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Summary

The speed of instruction set emulation is essential when researching new in-
struction sets or changes to current instruction sets. It is also essential when
executing programs for which the originally targeted platform is no longer avail-
able.

Software-based instruction set emulators are used extensively in computer ar-
chitecture development. They allow researchers to evaluate performance im-
plications of changes to the instruction set without going through the effort
of implementing the instruction set in silicon. They also allow software devel-
opers to develop and debug software for hardware architectures for which the
hardware model is not yet finished. However, there is an inherent limit to the
amount of instructions that can be emulated in a given time frame for emulators
implemented in software.

This report presents a method to implement instruction set emulation by using
a reconfigurable hardware accelerator combined with a conventional processor.
A significant part of the proposed system is designed and implemented. The
system aims to emulate the Motorola 68000 instruction set. The hardware part
of the implemented solution is capable of operating at a clock frequency of 237
MHz.
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Chapter 1

Introduction

Throughout the history of computing, compatibility between different computer
architectures has been an issue. A program that is designed to run on one type of
computer may not run on another type of computer. When a computer system
user has bought a computer of a certain type, along with a set of programs
that is able to run on the computer, the user becomes tied to that specific
computer platform. The programs that the user has bought for the computer
will possibly not work on another type of computer. If the user wants to upgrade
the computer system, the user must buy a computer of the same type in order
to keep using the software that was bought with the old computer system.

Computer manufacturers are interested in selling more computers. Offering
faster computers might compel users to upgrade their old computer systems
to new models. However, the user might not buy a new computer if the new
computer obsoletes all previously acquired software. This forces the computer
manufacturer to keep supporting old features of previous computer systems,
even though it is a complex task that might even hurt performance of the new
computer.

At some point, the manufacturer of a certain type of computer may stop pro-
ducing that type of computer. This may happen for one of many reasons. It
may not be profitable to produce the computer in question, or the company may
cease to exist for some reason. The user may be required to eventually upgrade
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his computer system, and lose the ability to run old software.

1.1 Emulation

Emulation technology makes it possible to run software for one type of computer
on another type of computer. By using emulation software, the user might
be able to run his old software on a new computer. He might also be able
to run software written for one type of modern computer on another type of
modern computer. However, emulation software usually incurs some overhead.
The emulated software will not run as fast under emulation as it would on the
original platform. As research in computer architecture tends to find ways to
make computers operate faster all the time, this overhead may be tolerable.
Software that ran with some speed on an old computer system, may run fast
enough under emulation on a modern computer system, due to advancements in
computer architecture. Even though the software may be run with an acceptable
speed, any advancements that are able to make the emulation process faster are
still interesting. A faster computer is always interesting.

The Instruction Set Architecture, ISA, of a system defines the programming
model that a program must use to run on that system. If a program is to run
on a specific computer system, the program must at least1 target the ISA of
that computer system. An emulator that emulates one ISA on another ISA is
called an ISA emulator.

Besides making it possible to run software written for a machine that implements
one ISA to run on a machine that implements a different ISA, emulation may be
used to port software between systems that use the same ISA but runs different
operating systems. Such an emulator is called an operating system emulator.
Operating system emulators can be implemented by emulating operating system
code along with user program code, or by implementing emulated operating
system services as emulator functions.

Besides ISA and operating system, other aspects of computer systems such as
I/O devices may be emulated. Emulators that provide full ISA emulation, and
I/O device emulation are often referred to as full system emulators. .

1The program may also be required to target specific Application Programming Interfaces
provided by the computer platform.
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1.2 Simulation

Simulation is a concept closely related to emulation. Emulation is concerned
with making a program targeting one type of computer system execute on a
different type of computer system. Simulation, on the other hand, is concerned
with investigation of the behavior of a running program or the computer system
on which it is running. Computer architecture researchers depend extensively
on simulation to investigate and validate architectural features of computer sys-
tems. Depending on the type of information a simulation is required to produce,
the system or program under investigation may be simulated with more or less
accuracy. If the target of the simulation is the underlying silicon hardware,
the simulation is required to handle a high level of details. If the simulation is
concerned only with memory references made by a program, many details can
be left out of the simulation. For instance a DRAM timing model is not neces-
sary in this case, because DRAM timing (usually) has no effect on the memory
references made by a program.

Emulation and simulation are both related to the use of high level virtual ma-
chines to enhance portability of programs across heterogeneous computing en-
vironments.

Emulation technology is often used to emulate ISAs that only exist as software
implementations. Such ISAs are referred to as Virtual Machines, or VMs. A
VM architecture describes a computer architecture that includes, but is not lim-
ited to, the ISA. VMs allow programs targeting the VM to run on any platform
that has a software program that implements the VM. Some VM specifications
describe VMs that operate on binary coded instruction streams as known from
real machine architectures [LYBB13]. Others specify the virtual machine archi-
tecture on the program source level [vR13]. A VM in the latter group is some
times referred to as language VM.

1.3 Goal

The goal of this project is to emulate the m68k instruction set by using dynamic
binary translation from the m68k ISA to a custom ISA developed as part of the
project. An execution engine implementing the custom ISA will be implemented
in reconfigurable hardware.
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1.4 Overview

The rest of the report is organized as follows. Chapter 2 summarizes research
related to the project scope. Chapter 3 provides background on some of the
topics that the rest of the report builds on. Chapter 4 describes the goal of
the project and summarizes the approach used to reach the goal. Chapter 5
to 7 describes the implementation of the hardware based emulator that was
developed as part of the project. Chapter 8 describes a simulation framework
that was used to develop and test the emulator. Chapter 9 presents results and
findings of the project. Chapter 10 gives an overview of project tasks that would
be nice to complete, but which could not be completed within the project time
frame. Chapter 11 concludes the project.

As a help to the reader, an index is provided at the back of the report.
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Related Work

In this section related work in various disciplines related to the project will
be summarized. The references made in this section originate in some of the
material that was investigated as part of the project process.

2.1 Interpretation

The most basic way to emulate a foreign ISA is by using a piece of software
to interpret the instructions of the program to be emulated one by one. A
representation of relevant pieces of architected state1 is kept in memory. The
core of a typical emulator is the instruction dispatch loop. The instruction
dispatch loop uses the emulated PC to fetch, decode and execute one instruction
at a time. The instruction is typically executed by calling a specific function
that implements the semantics of the fetched instruction. The called function
updates the emulated state and returns to the instruction dispatch loop where
the next instruction is fetched, decoded and executed.

