
Re-engineering Eclipse RCP
Applications - the RED Case

Study

Maciej Kucharek

Kongens Lyngby 2013

IMM-M.Sc.-2013



Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2013



Summary

The goal of the thesis is to investigate and present a way of re-engineering
Eclipse RCP applications. As a case study, RED - "REquirements eDitor"
have been chosen. RED is a one of the major tools for the 02264 Requirements
Engineering course at DTU, and as such is being extensively used throughout
the course, resulting in a number of feature requests that are currently di�cult
to implement due to the poor architecture. RED is also a typical example of an
Eclipse RCP developed purely for providing a huge number of features, while
neglecting the maintainability aspect, which resulted in a major roadblock in
further development. The re-engineering process will cover the improvements
that could be made to the build process, the high-level architecture and the
actual implementation at a plug-in level, all of which will contribute to the
overall Eclipse RCP maintainability.



ii



Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in ful�llment of the re-
quirements for acquiring an M.Sc. in Computer Science and Engineering.

The thesis deals with re-engineering of Eclipse RCP applications, with the par-
ticular focus on RED - "REquirements eDitor" used as a main tool in the 02264
Requirements Engineering course at the Technical University of Denmark.

Lyngby, 18-October-2013

Maciej Kucharek



iv



Acknowledgements

I would like to thank my supervisor Prof. Dr. Harald Störrle for being there
to help, and for motivating me for achieving what I thought was not possible.
If it was not for your support, I would probably have given up a long time ago.

I would also like to thank my friends and family, for their patience and con�dence
in me. Knowing you were all there for me was the best motivation I could get.



vi



Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Software Re-engineering . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 RED - "REquirements eDitor" . . . . . . . . . . . . . . . . . . . 2

1.2.1 User experience shortcomings . . . . . . . . . . . . . . . . 3
1.2.2 Maintainability problems . . . . . . . . . . . . . . . . . . 4
1.2.3 The reason for re-engineering . . . . . . . . . . . . . . . . 5
1.2.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Improving the RED build process 11
2.1 Introducing code versioning & issue tracking . . . . . . . . . . . . 11
2.2 Building RED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Eclipse Eclipse PDE build process . . . . . . . . . . . . . 14
2.2.2 Current RED build process . . . . . . . . . . . . . . . . . 14
2.2.3 Resolving external dependencies . . . . . . . . . . . . . . 16
2.2.4 Adding target platform de�nition . . . . . . . . . . . . . . 19

2.3 Eclipse Tycho - a new approach to building Eclipse plug-ins . . . 21
2.3.1 Improvements over Eclipse PDE build . . . . . . . . . . . 22
2.3.2 Continuous integration . . . . . . . . . . . . . . . . . . . . 23

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Restructuring RED 25
3.1 Upgrading the underlying Eclipse framework . . . . . . . . . . . 25

3.1.1 Migrate RED plug-ins to Eclipse 4 API . . . . . . . . . . 27



viii CONTENTS

3.1.2 Using Eclipse 4 compatibility layer . . . . . . . . . . . . . 28
3.1.3 Keeping the original Eclipse 3.X API . . . . . . . . . . . . 29
3.1.4 Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Improving high-level architecture . . . . . . . . . . . . . . . . . . 30
3.2.1 Eclipse RCP development . . . . . . . . . . . . . . . . . . 30
3.2.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Implementation issues . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Countering cyclic dependencies . . . . . . . . . . . . . . . 40
3.2.5 Examining dependencies between the modules . . . . . . 46
3.2.6 Dividing Speci�cation Elements . . . . . . . . . . . . . . . 49
3.2.7 Feature-based product . . . . . . . . . . . . . . . . . . . . 51

3.3 Improving low-level implementation . . . . . . . . . . . . . . . . 53
3.3.1 RED plug-ins implementation problems . . . . . . . . . . 53
3.3.2 Restructuring plug-in implementation . . . . . . . . . . . 53
3.3.3 Removing unused source code . . . . . . . . . . . . . . . . 56

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Addressing conceptual weaknesses 61
4.1 Fixing report generation . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Fixing model weaving . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Aligning EMF models with domain classes . . . . . . . . . . . . . 64

4.3.1 Handling GMF models . . . . . . . . . . . . . . . . . . . . 66
4.4 Excluding Scenario support . . . . . . . . . . . . . . . . . . . . 67
4.5 Adding horizontal scroll-bar support . . . . . . . . . . . . . . . . 67
4.6 Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Mac OS X native app packaging . . . . . . . . . . . . . . 70

5 Evaluation 73
5.1 Final architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Original RED source code . . . . . . . . . . . . . . . . . . 76
5.2.2 Final RED source code . . . . . . . . . . . . . . . . . . . 78

5.3 Case Study: A "Test Case" Speci�cation Element . . . . . . . . . 82
5.3.1 Editor design & implementation . . . . . . . . . . . . . . 82
5.3.2 Module implementation . . . . . . . . . . . . . . . . . . . 84
5.3.3 Reporting integration . . . . . . . . . . . . . . . . . . . . 87

6 Conclusion 89
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Build process . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.2 Restructuring RED . . . . . . . . . . . . . . . . . . . . . . 92
6.1.3 Additional �xes & improvements . . . . . . . . . . . . . . 94

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS ix

Bibliography 99



x CONTENTS



Chapter 1

Introduction

1.1 Software Re-engineering

According to [Arn93], software re-engineering means to examine and analyze the
existing software and to re-implement it to achieve improvements in functional-
ity, performance or the architecture. This is especially true for the software that
has been implemented using legacy languages, frameworks or libraries, which are
often not supported anymore. In such a case, maintaining the software is be-
coming more and more expensive, as the technologies grow old and the number
of specialists that know them is decreasing. At some point, the underlying
technology limitations will prevent the software from growing further, or there
will simply be no developer capable of maintaining it. In order to �ght it, a
re-engineering process is required, which will move the software from the legacy
technologies to more modern ones, which will make it possible (or cheaper) to
maintain the application. It would not only make it easier to �nd developers
familiar with newer technologies, but will also make more room for the future
improvements, as the newly chosen technology will probably be supported for
some time after the moving process.

However, underlying technologies are not the only reasons for software re-engineering.
If, during the initial phase, the software being developed has not been properly
designed for extending, it may be the case that at some point, it may not be



2 Introduction

possible to extend a certain systems just because of the incorrect, or simply
not well thought, decisions made in the past. This is especially true for plenty
of start-up projects, which are mainly focusing on how the number of features
o�ered, rather than the properly organized, extensible architecture. Such an ap-
proach is often taken to demonstrate that a certain concept for the application
may work, but once someone decides to take the next step and to continue with
development, a proper re-engineering of the initial concept is often a necessity.

Last, but not least, re-engineering may be applied at the implementation level.
When in a hurry, developers tend to lean towards taking shortcuts, or "hacks",
such as violating or simplifying the initial design to obtain a certain functionality.
This results in a code that does what it is supposed to, but is often reluctant
to change or to extend. Again, while valid in some cases, such an approach
makes the life harder in the long run, as maintaining such a hacked code will
require much more e�ort in the future, either because it is simply not designed
to allow changes, or simply because it may be di�cult to understand by anyone
else except the author.

To sum up, re-engineering is an important part of software development process,
which should not be neglected in any of the production software. While it may
sound as a waste of both time and money, as it does not directly result in any
additional features that can be noticed by the users, it may result in much
swifter development in the future. Also, identifying and resolving issues that
may either prevent or severely slow-down system extension before they become
too expensive to �x may be a may or break in terms of the whole development
process.

1.2 RED - "REquirements eDitor"

RED has been created in 2010 as a tool aiding students in 02264 Requirements
Engineering course at Technical University of Denmark. Its main purpose was
to make it easier for course attendees to gather, store and elaborate on the
outcomes of their work during the semester. The course covers a number of
Requirements Engineering techniques, including Stakeholder and Persona anal-
ysis, Goal modeling and Requirement management in both textual and visual
forms. Since none of the existing tools were suitable for the course needs, either
because of they did not cover the whole material or used di�erent terminology,
it was decided that creating a new tool from scratch would be the best option
in the long run [Fri12].

RED has been created in 2010 as a result of joint MSc-thesis project of two



1.2 RED - "REquirements eDitor" 3

Figure 1.1: RED Workbench

students - Anders Friis and Jakob Kragelund. The tool was built on top of
Eclipse Rich Client Platform (Eclipse RCP), which is a popular choice for build-
ing advanced, multi-platform software, that encourages modular, and therefore
extensible, architecture. It was based on latest version of Eclipse Framework
available at the time, being 3.7 Indigo. First version of RED was released in
September 2011, just in time for the autumn edition of the 02264 Requirements
Engineering course, where it was �rst used as a main course tool. Meanwhile,
the project was taken over by Johan Flod, who was extending RED as his
MSc-thesis project.

1.2.1 User experience shortcomings

Shortly after the initial release, a number of problems have been identi�ed. First
and foremost, while the tool was more or less stable on MS Windows machines,
it was not the case on both Mac OS X and Linux operating systems. Since
both Java and Eclipse are by de�nition designed for creating multi-platform
tools, it was surprising that RED was not performing well on non-windows-
based computers. This was partially because the development and initial testing
has been done on MS Windows machines, while other environments have been
neglected. Moreover, the module that allows weaving the UML models into
Prolog was based on JPL (a Java interface to Prolog), that requires native
libraries to operate properly and the module itself provides only MS Windows
libraries. Both of these resulted in various errors presented to the user when
accessing certain parts of RED application, making it extremely annoying to
use it extensively.



4 Introduction

Figure 1.2: RED Overview

Another problem that made it di�cult for students to work was the lack of
group-work support. While it was possible in RED to open multiple projects
and move or copy the contents between each other, there was no straightforward
way of distributing the work between group members while keeping the results
in a single project. The main problem was that a regular RED project is being
stored in a single, non-human readable �le, which made it impossible to make
use of neither shared cloud spaces, like DropBox , nor various version control
systems, such as Git or SVN, for handling multi-user scenarios. Since nowadays
these are two most common ways of work distribution by students, it made it
di�cult for them to accept and use the newly introduced tool.

1.2.2 Maintainability problems

Unfortunately, usability problems are not the only one that has been troubling
RED. While an enormous e�ort has been made to pack RED with such a num-
ber of features in such a short amount of time, it must have come with a price.
Despite RED being developed for over a year, the code has not been kept in
neither DTU or any third-party code repository, which results in several short-
comings that will a�ect any future developer. First of all, there was no remote
and accessible copy of the RED source code. While each of the previous develop-
ers most likely used some sort of version control systems for their personal use,
these were not available to anyone else, and the source code had been passed
along as a single zip �le. The problem with such an approach is that if such a
package gets damaged, it may get di�cult, or even impossible to retrieve the
RED source code. This is a major problem that, under certain circumstances,
may result in severely impacting, or even completely stopping the application



1.2 RED - "REquirements eDitor" 5

development. The other issue originating from not having a code repository is
that the RED source code was not being versioned, which made it impossible to
track changes made by individual developers. This would be extremely helpful
when trying to understand how the development had evolved over time, as well
as to understand some of the complex design decisions that has been made in
certain parts of the code. It would also make it possible to revert some of the
changes, especially the features that are either broken or not completed, and to
exclude them from the stable RED release.

Also, it quickly turned out that there was no straightforward way of setting up a
development environment required for building RED. As described in [Kra12],
building RED required quite a number of complicated and error-prone steps.
While performing these should not be a problem for a regular Java or Eclipse
developer, it made it almost impossible for anyone else to build RED from the
available source, which could be especially vital for Harald Störrle. Also,
some of the required plug-ins, like AgileGrid, had already been abandoned and
therefore it was di�cult to �nd and install their binary �les, and it may be even
impossible in the future. Last, but not least, it is generally not a best practice
to tie a build process to a certain IDE, as various developers may prefer to use
di�erent development environments.

There were also several problems with the codebase itself. At a high level, RED
had been divided into number of modules, with a clear distinction between their
purpose and how do they communicate between each other. Unfortunately,
the implementation part of the modules has not been given enough thought,
resulting in a complex and often ine�cient code. Not only is the code badly
organized in terms of the underlying framework speci�cations, but it also leaves
plenty of room for improvements at the programming language level. Both of
these shortcomings will be discussed in more details in the following chapters.

1.2.3 The reason for re-engineering

All of the maintainability issues mentioned above resulted in two, high-level
problems. Taking them all into account, it is quite clear that both �xing the
existing usability issues and extending RED with new functionality required a
lot of e�ort. In fact, this has been tried before, both by Johan Flod who
was trying to add enactment support, and myself, when trying to add merging
capability to RED projects. Each of these attempts were actually unsuccessful,
only to prove the need for a major re-factoring of RED. Since RED was meant
to be extended by students as their MSc thesis projects, it must be possible to
for new students to quickly set up the development environment and understand
both the underlying design and the code, so that they put the maximum e�ort



6 Introduction

on the thesis subject itself. That, of course, would not ultimately make every
extensions attempt a success, but will would greatly increase the chances of a
steady, continuous development of RED.

The other reason would be that RED has actually become quite a big project,
containing a considerable number of features and that is actually advanced
enough to help students thorough the course. As up to that point, the develop-
ment process was mostly feature-oriented, it was probably a good time to spend
some time on improving what had already been achieved, introducing necessary
architecture and performance �xes, as well as enforcing the design rules that had
been initially introduced for the application. That would not only contribute
to the maintainability process improvement, but would also make RED a much
more mature and reliable software, which is clearly what one would expect from
a tool developed by future software engineering graduates.

1.2.4 Goals

Before formulating the actual goals for the thesis, it would be vital to think of
what the future of RED should look like. As it is mainly a university tool, made
by and for students, it would be a good idea to allow students to contribute to the
project. In order to achieve that, RED should de�nitely be made open source,
with a public access to its source code, and therefore open for improvements from
both students and the open source community. As RED is quite an interesting
project, it should be possible to make students interested in contributing even
in a small factor, by either �xing bugs or introducing simple extensions, while
still giving possibility of implementing more sophisticated functionality as MSc
thesis projects.

In fact, getting developers help is not the only bene�t that RED can get. While
02264 Requirements Engineering course is mostly attended by computer science
students, not all of them may be willing to contribute to the project by writing
the code. Such students may be able to help in other ways, such as identifying
various bugs and proposing interesting extensions. Introducing an issue tracker
will make it relatively easy to report, track and comment on various shortcom-
ings of RED, and would also serve as a way of representing progress of the
development. Obtaining such a feedback from the actual users would make it
much quicker to identify both bugs, as well as usability improvements. Last, but
not least, some of the course attendees could help with testing the introduced
improvements before releasing them to the wider public, so that if the changes
make RED unstable, they do not impact the course �ow.

Another important factor is the maintenance part, which would certainly be the



1.2 RED - "REquirements eDitor" 7

most challenging part of the thesis. As stated before, maintenance aspect has
been severely neglected during the whole RED development process, and it has
currently come to a point where it is a show-stopper. In order to counter that,
it is important to improve the overall build process, starting with setting up a
proper source code repository, so that both the code backup and development
history is being preserved. It is also important to simplify and document the
steps required to start the actual development, which would aid future student
contributors. After that, there is a need of examining the code quality, so that
the shortcomings can be identi�ed and the proper high- and low-level �xes can
be applied. Lastly, there are number of conceptual weaknesses that RED is
su�ering from, which should also be taken care of, such as problems with both
reporting and weaving features, or improving certain code inconsistencies.

Summing up all of the above, we may organize all the goals in the following list:

1. Improving the RED build process

(a) Introducing code versioning & issue tracking

(b) Improving the current Eclipse PDE build process

(c) Investigating other build tools

2. Restructuring RED

(a) Upgrading the underlying Eclipse framework

(b) Improving high-level architecture

(c) Improving low-level implementation

3. Addressing conceptual weaknesses

(a) Fixing report generation

(b) Fixing model fragment weaving

(c) Aligning EMF models with generated source code

(d) Branding

4. Maintaining the existing features

(a) Keeping as much of existing functionality as possible

5. Making RED more platform-independent

6. Making RED an open source project

7. Making RED usable in the classroom

8. Increasing RED maintainability



8 Introduction

All of the above should be addressed with caution, as not only should they
contribute to overall RED maintainability improvement, but also may not result
in breaking hardly any of the existing functionality. This would be, in fact, one
of the greatest challenge of the thesis, as it would result in a number of trade-
o�s required to be made. Figure 1.3 shows a goal diagram composed out of the
goals listed before.



1.2 RED - "REquirements eDitor" 9

Figure 1.3: Thesis goal diagram



10 Introduction



Chapter 2

Improving the RED build

process

2.1 Introducing code versioning & issue tracking

As described in Section 1.2.2, one of the main maintainability problems identi�ed
with RED is the lack of source code versioning. Since the ultimate goal is to
turn RED into an open source project, a good way to start would be to upload
RED sources to a version control system, so that it can be accessible and so that
any changes made to RED would be tracked. When it comes to code versioning,
there are several alternatives in terms of source code management technologies
and service providers.

When choosing a version control system (VCS), there are several requirements
to be considered. First of all, RED is going to be developed by students, so the
technology of choice should be open and also familiar to most of DTU students.
The reason for that is that using a VCS should be as seamless as possible, so that
MSc students that will be developing RED do not spend much time struggling
with the tool. Therefore, using any proprietary technology is hardly an option.

