
A Sound Abstraction from the
Parsing Problem in Security

Protocols

Georgios Katsoris s.n. s101029

Kongens Lyngby 2013

IMM-M.Sc.-2013-112

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Matematiktorvet, building 303B,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3351

compute@compute.dtu.dk

www.compute.dtu.dk IMM-M.Sc.-2013-112

Summary

This work examines the problem of how to represent the structure of messages
exchanged in security protocols. Security protocols work by exchanging informa-
tion using messages. Such types of messages can be XML messages, or messages
with di�erent lengths and content.

Protocol model checking abstracts from the speci�c details of messages, thereby
excluding some potential security �aws that are based on confusing messages of
similar form. Thus, a potential security �aw is left unnoticed.

To investigate this problem, a language has been de�ned to precisely specify the
details of the examined message structure. Second, a prototype implementation
was built to perform message comparisons. The input given to the implemen-
tation is the examined message set, written in our language.

The goal is to investigate the disjointness (i.e. non-confusability) of protocol
messages, using our implementation's comparison results. Such a result is im-
portant when performing parallel and vertical protocol compositions. In order
to claim that such compositions are secure, message and subsequently protocol
disjointness is a necessary condition to be met.

We represent two widely used protocols with our language, TLS and IKE, and
discuss the overall results given by our approach and implementation.

ii

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc. in Informatics, and was supervised by Sebastian
Alexander Mödersheim.

Lyngby, 15-October-2013

Georgios Katsoris

iv

Acknowledgements

I would like to thank my family and friends for their constant support through-
out all these years.

Special thanks goes to Henning Weiss, Simon Challet and Will Courtney for
their feedback and useful comments.

And last, but de�nitely not least, to Sebastian Alexander Mödersheim for his
endless patience, dedication and constructive guidance throughout the duration
of this project.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction to the Problem 1

1.1 Preliminaries . 2

1.2 Message Types . 4

1.3 Protocol Model Checking . 5

1.4 Achieving Message Disjointness 5

1.5 Where This Thesis Contributes 5

1.6 Development Tools . 6

2 Context Free Languages and Grammar 7

3 Algorithm Description and Proof 11

3.1 Checker Algorithm and Proof of Each Case 12

4 Concrete Syntax Description 21

4.1 Agent Declarations . 21

4.2 Field Declarations . 22

4.3 Format Function Declarations . 24

4.4 Format Declarations . 24

5 Semantics Function 27

6 Uni�cation 31

viii CONTENTS

7 Processing Format Fields 33
7.1 Field Value Representation . 33

8 A Quick Tour On The Implementation 37
8.1 A Message's Possible Values . 38
8.2 Performing A Value Pair Comparison 41

8.2.1 Type Handling . 44
8.3 Field Comparisons in the Implementation 44
8.4 A Short Example . 46

9 XML Implementation 51
9.1 XML Concrete Syntax . 51
9.2 Future Work on XML . 54

10 Protocol Comparison Results 57
10.1 TLS Results . 58
10.2 IKE Results . 58
10.3 Examining TLS with IKE . 59

11 Conclusions and Future Work 61

Chapter 1

Introduction to the Problem

Security protocols have a central role in information security. The importance
of security in today's applications makes the deployment of security protocols
an integral part of current technologies. The robustness of a protocol today
is examined with static methods (like model checking), as well as with real
life deployment. In other words, there exist ways to examine an individual
protocol for security. Since many applications and services today are found to
employ more than one protocols in order to implement their functionality, the
composition of more that one protocol requires examination of the soundness of
their security.

We refer to three types of possible protocol compositions. Parallel composition
occurs when we have simultaneous execution of a set of isolated protocols on the
same infrastructure/hardware and communication medium. Sequential protocol
composition occurs when the feed of one protocol's output is used as input to
another protocol. Finally, we mention vertical composition, which we de�ne
as executing a protocol on top of another protocol. An example of vertical
composition would be an application protocol like mail protocol over a secure
SSL channel. However, even if an individual protocol operating in isolation is
secure, this does not guarantee that a composition of secure protocols will also
be secure. Thus, the security of protocol compositions needs to be investigated.

Since the possible protocol compositions are numerous, we cannot study protocol

2 Introduction to the Problem

composition security by examining all possible combination cases. Instead, [9]
proposes four conditions that need to be satis�ed by all participating protocols,
in order to have a secure composition. If these conditions are met, then all
possible vertical and parallel compositions of those protocols will also be secure,
including their self-composition. Message disjointness (i.e., distinguishability)
is necessary if all four conditions are to hold. By disjoint messages/message
set, we mean that all messages of the examined set are distinguishable among
them, and will be uniquely interpreted as they should be, avoiding any possible
confusion. Equally, a disjoint protocol is a protocol with a disjoint message set.
A disjoint protocol set is a set resulting from the union of disjoint protocols.

This work aims to further aid the research done on vertical protocol composi-
tion, by aiming to answer whether an examined protocol's messages are disjoint
from those of other examined protocols, and from the protocol's self composi-
tion. In order to examine the disjointness of a protocol/protocols message set,
we introduce a language aimed to represent protocol messages and their byte
values. We also built a tool that parses messages written in our language, and
compares them in order to decide whether they are disjoint. The aforementioned
message comparison performed by the tool is static, and performs byte-by-byte
value comparisons when possible on the examined protocol messages. The im-
plementation goal was to create a tool that reports correctly when messages are
distinguishable. We also examine the disjointness of the message sets of TLS
and IKE, by expressing them with our language, and comparing them with our
tool.

1.1 Preliminaries

We introduce a few de�nitions that will be used in this section, as well as in
future sections:

a-renaming : The process of assigning values to the variable valued �elds
of a message. When a-renaming the message set of a protocol, we assign val-
ues to the variable �elds of the messages, so that these �elds have disjoint values.

Message Patterns of protocol P (MP(P)): All the sent and received mes-
sages of a protocol P. All messages of MP(P) are a-renamed.

Sub Message Patterns of protocol P (SMP(P)): We denote as ST(P)
the a-renamed non-atomic �elds of MP(P). We denote SMP(P) as SMP(P) :
ST(P)

⋃
MP(P).

To further comprehend the problem, we introduce two important notions: a

1.1 Preliminaries 3

protocol disjoint from its encryptions, and pairwise disjoint protocols, as de-
�ned in [9, Def. 6]. If these two conditions are met for a set of protocols, then
all protocol messages of that set are disjoint.

• Protocol disjoint from its encryptions
If P is a protocol, we de�ne its encrypted message patterns EPM(P) as:
EMP(P) = a-rename(EMPn(P)), where n ∈ N, EMP0(P) = MP(P), and
EMPn+1(P) = a-rename(scrypt(Kn, EMPn(P))).

Note that we a-rename the variables in every encryption run. A protocol
P is disjoint from its encryptions if and only if there is no uni�er among
any of the members of EMPi and EMPj , meaning that the sets EMPi

and EMPj are disjoint, for every i 6= j. Practically, this means that added
layers of encryption on the messages of P do not make them confusable.

An example of a protocol disjoint from its encryptions is the following:

Consider we have a protocol P with only one messagem1 : encr_tag, {|tag,NA|}symm,
where encr_tag 6= tag. Following the notation of [9] we would write it as
m1 : encr_tag, scrypt(K, (tag,NA)), but we will use below the syntax
de�ned for our language. EMP0 = MP(P), so the sets EMP0,1 are:

EMP0 = {(encr_tag, {|tag,NA0|}symm0)}
EMP1 = {(encr_tag, {|encr_tag, {|tag,NA0|}symm0|}symm1)}

We examine the SMP of EMP0 and EMP1: { (tag, NA0) } and {
(encr_tag, {| tag, NA0 |}symm0) } respectively. We see that ((tag,NA0))σ
6= ((encr_tag, {|tag,NA0|}symm0))σ because of the constants tag 6= encr_tag.
So, since the encrypted contents of the elements that belong to the sets
EMP0,1 are disjoint, the sets EMP0, EMP1 are also disjoint.In this ex-
ample, EMPi and EMPj are disjoint for i 6= j, so the protocol P is disjoint
from its encryptions.

• Pairwise Disjoint Protocol Set
Let EST(P) be the non-atomic subterms of EMP(P), a-renamed, where as
before: EMP(P) ⊆ EST(P). The keyword subterm is equal to the notion
of submessage. A set of protocols Pset is pairwise disjoint if every protocol
P ∈ Pset is disjoint from its encryptions, and for a pair P1, P2 ∈ Pset,
there exists no uni�er between any element of EST (P1) and EST (P2).,
meaning that EST (P1) and EST (P2) are disjoint.

A basic requirement is that all messages are non-atomic, i.e. are composed
of more than one term.

We now see the direct link between message distinguishability and safe protocol
compositions. In order for a protocol P to ful�ll the �rst criterion of protocol

4 Introduction to the Problem

pairwise disjointness, it must be disjoint from its own encryptions. This is
achievable only if all messages of P are distinguishable among them. In order
to ful�ll the second criterion of protocol disjointness, EST (Pi) and EST (Pj)
for i 6= j must be disjoint. For this to hold, all messages of Pi and Pj must
necessarily be distinguishable, since messages of Pi ⊆ EST(Pi). So we need to
check that the messages of a protocol P1 are distinguishable among them, and
then examine the confusability of this protocol P1 with the other protocols P2,
P3 , ... that will participate in the composition.

The practical bene�t of a composition of disjoint protocols is distinguishability
of the transmitted messages. When using a composition of protocols from the
disjoint protocol set Pset, for a given message M that is sent/received through
the protocol stack we can infer to which protocol of the Pset set it belongs,
and we can infer the depth of the stack of channels it went through during
transmission, even if the channels are numerous and include di�erent layers of
encryption [9, p. 3].

1.2 Message Types

The notion of a �eld's type is to indicate the type of data this �eld represents.
For example, a 32 bit �eld can be representing a 32bit long nonce, thus its
type would be nonce. Formally, we would note the type of a �eld f as f : τ .
Throughout this thesis, we use the following set of basic types : agent, nonce,
key, tag, var, which is a mix among the types used in [9], [8]. A composed
type occurs from the list of basic types that it is composed of. For example,
a message with a tag and a nonce would have the composed type tag, nonce.
Functions also constitute composed types, with a formal notation of f(f1, f2, ...
, fn) : f(τ1, τ2, ... , τn). In this work, the functions that we use are encryption
functions.

When a protocol or message is type-safe, all the types present in it are inter-
preted correctly. Equally, this means that type-interpretation cannot be manip-
ulated, and type-confusion doesn't exist. Thus, we see that by having message
disjointness in a protocol, we also achieve type-safety for the messages of that
protocol, since every message is interpreted correctly. The notion of type-safe
protocol/message is equal to the well-typed protocol/message, as used in [9, p.
18], [8, sec. 3.1].

1.3 Protocol Model Checking 5

1.3 Protocol Model Checking

When model checking a protocol for security, we abstract from the very speci�c
details involved in each message such as �eld sizes, and use a more abstract
notion. For example, a message like f_1 : tag, agent_ID[64], nonce_A[32]
could be written into something more abstract like f_1(A,NA) , if fed to a
model checking tool. However, this abstraction should happen only if we know
that f_1 is distinguishable from all other messages. This would also mean that
f_1 is type-safe because of its distinguishability, thus its �eld types cannot be
misinterpreted as of another type.

Type-safe protocols have the advantage of reducing the resulting state-space
when model checking them for their security, because we examine only well
typed runs of the protocol [8, p. 1]. Moreover, an attack can happen on a
type-safe protocol only if it is a well typed attack [8, p. 1],[9, p. 14].

1.4 Achieving Message Disjointness

In order to achieve message disjointness, one approach would be to implement
a tagging scheme, so that each message has embedded the information (in the
form of a tag) that will distinguish it from other messages. For existing protocols
that do not incorporate this approach, it is important to perform a message
disjointness check, to see whether a protocol's messages are already disjoint, or
not.

1.5 Where This Thesis Contributes

The goal of this thesis is to create a language and a tool for examining protocol
disjointness. This check includes the messages of an individual protocol, as well
as all the messages of a set of protocols. A key element for achieving this is the
introduction of the language that we utilize, in order to represent a protocol
and process it further. The aim was double: to create a language that would
represent messages found in traditional message passing, XML and padding
protocols, and to create a tool that would be able to compare all these di�erent
types of messages among them. The focus was on describing and examining
protocols of current and widespread use.

The goal is to statically describe messages and their �elds, and perform the

6 Introduction to the Problem

message comparisons in a static way as well, without thinking in terms of pro-
tocol execution. Although the static approach can be limiting in some aspects
of protocol examination, it relieves us of the burden of actually running the
protocol. Moreover, di�erent implementations of the same protocol can di�er in
some aspects of a protocol's behavior as in [4, p. 59], while the static approach
is universal. The drawback of static analysis is that it can be limiting in some
aspects, where dynamic analysis could be more bene�cial.

The language we de�ne takes into consideration the ideas and data structures
found in [4],[6], which were the two protocols we examined thoroughly. In has
to be noted that some guidelines that these protocols follow might not �t other
protocols. For example, both TLS and IKE always have an encrypted �eld as
the last �eld of a message, and no message can have more than one encrypted
�elds. This might not suite other protocols though. Because we could not look
at all possible cases, we believe there is still elements to add, in order to have a
truly universal protocol message language.

