the car (from x−L to x.). However, this simple representation is su�cient for
calculating safety distances, as the length of the car in front Lft is considered
in Gipps' safety distance, which is desired in this model.

Cars are predicted to be at one given position. However, since the environment
is stochastic, it would be more adapted to adopt a stochastic representation of
cars' position. But in that case decisions would be probabilistically-based and
the agent would need some kind of performance measure to assess what trade-o�
is best between potential safety and speed. As explained earlier, further studies
to elaborate an appropriate performance measure should be conducted to do so.



64 Results and Analysis

4.2 Analysis of the optimal search

4.2.1 Purpose of the optimal search

As explained in Section 3.3, optimality of this algorithm is reduced to the relaxed
problem where there are only 3 di�erent accelerations considered possible for
each adjacent lane at each time step. Moreover, a node is reduced to its path
cost for the search: it is considered better or worse than another node only
based on this cost. But the optimality criterion has not been properly de�ned
as further studies must be conducted to evaluate an appropriate performance
measure. So far the cost is only associated to the time spent, while safety criteria
are rather treated as constraints, which is a simpli�ed version. Therefore, the
use of this algorithm does not aim at �nding the optimal trajectory for the
driver, but rather at showing di�erent suboptimal solutions, to be compared
with the solution computed online by the agent.

4.2.2 Use of the optimal search

4.2.3 Methodology

Di�erent "optimal" solutions are computed by making the driver's characteris-
tics vary:

• θ: as explained in Section 3.1.2.3, the agent does not consider a trajectory
that would induce a headway smaller than vi(t)·(3−θj) which is equivalent
to letting 3− θj seconds of separation with the car directly in front - and
with the car directly behind in case the ego car changes lane

• µ: the maximum desired speed vmd = vmax · (1 − 0.1 ∗ (1 − µ)). For
µ = 1, the driver accepts a speed up to the maximum speed allowed vmax.
While µ decreases, the driver accepts lower speeds down to 80% of vmax
for µ = −1 for this study. µ can actually be decreased down to −9 which
is equivalent to an immobile car.

Tests will be run for θ,µ = −1 (case (−1)), θ,µ = −0.5 (case (−0.5)), θ,µ = 0
(case (0)), θ,µ = 0.5 (case (0.5)) and θ,µ = 1 (case (1)) to make the driver
accept di�erent ranges of speed and safety distances. As shown on Figure 2.1
of Section 2.1.1.2, it makes the risk threshold of the driver varies.



4.2 Analysis of the optimal search 65

4.2.3.1 Example of an optimal search

A simulation has been run in order to show the results of this algorithm with
the methodology above. Three IDM-cars are on the road. The slowest one is on
lane 1, its desired speed is 20% lower than vmax. The desired speed of the car in
front on lane 2 is 15% lower than vmax and the desired speed of the car behind
on lane 2 is 10% lower than vmax. The ego car starts on lane 1. The results are
presented on Figure 4.8. Hybrid A* has been used for these simulations.

(a) (b)

(c) (d)

Figure 4.8: Trajectories for case (−1) (a), case (−0.5) (b), case (0) (c) and
case (1) (d)

For case (−1), the driver does not want to go faster than the car in front so the
agent keeps lane. For case (−0.5), the agent overtakes the car in front at the
beginning but does not want to go faster the car in front on lane 2 so it keeps
this lane then. However for cases (0), (0.5) and (1), the agents overtakes as
the driver wants to go faster than all cars. Cases (0) and (0.5) are very similar
thus the trajectory of (0.5) is not displayed. This example shows that diverse
trajectories can be computed that satisfy various optimality criteria, which is
interesting to compare them and assess which one is actually best. Since there is
not accurate performance measure, as it has been explained in previous sections,
these trajectories can be compared to check if the gain in time is high enough to



66 Results and Analysis

justify taking more risk - but do not provide an accurate benchmark to assess
the optimality.

4.2.4 Flaws of the optimal search

4.2.4.1 Unrealistic or undesirable behaviour

Cost-based solutions As explained in Section 3.2.1.1 and through Chapter 3,
the manoeuvre parameter γ has not been used for the online search. However,
if a penalty is not given for a lane change, the optimal search will consider that
a trajectory going straight or changing lane at each time step, at same speeds,
are equivalent. As a result, the algorithm may output trajectories with a car
changing lane very often. To avoid this problem, a constant lane changing cost
lc = 1 has been added to the path cost when the car goes to an upper lane,
which is equivalent to say that it costs 1 s to go to an upper lane. So the car will
not change lane if it does not make it gain 1 s in total. This value is arbitrary
and has been set up to avoid a "ping pong" e�ect only. Figures 4.9 show that
phenomenon.

(a) (b)

Figure 4.9: Taking account a lane changing penalty (a) or not (b)

Further studies must be conducted to assess an appropriate lane changing penalty.
It should be noticed that there is no cost for getting back on a lower lane, and
at constant time cost the algorithm prefers going on a lower lane. As a con-
sequence, the agent does get back on a lower lane when possible, and so still
respects the rule Keep a lower lane when possible above.

Counterpart of the omniscience As explained in Section 3.3.1.3, the al-
gorithm knows what the other drivers will do. But it can trigger unrealistic



4.2 Analysis of the optimal search 67

behaviour, as shown on Figure 4.10.

Figure 4.10: Unrealistic behaviour in an optimal search due to the omniscience

At about 1000 m, the algorithm knows that the yellow car will get back. The
yellow car is BDI Agent and desires to get back once it estimates it is safe.
However, its parameter θ is very high: θ = 2 which means that the driver
accepts a safety distance that only let 1 s between him and the car behind of in
front. But the θ parameter of the blue car is −1, which means that he accepts
safety distances that let 3 seconds between him and the other cars. It cannot get
back because there is a car on a lower lane. As a result, it overtakes, although
at the time step when it takes this decision, the yellow car is on the lane above.
It is unrealistic but complies with the optimality criterion since the driver would
not accept to keep lane. As a result, one may be careful in the interpretation
of results of optimal searches as supposing that everything is known can induce
unnatural behaviours.

4.2.4.2 Computation cost

As explained in Section 3.3.1.3, hybrid A* may be used. For the most basic
scenario, A* computes solutions but when it gets more complex and computa-
tionally expensive, hybrid A* will be used. If not speci�ed, A* is used. As an
example for comparisons, A* and hybrid A* have been run on the scenario of
Section 4.2.3.1 which was not so complex though. Running times, number of
created nodes and checked nodes are displayed on Table 4.5. A created node is a



68 Results and Analysis

node that has been expanded during the search. A checked node is a node that
has been pulled out the queue. Tests have been run on Eclipse Juno (4.2.2) with
jre 7. The symbol ? is displayed for running times when the algorithm did not
�nd a solution because of an Out Of Memory error. Although running time are
a lot higher for A* especially for higher values of θ for which more trajectories
are possible, the trajectories retrieved are very similar for this scenario as shown
on Figure 4.11 and 4.8 (previous section) - it does not lose too much optimality
on this test. The high running times, and even the impossibility to retrieve
solution when the scenario is slightly more complex (with θ = 0.5 on this very
basic scenario for example) highlights the need of relaxing the problem.