Among of various version control systems, there are two open ones that are most
commonly used - Subversion (SVN) and Git. Apache Subversion is a centralized,



12 Improving the RED build process

open source project founded in 2000 by CollabNet, Inc., which since then have
been adopted by many of open source and enterprise software projects. It is still
being actively developed by the community behind Apache Software Foundation
[Fou13a]. Subversion repositories are also being used at DTU, as every student
is o�ered space on G-Bar servers for their personal use.

Git, on the other hand, is a distributed VCS that has been founded by Linus
Torvalds in 2005. It was initially supposed to be used for Linux kernel designed
mainly for e�ciency and corruption-safety. The main di�erence over SVN is that
each Git working directory is a separate repository with full version history,
which does not depend on any external server. [Wik13c]

Since both technologies are performing equally well, choosing between them is
more of a personal preference rather than a result of doing a research. It is safe to
assume that DTU Compute students are familiar with both these technologies,
and even if not, there are plenty of documentation and tutorials available on the
web. One factor that we can compare the technologies against it the portability
issue. Since at the time of writing the thesis, it has not been decided yet whether
the RED source code will be kept on DTU servers or on the external ones, it
would be a good idea to make sure it is relatively easy to migrate the repository
used for the purpose of this project to another server if necessary. Taking that
into account, Git is probably a better choice due to its distributed design, which
is also my personal preference. Also, a very nice feature of Git is that it does not
allow to submit any changes without a commit message. Enforcing developers
to comment on their changes may be invaluable, as a proper message may let
future developer browsing the change tree understand what the actual change is
supposed to introduce, without the need of guessing that from the source code.

As stated before, every Git working directory is also a regular repository, so
applying Git does not require an external hosting server. However, keeping the
source hosted on an accessible server is de�nitely in scope of making RED an
open source project. When choosing a hosting provider, the following are to be
considered:

• The repository should be kept private before RED is o�cially made open
source

• Hosting should be free of charge

Aside from hosting RED on DTU servers, which matches these requirements
by default, there are few other options. First, there is github.com, a popular
platform providing code management, issue tracking and code review services for
both open source and private projects. It has been founded in 2008 and quickly



2.1 Introducing code versioning & issue tracking 13

became one of the most popular Git hosting service. Due to its social nature,
github.com promotes collaboration and currently hosts million of repositories
developed by over four million developers [Git13]. github.com allows only
public repositories to be hosted free-of-charge, but there is a educational plan
that allows to keep up to 5 private repositories for two years.

Another popular service is Atlassian's bitbucket.org. It is a simpli�ed version
of a commercial tool called Stash, that Atlassian made available as a public
platform. Similarly to github.com, bitbucket.org o�ers not only code man-
agement functionality, but also bundles a simple issue tracker and documenta-
tion facilities with every repository. However, bitbucket.org allows to host an
unlimited amount of both public and private repositories, but it puts the limit
on the number of private repository users. A regular free-of-charge plan allows
up to 5 users for each private repository, which is already more than enough in
terms of RED, but applying for an academic subscription takes that limit out.

One of the important features provided by both github.com and bitbucket.org
is the issue tracking capability. It has already been discussed that RED could
use a way of recording and keeping history of issues captured by the course
students. Having a remote issue tracker can make the process both quicker and
more reliable than asking students to submit the issues either verbally during
the class or by email. By capturing and resolving the issues, we should be able to
make RED a better tool in terms of user experience. Also, having issue tracker
integrated with the repository makes it possible to quickly identify which code
changes have been introduced to �x the issue, which may help the developers
to understand certain parts of code.

Table 2.1 shows a comparison between available providers. Considering the
initial requirements, bitbucket.org is a much better choice thanks to less-
restrictive approach to private repositories. Since there is no limit on private
repositories, it may be used by Harald to host projects other than RED, and
once ready they can be quickly turned into public, open source ones.

Table 2.1: Git hosting providers comparison

DTU GitHub bitbucket.org
Internal / External Internal External External
Number of private repositories Unlimited 5 (for 2 years) Unlimited
Number of users Unlimited Unlimited Unlimited
Bundled Issue tracker No Yes Yes

To sum up, having a proper source code management tool is vital for such a
large project as RED. Starting from the obvious, it servers as a backup copy,
which prevents from loosing the source code in case of accidents, such as hard



14 Improving the RED build process

drive malfunction. It also serves as a central point for every developer work-
ing on RED, letting them coordinate their work and review what has already
been done. Since the tool is being developed by students that vary in terms
of skills and experience, having a possibility to review certain changes made by
the the previous developers, along with a proper comment, may be helpful in
understanding the context in which a change has been introduced. Last, but
not least, having the issue tracker bundled lets us manage not only the source
code, but all the issues that have been found and �xed.

2.2 Building RED

2.2.1 Eclipse Eclipse PDE build process

Eclipse Plug-in Development Environment (Eclipse PDE) is a main tool for
handling build process of Eclipse-based software. Eclipse PDE provides tools for
creating, developing, testing, debugging and building Eclipse plug-ins, features
and Eclipse RCP products. The build process is based on Ant, an open source
scripting engine widely used for building various Java applications at the time
Eclipse PDE was created. It consists of three components:

• UI

• API Tools

• Build

UI component is a set of regular Eclipse plug-ins that allows to seamlessly use
Eclipse PDE from within Eclipse SDK. It contains views, editors, wizards etc.
that are supposed to make the build process more user friendly. API Tools
provide a set of useful analysis tools, such as compatibility analysis and various
validations helping developers in �nding problems in their plug-ins. Lastly, Build
component provides the actual core of Eclipse PDE environment, providing a
way of automatized build process. It produces Ant scripts to handle the actual
build based on development-time information. [Fou13b]

2.2.2 Current RED build process

As RED is based on Eclipse Eclipse RCP framework, building it is no di�erent
than building any Eclipse application. Currently, in order to make RED one



2.2 Building RED 15

needs to set up the Eclipse SDK, import all the RED projects and export the
RED product using a proper export wizard. Since there is no explicit target
platform de�nition, build process will scan the Eclipse SDK's plug-ins and treat
them as the target platform. The problem with such approach is that in order for
RED to be built successfully, all the plug-ins it depends on must be available in
the Eclipse SDK. What is even more important, the plug-ins in the Eclipse SDK
must match the versions required by RED, which may be even more di�cult to
ensure. In fact, versions constraint applies not only to the extending plug-ins,
but to the Eclipse platform as well, which means that building RED that is
based on a certain version of Eclipse framework requires using the same version
of the Eclipse SDK. This results in a situation, where building a stable RED
version require downloading Eclipse SDK 3.7 (as using the next Eclipse version,
4.2, resulted in a number of issues), then �nding and installing the exact versions
of plug-ins as described in [Kra12], and then �nally exporting the RED product.

Apart from the tight coupling between make process and used Eclipse SDK, the
current setup has one other shortcoming that makes it di�cult to build RED.
Most of the plug-ins required by RED are widely available from eclipse.org p2
repositories. However, there are some third-party plug-ins that are not available
neither from o�cial, nor any other repositories, which makes them di�cult to
�nd and install. One of such plug-ins was EPF RichText, that has been reused
and extended to match RED needs. While EPF (Eclipse Process Framework)
is widely available, the richtext editor that it provides is, for some reason, not
accessible as a standalone package. Therefore, the decision has been made to
include the required source code into RED make process, so that the required
component can be obtained during the build. Surprisingly, the other not publicly
accessible plug-in, being AgileGrid, has not incorporated into the build process.
What is even more problematic, is that the plug-in is no longer maintained in
the same form, as the latest versions introduced additional dependencies that
are not suitable for RED. Therefore, it may only be a matter of time when
the version required by RED will disappear from the AgileGrid website, leaving
future developers confused.

In order to improve the make process, both of the previously mentioned limi-
tations need to be addressed. First, we need to �nd a way of either dropping
the legacy AgileGrid dependency, or keeping it in a form that will not depend
on any external resources. After that, we will focus on decoupling the make
process from the SDK state, which should make the build process much easier
to set up.



16 Improving the RED build process

2.2.3 Resolving external dependencies

As noticed before, dependency on AgileGrid is causing problems during the
RED make process. As of now, adding the plug-in to SDK is possible, but
requires some e�ort to do so. However, as the AgileGrid version being used is
already quite outdated, it may be the case that it will disappear from the plug-
in download site, and the problem will then be much more serious. In order to
prevent such a situation, the AgileGrid usage need to be evaluated, and actions
need to be taken that will prevent such a deadlock in the future. There are
basically three options to consider:

1. Remove the dependency

2. Include the plug-in's binaries in the codebase, and attach it during the
build

3. Include the plug-in's sources in the codebase, and build the plug-in along
with RED

Since the choice is not straightforward, let us discuss all the possibilities.

2.2.3.1 Dropping (or substituting) the dependency

Since AgileGrid is no longer maintained in the required form, it may be a good
idea to make RED independent of it. A �rst step towards dropping the AgileGrid
dependency would be to analyze the code and �nd what modules/packages
require it, as only then could we evaluate how much would removing AgileGrid
impact the whole project. From the UI perspective, AgileGrid is being used in
two use cases:

• Displaying element associations in Associations View

• Displaying "Management & Tracing" data for most of the editors

Both of them belong to the Core module, and both of them contribute to impor-
tant features of RED, so it would not be possible to simply remove them from
the main product. What could be done, however, is to replace the AgileGrid
widgets with another implementation that would provide similar functionality.
Following ... , AgileGrid is a new implementation of control-based table based
on Simple Widget Toolkit (SWT), that lets developers display various data in



2.2 Building RED 17

a table format, providing plenty of room for customization. Out-of-the-box,
the columns are sortable and their width is scalable, which is not available in
standard SWT. The plug-in also provides a pop-up cell editor, which could be
helpful when editing cells containg complex data types.

When taking a look at RED, the pop-up cell editor feature is not used there at
all. However, both sortable and scalable columns, while not crucial, are certainly
nice ones to have, as they make the UI much more user friendly. Hence, when
looking for AgileGrid substitute, we should keep these two features in mind.

Unfortunately, there are not many plug-ins that could be used instead of Agi-
leGrid. There is currently no advanced table implementation in Eclipse SWT
framework, and the only available alternatives, such as Ktable, NatTable or Grid
Widget, are third-party implementations, much like AgileGrid. This means that
even if we substitute AgileGrid with any other of available plug-ins, the problem
with depending on an external library would still remain. As AgileGrid is cur-
rently su�cient enough in terms of features it provides, replacing it would not
bene�t RED in any way. We could also consider providing our own implementa-
tion instead of reusing third-party one. However, it would require a considerable
amount of e�ort that could be spent on developing on more important features.

2.2.3.2 Attaching the binary to the build

A simple way of resolving the problem would be, of course, to keep the backup of
the plug-in along with the source code and attach it to the SDK when necessary.
This will clearly aid the developers, as they won't have to depend on an external
server's state and let them easily �nd the required dependency. While this is
a su�cient option, there is still room for improvements in this area. A much
more helpful way of using the AgileGrid binaries would be to include them in
the build process itself and let RED simply pick it up. That way we could not
only have the copy of the plug-in along with the RED source code, but could
also let developers free from the manual step of adding the plug-in to the SDK.
While this may sound like a minor improvement, but it will actually contribute
to simplifying the development environment setup process. The price to be paid
with this approach would be an additional overhead during the make process,
as the plug-in will still have to be composed from the binaries. However, the
time required to perform such a operation may safely be considered negligible
when taking into account the size of whole RED application.



18 Improving the RED build process

2.2.3.3 Attaching the source code to the build

An alternative to attaching the binaries would be to to attach the source code
instead. As AgileGrid is an open-source project, licensed under Eclipse Public
License, we are free to use the source code in any open source projects. That
way, AgileGrid would be built from scratch during every RED make process and,
similarly as with the previously discussed approach, make RED independent of
external, unreliable resources. Compared with attaching pre-compiled binary,
it certainly gives the developers much more control over the library. This is
especially important as the AgileGrid plug-in is no longer maintained by its
creators, so if a need for extending the plug-in's functionality ever occurs, it
would be possible to implement it right away. Also, since AgileGrid is a relatively
small project, building it takes only few seconds, which is totally acceptable and
is only a small factor comparing to total time of RED make process.

The only signi�cant drawback of taking this approach would be the fact, that
the RED codebase, which is already of considerable size, will grow even further.
The size of the AgileGrid source plug-in is shown in Table 2.2. However, since
this is a utility plug-in that would not be changed unless new functionality is
requested, adding it should not over complicate the RED source code.

Table 2.2: AgileGrid source plug-in size

Metric Value
Number of Units (classes) 59
ELOC 8849

2.2.3.4 Decision

As di�erent options have been discussed, it is time to decide which one is the
most suitable. It has been made clear that dropping AgileGrid dependency is not
a possibility, as it serves for a background for two important features. Also, there
is no other plug-in that would be a suitable candidate for substituting AgileGrid,
as there is no �rst-party alternative that would provide similar functionality.
Since the only reasonable option is to attach AgileGrid to RED build process,
the only choice that remains is between attaching a pre-compiled binary and
attaching the source code.

The Table 2.3 shows a summary of comparison between two approaches.

It is not surprising that building a binary plug-in is considerably faster, as it
does not require compiling the sources. However, the di�erence of around 2



2.2 Building RED 19

Table 2.3: Comparison between attaching binary vs attaching source code of
AgileGrid

Comparison Metric Binary plug-in Source code plug-in
Size (KB) 700 729
Time to build (seconds) ∼ 1 ∼ 2.5

seconds is not much compared to the total build time of RED, so the build time
is hardly a convincing bene�t over building a source plug-in. What we get from
the other approach is the option of customizing the code to our needs. It is hard
to tell though when and if such a need will occur, but having more control over
the code in use is always a good thing.

That being said, building AgileGrid from sources seems to be the best solution
for our needs. Having a copy of the deprecated plug-in, along with a way of
customizing it to �t our needs is precisely the combination that RED can bene�t
from.

2.2.4 Adding target platform de�nition

Another problem that has been identi�ed is the need of importing all the plug-
ins required by RED into the Eclipse SDK that is being used for development.
This means that every time a new development environment needs to be set up,
either because of using a new computer or because a new developer joined, the
whole IDE set up process needs to be repeated.

A good way of resolving this problem would be to provide a way for RED to
fetch the required dependencies from an external resource, rather than the IDE
in use. Fortunately, Eclipse Eclipse PDE provides a way of doing so by letting
developers specify a target platform. By de�nition, a target platform is a set of
plug-ins that the Eclipse RCP will be built and run against. The plug-ins from
the target platform are being used during code compilation, as well as during the
launch of the product. They are also being used during development, as Eclipse
SDK will scan and o�er them as candidates for possible dependencies, making it
easier for developers to �nd certain packages in the plug-ins and making sure the
target platform contains all the plug-ins required by the Eclipse RCP. [Fou13c]

By default, the target platform contains all the plug-ins that are currently there
in the used Eclipse SDK. This is a reasonable default, as starting Eclipse plug-in
development does not require any explicit con�guration. Instead, the plug-ins
used by the IDE are being propagated to the developed plug-in / RCP and one



20 Improving the RED build process

can start the development process right away. However, when the development
reaches a more mature state, specifying an external target platform de�nition,
that is independent of the IDE in use, makes the project much more portable.
Also, when de�ned properly, target platform will contain only a minimal set of
plug-ins required to run the desired code, which results in a smaller size of the
�nal binary, as the unnecessary plug-ins are simply not included. Last, but not
least, some of the required plug-ins may be platform speci�c, and therefore it
could not be possible to include them in the currently used IDE. This would
make it impossible to successfully export the RCP.

A target platform wizard shows that there are a number of plug-in sources that
can be used for the platform de�nition:

• Directory - a directory in the �le system that contains a number of Eclipse
plug-ins.

• Installation - an Eclipse installation, plug-ins of which will be added to
the platform.

• Features - A subset of plug-ins de�ned by a number of features from the
current installation.

• Software site - Plug-ins from either remote or local plug-in repository or
update site.

All of these give quite a �exible way of de�ning the target platform, allowing
to use both local and remote plug-in sources. In our case, however, using the
locally-de�ned plug-ins is not really an option, as the developers will be changing
every few months, and so will the machines used for building. Therefore, using
the remote sites that would allow to fetch the plug-ins whenever necessary is
the only reasonable option.

Taking into account RED dependency requirements listed by Jakob Kragelund
in [Kra12], a list of plug-in sources has been determined and included in RED's
target platform. The �nal platform de�nition has been depicted in 2.1. It
uses the latest o�cial Eclipse 4.3 Kepler download site, which is very likely to
stay available in the future, and then uses concrete features to narrow down the
platform to the absolute minimum required for building RED successfully. In
order for the target platform to be used by Eclipse SDK, one needs to explicitly
activate using the target platform editor.

Not only did it allow to detach the build process from the IDE in use, but also
contributed signi�cantly in REDucing the size of the �nal RED binary. Each
of RED plug-ins has been examined carefully for the unnecessary dependency



2.3 Eclipse Tycho - a new approach to building Eclipse plug-ins 21

Figure 2.1: RED's external target platform declaration

declarations, that have been either added by mistake or are simply not being
used anymore, and then the target platform has been REDuced to contain only
what is truly necessary. That allowed to REDuce the binary size from initial
120MB to around 55MB, which is roughly 50% an improvement.