1Architected state refers to state that is defined by the ISA. This includes the PC and
condition code registers, but not internal micro architectural features such as rename registers
or reorder buffers.
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The performance of simple interpreters are not impressive, but they can be
simple to implement

SimpleScalar is an extendable instruction set simulator [BA97]. It is capable of
performing simulation if the IA-322 ISA and others, with configurable level of
detail. It is widely used in computer architecture research because of its open-
ness and flexibility. Both the IA-32 and ARM implementations in SimpleScalar
use hand crafted multi-level table based instruction decoders.

Depending on the complexity of the ISA to be decoded, it can be more or less
time consuming to write a fast instruction decoder by hand. Krishna et al. has
presented a method to automatically generate fast instruction decoders from an
instruction description language named Rosetta [KA01]. They show that the
generated decoders are capable of achieving performance comparable to hand-
coded and hand-optimized instruction decoders, and that their IA-32 decoder
is faster than the IA-32 decoder that ships with SimpleScalar.

Simics is an interpretive simulator that translates the foreign instruction stream
to an intermediate format before interpreting the intermediate format instruc-
tions [MS94]. Simics achieves better performance than normal interpreters by
translating the interpreted program into a format that is better suited for inter-
pretation. The intermediate format may hold pre-computed information about
the instruction that it represents, such as pre-scaled immediate operands. By
caching and reusing translations, the Simics system is able to remove some of
the decoding overhead. In addition, multiple translations for an instruction can
exist at the same time, to represent the effect of an instruction under different
conditions. Simics is developed and sold by Wind River Systems in California,
USA.

In a 2008 paper Mihoca et al. show how interpreting emulators implemented in
C and C++ using suggested implementation techniques can achieve performance
similar to the performance achieved by dynamic recompilation engines on the
x86 platform [MS08]. By implementing a trace based cache structure to hold
decoded instruction traces for the emulated program, they are able to increase
the performance of the Bochs x86 simulator by 20%. The authors argue that
their interpreters are more portable than dynamic translation solutions because
they rely only on high level programming language constructs, rather than target
specific assembly constructs. They find that updating the emulated condition
code registers is a significant performance bottleneck for interpreting emulators.

In a 2011 paper Tröger et al. evaluate a fast, portable interpreter implemented

2The terms IA-32 and x86 are used interchangeably about the Intel 32 bit architecture as
featured in the Intel 80386 and subsequent processors.
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using C++, based on the principles described by Mihoca et al. [TM11]. The sim-
ulator achieves its portability by being written in standard C++. The authors
use specification driven instruction decoder generator to generate a decoder that
translates the emulated instructions to an immediate representation, much like
the representation used in Simics. The intermediate instructions are cached as
traces, and the traces are able to execute atomically via special commit/abort
constructs. This allows for precise exceptions to be implemented, even when one
emulated instruction is translated into more than one internal instruction. The
presented simulator employs lazy flag evaluation. This technique allows condi-
tion code register values to be evaluated only when required. This is achieved
by keeping the result and carry information of an instruction around until it
can no longer be used to base condition code values on. The authors are able to
show that 15-20 different instructions account for more than 60% of dynamically
executed instructions in full system workload benchmarks.

2.2 Binary Translation

Dynamic binary translation3 is an alternative means to implement emulators
and simulators. Instead of calling a function based on the instruction to be in-
terpreted, emulated instructions or groups thereof are translated to native host
instructions at execution time. The translation process can be costly, and the
translated instructions are cached in order to mitigate the translation cost. Usu-
ally binary translation systems start out by interpreting the emulated program.
Only when a section of code has been executed multiple times is the translation
process started.

The translated instructions can be instrumented in order to collect information
about the emulated program at run-time. This information can then be used
to optimize the translated sequences of host instructions. This process is often
referred to as dynamic recompilation. Dynamic binary translation and dynamic
recompilation are also known as just-in-time compilation, or JIT compilation.

Shade is one early attempt at implementation of an instruction set emulator
using dynamic binary translation [CK94]. Shade achieved good performance
in comparison with interpretation based simulation tools available at the time.
Using Shade, the amount of information collected during simulation can be
increased at the cost of simulation speed by injecting code into the translated
code traces.

3The terms dynamic binary translation and binary translation are used interchangeably
throughout this report. I shall not refer to the term static binary translation unless explicitly
stated.
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Dynamo is a dynamic optimizer for the PA-RISC platform [BDB99]. It executes
on the PA-RISC platform and takes a native PA-RISC binary as input. Dynamo
starts by emulating the input program via interpretation. When a given address
has been interpreted a number of times, the interpreter will generate a trace
starting at the address. The trace is optimized based on information collected
by the interpreter, and the optimized result is emitted to an in-memory trace
cache. Next time the address of the instruction that caused the interpreter to
start the trace is encountered, control is passed to the optimized trace. Because
Dynamo requires a native executable as input, strictly speaking it does not
perform dynamic translation because no translation is involved. Instead the
functionality of Dynamo is referred to as dynamic optimization. By leveraging
program behavior information collected at run-time, Dynamo is able to increase
the performance of statically optimized programs.

Dynamically Architected Instruction Set from Yorktown, or Daisy, is an IBM
research project that uses binary translation to execute an existing ISA on
a VLIW architecture specifically designed as a target for binary translation
[EAGS01]. The architecture targeted by Daisy is features 16 execution units.
The emulated architecture is the PowerPC RISC ISA. Like many other systems,
Daisy starts execution of the emulated program by interpreting the instructions
one by one. When a hot region is detected, the region is translated to native
code. The translated segments reside in a memory code cache. Instead of
linear traces, Daisy uses instruction trees as the unit of translation. Instruction
trees are dynamically executed instruction traces that have one entry point,
but multiple exit points. As opposed to linear traces, instruction trees may
contain both control paths of a conditional branch instruction. Daisy uses this
feature in combination with predicated instruction support in the underlying
VLIW architecture. Because the VLIW architecture has so many issue slots
with predication capability, it may effectively execute down multiple control
flow paths simultaneously.