Our aim is to have an implementation that accepts as input the set of messages
we de�ned using our language, and compares them in order to conclude if they
are disjoint or not. Although there is always room for enriching an implemen-
tation with more capabilities and features, our implementation manages the
aforementioned goal for the message cases we examined.

1.6 Development Tools

Because this work requires processing of text, we had to use a lexical analyzer
and a parser generator in combination. A lexical analyzer converts the sequence
of input characters/strings it is fed into a sequence of tokens. This token se-
quence is then fed to a parser, which applies the corresponding semantic action
depending on the input. In order to obtain a parser we have to generate one,
by feeding a grammar speci�cation (in the form of a text �le) into a tool called
parser generator.

For the checker's implementation, we used the Haskell programming language
[11]. For lexical analysis, we used the Alex lexical analyzer generator [12],
and the Happy parser generator [13] was used for generating a parser for our
language. Alex and Happy can work in combination. The compiler used was
GHC, and the used OS was a 64 bit Ubuntu Linux version 13.04.

Chapter 2

Context Free Languages

and Grammar

We discuss brie�y here the concept of a language and grammar. In this report,
we will only discuss about context free grammars. A grammar de�nes a language
[1, p169], and if a language is derived from a CFG, then it is a context free
language (CFL) [1, p117].

The concrete syntax of a language describes the proper form that strings be-
longing to the language should have, while the semantics of the language de�nes
what these strings mean, i.e. what they represent.

We distinguish among concrete and abstract syntax of a language. Concrete
syntax speci�es how the language expressions must look like. Abstract syntax
is represented by abstract syntax trees or simply syntax trees, which represent
the hierarchical syntactic structure of the input strings [10, ch 2.1]. An abstract
syntax tree is a data structure that is used to hold the signi�cant parts of the
parsed expressions. A signi�cant token could for example be placed as the root
element of the syntax tree, less signi�cant tokens as leaves e.c.t.

A context-free grammar is de�ned by four components:

• Terminal symbols or terminals, that form the strings of the language,
noted as the set T

8 Context Free Languages and Grammar

• A �nite set of variables, also called non-terminals, noted V. Each variable
represents a language, i.e. a set of strings.

• A starting symbol, called S, where S is part of the variable set V. This
variable represents the language being de�ned.

• A �nite set of productions (or rules) P that represent the recursive de�ni-
tion of the language. Each production consists of a variable, the produc-
tion symbol→ , and a string of zero or more terminals and variables (also
called the body of the production).

So, a context-free grammar (CFG) is de�ned as G(V,T,P,S). The language that
derives from G is noted as L(G).

In order to derive the language of a context-free grammar, we initially expand
all the productions whose head is the start symbol S. We further expand the
resulting string by further using all available productions, until we reach a string
consisting of terminal characters only. This process is called derivation, and
symbolized with =>. The set of all strings consisting of terminal characters,
obtained in the above way, is called the language of the grammar. Formally, the
above process is noted as L(G) = { w ∈ T | S => G w }.

A formal grammar is considered "context free" when its production rules can
be applied regardless of the context of a nonterminal. It does not matter which
symbols the nonterminal is surrounded by, the single nonterminal on the left
hand side can always be replaced by the right hand side. The grammar that we
use for our de�ned language has exactly this functionality, thus we use a context
free grammar.

Next to a grammar production we note a semantic action, which is executed
when the production is executed. Program fragments embedded within pro-
duction bodies are called semantic actions [10, ch.2]. The executed code of the
semantic action must belong to our used abstract syntax, and the execution of
semantic actions constructs the abstract syntax tree.

We now show a short part of our grammar in a simpli�ed form in Figure 2.1.
For a complete reference, we direct the reader to the grammar �le, found in the
�le my_parser.y, since some appearing tokens are not mentioned further here.

A code snippet from our Happy grammar �le is seen in Figure 2.2. The left part
is the grammar production, and the right part is the semantic action, which
contains the corresponding abstract syntax. On the left part of the expression,
the tokens contained between the � symbols are terminal symbols, the cap_ident,

9

MsgBody ::= empty

| MsgField

| MsgField , MsgBody

MsgField ::= identifier(MsgBody)

| identifier

| cap_ident

| [MsgField]

| [MsgBody]

| MsgField*

| (MsgBody)*

| MsgField+

| (MsgBody)+

| {| MsgBody |}symm(cap_ident,cap_ident)

| { MsgBody }public(cap_ident)

| { MsgBody }priv(cap_ident)

Figure 2.1: Part of our used grammar, expressed in simpli�ed form.

MsgBody :: { [Field] }

--Same as MsgField+ : Left recursion (p7,Happy manual)

MsgBody : 'empty' { [] }

| MsgField { [$1] }

| MsgField ',' MsgBody { $1 : $3 }

MsgField : identifier '(' MsgBody ')' { ParamField $1 $3 }

| identifier { PlainField $1 }

| cap_ident { Param $1 "m_field" }

| '[' MsgField ']' { RepeatedField [$2] R_0_1 }

| '[' MsgBody ']' { RepeatedField $2 R_0_1 }

| MsgField '*' { RepeatedField [$1] R_0_Inf }

| '(' MsgBody ')' '*' { RepeatedField $2 R_0_Inf }

| MsgField '+' { RepeatedField [$1] R_1_Inf }

| '(' MsgBody ')' '+' { RepeatedField $2 R_1_Inf }

| '{''|' MsgBody '|''}''symm''('cap_ident','cap_ident')'

{ EncryptedField $3 (Symm (Param $8 "agent") (Param $10 "agent")) }

| '{' MsgBody '}' 'public' '(' cap_ident ')'

{ EncryptedField $2 (Public (Param $6 "agent")) }

| '{' MsgBody '}' 'priv' '(' cap_ident ')'

{ EncryptedField $2 (Priv (Param $6 "agent")) }

Figure 2.2: Part of our used grammar �le. The corresponding semantic action
is noted on the right of each production.

10 Context Free Languages and Grammar

identi�er symbols are tokens carrying a string of capital and lowercase characters
respectively. The rest of the appearing symbols are non-terminals.

Chapter 3

Algorithm Description and

Proof

We discuss the functionality of our implementation by presenting the algorithm
it implements. The examined �eld cases are some (but not all) of the cases
included in our syntax & implementation. But more �eld cases are easy to add
in the presented scheme below. The presented algorithm does not follow the
implementation's behavior exactly. However, their overall functionality is the
same.

We present the possible �eld comparison cases, and include a proof for each
case. The proof is by structural induction over the recursive structure of the
procedure. Mathematical induction works by using a statement for the smaller
problem, and implying that statement when examining the bigger problem. We
prove each case under the inductive assumption that in all recursive algorithm
calls, the procedure already works correctly. Examining the algorithm's steps
below, we can see that the recursive calls work on smaller inputs each time. This
guarantees that the algorithm terminates, and the problem's size decreases on
each recursive call. Structural induction is an induction process over recursive
structures, and because our algorithm is recursive, it is a proper proof strategy.

12 Algorithm Description and Proof

3.1 Checker Algorithm and Proof of Each Case

Consider we are to compare two formats F1, F2 , each of them being composed
of �elds, where F1 = f1, f2, ... , fn and F2 = f ′1, f

′
2, ... , f

′
m. A format F can

also be the empty word ε only, in which case J F K = J ε K. In our case, the
empty word is a bytestring of zero length, and J ε K = { ε }, which is not equal
to the empty set. For ε applies the ε · f = f property, where · here is used as
a bytestring concatenation operator.We consider the �elds below, where c is a
constant of one byte, x[l] a variable of length l bytes, x[[l]] a vector with a length
�eld l bytes long, and a payload of 0 to 256l bytes. Note that in the case of vec-
tors here, we use a more generic vector syntax which covers the largest possible
payload size that length l can have, while we also simplify the vector notation
from the usual x[[l]] < a..b > syntax. But since Jx[[l]] < a..b >K ⊆ Jx[[l]]K, the
algorithm would work with a smaller vector as well. We also use the x(Rest)
notation to represent an arbitrary length �eld, which can also be the empty
bytestring.

Formally we specify the above as c',c ∈ B, where B = { 0..255 }, denoting
the values of a 1 byte long string. We de�ne as B∗ as the set of all byte strings,
including the empty word. l ∈ N, where 0 ∈ N. We use the × operator as the
string concatenation operator in sets of strings. Formally, we would write is as:
A×B = {a · b|a ∈ A, b ∈ B}, where · is the string concatenation operator.

The used grammar is seen below:
f ::= c | x[l] | x[[l]] | x(Rest)

F ::= f1, f2, ..., fn, where n ≥ 0. If n = 0, F = ε.

The semantics function for the above syntax follows:
JεK = { ε }
JcK = { c }
Jx[l]K = Bl, where l ≥ 0
Jx[[l]]K = { uv | u ∈ Bl, v ∈ Bu }, where the value of u is used as payload length
indicator. Note that l ≥ 1 here.
Jx(Rest)K = Jx′[1]K× Jx′(Rest)K ∪ {ε}
Jf1, f2, ..., fnK = Jf1K × ... × JfnK

Our concrete syntax allows the declaration of arrays with zero index, and vectors
with no payload data. Thus, we have: x[0] == ε because x[0] is an empty
bytestring. Note that ”0” · ε ∈ Jx[[l]]K, which is the empty payload case, and the
length indicator's value is zero.

We use the word disj to state that two formats are disjoint, and non-disj to

3.1 Checker Algorithm and Proof of Each Case 13

state that they are not disjoint. We use the operators ∨,∧ with the disj,non-
disj values, as de�ned in the array below:

A B A ∧ B A ∨ B
disj disj disj disj
disj nondisj nondisj disj
nondisj disj nondisj disj
nondisj nondisj nondisj nondisj

We examine the cases of comparing two empty formats, an empty and a non-
empty format, and �nally two non-empty formats. If two formats are confusable,
we return the string disjoint (disj), otherwise return nondisj. The checker has
the symmetric property, meaning:
check(f1, f2, ..., fn; f

′
1, f
′
2, ..., f

′
n) = check(f ′1, f

′
2, ..., f

′
n; f1, f2, ..., fn). Note that

if the nondisj result appears once in one of the check instances of the
∧
check

below, the entire statement is equal to nondisj. In the algorithm below, we
make comments with the // symbol, followed by text. After each algorithm
case, noted with the �, •, follows the case proof.

Checker Algorithm

• check(ε; ε) = nondisj

• check(ε; f1, f2, ..., fn) =
n∨

i=1

check(ε, fi)

Given that check(ε, f1, f2, ..., fn) = disj, we want to show that
JεK

⋂
Jf1, f2, ..., fnK = ∅.

By the algorithm we thus have

⇒
n∨

i=1

check(ε, fi) = disj

⇒ for at least one i ∈ { 1..n }, check(ε, fi) = disj holds.
⇒ JεK

⋂
JfiK = ∅ for at least one i ∈ { 1..n }.

⇒ JεK
⋂
(Jf1K× Jf2K× ...× JfnK) = ∅

⇒ JεK
⋂

Jf1, f2, ..., fnK = ∅

• check(f1, f2, ..., fn; f ′1, f ′2, ..., f ′n)
case(f1, f

′
1) of : // Algorithm is symmetric

� (c,c') = if(c/=c') then disj
else check(f2, ..., fn; f

′
2, ..., f

′
n)

Given that check(c, f2, ..., fn; c
′, f ′2, ..., f

′
m) = disj, we want to show

that

14 Algorithm Description and Proof

Jc, f2, ..., fnK
⋂

Jc′, f ′2, ..., f ′mK = ∅. We examine both algorithm cases:
1st case: c /= c'
Thus, JcK

⋂
Jc′K = ∅

⇒ JcK × (Jf2K × ... × JfnK)
⋂

Jc′K × (Jf ′2K × ...Jf ′mK) = ∅, this holds
regardless of applying at the same time both Jf2K× ...× JfnK, Jf ′2K×
...Jf ′mK as pre�xes or su�xes.
⇒ Jc, f2, ..., fnK

⋂
Jc′, f ′2, ..., f ′mK = ∅

2nd case: c == c'
Using the initial assumption and by the algorithm, we have that
the statement check(f2, ..., fn; f

′
2, ..., f

′
m) = disj holds.

⇒ Jf2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅
⇒ JcK × Jf2, ..., fnK

⋂
Jc′K × Jf ′2, ..., f ′mK = ∅, because JcK

⋂
Jc′K 6= ∅,

we do not tamper the value of the statement by applying JcK, Jc′K as
pre�x.

� (c,x[l]) = if(l==0) then check(c, f2, ..., fn; f
′
2, ..., f

′
m)

else check(f2, ..., fn;x[l − 1], f ′2, ..., f
′
m)

Given that check(c, f2, ..., fn;x[l], f
′
2, ..., f

′
m) = disj, we want to show

that
Jc, f2, ..., fnK

⋂
Jx[l], f ′2, ..., f ′mK = ∅.

We examine both algorithm cases:
1st case: l == 0
Using the initial assumption and by the algorithm, we have that
check(c, f2, ..., fn; f

′
2, ..., f

′
m) = disj holds.