(a) (b)

(c)

Figure 4.11: Trajectories for case (−1) (a), cases (−0.5) and (0) (b) and case
(0) (c)(regular A*)



4.3 Evaluation and comparison of the agents 69

Results Regular A* Hybrid A*
Case −1
Running time 245 ms 251 ms
#created nodes 364 358
#checked nodes 114 113
Case −0.5
Running time 5.3 s 474 ms
#created nodes 95796 3262
#checked nodes 29931 835
Case 0
Running time 66.8s 483 ms
#created nodes 494844 11754
#checked nodes 97373 2158
Case 0.5
Running time ? 345 ms
#created nodes > 500000 11204
#checked nodes > 100000 1938
Case 1
Running time ? 220s
#created nodes > 500000 9683
#checked nodes > 100000 1623

Table 4.5: Computation cost for Regular and Hybrid A*

4.3 Evaluation and comparison of the agents

4.3.1 Methodology

In this section, the agents Greedy and BDI will be compared to each other on
various scenario. These scenarios have been designed to check if the behaviour
of these agents is realistic and "intelligent" on basic situations. Results will also
be compared to trajectories computed with optimal searches. Scenarios that
will be tested are:

• Accelerate on a free road

• Brake until full stop because of an obstacle in front

• Follow a car

• Overtake a car



70 Results and Analysis

• Foresee the need of overtaking: overtake a car early enough before getting
stuck by other cars

• React to lane merging

• Travel on a road with many cars (more complex scenario)

In addition to these 7 scenarios, a scenario will be launched with many agents of
the same type to assess the validity of the model macroscopically. It will allow
lane changes for the other cars - which is not the case with the IDM cars - but
also verify if tra�c is realistic and acceptable with all cars as such agents on the
road.

4.3.2 Test scenarios

The �rst three scenarios have been previously tested in Section 4.1.1.1 and the
behaviour is optimal and the same for Greedy and BDI agents. For the following
scenarios, if not speci�ed, the parameters for a car are m = 1800 m.s−1, L = 4.5
m, g = 5 m.s−1 and b = 8 m.s−2 and for a driver τ = 1 s, θ = 0 and µ = 0.
Speed limit is set to 35 m.s−1. Results for the other optimal solutions than
case 0 (that correspond to the characteristics of the driver for the online agent
tests) are almost not presented for basic scenario as these results are trivial; the
optimal search will be rather useful for the complex scenario.

4.3.2.1 Overtake a car

At the beginning the agent goes at the maximum desired speed of the driver,
which is 10% less than vmax. The car is on lane 1. There is another car on lane
1 at 210 m in front, going at 30% slower than vmax (µ = −2).

Results for the Greedy Agent are shown on Table 4.6, the trajectory and speed
on Figure 4.13. Results for the BDI Agent are shown on Table 4.7, the trajec-
tory and speed on Figure 4.14. Making (θ, µ) varies just advances or delays
the moment of overtaking, to keep distances safe for the corresponding driver,
and changes the speed which is maintained, as shown on Figure 4.12. Getting
di�erent optimal solutions is not relevant for the purpose of this test. So the
results are only given for case 0: these results are actually exactly the same as
the Greedy Agent.



4.3 Evaluation and comparison of the agents 71

(a) (b)

Figure 4.12: Optimal trajectories for case (−1) (a) and (1) (b)

Results
time 63.5 s
#lane changes 2
sd% 100.0 %
TTCmin 13.5 s
δTmin 3.0 s
hmin 94.5 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 35.75 m

Table 4.6: Results for the Greedy Agent for the Overtaking test

Analysis and Comparisons For the Greedy Agent the trajectory is safe and
the agent goes all long at vmd. The agent chooses to overtake at the moment
when it should decelerate on the lowest lane to keep the same speed. The BDI
Agent chooses to overtake as soon as it can perceives the car in front, which
makes the trajectory even safer and still the agent goes all long at vmd. The
optimal solution for case 0 is the same as the Greedy 's one as it was programmed
to keep a lower lane when possible.



72 Results and Analysis

Figure 4.13: Trajectory and Speed for the Overtaking test, Greedy Agent

Results
time 63.5 s
#lane changes 2
sd% 100.0 %
TTCmin 27.5 s
δTmin 6.11 s
hmin 192.5 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 70.75 m

Table 4.7: Results for the BDI Agent for the Overtaking test

Figure 4.14: Trajectory and Speed for the Overtaking test, BDI Agent



4.3 Evaluation and comparison of the agents 73

4.3.2.2 Foresee the need of overtaking

At the beginning the agent goes at the maximum desired speed of the driver,
which is 10% less than vmax. The car is on lane 1. There is another car on lane
1 at 250 m in front, going at 35% slower than vmax (µ = −2.5). There is an-
other car on lane 2 at 150 m in front, going at 30% slower than vmax (µ = −2).
Because of high complexity, hybrid A* is used for this simulation.

Results for the Greedy Agent are shown on Table 4.8, the trajectory on Fig-
ure 4.15 and the speed and acceleration on Figure 4.16. Results for the BDI
Agent are shown on Table 4.9 the trajectory on Figure 4.17 and the speed and
acceleration on Figure 4.18. Just like the previous scenario, making (θ, µ) varies
just advances or delays the moment of overtaking; moreover it is not particularly
relevant for this scenario. So the results are only given for case 0 on Table 4.10
and Figures 4.19 and 4.20.

Analysis and Comparisons For the Greedy Agent the trajectory is almost
always safe: during 1 s only it is not. It happens when the agent chooses to
overtake the �rst vehicle and goes on lane 2 at time t. Then during 1 s (the
reaction time of the driver), no decision is taken and instead the agent goes at
same speed - because there was no perception on the lane 2 between t− τ and
t. The BDI Agent chooses to overtake as soon as it can perceives the car in
front, which makes its trajectory safer but especially faster as it does not get
blocked by the car of lane 2. The optimal solution for case 0 is quite close to
the BDI 's one: it overtakes early enough not to get stuck. However it overtakes
later as it was programmed to keep a lower lane when possible. Results are very

Results
time 106.5 s
#lane changes 4
sd% 99.0 %
TTCmin 11.07 s
δTmin 2.3 s
hmin 70.75 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 25.5 m

Table 4.8: Results for the Greedy Agent for the Foresee Overtaking test



74 Results and Analysis

Figure 4.15: Trajectory for the Foresee Overtaking test, Greedy Agent

(a) (b)

Figure 4.16: Speed and Acceleration for Greedy Agent, Foresee Overtaking
test



4.3 Evaluation and comparison of the agents 75

Results
time 95.5 s
#lane changes 4
sd% 99.0 %
TTCmin 12.93 s
δTmin 2.87 s
hmin 90.5 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 31.75 m

Table 4.9: Results for the BDI Agent for the Foresee Overtaking test

Figure 4.17: Trajectory for the Foresee Overtaking test, BDI Agent



76 Results and Analysis

(a) (b)