Transmeta Crusoe was a commercially available binary translation system much
like Dynamo[K+00, DGB+03]. The Crusoe chip was a VLIW architecture capa-
ble of executing x86 programs via dynamic binary translation and optimization.
Key points of the Crusoe system are the ability to aggressively reorder and op-
timize the translated instructions. Because the IA-32 architecture uses precise
exceptions, the dynamic optimizer must take care not to optimize the trans-
lations in such a way that the exception behavior of the program is altered.
To allow reordering and aggressive optimization of translated traces, the Cru-
soe chip includes hardware to support commit/rollback semantics of executed
instructions. This includes shadowed versions of registers and special memory
aliasing detection hardware. The first time an exception occurs when the Cru-
soe chip is executing a heavily optimized code sequence, the sequence is aborted
and the effects of the sequence are canceled. The instruction sequence is then
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interpreted one instruction at a time. If the exception does not occur under this
form of execution, then the exception was a result of the aggressive optimization.
The dynamic translator will try to compile the trace using more conservative
optimization passes. If the exception does occur under interpretation, it should
also be reflected in the emulated program.

2.3 Trace Processors

Trace Processors are a class of processor architectures that use trace caching,
rather than conventional caching, as part of the micro architecture.

Rotenberg et al. introduce the trace cache in a 1999 paper [RBS99] as a means
to achieve a higher fetch bandwidth for superscalar processor architectures. The
authors use a branch address and a sequence of branch outcomes to specify the
address of a trace in the trace cache. A next trace predictor is used to select
the next trace from the trace cache based on branch outcome predictions. In
case of a miss in the trace cache, the regular instruction cache is queried. If
a predicted trace turns out to be wrong, the trace is repaired with the correct
instructions. The trace cache is able to increase SPEC95 performance on a
simulated superscalar architecture by 15% to 35% over a regular block based
instruction fetch mechanism.

Black et al. present a block based trace cache that assembles multi-block traces
by storing a trace as a series of pointers to cached basic blocks [BRS99]. The
design is able to utilize storage space more effectively than a conventional trace
cache. This results in an increased fetch bandwidth that in turn is able to
increase the IPC of a 16-wide superscalar architecture by 7%.

Patel et al. evaluate partial trace matching and inactive issuing of blocks
[PFP99]. They show that the ability to fetch a trace from the trace cache
that only partially matches the predicted trace can increase performance by
14% over a configuration that requires a perfect match. The ability to specula-
tively issue blocks to the execution engine, even though they were not predicted,
can increase performance by 17% over their baseline.

Patel et al. have shown that converting branch instructions to assertions in
traces allow for construction of long atomic traces [PTBC00]. Long atomic
traces in the trace cache are good candidates for on-line optimization. The
proposed assertions cancel the effect of an entire trace if their conditions do
not hold. This effectively converts a trace to an atomic entity. The branches
of a trace are only converted to assertions if branch prediction accuracy for
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the trace is good. Using this technique the authors demonstrate that it is
possible to build atomic traces that average over 100 instructions and has a
97% completion probability and that the atomic traces constitute 80% of the
dynamically executed instruction stream. These results are achieved using the
SPEC2000 benchmark suite.

The trace cache is an excellent target for dynamic optimization, and conse-
quently many proposals that use the trace buffer of trace processors as target
for dynamic optimization have been published.

Chou et al. and Fahs et al. both propose the use of a small co-processor that
runs optimization algorithms on instructions in the trace construction buffer
[CS00, FBC+01b]. Because these systems operate in the retirement stage of the
processor, they are not subject to the same critical timing constraints as the rest
of the processor. Friendly et al. and Jacobson et al. present a similar solution
that uses the fill unit to perform the optimization [FPP98, JS99].

Fahs et al. have published an evaluation of the performance potential of such in-
struction path coprocessors [FMS+04a]. They find that atomic traces are much
better subject for dynamic optimization than traces that commit incrementally.

Slechta et al. have published an investigation of the effects of dynamic opti-
mization of micro operations in the trace cache of a simulated x86 architec-
ture [SCF+03]. They find that they are able to reduce the number of micro-
operations by 21% by using a combination of common subexpression elimination,
value assertion, store forwarding and redundant load elimination on the cached
traces.

2.4 Exceptions and Speculation in (Dynamic) Op-
timization

One key problem that arises when performing dynamic optimization on program
traces, either in a hardware trace buffer or as part of a recompilation/transla-
tion software framework, is that the optimized code must behave identically to
the original code. This is especially challenging when precise exceptions4 are

4Precise exceptions are exceptions that are reported on well defined instruction boundaries.
This is opposed to imprecise exceptions that may occur anywhere in a region of code if the
exception is triggered. When a precise exception is thrown, an exception handler may expect
architected state to reflect the state that was active when the instruction that caused the
exception was executed.
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thrown in an optimized region that includes reordered or speculatively scheduled
instructions.

Work by Mahlke et al. presents a concept called Sentinel Scheduling [MCH+92].
Sentinel Scheduling allows a static compiler to preserve precise exception behav-
ior when using speculative scheduling. The method divides potentially excepting
instructions, PEIs, into a computational part and an excepting part. The ex-
cepting part of a PEI can be combined with an instruction that uses the result of
the PEI. This instruction is the sentinel for the PEI. The sentinel must remain
in the basic block of the PEI originated from. If the speculated PEI causes an
exception, it is not raised until the sentinel for the PEI is executed, and thus it
does not alter exception behavior of the program.

Nystrom et al. present a software controllable hardware mechanism for dynamic
optimization software [NBMH01]. The method, named Precise Speculation, use
a shadowed register file and special commit instructions and implicit abort in-
structions. The system effectively allows the optimizer to control the commit
points by inserting the special instructions in the optimized code sections. This
allows the optimizer to attempt aggressive optimization and reordering of code
segments, while still being able to support precise exceptions. If a speculated
instruction would raise an exception, a flag in the destination register of the
instruction is set. When the next branch instruction or PEI is executed the ex-
ception flag is checked. If it is set, the speculative register file is discarded and
control is transferred to the original code. In the original code, the exception
will occur again, but at the correct location.

A compiler based approach that allows aggressive optimization while preserv-
ing exception behavior without requiring hardware support is presented by
Gschwind et al. [GA01]. The method relies on the capability of the excep-
tion handler to call special repair code when a PEI causes an interrupt in a
situation where the processor state is different from what it would have been if
no optimization was done. The compiler generates repair code, which is placed
in the translation cache. The repair code is called by the exception handler
before exception processing is started, in order to recreate the architected state
as it would have been, had the exception occurred at the original location.
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Chapter 3

Background

This section provides some background information on subjects of which a cer-
tain level of knowledge is required in order to understand the rest of the report.

3.1 The Motorola 68000

The Motorola 68000 is an ISA[Mot92] and a series of micro controller devices[Fre93]
developed and manufactured by Motorola (now Freescale Semiconductor) from
1979 and on. The Motorola 68000, abbreviated m68k, was used in a wide range
of popular computing devices, from enterprise systems to personal computers.
The use of the m68k CPU in the Amiga, Macintosh and the Atari ST has made
m68k the production of m68k emulators interesting, both commercially (in the
past) and community wise (in the present).