2.3 Eclipse Tycho - a new approach to building

Eclipse plug-ins

As regular build process of Eclipse applications has its drawbacks, many at-
tempts have been taken to improve it. Perhaps the most popular one, which
has also been adopted by the Eclipse Foundation, is a Apache Maven-based
solution named Eclipse Tycho. Eclipse Tycho is being actively developed since
2009 and it has been adopted as the default build tool for all the eclipse core
plug-ins. The most recent version is 0.18.1, released on 15 July 2013.

Eclipse Tycho is a set of plug-ins and extensions that provide a way of build-
ing Eclipse-based software using a popular Java build tool - Apache Maven.
Apache Maven is a command-line based make tool for Java applications, that
has been adopted by many Java developers around the world. It o�ers a uni�ed
approach for building various types of applications, ranging from standalone,
desktop applications to Java Enterprise bundles, and features a plug-in-based
structure that allows extensions. Plenty of plug-ins have been written to extend
core Apache Maven functionality, such as other JVM-based language support,
advanced dependency-management, or �nal package structure.



22 Improving the RED build process

2.3.1 Improvements over Eclipse PDE build

Setting up Eclipse Tycho build to an Eclipse RCP application provides a number
of bene�ts. First of all, it allows to build the resulting product using command-
line only, with no Eclipse development environment required. This makes it
much easier for a non-developer to build a product from the latest sources, which
is certainly an asset for Harald Störrle, who will be building RED from time to
time. As Harald is not a Java/Eclipse developer, it will be much easier for him
to execute a simple command in the terminal, rather than setting up Eclipse
SDK and following the regular Eclipse PDE product export. Also, Eclipse
Tycho makes it easy to issue the build for all the supported platforms. By
passing a single parameter to the build command, one is able to produce a
zip-packaged RED binaries for Windows, Linux and Mac OS, for both 32- and
64-bit architectures. Therefore, thanks to Eclipse Tycho build, one obtains a
ready-to-distribute versions of RED for all the possible platforms, that can be
simply uploaded and passed to the students.

Another useful feature provided by Eclipse Tycho is automated test execution.
As in a regular Apache Maven build, all the tests are being executed during every
regular Eclipse Tycho build. If the unit tests are maintained correctly, this gives
the developer an instant information about the condition of RED and may help
in determining whether or not latest changes introduced any regressions. Tests
can also be run outside of the build process, using a separate Apache Maven
command. One potential drawback here is that executing unit tests on every
build make the build process time consuming. There are two di�erent types of
Eclipse-plug-in unit tests - ones that require the UI to be initialized and the
ones that does not (called "headless"). Since initializing the UI thread is done
separately for every UI test, depending on the number of such tests the make
process can take a considerable amount of time. However, this is not much of
a problem, as Eclipse Tycho build do not need to be executed during an actual
development process. When working on a feature, a developer would normally
use the Eclipse-provided Eclipse PDE build to verify his changes on-the-�y,
without the need of recompiling the whole source. Only when the work is done,
a Eclipse Tycho build should be made, so that one can verify none of the tests
are failing, and that the resulting product is working as expected. In such a
case, a longer time required to build should not be a nuisance. If, however, a
need of excluding test execution on Eclipse Tycho build arises, one could easily
do that by passing a "skip tests" parameter to the build command.

What is also important is that Eclipse Tycho build does not replace the Eclipse
PDE build, but extends it instead. Therefore, if a for some reason someone
ever decides to drop Eclipse Tycho support, it would not a�ect the possibility
of building RED in a regular, Eclipse Eclipse PDE way. While certainly not



2.4 Summary 23

advised, this may become relevant when a developer that will be working on
RED would �nd it somehow di�cult to attach his contribution to the Eclipse
Tycho build process. Doing that is not di�cult, but taking into account that
Eclipse Tycho is still in its early stages, it may be troublesome for developers
not experienced in Apache Maven.

Tycho also works very well with the previously de�ned target platform. During
every build, Eclipse Tycho contacts the de�ned plug-in sources (Eclipse software
site, in our case), downloads the necessary plug-ins and check if there are any
new versions of the already downloaded ones. Thanks to Apache Maven caching
capability, once a plug-in is downloaded, it is being put in so-called local repos-
itory, so that it does not have to be downloaded again. Eclipse Tycho built can
be run in an o�ine mode, so that it does not consult the remote site, but such a
build will fail if all the required plug-ins are not cached in the local repository.

2.3.2 Continuous integration

Lastly, while not relevant as of now, Eclipse Tycho build allows using third-party
tools to execute the make process. This includes popular continuous integration
applications, such as Hudson or Jenkins, which helps in monitoring the state of
the code in the repository in a managed, periodical way. Continuous integration
tools kick o� the build periodically, preferably every 24 hours, and produce a
report on whether or not the code from the repository has been successfully
compiled and packaged, as well as if the current unit tests are passing. It is
especially vital when there are number of developers working simultaneously,
as having the external builds being done every day ensures that the code on
the repository is stable and that the developers did not introduce any con�icts.
While it takes an initial e�ort to set up such a tool, requiring time, server
space, and a bit of knowledge, it provides a great way of monitoring the project
stability, which, in the long run, signi�cantly contributes to the project's main-
tainability. However, as RED is usually developed by a single developer at a
time, there is no need to set it up just yet, but it certainly should be taken into
account in the future perspectives.

2.4 Summary

To sum up, so far two important maintainability issues have been addressed.
First of all, a proper versioning control system has been set up, with a remote
repository. Discussing pros and cons, it was decided to use Git repository hosted



24 Improving the RED build process

on bitbucket.org, which supports private repositories at no charge, and comes
with a number of additional features, most important of which being a bundled
issue tracker. Introducing both source code and issue management is the �rst
important step of increasing RED maintainability and, in the long run, making
it an open source project.

The other task was to analyzing and improve the RED make process. By at-
taching AgileGrid, a required third-party bundle, into the RED source code, we
got rid of the need of manually resolving the dependency on each new develop-
ment environment. Taking into account that AgileGrid is no longer supported,
it was of great importance to make AgileGrid available to RED build process
without the need of downloading any extra �les from AgileGrid website, as it
may simply become unavailable at some point. Also, not having to manually
download the additional plug-in is certainly at future developers convenience,
making the development environment setup process a bit easier.

Another important improvement was de�ning a target platform. Before, RED
make process was tightly coupled with the state of Eclipse SDK in use, and all
the plug-ins required by RED had to be manually installed in the SDK �rst. By
adding an external target platform de�nition, the dependencies are now declared
in a separate �le and they can be downloaded automatically without much
e�ort required from the developer. It also provides a great way of managing
the required plug-in, as it ensures each developer uses the same versions of the
plug-ins, minimizing the risk of any incompatibilities resulting from using an
outdated, or incompatible version of a certain plug-in from target platform.

As it turned out, using Eclipse Tycho as an extension of a regular Eclipse PDE
built greatly extended the build process capabilities. Although it required a
bit of e�ort to set up, it allowed us to build RED without the need of having
Eclipse SDK, using a command-line. Also, it makes it possible to execute all the
unit tests during the build, which is especially important for checking against
any regressions that may occur during development. Eclipse Tycho is based on
Apache Maven, an open and popular Java make tool, which means that any
developer that is familiar with Apache Maven should not have any troubles
with understanding how Eclipse Tycho works. What is more, thanks to Apache
Maven we can easily integrate the RED build process with other third-party
tools, such as continuous integration systems, with a little e�ort.



Chapter 3

Restructuring RED

3.1 Upgrading the underlying Eclipse framework

When it comes to renovating RED architecture, it would be wise to start with
taking a look at the underlying Eclipse framework. RED has been created in
late 2010, and the latest available version of Eclipse available at that time was
3.7 Indigo. Until then, there were several updates made to the platform. As the
updates contain a number of �xes and new features, updating the framework
could bene�t RED both in terms of stability and latest upstream features.

While the regular Eclipse updates are mostly about bug-�xing and bringing
features, Eclipse 4 is a new generation of Eclipse Platform. The platform has
been re-design from the very bottom and is supposed to make it much easier
for developers to design and build Eclipse RCPs. Figure 3.1 shows one of such
improvements - a GUI editor for the Eclipse Application, which makes it much
simpler to design an RCP as when using Eclipse 3.x API. Eclipse 4 was based
on a �exible programming model, trying to keep and improve the best features
provided by the previous, Eclipse 3.x, platform, while also �xing most of the
heaviest shortcomings. It also introduces a new, more straightforward API
for RCP development that takes the advantage of dependency injection and
object composition rather than object inheritance. With introduction of Eclipse
4.3 Kepler, Eclipse 4 platform has o�cially replaced the now-legacy Eclipse 3



26 Restructuring RED

Figure 3.1: Eclipse 4 Application Editor

[Vog12a].

In order to keep the backwards compatibility, a so-called compatibility layer
has been developed, which makes it possible to run the plug-ins coded against
Eclipse 3 API on the new platform. This is extremely important as the Eclipse
project itself is so big it cannot simply be re-engineered to use the new API.
Thanks to the compatibility layer, one can run most of the legacy plug-ins and
still bene�t from most of the features introduced by the new platform. As of
now, the only serious limitation of the new platform is that it is not possible
to mix legacy plug-ins (coded against 3.x API) and the plug-ins based on the
new platform. This issue is supposed to be addressed in Eclipse 4.4, scheduled
for June 2014, which should allow developers to include both 4 and 3.x API
components in the same RCP. [Vog12a] [Vog12b]

Taking into account all the bene�ts coming from both major and less-major
Eclipse versions, there are several approaches that can be taken:

• Rewrite the existing source code to leverage latest Eclipse 4 API

• Use the latest Eclipse 4.3 with compatibility layer



3.1 Upgrading the underlying Eclipse framework 27

• Keep the Eclipse 3.7 API compatibility and do not upgrade the framework

Each of the approaches have their pros and cons, let's discuss them in more
details.

3.1.1 Migrate RED plug-ins to Eclipse 4 API

Migrating the existing RED code-base may be a good decision in the long run,
as it will re-base RED on the latest Eclipse 4 API, which will remain o�cial
for the next couple of years. This would give us a full access to all the latest
Eclipse features, and would also let us bene�t from the support of the Eclipse
community. However, RED is already a big project, so migrating the whole
source code would certainly be time consuming. Taking into account the size of
RED, it is quite clear that such a deep re-engineering would take a huge amount
of e�ort, and it would be di�cult to do it in the scope of this thesis.

Another bene�t we would get from migrating RED would be that it would force
the major architectural re-engineering. Since it would be necessary to rewrite
the plug-ins to match the new API, it would be much easier to introduce vital ar-
chitectural changes during the process. The problem with such approach would
be that it may result in breaking some of RED features, during either migration
or architecture restructuring process. Fixing the introduced issues would have
to be considered when estimating the time required for RED migration, but
hopefully making �xes using a new API should not be di�cult.

One of the major drawbacks, however, is that while it would be possible to
migrate (rewrite) RED plug-ins to the new API, it is not possible to do the
same with all the third-party dependencies. This means that even though we
can migrate the RED code-base, we would have to do the same with both
AgileGrid and RichText plug-ins, which requires additional e�ort. Also, RED
depends on other frameworks, such as Eclipse Modeling Framework (EMF) and
Graphical Modeling Framework (GMF), which are still based on 3.X API and
there are no plans of migrating them in the near future. Since both of them
provide one of the most important features of RED, being fragment modeling,
there is no way of not using them. The need of keeping these dependencies may
be a major roadblock when it comes to migrating RED, at least until Eclipse
4.4 provides the possibility of mixing both "old" and "new" plug-ins in the same
application.

A migration process have been brie�y tested as a part of the thesis. Figure 3.2
shows an early version of a RED4 project, an attempt to move RED to Eclipse



28 Restructuring RED

Figure 3.2: RED4 Proof of Concept

4 platform that has been developed as a proof of concept. What is most inter-
esting, not a single line of code has been written to achieve the presented result,
which only proves how powerful and �exible Eclipse 4 platform is. Unfortu-
nately, until the release of Eclipse 4.4, further development in this direction is
simply not possible due to the previously mentioned limitations.

3.1.2 Using Eclipse 4 compatibility layer

An alternative to a full-scaled migration would be to take advantage of Eclipse
compatibility layer. That way, there would be no need of introducing any code
changes to the existing plug-ins, we would only need to ensure that the compat-
ibility layer is referenced in the RCP product de�nition. This would allow RED
to bene�t from most of the upstream Eclipse �xes and features with almost
negligible e�ort. Also, since the whole Eclipse project is taking advantage of
the compatibility layer, as it will not be migrated directly to Eclipse 4, we may
safely assume that compatibility layer will be supported in the future by Eclipse
Foundation.

As mentioned before, taking this approach would unfortunately prevent us from
leveraging the new Eclipse 4 API, as mixing plug-ins is not currently supported.
However, with the release of Eclipse 4.4 Luna, such an option should be intro-
duced, hence letting the future extensions be written on top of the latest APIs.



3.1 Upgrading the underlying Eclipse framework 29

This may be considered as a balanced trade-o�, as we would be able to keep the
existing code-base without the need of migration, and yet extend RED without
having to stick to the legacy APIs.

One problem that has been identi�ed when it comes to using compatibility layer
is that it does not always make the legacy code work the same as when using
the Eclipse 3.X API directly. A good example of a functionality broken by the
compatibility layer was the RED top toolbar, which for some reason has been
missing when RED was based on Eclipse 4.2 Juno. A quick research has shown
that the toolbar was for some reason not converted into the resulting Eclipse 4
application model, and hence it was not visible to the user. Another issue was
that the custom "Save" and "Save As" handlers stopped working, making it
di�cult for RED users to actually make any changes. Thankfully, with a recent
release of Eclipse 4.3 Kepler, both these shortcomings have been �xed.

3.1.3 Keeping the original Eclipse 3.X API

The last option to take in terms of the underlying framework would be to simply
keep using the same version that RED was designed against. A clear advantage
of this approach is that RED is actually performing quite well when run on
Eclipse 3.7. Therefore, there would be no risks on introducing any issues either
by the migration process or by using the compatibility layer. However, in this
case we would be using a version that is not being developed for more than
three years, with no access to the latest upstream �xes. It would also force the
developers to use the legacy, outdated API for introducing future improvements,
while the support for the old API will be slowly fading away, which could severely
impact the development a year or two from now.

3.1.4 Decision

Having evaluated all of the options above, it is time to choose the approach. In
terms of the required e�ort, migrating RED is de�nitely the most demanding
one. Re-writing the whole source code to match the current API would alone
be a time-consuming process, let alone migrating the dependencies. Also, even
after successfully migrating RED, we would still need a possibility of running the
legacy plug-ins along the migrated ones, which will not be (o�cially) possible
before June 2014. Finally, if this option is soon to be provided, the whole
migration process would be highly ine�cient, as we would be able to run RED
as is using the compatibility layer and still develop future extensions using the



30 Restructuring RED

new API. Taking that into account, the code migration is certainly not the best
approach to take.

Let's consider keeping the legacy API and not upgrading the Eclipse framework.
If RED was stable enough, and there were no further development plans, not
making any error-prone changes would certainly be a good idea. However, in
the current state, RED is neither fully stable nor its development has been
�nished, so making use of the upstream updates may be bene�cial. Also, with
the support for Eclipse 3.X API fading away, sticking to the outdated framework
may slow the development down in the future.

Therefore, the only reasonable solution is to use the compatibility layer for now,
and use the new API for the future extensions as soon as it becomes possible.
When that happens, one may actually consider migrating the existing source
code one module at a time, but currently it is not an option. Also, as there is
practically no e�ort involved in using the compatibility layer, there is more time
to concentrate on the actual RED re-engineering.

3.2 Improving high-level architecture

3.2.1 Eclipse RCP development

Since from the very beginning RED has been developed as an Eclipse RCP,
it would be a good idea to analyze RED in terms of how does it implement
the actual Eclipse framework. In order to discuss it, let's start with going
through the main concepts in the Eclipse RCP development, covering the basics
of Eclipse platform and the building blocks of every RCP application.

3.2.1.1 OSGi

First of all, Eclipse platform is based on OSGi framework, standing for Open
Service Gateway Interface, which is a speci�cation that introduces a service and
component based infrastructure on top of Java programming language. Every
component within the OSGi environment, called bundle, consist of a portion
of code and resources organized in a set of java packages. Each bundle may
also declare what java packages (or other bundles) it requires to be able to run,
as well as the java packages it exposes for other bundles to depend on. OSGi
run-time is dynamic, which means the bundles may be deployed and deleted
dynamically, following the life cycle shown in Figure 3.3. [Fou]



3.2 Improving high-level architecture 31

Figure 3.3: OSGi bundle lifecycle diagram

The main idea behind OSGi is letting the developers to create their programs
using a small "building blocks" that communicate with each other using �xed
contracts. Such an approach is especially useful when there are a number of
programmers working on a certain application, as it allows to distribute the
work e�ciently. A general design pattern is for each bundle to provide a small
piece of functionality, which combined with other plug-ins delivers a higher-
level feature. Therefore, when developing a bundle, one should design it to be
responsible for one thing, and make sure that it does this thing right.

3.2.1.2 Eclipse platform

Eclipse platform is implemented directly on top of one of the OSGi implementa-
tions, being Equinox framework, and as such follows the general idea described
in the previous section. However, Eclipse introduces its own set of concepts,
which heavily extend a regular OSGi speci�cation.