Figure 4.18: Speed and Acceleration for BDI Agent, Foresee Overtaking test

Results
time 95.5 s
#lane changes 4
sd% 99.0 %
TTCmin 28.12 s
δTmin 2.63 s
hmin 81.0 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 50.5 m

Table 4.10: Results for the Optimal Solution (0) for the Foresee Overtaking
test



4.3 Evaluation and comparison of the agents 77

Figure 4.19: Trajectory for the Foresee Overtaking test, Optimal case (0)

(a) (b)

Figure 4.20: Speed and Acceleration for the Optimal case (0), Foresee Over-
taking test



78 Results and Analysis

similar and both trajectories are safe. Also, one should notice that speed is not
maintained at the maximum for the optimal search - but still the time to reach
3000 m is 95.5 s like the agents. This is why the TTCmin is quite higher for the
optimal solution. This is because the optimal search is programmed to keep a
lower lane when possible so in that case overtaking was late and there was also
some deceleration, nevertheless the loss in time is less than dt = 0.5 s. This
phenomenon always occurs, so it will not be noticed again in other scenarios'
analysis.

4.3.2.3 Lane-merging

At the beginning the agent goes at the maximum desired speed of the driver,
which is 10% less than vmax. The car is on lane 2. There is another car on lane
2 at 120 m in front, going at 30% slower than vmax (µ = −2). There is another
car on lane 1 at the same abscissa, going also 30% slower than vmax (µ = −2).
An immobile car is placed at x = 1000 m to simulate a lane merging. These
initials conditions make the agent to overtake but they better not do it as lane
3 ends 1 km and there is not enough time to overtake safely. Because of high
complexity, hybrid A* is used for this simulation.

Results for the Greedy Agent are shown on Table 4.11, the trajectory on Fig-
ure 4.21 and the speed and acceleration on Figure 4.22. Results for the BDI
Agent are shown on Table 4.12 the trajectory on Figure 4.23 and the speed
and acceleration on Figure 4.24. For this scenario, making (θ, µ) shows various
behaviours; speed and acceleration can be easily inferred from the trajectory
graph, therefore only these graphs will be displayed, on Figure 4.25. Results of
all the cases are given on Tables 4.13, 4.14, 4.15, 4.16 and 4.17.

Analysis and Comparisons Both agents go on lane 3 and then manage to
get back on lane 2 in time. The trajectories are not evaluated as safe because
of the obstacle which is considered as a car. Since both agents are programmed
to go as fast as possible, they get closer and closer to the obstacle until almost
standstill before getting back. Optimal solutions with θ inferior to 0 give trajec-
tories more realistic (better keeping lane 2), safer and that take approximately
the same time. The optimal solutions with θ superior to 0 are faster and quite
safe. For cases (0.5) and (1), the maximum desired speed is high enough to
overtake cars. Case (1) even gets back from the beginning, taking a bit more
risk but then having the road free of cars. Case (0) is not realistic as the car
overtakes then brakes hard to get back with a low headway behind the car of
lane 2 and �nally on lane 1. A solution "really optimal" for this theta would



4.3 Evaluation and comparison of the agents 79

Results
time 46.5 s
#lane changes 3
sd% 76.0 %
TTCmin 2.88 s
δTmin 2.06 s
hmin 11.75 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 7.25 m

Table 4.11: Results for the Greedy Agent for the Lane Merging test

Figure 4.21: Trajectory for the Merging Lane test, Greedy Agent



80 Results and Analysis

(a) (b)

Figure 4.22: Speed and Acceleration for Greedy Agent, Lane Merging test

Results
time 47.0 s
#lane changes 3
sd% 77.0 %
TTCmin 2.88 s
δTmin 2.06 s
hmin 11.75 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 7.25 m

Table 4.12: Results for the BDI Agent for the Lane Merging test

Results
time 48.5 s
#lane changes 0
sd% 100.0 %
TTCmin 32.04 s
δTmin 4.09 s
hmin 100.25 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 69.13 m

Table 4.13: Results for the Optimal case (−1) for the Lane Merging test



4.3 Evaluation and comparison of the agents 81

Figure 4.23: Trajectory for the Merging Lane test, BDI Agent

(a) (b)

Figure 4.24: Speed and Acceleration for BDI Agent, Lane Merging test



82 Results and Analysis

(a) (b)

(c) (d)

Figure 4.25: Optimal trajectories for cases (−0.5) (a), (0) (b), (0.5) (c) and
(1) (d),

Results
time 48.0 s
#lane changes 0
sd% 100.0 %
TTCmin 20.27 s
δTmin 3.61 s
hmin 88.56 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 55.56 m

Table 4.14: Results for the Optimal case (−0.5) for the Lane Merging test



4.3 Evaluation and comparison of the agents 83

Results
time 43.5 s
#lane changes 3
sd% 98.0 %
TTCmin 5.77 s
δTmin 1.66 s
hmin 16.0 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 34.25 m

Table 4.15: Results for the Optimal case (0) for the Lane Merging test

Results
time 36.5 s
#lane changes 3
sd% 95.0 %
TTCmin 11.76 s
δTmin 2.66 s
hmin 87.94 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 30.31 m

Table 4.16: Results for the Optimal case (0.5) for the Lane Merging test

Results
time 35.0 s
#lane changes 1
sd% 89.0 %
TTCmin 11.7 s
δTmin 2.23 s
hmin 75.0 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 25.25 m

Table 4.17: Results for the Optimal case (1) for the Lane Merging test



84 Results and Analysis

be to keep lane 2 until being able to get back on lane 1. Though, the algorithm
chooses this solution because by braking hard on lane 3 before getting back on
lane 2, the safety distance to keep with the car on lane 2 is lower than if it
was going at a higher speed on lane 2. As a result it can get back a bit earlier
on lane 1. It clearly shows the limits of the atomic representation of the state
(reducing the state to a cost). However, in this scenario it is interesting to have
a large range of solutions provided by optimal searches, and one can choose a
trajectory that seemed better. If safety is extremely important and speed not
so important, case (0.5) suits well; if speed is important and safety can be just
what advocated and no more, cases (0.5) and (1) suit better.

4.3.2.4 Complex scenario

This scenario has been set up to show the behaviour on a longer time. But for
visualization purposes, the number of other cars have been limited to 8 and the
distance goal is Xgoal = 5 km. There are three cars on lane 1 that go slower
than the ego car. There are two cars on lane 2: the one in front goes slower
than the ego car but the one behind goes faster. There are three cars on lane 3,
all of them go faster than the ego car but the one behind that goes at the same
speed.

Results for the Greedy Agent are shown on Table 4.18, the trajectory on Fig-
ure 4.26 and the speed and acceleration on Figure 4.27. Results for the BDI
Agent are shown on Table 4.19 the trajectory on Figure 4.28 and the speed and
acceleration on Figure 4.30. Optimal results are shown on Tables 4.20 4.21, 4.22, 4.23
and 4.24, and trajectories graphs are presented on Figure 4.29.