The m68k ISA is a Complex Instruction Set Computing ISA, or CISC ISA. A
CISC ISA is an ISA that allows complex operations to be encoded in a single
instruction, as opposed to a Reduced Instruction Set Computing ISA, or RISC
ISA, which allows only simple instructions to be encoded. CISC instructions
can typically access multiple operands in memory using advanced addressing
modes, and perform advanced operations on the operands, which would require
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multiple instructions to execute in a RISC ISA. The m68k ISA supports an
abundance of addressing modes, the most complex of which allows for double
indirect memory addressing. This means that an operand for an instruction can
be accessed via a double pointer dereferencing.

The instructions of the m68k ISA use two operand addressing. Under two
operand addressing, instructions take a source and a destination operand as
input. A typical instruction loads the values of both the source and the destina-
tion, and stores the result of the operation on these two values at the destination
operand address.

The basic instructions in the m68k ISA is divided into a set of data movement
instructions, a set of integer arithmetic instructions, a set of logical instructions
and a set of program control instructions. In addition to these, the m68k ISA
defines a set of bit manipulation instructions, a set of bit field instructions, a set
of BCD instructions, a set of floating point instructions and a class of system,
cache, multiprocessor and memory management instructions.

The m68k ISA defines 16 general purpose integer registers, divided into 8 data
registers and 8 address registers. The data registers are D0 to D7 and the
address registers are A0 to A7. A7 is used as a dedicated stack pointer. The
address registers may be used as base addresses for calculating the address of
memory resident operands. In addition to the 16 integer registers, the ISA
defines a program counter register (PC) and a condition code register (CCR).
Many instructions set bits in the condition code register, based on the result of
the instructions. The bits in the CCR are:

• Extend bit (X) has special purposes depending on the executed instruc-
tion.

• Negative bit (N) is set if the result of a signed operation is negative.

• Zero bit (Z) is set if the result of an operation is zero.

• Overflow bit (V) is set of an arithmetic overflow is detected.

• Carry (C) is set if a carry out or borrow out is generated by an arithmetic
operation.

Instructions of the m68k ISA may operate on three different operand sizes,
although not all instructions support all operand sizes. The sizes are byte, for 8
bit operation, word, for 16 bit operation and long, for 32 bit operation. When
an instruction writes a register in byte or word mode, the most significant bits
of the register are untouched.
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3.1.1 Addressing Modes

The m68k ISA supports a number of complex addressing modes. Key aspects
of the addressing modes are discussed here. For full specifications, please refer
to the m68k manual.

Operand addresses can reference either immediate data, memory locations, or
one of two register classes. References to operands that reside in memory are
referred to as indirect addressing. Register references are referred to as direct
addressing. Memory addresses for indirect addressing are build from address
register values, the program counter, and immediate values.

Address Register Indirect Mode is the most simple indirect addressing mode.
Let M(a) be the function that returns the value of memory at address a. The
following equation describes the addressing mode:

V = M(An) (3.1)

where An is an address register.

Using Address Register Indirect with Displacement Mode it is possible to add a
16 bit 2’s complement immediate to an address register value, in order to form
a memory address. The following equation describes the addressing mode:

V = M (An + d16) (3.2)

where V is the resolved value for the operand, An is the address register used
as a base and d16 is the immediate displacement.

The Address Register Indirect with Index (8-Bit Displacement) mode further
allows the use of a second register (the index register) multiplied by a scale
factor, but only allows for an 8 bit displacement:

V = M (An + d8 +Xn · s) (3.3)

HereXn is the index register which may be an address register or a data register,
and s is a scale factor. The scale factor, which is encoded in the instruction,
can be either 1, 2, 4 or 8.

The Address Register Indirect with Index (Base Displacement) Mode allows for
a full 16 bit or 32 bit displacement:

V = M (An + d+Xn · s) (3.4)
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The most complex addressing mode, Memory Indirect Preindexed Mode allows
for double indirection as show below:

V = M (M (An + d+Xn · s) + od) (3.5)

Here a second immediate displacement, od, is allowed. Similarly, Memory In-
direct Postindexed Mode allows for double indirection but with the indexing
register added after the first memory reference.

V = M (M (An + d) +Xn · s+ od) (3.6)

Some of the address register indirect addressing modes allow the PC to be used
as a base register instead of an address register. These modes are listed below.

Program Counter with Displacement :

V = M (PC + d16) (3.7)

Program Counter Indirect with Index (8-Bit Displacement):

V = M (PC + d8 +Xn · s) (3.8)

Program Counter Indirect with Index (Base Displacement):

V = M (PC + d+Xn · s) (3.9)

Program Counter Memory Indirect Preindexed :

V = M (M (PC + d+Xn · s) + od) (3.10)

Program Counter Memory Indirect Postindexed :

V = M (M (PC + d) +Xn · s+ od) (3.11)

The m68k ISA supports auto increment and decrement when using simple indi-
rect addressing. The auto decrement mode automatically decrements an address
register used in indirect addressing mode before its value is used to construct the
memory address. Similarly the auto increment mode increments the value of the
address register used in addressing, but after the values is used to construct the
memory address. The updated register values are automatically written back to
the register file. The value that is added/subtracted to/from a register in auto
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increment/decrement mode depends on the size field of the operation. Byte
operations increment by ±1, word operations by ±2 and long word operations
by ±4.

Different instructions have different limitations on what addressing modes are
supported.

3.1.2 An Example

In order to get a feel of the m68k ISA, a short C program, a translation by GCC
to m68k instructions, and disassembly of the resulting binary are presented. The
program in listing 3.1 defines the location of three different integer arrays, a, b
and c. In the loop at lines 8, 9 and 10, the first 256 elements of a and b are
added and stored in c. At the end, a function is called to print a message.