A smallest, deploy-able unit in the Eclipse platform is a plug-in, which is essen-
tially an OSGi bundle. Each plug-in consists of Java code and resources, and
also de�nes its dependencies and contract. The same as bundle, a plug-in can
also be dynamically deployed in an Eclipse program and therefore contribute
to its overall functionality. Additionally, Eclipse allows plug-ins to declare so
called "extension points", which is basically another way for plug-ins to com-
municate with each other. Extension points can be de�ned to let other plug-ins
add functionality to the declaring plug-in, which is extensively used within the
Eclipse platform.



32 Restructuring RED

Another important concept de�ned by Eclipse framework is a feature. Eclipse
feature do not provide any functionality on their own, but they are simply
containers composed by a number of plug-ins. Features basically de�ne a higher
abstraction level in Eclipse RCP development, letting developers group low-level
functionality provided by separate plug-ins (or other features) into higher-level
functionality. It also lets developers de�ne contracts on a higher abstraction
levels, which may become important as the RCP application grows.

The �nal concept that will be described is a product . A single product de�nes a
stand-alone Eclipse program, that includes all the code and plug-ins required to
run it, including Java Run-time Environment and the required Eclipse platform
code. Each product de�nes what plug-ins and/or features it requires, and also
contains a custom branding information and resources.

To sum up, Eclipse platform de�nes a number of "building blocks" that the
developers should utilize in order to build their RCP applications. Each of
the discussed concepts serves an important purpose in the overall development,
de�ning di�erent abstraction levels and therefore letting developers design their
applications in an e�cient, maintainable way.

3.2.2 Components

From its very beginnings in 2010, RED was designed to be a modular appli-
cation, composed of a number of separate, high level components. Figure 3.4
shows a slightly modi�ed version of a high-level design of RED modules and
their relations to each other by Anders Friis [Fri12], so that it also shows all
the changes made Jakob Kragelund and Johan Flod.

Let us describe the purpose of each component �rst. At the very base of RED,
there is a Core module. As the name implies, it is the most important module
of RED, without which it is simply not possible to run the application. As such,
it is responsible for a number of high-level tasks:

• De�ning the RED application "look and feel"

• Declaring the basic meta-model

• Declaring the API to be called by other RED components

• Implementing the generic functionality, commonly used by other compo-
nents



3.2 Improving high-level architecture 33

Figure 3.4: RED as designed in [Fri12]

Core makes the extensive use of the API declared by the Eclipse platform,
implementing a set of basic UI components for the other RED modules to reuse
or extend. In order to implement some of these components, Core requires a
set of third-party dependencies, such as EPF RichText editor and AgileGrid,
which have been used to implement certain high-level features desired in RED.
Although Core module is the only one required to run RED, it does not make
RED usable by the �nal users. All it does is providing a �rm, reusable base for
the other RED components to introduce new, more user-oriented functionality.
On its own, Core provides a way of creating and modifying .red �les, as well
as editing each generic element's meta-data.

A �rst "feature" component of RED is Glossary. At a high level, it gives RED
users a way of managing their glossary terms they use through their require-
ment speci�cation in a convenient way. Users are able to create a number of
separate glossaries, which in turn may contain a number of terms along with
their de�nitions. Glossary also makes it possible to quickly check a de�nition
of a term used for describing any other element in the application.

Next, there is a component named SpecificationElements, which greatly
extends RED's requirement editing capabilities. The module de�nes a great
number of RE notions, such as Personas, Goals, Stakeholders etc. Speci-

ficationElements allows to create, modify and link between the declared
speci�cation elements, providing a customized visual editors for each of them.
Essentially, SpecificationElements is what makes RED a true requirements
editor, allowing RED users to formulate their �ndings using the same concepts



34 Restructuring RED

that are being taught in the Requirements Engineering course.

ModelElements is the component providing truly advanced capabilities to
RED. While SpecificationElements allows to describe Requirements in a
basic way, ModelElements lets user to express them as model fragments.
The module introduces a full-featured graphical editor for creating UML-like
models, that attached to various Requirements make them a bit more formal
and compliment a regular textual representation with a visual one. Also, in-
cluded in ModelElements is a Weaving module, that lets users merge their
model fragments and then convert them into a Prolog representation, which
may then be used to analyze, validate or transform the resulting model using
Prolog programming language.

One of the great assets of RED is the Reporting component. It's main purpose
is to let the users convert their RED project into a regular report that then will
serve as a base for the �nal deliverable of the 02264 Requirements Engineering
course. The module reads the desired project and converts its contents one by
one into an HTML report, that can then be edited either as is, or imported into
a MS Word (or alike). This feature makes it much easier for the course attendees
to present their �ndings, and lets them concentrate more on the course material
and to minimize the e�ort required to produce the �nal report.

Last, there is a Help module allowing the users to access RED user guide within
the application. Although RED has been designed to be straightforward to use,
having an integrated help systems, describing various features and concepts
greatly contributes to the tool usability.

3.2.3 Implementation issues

Having understood the design, let's take a look at how it was actually imple-
mented. The �rst main problem of RED is that it does not take the advantage
of all the Eclipse RCP development concepts, being features. Each of the RED
modules have been implemented as either a single, or a group of plug-ins, with no
higher-level entities grouping them together. Hence, the implemented architec-
ture lacked the high-level perspective, and the architecture could be represented
only at a plug-in level, as depicted in �gure 3.5.

As describing the architecture at the plug-in level would be too complicated, it
was necessary to try matching them into the respective RED modules. Ana-
lyzing the plug-ins naming revealed that each of the plug-in name starts with
dk.dtu.imm.red pre�x, followed by a string that closely matches the RED
module names. A similar pattern have been found at the package level in-



3.2 Improving high-level architecture 35

Figure 3.5: RED design as found when starting the thesis



36 Restructuring RED

Figure 3.6: Plug-in dependencies after grouping the alike plug-ins together

side various plug-ins, as the packages naming conventions also matched the
dk.dtu.imm.red.module_name pattern. Thanks to that analysis, it was possi-
ble to group the plug-ins into the modules and come up with a diagram that
shows a better high-level picture (see �gure 3.6). While it is possible to see the
outline of a higher abstraction layer, without wrapping the plug-ins into higher-
level entities, it is still di�cult to tell the high-level RED module dependencies.

3.2.3.1 Dependency re-export

As the dependency diagram is cluttered a great number of dependencies, we
may want to simplify it by analyzing the excessive direct dependencies between



3.2 Improving high-level architecture 37

various plug-ins and to make some of them indirect instead. Eclipse provides
a way for a plug-in to re-export its dependency for the other plug-ins to use,
which would allow to drop the direct dependencies to every plug-in that is
exported by any other required one. In RED case, a great number of plug-
ins depend on dk.dtu.imm.red.core, which directly depends on both org.

agilemore.agilegrid and org.eclipse.epf.richtext. Since a number of
other RED plug-ins depend on at least one of them as well, it would be wise
to re-export the dependencies on them from the dk.dtu.imm.red.core plug-in.
That way, the resulting dependency diagram will be much less cluttered, as the
previously direct dependencies would be converted to indirect ones, through the
dependencies on other plug-ins that re-export the required functionality.

3.2.3.2 Grouping in Eclipse features

Having the modules implementation separated into a number of plug-ins, and
having been able to group them in term of their purpose, we should now come up
with a way of grouping them by high-level functionality. The best way to do so
would be to utilize the Eclipse platform, which provides a concept just for doing
so. Eclipse features are a great way of creating a high-level feature units from a
number of plug-ins, without directly a�ecting them. The main bene�t of doing
so is that by reusing that concept, we may implement the desired architecture
in a seamless way, as Eclipse provide a simple way of monitoring each feature's
dependencies. That makes it easy to track all the extraordinary dependencies
and countering them whenever necessary.

Another important pro�t we get by is the actual Eclipse platform compliance,
which means that by introducing features, we may reuse other important Eclipse
concepts, such as, for instance, update manager. Without features speci�ed, it
is very di�cult to handle the update process using Eclipse Platform manager,
as the users would be noti�ed with every single plug-in update available. By
introducing features, we may easily release an update for the high-level compo-
nent, which makes it both convenient for the user and easier to handle for the
developers.

Figure 3.7 shows a diagram of RED modules as grouped into respective modules,
along with the high-level dependencies between them. Also, thanks to Eclipse
features, it is now possible to de�ne a clear mapping between RED modules and
the RED source code. The mapping is as following:

1. AgileGrid - dk.dtu.imm.red.dependencies.agilegrid.feature

2. RichText - dk.dtu.imm.red.dependencies.richtext.feature



38 Restructuring RED

3. Core - dk.dtu.imm.red.core.feature

4. Glossary - dk.dtu.imm.red.glossary.feature

5. ModelElements+Weaving - dk.dtu.imm.red.modelelements.feature

6. SpecificationElements - dk.dtu.imm.red.specificationelements.
feature

7. Reporting - dk.dtu.imm.red.reporting.feature

8. Help - dk.dtu.imm.red.help.feature

However, as one may notice, even though we were able to successfully map the
plug-in abstraction level into feature (module) level, there is a number of di�er-
ences between the initial component dependency design and its implementation.

3.2.3.3 Excessive high-level dependencies

First of all, as per Figure 3.4, the modules were supposed to communicate only
via the base Core component. Such an idea favored modularity of RED, as it
would then be possible to include or exclude certain modules without the risk
of breaking other parts of the application. However, the current implementa-
tion clearly violates that principle, introducing a number of inter-dependencies
between the modules that suppress RED modularity and make it more "all or
nothing" kind of program. It makes RED quite di�cult to maintain, as mak-
ing changes to one module may break other ones, which in turn would make
it di�cult to coordinate the work between more than one developers. Also, as
Eclipse platform is all about modularity, creating such a tightly coupled struc-
ture makes it really di�cult to utilize some of Eclipse features, such as the
Update Manager. Normally, update manager is a convenient way of providing
RCP users with the latest software updates, allowing the developers to update
certain parts of the application independently. However, if the respective mod-
ules are tight together, it makes it very di�cult to handle the update process
without breaking backwards compatibility.

A good example of introducing extensive dependencies between the modules is
Reporting. Essentially, Reporting depends on every other RED component,
which means that if any of these module is missing, it would not be possible
to generate a report. As the ability to generate a report is one of the most
important features of RED, it is therefore not possible to exclude any of the
other components in order to keep it.



3.2 Improving high-level architecture 39

Figure 3.7: RED module dependencies after grouping the plug-ins with high-
level features



40 Restructuring RED

3.2.3.4 Circular dependencies

Another problem that RED severely su�ers from is that there are modules that
depend on each other at the same time. Having such a circular dependencies
makes it simply impossible to deploy one of such modules without the other,
making it pointless to distinguish between the modules as they cannot function
as separate entities. This creates an illusion of modularity, that attempts to
hide incorrect design or implementation decisions. It also makes the applica-
tion di�cult to maintain, as if one of the modules gets broken (as a result of
the upstream Eclipse updates, for instance), the other module have to be ul-
timately removed as well. By taking a look at RED modules, one can clearly
notice that both SpecificationElements andModelElements components
depend on each other, which means that it is not possible to exclude the frag-
ment modeling capabilities without removing all the speci�cation elements from
the RED program. Taking into account that Weaving module (contained by
ModelElements) introduces a number of serious problems on non-Windows
based machines, not being able to remove it is certainly an issue.

Also, examining Weaving module implementation quickly shows that it is cir-
cularly dependent on both ModelElements and SpecificationElements

modules, making the overall architecture even more complex. Due to explicit
dependencies on the native Java-To-Prolog (JPL) libraries, Weaving module
is currently only supported on MS Windows machines, but due to the poor ar-
chitecture, it cannot be simply disabled in both Mac OS X and Linux versions.
Unfortunately, this creates a direct impact on RED users using these operating
systems, as trying to weave a model on their machines either throws a set of
exceptions or crashes the whole program, confusing them and leaving under the
impression that RED is not stable enough for daily usage.

3.2.4 Countering cyclic dependencies

As identi�ed before, circular dependencies are the most serious problems when it
comes to RED architecture. In order to resolve them, a number of steps has been
taken, with the overall process depicted in �gure 3.10. As the �rst step of �xing
the issue, Weaving module has been taken out of ModelElements module,
so that it would be possible to analyze the dependencies at a deeper level. It was
quickly found out that a number of plug-ins from the originalModelElements
module are purely responsible for the model weaving functionality, so they could
have been extracted and wrapped into a separate, dk.dtu.imm.red.weaving.
feature, representing Weaving module.



3.2 Improving high-level architecture 41

Once extracted, it is now possible to examine how the high-level dependencies
are organized between SpecificationElements, ModelElements and the
newly created Weaving modules. Clearly, it is the Weaving module that
creates problems here. Initially, Weaving has been implemented as a part
of ModelElements module, which single purpose was to provide a way of
converting a set of model fragments to Prolog. As such, implementing the
weaving functionality inside the ModelElements module was not a bad idea,
but making it an integral part of the module certainly was. The main reason
behind is that, looking from a high-level perspective, the ability to weave a
model should not be essential to the ability of creating the model fragment.
At the same time, weaving functionality should not be required to manage the
speci�cation elements, which is what is currently happening. As mentioned
before, model weaving is currently supported only on Windows computers, due
to the underlying technology limitation, which makes it useless on any other
RED versions. Therefore, it would be more than vital to simply disable it
on the unsupported platforms, but since two other important modules strongly
depend on its existence in the run-time environment, it is currently not possible.

Source code examination reveals thatModelElements andWeavingmodules
share a common domain declaration. As many Eclipse RCPs, RED's domain
classes have been generated using Eclipse Modeling Framework (EMF). EMF is
a powerful tool, that allows us to design a domain model using a user-friendly
graphical UI, store its declaration in so-called Ecore model and then to generate
Java classes out of it. While very convenient, in order to map both classes and
packages, the generated model is quite complicated and di�cult to understand.
The reason for that is that EMF generates all the code-base required for Eclipse
platform integration, not to mention a number of utility and factory methods.
What is most important, is that even though ModelElements domain does
not directly depend onWeaving models, the generated framework-related code
introduces such a dependency, therefore causing a cyclic dependency between
the modules.

The other problem is the cyclic dependency betweenWeaving and Specifica-
tionElements modules. This is actually a surprising one, as from the archi-
tectural point of view, there should be no need for having such a dependency in
neither direction. As weaving process is being done on the model elements only,
the dependency on any speci�cation element should not be necessary. Fortu-
nately, that problem turned out to be very simple to solve, as the dependency
was required only by an unused class import. Removing that import allowed us
to remove the high-level dependency between the modules, which was the �rst
step towards dropping cyclic dependencies.

Conversely, having SpecificationElements depending on Weaving is even
more surprising, as it should be able to work as expected without even being



42 Restructuring RED

Figure 3.8: Speci�cation Elements dependency on Weaving

aware if weaving capability is there in the RED run-time or not. Unfortu-
nately, this dependency was much more complicated to drop. Recalling Jakob
Kragelunds research in [Kra12], there are currently two distinct model editors
in RED - a Requirement's model fragment editor, representing one more way of
specifying a Requirement , and a so-called weaving model, which is basically a
result of merging several model fragments. The problem is that weaving model,
instead of being a snapshot of the merged model fragments, contains references
to the same model elements as the model fragments that have been merged.
Having said that, whenever a change is made to one of the requirement, RED
needs to check if the Requirement's model fragment is a part of any weaving
model, and update that model accordingly by updating the element indices.
This code responsible for updating the weaving models is shown on �gure 3.8,
lines 1028-1038.

In order to �x that, let's take a look at the Weaving module in more details.
Figure 3.9 shows that the dk.dtu.imm.red.modelelements.weave package con-
tains classes that have two distinct responsibilities. First, there are classes such
as WeaveModel or WeaveAnnotation which are being used to compose and dis-
play the actual weave models. However, there are also classes here that are
purely responsible for Java-to-Prolog conversion (weaving). While the the �rst
group of classes is perfectly valid to have in the domain layer, all the Prolog
conversion ones are not. The reason for that is that they are not used to store



3.2 Improving high-level architecture 43

Figure 3.9: dk.dtu.imm.red.modelelements.weave package class diagram

any state in the system, but are just being used to handle the conversion pro-
cess. Hence, it is far more reasonable to have them in a service, business logic
layer, as this is exactly what they do.

Having that said, it would be a good idea to re-de�ne the boundary between
ModelElements and Weaving modules. Instead of extracting the whole
"weave" package out of ModelElements module, we may consider keeping
the weave model related classes, and extracting only the Prolog weaving ones.
That way, we would keep the generic weave modeling capabilities inside the
ModelElements package, while moving the speci�c Prolog implementation to
another module. In order to do that, however, we will need to �rst split the
EMF generated model which, as described few paragraphs above, ties the whole
domain code together. We could try editing the source and trying to remove the
dependencies manually. However, as every generated source code, the generated
EMF model is di�cult to edit, and it is generally not a recommended approach.
What we could do instead, is to split the actual EMF Ecore model and generate
the source code afterward. EMF models are stored in .ecore XMI �les, which
can be edited using EMF editor. In order to successfully split the Prolog weav-
ing implementation from ModelElements one, the following steps had to be
completed:

1. Backup the originally generated source code. As some of the domain



44 Restructuring RED

classes may have been edited manually after being generated, we do not
want to loose the customizations

2. Remove the originally generated source code from the dk.dtu.imm.red.

modelelements plug-in.