⇒ Jc, f2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅
⇒ Jc, f2, ..., fnK

⋂
(Jx[l]K× Jf ′2, ..., f ′mK) = ∅, since Jx[l]K = {ε}.

⇒ Jc, f2, ..., fnK
⋂

Jx[l], f ′2, ..., f ′mK = ∅
2nd case: l > 0
Using the initial assumption and by algorithm, we have that
check(f2, ..., fn;x[l − 1], f ′2, ..., f

′
m) = disj holds.

⇒ Jf2, ..., fnK
⋂

Jx[l − 1], f ′2, ..., f
′
mK = ∅

For a new variable x′[1] we have that Jx[l]K = Jx′[1]K × Jx[l − 1]K,
and the disjointness remains if we apply Jx′[1]K, JcK as pre�xes in the
examined statement.
⇒ JcK× Jf2, ..., fnK

⋂
Jx′[1]K× Jx[l − 1], f ′2, ..., f

′
mK = ∅

⇒ Jc, f2, ..., fnK
⋂

Jx[l], f ′2, ..., f ′mK = ∅
� (c,x[[l]]) =

∧
i=(i1,...,il)∈Bl

check(c, f2, ..., fn; i, x
′[i], f ′2, ..., f

′
m)

Given that check(c, f2, ..., fn;x[[l]], f
′
2, ..., f

′
m) = disj, we want to

show
Jc, f2, ..., fnK

⋂
Jx[[l]], f ′2, ..., f ′mK = ∅.

Note that in this and subsequent appearances of x[[l]], we have that
Jx[[l]]K =

⋃
i=(i1,...,il)∈Bl

{i} × Jx′[i]K.

By the algorithm, we have that

3.1 Checker Algorithm and Proof of Each Case 15

⇒
∧

i=(i1,...,il)∈Bl

check(c, f2, ..., fn; i, x
′[i], f ′2, ..., f

′
m) = disj holds.

⇒ check(c, f2, ..., fn; i, x
′[i], f ′2, ..., f

′
m) = disj, ∀i ∈ Bl

⇒ Jc, f2, ..., fnK
⋂

Ji, x′[i], f ′2, ..., f ′mK = ∅, ∀i ∈ Bl

⇒ Jc, f2, ..., fnK
⋂
(

⋃
i=(i1,...,il)∈Bl

Ji, x′[i], f ′2, ..., f ′mK) = ∅

The disjunction remains empty, because we are adding sets that have
no intersection with Jc, f2, ..., fnK.
⇒ Jc, f2, ..., fnK

⋂
(

⋃
i=(i1,...,il)∈Bl

Ji, x′[i]K)× Jf ′2, ..., f ′mK = ∅.

⇒ Jc, f2, ..., fnK
⋂

Jx[[l]], f ′2, ..., f ′mK = ∅

� (x[l],x'[l']) = if(l==l') then check(f2, ..., fn; f
′
2, ..., f

′
m)

else if(l>l') then
if(l'==0) then check(x[l], f2, ..., fn; f

′
2, ..., f

′
m)

else check(x[l − 1], f2, ..., fn;x
′[l′ − 1], f ′2, ..., f

′
m)

else if(l<l') // Symmetry in algorithm

Given that check(x[l], f2, ..., fn;x
′[l′], f ′2, ..., f

′
m) = disj, we want to

show that
Jx[l], f2, ..., fnK

⋂
Jx′[l′], f ′2, ..., f ′mK = ∅.

By the algorithm we have three cases, and a fourth case which applies
to the symmetry of the algorithm, thus we do not have to examine
it further.
1st case: l==l'
Using the initial assumption and by the algorithm, we have that
check(f2, ..., fn; f

′
2, ..., f

′
m) = disj holds.

⇒ Jf2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅
Since l==l', Jx[l]K

⋂
Jx′[l′]K 6= ∅, for all possible values of l.

⇒ (Jx[l]K × Jf2, ..., fnK)
⋂
(Jx′[l′]K × Jf ′2, ..., f ′mK) = ∅, the statement

holds regardless of applying both Jx[l]K, Jx′[l′]K as pre�x or post�x.
⇒ (Jx[l], f2, ..., fnK)

⋂
(Jx′[l′], f ′2, ..., f ′mK) = ∅

2nd case: l'==0
Using the initial assumption and by the algorithm, we have that
check(x[l], f2, ..., fn; f

′
2, ..., f

′
m) = disj holds.

⇒ Jx[l], f2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅
⇒ Jx[l], f2, ..., fnK

⋂
(Jx′[l′]K× Jf ′2, ..., f ′mK) = ∅, since Jx′[l′]K = {ε}.

⇒ Jx[l], f2, ..., fnK
⋂

Jx′[l′], f ′2, ..., f ′mK = ∅
3rd case: l>l>0
Using the initial assumption and by the algorithm, we have that
check(x[l − 1], f2, ..., fn;x

′[l′ − 1], f ′2, ..., f
′
m) = disj holds.

⇒ Jx[l − 1], f2, ..., fnK
⋂

Jx′[l′ − 1], f ′2, ..., f
′
mK = ∅

We de�ne two new variables x′′[1], x′′′[1], thus Jx′′[1]K
⋂

Jx′′′[1]K 6= ∅.
Applying them as pre�xes to the above statement does not alter the
disjointness result.

16 Algorithm Description and Proof

⇒ (Jx′′[1]K×Jx[l−1], f2, ..., fnK)
⋂
(Jx′′′[1]K×Jx′[l′−1], f ′2, ..., f ′mK) = ∅

Since Jx′′[1]K× Jx[l− 1]K = Jx[l]K and equally for x′[l′], we have that:
⇒ (Jx′′[1]K×Jx[l−1], f2, ..., fnK)

⋂
(Jx′′′[1]K×Jx′[l′−1], f ′2, ..., f ′mK) = ∅

⇒ Jx[l], f2, ..., fnK
⋂

Jx′[l′], f ′2, ..., f ′mK = ∅
4th case: The fourth case is already solved, because of the symmetry
of the algorithm.

� (x[l],x'[[l']]) = if (l==0) then check(f2, ..., fn;x
′[[l′]], f ′2, ..., f

′
m)

else
∧

i=(i1..il)∈Bl

check(x[l], f2, ..., fn; i, x
′[i], f ′2, ..., f

′
m)

Given that check(x[l], f2, ..., fn;x
′[[l′]], f ′2, ..., f

′
m) = disj, we want to

show that
Jx[l], f2, ..., fnK

⋂
Jx′[[l′]], f ′2, ..., f ′mK = ∅.

Following the algorithm steps, we have two cases:
1st case: l==0
Using the initial assumption and by the algorithm, we have that
check(f2, ..., fn;x

′[[l′]], f ′2, ..., f
′
m) = disj holds.

⇒ Jf2, ..., fnK
⋂

Jx′[[l′]], f ′2, ..., f ′mK = ∅
⇒ (Jx[0]K× Jf2, ..., fnK)

⋂
Jx′[[l′]], f ′2, ..., f ′mK = ∅, since Jx[0]K = {ε}

⇒ (Jx[l]K× Jf2, ..., fnK)
⋂

Jx′[[l′]], f ′2, ..., f ′mK = ∅
⇒ Jx[l], f2, ..., fnK

⋂
Jx′[[l′]], f ′2, ..., f ′mK = ∅

2nd case:
Using the initial assumption and by the algorithm, we have that∧
i=(i1..il′)∈Bl′

check(x[l], f2, ..., fn; i, x
′[i], f ′2, ..., f

′
m) = disj holds.

This means that check(x[l], f2, ..., fn; i, x
′[i], f ′2, ..., f

′
m) = disj, ∀i ∈

Bl′ holds
⇒ Jx[l], f2, ..., fnK

⋂
(Ji, x′[i]K× Jf ′2, ..., f ′mK) = ∅, ∀i ∈ Bl′

By merging all the i statements, we have:
⇒ Jx[l], f2, ..., fnK

⋂
((

⋃
i=(i1..il′)∈Bl′

Ji, x′[i]K)× Jf ′2, ..., f ′mK) = ∅

⇒ Jx[l], f2, ..., fnK
⋂

Jx′[[l′]], f ′2, ..., f ′mK = ∅
� (x[[l]],x'[[l']]) =

∧
i=(i1,...,il)∈Bl

i′=(i′1,...,i′
l′

)∈Bl′

check(i, x[i], f2, ..., fn; i
′, x′[i′], f ′2, ..., f

′
m)

Given that:
check(x[[l]], f2, ..., fn;x

′[[l′]], f ′2, ..., f
′
m) = disj, we want to show

Jx[[l]], f2, ..., fnK
⋂

Jx′[[l′]], f ′2, ..., f ′mK = ∅
By the algorithm, we have that∧

i=(i1,...,il)∈Bl

i′=(i′1,...,i′
l′

)∈Bl′

check(i, x[i], f2, ..., fn; i
′, x′[i′], f ′2, ..., f

′
m) = disj also holds.

⇒ check(i, x[i], f2, ..., fn; i
′, x′[i′], f ′2, ..., f

′
m) = disj, ∀i ∈ Bl,∀i′ ∈

Bl′ .
⇒ Ji, x[i], f2, ..., fnK

⋂
Ji′, x′[i′], f ′2, ..., f ′mK = ∅, ∀i ∈ Bl,∀i′ ∈ Bl′ . By

merging all statements, we have that:

3.1 Checker Algorithm and Proof of Each Case 17

⇒ (
⋃

i=(i1,...,il)∈Bl

Ji, x[i], f2, ..., fnK)
⋂
(

⋃
i′=(i′1,...,i

′
l′)∈B

l′
Ji′, x′[i′], f ′2, ..., f ′mK) =

∅
⇒ (

⋃
i=(i1,...,il)∈Bl

Ji, x[i]K)×Jf2, ..., fnK
⋂
(

⋃
i′=(i′1,...,i

′
l′)∈B

l′
Ji′, x′[i′]K)×Jf ′2, ..., f ′mK) =

∅
⇒ Jx[[l]], f2, ..., fnK

⋂
Jx′[[l′]], f ′2, ..., f ′mK = ∅

� (c,x(Rest)) = check(f2, ..., fn; f
′
2, ..., f

′
m) // len(x(Rest))==1∧

check(f2, ..., fn;x
′(Rest), f ′2, ..., f

′
m) //len(x(Rest))>1∧

check(c, f2, ..., fn; f
′
2, ..., f

′
m) //x(Rest) is empty

Given that check(c, f2, ..., fn;x(Rest), f
′
2, ..., f

′
m) = disj, we want to

show
Jc, f2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK = ∅

By the algorithm, we have that:
check(f2, ..., fn; f

′
2, ..., f

′
m) = disj,

check(f2, ..., fn;x
′(Rest), f ′2, ..., f

′
m) = disj and

check(c, f2, ..., fn; f
′
2, ..., f

′
m) = disj all hold

⇒ Jf2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅ A,
Jf2, ..., fnK

⋂
Jx′(Rest), f ′2, ..., f ′mK = ∅ B,

Jc, f2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅ C
where all A,B,C statements hold. Note that we express Jx(Rest)K
as Jx(Rest)K = Jx′[1]K× Jx′(Rest)K ∪ {ε}, as by the de�nition.
We prove by contradiction that Jc, f2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK =

∅. Suppose there is some string
s ∈ B∗ : s ∈ (Jc, f2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK), meaning that the

intersection is not empty. Then, at least one of the following state-
ment sets 1,2,3 should hold (and all included statements in that
statement set must all hold), covering all length cases of x(Rest):
(s = cs′, s′ ∈ Jf2, ..., fnK, s′ ∈ Jf ′2, ..., f ′mK) 1, when length of x(Rest)
is equal to length of c.
(s = cs′, s′ ∈ Jf2, ..., fnK, s′ ∈ Jx′(Rest), f ′2, ..., f ′mK) 2, when length of
x(Rest) > length of c
(s ∈ Jc, f2, ..., fnK, s ∈ Jf ′2, ..., f ′mK) 3, when x(Rest) is the empty
bytestring
From statement 1, Jf2, ..., fnK

⋂
Jf ′2, ..., f ′mK 6= ∅, which contradicts

statement A which holds, thus 1 does not hold.
From statement 2, Jf2, ..., fnK

⋂
Jx′(Rest), f ′2, ..., f ′mK 6= ∅, which con-

tradicts statement B which holds, thus 2 does not hold.
From statement 3, Jc, f2, ..., fnK

⋂
Jf ′2, ..., f ′mK 6= ∅, which contradicts

statement C which holds, thus 3 does not hold.
Since none of 1,2,3 hold, Jc, f2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK = ∅.