Listing 3.1: A small C program.
1 #include <stdio.h>
2
3 void main() {
4 int *a = (int*)0x00001000;
5 int *b = (int*)0x00002000;
6 int *c = (int*)0x00003000;
7
8 for(int i=0; i<0x100; i++) {
9 c[i] = a[i] + b[i];

10 }
11
12 printf("The end\n");
13
14 }

The post compilation assembly version of the program is presented in listing
3.2. The first line of the assembly program (line 2) pushes register A2 on the
stack. This is achieved by a move from A2 to the stack pointer (A7). The
stack pointer is addressed using a pre decrement addressing mode. The stack
grows from the top of the address space towards the bottom, so this instruction
achieves a move to stack and an update of the stack pointer in one instruction.
Because the operation has size long (it has a .l postfix), the stack pointer is
decremented by 4, which matches a 32 bit word in memory. A2 is restored
on line 15 by before the main function returns in line 16. Note how the stack
pointer is addressed using post increment mode, to handle the stack pointer
update inline. These stack operations illustrate how the advanced addressing
modes can be used to achieve more complex operations in one instruction.
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Line 3, 4 and 5 initialize the registers used to reference the arrays a, b and c.
The instructions move an immediate word into registers A0, A1 and A2.

Lines 7 to 11 of the assembly program implement the loop body. Line 7 moves
an element of the array a into register D0 while simultaneously advancing the
pointer for array a using post increment addressing mode. Line 8 loads an
element of array b, increments the pointer for array b and adds the loaded
value to register D0. Line 9 writes the result of the addition back to the c array
in memory while advancing the c pointer by 4. Line 10 compares the pointer
for array a to the address of the last element of array a. This operation sets the
condition code register based on the result. Note that the comparison is a word
operation that only considers the lower 16 bits of register A0. Line 11 transfers
control back to line 7 if the result of the comparison at line 10 was not zero.

Lines 12 to 14 handle the function call to printf. The instruction on line
12 pushes an address on the stack and decrements the stack pointer using the
pea instruction. For this instruction, the pushed operand is always a long, and
the stack pointer is always decremented by 4. The jsr instruction at line 13
decrements the stack pointer, pushes the PC on the stack and transfers control
to the address given as the operand. In this case the operand is the address of
the puts function. Line 14 takes care of popping the argument from the stack
that was pushed in line 12.

Listing 3.2: The C program translated to m68k instructions by GCC.
1 main:
2 move.l %a2,-(%sp)
3 move.w #12288,%a2
4 move.w #8192,%a1
5 move.w #4096,%a0
6 .L3:
7 move.l (%a0)+,%d0
8 add.l (%a1)+,%d0
9 move.l %d0,(%a2)+

10 cmp.w #5120,%a0
11 jne .L3
12 pea .LC0
13 jsr puts
14 addq.l #4,%sp
15 move.l (%sp)+,%a2
16 rts
17 .LC0:
18 .string "The end"

A m68k instruction consists of one 16 bit base word and up to 10 extension
words, 16 bits each. The base word encodes the instruction and the number
of extension words. The extension words are used for immediate data and
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additional description of advanced addressing modes.

Listing 3.3 shows the disassembly of the compiled C program. The listing shows
three columns. The leftmost column is a memory address. The middle column
is the content of the memory at the address specified to the left. The rightmost
column is the data decoded as m68k instructions. The leftmost and middle
column use hexadecimal numbers. The first line shows that the main function
has been placed at address 144 (hexadecimal) in memory. Line 2 shows that the
instruction that pushes A2 on the stack is encoded as a single word. The instruc-
tions that load the addresses of the three arrays at lines 3, 4 and 5 are encoded
using a single extension word. The extension word is used to hold immediate
operands for the loads. Since the loads have word size, a single extension word
is required. If the operation had been of size long, two extension words would
have been required. The pea instruction at line 11 uses two extension words to
encode a long immediate operand.

Listing 3.3: The compiled object file, disassembled by objdump.
1 00000144 <main>:
2 144: 2f0a movel %a2,%sp@-
3 146: 347c 3000 moveaw #12288,%a2
4 14a: 327c 2000 moveaw #8192,%a1
5 14e: 307c 1000 moveaw #4096,%a0
6 152: 2018 movel %a0@+,%d0
7 154: d099 addl %a1@+,%d0
8 156: 24c0 movel %d0,%a2@+
9 158: b0fc 1400 cmpaw #5120,%a0

10 15c: 66f4 bnes 152 <main+0xe>
11 15e: 4879 0000 2c40 pea 2c40 <__EH_FRAME_BEGIN__+0x4>
12 164: 4eb9 0000 0330 jsr 330 <puts>
13 16a: 588f addql #4,%sp
14 16c: 245f moveal %sp@+,%a2
15 16e: 4e75 rts

3.2 Computer Architecture

This section introduces some concepts that are used in computer architecture.

3.2.1 Caching

Caching refers to the concept of storing data that is accessed often in a loca-
tion where it can be accessed with a lower latency than it can when stored in



20 Background

xxx f(x)f(x)f(x)

Latency: 2U

f(x)

Figure 3.1: Calculating the function f(x) for a stream of inputs x. Each com-
putation takes 2 time units.

the original location [HP12]. Caching is widely used on all levels of computer
systems because of the inherent trade-off in storage size and price versus speed,
power consumption and price. Large storage buffers typically have a high la-
tency and a limited bandwidth, while the most low latency storage devices are
small and expensive. By moving frequently used data from big and slow storage
devices to fast but small storage devices, performance can be increased. When-
ever a caching scheme is applied, a replacement policy must be defined. The
replacement policy defines what action to take when the small and fast storage
device is full. One such replacement policy is the Least Recently Used, or LRU,
policy. This policy dictates that when an item should be placed in the cache
but the cache is full, then the item that has been accessed least recently of all
replacement candidates in the cache should be removed from the cache.

3.2.2 Pipelining

Pipelining is a technique that allows for performing multiple long latency oper-
ations in parallel [PH08]. Figure 3.1 shows a conceptual sketch of a logic circuit
that process a stream of input elements. For each input element the logic circuit
applies the function f(x), and the computation takes 2 time units. Thus the
throughput of the circuit is 1 sample per 2 time units.

Imagine that the logic that calculates f(x) can be separated into two separate
circuits, so that the first circuit calculates f1(x) and the second circuit calculates
f2(x) and that f(x) = f2(f1(x)). This situation is depicted in figure 3.2. If each
of the two new circuit blocks has a lower latency than the original circuit block,
then performance of the system is increased. The latency for processing a single
sample might be increased, because the total latency of the two circuits may be
greater than the latency of the original circuit. Let the latency of the original
circuit be lo, the latency of the f1(x) circuit be l1, the latency of the f2(x) circuit
be l2 and let ls = max(l1, l2). Then the throughput of the system is given by 1
sample per ls time unit where ls < lo. For the depicted system the throughput
of the system is 2 sample per 2U time period, which is a 100% improvement
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xxx f(x)f(x)f(x)

Latency: 1U

f1(x) f2(x)

Latency: 1U

Figure 3.2: The calculation logic has been split into two parts with half the
latency each.

over the original system.