Results
time 169.5 s
#lane changes 12
sd% 99.0 %
TTCmin 19.71 s
δTmin 2.85 s
hmin 74.88 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 29.42 m

Table 4.18: Results for the Greedy Agent for the Complex Scenario



4.3 Evaluation and comparison of the agents 85

Results
time 166.5 s
#lane changes 2
sd% 100.0 %
TTCmin 13.93 s
δTmin 2.94 s
hmin 75.25 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 37.0 m

Table 4.19: Results for the BDI for the Complex Scenario

Results
time 179.0 s
#lane changes 2
sd% 100.0 %
TTCmin 42.63 s
δTmin 3.88 s
hmin 108.46 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 71.73 m

Table 4.20: Results for the Optimal case (−1) for the Complex Scenario

Results
time 168.5 s
#lane changes 2
sd% 100.0 %
TTCmin 21.89 s
δTmin 4.02 s
hmin 114.94 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 64.06 m

Table 4.21: Results for the Optimal case (−0.5) for the Complex Scenario



86 Results and Analysis

Results
time 160.0 s
#lane changes 4
sd% 100.0 %
TTCmin 27.61 s
δTmin 2.62 s
hmin 80.75 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 56.38 m

Table 4.22: Results for the Optimal case (0) for the Complex Scenario

Results
time 151.0 s
#lane changes 6
sd% 98.0 %
TTCmin 11.65 s
δTmin 2.23 s
hmin 72.44 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 31.69 m

Table 4.23: Results for the Optimal case (0.5) for the Complex Scenario

Results
time 143.0 s
#lane changes 8
sd% 98.0 %
TTCmin 11.35 s
δTmin 1.92 s
hmin 66.75 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 17.38 m

Table 4.24: Results for the Optimal case (1) for the Complex Scenario



4.3 Evaluation and comparison of the agents 87

Figure 4.26: Trajectory for the Complex scenario, Greedy Agent

(a) (b)

Figure 4.27: Speed and Acceleration for Greedy Agent, Complex scenario



88 Results and Analysis

Figure 4.28: Trajectory for the Complex scenario, BDI Agent

Analysis and Comparisons The Greedy Agent does not overtake at the be-
ginning and gets stuck. Its trajectory is quite safe but he keeps changing lane,
alternating 1 and 2, as the cars in front travel too slow. This e�ect results from
the fact that no penalty charge is applied for the agent. These decisions are
not rational and highlight the limits of this agent. Conversely, the BDI Agent
overtakes at the beginning and gains 4 s of time to travel 5 km as it overtakes in
between the cars of lane 2. Its trajectory is even safe as it keeps larger headways
with cars in front. The optimal solutions (−1) and (−0.5) travel approximately
at the same speed as the Greedy Agent although the agents have lower desired
speed; moreover they their trajectories are safer as they keep higher headways.
They are similar to the BDI Agent 's one. The optimal solution (0) performs
better than the BDI Agent because it does not need a reaction time to perceives
that it is safe to go on lane 3 immediately. Optimal solutions (0.5) and (1) go
quite faster (10 to 20 seconds faster) as they accept higher speed and lower
headways to overtake. Still, they are safe, except case (1) which is a bit more
dangerous as it reaches time headways below 2 s. However these two solutions
seem to achieve a better trade-o� time/safety. Tests have been run with µ = 1
for the agents and results are displayed on Figure 4.31. It shows that even with
a higher desired speed, the Greedy Agent gets stuck. However, the BDI Agent
accepts higher speed and therefore is able to overtake more cars and maintain
a high speed: it takes 148 s to reach 5 km, and the trajectory is safe as shown
on Table 4.25. Which is close to the optimal case (1). The BDI Agent performs
clearly better on this more complex scenario.



4.3 Evaluation and comparison of the agents 89

(a) (b)

(c) (d)

(e)

Figure 4.29: Optimal trajectories for cases (−1) (a), (−0.5) (b), (0) (c), (0.5)
(d) and (1) (e), Complex scenario



90 Results and Analysis

(a) (b)

Figure 4.30: Speed and Acceleration for BDI Agent, Complex scenario

(a) (b)

Figure 4.31: Trajectories for Greedy Agent (a) and BDI Agent (b) with µ = 1,
Complex scenario

Results
time 147.5 s
#lane changes 6
sd% 99.0 %
TTCmin 17.75 s
δTmin 2.91 s
hmin 91.63 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 47.63 m

Table 4.25: Results for the BDI (µ = 1) for the Complex Scenario



4.3 Evaluation and comparison of the agents 91

One should bear in mind that this scenario has been designed to underline the
di�erence between both agents. If there is not a situation where the agent should
foresee that it should overtake, as it is the case at the beginning of this scenario,
agents would have similar performances as the BDI Agent is quite limited as
well.

4.3.3 Macroscopic simulation

The complex scenario above has been simpli�ed for visualization purposes in
order to show the macroscopic behaviour of the agents. All cars are equipped
with the same agent on these simulations, in order to verify that the overall
behaviour is correct. Graphs are shown on Figures 4.32 and 4.33. Optimal
solutions for a car are not computed as the aim is rather to check if the overall
behaviour seems correct. Tables 4.26 and 4.27 are computed for the blue car.

Analysis and Comparisons The overall behaviour of each agent is correct
and trajectories are safe. The macroscopic behaviour shows similar results than
the previous tests. On this scenario one should notice though that at the be-
ginning, all cars get back on lower lanes as they are programmed to do so if
possible; which is not in accordance with their desire for speed. This shows that
their behaviour lacks of rationalism.

Results
time 83.5 s
#lane changes 1
sd% 100.0 %
TTCmin 15.27 s
δTmin 2.91 s
hmin 85.63 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 41.38 m

Table 4.26: Results for the blue Greedy Agent, Macro scenario



92 Results and Analysis

Figure 4.32: Trajectory for the Macro scenario, Greedy Agents

Figure 4.33: Trajectory for the Macro scenario, BDI Agents



4.3 Evaluation and comparison of the agents 93

Results
time 72.0 s
#lane changes 4
sd% 100.0 %
TTCmin 26.47 s
δTmin 3.28 s
hmin 112.5 m
EESmax NaN m/s
p(MAIS>2)max NaN
dmin 58.13 m

Table 4.27: Results for the blue BDI Agent, Macro scenario



94 Results and Analysis



Chapter 5

Conclusion

To conclude, this model proves the feasibility of a simulation framework that
supports tra�c, human and system rules. Its �exibility enables to launch any
scenario and retrieves relevant information about the trajectory, considering
time and safety indicators so far. Previous works have mainly focused either on
the strategic level, such as the global path planner of Junior in the Urban Darpa
Challenge, or on a lower tactical level where decisions are taken for shorter terms,
such as the collision avoidance program of Stanley in the Desert Darpa Challenge
- whereas the model implemented in this thesis targets a higher tactical level
and aims at taking medium-term decisions.