3. Create a new, empty EMF Ecore �le. This �le will contain the extracted
prolog weaving domain.

4. Move the classes responsible for prolog weaving from the initial Ecore
model to the newly created one.

5. Copy all the Ecore �le properties. Every Ecore model contains a number
of settings that will be used for generating the Java model. Since we want
the newly generated model to perform the same as before the splitting
operation, we should keep the same settings as in the original Ecore �le.

6. Generate the new, splitted Java model from both �les.

7. Append all the customizations on the new model. In order to do that,
we need to di� the new model against the backup we've made in step
1. While time consuming, this is the most essential part of the domain
splitting process, as if we do not apply the customizations, the domain
will not operate properly.

8. Validate the changes. We need to di� again, and carefully examine the
changes that have been introduced, and make sure non of the model �elds
or operations are lost. Also, we should make sure that the only changes be-
tween the original and the modi�ed models are related to splitting package
dependencies.

Having completed these steps, we obtained two sets of generated classes, but in
contrast to the original model, the prolog weaving classes are no longer required
by the ModelElements module domain, which breaks the cyclic dependency.
By keeping the weaving model classes insideModelElementsmodule, we have
also made broken the SpecificationElements dependency on Weaving, as
Requirement element depends only on the generic weaving model classes, and
not on the Prologimplementation. Figure 3.10 shows a complete process of �xing
the circular dependencies. While there are still dependencies before the modules
that do not comply with the initial design, breaking the cyclic dependencies is
the �rst important step in improving the general RED architecture.



3.2 Improving high-level architecture 45

Figure 3.10: RED SpecificationElements and ModelElements circular
dependency �xing process.



46 Restructuring RED

3.2.5 Examining dependencies between the modules

After �xing the cyclic dependency problem, we may now concentrate on the
general problem of excessive dependencies between various modules. Even after
resolving the problem with circular dependencies, recalling �gure 3.7, there are
still several inter-module dependencies that should be removed according to the
design. These are:

• Reporting depends on SpecificationElements,ModelElements and
Glossary

• SpecificationElements depends on ModelElements

• Weaving depends on SpecificationElements and ModelElements

3.2.5.1 Reporting

A Reporting module is considered to be one of the most important features
of RED, hence it has to be approached carefully. Basically, generating a report
requires to read every single element of the RED project and convert it into
a report paragraph. Currently, report generation is purely centralized, which
means that it is the Reporting modules that obtains a reference to a Project
element, scans its contents looking for the types it can process, and converts
these types to desired paragraphs. In such a case, having the dependencies
on the other modules, such as SpecificationElements, ModelElements or
Glossary is necessary, as Reporting has to be aware of the types a regular
RED project may contain.

One way of changing that would be to make the Reporting module more
distributed. Since RED meta-model ensures that every single domain class
extends from an Element super-class, we may simply add an abstract method,
like toReport(), which could then be accessed by the report-generating code.
That way, Reporting component would no longer need to be aware of the
particular types, but will operate on a generic Element type instead. However,
it may be di�cult to design that method so that it return a data-type suitable
for every single Element subtype. For instance, Persona element consists not
only of textual data, but contains an image as well, and Requirement has a
model fragment attached to it. Covering such cases would make it di�cult
to make reporting a distributed process, while keeping the current reporting
functionality. Also, reporting is actually working good as of now, and there
are other, more important issues with RED that should be handled in the �rst
place.



3.2 Improving high-level architecture 47

3.2.5.2 Weaving

Even though the cyclic dependencies have been handled, the Weaving compo-
nent still depends directly on both SpecificationElements and ModelEle-
ments modules. As per [Kra12], weaving process converts a number of require-
ments, along with their model fragments, into prolog scripts. Hence, Weaving

module needs to be aware of both Requirement element, as well as all the Model
Elements from theModelElements module. As with the Reporting module
case, we could try makingWeaving module distributed rather than centralized,
but in this case such an approach is de�nitely not recommended. The reason is
that the actual logic for prolog conversion is already complicated, and making it
distributed would make it complicated even more. Also, in order to work prop-
erly, weaving requires native JPL libraries, and by distributing the conversion
process, we would make both SpecificationElements andModelElements
dependent on their existence, which is simply not acceptable.

3.2.5.3 Tool - a new module type

Since there is no easy way of making making the previously mentioned modules
comply with the design, let's examine the design itself. Currently, the design
forbids the inter-module dependencies, unless they communicate via the base
Core module. As may have been noticed, while it makes the architecture
design structured and easy to understand, it is often di�cult to implement all
the desired functionality in such a way. In fact, all the functionality that need
to process the RED model are by de�nition violating the design, including both
Reporting and Weaving modules. Hence, it may be a good decision to re-
de�ne the design a bit.

As not depending on other modules is not always possible to achieve, perhaps
there should be a way for a module to both keep compliant with the design
and still be able to depend on another module other than Core. However,
letting developers add such modules (let's call them Tools) without any con-
straints would quickly make RED architecture deteriorate and therefore even
more di�cult to maintain as it is now. Hence, if we are to allow Tools into the
architectural design, they would have to comply with the following rules:

• A module must not be referenced by any other modules, so that it may
be removed without a�ecting other RED functionality

• After successfully implementing a Tool, one needs to evaluate whether it
is possible to make it independent on other modules, and if so, re-factor
the module to comply with the initial design.



48 Restructuring RED

By following these simple principles, we make sure that introducing such a
possibility is, to some extent, safe. If the Tools are not being referenced by
other Tools, we will retain the possibility of removing them if necessary without
a�ecting other parts of RED. The second rule should encourage the developers
to still try to comply with the initial RED architecture design, at least making
them think if it is possible (or e�cient) to implement the functionality they are
working on in a di�erent way.

In fact, introducing such a possibility would provide a number of bene�ts. First
of all, we would have a proper "bucket" for both Reporting and Weaving

modules. As discussed before, making them compliant with the initial design
will be either ine�cient or simply impossible, and yet we'd like to keep the
functionality they o�er in RED. A second plus coming from introducing Tools
module type is that it provides a great entry point for new functionality in
RED. Whenever a developer comes in and starts implementing a feature, such a
detachable module makes for a great "sandbox" for the implementation without
a�ecting the other modules. Once mature enough, such aToolmay be converted
to a proper RED module, becoming a perfectly valid part of RED code-base.
This is especially useful as RED is being developed by students, which greatly
di�er in both skills and programming experience. If an unskilled developer start
modifying the base source code, chances for breaking existing features are quite
high. However, if such a developer may start by simply creating a module that
contributes to RED but is not required by it, this should make RED development
much safer.

3.2.5.4 Speci�cation and Model elements dependency

Let's start with SpecificationElements and ModelElements modules re-
lationship. When introducing fragment modeling feature, it was decided that
model fragments will be implemented as part of each requirement speci�ca-
tion element. Therefore, the SpecificationElements module dependency on
ModelElements originates from a requirement having a direct containment
on a ModelFragment class, which is a di�cult one to break. Figure 3.11 shows
the current Requirement element editor, and how the model fragments are in-
corporated into it.

One way of resolving that problem would be to make Model Fragments separate
from Requirements, but since Model Fragment is considered as one of Require-
ment's representations, dropping this relationship is probably not a good option.
Keeping these two elements entirely separate would make it di�cult to see their
relation and would therefore impact RED usability.



3.2 Improving high-level architecture 49

Figure 3.11: Requirement element visual editor

Another way of handling the problem would be to remove the containment
dependency, and representing the relationship using RED associations model.
That way, it would still be possible to reference aModel Fragment from a certain
Requirement , but it would require to drop the convenient "Model Fragment"
tab from the Requirement editor. However, it would probably be possible to
implement the missing tab using a Tool module type, hence keeping the current
functionality, but dropping the direct dependency between the two components.

For now, it has been decided to keep the dependency as is. The main reason for
that is that ModelElements module has been identi�ed to cause a number
of issues, such as model elements not being properly saved or breaking the
reporting module. As the issues are serious, it is probably not a good idea to
introduce more changes that may break the functionality even further.

3.2.6 Dividing Speci�cation Elements

Having discussed the high-level dependencies between various modules, let us
look with more details at SpecificationElements module. Basically, the
module itself introduces a number of Requirements Engineering concepts into
RED, making it such a useful tool in 02264 Requirements Engineering course.
However, taking into account that each of the introduced concepts is essentially



50 Restructuring RED

Figure 3.12: Supported Speci�cation Elements [Fri12]

a separate feature, it may be vital to discuss whether or not it is a good idea to
make them separate (sub)modules.

Figure 3.12 shows a simple diagram of all the Speci�cation Elements provided by
SpecificationElements module. Each of these elements represent a distinct
addition to the overall system, most of which are not directly related to each
other. In fact, it should be possible to model them as distributed, plug-gable
modules, instead of a single, large one.

The main problem with the current module structure is that it is "all or nothing"
package. One cannot simply take out one of RE concept out of the package, but
have to include all of them instead. This has already proven to be a problem
with the Scenario case, which resulted to be non fully functional when delivered.
However, as it has been incorporated into a large SpecificationElements
module, and not as a separate entity, it was not possible to easily remove the
not working part. The size and complexity of the SpecificationElements
module is also a problem. As all the speci�cation elements are implemented
as a single module, it contains a lot of source code, which is quite di�cult for
one to understand without spending some time analyzing it. This increases the
time required for the new developers to start the actual development. The last
problem is the fact that in the current setup there is no possibility of enforcing



3.2 Improving high-level architecture 51

the RE concepts independence, which, as in case of Scenarios, may make it
possible for developers to introduce unnecessary dependencies between them.

That being said, splitting the SpecificationElements module into a num-
ber of sub-modules makes perfect sense, but it will require a certain amount
of e�ort. Since the module has been treated as one so far, splitting it will
require to identify and drop the unnecessary dependencies. However, doing
so will greatly contribute to the general architecture improvement, as we will
end up with a number of small, plug-able and independent units, rather than
a huge module. The separating process required to manually divide the dk.

dtu.imm.red.specificationelements plug-in source code between a number
of smaller plug-ins, which could then be wrapped into the features correspond-
ing to each of the Speci�cation Elements. Also, since the Acceptance Test is not
being used as a separate element, but it is an integral part of Requirement ele-
ment, it has been included into the dk.dtu.imm.red.specificationelements.
requirement.feature.

The result of separation is shown in �gure 3.13. The dk.dtu.imm.red.specificationelements.
feature has been reduced to the absolute minimum, containing a simple wizard
category de�nition, and few classes for the other modules to reuse. It is impor-
tant to mention that due to the SpecificationElements module splitting,
it was possible to reduce the initial SpecificationElements module depen-
dency on ModelElements to Requirement sub-module only, as this is the
only Speci�cation Element that depends on ModelElements.

3.2.7 Feature-based product

Last, but not least, we should introduce a simple change to the RED product
packaging. Since we have already speci�ed a number of features in RED, we
can now compose the resulting RED RCP on them. A clear bene�t for that is
we do not need to update the product �le with addition of a new plug-in, as
long as it is covered in an included feature. Also, having the product speci�ed
on the features makes it much easier to understand on what high-level features
it is based on.



52 Restructuring RED

Figure 3.13: The result of separating the SpecificationElements module
into a number of sub-modules



3.3 Improving low-level implementation 53

3.3 Improving low-level implementation

3.3.1 RED plug-ins implementation problems

Having gone through the basic idea behind RCP development, let's take a look
at RED as an Eclipse RCP application. From the very beginning, RED has
been designed in a modular way, consisting of number of components that serve
di�erent purpose. While such an approach was de�nitely a correct one to take,
as RED provides great high-level functionality, the way RED modules have been
implemented in the Eclipse platform results in a number of problems.

First of all, as described in [Fri12], most of RED components have been imple-
mented as single plug-ins. Taking into account the fact that each component
provide a great number of features, such a design decision does certainly not
comply with the Eclipse RCP programming best practices. As a result, instead
of having each component represented by a number of small, e�cient units that
all contribute to the overall component functionality, modules such as Core and
SpecificationElements are each implemented by a single plug-in attempt-
ing to provide it all. This makes RED low-level implementation complicated,
and the actual source code units over-sized, which makes it di�cult to maintain
RED in the long run. Also, because of violating the general RCP develop-
ment principles, it is di�cult for new developers, especially ones familiar with
Eclipse programming, to start the development quickly. This is because each of
the plug-ins is responsible for multiple operations, which is rarely expected in
Eclipse programming, and it is therefore di�cult to �nd the code responsible
for certain behavior.

However, what is the most problematic with the current approach, is that hav-
ing such oversized plug-ins favors ine�cient Java code implementation. The
code is often unnecessarily complex, with a number of circular dependencies be-
tween both packages and classes, which makes it very di�cult to modify. That
being said, adjusting the source code to match the high-level design discussed
in section 3.2 will be a time-consuming process, but it will surely pay o� in the
maintainability point of view.

3.3.2 Restructuring plug-in implementation

As discussed before, introducing Eclipse programming best practices would con-
tribute to the restructuring process. Splitting the modules is the most time-
consuming, but the most important part. The plug-ins should be investigated



54 Restructuring RED

Figure 3.14: Goal module plug-ins

carefully, and they should be separated in such a way that they do not depend
on each other in a circular way. Also, an attention should be put to separate
the generated code from the regular one. First of all, generated code is often
verbose, and is often placed in a large number of classes and packages, which
makes it di�cult to understand. Also, very often the generated code should not
be modi�ed at all, or the customizations should be reduced to minimum, so that
it may be re-generated if necessary. Therefore, mixing the custom code with the
generated one makes it di�cult to distinguish between them, and makes such
plug-ins really di�cult to maintain.

3.3.2.1 Introducing layer separation

That being said, we can separate the outstanding plug-ins into a number of
smaller ones, that provide di�erent functionality. A natural division would be
to implement the domain-related code in one plug-in, and the user interface code
in another. Also, as with every EMF model, we would need a separate plug-in
containing the model editing domain. That way, we would not only split the
plug-ins in the di�erent functionality layers, but would also separate the auto-
generated code from the custom one. As an example, �gure 3.14 shows how the
Goal module has been divided into a set of plug-ins using the described scheme.
It is important to notice that such a con�guration allows a clear dependency
structure, as the UI plug-in depends on the domain plug-in, but not the other
way around. That way, we make sure that no domain code is independent of
the presentation layer, which is a good architectural practice.

When moving the UI-related code into the, there is another improvement that
could be made. Basically, all the outstanding plug-ins contain a lot of Java



3.3 Improving low-level implementation 55

packages, but the code is not organized into them very well. Basically, the
same packages are being used to hold the classes serving di�erent functionality.
Therefore, it would be wise to introduce a certain package structure, that would
separate di�erent Eclipse UI concepts, such as editors, commands and wizards.
As a result, each UI plug-in should be organized into the following Java packages
(some may not be required for certain plug-ins):

• *.ui.actions

• *.ui.editors

• *.ui.extensions

• *.ui.handlers

• *.ui.operations

• *.ui.views

• *.ui.wizards

Organizing the code in such a way makes it possible quickly distinguish between
the various UI elements, and should also prevent from circular dependencies
between the packages.

3.3.2.2 Separating dk.dtu.imm.red.core plug-in

While layer approach was enough for most of the modules, the Core module
required a bit more attention. As it is the base module of RED, it's got a few
more responsibilities than simple domain and UI implementations, such as:

• RED Application code

• Reusable API components (generic views, editors, and wizards)

• Custom UI elements

Therefore, Core module should probably be divided in a greater number of
plug-ins. However, as it is one of the most important modules, modifying it
needs to be approach with great care and attention. As it turned out, both the
reusable UI components and the domain ones are unfortunately tightly coupled.
Because of that, splitting them into separate plug-ins, while not introducing a



56 Restructuring RED

cyclic dependency, is both di�cult and time-consuming. As despite the e�ort
spent on that task, it was not possible to separate it successfully while keeping
the initial functionality. It was, however, possible to extract the application-
related code, which is an important step if it was ever decided to distribute
RED not only as Eclipse RCP, but also as a downloadable extension to Eclipse
IDE.

3.3.3 Removing unused source code

One of the consequences of the oversized plug-ins in RED was the fact that in
between of the huge number of packages, there were certain pieces of code that
did not serve any purpose whatsoever. While it was di�cult to notice them at
the beginning, thanks to the plug-in restructuring process, it became obvious
that some parts of the code are not responsible for any functionality. There
were basically two such pieces of code found:

1. A Speci�cation Element wizard

2. Auto-generated Scenario editor

As for the Speci�cation Element wizard, it seems like one of the initial devel-
opers of RED attempted to create a generic wizard for Speci�cation Elements,
that would let the user create a new concrete type of Speci�cation Element
from a single wizard. However, probably at some point they have realized that
this is not a correct approach, as various Speci�cation ElementS should be cre-
ated using separate wizards, and therefore this functionality has been either
deactivated or simply not �nished. Either way, as there is no need for having
such a "generic" wizard, it was decided that this part of code should be totally
removed. However, if anyone wishes to recover that code, he may revert to
7a0e64a21 revision.

The second unused part of the code comes from the Scenario module, which
contains a two distinct Scenario editors. One of them is the a custom one, writ-
ten by Johan Flod, and is actually being used as a default Scenario editor. The
other one is the auto-generated editors created using EMF framework, perhaps
as a side e�ect of generating Scenario model classes. As the auto-generated
editor is not suitable for any user-friendly usage, and (if really necessary) it can
be re-generated from the EMF Ecore model, it was decided to remove it as well.