Pipelining is extensively used in modern computer architecture design. A good
example is the MIPS 5-stage pipeline that includes fetch, decode, execute, mem-
ory and write back stages [PH08]. The fetch stage reads an instruction from
the instruction cache. The decode stage generates control signals for subsequent
stages and reads operands from the register file. The execute stage performs
some arithmetic operations. The memory stage access the system memory such
as caches backed by DRAM. The write back stage writes the register files.

3.2.3 Branch Prediction

Branch Prediction, or BP, is the process of predicting the outcome of a condi-
tional branch instruction. Branch Resolution is the process of verifying that the
predicted outcome of a branch is correct. In the m68k ISA, the outcome of a
conditional branch is decided by the state of the CCR. The CCR is potentially
updated by the instruction that precedes the branch instruction in program or-
der. If the processor implementation is pipelined, which almost all processor
implementations are today, the branch cannot be resolved before the preceding
instruction has moved past the stage in the pipeline where the CCR is updated.
This leaves a potential gap where the processor does not know what instruction
to execute next. If the processor is allowed to guess or predict an outcome of
the branch, it might be able to spend the waiting time on something useful.
However, if the processor makes a wrong guess, then it must be able to undo
the effects of the instructions that were issued down the wrong path. Instruc-
tions that follow a branch that was predicted or guessed are said to be issued
speculatively.

There are many ways to predict the outcome of a branch. Some methods are
based on previous outcomes of the branch (local history) while others are based
on the history of a number of previously executed branches (global history). The
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most effective schemes use a combination of local and global history [McF93].

Predicting the outcome of a branch is no good if the branch is predicted to be
taken, and the target address cannot be computed in a timely manner. Branch
Target Buffering, or BTB, is the concept of remembering (or caching) the target
of a branch or jump instruction. Normally the target of a branch or jump
instruction is calculated somewhere down the pipeline. When BTB is in use,
the result of the calculation is saved in a local memory element. Next time
the same branch instruction is executed, the target is immediately known early
in the pipeline. This can be used in combination with BP to quickly start
fetching instructions from the predicted target. Like with BP, the execution of
instructions from cached targets might be speculative, and the processor must
be able to revert changes done by the speculative instructions.

3.2.4 Store Buffering

A Store Buffer is a buffer structure that is used to buffer store operations in a
processor [POV03, PH08]. In an in-order pipeline, a store buffer may be used for
two purposes. Firstly, it may mask the latency of the cache by buffering a store
operation and thus allow execution to continue without waiting for the store
to completely retire. Secondly, it allows for store-to-load forwarding [POV03].
With store-to-load forwarding, store operations do not have to reach the cache
before a load from the same address can be issued. In a pipeline where loads
are issued in the first part of pipeline and stores are executed in the last part of
the pipeline, a store that appears logically earlier in program order than a load,
may reach the data cache after the load. If the address of the load and store
coincide, the value of the store must be forwarded to the load. Otherwise the
load may retrieve the wrong value from the cache.

3.2.5 Very Long Instruction Word Processors

Very Long Instruction Word Processors, or VLIW processors, are processors that
execute instructions that contain multiple operations [PH08]. A VLIW instruc-
tion may for instance have three arithmetic operation slots, a branch slot and
a memory slot. This allows the compiler to find Instruction Level Parallelism,
ILP, in the instruction stream, and encode the ILP directly in the instruction
stream. Finding ILP in an instruction stream amounts to finding instructions
in a sequential instruction stream that is able to execute simultaneously. Two
instructions are able to execute simultaneously if there is no data dependence
between the two instructions. One of the advantages of VLIW processors is
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that much if the complexity associated with extracting ILP in an instruction
stream is moved from the processor at the hardware level to the compiler at the
software level.

3.3 Field Programmable Gate Arrays

A Field Programmable Gate Array, or FPGA, a programmable device that allows
digital logic circuits to be implemented by programming connections between
a number of digital gates. The gates are implemented as small look-up-table
(LUT) structures that are essentially small SRAM memory cells [BV00]. A
LUT with four inputs and one output can implement any logical function of
four inputs. The LUTs are wired together in a programmable interconnect. In
this way multiple four input LUTs can be combined to produce functions of
higher numbers of inputs.

The LUTs are usually combined with registers and multiplexers to form Con-
figurable Logical Blocks, or CLBs. With the registers in the CLBs, it is possible
to create pipelined logical circuits.

FPGAs may also include special dedicated logic to perform certain tasks. Ded-
icated resources, also sometimes known as hardened resources, are macro cells
that fulfill specific purposes. They are either implemented as single ASIC macro
cells, or by combining multiple less specialized ASIC macro cells. The advan-
tage of such hardened features, as opposed to the same features implemented
in regular FPGA fabric, are that they are able to operate on a higher clock fre-
quency, they consume less power, and they use less space. For instance, caches,
branch target buffers, and some times register files, are often best implemented
using dedicated block RAM memory primitives. Many modern FPGAs also
include transceivers for high speed serial communication and DSP blocks for
implementation of high performance DSP applications [Alt13].

A single FPGA devices model is usually delivered in different speed grades. The
speed grade of a device determines how fast the device may operate. FPGA
manufacturers test the FPGA chips as they come off the production line. Chips
that are able to operate at higher frequencies are given a lower speed grade and
sold at a higher price. The variations in the frequency capability of the chips is
a result of imperfections in the production method.
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Figure 3.3: Duplicating ram blocks to create more read ports.
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Figure 3.4: Creating more logical write ports by running the block ram macro
cell at double frequency.

3.3.1 Dedicated Memory Resources

Block RAM primitives available in FPGA devices typically have no more than
two read/write ports1 [Xil12, Alt13]. While it is possible to create more read
or write ports by combining multiple block RAMs in clever ways, the resulting
circuit always operates at a lower frequency and/or uses more resources [LS10].
Depending on the available resources and the performance goal of the applica-
tion, it may or may not be acceptable to apply these combination techniques.

It is possible to create structures with more read ports by creating multiple
copies of a block ram. This is achieved by sending write commands to multiple
blocks simultaneously as depicted in figure 3.3. This is an acceptable procedure
as long as extra memory resources can be spared for the purpose.

It is more difficult to create more write ports. By running the block ram macro
cell on a clock twice as fast as the base clock, two write commands can be
executed in each base clock cycle. Figure 3.4 depicts the concept, which is
referred to as double pumping.