In this model agents take safe decisions, pass the basic tests, and contingency
plans (maximum deceleration and keep lane in case of there is no solution) do not
occur often as shown on speed graphs. However, unrealistic behaviours occur.
They lack of rationality as their implemented intelligence is very restricted;
especially for the Greedy Agent that thinks only one step ahead. Nevertheless
their general behaviour is interesting as for basic tests they provide suboptimal
solutions that are close to the ones suggested by the optimal search. Besides,
macroscopic simulations do not trigger issues, which would enable such a model
to be used by several cars that share road structures. This safe behaviour results
from the safe distances programmed as constraints in the decision process. On
one hand it is desirable that the trajectory is safe but on the other hand agents



96 Conclusion

do not consider slightly more dangerous choices that could result in a high gain
of time - while human drivers would consider such solutions. This �aw could be
�xed by the use of a performance measure and stochastic predictions: instead
of predicting that the other cars will be at a given position, the agent could
consider a probability distribution and take this probability into account in the
evaluation of the choice. It is more complex and it would require further studies
to elaborate an appropriate performance measure.

Considering the optimal search, it provides a range of di�erent possible tra-
jectories: it does not provide the optimal trajectory for a given driver since no
accurate performance measure has been elaborated, but rather suggests what
trajectories were potentially good and acceptable. The atomic reduction of a
state in the search triggers some unrealistic behaviours that seem inherent to
such problems: it could be improved by using a performance measure that suits
better to this problem. Also the performance measure should incorporate not
only safety and time but also other criteria such as comfort. Also the optimal
search could not be tested in a real situation as it needs time backtracking: even
provided a performance measure, it seems hard to �nd an optimal solution in a
real situation.

The �exibility of the model enables it to be improved - especially by augment-
ing the intelligence of the agents. They should be implemented in order to have
a higher view of the situations. If the agent is not able to learn, it will repeat
again and again the same mistakes and will not be able to succeed in new envi-
ronments or situations that were not planned. The implementation of a learning
structure seems crucial for such a system. But it would require an appropriate
performance measure for decisions also, which would require further studies as
a decision can have long term consequences. Also, results have been retrieved
considering that the other cars follow an Intelligent Driver Model: they are not
able to change lane. Further studies should be led to test the model on more
realistic models and eventually in a real situation.

Finally, it is a �rst simple model with limitations but it has shown desirable
behaviours for simple tests. Besides the implemented solutions are all com-
putationally possible. This model provides a �rst simulation framework and
algorithms that are able to compute safe trajectories and respect rules. But
the decisions taken could be more rational and especially more realistic- avoid-
ing unnecessary lane changes for example. The most important improvement
would be to elaborate a relevant performance measure for both decisions and
for trajectory evaluation: it would lead to great improvements of the model.



Appendix A

LCM Comparisons

This appendix presents the study unterdaken to select a realistic Longitu-
dinal Control Model. The models which have been tested are the ones of the
more simple form as they have mathematical elegance: the equations are ex-
plicit about how they try to capture the underlying mechanism of the system.
More complex ones such as the rule-based model of Kosonen [Kos99][Ni13b] or
the agent-based model of Panwai and Dia [PD05] are more complex and thus
their internal mechanism is harder to explicate. Morever they have not been
more accredited than the simpler ones. They are not considered in this study.
The considered models are the ones from Newell (1961) [New61], Gipps (1981)
[Gip81], the Intelligent Driver Model from Treiber (2000) [THH00] and the Field
Theory model from Ni (2013) [Ni13a].

A.1 Validation tests

The evaluation of the models is based upon three criteria presented below. These
criteria have been suggested by Ni [Ni13c]. It is desirable that a model give
realistic results on these basic criteria to be assessed physically sound. For each
criterion of each models, graphs are provided to describe the behavior of the car
and for each model a table sums up the results on these scenarios. Although



98 LCM Comparisons

the reaction time tau of the driver may be di�erent from the sampling time dt
in real life, Gipps precises that his model works better when they are equal.
Therefore tests have been undertaken with tau = dt = 0.6 second and so for all
the tests.

A.1.1 Acceleration performance

The car starts from standstill with not any obstacle in front and the driver tar-
gets a speed of 40m.s−1. The website zeroto60times.com [Zer13] gives empirical
data related to this test. Time to go from standstill to 26.8 m.s−1 (60 mph) are
comprised between 7 and 12 seconds. Time to travel a quarter mile is a second
indicator and is comprised between 15 and 19 seconds for these cars.

A.1.2 Deceleration performance

The car goes initially at 32 m.s−1, approximately 112 km.h−1 and a �xed ob-
stacle is placed 1 km ahead. The vehicle must stop before it. Stopping distance
references are given by the government of the UK [oUK13]: for this speed the
typical stopping distance is 96 meters. The car is considered to be braking when
the speed goes down below 90% of the desired speed. Since the obstacle is far,
braking should be smooth and start not too late, not too early neither to be
realistic. A distance comprised between 120 (+25% of the stopping distance if
braking hard) and 200 meters (+100%) will be considered as realistic. Some
of the models show a phenomenon of re-acceleration after a �rst braking and
generally oscillations follow, it is indicated in the summary table. Also in case
the car crashes, the speed of the car at the moment of crash is given.

A.1.3 Car-following performance

There is a car in front and the data have been retrieved on the simulator of
CARRSQ. The car in front goes in average at approximately 25 m.s−1 while
the car is willing to go in average at a certain speed v. The simulation has been
run for a normal distribution of 10 drivers willing to go at a speed v in average
35 m.s−1 with a standard deviation of 5 m.s−1. The Time To Collision (TTC)
is a meaningful indicator to know if a car is too close: a usual danger threshold
is 5 seconds, as taken by Vogel [Vog02]. In the summary table the number of
collisions out of the 10 simulations is given.



A.2 Tests on the models 99

A.2 Tests on the models

All the models do not manage to stop until standstill, thus an external logic has
been implemented to reach a null speed. Also, all the models show a behaviour
of an hard acceleration from the beginning. To prevent the car from crashing the
other one from the very beginning in the car-following simulation, I have setp
up a distance of 100 or 200 meters. The TTC gets low at the very beginning but
this problem comes from an unrealistic behavior in that case: other scenarios
should be tested to explain this phenomonon, I will not focus on that in this
report and rather check that once the car drives, it follows well the one in
front by respecting safety distances and not being too far neither. Whenever
the maximum acceleration g is a parameter, I use g = 4m.s−2. Whenever a
maximum deceleration occurs, I use b = 6m.s−2.

A.2.1 Newell's model

This model corresponds to the one described in section 2.1.2.1. The param-
eter λ is set to 0.79s−1 as Newell empirically advocates [New61]. The initial
distance for the car-following has been set to 200 m.

Since the speed is given, the acceleration is unrealistic and the equation does
not control the dynamic part which makes the driver goes continuously from a
speed v1 to a speed v2. It just gives a targeted speed, so the desired speed is
directly computed as shown on Figure A.1. For the deceleration, the car brakes
very late and the car crashes (Figure A.2 ) : it is unacceptable. However the
car-following is excellent and safety distances are respected (Figure A.3 ). The
deceleration was so bad that other tests have been made changing the parameter
λ. It is interesting to notice that making λ vary can �x the problem with the
deceleration (Figure A.4 but other problems are triggered: the car-following is
not working well as the headway distance is then more than 200 meters in these
conditions (Figure A.5 ! Results are sum up in Table A.1. Newell's model gives
a good car-following model but fails the acceleration and deceleration tests.