� (x[l],x(Rest)) = if(l==0) then check(f2, ..., fn;x(Rest), f
′
2, ..., f

′
m)

18 Algorithm Description and Proof

else check(f2, ..., fn; f
′
2, ..., f

′
m)//len(x(Rest))==l∧

check(f2, ..., fn;x
′(Rest), f ′2, ..., f

′
m) //len(x(Rest))>l

l−1∧
i=1

check(x[i], f2, ..., fn; f
′
2, ..., f

′
m) //len(x(Rest))<l∧

check(x[l], f2, ..., fn; f
′
2, ..., f

′
m //len(x(Rest))==0

Given that check(c, f2, ..., fn;x(Rest), f
′
2, ..., f

′
m) = disj, we want to

show
Jx[l], f2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK = ∅

By the algorithm, we have two cases :
1st case: l == 0
Following the algorithm and using the initial given statement, we
have that
check(f2, ..., fn;x(Rest), f

′
2, ..., f

′
m) = disj

⇒ Jf2, ..., fnK
⋂

Jx(Rest), f ′2, ..., f ′mK = ∅
⇒ Jx[l]K× Jf2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK = ∅, since Jx[l]K = {ε}

⇒ Jx[l], f2, ..., fnK
⋂

Jx(Rest), f ′2, ..., f ′mK = ∅
2nd case: l > 0
Following the algorithm and using the initial given statement, we
have that
check(f2, ..., fn; f

′
2, ..., f

′
m) = disj,

check(f2, ..., fn;x
′(Rest), f ′2, ..., f

′
m) = disj,

l−1∧
i=1

check(x[i], f2, ..., fn; f
′
2, ..., f

′
m) = disj,

check(x[l], f2, ..., fn; f
′
2, ..., f

′
m = disj all hold

⇒ Jf2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅ A
Jf2, ..., fnK

⋂
Jx′(Rest), f ′2, ..., f ′mK = ∅ B

Jx[i], f2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅,∀i{1..(l − 1)} C
Jx[l], f2, ..., fnK

⋂
Jf ′2, ..., f ′mK = ∅ D

Note that we express Jx(Rest)K as Jx(Rest)K = Jx′[l]K× Jx′(Rest)K∪
{ε}, as by the de�nition.
For the second case, we prove by contradiction that
Jx[l], f2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK = ∅. Suppose there is some

string
s ∈ B∗ : s ∈ (Jx[l], f2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK), meaning that the

intersection is not empty. Then, at least one of the following 1,2,3,4
statement sets must hold (and all included statements in that state-
ment set must all hold), which cover all length cases of x(Rest):
(s = x[l] · s′, s′ ∈ Jf2, ..., fnK, s′ ∈ Jf ′2, ..., f ′mK) 1, when x(Rest) has
length l
(s = x[l] · s′, s′ ∈ Jf2, ..., fnK, s′ ∈ Jx′(Rest), f ′2, ..., f ′mK) 2, when
x(Rest) has length > l
(s = x[j] · x[i] · s′, i + j = l, si = x[i] · s′,∃i ∈ {1..l − 1} : si ∈
Jx[i], f2, ..., fnK, si ∈ Jf ′2, ..., f ′mK) 3, when x(Rest) has length < l

3.1 Checker Algorithm and Proof of Each Case 19

(s = x[l] · s′, s ∈ Jx[l], f2, ..., fnK, s ∈ Jf ′2, ..., f ′mK) 4, when x(Rest) has
length = 0
From statement 1, Jf2, ..., fnK

⋂
Jf ′2, ..., f ′mK 6= ∅, which contradicts

statement A which holds. Thus, 1 does not hold.
From statement 2, Jf2, ..., fnK

⋂
Jx′(Rest), f ′2, ..., f ′mK 6= ∅, which con-

tradicts statement B which holds. Thus, 2 does not hold.
From statement 3, Jx[i], f2, ..., fnK

⋂
Jf ′2, ..., f ′mK 6= ∅ for at least one

i, which contradicts statement C which holds. Thus, 3 does not hold.
From statement 4, Jx[l], f2, ..., fnK

⋂
Jf ′2, ..., f ′mK 6= ∅, which contra-

dicts statement D which holds. Thus, 4 does not hold.
Since none of 1,2,3,4 hold, Jx[l], f2, ..., fnK

⋂
Jx(Rest), f ′2, ..., f ′mK =

∅.
� (x[[l]],x'(Rest)) =

∧
i=(i1..il)∈Bl

check(i, x[i], f2, ..., fn;x
′(Rest), f ′2, ..., f

′
m)

Given that check(x[[l]], f2, ..., fn;x
′(Rest), f ′2, ..., f

′
m) = disj, we want

to show
Jx[[l]], f2, ..., fnK

⋂
Jx′(Rest), f ′2, ..., f ′mK = ∅

By the algorithm, we have that∧
i=(i1..il)∈Bl

check(i, x[i], f2, ..., fn;x
′(Rest), f ′2, ..., f

′
m) = disj holds

⇒ Ji, x[i], f2, ..., fnK
⋂

Jx′(Rest), f ′2, ..., f ′mK,∀i ∈ Bl

⇒ (
⋃

i=(i1..il)∈Bl

Ji, x[i], f2, ..., fnK)
⋂

Jx′(Rest), f ′2, ..., f ′mK

⇒ (
⋃

i=(i1..il)∈Bl

Ji, x[i]K)× Jf2, ..., fnK
⋂

Jx′(Rest), f ′2, ..., f ′mK

⇒ Jx[[l]], f2, ..., fnK
⋂

Jx′(Rest), f ′2, ..., f ′mK = ∅
� (x1(Rest),x2(Rest)) = check(f2, ..., fn; f

′
2, ..., f

′
m)

//len. of x1(Rest) = len. of x2(Rest)∧
check(x′1(Rest), f2, ..., fn; f

′
2, ..., f

′
m)

// len. of x1(Rest)>len. of x2(Rest)∧
check(f2, ..., fn;x

′
2(Rest), f

′
2, ..., f

′
m)

// len. of x1(Rest)<len. of x2(Rest)
Given that check(x1(Rest), f2, ..., fn;x2(Rest), f

′
2, ..., f

′
m) = disj, we

want to show
Jx1(Rest), f2, ..., fnK

⋂
Jx2(Rest), f ′2, ..., f ′mK = ∅

By the algorithm, we have that:
check(f2, ..., fn; f

′
2, ..., f

′
m) = disj,

check(x′1(Rest), f2, ..., fn; f
′
2, ..., f

′
m) = disj,

check(f2, ..., fn;x
′
2(Rest), f

′
2, ..., f

′
m) = disj all hold.

⇒ Jf2, ..., fnK
⋂

Jf ′2, ..., f ′mK = ∅ A,
Jx′1(Rest), f2, ..., fnK

⋂
Jf ′2, ..., f ′mK = ∅ B,

Jf2, ..., fnK
⋂

Jx′2(Rest), f ′2, ..., f ′mK = ∅ C
where all A,B,C statements hold. Note that we express x1(Rest) as
Jx1(Rest)K = Jx1[l]K × Jx′1(Rest)K ∪ {ε}, x2(Rest) as Jx2(Rest)K =

20 Algorithm Description and Proof

Jx2[m]K× Jx′2(Rest)K ∪ {ε}, as by the de�nition.
We prove by contradiction that
Jx1(Rest), f2, ..., fnK

⋂
Jx2(Rest), f ′2, ..., f ′mK = ∅.

Suppose there exists some string
s ∈ B∗ : s ∈ (Jx1(Rest), f2, ..., fnK

⋂
Jx2(Rest), f ′2, ..., f ′mK), meaning

that the intersection is not empty. Then, at least one of the following
statement sets 1,2,3 must hold (and all included statements in that
statement set must all hold), covering all length cases of Rest:
(s = x[l] · s′, s′ ∈ Jf2, ..., fnK, s′ ∈ Jf ′2, ..., f ′mK) 1, when lengths of
x1(Rest), x2(Rest) are the same
(s = x[l] · s′, s′ ∈ Jx′1(Rest), f2, ..., fnK, s′ ∈ Jf ′2, ..., f ′mK) 2, when
length of x1(Rest) > length of x2(Rest)
(s = x[m] · s′, s′ ∈ Jf2, ..., fnK, s′ ∈ Jx′2(Rest), f ′2, ..., f ′mK) 3, when
length of x2(Rest) > length of x1(Rest)
From statement 1, Jf2, ..., fnK

⋂
Jf ′2, ..., f ′mK 6= ∅, which contradicts

statement A which holds. Thus, 1 does not hold.
From statement 2, Jx′1(Rest), f2, ..., fnK

⋂
Jf ′2, ..., f ′mK 6= ∅, which

contradicts statement B which holds. Thus, 2 does not hold.
From statement 3, Jf2, ..., fnK

⋂
Jx′2(Rest), f ′2, ..., f ′mK 6= ∅, which

contradicts statement C which holds. Thus, 3 does not hold.
Since none of 1,2,3 hold, Jx1(Rest), f2, ..., fnK

⋂
Jx2(Rest), f ′2, ..., f ′mK =

∅.

The presented algorithm is sound, because it does not let errors propagate when
handling comparisons, and returns a correct result. Such an error would be
a format comparison result of disj, when one nested comparison would have
resulted to nondisj.

The algorithm handles correctly all c, x[l], x[[l]]] �elds, because it performs
comparisons on byte values. However, we do not treat x(Rest) in a similar
manner, since we approximate its behavior. Thus, we cannot claim that our
algorithm is complete as well. We also see from the algorithm that a comparison
of two formats of unequal lengths will result in the disj result.

Chapter 4

Concrete Syntax

Description

We begin here to describe the elements we use in our language using concrete
syntax, i.e. writing down how expressions look like. The concept of declaration
is central to our language, since correct input is only input that conforms to
the declaration of a message, function, agent or element. The abstract syntax
expressions that appear in the sections below are the Haskell data constructors
we used for storing the declarations. The implementation stores and fetches all
the aforementioned types of declarations in a binary tree, using their identi�er
as the tree node's value. We use a binary tree for more e�cient search times.

4.1 Agent Declarations

We use agent identities, always declared in capital letters. An example of agent
declaration is the following one, beginning with the keyword agent :

• agent : SA An agent declaration, named SA.

The abstract syntax used to store this declaration is AgentDecl String.

22 Concrete Syntax Description

4.2 Field Declarations

By �eld declarations we mean the arrays, vectors and varying length �eld dec-
larations that we de�ne in our language. Depending on the provided values, we
also accompany the declaration with the appropriate keyword const or var, to
indicate a �eld that will have constant or variable values respectively. Below,
we show how a syntactically correct �eld declaration in our language looks like:

• const �xed_size m : 3 A one byte constant �eld named m, with the value
3

• var �xed_size w : 3 | 4 A one byte variable �eld named w, with two
possible values

• var �xed_size j : ? A one byte variable �eld named j, with variable
value (could be 0-255)

We refer to �elds declared with only one constant value as constants. Variable
�elds declared with a limited set of values (separated with |) as constrained vari-
ables, and variable �elds declared with the ? symbol as unconstrained variables.

We include an optional type declaration in each �eld declaration. The possible
basic �eld types are nonce, key, agent, tag, var or a user-chosen string to repre-
sent a custom type. If a type is not given in the �eld declaration, then the tag
type is passed to the relevant data constructor for constant �elds, and the var
type is assigned to elements with variable values. This behavior happens for all
non-type-de�ned �eld declarations. More �eld declarations follow below:

• const agent �xed_size z[2] : 3,4 A �xed size array of 2 elements named
z. It's values are 3,4 per cell

• var agent �xed_size j[2] : 3,3 | 4,7 A �xed size array of 2 elements named
j. Possible values are 3,3 or 4,7

• var �myType" �xed_size f[2] : ? A �xed size array of 2 elements named
f, with variable values (0 to 2562-1) and the string myType as �eld type

The strings that follow the keywords const and var are the strings that de�ne
the �eld types, in these cases the types are agent and customType, which is a
user-de�ned string. For both arrays and one-byte elements, the data constructor
used is ElemDecl declNames :: String, value :: FieldVal .

4.2 Field Declarations 23

The vector declarations are seen below. As reference, we used the vector def-
initions found in [tls, ch 4.3], where vectors are treated as �elds composed of
a vector length �eld, and the actual vector contents. The number between the
brackets indicates the number of bytes used as the vector's length �eld, and the
numbers between < .. > the minimum and maximum number of bytes that the
vector's contents hold.

• const agent var_size ac[[1]]<2..2> : 5,6 A constant value vector of type
agent, with 2 bytes of content, 1 of length

• var agent var_size aa[[1]]<0..2> : 4 | 5,6 A variable value vector with
min(0)-max(2) content size, with possible values 4 or 5,6

• var agent var_size ab[[1]]<0..2> : ? A variable value vector, with
possible content lengths of 0 to 2, and of unde�ned value

Although it does not make much sense to declare constant vector contents, we
included it for reasons of language completeness. The data constructor used to
store the vector declarations is
VectDecl declNames :: String, min_len :: Int, max_len :: Int, vect_length_�eld
:: FieldVal, vec_value :: FieldVal .

Finally, the variable length �elds follow:

• const agent var_size �rst(<1..1>) : 2 A constant value of type agent
variable length �eld. Total length is 1 (min & max)

• var var_size second(<0..3>) : empty | 2 | 1,2,3 A variable length �eld,
ranging from 0 to 3 bytes. Possible values are none, 2 or 1,2,3

• var var_size third(<1..3>) : ? A variable length �eld, ranging from 1
to 3 bytes, and of unde�ned value

Variable length �elds can be used to represent padding �elds, which are en-
countered in some protocol messages. Again, constant valued variable length
�elds are syntactic sugar, and in essence they represent array �elds. The data
constructor used for their storage is
VarLenDecl declNames :: String, min_len :: Int, max_len :: Int, var_len_value
:: FieldVal

We will use the notion of format when referring to a sequence of �elds, which
is done frequently in the following sections. We can sum up the �eld syntax in
Figure [?]