1It was not possible to locate an FPGA vendor that includes SRAM blocks with more than
two write ports on FPGA devices.
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However, this may limit the base clock frequency. The base clock frequency
can be no faster than half frequency of the fast clock signal. If long paths
already limit the base frequency to half that of the maximum allowable fast
clock frequency, there is no problem. But if this is not the case, then clock
speed is sacrificed for the extra write ports. Implementing a double pumped
ram structure in a FPGA can be difficult, because the synthesis tools have to
be set up properly to correctly verify timing constraints for the signal paths that
cross clock domains.

A second way of producing multiple write ports is the Live Value Table, or LVT,
technique [LS10]. With LVT, n banks of replicated block RAMs with 1 write
port and m read ports are combined to produce a solution with n write ports
and m read ports. A write to the cluster of replicated banks only write one of
the banks, and thus only one of the banks contain the written value. By using
a small table to remember which bank that holds the most recent value for a
given address, it is possible to select the correct read result when reading that
address.

3.4 Peephole Optimization

A peephole optimizer is an optimization algorithm that works on a linear stream
of instructions [TC11]. The optimizer performs pattern based substitution in
a sliding window over the instruction stream. If an instruction sequence that
matches a known pattern is found, it is substituted by another pattern that
uses values from the original match. When all possible substitutions have been
performed, the sliding window is advanced. The purpose of using a sliding
window is to limit the pattern matching and substitution to a small area, instead
of searching the entire linear instruction sequence at once.

Peephole optimization can for instance be used to remove some classes of redun-
dant copy operations, or to lower an intermediate format instruction stream to
target specific instructions.



26 Background



Chapter 4

System Design

This section presents the goal of the project and gives a high level overview of
the project components. The section will introduce the concept of foreign ISA
emulation backed by FPGA acceleration.

4.1 Concept

The core goal of the project is to emulate the legacy m68k ISA [Mot92]. The
emulation is to be achieved by using binary translation from m68k ISA to an
internal FPGA friendly VLIW ISA. An execution engine supporting the VLIW
ISA is to be implemented as an in-order statically scheduled pipeline in FPGA
fabric.

The execution engine is in its own right a fully capable CPU with separate in-
struction and data caches that interface a local bus system. However, to simplify
the design and ease the bootstrapping process, the execution engine is operated
as slave co-processor controlled by a generic host CPU via a local bus system.
By delegating some tasks to a generic host CPU, the system can be operational
before the FPGA execution engine is stable. If the entire functionality of the
system was to be offered by the FPGA execution engine alone, the function-
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ality of the FPGA pipeline would have to be quite complete before practical
benchmarks could be executed.

One of the major challenges in the project is to design and implement the ex-
ecution engine in such a way that it will achieve adequate performance when
synthesized for FPGA fabric. Designing hardware models that achieve good
performance when synthesized for FPGA fabric can be a challenge. The nature
of the FPGA fabric makes some constructs efficient while other constructs be-
come inefficient. A large part of the work associated with the project was spent
on FPGA implementation.

4.2 Design Overview

The proposed emulation system is depicted in figure 4.1. It consists of an ex-
ecution engine implemented in FPGA fabric, a host processor and a shared
Dynamic RAM, DRAM. The host system is a conventional commercially avail-
able system featuring a common CPU. The FPGA may be connected to the host
CPU via PCI Express or some other local bus. The DRAM may be connected
to the FPGA or to the host CPU memory controller, but for best performance,
the FPGA should have a low latency path to the DRAM.

The FPGA resident execution engine is capable of executing m68k instructions
by dynamically translating the instructions from m68k ISA to the internal ISA.
It can also execute programs specified using the internal ISA directly, bypassing
the m68k translation stage.

The FPGA execution engine is connected to main memory via separate instruc-
tion and data caches. A Hot Spot Detector, HSD, is monitoring the branches
executed by the execution engine. When the HSD finds a set of branches that
qualifies as a hot spot, it dumps the addresses of these branches to main memory
and notifies the host CPU.

The host CPU acts as the orchestrating entity. A high level sequence chart
depicting the actions of the host CPU is given in figure 4.2. The host CPU
is responsible for booting and initializing the system. It initially loads a m68k
program into the shared DRAM. Then it uses the control interface to instruct
the FPGA execution engine to start executing the program. Finally the host
CPU waits for the FPGA execution engine to detect a hot region in the program.

When the HSD detects a hot program region, it notifies the host CPU, for
instance via interrupt. The host CPU extracts the hot region and builds a
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Figure 4.1: Conceptual overview of the accelerator system.

CFG of the code in the region. Then it tries to optimize the hot region. The
host CPU may use profiling information collected by the HSD to drive the
optimization process. When the region is optimized it is written back to memory.
Original code is never overwritten. The host CPU notifies the execution engine
of the existence of the optimized code and the possible entry points. When the
accelerator executes a branch at one of the possible entry points, it jumps to
the optimized code instead of the original code. The execution engine executes
the optimized code until it reaches a branch that exits the optimized region. At
this point, the execution engine will again translate m68k instructions on the
fly, until it encounters a branch to a translated region.

Figure 4.3 depicts a control flow graph in which the HSD has determined that
the path consisting of blocks 2-3-4-2 is hot. The optimizer has emitted opti-
mized code for these blocks. The dashed edges represent entry and exit points
to and from the optimized region. Because the hardware based dynamic trans-
lator emits poorly optimized code, the most basic compilation steps could bring
performance enhancements to the hot regions.

Many different optimization techniques may be used when generating code for
the hot region. Techniques such as code straightening and loop unrolling could
be utilized. The optimizer may even emit code that executed speculative, if
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the execution engine implements proper transaction semantics via commit/roll-
back primitives. Alternatively cleanup code can be inserted to undo effects of
speculative code.

4.3 Target Platform

For evaluation purposes the Xilinx Zynq 7020 platform is targeted as imple-
mentation platform. The Zynq family of devices contains contain two ARM
Cortex A9 cores tightly coupled to on-chip FPGA fabric. The ARM cores and
the FPGA fabric share an on-chip DRAM controller [Xil13b]. Targeting such a
platform, the entire set of system components can be implemented on a single
chip.

The Zynq platform is chosen over a PCIe equipped FPGA attached to the PCIe
bus of a PC, because the author has prior experience with the Zynq platform.
The author believes it is easier to set up communication between the ARM cores
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Figure 4.4: The Zynq 7020 on-chip interconnect. (M) indicates a master while
(S) indicates a Slave.

of the Zynq device and the FPGA fabric in the Zynq device than it is to set up
communication between the CPU of a PC and a FPGA attached to the PCIe
bus.