As a result, we have removed two considerable pieces of unused source code,
decreasing the overall code-base and making it less troublesome for the future
developers to browse through and to understand it.



3.4 Summary 57

3.4 Summary

First of all, we have evaluated various possibilities regarding the underlying
Eclipse framework, and updated it to the latest stable version. As a consequence,
we've got access to most of the latest features provided by Eclipse platform, while
not having to update the actual source code by using the compatibility layer.
Also, since the compatibility layer's capabilities are being extended with every
new Eclipse framework release, we made sure the approach we took is not only
the best one to take in the current situation, but is also a good one in term of
the future of the project.

Apart from that, a number of improvements has been made from the high level
perspective:

• All the modules have been implemented as Eclipse features

• The circular dependencies have been resolved

• A new module type has been introduced

• All the dependencies between the modules have been elaborated on

• The SpecificationElements module has been restructured

As a result, the RED architecture has changed quite a lot, making it more
distributed on one hand, but more �exible on the other. Due to the changes,
some of the modules can now be excluded from the application without breaking
other features, which is a great improvement in the project's maintainability.
The RED modules have been reimplemented on the Eclipse platform, as the
plug-ins have been grouped by their high-level functionality using features. Also,
by de�ning a new Tool module type, we have provided a great entry point
for new developers, that would let them extend RED without impacting its
"core" functionality. Last, but not least, it speci�ed a number of high-level
contracts, enforcing which should make the low-level implementation part much
less complicated, and therefore easier to understand.

Figure 3.15 shows a new, improved RED architecture design.

As of the implementation part, the plug-ins in the RED modules have been
analyzed and separated into di�erent functionality layers. Introducing a clear
dependency structure between the introduced plug-ins, preventing unnecessary
complexity. Moreover, the UI plug-ins packages have been restructured, so that
the various UI elements are stored e�ciently. Also, a number of unused code



58 Restructuring RED

Figure 3.15: RED restructured architecture



3.4 Summary 59

fragments have been identi�ed and removed from the code-base. Last, but
not least, the Scenario module has been deactivated, as it was not working
properly in the �rst place, and it's code was too complex to be split into separate
domain and UI plug-ins.

It is important to mention that Anders Friis in [Fri12] had been wondering
whether to organize the source code using functionality layers or by high-level
features, and �nally decided to take the layer approach. What he actually
missed, is that thanks to Eclipse platform it is possible to do both at the same
time, therefore getting the bene�ts of the two approaches.



60 Restructuring RED



Chapter 4

Addressing conceptual

weaknesses

4.1 Fixing report generation

While Reporting module is a great feature, there is one considerable problem
with it. Whenever generating a report, if a RED project contained an Re-
quirement that has an Model Fragment attached to it, the result was either an
exception thrown or the corruptedModel Fragments in the exported report. The
issue a�ected all the supported operating systems, and was a major drawback
for every student that wanted to export his �ndings as an HTML report.

During the examination of the problem, it was found out that it originates from
an incorrect initialization of theModelElementsmodule. Due to performance
reasons, the Model Fragments attached to the requirements are being initialized
on Requirement initialization. However, if no Model Fragment has been initial-
ized, and a user wanted to generate a report, an NullPointerException was
being thrown on a piece of code trying to access the fragment. What is even
more interesting, if the �rst Model Fragment has been initialized, it was possible
to generate the report, but all the Model Fragments were swapped with the �rst
initialized fragment. Both these shortcomings made it really annoying to use
the Reporting module, as it was either not working, or providing incorrect
data (see �gure 4.1).



62 Addressing conceptual weaknesses

Figure 4.1: An example of a corrupted RED HTML report



4.2 Fixing model weaving 63

As the problem turned out to be non-trivial and various attempts to �x it were
not successful, it was decided to temporarily remove the Model Fragments from
the resulting report. While it �xes the NullPointerException problem, the
users are still required to manually attach the Model Fragments to the report,
which is hardly convenient. That is why �xing the Model Fragments corruption
is one of the most important tasks to be taken outside of the scope of that thesis.

4.2 Fixing model weaving

Fixing model weaving turned out to be a problematic process. First of all,
Weaving module weaves the REDModel Fragments into Prolog representation,
which requires an external JPL library. JPL is a Java-to-Prolog bridge, imple-
mented using a simple Java wrapper and a C-code compiled into native libraries.
This makes it di�cult to run from such a thick client as Eclipse Framework, as
the required native libraries need to be accessible from the Eclipse run-time. As
of now, JPL supports only MS Windows and Linux machines, but the weaving
support has been tested on MS Windows only, and is not working on any other
platform. What is also disturbing, is the fact that even on MS Windows ma-
chines, makingWeaving module work is a tedious and time-consuming process.
Hence, the initial �xing process will include the following steps:

1. Make Weaving module working on MS Windows computers

2. Disable Weaving module on any other OS.

When it comes to making it work on MS Windows machines, I've been able to
run it successfully on my personal machine, but had di�culties in replicating the
process. Basically, it turned out that in order for Weaving module to work,
an SWI-Prolog has to be installed, as well as its bin folder has to be placed
in the PATH environmental variable. While these steps were enough on my
local machine, they were not su�cient for making Weaving work on any other
machine. Therefore, �nding a proper install or con�guration guide for making
model weaving operational will be one of the �rst thing to do in the future.

Thanks to the fact that the modules are now implemented as Eclipse features, it
is possible to exclude certain plug-ins based on the operating system the build
is being prepared for. That being said, disabling the module on both Mac OS X
and Linux machines was as easy as setting an option in the dk.dtu.imm.red.
weaving feature editor, which made it possible to deploy the Weaving module
on the MS Windows machine only.



64 Addressing conceptual weaknesses

One of the actual improvements made to Weaving module was �xing an issue
when weaving Requirements having a "." (dot) in the Id �eld resulted in weaving
errors. This was a result of a poor prolog weaving service implementation, which
did not properly handled the dot characters. Making necessary �xes to the code
successfully resolved that problem.

4.3 Aligning EMF models with domain classes

As many RCP applications, RED is taking advantage of Eclipse EMF frame-
work. In short, EMF lets developers design the desired model using a UML-like
visual editor, storing it in an Ecore model �le and then generate the Java source
code out of it. While the generated code exactly matches what was designed
in the editor, it is up to the developer to implement the actual methods. EMF
also distinguishes between the generated and the custom code, which makes it
possible to introduce some changes to the model and then re-generate it without
using the custom method implementations.

Originally, RED Ecore models have been stored in an external dk.dtu.imm.
red.models plug-in, from which they could have been accessed when necessary
(see �gure 4.2). Unfortunately, over time the models have not been updated,
yet the generated source code was altered, which resulted in an incompatibility
between them. This leads to an issue where if someone tries to re-generate one
of the RED modules model code, it resulted in a massive domain corruption.
The other problem was that the Ecore model was actually separated with its
generated code (by being placed in a separate module), which may confuse the
developers inexperienced with code generation frameworks.

In order to compensate these problems, the �rst step to take was to decompose
the dk.dtu.imm.red.models plug-in and to move the Ecore models into the
actual plug-ins that contain the generated model source code. That way, in a
single plug-in there is a Ecore model declaring the classes and the source code
generated from it (which can then be customized). The second one though,
was to re-engineer the manual changes made to the generated Java classes and
incorporate them into the actual EMF models.

Aligning the models and the source code required the following approach:

1. Examine the generated source code and identify the �elds and methods
that are not declared in the Ecore model

2. Add all the custom �elds and methods to the Ecore model



4.3 Aligning EMF models with domain classes 65

Figure 4.2: Original dk.dtu.imm.red.models plug-in contents



66 Addressing conceptual weaknesses

3. Annotate the methods implementing custom code with @generated NOT

annotation

4. Backup the generated source code

5. Re-generate the source code from the adjusted Ecore model and diff it
against the backup copy

6. Make sure there are no di�erences in class contracts or method logic; if
there are any, repeat the process until there are none

While being a tricky and time-consuming process, aligning the EMF models
with the generated source code allowed the developers to once again use the
EMF framework to extend the model, without the risk of corrupting the RED
domain. It may become useful when adding additional features to the existing
RED modules, especially that manually modifying the generated source code is
not a preferred approach. The Ecore models also serves as a good overview of
the domain fragment, and having them up-to-date may prevent confusion in the
future.

4.3.1 Handling GMF models

As one may notice in �gure 4.2, apart from the Ecore models, there are also
GMF framework models. The GMF models are also used for generating the Java
classes, but instead of generating the RED domain, they generate all the code
responsible for displaying a visual editors for Model Fragments and folder dia-
grams. As the dk.dtu.imm.red.models plug-in was decided to be decomposed,
it was important not to loose the GMF models during the process.

The code generated by the GMF models is usually kept in the plug-ins with
*.diagram su�x, and in RED there are three such plug-ins:

1. dk.dtu.imm.red.code.diagram

2. dk.dtu.imm.red.modelelements.diagram

3. dk.dtu.imm.red.weaving.ui.diagram

Apart from them, some of the GMF models also belong to the Scenario mod-
ule. Each of the respective GMF models has been moved into the proper plug-in.
However, due to the generated source code complexity and to the lack of time,
the alignment has not been done, and re-generating the GMF models should be
handled with the extreme care.



4.4 Excluding Scenario support 67

4.4 Excluding Scenario support

As a result of both high-level and low-level changes introduced, it was necessary
to alter each of the modules implementation so that they correspond to the
architecture. However, while it was possible to do in most of the cases, adapting
Scenario module to the new standards turned out to be too problematic. First
of all, the Scenario module did not work properly in the original RED version,
which was already a problem from the user perspective. Having such a unstable
feature in the system may impact its stability, and therefore it should not be
shipped with the resulting RED product. Also, as the module does not work
properly, and does not provide a way of managing Scenarios, it does not provide
any bene�t to RED users.

What is more, Scenario module could not have been separated into di�erent
layers as described in section 3.3.2.1. The reason for that is that the domain
code is tightly coupled to the presentation layer, which makes it impossible to
separate the code into separate domain and UI plug-ins without introducing a
circular dependency. As we want to avoid introducing such dependencies, it is
impossible to make Scenario module comply with the new design decisions.

Taking all of the above into account, it has been decided to deactivate the
Scenario module, but to keep the source code. The module can be activated
by including it in the build process.

4.5 Adding horizontal scroll-bar support

While RED provides a great number of editors for its elements, they all seem
to lack the ability to scroll them horizontally. This is especially a problem for
all the RED users working on a low-resolution monitors, as they are not able
to edit the contents of some of the �elds (see �gure 4.3). In order to provide
the users a seamless access to the whole content of the editors, it was decided
to add the horizontal scrolling support to all the editors. While this is a very
simple �x, it will surely be a great usability improvement (see �gure 4.4).



68 Addressing conceptual weaknesses

Figure 4.3: An example of a missing horizontal scroll-bar

Figure 4.4: Fixed horizontal scroll-bar issue



4.6 Branding 69

4.6 Branding

In the last two years RED has become an important tool, providing a lot of
features and a look and feel of a modern software, but it certainly lacks a certain
amount of branding. While it is not exactly a conceptual weakness, having a
bit of personal touch would certainly be bene�cial for RED. As of now, RED
does not provide any kind of custom icons or splash screen, which makes it look
a lot like "yet another" Eclipse customization, rather than a full-�edged piece
of software. Adding a bit more of personal touch to RED would certainly make
the tool appear more mature, and would certainly make it more pleasant to use.

Thankfully, Eclipse platform developers realized that branding may be impor-
tant for Eclipse RCP applications, and provided an easy way of doing so. There
are several ways for the RCP developers to add custom branding to their prod-
ucts, including:

• Launcher name and icon

• Window name and icon

• Splash screen

• "About" dialog

• Welcome page

Specifying custom launcher name and icon is certainly a good start. By now,
RED binary builds used the default launcher settings provided by Eclipse. On
MS Windows, in order to run RED one would have to navigate to the folder
and run eclipse.exe �le, having a default Eclipse icon that is shown in �gure 4.5.
While it is not a deal breaker, it must be surprising to some of the users that
in order to run a tool that is advertised as being designed and built for the
course needs, they should run a program with some other name. Changing
the launcher name to a more appropriate red.exe, and using a a new, entirely
custom icon designed by me (see �gure 4.6), makes launching RED a but more
intuitive. Also, launcher icons are often used by the operating systems to render
the program menu entries.

Similar problem is with the RED window. While the developers have already
named it appropriately, the default Eclipse icon could be replaced by a more
custom one. Also, the window icons are being used by the operating systems
when displaying the currently running programs (e.g. MS Windows's task bar),
rendering the icons to make the running program appear more convenient to the



70 Addressing conceptual weaknesses

Figure 4.5: Default Eclipse Juno icon [Bul12]

Figure 4.6: New RED icon

user. Hence, setting up a proper window icon gives even more usability bene�ts
that the launcher icon.

Customizing the splash screen is another interesting feature. By default, RED
greets us with a few-seconds-long splash screen providing simple information
about the Eclipse platform used. However, it would be much more informative
to provide some details about RED instead. Figure 4.7 shows a new RED
splash screen, designed by Harald Störrle, showing general information about
RED, such as the authors, version number etc. As for the "About" dialog, it
provides similar, high-level information the same as the splash screen, but may
be accessed "on demand" instead.

The welcome page is an optional feature, and makes it possible to display a
custom page whenever opening new Eclipse workspace. As RED does not make
use of the workspace concept, there is no need nor reason to specify one.

4.6.1 Mac OS X native app packaging

One interesting feature that is provided by the new build tool, Eclipse Tycho,
is the ability to package the Mac OS X version of Eclipse RCPs into a native
format. Normally, Eclipse-based applications are delivered with a regular Unix
script, that needs to be executed in order to run the program. However, such
an approach does not integrate well with the OS, as it prevents the user from



4.6 Branding 71

Figure 4.7: New RED splash screen

running the RCP in the same way as other, native, applications (e.g. using the
Launchpad or Spotlight). By utilizing the native .app Mac OS packaging, the
resulting RCP application is bundled into the same format as the regular Mac
OS applications, letting the Mac users to place RCP in the dock, select it from
Launchpad and run it quickly using Spotlight toolbar.

Setting it up in case of RED is truly straightforward, as it only a matter of con-
�guring the Tycho bundling plug-in. As a result, we obtained a nicely packaged
RED.app, as shown on �gure 4.8.



72 Addressing conceptual weaknesses

Figure 4.8: RED Mac OS X native packaging



Chapter 5

Evaluation

5.1 Final architecture

In order to evaluate the architectural changes, let's take a look at the �nal RED
architecture and compare it with the previous state. Figure 5.1 shows a high-
level overview of the architecture, that is a result of the re-engineering process.

The �rst major improvement over the initial architecture is that all of the RED
modules have now been implemented as Eclipse features. Proper use of the
underlying framework principles is the �rst step towards simplifying the ar-
chitecture, as it makes it compliant with the general best practices of RCP
programming, and therefore makes it easier to understand for anyone familiar
with them. As features group a number of plug-ins into a single entity, they
provide an additional abstraction level to operate on. Thanks to them, we can
specify and enforce high-level dependencies between the modules.

Another important improvement was dropping the circular dependencies both
between high-level modules and individual plug-ins. Doing so made the mod-
ules more independent, as the modules no longer depend on each other and
therefore making changes to one of them does not necessarily a�ect the other.
Also, circular dependencies between modules imply that it is not possible to



74 Evaluation

WEAVING REPORTING

REQUIREMENT

GLOSSARY

VISIO
N

G
O

AL

STAKEHO
LDER

PERSO
N

A

SCEN
ARIO

 (inactive)

SPECIFICATION ELEMENTMODEL ELEMENT

CORE

RTF AGILE GRID

HELP

TESTCASE

M
O

DELFRAG
M

EN
T

BU
SIN

ESSPRO
CESS

Actual Feature Third Party FeaturePlanned FeatureUnder Construction

Legend

Glossary
GlossaryEntryG

oal
G

oalG
raph

Folder
Project
Document

Figure 5.1: RED �nal architecture overview

deploy only one module of such a dependency in the system, which in our case
meant that each SpecificationElements, ModelElements and Weaving

modules needed to be deployed either all together or none at all. Splitting that
dependency allowed us to break this requirement, and let us remove theWeav-

ing module for all non-Windows-based machines. The same bene�ts apply at
the plug-in-level as well. As each of the RED modules is implemented as a
number of plug-ins providing distinct functionality, breaking the circular depen-
dencies between them makes the plug-ins more independent and prevents the
situation when making a small change in one plug-in a�ects the others.

What is more, the new architecture separated the huge SpecificationEle-
ments module into a number of small, separate sub-modules. Instead of pro-
viding all of the RE concepts together, SpecificationElements now contains
only the generic code for all the Speci�cation Elements declared in the sub-
modules. Introducing such a hierarchy allowed us not only to detach various
Speci�cation Elements from the �nal build, but also reduce the dependency
on ModelElements module to the Requirement module only. When the
ModelFragment module is �nally implemented, the ModelElements will
be merged into it and the architecture will be even simpler. Moreover, imple-
menting new Speci�cation Elements will now be straightforward to do, and will
let us control the source code dependencies much more e�ciently than it was
when having a single SpecificationElements module.