24 Concrete Syntax Description

Figure 4.1: All possible �eld declaration cases

4.3 Format Function Declarations

We use message function declarations, whose use is to represent message �elds.
The incentive behind their use is the simpli�cation of some formats, and also to
reduce their declaration size. Functions are in essence macros, because they map
their input according to the function's body declaration. A message function
would be declared with the keyword func, an identi�er used as the function's
name, a list of capital arguments of type �eld or agent, and the function's body.
An example follows:
func func1(�eld M, �eld K, agent L) : { M, K }sign(L)
In this case, the function named func1 accepts two �eld arguments, and one
agent argument that is used in the signature key, denoted as sign. A function
call for func1 would be func1(m, j, SA), where �elds m, j and agent SA
should be the identi�ers of valid de�nitions. Declaring and calling functions
with inappropriate arguments results in error generation and termination of the
program. An example of erroneous declaration in func1 would be the use of the
parameter M in the place of L (resulting in sign(M)), where M is declared as a
�eld parameter. A wrong function call would be func1(m,j,j). In order to store
the function declaration, we use the data constructor
FuncDecl { declNames :: String, vars :: [TypedParam], func_body :: MsgBody }.
Note that a function's body does not have to include only parameters. Identi�ers
of de�ned �elds/formats can be used as well.

4.4 Format Declarations

All the declarations above are necessary in order to declare meaningful formats.
A format can represent a protocol message, since the sequence and interpretation
of each appearing �eld in a message is clearly de�ned. An example of a message
declaration, using some of the previously discussed declarations would be:
msg msg_1 : m, k, func1(aa, ab, SA)
A format can appear inside another format. Its identi�er has to be part of �eld
list of the hosting format. An example is msg msg_2 : m, msg_1, where we

4.4 Format Declarations 25

include a message inside another message.

To declare formats with one or more possible �eld sequences, we use the keyword
sub_form. An example is sub_form sf_1 : a | b,c | d , where the identi�er
sf_1 can have the �eld sequences represented by a, b,c or d, respectively. To
include a sub_form in a format, we simply include its identi�er in the format list.
E.g. : msg msg_3 : sf_1 or sub_form sf_2 : sf_1 | a . Note that a message
cannot have multiple �eld sequences, only one. Because a suf_form format is
not considered a message, thus we do not include it in message comparisons.

A protocol is designed to have its messages delivered to the participants that are
involved in the protocol's execution, and we can consider that each participant
has a role in the protocol run. Although the idea of assigning receiving partici-
pants to each message was thought, we decided to not specify any participants
for any message in our grammar. The reason is that (although indirectly), we
consider that all roles of a protocol/protocols are handled by the same partici-
pant, thus we don't need to specify receiving participants. This is why we need
to examine the disjointness of all protocol messages, instead of just the message
fraction that would correlate to only one role of that protocol like e.g. the client.
The drawback of this approach is that it makes it impossible to infer whether
a message containing an encrypted �eld can be decrypted or not, because that
would require knowledge of the participant/participants who have the key, as
well as the participant's name that receives the message.
Because we had di�culties in de�ning a semantics function that would distin-
guish among decryptable and non-decryptable �elds, we decided to treat all
encrypted �elds as ciphertext bytestrings, and to also abandon the idea of mes-
sage receivers.

Apart from the �eld declarations that we discussed above, a message can include
additional �eld types. These can be:

• Already de�ned messages (called by including their identi�ers in the mes-
sage �eld list).

• Repeated �elds. We have three repeated �eld operators. These operators
appear inside a message's body only.

� [f]: For a �eld identi�er f, found in a message's body, [f] represents
the presence of �eld f, or the absence of it. Equally, we can have
the expression [f,g,h] to show more than one optional �elds. They all
appear, or none appears.

� f+: For a �eld identi�er f, f+ is equal to in�nite repeats of the �eld
f, meaning f+ is equal to f,f,f..... As before, an expression like (f,g)+
is valid, and equal to (f,g)(f,g)....

26 Concrete Syntax Description

� f*: For a �eld identi�er f, f* is equal to [f+]. Expressions like (f,g,h)*
are valid. For all these cases, the data constructor used is Repeated-
Field { rep_body :: MsgBody, freq :: Reps }, where the Reps value
depends on the appearing operator.

• Encrypted �elds, de�ned inside a message's body. An example of that was
already seen in the function declaration section, so we will discuss more
in detail here. msg_2 : m,l,{|m,l|}symm(SA,SE)
The expression above again is a message declaration, containing an en-
crypted �eld. The encrypted content is enclosed within the {|, |} symbols,
and the keyword symm shows the use of a symmetric encryption key. For
asymmetric encryption, we would have the encrypted content contained in-
side the {, } symbols, and the public/private asymmetric encryption keys
would be represented with the keywords public, sign respectively. En-
crypted �elds can be found in function or message declarations only. The
data constructor for encrypted �elds is EncryptedField { sub_msg_body
:: MsgBody, encr_key :: KeyType }.

Chapter 5

Semantics Function

A semantics function is a function accepting an input from a speci�c domain, in
this case the input is our language, and returns its output value. We represent
a semantics function as J input K → P (String), where in our case, the input is
all the possible �elds that appear in our grammar, and P (String) is the pow-
erset of String, meaning all the possible combinations of values of strings. We
use the × operator to indicate the concatenation operation on sets of strings:
A×B = {a · b|a ∈ A, b ∈ B}, where · is the string concatenation operator, A,B
sets of strings. We de�ne as B the set of possible strings that a one byte long
value can have, Bn the set of byte strings of length n. Thus, Bn = B×B×...×B,
with B appearing n times. c is a 1 byte long constant value, C a constant of k
bytes length, where k ∈ 1.. ∞. So, C ≡ (c1,c2,...,ck). We represent as S a string
or arbitrary length.

J . K:: Field Declaration → B+

The declarations const �xed_size name = C, ?, C1 | C2 | ... | Cn are syn-
tactic sugar, and are equivalent to the 1 byte length array declaration, showed
above.

• J const �xed_size name[n] : c1,c2,...,cn K = { (c1,c2,...,cn) | ci ∈ B, i ∈
{1..n} }, ci is a known value constant of byte length 1.

28 Semantics Function

• J var �xed_size name[n] : C1 | C2 | ... | Cf K = { C1, C2, ... Cf | Ci ∈
Bn, i ∈ {1..f} }, where Ci is a constant.

• J var �xed_size name[n] : ? K = Bn, where Bn the set of possible values
of an n-length byte string

• J const var_size name[[n]]<l..l> : C K = { uv | u = l, u ∈ Bn, v ∈ Bl, C
∈ Bl, v = C }, C is a constant.

• J var var_size name[[n]]<l..m> : C1 | C2 | ... | Cf K = { uv | uv ∈ {l1C1,
l2C2, ..., lfCf}, Ci ∈ Bl

⋃
Bl+1

⋃
...

⋃
Bm, li ∈ Bn, i ∈ {1..f} }, the

values of li are equal to the byte lengths of its corresponding Ci element.

• J var var_size name[[n]]<l..m> : ? K = { uv | uv ∈ {u1v1, u2v2, ..., um−l+1vm−l+1}, ui ∈
Bn, vi ∈ Bi−1+l, i ∈ {1..(m− l + 1)} }, the values of the appearing ui are
equal to the byte lengths of vi.

• J const var_size name(<l..l>) : C K = { C | C ∈ Bl }, where C is a
constant.

• J var var_size name(<l..m>) : C1 | C2 ... | Cf K = { u | u ∈ { C1, C2, ...
Cf }, Ci ∈ Bl

⋃
Bl+1

⋃
...

⋃
Bm , i ∈ {1..f}, f ∈ {1..(m-l+1)} }

• J var var_size name(<l..m>) : ? K = { u | u ∈ Bl
⋃
Bl+1

⋃
...

⋃
Bm }

We present the semantics function for the encrypted �elds.
J . K :: Field → B+

• J {|form|}symm(A,B) K = B+. Form is a sequence of �elds and A,B the
two agents, who hold the shared encryption key. The encrypted content
is the form. The length of the encryption is not known.

• J {form}public(A) K = B+, as de�ned above.

• J {form}sign(A) K = B+, as de�ned above.

A function, encountered as a �eld in a message form and noted as func_name(
arg1, arg2, ... , argn), is syntactic sugar for the sequence of �elds that the func-
tion declaration represents. When encountering a function call, it will always be
a �eld encountered in a message form. Replacing the function call arguments in
the function declaration gives us the resulting message form that the function
call represents. As an example, assume we have a function declaration f(agent
A, �eld M) : { M, M }public(A), and a possible function call would be f(SA,
m) with the parameters SA, m de�ned elsewhere.

29

A form is a sequence of �elds, and we represent a form as form = field1, ...
,fieldn where n ∈ N, and fieldn can be one of the possible cases of �elds we
de�ned previously. If n=0, then form = ε, the empty word. A sub_form is
composed of forms, separated by the | symbol. We represent a sub_form as
sub_form = form1 | form2 | ... | formn, where n ∈ N\{0}.

• J . K :: Form → B+

• J ε K = { ε }, where ε is the empty word.

• J form K = { ε }
⋃

J field1 K × J field2 K ×...× J fieldn K

• J [form] K = J form K
⋃

{ ε }.

• J form+ K = J form K
⋃

J form, form K
⋃

.... Equally:
∞⋃
i=1

J formi K.

• J form∗ K = { ε }
⋃

J form+ K

• J sub_form K = Jform1K
⋃

Jform2K
⋃

...
⋃

JformnK

30 Semantics Function

Chapter 6

Uni�cation

Very generally speaking, uni�cation tries to identify two symbolic expressions
by replacing certain sub-expressions (variables) by other expressions [7]. We
consider terms that are built from function symbols (of n-arity) and variables.
The arity of a function symbol can also be zero. The set of variables is denoted
with V, and the set of function symbols with F . Syntactic uni�cation works by
replacing the variables found in expressions with terms, such that the resulting
expressions will be syntactically equal [7]. Variables that represent functions
constitute higher-order variables. A solution to the �rst-order uni�cation prob-
lem, noted as σ, is called substitution. σ is applied su�x to a term. Solving
equations that contain higher-order variables is called higher-order uni�cation.

Throughout this work, we are interested only in �rst-order uni�cation. We view
the constant byte values of �elds as function symbols of zero arity ∈ F , and
�elds with free variable values as variables ∈ V. We are not interested in �nding
the actual substitution among two terms. Instead, we want to know if two �eld
values are uni�able. If so, the �elds they represent are confusable, otherwise
they are disjoint. For simplicity, we refer to free/constrained variable �elds as
variables, and constants as function symbols of zero arity throughout the rest
of this section only.

Since variables represent arbitrary values, confusion among a variable/constant
pair of terms or variable/variable pair of terms is possible, if there exists a

32 Uni�cation

substitution. As mentioned, function symbols cannot be substituted in �rst-
order uni�cation. We only examine �rst-order uni�cation in our implementation.

As an example, consider the equation var[32] = const_val[32], with the �rst
term being a free variable �eld, and the second term being a constant value
�eld, both 32 bytes long. A substitution that would make both terms equal
would be σ = { var[0] → const_val[0], ... , var[31] → const_val[31] }, denoting
a byte-to-byte substitution, or for simplicity, σ = { var[32]→ const_val[32] } for
the entire terms. The aforementioned substitution would result in the equality
relation : var[32]σ = const_val[32]σ.

Uni�cation conditions: One necessary condition for messages to be poten-
tially confusable is to be of equal length. This is necessary in order to have a
meaningful substitution function. Also from the point of view of the OS/proto-
col execution, a message with a length longer than the expected (trailing bytes)
could be accepted as valid message, but could also be rejected as malformed.
Since this behavior is protocol implementation dependent and there might be
variances in it, we demand equal lengths in each examined message pair, that
also make the substitution function meaningful.

Chapter 7

Processing Format Fields

From the concrete syntax we saw that each �eld declaration includes value
assignments as well. This is necessary in order to have meaningful value com-
parisons in the checker. This section discusses the Haskell data types used for
representing the values a �eld can have.

As mentioned before, the �elds that appear in a message are the ones described
in the Field and Message declaration sections. For the corresponding data con-
structors of each �eld that appears in a message, we refer the interested reader
to the Field data type declarations located in the grammar �le.

The input to the checker is a set of declarations, which must include some
message declarations as well, if we wish to have message comparisons. However,
since the comparison works on byte values, we have to resolve a declaration to
its byte values. We discuss initially how byte values are represented.

7.1 Field Value Representation

Byte values are represented by the data type FieldVal, as seen below.