100 LCM Comparisons

Acceleration
0-60 mph time 0.6 s
1/4 mile time 10.8 s
Deceleration
Collision yes
braking dist 45.0 m
braking time 2.4 s
speed when crash 14.4 m/s
re-acceleration no
Car-following
#collisions 0

Table A.1: Results summary for Newell's model

Figure A.1: Acceleration performance for Newell's model



A.2 Tests on the models 101

Figure A.2: Deceleration performance for Newell's model

Figure A.3: Car-following performance for Newell's model



102 LCM Comparisons

Figure A.4: Deceleration performance for Newell's model (λ = 0.2)

Figure A.5: Car-following performance for Newell's model (λ = 0.2)



A.2 Tests on the models 103

Acceleration
0-60 mph time 8.4 s
1/4 mile time 17.4 s
Deceleration
Collision yes
braking dist 59.2 m
braking time 3.6 s
speed when crash 3.7 m/s
re-acceleration no
Car-following
#collisions 0

Table A.2: Results summary for Gipps' model

A.2.2 Gipps' model

This model corresponds to the one described in section 2.1.2.2.

For the acceleration, the car achieves the targeted speed smoothly as shown on
Figure A.6 and the time spent on the two tests �t empirical data. The speed
given initially is not the one targeted and instead the acceleration is smooth
at the beginning: the problem faced by Newell's is overcome. However, the
deceleration is late and hard and the car almost manages to stop as the speed is
only 3.7 m/s before the crash, as shown on Figure A.7. But this is due to the
discretization; test have been made with lower time steps and the car is closer
to stop. But at the end of the braking the deceleration is softer, thus with an
external logic the car would be able to stop, though the model makes not the
car brakes softly and realistically. There is no crash in the car-following but the
car keeps a very low distance with the front car, approximately 10 meters as
shown on (Figure A.8 ). This is dangerous and not realistic, at least for this
scenario of high speed. Results are sum up in Table A.2. Gipps' model gives
a good acceleration model, almost supports the deceleration until standstill but
at high speed fails at following a car respecting safety distances.



104 LCM Comparisons

Figure A.6: Acceleration performance for Gipps' model

Figure A.7: Deceleration performance for Gipps' model



A.2 Tests on the models 105

Figure A.8: Car-following performance for Gipps' model (tau=dt)



106 LCM Comparisons

Acceleration
0-60 mph time 7.8 s
1/4 mile time 16.8 s
Deceleration
Collision no
braking dist 180.1 m
braking time 9.0 s
speed when crash NaN
re-acceleration no
Car-following
#collisions 0

Table A.3: Results summary for the IDM model

A.2.3 Intelligent Driver Model

This model corresponds to the one described in section 2.1.2.3. I use g = 4
m.s−2 and γ = 4 as suggested by Treiber [THH00].

The acceleration is very hard at the beginning and then decreases smoothly.
The very beginning of the simulation is unrealistic, as shown on Figure A.9.
Treiber discusses about these e�ects and explain that a certain value of γ suits a
certain scenario. A given γ will not make everything work perfectly. Neverthe-
less, the overall speed pro�le is realistic and the time references match empirical
data for the two tests as shown in Table A.3. The braking is slow and smooth
and the car manages to stop just before the car in front: it is very realistic, as
shown on Figure A.10. The car-following is also excellent and safety distances
are respected, as shown on Figure A.11. Results are sum up in Table A.3.
Finally the IDM's model gives excellent results and the only �aw for these tests
is the unrealistic acceleration from standstill at the very beginning.



A.2 Tests on the models 107

Figure A.9: Acceleration performance for the IDM model

Figure A.10: Deceleration performance for the IDM model



108 LCM Comparisons

Figure A.11: Car-following performance for the IDM model



A.2 Tests on the models 109

Acceleration
0-60 mph time 10.8 s
1/4 mile time 19.2 s
Deceleration
Collision yes
braking dist 267.7 m
braking time 12.6 s
speed when crash 9.2 m/s
re-acceleration no
Car-following
#collisions 0

Table A.4: Results summary for the Field Theory model

A.2.4 Field Theory

This model corresponds to the one described in section 2.1.2.4.

Like the other models, the acceleration is very hard at the beginning, but
then it decreases softly and the car �nally reaches the targeted speed in realistic
time as shown on Figure A.12. The braking is early enough and smooth but
remains too soft even when the car gets closer hence a crash occurs, as shown
on Figure A.13: it is unacceptable. However the car-following part is very
realistic and safety distances are respected as Figure A.14 shows. Results are
sum up in Table A.4. The Field Theory's model gives excellent results for the
car-following part but does not manage to slow down enough to avoid a crash
when a �xed obstacle is in front. Also the initial acceleration from standstill is
unrealistic.



110 LCM Comparisons

Figure A.12: Acceleration performance for the Field Theory model

Figure A.13: Deceleration performance for the Field Theory model



A.2 Tests on the models 111

Figure A.14: Car-following performance for the Field Theory model



112 LCM Comparisons

A.3 Conclusion

The acceleration from standstill is unrealistic for all the models considered in
this study. This issue should be �xed to get a more realistic model. External
logic should be used to prevent this hard acceleration and makes it softer. All
the models give very good results for the car-following test as the cars do not
crash and keep reasonable distances. However, only the Intelligent Driver Model
passes the deceleration test. As a result the IDM is a very good trade-o� between
classical models, like Gipps' or Newells's ones, and force-driven models, like
Ni's one, and perform well on all the tests. It is clearly the best model for
car-following simulation at high speed for these scenarios.



Appendix B

Calculation and

Implementation details

B.1 Calculation details

B.1.1 Physically sound safe distance

Gipps' safe distance is given by:

di,ft
∗ = vi(t) · τi + Lft +max(0, (

vi
2(t)

2bi
− vj

2(t)

2bft
))

It is physically sound because the driver has time to react to an emergency
braking. Let us suppose that the car directly in front performs an emergency
braking at a constant maximum deceleration rate bj . The ego car will travel
vi(t) · τi m during the reaction time of the ego driver. Then the ego driver will
perform an emergency braking at his car's maximum deceleration rate bi. Let
us calculate the distance travelled by a car j during a constant deceleration at
rate bj . Let us take the moment the car starts braking as the origin of time t0
= 0. During the braking, the acceleration is given by:

a(t) = −b



114 Calculation and Implementation details

Let us integrate this equation from t0 to the �nal time, when the car arrives at
standstill tf . It gives

v(tf ) = v(t0)− b · tf = 0

Which gives the �nal time tf = v(ti)
b . Two integrations of the �rst equations give

the distance travelled xj(tf ) − xj(t0) = vj(t0) · tf − b·v(t0)
2·b = v(t0)