Adding a newToolmodule type and converting existingReporting andWeav-



5.2 Measurements 75

ing modules into it gave the new developers a certain amount of �exibility, while
still keeping the architecture structured and extensible. Since no module can de-
pend on a Tool module, the developers will be free to implement their features
in a way that should not make the architecture too complicated.

Last, but de�nitely not least, for the �rst time since RED development started,
its architecture has been depicted on a diagram that actually re�ects the state of
the source code. Until now, the architecture had to be either guessed by the plug-
in naming convention, or by the general design diagram shown in [Fri12] that had
little to do with what was there in the code. As of now, the architecture has not
only been revamped, but has also been presented in form of a less (see �gure5.1)
and more (see �gure 3.15 detailed diagrams, that will serve as a reference for the
future developers. This will make it easier for them to introduce new features
to the system, as understanding the RED architecture has never been so easy.

5.2 Measurements

After evaluating the high-level architecture overview, let's try to evaluate the
low-level �xes. Thanks to the high-level architectural changes, we ensured that
there is no circular dependencies between the RED modules, however, it would
be vital to evaluate each of the respective modules individually. A good way
of doing so would be to measure the code complexity and compare the results
before and after introducing the changes. However, due to the architectural
changes, like separating certain modules or introducing new plug-ins, it may
not always be possible to compare each of the modules directly. However, in
general we expect the resulting code quality to be better than before.

There are several metrics that can help in measuring the code quality. First,
there are various size metrics, which can inform us how big the code-base is
and how it is distributed into classes and packages. Basically, one of the most
popular size metric is the number of code lines, often referred to LOC ("Lines
Of Code"), or ELOC ("E" standing for "Estimated"). We can also count the
number of top-level classes (units), the total number of classes, and an average
distribution of �elds and methods inside them.

When it comes to measuring the code complexity, there is a number of methods
to do so. There is Cyclomatic Complexity (CC), developed by Thomas J.
McCabe, Sr. in 1976, which measures the number of linearly independent
execution paths, and hence the potential complexity of the program [Wik13b].
As per [McC76], it is suggested to measure the CC factor during the development
for certain modules, and re-factor whenever exceeding the factor of 10. Another



76 Evaluation

Figure 5.2: Code quality measurements performed on the initial RED source
code

metric we could use is fat, which tells us how "big" in terms of packages, classes
and class members the certain part of the code is. Lastly, we have a tangled
factor, which helps us follow the Acyclic Dependencies Principle [Wik13a] and
provides us with a factor informing us whether or not our source code contains
a circular dependencies between classes and/or packages.

All the measurements have been done using STAN4J tool, available under http:
//stan4j.com.

5.2.1 Original RED source code

Figure 5.2 contains the measurement summary that has been done on the initial
version of RED that has been provided by Johan Flod. Using these data, it is
possible to notice which plug-ins contains the most number of classes, as well as
which of them su�er from circular dependencies (tangling). The chart shown in
�gure 5.3 shows the plug-ins ordered by their size, as well as showing how much
they are tangled.

As we can see, both dk.dtu.imm.red.modelelements.weave.diagram and dk.

dtu.imm.red.modelelements.diagram greatly oversize the rest of the plug-ins.
However, as these mostly contain the auto-generated code, and therefore is vir-
tually no tangling present, we may exclude them to get the better picture of the
more interesting plug-ins. Figure 5.4 shows the same chart as �gure 5.3, with the
two outstanding plug-ins excluded. From there, one can clearly notice that the
two most problematic plug-ins are dk.dtu.imm.red.specificationelements

and dk.dtu.imm.red.core, which are not only the largest ones in terms of esti-

http://stan4j.com
http://stan4j.com


5.2 Measurements 77

Figure 5.3: Original RED plug-ins size and complexity

mated lines of code (ELOC), but are also the most heavily tangled. Also, their
fat factor is disturbing, as having 110 and 82 average method size, respectively,
suggests that they are �lled with sub-packages and classes, that probably can
be simpli�ed. Improving the quality of the code inside these two plug-ins is
de�nitely the priority.

The size of the rest of the plug-ins is comparable, and oscillates around ∼5000
ELOC, which is a reasonable quantity. However, they do di�er in terms of
tangling. The most tangled plug-ins, aside from the previously mentioned ones,
are:

1. dk.dtu.imm.red.code.diagram

2. org.eclipse.epf.richtext

3. org.eclipse.epf.common

The �rst plug-in contains the auto-generated code for the folder diagram feature
of RED. However, judging by its tangling factor, it had to be manually modi�ed,
and the custom code introduces a lot of the circular dependencies. Both second
and third plug-ins contain the EPF implementation of the RichText editor,
which either means that the initial EPF RichText implementation has su�ered
from tangling problem, or it was due to the Anders Friis customizations that
the tangling occurred. The deeper examination of all the EPF RichText plug-ins



78 Evaluation

Figure 5.4: Original RED plug-ins size and complexity, excluding the two out-
standing plug-ins

revealed that both org.eclipse.epf.richtext and org.eclipse.epf.common

have been manually modi�ed to �t the RED needs. However, org.eclipse.
epf.common contains only a minor change, which could not have caused such
an amount of circular dependencies on its own.

There are two plug-ins that are tangled up to 5%, being dk.dtu.imm.red.

modelelements and dk.dtu.imm.red.glossary. Considering the fact that this
is close to negligible, and the fact that there are other plug-ins that su�er much
more from the tangling problem, these plug-ins are not considered a priority
right now.

When it comes to CC metric, for every of the original plug-ins, the average
CC was always below 10, which is already �ne. The only plug-ins that were
relatively close to that border are the ones containing mostly the auto-generated
code, which we cannot do much about.

5.2.2 Final RED source code

Figure 5.5 shows the same set of measurements done on the �nal version of
the code, done at the Eclipse feature level. Figures 5.6 and 5.7 shows the code
complexity charts based on the updated data.



5.2 Measurements 79

Figure 5.5: Code quality measurements performed on the �nal RED features

Figure 5.6: Final RED plug-ins size and complexity



80 Evaluation

Figure 5.7: Final RED plug-ins size and complexity, excluding the two out-
standing plug-ins

As one may clearly notice, thanks to the restructuring process we have been able
to reduce the tangling factor for almost all of the RED modules. The greatest
improvement has been made to the SpecificationElements module, which,
after a successful separation into smaller sub-modules, does not su�er from the
great tangling factor anymore. While the Core module's tangling factor is
still quite high, it has been reduced below 20%, which is still an improvement.
Also, it is worth mentioning that the tangling of SpecificationElements
module and each of its sub-modules (Persona, Goal, Vision, Requirement,
Stakeholder and TestCase) has been introduced by the EMF generated
source code, which prevents us from reducing it any further.

One may also notice that after the restructuring, the code-base contains about
∼5000 lines of code less. What is more, this also contains all the code introduced
into RED as a part of the thesis, including AgileGrid sources and the new Test
Case element, discussed in the following section. Having them excluded, the
di�erence between the original and �nal code-base is around ∼15000 ELOCs.

Figure 5.8 shows the same metrics performed at the resulting plug-ins level.
Thanks to that, one may notice how the code has been distributed into various
plug-ins. Also, it is important to see that the fat factor has been greatly reduced
in all the SpecificationElements module and sub-modules plug-ins. The
dk.dtu.imm.red.core plug-in still su�ers from quite high fat factor, but as
it contains mostly auto-generated code, there is not much we can do about it
except modifying the domain model itself.



5.2 Measurements 81

Figure 5.8: Code quality measurements performed on the �nal RED plug-ins



82 Evaluation

5.3 Case Study: A "Test Case" Speci�cation El-

ement

In order to provide another proof that the new architecture features more �ex-
ibility, a simple case study has been developed, trying to extend current RED
domain with a new RE concept - a Test Case. As of now, RED supports only
simple cases of adding tests, by providing an ability to add an Acceptance Test
to an existing Requirement element. While this is an important feature, the
solution is not �exible enough as RED users may want to:

1. add other type of a Test Case

2. add a Test Case to an other Speci�cation Element than Requirement

To make such use cases possible, it was decided to extend the add a new Test-

Case module, which would provide an entirely separate Speci�cation Element .
That way, it will be possible to associate every Test Case with any other Speci�-
cation Element using the RED association mechanism. It would not only allow
to specify a Test Case type (acceptance, functional etc.), but also to link such
a test to multiple other elements.

5.3.1 Editor design & implementation

Figure 5.9 shows an initial sketch of the Test Case editor. In order to describe
a complete test case, one should provide the following:

1. ID - a unique identi�er

2. Test case name

3. Test type - chosen from a prede�ned list

4. A general test description

5. A set of pre-conditions

6. Input parameters

7. A list of step-by-step actions required to take

8. A set of post-conditions



5.3 Case Study: A "Test Case" Speci�cation Element 83

Figure 5.9: An initial sketch of Test Case editor



84 Evaluation

Figure 5.10: One of the possibilities of creating a new Test Case

Figure 5.11: Test Case wizard dialog

9. A description of the desired result

Such a design allows to �ll all the test data using a simple, yet easy to use
layout. Figures 5.10, 5.11 and 5.12 show the user interface implemented so
that it is possible to e�ciently create and edit the Test Cases.

5.3.2 Module implementation

Although TestCase module provides an important functionality, one of its
main purposes was to show the extensibility of the new architecture. As per
�gure 5.1, TestCase has been implemented as a separate REDmodule on top of
existing SpecificationElements component. That way, it follows the existing
architectural pattern for all the Speci�cation Elements, which ensures that each



5.3 Case Study: A "Test Case" Speci�cation Element 85

Figure 5.12: Test Case visual editor

Speci�cation Element is independent and therefore can be easily detached from
RED if necessary.

Figure 5.13 shows the EMF domain model diagram that has been used to gen-
erate the model classes. Figure 5.14 describes how the TestCase module have
been implemented in the whole platform. Basically, an additional feature has
been added, containing three plug-ins, each having di�erent responsibility:

• dk.dtu.imm.red.specificationelements.testcase - model declaration
(auto-generated)

• dk.dtu.imm.red.specificationelements.testcase.edit - EMF edit-
ing domain (auto-generated)

• dk.dtu.imm.red.specificationelements.testcase.ui - user interface

Such a plug-in layout is also following the general pattern for the existing
SpecificationElements-based modules, which allows a straightforward, uni-
directionally coupled low-level architecture.



86 Evaluation

Figure 5.13: TestCase domain model diagram

Figure 5.14: TestCase module architecture diagram



5.3 Case Study: A "Test Case" Speci�cation Element 87

Figure 5.15: A RED report fragment containing Test Case info

5.3.3 Reporting integration

As of now, reporting functionality is implemented in a centralized Reporting
module, which requires an explicit dependency for every module it needs to ac-
cess the data from. Therefore, in order to make the Reporting module include
the newly introduced Test Cases, we need to declare a dependency between
Reporting and TestCase modules, and implement the required logic for dis-
playing the Test Case information in form of a report. However, introducing
such a dependency will make it impossible to remove the TestCase module
without any impact on RED, so it may be wise to test the newly introduced
module �rst, and declare dependencies on it only once proven stable.

However, a simple proof of concept has been developed showing a simple Test
Case representation in the generated RED report (see �gure 5.15).



88 Evaluation



Chapter 6

Conclusion

6.1 Summary

In order to summarize what has been done, let's take a look at the initial goal
diagram and discuss what has been accomplished (see �gure 6.1).

6.1.1 Build process

Starting from the build process improvements, we have set up the code repos-
itory available under https://bitbucket.org/mkucharek/red2. It is hosted
on Atlassian BitBucket service and aside of code versioning, it also provides a
Atlassian JIRA-based issue tracker, a simple wiki pages for storing the project's
documentation and a download section for distributing the binaries. The project
is currently a private one, but shortly after the thesis submission it will be made
accessible to everyone. Doing so will make it possible for the 02264 course stu-
dents to contribute to the project either by submitting bug reports and feature
requests using the issue tracker, or by actually joining the development team.
By preparing a proper documentation in the wiki section, describing how to
start the development and explaining some of the concepts and best practices,
we want to make sure that it will be easier for future developers to understand

https://bitbucket.org/mkucharek/red2


90 Conclusion

Figure 6.1: Thesis goal diagram summary



6.1 Summary 91

the RED development process. Lastly, having the download section will make
it easy to provide the latest versions of RED to the public.

The next step was examining the default Eclipse PDE process. Originally, the
actual build process was tightly coupled with the development environment
(IDE) in use. In order to build RED, one needed to download Eclipse 3.7 SDK
and to install a number of required plug-ins, including third-party ones, like Ag-
ileGrid, that required a manual download. Such a process was both complicated
and di�cult to replicate every time a new development environment needs to
be set up, so it had to be revamped. First of all, the external dependencies had
to be resolved. As RED is dependent on AgileGrid, a third-party library that
is no longer supported, it was necessary to drop the need of downloading the
AgileGrid binaries whenever setting up the development environment, as the
binary may simply become unavailable at some point. A various approaches
have been discussed, and it was �nally decided to include the AgileGrid sources
in RED source code. That way, the required plug-in was being compiled during
every RED build, and we still maintained a possibility of making changes to
AgileGrid in the future.

Another important build process improvement was de�ning an external target
platform. A target platform is a set of Eclipse plug-ins, that the Eclipse RCPs
(such as RED) are being built on top of. Without an external target platform
declaration, the plug-ins contained in the SDK in use are being used to ful�ll the
RCP dependencies. This is exactly why it was necessary to �ll the Eclipse SDK
with the plug-ins required by RED in order to be able to build RED. However, it
is possible to de�ne a set plug-in repositories, from which the required plug-ins
will be downloaded during every build. By specifying the required plug-ins in
the target platform de�nition, we not only made the SDK totally independent
on the build process, but also decreased the size of the �nal binary by around
50%, as RED does no longer contain all the plug-ins from the used SDK.

The �nal improvement was extending the regular PDE build process with Eclipse
Tycho tool. Tycho is an Apache Maven extension that allows building Eclipse
RCP projects using this popular Java build solution. Tycho provides an easy
way of building RED using a command-line only, with no Eclipse SDK required,
and is fairly �exible, letting developers to:

• Run unit-tests with every build

• Toggling between building RED for all the supported platforms (Mac OS
X , MS Windows and Linux ), or the current one only

• Allowing to package the resulting products in zip format



92 Conclusion

Providing a way of command-line building is a great advantage for Harald
Störrle, as he will not require to set up the whole development environment to
prepare a binary for the students, but will also make it possible for anyone to
try the most recent version of RED without the need for it to be released. Using
Tycho/Maven will also make it easy to use a continuous integration solutions,
such as Jenkins or Hudson, which may be bene�cial in the future.

6.1.2 Restructuring RED

After �nishing the build process improvements, a decision has been made to up-
grade the underlying Eclipse framework to the latest possible version. The clear
bene�t of that is the access to the latest API, as well as taking the advantage
of all the features coming from the Eclipse developers. Last, but not least, with
the introduction of Eclipse 4.4 Luna, it should be possible to run the plug-ins
developer against the new Eclipse 4.X platform along the ones developed using
the previous, 3.X, which should make extending RED a much easier process.

As a next step, we've started by looking at the high-level architecture, and
comparing the initial RED architecture design with what has been found in
the actual source code. As it quickly turned out, RED su�ered from major
architecture weaknesses, which resulted from poor utilizing of Eclipse RCP pro-
gramming concepts and general negligence when introducing excessive depen-
dencies between various modules. First of all, the modules has been initially
implemented as either a single, or a group of plug-ins, which made it di�cult for
handling the relations between them. As plug-ins are the most low-level units in
Eclipse RCP programming, implementing the high-level modules on that level
made it di�cult to understand the actual concept, and introduced the unnec-
essary confusion. In order to provide a new abstraction level, Eclipse features
have been used to group all the plug-ins that implement a certain RED module
and allow to treat them as a single unit. Such an implementation change made
it possible to formulate the high-level dependencies between the modules, which
made the underlying plug-ins much more subject to change without violating
the high-level contracts. Also, by using features, we made it much easier to
control the resulting RED product, as we may now freely include or exclude
the desired modules without having to think which plug-ins it is composed of,
as well as allowed to utilize additional Eclipse-framework functionality, such as
Update Manager, which may be used in the future for distributing RED updates.

We've also taken a look at the module dependencies that clearly violated the
initial RED design. The major problem when it comes to dependencies was the
circular dependency betweenModelElements and SpecificationElements
modules, as it prevented us from understanding the contract between these



6.1 Summary 93

modules, as well as made it impossible to exclude one of them without having to
exclude the other. Having such a tight coupling between the high-level modules
also resulted in the problem when making change to one of the modules may
result in the errors in the other one. As it turned out, the reason for the
circular dependency was the Weaving module being initially included in the
ModelElements module, which had to be extracted and carefully analyzed in
order to drop the unwanted dependencies.

One of the next high-level improvements was dividing the oversized Specifi-

cationElements module. As SpecificationElements provides all the Re-
quirements Engineering concept capabilities to RED, it was one of the most
important modules of RED from the user perspective. However, as all the con-
cepts were placed in a single module, we had to either support all of them,
or none at all, as it was not possible to exclude a single concept from RED.
It turned out to be a problem when trying to deactivate the Scenarios, which
were not working properly, as it required to manually remove (or commenting
out) the source code to achieve. Also, maintaining such a complex plug-in was
more than di�cult, as such plug-ins tend to serve as a way of hiding the code
complexity, as there is almost no way of enforcing a clear dependency struc-
ture. Therefore, it was decided that SpecificationElements module should
be divided into smaller ones, that each provide the functionality of a single
Requirements Engineering concept. Having that accomplished, we made clear
distinction between each of the concepts, making all of them independent of
each other, as well as made the source code look much more clear and easier to
understand.