34 Processing Format Fields

data FieldVal = Bytes Size Value -- For constant size fields

| VectFieldVal FieldVal FieldVal -- For vectors

| RepFieldVal [FieldVal] Reps Int -- For *,+,[] fields

| EncrFieldVal [FieldVal] KeyDef

deriving (Show, Read, Eq)

The �rst data constructor is used to represent the value that a �eld declaration
can have. The Bytes data constructor takes two additional arguments which
are Size and Value. We use three di�erent �eld sizes: �xed size, representing
elements like arrays, variable size to represent elements like vectors and variable
length �elds, and the �eld size Rest, to represent the size of encrypted �elds.
The �rst two sizes are self-explanatory.

data Size = FixedSize Int

| VarSize Int Int -- Min and Max bytes in the vector

| Rest

deriving (Show, Read, Eq)

Rest is a very generic way to represent encryption lengths, and does not give
any actual length values. We should point out that Rest is used because, as
mentioned before, in the protocols we examined the encrypted �eld is always
the last. Each message found in TLS and IKE containing an encrypted �eld
has a message length �eld, whose value is the total message length value. Using
this message length value, it is possible to determine the length of the encrypted
�eld as well. So Rest is used to simplify encrypted �eld descriptions. This has a
certain drawback though: For a protocol that uses two or more encryptions in
the same message, to use Rest as the encryption length of each encrypted �eld
is not appropriate. An alternative to this approach would be to compute the
length of the encrypted content (say len), and represent it as a CipherText val-
ued �eld, with a length of len to (len+2048), which is the maximum size increase
an encrypted content should have in TLS [4, p. 21]. However, the drawback
of this approach is that it is not always feasible to compute the exact size of
the encrypted content. For example, when the encrypted content contains an
in�nitely repeated �eld/�eld list (noted with the * operator) we cannot know
the number of times the �eld will appear, which means we should again try all
possible cases of �eld appearances e.c.t. Since this increases the computational
burden substantially, we decided to just use Rest, and leave the appearance of
more than one encrypted �elds in a message as an unsupported feature for now.

To represent the actual byte values, we use the Value data type, as seen be-
low:

7.1 Field Value Representation 35

data Value = Known [[Int]] FieldType

| VarValue FieldType

| CipherText

deriving (Show, Read, Eq)

The Known data constructor stores the byte values we pass to a �eld. For ex-
ample, the �eld declaration const agent �xed_size g[2] = 3,4 would result in
the �eld g having a Value instance of Known [[3,4]] AgentType. A vector �eld
declaration such as var var_size j[[1]]<2..4> : 1,2 | 4,5,6 would result in a
vector content value of Known [[1,2],[4,5,6]] VarType. The VarValue represents
any possible value the �eld can have, and is used when a �eld declaration is
assigned the ? symbol. As mentioned above, the CipherText value is used for
encrypted �elds.

Since the Bytes data constructor has been examined, we will focus on the re-
maining FieldVal data constructors. The vector's values are represented by
VectFieldVal FieldVal FieldVal, where the value of the �rst FieldVal �eld repre-
sents the vector's length �eld, and the second FieldVal represents the vector's
actual contents.

Repeated �elds are represented by the data constructor RepFieldVal [FieldVal]
Reps Int, where [FieldVal] represents the possible values the repeated �eld/�eld
list can have. Reps represents the number of times a �eld/�eld list appears,
depending on the choice among the [],+,* operators. The Int �eld is instanti-
ated with zero, and is used afterwards during message comparison, to count the
number of �eld/�eld list repeats.

An encrypted �eld's value is represented by EncrFieldVal [FieldVal] KeyDef,
where KeyDef represents the used key. We already mentioned that an encrypted
�eld has the CipherText value, so the EncrFieldVal might seem redundant or
a contradiction. However, we believe that it makes the implementation more
sound, and might be fully used when messages with multiple encrypted �elds
are fully supported in the future.

36 Processing Format Fields

Chapter 8

A Quick Tour On The

Implementation

This section discusses the format comparison part of the implementation. The
check algorithm has been presented already, so in this section we present with
more detail how the implementation performs the algorithm's steps. Remember
that the implementation does not follow the algorithm's behavior exactly.

When examining the disjointness of a message set, we follow a sequence of steps,
from parsing to comparison. For a message set consisting of msg1, ...,msgn, we
perform the following steps for all msgi belonging to the set. n must be ≥2 if
we are to perform comparisons (step 4).

1. Store the message declaration of all msgi, using the data constructor Ms-
gDecl { declNames :: String, body :: [Field] }. We also retrieve the sub-
message patterns (SMP) found in the encryptions (if present) of msgi.
The encrypted payload of an encrypted �eld is a SMP. The list [Field]
holds the �eld identi�ers that appear in the message's body.

2. For each element of the aforementioned [Field] list, fetch its corresponding
declaration (in order to retrieve the value/values of that �eld).

3. Construct the possible values set of msgi. Considering the possible values
of each �eld in the message, construct the set of possible values of the

38 A Quick Tour On The Implementation

message, and use the MsgValues String [[FieldVal]] data constructor to
store it. The list of lists [[FieldVal]] holds the set of possible values of the
message. This step is equal to computing JmsgiK.

4. Examine the disjointness of two messages by comparing their value sets.
All elements of the �rst value set are compared with all elements of the
second value set. If a value exists in both sets, the comparison terminates,
and the message pair is declared non-disjoint. The comparison tries to
determine the value of the expression Jmsg1K∩ Jmsg2K, where msg1,msg2
is the examined pair.

compare_two_msgs :: Msg -> Msg -> (IO(), [(Bool, [String])])

compare_two_msgs (MsgValues name_1 val_list_1)

(MsgValues name_2 val_list_2) =

-- each element of val_list_1 is combined with each element of val_list_2,

-- and fed to the lambda function

(putStr("*** " ++ name_1 ++ " compared with " ++ name_2 ++ " *** "),

nub (fmap (\s -> runWriter s) $

(\msg_1 msg_2 -> compare_msg_values msg_1 msg_2)

<$> val_list_1 <*> val_list_2))

Figure 8.1: The Haskell code that compares a pair of message values. Each
message's values are contained in their respective val_list_1,2 list.

Step 4 is performed on all message pairs resulting from the union of themsg1, ...,msgn
set, and the resulting SMP set. Thus, we can reach a result on the disjointness
of the message set msg1, ...,msgn.

The Haskell code for comparing the value sets of two messages (step 4) is seen
in Figure 8.1. We use the applicative functor approach (operator <*>) to
compare each possible pair of val_list_1,val_list_2, and feed that pair to the
compare_msgs function, that performs the value pair comparison. When com-
paring a set of messages, we also include the resulting SMPs from the message
set in the comparison. Thus, we perform all possible comparison pairs between
messages and SMPs.

8.1 A Message's Possible Values

Before performing message comparisons, we perform a-renaming on the �eld
values. When a-renaming a variable, we assign it a di�erent value on each
renaming. In our implementation however, we do not reassign any values, but

8.1 A Message's Possible Values 39

only change the �eld identi�ers accordingly, adding the {n} string next to the
identi�er, with n equal to 1,2.... In our implementation, a-renaming has no
practical importance, and is done just as a formality. We a-rename only �elds
of variable type, or names of agents that appear for example in encryption keys.
Constant �elds of type Tagtype are left untouched.

If a �eld has more than one possible values, a message containing such a �eld
will also have more than one possible values. For each �eld that can have more
than one Known values, we have to consider all of these values when computing
the message's value. Cases of such �eld instances were mentioned above, and
we will discuss a few examples here, including the implementation's output.

• An array declaration like var agent �xed_size j[2] : 3,3 | 4,7 will result
in the declaration: ElemDecl {declNames = "j", value = Bytes (FixedSize
2) (Known [[3,3],[4,7]] AgentType)}. Since the Known list contains two
elements, these are the two possible values of this array. The message
declaration msg f1 : j will have the value list:

MsgValues "f1" [[Bytes (FixedSize 2) (Known [[3,3]] AgentType)],

[Bytes (FixedSize 2) (Known [[4,7]] AgentType)]]

We see that the list contains two elements of type Known, with the �rst
containing the values 3,3 and the other the values 4,7.

• We consider the vector declaration var agent var_size ab[[1]]<0..2> : ?
and the message declaration msg f2 : ab . The vector ab can have three
possible element cases, from zero bytes as vector content, to two bytes
vector content. The byte values are unde�ned, and represented using
VarValue. A vector's length �eld always shows the byte length that the
vector's content has. In each case, the vector's length changes value, al-
ways according to the contents. The implementation choice of creating all
possible vector length cases, and testing all of them, resulted as a solution
to the di�culty of statically processing a vector. By considering all cases
of vector lengths we end up having deterministic vector content for each
case, that is, we know its length and value. This makes �eld and message
value comparison feasible. In contrast, it turned out to be very di�cult
to correctly handle vectors without using this approach. So, although we
might require more computations this way, the comparison is feasible.

For the aforementioned vector, the possible values output of the checker
is seen in Figure 8.2: We see the three cases of vector content, as well as
the values 0,1,2 that the vector's length �eld has in each case. Equally,
the FixedSize data type of the vector's content has the values 0,1,2 to
represent the vector content length.

40 A Quick Tour On The Implementation

MsgValues "f2" [[VectFieldVal (Bytes (FixedSize 1) (Known [[0]] AgentType))

(Bytes (FixedSize 0) (VarValue AgentType))],

[VectFieldVal (Bytes (FixedSize 1) (Known [[1]] AgentType))

(Bytes (FixedSize 1) (VarValue AgentType))],

[VectFieldVal (Bytes (FixedSize 1) (Known [[2]] AgentType))

(Bytes (FixedSize 2) (VarValue AgentType))]]

Figure 8.2: The possible values of the vector declaration var agent var_size
ab[[1]]<0..2> : ?, as outputted by the implementation.

Figure 8.3 shows the 3rd step (value set construction) of a message. Note that
each �eld now holds only one value. Expressed formally, a �eld fi has the value
set JfiJ, and a n-�eld format F = f1, f2, ..., fn has as possible values the set
S = Jf1K× Jf2K× ...× JfnK.

Figure 8.3: All possible message values

The handling of repeated and subform �elds is slightly di�erent though. We
compute the possible values of these �elds at step 4, which is during the actual
message value comparison. For all other �elds, this happens at step 3. This
means that the set of values of repeated �elds during the 3rd step is composed
of only one element. The reason is because this is a correct way to compare
repeated �elds. For example, consider a message msg f1 : a, (b)∗, where a is a
constant value, but b can have the values b1 and b2, where all a,b1,b2 can be
(but not necessarily are) more than one byte values. With every repeat of b,
we cannot be sure which of the b1 or b2 values will appear, since for example
a,b1,b2,b1,b1,b2,... is a valid run, and b's value changes. So instead of creating

8.2 Performing A Value Pair Comparison 41

the in�nitely many possible values of f1 and store them in the MsgValues data
type, we compare all repeated �elds like b during the message value comparison
(step 4). We explain how this works in a future section.

Subform �elds could be handled in step 3 as well. However, we preferred to not
increase the size of the possible message value set further. Instead, we consider
their �eld value set in step 4.

Note that due to the di�erent treatment of repeated and subform �elds, we
break the formal representation S = Jf1K × Jf2K × ... × JfnK we use for a value
set in step 3. To be concise with the formal notation, we would have to either
declare a new semantic function for this intermediate state of repeated �elds
and subforms, or not use the above formal notation.

8.2 Performing A Value Pair Comparison

Value comparison among two message value sets (step 4) works by comparing
each message value pair byte by byte. Consider that messagesmsg1,msg2 result
in the message value sets valset1, valset2 each, with valset1 = {val1, ..., valn},
valset2 = {val′1, ..., val′m}. We compare all vali, val

′
j pairs, where i ∈ 1..n, j ∈

1..m. The �rst �eld value of both vali, val
′
j is compared. When depleted on

either vali or val′j , the next �eld value that follows it is fetched e.c.t. The
comparison continues to run for as long as it �nds the examined �eld values
confusable. If however we reach a point in execution where the examined �eld
value pair of vali, val

′
j is not confusable, we conclude that vali, val

′
j are not

confusable as well. Figure 8.4 shows a simple message value comparison, where
the compared �eld values do not have the same lengths. In this case, each of
the examined �eld values has only one possible value (it is not a repeated �eld),
thus is does not resolve itself into more than one values.

The case where a �eld value vali resolves further into more �eld values concerns
the repeated �elds, that is, �elds that appear using the [],*,+ operators in a
message. The rationale was explained in section 8.1, and Figure 8.5 depicts
this functionality schematically. Same behavior is exhibited by the subform
�elds. We decided to set a limit on the number of repetitions an in�nitely
repeated �eld (noted with +/*) can have. This sets an upper limit to the
resulting branching, because on some occasions that can become quite a lot.
A di�cult case for example is encountered in IKE, where we have a message
containing three nested in�nitely repeated �elds. The variable controlling the
allowed repeats of an in�nite �eld is max_spawns_allowed.

42 A Quick Tour On The Implementation

Figure 8.4: Message value pair comparison, with one possible value per ele-
ment.

Figure 8.5: A message value comparison, where both compared �eld values
resolve into more than one possible �eld values. After the creation
of the new_�eld_list_1,2 lists, all possible pairs constructed from
the elements of new_�eld_list_1,2 lists are compared. We imple-
ment this functionality in our implementation with
(\x y− > compare_msg_values x y)
< $ > new_field_list_1 < ∗ > new_field_list_2. Note that
the above process applies to all �elds, whether they have one or
more possible values. However, we explicitly show in this �gure
the multiple values case.