2·b . Therefore,
the di�erence of distances travelled by the ego car i and the car directly in front
ft is

vi
2(t)

2bi
− vj

2(t)

2bft

This term must be added only if superior to 0, which corresponds to a lower
distance of braking for the car in front. Also since the point of the car considered
is the point most in front of the car, the term Lft must be added to the distance.
Finally, this distance is physically sound and given by:

di,ft
∗ = vi(t) · τi + Lft +max(0, (

vi
2(t)

2bi
− vj

2(t)

2bft
))

B.1.2 Discretization error

If the sampling time is dt and the discretization step for considered targeted
speed is dv = 1 m.s−1, let us calculate the maximum di�erence of distance trav-
elled during dt between the choice for a targeted speed at t+dt for the maximum
speed at vopt and the actual targeted speed vtar. Since the discretization step
is dv, the di�erence between vopt and vtar is upper bounded by δv = dv

2 . Speed
at t is v(t). The acceleration to reach vopt at t+ dt is:

aopt =
vopt − v(t)

dt

The acceleration to reach v at t+ dt is

atar =
vtar − v(t)

dt

The distance travelled during dt at the acceleration rate a is given by d =

v(t)+ a·dt2
2 . So the di�erence of distances travelled between an acceleration rate

aopt and atar is:



B.2 Implementation details 115

δD = | (aopt − atar) · dt
2

2
| = | (vopt − vtar) · dt

2
| ≤ δv · dt

2

Therefore, with dt = 1 s and dv = 1 m.s−1, the maximum error is 0.25 m which
is negligible to a typical gap distance of 20 to 50 m.

B.2 Implementation details

B.2.1 Wait for percepts when changing lane

When the agent changes lane, it has not any percept associated to the new lane.
It needs to wait τ second before getting a percept. This is implemented by
adding the information delays at each node state for the optimal search, and
keeping this information in the main program of the online algorithm. delays is
a map that associates a time delay to each agent. At the initial node, or a lane
change for agent j, delays(j) is set to τj . Then at every time step, delays(j) is
decremented. From a lane change to delays(j) reaches 0, the agent keeps the
same lane and speed. Then it has percepts and is able to choose an appropriate
action. delays does not impact on the ego agent behaviour in the optimal search
as the best solution should not depend on τ . It is used only for the other agents
to simulate their behaviour. For the online algorithm however it is used for
every agent.



116 Calculation and Implementation details



Bibliography

[Abr03] Jean-Claude Abric. Pratiques sociales et représentations. Psycholo-
gie sociale. Paris, Presses Universitaires de France, 2003.

[Ass13] Australian Automobile Association. Road safety. Website, 2013.
"http://www.aaa.asn.au/issues/road_safety.htm".

[BA99] Alexander A Borb and Peter Achermann. Sleep homeostasis
and models of sleep regulation. Journal of Biological Rhythms,
14(6):559�570, 1999.

[BM99] Mark Brackstone and Mike McDonald. Car-following: a historical
review. Transportation Research Part F: Tra�c Psychology and
Behaviour, 2(4):181�196, 1999.

[CF97] Bo Cheng and Takehiko Fujioka. A hierarchical driver model. In
Intelligent Transportation System, 1997. ITSC'97., IEEE Confer-
ence on, pages 960�965. IEEE, 1997.

[DBB84] Serge Daan, DG Beersma, and Alexander A Borbély. Timing of
human sleep: recovery process gated by a circadian pacemaker.
American Journal of Physiology-Regulatory, Integrative and Com-
parative Physiology, 246(2):R161�R183, 1984.

[Ful05] Ray Fuller. Towards a general theory of driver behaviour. Accident
Analysis & Prevention, 37(3):461�472, 2005.

[GHP59] Denos C Gazis, Robert Herman, and Renfrey B Potts. Car-
following theory of steady-state tra�c �ow. Operations Research,
7(4):499�505, 1959.

http://www.aaa.asn.au/issues/road_safety.htm


118 BIBLIOGRAPHY

[Gip81] P. G. Gipps. A behavioural car-following model for computer sim-
ulation. Transportation Research Part B: Methodological, 15:105�
111, 1981.

[Gip86] Peter G Gipps. A model for the structure of lane-changing deci-
sions. Transportation Research Part B: Methodological, 20(5):403�
414, 1986.

[GLR+11] Daniel Greene, Juan Liu, Jim Reich, Yukio Hirokawa, Akio Shina-
gawa, Hayuru Ito, and Tatsuo Mikami. An e�cient computational
architecture for a collision early-warning system for vehicles, pedes-
trians, and bicyclists. Intelligent Transportation Systems, IEEE
Transactions on, 12(4):942�953, 2011.

[Gov10] Queensland Government. Safe following distances. Web-
site, 2010. "http://www.tmr.qld.gov.au/Safety/
Queensland-road-rules/Road-rules-refresher/

Safe-following-distances.aspx".

[GRGN07] Sebastien Glaser, Andry Rakotonirainy, Dominique Gruyer, and
Lydie Nouveliere. An integrated driver-vehicle-environment (i-dve)
model to assess crash risks. Australasian Road Safety Research,
Policing and Education Conference, 2007.

[GVGM11] Sebastien Glaser, Benoit Vanholme, Dominique Gruyer, and Said
Mammar. Probability and risk based maneuver planning for col-
lision avoidance. First International Symposium on Future Active
Safety Technology toward zero-tra�c-accident, 2011.

[KBL70] DL Kleinman, S Baron, and WH Levison. An optimal control
model of human response part i: Theory and validation. Automat-
ica, 6(3):357�369, 1970.

[Kos99] Iisakii Kosonen. Urban tra�c simulation and control model: Prin-
ciples and applications. PhD Thesis, 1999.

[LS11] Sylvain Lassarre and Farida Saad. An integrated and multidisci-
plinary approach for studying use and acceptance of new driver
support system: The french national project on intelligent speed
adaptation (lavia project). In Reston, VA: ASCEProceedings of
the First International Conference on Transportation Information
and Safety, June 30. July 2, 2011, Wuhan, China| d 20110000.
American Society of Civil Engineers, 2011.

[MBB+09] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hendrik Dahlkamp,
Dmitri Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden, Gabe
Ho�mann, Burkhard Huhnke, et al. Junior: The stanford entry

http://www.tmr.qld.gov.au/Safety/Queensland-road-rules/Road-rules-refresher/Safe-following-distances.aspx
http://www.tmr.qld.gov.au/Safety/Queensland-road-rules/Road-rules-refresher/Safe-following-distances.aspx
http://www.tmr.qld.gov.au/Safety/Queensland-road-rules/Road-rules-refresher/Safe-following-distances.aspx


BIBLIOGRAPHY 119

in the urban challenge. In The DARPA Urban Challenge, pages
91�123. Springer, 2009.

[MH84] PJ Mills and CA Hobbs. The probability of injury to car occupants
in frontal and side impacts. SAE Technical Paper 841652, 1984.

[Mic86] John A Michon. A critical view of driver behavior models: what do
we know, what should we do? Springer, 1986.