The next step was to investigate the excessive dependencies, mostly coming from
Weaving andReportingmodules, that tended to depend on a number of other
modules. As they both provided important features to RED, and they both
operated in a centralized behavior that required access to the data coming from
other modules, it was not straightforward to drop the dependencies. Therefore,
it was decided to introduce a new module type, called Tool, which is basically
a module that can depend on other RED modules, but cannot be dependent on.
Having the RED architecture extended by such a concept allowed developers to
o�cially include various extensions to RED, providing an access to most of the
RED modules data, while keeping the architecture safe from both circular and
complex dependencies.

Having taken care of the high-level architecture, it was time to introduce the
�xes at the low-level scope. Each module implementation varied a bit, as some
of the modules have been implemented as single plug-ins, and others have been
divided into a number of them. Since the individual plug-ins are supposed to
be responsible for one thing only, but to do it well, splitting any outstanding
plug-ins into a number of smaller ones was the �rst task to do. It was mostly



94 Conclusion

important to separate the source code written by hand from the auto-generated
one, that has been created by utilizing various frameworks, such as EMF or
GMF, as having them in the same plug-ins made it really di�cult to maintain
and understand the code. Afterwards, as with the high-level scope, it was nec-
essary to drop all the circular dependencies between di�erent plug-ins. Lastly,
the actual code implementation had to be improved, mostly by removing the
unnecessary parts of code and by implementing certain feature in a much more
reusable, and therefore e�cient, way.

6.1.3 Additional �xes & improvements

The very last part was addressing the conceptual weaknesses of RED, as well as
extending it with the new features. First of all, all the EMF models have been
aligned with their generated source code, which made it possible to use the EMF
visual editors to re-generate the domain classes. It was extremely important,
as the generated source code is di�cult to edit manually, hence introducing
any model changes in the EMF visual editor and then re-generating the source
code is a much more e�cient way of introducing the changes, as it limits the
possibility of breaking the RED domain layer.

After that, a number of problems with both Reporting andWeaving modules
have been identi�ed, and attempted to be �xed. As for Reporting, there was a
problem with the exported Model Fragments, as they were incorrectly placed in
the resulting report, or even resulted in a number of exceptions being thrown and
crashing the whole application. Although the complete �x could not have been
found, the Model Fragments have been temporarily removed from the resulting
report, and will be enabled back once the Model Fragment rendering problem
will be resolved.

The problem withWeaving module, on the other hand, originates from the fact
that it in order to successfully weave a model, the Weaving module requires
a JPL library, which is currently available only on Windows machines. Since
no substitution was found for other platforms, it was decided to remove the
weaving functionality from both Mac OS and Linux builds, as it is not able to
function properly there. However, even on Windows-based machines,Weaving

is not working seamlessly as it is not possible to include the whole JPL library
in a RED plug-in. Also, a number of problems have been identi�ed in the code
responsible for converting RED models to Prolog, which have been �xed.

The next improvement was implementing the horizontal scroll-bar support for
all supported RED editors. Before doing that, some of the editors had proven
themselves to be di�cult to use on the low resolution screens, as they were



6.2 Discussion 95

simply too wide to �t in the RED workbench. Adding the scroll-bars made it
much easier for user using such screens to use RED e�ciently.

In order to maintain RED stability, it was also necessary to disable the Sce-
nario module. Even in the original source code, Scenario support was not
working as expected, and therefore making it impossible to manage them. An-
other issue was that due to a poor implementation, Scenario module could
not have been aligned with the new architectural decisions, which implies a
need of totally rewriting it. Re-implementing the module would not only make
it possible to resolve the design problems, but would also allow reconsidering
the high-level feature it needs to provide.

One of the last major improvements was making branding RED. Until now,
RED has been a casual Eclipse RCP application, having the default naming,
icons and splash screen. In order to make RED look more professional and
recognizable, it has been decided to design and apply a custom RED icon, as
well as to include a custom splash screen and "About" page, so that RED feels
more like a proper application rather than a simple Eclipse extension. Also, for
the Mac users, thanks to Eclipse Tycho a Mac version of RED is being packaged
as a native Mac application, so that RED may be installed and handled as any
other Mac application on the Apple's computers.

6.2 Discussion

The main reason for focusing that thesis on re-engineering RED was that I've
initially tried to extend it with a new feature and failed miserably. In February
2013, I've started a thesis aimed for providing merging functionality into RED,
that would allow to coordinate the student's work within the project groups in
02264 course. However, by the time I was able to actually start working on the
actual thesis subject, I had to struggle with a number of problems that were
outside of its scope. First of all, it was very di�cult to get the stable version of
the source code, as the RED source �les shipped by Jakob Kragelund were
corrupted. At the same time, the source code obtained from Johan Flod turned
out to contain a number of issues that were not there in the original RED version,
and as there was no development history preserved, it was not possible to track
down where do these originate from. Another problem was the complexity of
development environment setup process, as it took me a considerable amount
of time to properly set it up, and to �nally compile the source code. Having
to struggle with these issues made me realize that each and every future RED
developer, most probably a MSc. thesis student, would have to go through
these steps, which is basically a waste of time compared to the actual thesis



96 Conclusion

subjects. Hence, it became clear that a solution preventing from such situations
happening in the future is required and should be found as soon as possible.

Another problem I've quickly encountered was the RED source code complexity,
which made it truly di�cult to understand which parts of code are responsi-
ble for which functionality. Initially, RED has been organized in a number of
over-grown, mutually dependent plug-ins, with almost none high-level contracts
speci�ed. Also, most of the plug-ins contained a great number of packages and
classes, mixing both generated and custom code, which made it even more di�-
cult to understand the code execution �ow. As a result, introducing changes to
such a piece of software was extremely di�cult, as making a, potentially safe,
change in one part of the code immediately resulted in compiler errors in ei-
ther other packages, or even di�erent plug-ins. Because of all these issues, the
learning curve for RED development was so steep that it was hardly possible to
introduce any signi�cant changes in the regular development cycle, being a few
months long thesis project.

Taking all of the above into the account, and the fact that Harald Störrle's
aspirations for RED were for it to be a professional tool aiding 02264 students in
their course projects, I've found it unacceptable that from the maintainability
perspective RED was a total disaster. Being developed by software engineering
students, one would assume that RED would be a state-of-the-art application,
starting from the project management, through the well-thought architecture
and implemented as a high quality code. Unfortunately, at all of these steps,
there were a number of gaps that, while not initially problematic, turned out to
be the major roadblock in RED development.

Summing up, the RED re-engineering process started by that thesis has certainly
ended up with a number of maintainability improvements that will bene�t the
future developers of RED. While there is not much outcome when it comes to
new features, and most of the "under-the-hood" work that has been done will
probably not even be noticed by the casual RED users, it will bene�t them as
well in the long run. By making RED open source, we invite the students to
contribute, either by developing new features or by �lling bug reports and feature
requests, which should increase the development pace, resulting in much more
stable and feature-packed RED in the close future. Also, by simplifying and
documenting the steps required to set up the development environment, as well
as restructuring the RED architecture, it is now much easier for new developers
to start working on RED than it was for myself or Johan Flod. Performing
the re-engineering was de�nitely a complex and time consuming process, and
taking into the fact that one of the most important goal of the thesis was to
maintain as many features as possible, there was hardly any room for mistakes.
The process was actually similar to performing a surgery, or walking over a
mine�eld, where a tiny mistake may result in great consequences. I'd argue



6.3 Future work 97

that this was the greatest challenge of the thesis, as there were a number of
trade-o�s to take between introducing certain improvements and making sure
that none existing functionality gets lost during the process. Also, while there
is still a lot to do when it comes to RED, I believe the outcomes of that thesis
will be highly appreciated by anyone who will work with RED in the future.

6.3 Future work

In terms of what is left to be done, there are still areas for improvement when
it comes to RED. First of all, while a lot of both high-level and low-level re-
structuring has been done, some of the plug-ins may require more re-factoring.
As the main focus went for re-engineering RED architecture from high-level fea-
tures (or modules) down to low-level plug-ins, but there was not enough time to
examine each of the plug-ins separately and therefore to improve the code qual-
ity within them. The reason for starting from a high-level approach was that
restructuring RED at the module level would greatly contribute to improving
the general architecture, as it would specify and enforce the contracts between
various modules. Should we've started with improving the code quality in the
individual plug-ins �rst, we would most likely have run out of time to introduce
the necessary high-level improvements, and therefore not satisfying most of the
thesis goals.

Another improvement that could be made is a bit more thorough restructuring
of the Core module. While the Core module implementation has been divided
into a number of plug-ins, it may bene�t from further restructuring some of the
contracts it introduces for the other modules to depend on. As Core module
serves as the base of almost any other RED module, by making proper changes
we may simplify the other modules, which will greatly a�ect the overall code
quality. However, applying any �xes and/or extensions to the Core module
needs to be done with extreme care, as any change may unfortunately break
the existing functionality. One potential improvement that could be made is
to simplify the BaseEditor class, that is currently tightly coupled to an en-
tirely custom BasePresenter class, which, unlike the editors or views, is not
an Eclipse concept, and is therefore di�cult to understand. As such implemen-
tation enforces the developers to use a new, undocumented API, on top of an
already complex Eclipse API, restructuring that will de�nitely make it easier to
develop future extensions.

There are also problems related to the platform-independence of RED that has
not been resolved as a part of the thesis. As pointed in [Fri12], when discussing
various RichText editor implementations, an EPF RichText has been found the



98 Conclusion

most suitable and therefore used in RED. However, as it turned out during the
restructuring process, EPF RichText is a platform-dependent solution, which
does not work well on all the machines running either Linux or Mac OS. This is a
clear example of a bad design decision made at the beginning of the development
process, which resulted in severe consequences. As the support of rich text is one
of RED most important features, it is not possible to simply remove it. Also,
as EPF RichText editor is being used by almost any of the editors in RED,
substituting it will be a major e�ort, not to mention the fact that there are
not many other implementations that could be used. Either way, resolving that
issue is of great importance if we want to maintain RED on non Windows-based
platforms.

When it comes to additional functionality, it would be vital to implement a new
Speci�cation Element that would hold the model fragments and make it possible
to associate them with other elements. However, in order to do that, a necessary
improvement needs to be done in theModelElementsmodule, as it has proven
itself to be unstable during certain circumstances. Fixing ModelElements
would not only make it possible to convert it into another Speci�cation Element ,
but would also contribute to �xing the issues in both Reporting andWeaving

modules.

Last, but not least, with introduction of Tool module type, we have opened an
entirely new approach of integrating various Speci�cation Elements together.
As for now, we do not allow various Speci�cation Elements to communicate
with each other directly, but only via either SpecificationElements or Core
modules. However, by allowing such Tool modules, we provide an entirely
new way of integrating the Speci�cation Elements, by simply extending them
with new functionality, such as an additional editor page, making it possible to
associate various elements in a much more specialized way than simply using
the generic RED association feature.



Bibliography

[Arn93] Robert S Arnold. Software reengineering. IEEE Computer Society
Press, 1993.

[Bul12] Ian Bull. Eclipse juno milestone 7, available for
download, 2012. [Online; accessed 2013-10-05].
URL: http://eclipsesource.com/blogs/2012/05/05/

eclipse-juno-milestone-7-available-for-download/.

[Fou] Eclipse Foundation. Osgi concepts. [Online; accessed 2013-10-
03]. URL: http://www.eclipse.org/virgo/documentation/

virgo-documentation-3.6.2.RELEASE/docs/virgo-user-guide/

html/ch02s02.html.

[Fou13a] Apache Foundation. About subversion, 2013. [Online; accessed 2013-
10-01]. URL: http://subversion.apache.org/.

[Fou13b] Eclipse Foundation. Pde overview - eclipse plug-in devel-
opment environment guide, 2013. [Online; accessed 2013-
09-30]. URL: http://help.eclipse.org/indigo/topic/org.

eclipse.pde.doc.user/guide/intro/pde_overview.htm.

[Fou13c] Eclipse Foundation. Target platform - eclipse plug-in development
environment guide, 2013. [Online; accessed 2013-09-30]. URL: http:
//help.eclipse.org/kepler/nav/4.

[Fri12] Anders Friis. Basic tool support for requirements engineering. Mas-
ter's thesis, Technical University of Denmark, 2012.

[Git13] GitHub. About github, 2013. [Online; accessed 2013-10-02]. URL:
https://github.com/about.

http://eclipsesource.com/blogs/2012/05/05/eclipse-juno-milestone-7-available-for-download/
http://eclipsesource.com/blogs/2012/05/05/eclipse-juno-milestone-7-available-for-download/
http://www.eclipse.org/virgo/documentation/virgo-documentation-3.6.2.RELEASE/docs/virgo-user-guide/html/ch02s02.html
http://www.eclipse.org/virgo/documentation/virgo-documentation-3.6.2.RELEASE/docs/virgo-user-guide/html/ch02s02.html
http://www.eclipse.org/virgo/documentation/virgo-documentation-3.6.2.RELEASE/docs/virgo-user-guide/html/ch02s02.html
http://subversion.apache.org/
http://help.eclipse.org/indigo/topic/org.eclipse.pde.doc.user/guide/intro/pde_overview.htm
http://help.eclipse.org/indigo/topic/org.eclipse.pde.doc.user/guide/intro/pde_overview.htm
http://help.eclipse.org/kepler/nav/4
http://help.eclipse.org/kepler/nav/4
https://github.com/about


100 BIBLIOGRAPHY

[Kra12] Jakob Kragelund. Advanced tool support for requirements engineer-
ing. Master's thesis, Technical University of Denmark, 2012.

[McC76] Thomas J McCabe. A complexity measure. Software Engineering,
IEEE Transactions on, 1976.

[Vog12a] Lars Vogel. Eclipse 4 application development : Eclipse RCP based
on Eclipse 4.2 and e4. Vogella, S.l, 2012.

[Vog12b] Lars Vogel. Eclipse 4 ide not extendable via fragments or processors
- bug report, 2012.

[Wik13a] Wikipedia. Acyclic dependencies principle, 2013. [Online; accessed
2013-10-05]. URL: http://en.wikipedia.org/wiki/Acyclic_

dependencies_principle.

[Wik13b] Wikipedia. Cyclomatic complexity, 2013. [Online; accessed
2013-10-05]. URL: http://en.wikipedia.org/wiki/Cyclomatic_
complexity.

[Wik13c] Wikipedia. Git (software) � Wikipedia, the free encyclopedia, 2013.
[Online; accessed 2013-10-02]. URL: http://en.wikipedia.org/

wiki/Git_(software).

http://en.wikipedia.org/wiki/Acyclic_dependencies_principle
http://en.wikipedia.org/wiki/Acyclic_dependencies_principle
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/Git_(software)

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Software Re-engineering
	1.2 RED - "REquirements eDitor"
	1.2.1 User experience shortcomings
	1.2.2 Maintainability problems
	1.2.3 The reason for re-engineering
	1.2.4 Goals


	2 Improving the RED build process
	2.1 Introducing code versioning & issue tracking
	2.2 Building RED
	2.2.1 Eclipse Eclipse PDE build process
	2.2.2 Current RED build process
	2.2.3 Resolving external dependencies
	2.2.4 Adding target platform definition

	2.3 Eclipse Tycho - a new approach to building Eclipse plug-ins
	2.3.1 Improvements over Eclipse PDE build
	2.3.2 Continuous integration

	2.4 Summary

	3 Restructuring RED
	3.1 Upgrading the underlying Eclipse framework
	3.1.1 Migrate RED plug-ins to Eclipse 4 API
	3.1.2 Using Eclipse 4 compatibility layer
	3.1.3 Keeping the original Eclipse 3.X API
	3.1.4 Decision

	3.2 Improving high-level architecture
	3.2.1 Eclipse RCP development
	3.2.2 Components
	3.2.3 Implementation issues
	3.2.4 Countering cyclic dependencies
	3.2.5 Examining dependencies between the modules
	3.2.6 Dividing Specification Elements
	3.2.7 Feature-based product

	3.3 Improving low-level implementation
	3.3.1 RED plug-ins implementation problems
	3.3.2 Restructuring plug-in implementation
	3.3.3 Removing unused source code

	3.4 Summary

	4 Addressing conceptual weaknesses
	4.1 Fixing report generation
	4.2 Fixing model weaving
	4.3 Aligning EMF models with domain classes
	4.3.1 Handling GMF models

	4.4 Excluding Scenario support
	4.5 Adding horizontal scroll-bar support
	4.6 Branding
	4.6.1 Mac OS X native app packaging


	5 Evaluation
	5.1 Final architecture
	5.2 Measurements
	5.2.1 Original RED source code
	5.2.2 Final RED source code

	5.3 Case Study: A "Test Case" Specification Element
	5.3.1 Editor design & implementation
	5.3.2 Module implementation
	5.3.3 Reporting integration


	6 Conclusion
	6.1 Summary
	6.1.1 Build process
	6.1.2 Restructuring RED
	6.1.3 Additional fixes & improvements

	6.2 Discussion
	6.3 Future work

	Bibliography