The function compare_msg_values performs the comparison among a vali, val
′
j

pair. The two arguments are lists of FieldVal, and hold the �eld values of

8.2 Performing A Value Pair Comparison 43

vali, val
′
j respectively. The code fragment that performs this operation is seen

in Figure 8.6.

compare_msg_values :: [FieldVal] -> [FieldVal] -> Writer [String] Bool

compare_msg_values (head_1:field_list_1) (head_2:field_list_2) =

-- Adds what's left from the last field comparison (head_1,2) to the rest

-- of the field_list of each message.

do

let (res, leftover_list_1, leftover_list_2) = compare_fields head_1 head_2

new_field_list_1 = (++) <$> (filter_leftover <$> leftover_list_1) <*> [field_list_1]

new_field_list_2 = (++) <$> (filter_leftover <$> leftover_list_2) <*> [field_list_2]

if res == True && new_field_list_2 /= [] then -- comparison not over yet

do

let writer_logs = (\x y -> compare_msg_values x y)

<$> new_field_list_1 <*> new_field_list_2

-- ORing the result of the above compare_msg_values run

ored_res = or $ fmap (\s -> fst $ runWriter s) writer_logs

strings = concat $ fmap ((\(val,str)-> if val==True then str else [])

. (\s -> runWriter s)) writer_logs

tell strings

return ored_res

else if res == True && new_field_list_2 == [] then

do

tell ["Same, depleted msg_2"]

return True

else do

tell []

return res -- last byte comparison returned False

Figure 8.6: The Haskell code that performs the �eld value comparison. Its
input is a pair of message values.

The �rst �eld value of each FieldVal list is compared, namely head_1, head_2,
using the compare_�elds function. The resulting possible values of head_1,
head_2 are stored in leftover_list_1, leftover_list_2. Note that leftover_list
will contain one element only if its corresponding head �eld value cannot resolve
further (as in Figure 8.4), or more than one elements if the �eld resolves into
more than one possible values (as seen in Figure 8.5). The code that constructs
the new set of the remaining possible values of vali and valj is seen below:

new_field_list_1 = (++) <$> (filter_leftover <$> leftover_list_1) <*> [field_list_1]

new_field_list_2 = (++) <$> (filter_leftover <$> leftover_list_2) <*> [field_list_2]

Note that the remaining �eld values of both vali and valj are stored in �eld_list_1,2

44 A Quick Tour On The Implementation

and haven't been examined yet. When the above code segment runs, all remain-
ing unexamined �eld values of vali and valj are stored in their corresponding
new_�eld_list_1,2 list. If the comparison has not ended yet, they are used as
input arguments of the recursive call of compare_msg_values, until the com-
parison terminates. The corresponding code segment is seen below:

(\x y -> compare_msg_values x y) <$> new_field_list_1 <*> new_field_list_2

8.2.1 Type Handling

When a message value pair is compared, we also retrieve the basic or composed
types that they have. Our implementation outputs the types of both messages,
but gives no additional info, or perform any comparison on types. There can be
cases of message pairs that are confusable but also have di�erent types. That
means there exists a uni�er among these two messages, but that uni�er will not
preserve �eld types. Instead, it treats �elds as byte values, disregarding types.

An example of the above case would be the comparison of the following two
formats:

msg f_1 : A, B, Kab , where Kab is a key, A,B are constants.
msg f_2 : A, B, NA, NB, where NA, NB are nonces.

Say that both f_1, f_2 have the same total byte lengths. For these messages
this means that a substitution exists, however since these two formats have dif-
ferent types, that substitution will not respect types. If however their types
were the same, then we would have an honest substitution (one that respects
types).

8.3 Field Comparisons in the Implementation

In message comparison, we have �elds that can be of constant or variable value.
We also consider the encrypted �elds as variable �elds and note them as cipher-
text.

When comparing a pair of variable �elds, or a variable with a constant �eld, we
are not interested in �nding the set of all possible substitutions the value pair
might have. Instead, we examine uni�ability among �elds, i.e. whether there
can exist a uni�er. If a uni�er exists, then the �elds are confusable. Comparison

8.3 Field Comparisons in the Implementation 45

of constant �eld pairs is more straightforward, because we compare their byte
values directly. When comparing �elds, we perform a byte-to-byte comparison,
as seen in Figure 8.4: we compare one byte at a time until the shorter �eld
depletes, or until we discover they are disjoint.

In the discussed comparisons below, we discuss comparing bytes that are both
one byte long. We abstract from the lengths of the compared �elds, and because
we compare �elds byte-by-byte. As mentioned, we generate all the possible
values of a message (say val1, ..., valn), in order to perform the disjointness
check. As depicted in Figure 8.3, a constrained variable will have only one of
its values, each time it appears inside any of the val1, ..., valn values.

• Constant & Variable:
When comparing constants with constrained variables (both 1 byte long),
we compare known byte values. If they are unequal, the examined message
value pair is unequal. Otherwise, the comparison continues.

Among an unconstrained variable var_t and a constant const_t, there
always exists the substitution σ ={ var_t → const_t }. Similarly, there
always exists a substitution among a 1-byte long constrained variable and
a 1-byte long free variable.

• Ciphertexts :
The ciphertext �elds are treated as free variables. That means they are
confusable with another free/constrained variable or constant. We do not
distinguish ciphetexts that occur from symmetric and asymmetric cryp-
tography.

Consider the comparison among a ciphertext and a constant. Having a
uni�er among a constant and a ciphertext would mean that the content
we encrypt is chosen in a particular way, so that its resulting cipher-
text matches byte-by-byte the constant �eld. This scenario is unlikely
to happen in reality, however the intersection between a constant and a
ciphertext is not empty. Since we cannot exclude that ciphertexts and
constants can be uni�ed, we consider the worst case scenario. Thus, we
treat ciphertexts and constants as confusable.

Because we treat ciphertexts as free variables, we also consider both free
and constrained variable �elds and a ciphertext �eld as uni�able.

Finally, we treat two compared ciphertexts as confusable. For two cipher-
texts (resulting from di�erent encrypted contents) to have the exact same
byte values, we would have to encrypt the same content, and use the same
algorithm and keys. If we were to think in terms of protocol execution, an
attempt to decrypt a random/wrong bytestream (confused as ciphertext)
would fail, and the protocol's execution would not continue. However, we

46 A Quick Tour On The Implementation

do not approach this comparison in terms of protocol execution, but from
a static analysis point of view. Also, by considering two ciphertexts as
confusable, we are consistent with our view of ciphertexts as variables.

The implementation does not examine comparisons involving ciphertexts
with the byte-by-byte approach. As mentioned in section 7.1, we have no
length �eld for a ciphertext. Thus, we compare ciphertexts on the �eld
level, not on the byte value level. For example, consider the comparison
of a 5 byte long �eld value, consisting of free variables, and a ciphertext
being compared. The implementation would discard the variable �eld, and
would continue the comparison by comparing the next �eld that follows
the variable, again with the ciphertext. This implementation approach
could be problematic if we were to encounter encrypted �elds in the middle
of a message. When building the implementation, we had in mind that
encrypted �elds are always the last �eld of a message, since that was the
case for our examined protocol set. However, if we were to make a more
wide message case study, this approach would be problematic.

Although simplistic, the aforementioned treatment of ciphertexts does not
reduce the correctness of the disjointness check we perform. The encrypted
contents are examined through the SMPmessage sets, so no loss of scrutiny
occurs in the examined message set. Also, the de�nition of the semantics
function for an encrypted �eld turned out to be very di�cult, if we were
to consider more properties of ciphertexts like decryptability.

8.4 A Short Example

In this section we will present a small set of formats depicted in Figure 8.7, and
the output produced by the checker when comparing them. This example uses
a section of the implemented work in terms of appearing concrete syntax and
functionality of the checker, but not all.

The checker's output is seen in Figure 8.8. The appearing SMPs are the formats
that constitute the encrypted content. They are denoted with the pre�x smp_,
followed by the message identi�er from which we extracted them. Note that
False represents the distinguishability of a format pair, True means that two
formats are non-disjoint (confusable). Some additional information is included
in the boolean result, depending on the comparison case. The intention is to
provide more information on a particular comparison result.

As seen from the output, the SMPs are problematic because they are not distin-
guishable enough. Also, the same happens with messages f1-f2,f1-f3 because of

8.4 A Short Example 47

agent : A

agent : B

agent : C

const tag fixed_size tag_1 : 1

const tag fixed_size tag_2 : 2

const tag fixed_size keytag : 7

var nonce fixed_size nonce_a[64] : ?

var nonce fixed_size nonce_b[64] : ?

msg f1 : { nonce_a, keytag }public(B)

msg f2 : tag_2, { keytag, nonce_a }public(A)

msg f3 : tag_1, { nonce_a, keytag }public(C)

Figure 8.7: A small problematic format set.

the lack of some starting tag on f1. f1 is a ciphertext �eld, which is treated as a
variable. As mentioned, when comparing a pair of ciphertexts, we consider them
to be confusable. Along with the comparison result, we also output the type of
each format. For formats with more than one �elds, it will be a composed type.

In order to �x the problematic formats, we introduce additional tags in the
formats, aiming to make them distinguishable. The changes are seen in Figure
8.9

After the introduction of additional tags, the checker returns all formats to be
distinguishable.

48 A Quick Tour On The Implementation

*** f1 compared with f2 *** [(True,["Same, depleted msg_2"])]

Appearing types: "crypt(nonce,tag)" & "tag,crypt(tag,nonce)"

*** f1 compared with f3 *** [(True,["Same, depleted msg_2"])]

Appearing types: "crypt(nonce,tag)" & "tag,crypt(nonce,tag)"

*** f1 compared with smp_f1 *** [(True,["Same, depleted msg_2"])]

Appearing types: "crypt(nonce,tag)" & "nonce,tag"

*** f1 compared with smp_f2 *** [(True,["Same, depleted msg_2"])]

Appearing types: "crypt(nonce,tag)" & "tag,nonce"

*** f1 compared with smp_f3 *** [(True,["Same, depleted msg_2"])]

Appearing types: "crypt(nonce,tag)" & "nonce,tag"

*** f2 compared with f3 *** [(False,[])]

Appearing types: "tag,crypt(tag,nonce)" & "tag,crypt(nonce,tag)"

*** f2 compared with smp_f1 *** [(True,["Same, depleted msg_2"])]

Appearing types: "tag,crypt(tag,nonce)" & "nonce,tag"

*** f2 compared with smp_f2 *** [(False,[])]

Appearing types: "tag,crypt(tag,nonce)" & "tag,nonce"

*** f2 compared with smp_f3 *** [(True,["Same, depleted msg_2"])]

Appearing types: "tag,crypt(tag,nonce)" & "nonce,tag"

*** f3 compared with smp_f1 *** [(True,["Same, depleted msg_2"])]

Appearing types: "tag,crypt(nonce,tag)" & "nonce,tag"

*** f3 compared with smp_f2 *** [(False,[])]

Appearing types: "tag,crypt(nonce,tag)" & "tag,nonce"

*** f3 compared with smp_f3 *** [(True,["Same, depleted msg_2"])]

Appearing types: "tag,crypt(nonce,tag)" & "nonce,tag"

*** smp_f1 compared with smp_f2 *** [(True,["Same lengths"])]

Appearing types: "nonce,tag" & "tag,nonce"

*** smp_f1 compared with smp_f3 *** [(True,["Same lengths"])]

Appearing types: "nonce,tag" & "nonce,tag"

*** smp_f2 compared with smp_f3 *** [(True,["Same lengths"])]

Appearing types: "tag,nonce" & "nonce,tag"

Figure 8.8: The checker's output, after examining the problematic format set.

8.4 A Short Example 49

agent : A

agent : B

agent : C

const tag fixed_size tag_1 : 1

const tag fixed_size tag_2 : 2

const tag fixed_size tag_3 : 3

const tag fixed_size inner_tag_1 : 4

const tag fixed_size inner_tag_2 : 5

const tag fixed_size inner_tag_3 : 6

const tag fixed_size keytag : 7

var nonce fixed_size nonce_a[64] : ?

var nonce fixed_size nonce_b[64] : ?

msg f1 : tag_1, { inner_tag_1, nonce_a, keytag }public(B)

msg f2 : tag_2, { inner_tag_2, keytag, nonce_a }public(A)

msg f3 : tag_3, { inner_tag_3, nonce_a, keytag }public(C)

Figure 8.9: Corrected format set. Now there are no confusability reports from
the checker.

50 A Quick Tour On The Implementation

Chapter 9

XML Implementation

Due to the lack of time, some features concerning support for XML messages
were left un�nished. We discuss the current status of our XML support, as well
as the needed work to have it fully covered.

9.1 XML Concrete Syntax

XML (eXtensible Markup Language) is a markup language that de�nes a set
of rules for encoding documents in a format that is both human-readable and
machine-readable. By de�nition, an XML document is a string of characters.
The character encoding used in XML messages are the UTF8 and UTF16 en-
codings. Proper XML syntax rules are explained in [3], where the concepts of
XML element, attribute and content are discussed through a set of examples.

Our grammar provides support for representing simple and complex XML ele-
ments. We brie�y mention the work done on XML, by presenting some examples
below.

• string se : "mystring"
A string declaration, with the value mystring, and the identi�er se as

52 XML Implementation

the string's name. This identi�er will be used when passing this string
declaration as an argument.