[MKMM03] Douglas L. Milliken, Edward M. Kasprak, L. Daniel Metz, and
William F. Milliken. Race Car Vehicle Dynamics: Problems, An-
swers and Experiments. SAE International, 2003.

[New61] G. F. Newell. Nonlinear e�ects in the dynamics of car following.
Operations Research, 9:209�229, 1961.

[Ni13a] Daiheng Ni. A uni�ed perspective on tra�c �ow theory, part i:
The �eld theory. Applied Mathematical Sciences, 2013.

[Ni13b] Daiheng Ni. A uni�ed perspective on tra�c �ow theory, part ii:
The uni�ed diagram. Applied Mathematical Sciences, 2013.

[Ni13c] Daiheng Ni. A uni�ed perspective on tra�c �ow theory, part
iii: Validation and benchmarking. Applied Mathematical Sciences,
2013.

[Org10] World Health Organization. Mortality: Road tra�c deaths by
country. Website, 2010. "http://apps.who.int/gho/data/node.
main.A997?lang=en".

[oUK13] Government of United Kingdom. Typical stopping distances.
Website, 2013. "http://www.direct.gov.uk/prod_consum_
dg/groups/dg_digitalassets/@dg/@en/@motor/documents/

digitalasset/dg_188029.pdf".

[PD05] Sakda Panwai and Hussein Dia. A reactive agent-based neural
network car following model. IEEE Transactions on intelligent
transportation systems, 6, 2005.

[Pea84] J. Pearl. Heuristics: Intelligent search strategies for computer prob-
lem solving. Addison-Wesley, Jan 1984.

[PT90] Huei Peng and Masayoshi Tomizuka. Lateral control of front-wheel-
steering rubber-tire vehicles. Research Reports, California Partners
for Advanced Transit and Highways (PATH), 1990.

[Raj11] Rajesh Rajamani. Lateral vehicle dynamics. In Vehicle Dynamics
And Control, pages 15�49. Springer, 2011.

http://apps.who.int/gho/data/node.main.A997?lang=en
http://apps.who.int/gho/data/node.main.A997?lang=en
http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_188029.pdf
http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_188029.pdf
http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_188029.pdf


120 BIBLIOGRAPHY

[Ran94] Thomas A Ranney. Models of driving behavior: a review of their
evolution. Accident Analysis & Prevention, 26(6):733�750, 1994.

[RN09] Stuart Jonathan Russell and Peter Norvig. Arti�cial intelligence:
a modern approach (3rd Edition). Prentice hall Englewood Cli�s,
2009.

[Sal06] Dario D Salvucci. Modeling driver behavior in a cognitive archi-
tecture. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 48(2):362�380, 2006.

[SCA11] Adnan Shaout, Dominic Colella, and S Awad. Advanced driver
assistance systems-past, present and future. In Computer Engi-
neering Conference (ICENCO), 2011 Seventh International, pages
72�82. IEEE, 2011.

[SFM85] Ola Svenson, Baruch Fischho�, and Donald MacGregor. Perceived
driving safety and seatbelt usage. Accident Analysis & Prevention,
17(2):119�133, 1985.

[Shi78] D. Shinar. The human factor in tra�c safety. Psychology on the
Road, 1978.

[SSW10] Robin Schubert, Karsten Schulze, and Gerd Wanielik. Situation as-
sessment for automatic lane-change maneuvers. Intelligent Trans-
portation Systems, IEEE Transactions on, 11(3):607�616, 2010.

[Sum88] Heikki Summala. Risk control is not risk adjustment: The zero-
risk theory of driver behaviour and its implications. Ergonomics,
31(4):491�506, 1988.

[THH00] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested
tra�c states in empirical observations and microscopic simulations.
Physical Review E, 62:1805�1824, 2000.

[TMD+06] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David
Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Mor-
gan Halpenny, Gabriel Ho�mann, et al. Stanley: The robot that
won the darpa grand challenge. Journal of �eld Robotics, 23(9):661�
692, 2006.

[Van12] Benoit Vanholme. Highly automated driving on highways based on
legal safety. PhD Dissertation, 2012.

[Vog02] Katja Vogel. A comparison of headway and time to collision as
safety indicators. Accident Analysis and Prevention, 35:427�433,
2002.



BIBLIOGRAPHY 121

[Wil01] G J. S. Wilde. A new psychology of safety and health. In Target
Risk 2. Pde Pubns, 2001.

[Won01] Jo Yung Wong. Transient Response Characteristics. Wiley. com,
2001.

[Zer13] Zeroto60Times.com. Ford 0-60 mph times. Website, 2013. "http:
//www.zeroto60times.com/Ford-0-60-mph-Times.html",.

[ZSS85] F Zeidler, H-H Schreier, and R Stadelmann. Accident research and
accident reconstruction by the ees-accident reconstruction method.
SAE transactions, 94:2�399, 1985.

http://www.zeroto60times.com/Ford-0-60-mph-Times.html
http://www.zeroto60times.com/Ford-0-60-mph-Times.html

	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 The driving task
	1.1.1 Types of transports
	1.1.2 Towards autonomous vehicles

	1.2 Optimization for safe and fast trajectories
	1.2.1 Problem statement
	1.2.2 Research methodology

	1.3 Structure of the thesis

	2 State-of-the-art
	2.1 Existing models for Driver and Vehicle
	2.1.1 Driver models
	2.1.2 Longitudinal Control Models
	2.1.3 Other models

	2.2 Trajectory optimization
	2.2.1 Optimal trajectory search
	2.2.2 Online algorithms for suboptimal solution


	3 Description of the model and the algorithms
	3.1 Description of the integrated model
	3.1.1 Task Environment of the problem
	3.1.2 Driving rules
	3.1.3 Other precisions about the model

	3.2 Online agent-oriented algorithm
	3.2.1 Agent structure
	3.2.2 Decision process
	3.2.3 Online Algorithm

	3.3 Optimal search
	3.3.1 Problem and algorithm definitions
	3.3.2 Application of the algorithm


	4 Results and Analysis
	4.1 Model's validation
	4.1.1 Rules to be respected
	4.1.2 Desired features

	4.2 Analysis of the optimal search
	4.2.1 Purpose of the optimal search
	4.2.2 Use of the optimal search
	4.2.3 Methodology
	4.2.4 Flaws of the optimal search

	4.3 Evaluation and comparison of the agents
	4.3.1 Methodology
	4.3.2 Test scenarios
	4.3.3 Macroscopic simulation


	5 Conclusion
	A LCM Comparisons
	A.1 Validation tests
	A.1.1 Acceleration performance
	A.1.2 Deceleration performance
	A.1.3 Car-following performance

	A.2 Tests on the models
	A.2.1 Newell's model
	A.2.2 Gipps' model
	A.2.3 Intelligent Driver Model
	A.2.4 Field Theory

	A.3 Conclusion

	B Calculation and Implementation details
	B.1 Calculation details
	B.1.1 Physically sound safe distance
	B.1.2 Discretization error

	B.2 Implementation details
	B.2.1 Wait for percepts when changing lane


	Bibliography