• xml_elem cd1 :< ”Tagname” > ”cdcont” < /”Tagname” >
A simple XML element declaration, named cd1. The keyword xml_elem
indicates an XML element declaration. The strings Tagname, cdcont are
the XML element's tag name and XML element's content, respectively. We
enclose them in quote characters "", to indicate they should be interpreted
as a string. XML elements declared with the xml_elem keyword must
contain only strings (strings enclosed in "") as tag names, attributes and
content.

• xml_elem cd3 :< ”Topname” ”src” = ””attrname”” >< ”Tname” >
”cdcont” < /”Tname” >< /”Topname” >
An XML element declaration, containing a nested XML element (child
element) as content. If more than one nested XML elements are used as
content, they must be separated by commas. Notice that we use double
quotes on attributes, because we want the string ”attrib_name” to be
interpreted as the XML attribute. The above XML element, as well as all
our syntax concerning XML, can be viewed as a �attened XML message.
Thus, the above syntax is the same as having :

<"Topname" "src"=""attrname"">

<"Tname">"cdcont"</"Tname">

</"Topname">

which resembles the appearance of an ordinary XML element.

• func func_3(string S, xml_elem E, fieldF) : < ”msg” > E,< S >
F < /S >< /”msg” >
An XML function declaration. An XML function should be viewed as a
parameterized XML element. XML functions work in the same spirit as
format functions mentioned in section 4. In essence, they also are macros.
We can pass three types of arguments in an XML function: strings, xml
elements, and the �elds described in 4. As with format functions, variables
are written in capital letters. We do not use any quote characters on the
variables, because then they would be interpreted as strings. The function
identi�er is func_3, and the keyword func must precede it. The above
function has two child XML elements as its content. The �rst is the XML
element represented by the variable E of type xml_elem. The second
child XML element is represented by the <S> F </S> XML element.

• xml_msg xml4 : < se > func_1(se, cd1), < se > m_arr < /se ><
/se >
An XML message declaration. In XML messages, we can use �eld iden-
ti�ers like se as tag names and content. The above message has the tag

9.1 XML Concrete Syntax 53

name that is represented by the se identi�er. In our case, se is the identi�er
pointing to the string textitmystring. The content of message xml4 con-
sists of two XML elements. The �rst XML element is represented by the
XML function func_1 func_1(se, cd1). The identi�ers se and cd1 are not
enclosed in quote characters. That is because we want them to be treated
as identi�ers of declarations. In these examples, se represents a string, cd1
represents an XML element. The second XML element is represented by
< se > m_arr < /se >. The actual value of xml4 is constructed at a later
execution point, when we resolve all identi�ers present in it. As before,
the identi�ers se,m_arr represent declarations: se a string, and m_arr
is the identi�er of a �xed_size array (we omit including the declaration of
m_arr).

At the current implementation stage, the XML grammar is merged with the
formats grammar. We do not use the same abstract syntax for both XML and
formats. However, both XML and format syntax use the same abstract syntax
data types (Field type, declared in the �le my_parser.y). As seen from the
examples above, we can include format �elds as XML content.

The implementation performs syntactical correctness checks on XML declara-
tions. So every XML element, function and message declaration has to conform
to certain rules:

� The XML content has to strictly be in one of the three categories:
1 At least one or more strings and/or string parameters, separated by
commas.
2 At least one or more XML elements and/or XML element parameters,
separated by commas.
3 At least one or more format �elds and/or �eld parameters, separated by
commas.
Mixing any of these three categories is considered malformed content, and
terminates the program with an error message.

� The values used for tags and attributes must be strings, parameters of
type string, or identi�ers that resolve to strings. Otherwise, an error is
generated, and the program terminates with an error message.

The implementation resolves correctly nested XML elements (that might con-
tain other nested XML elements). Value representation for XML declarations
is also implemented. Since we are to perform disjointness checks on XML mes-
sages, their value representation is necessary.

54 XML Implementation

We present the value representation of two XML declarations, using the imple-
mentation's output. For the simple XML message xml_msg xml3 :< ”now” >
”cont” < /”now” >, the output is seen below:

XmlValues "xml3" [[StrVal "<now",StrVal ">",StrVal "cont",StrVal "</now>"]]

The data type XmlValues represents the value of message xml3. It consists only
of strings and no nested elements, so only the StrVal data constructor (used to
store strings) appears.

The implementation's output for the more complicated xml4 message is seen
below:

XmlValues "xml4"

[[StrVal "<myname",StrVal ">",

ChildXmlElemTagFieldVal [StrVal "<myname",StrVal ">",

ChildXmlElemTagFieldVal [StrVal "<Tagname",StrVal ">",

StrVal "cdcont",

StrVal "</Tagname>"],

StrVal "</myname>"],

ChildXmlElemTagFieldVal [StrVal "<myname",StrVal ">",

Bytes (FixedSize 64) (VarValue {f_type = VarType}),

StrVal "</myname>"],

StrVal "</myname>"]]

Apart from StrVal, the ChildXmlElemTagFieldVal data constructor is used to
store the values of the XML child elements. Note that the �eld array m_arr is
resolved into its �eld value, which is Bytes (FixedSize 64).

9.2 Future Work on XML

A more complete XML support from our implementation would be the support
of XML schemas. An XML schema can be viewed as a set of constraints,
or a grammar, that an XML message must conform to. These can include
constraints on the XML content, the number of attributes allowed in it e.c.t.
According to the examined schema, an XML message would be rejected as non-
compliant to it, or accepted. Due to the lack of time, this idea could not be
implemented. We do not perform sanity checks on the string content for now.
Such checks would be the detection of illegal characters inside the XML string
content. The integration of XML messages into the compare_msg_values is

9.2 Future Work on XML 55

also needed in order to perform comparisons, but has not been done. Examining
XML protocols would also give more insight into the features that should be
integrated by our grammar and implementation.

56 XML Implementation

Chapter 10

Protocol Comparison

Results

Representing the examined TLS and IKE protocol messages with our language
was not a problem. The syntax we have so far covers all messages of both
protocols. However, the computational part of the experiments turned out to
be a really problematic issue. Unfortunately, the computation times to complete
each message set are quite high, let alone combining them. A �rst cause is the
fact that we are examining analytically vectors and variable �elds. That is,
we consider all their length cases, and subsequently construct multiple possible
values from the formats that hold them. This approach has the advantage of
giving more accurate results for some �eld comparisons. However, this comes
at the cost of a high computational burden. A second cause is the inherent
complexity that some messages have. This is very obvious in IKE messages.
Unfortunately, on our tested hardware we were unable to process the exact
message representations we wrote for IKE and TLS. The computation could
not �nish, because the our system would run out of resources and terminate the
execution. Instead, we discuss the obtained results from altering the message
sets.

58 Protocol Comparison Results

10.1 TLS Results

The TLS message set was written using [4], [5] Examining the messages of
TLS with the normal vector values was a huge computational burden. This is
justi�able by the presence of some quite long vectors. Some TLS messages hold
vectors of lengths from zero to 65535 bytes long, which create 65536 di�erent
value cases. The worst example is the sub_form named server_dh_params,
which holds three such vectors. When resizing the vector lengths to almost
zero, the computations on the TLS set were almost instant.

We should also mention the fact that we abstracted the content of some vectors.
We did that by disregarding the vector's content type. For example, in the
TLS speci�cation there exists a vector of length from 2 to 65534 bytes, and its
content is declared to be of type CipherSuite. Since the CipherSuite values are
also described in the speci�cation, we now have a more restricted range of values
for this vector. For simple values this would be feasible to calculate, however for
more complicated cases this can become quite hard to handle. Thus, we decided
to abstract from the vector payloads, and declared them as free variables.

Our implementation found all TLS messages to be disjoint, when their vector
lengths were minimal. This will probably be the case when using the speci�ed
vector lengths, however at this point we would have to run experiments on a
more powerful machine to reach that conclusion safely.

10.2 IKE Results

The IKE message set was written using [6]. The extensive use of format functions
reduced drastically the message size of IKE's representation. Each �eld in IKE
contains a tag that identi�es the �eld that follows it. Thus, every �eld in IKE
was seen as a function: depending on the �eld sequence, the participating �eld's
tag values are di�erent as well.

IKE turned out to be way more cumbersome to compute. It should be noted that
compared to TLS, IKE has way less variable length �elds. But even when they
were zeroed, the computational burden was still quite high, and computation
times were very large. The complexity of the examined messages is the main
problem in the case of IKE. One example of that complexity is the presence
of messages with eight possible �eld sequences, due to the used [] operators.
Another example are messages which contain security associations, noted as
sec_assoc. This �eld contains three nested in�nite �elds, which also pose a lot

10.3 Examining TLS with IKE 59

of computational burden.

We examined parts of the message set of IKE, but we did not run comparisons on
the entire set. Unlike TLS, some messages of IKE were found to be non-disjoint
by our checker.

10.3 Examining TLS with IKE

Since our implementation �nds some messages of IKE to be non-disjoint, we
did not try to compare the message sets of TLS with IKE. A composition of
TLS with IKE would not be secure, so there was no point in performing this
comparison.

60 Protocol Comparison Results

Chapter 11

Conclusions and Future

Work

In conclusion, a language has been designed that manages to represent the mes-
sage sets of TLS and IKE correctly and accurately. Support for XML messages,
although not complete, is in an advanced implementation stage for now. Al-
though we abstract slightly from the details of some of the examined messages,
this does not reduce the correctness of the representation. Our implementa-
tion supports all input that can be generated from our language, with some
restrictions posed on the number and placement of encrypted �elds. Finally, we
managed to perform disjointness checks and get some results on the complex
message sets of TLS and IKE. We would be more that interested to try out our
implementation on a more powerful machine, in order to reach a verdict on the
improvements and changes needed to it.

To improve our current work, �rst we should incorporate all the XML features
we lack for now. Examining more protocols would also result in the expansion
of the language syntax, with the aim to create a protocol message description
language able to cover as many protocols as possible.

An important consideration is towards which direction the implementation should
head. At this point, our implementation is a mix of analytical computation and
static analysis. The analytical behavior comes from the treatment of vectors
and variable length �elds. The treatment of encrypted �elds though is di�erent.

62 Conclusions and Future Work

Since we abstract from �eld lengths, we act similarly to the behavior of the
x(Rest) �eld as mentioned in section 3.1.

As seen from the results, the analytical approach tends to be very cumbersome
for complex messages. On the other hand, its results are accurate. Computa-
tional intensity is problematic, however, not necessarily restrictive. If we are
interested to investigate the disjointness of a protocol set, we only need to run
the check once on powerful hardware.

A more abstract approach on �eld comparisons would probably lessen the com-
putational intensity, even though it would still cause heavy branching on the
execution trace. When abstracting from details, we overapproximate. And the
rationale behind that is to have a non-ambiguous correct result that occurs from
examining a more general case.

We believe that this work can aid research done on protocol security, and expand
even more in the future. When the un�nished work is completed, the �nal tool
will be useful for both researchers and protocol designers.

Bibliography

[1] Hopcroft, Ullman, Motwani: Introduction to Automata Theory, Languages
and Computation 2nd Edition

[2] http://www.w3schools.com/xml/xml_examples.asp

[3] http://www.w3schools.com/xml/xml_syntax.asp

[4] http://tools.ietf.org/html/rfc5246

[5] http://tools.ietf.org/html/rfc6066

[6] http://tools.ietf.org/html/rfc5996

[7] Baader, Snyder: Handbook of Automated Reasoning, 2001

[8] Arapinis, Du�ot: Bounding Messages for Free in Security Protocols

[9] Thomas Groÿ, Sebastian Mödersheim: Vertical protocol composition (Ex-
tended Version)

[10] Aho, Lam, Sethi, Ullman: Compilers, Principles, Techniques, & Tools 2nd
Edition

[11] http://www.haskell.org/haskellwiki/Haskell

[12] http://www.haskell.org/alex/

[13] http://www.haskell.org/happy/

http://www.w3schools.com/xml/xml_examples.asp
http://www.w3schools.com/xml/xml_syntax.asp
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6066
http://tools.ietf.org/html/rfc5996
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/alex/
http://www.haskell.org/happy/

64 BIBLIOGRAPHY

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction to the Problem
	1.1 Preliminaries
	1.2 Message Types
	1.3 Protocol Model Checking
	1.4 Achieving Message Disjointness
	1.5 Where This Thesis Contributes
	1.6 Development Tools

	2 Context Free Languages and Grammar
	3 Algorithm Description and Proof
	3.1 Checker Algorithm and Proof of Each Case

	4 Concrete Syntax Description
	4.1 Agent Declarations
	4.2 Field Declarations
	4.3 Format Function Declarations
	4.4 Format Declarations

	5 Semantics Function
	6 Unification
	7 Processing Format Fields
	7.1 Field Value Representation

	8 A Quick Tour On The Implementation
	8.1 A Message's Possible Values
	8.2 Performing A Value Pair Comparison
	8.2.1 Type Handling

	8.3 Field Comparisons in the Implementation
	8.4 A Short Example

	9 XML Implementation
	9.1 XML Concrete Syntax
	9.2 Future Work on XML

	10 Protocol Comparison Results
	10.1 TLS Results
	10.2 IKE Results
	10.3 Examining TLS with IKE

	11 Conclusions and Future Work