Relevant parts of the Zynq 7020 on-chip interconnect is depicted in figure 4.4.
The chip uses the AXI 3 bus standard for most on-chip busses [ARM11]. The
FPGA fabric has 4 high performance 64 bit AXI master ports facing the shared
DRAM controller. These ports go through the FPGA Memory Interconnect
which provides routing towards the DRAM controller or a fast on-chip SRAM.
The FPGA Memory Interconnect has 2 64 bit AXI master ports towards the
DRAM Controller.
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The ARM cores have a single 64 bit AXI master port connected directly to the
DRAM controller from the L2 cache controller. It also has access to two 64 bit
general purpose AXI slave ports in the FPGA fabric.

The control interface of the execution engine is attached to one of the general
purpose AXI slave interfaces of the FPGA fabric. The instruction cache, data
cache, and hot spot detector are given an AXI master port each for accessing
system DRAM. These three components could share a single master port, but
that would require arbitration to be implemented in the FPGA fabric. The
system might as well utilize the arbitration features provided in the hardened
logic part of the chip [Xil13c].
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Chapter 5

Execution Engine

This section presents the design of the FPGA resident execution engine.

5.1 Initial Design

As opposed to some earlier work in binary translation targeting custom execu-
tion engines [K+00, EAGS01], the chosen translation target matches the m68k
ISA relatively close. This decision was taken in order to make the translation
process easier. Translating from the m68k CISC ISA to an internal VLIW RISC
architecture unarguably entails more work than translating to an ISA that more
closely matches the source ISA. The internal VLIW ISA is not as complex as the
m68k CISC ISA, but it is capable of performing many of the complex addressing
modes of the m68k CISC ISA.

Implementing an execution engine can be a very time consuming task. In order
to increase the chance of arriving at a complete implementation within the
project time frame, simplicity and ease of implementation has been key goals in
design and implementation of the execution engine.
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5.1.1 Design Considerations

One key design choice made in the early design phase is that register files and
caches must be limited to two read/write ports. This choice was made in order
to (1) keep the required implementation resources at a reasonable level, (2) to
cut down implementation time, and (3) allow for the highest possible operat-
ing frequency. As mentioned in section 3.3.1, multi-ported memory structures
increase implementation complexity, require additional resources in the design
and may limit clock frequency.

One consequence of this decision is that there is a limitation on the number
of instructions targeting the same register file that can execute in parallel. At
most one write to the register file can be executed in each cycle.

As mentioned in section 3.1, the m68k ISA uses two register classes, address
registers and data registers. Most operations can use any register class as a
source, while address operations use address registers for destination and data
operations use data registers for destination.

In order to take advantage of this feature of the m68k ISA, two separate block
RAM primitives are used to implement two register banks, one for each register
class. Using this scheme, it is possible to write both a data register and an
address register in each cycle.

Because of the limited number of register file write ports, some addressing modes
cannot be executed as a single instruction. All addressing modes that require
multiple memory accesses cannot execute as a single instruction, because this
would require two cache accesses in a single cycle. For the same reason, instruc-
tions that collect both the source operand and the destination operand from
memory must execute as two instructions.

Auto increment/decrement addressing modes may also require two cycles. If
either two registers are implicitly updated, or if one register is implicitly updated
and the explicit destination of the operation goes to the same register bank as
the implicit update.

Table 5.1 shows a statistical analysis of a simulator trace of an m68k applica-
tion1. The simulator produced a trace of all executed instructions. The table
shows summations over the instructions in the trace. The column labeled In-
struction give the name of the instruction for which the row holds statistics.
The column labeled Count shows the number of times the instruction appear

1The data that is the base of this analysis was provided by Sven Karlsson.
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Instruction Count Percentage PRef Count PRef Count %
move 12098436 40.14 640237 5.29
Bcc 4946851 16.41 0 0.00
add 3725176 12.36 0 0.00
cmp 3307080 10.97 0 0.00
and 1514948 5.03 0 0.00
lea 683988 2.27 0 0.00
sub 621173 2.06 0 0.00
tst 551148 1.83 0 0.00
DBcc 503853 1.67 0 0.00
rts 432016 1.43 0 0.00
mvem 336232 1.12 336232 100.00
Total > 1% 28720901 95.28 976469 0.03

Table 5.1: Statistics for the a trace of the CuBase program. PRef refers to
problematic addressing modes. The total number of executed in-
structions is over 30 · 106.

in the trace. The column labeled Percentage shows the fraction of the total in-
struction execution count that the instruction accounts for. The column labeled
PRef Count shows the number of times the instruction appear in the trace with
an addressing mode that cannot be handled by the VLIW engine in a single
cycle. The column labeled PRef Count % gives PRref Count divided by Count
for the row. The analysis shows that 11 instructions account for 95.28% of the
dynamic instruction stream. Of these 95.28%, 0.03% use addressing modes that
require more than one instruction to execute on the internal VLIW engine. Note
that only the most significant instructions was analyzed. The addressing mode
of the remaining 4.72% was not analyzed. In addition, the analyzer was not
able to decode 1.6% of the instructions, as listed in the table. This leaves 5.88%
of the instructions out of the analysis, which is a potential error margin.

The movem instruction is a special move instruction that moves up to 16 long
words (32 bits) to or from the register banks. Such an instruction can never
be implemented as one internal VLIW instruction. Instructions such as movem
could be implemented as procedures resident in system ROM. The instruction
would then be translated to a call to the address of the ROM code that imple-
ments the instruction.
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5.1.2 Branch Prediction

It was decided to use a simple bimodal branch prediction scheme for branch
prediction. This decision was taken in order to (1) cut down implementation
time, and (2) because the most efficient prediction schemes require multilevel
memory access.

A multilevel memory access during instruction cache access do not go well with
the intended design. The latency from the point where the next PC is registered
to the point where the branch predictor output is required is one cycle as seen in
figure 5.1. Thus, the chained memory look-up cannot use block ram structures
that include output registers, if the block ram cells are to run at the same clock
as the rest of the pipeline.

5.1.3 Execution Modes

The execution engine has two modes of operation, direct mode and optimized
mode. In direct mode the execution engine is translating m68k instructions to
internal VLIW instructions on-the-fly. The translation is performed in hardware
by the instruction cache controller. When an instruction cache miss is signaled
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by the execution engine in direct mode, the instruction cache controller fetches
m68k instructions from main memory, translates them to internal instructions
and injects them into the instruction cache.

The internal VLIW instruction format encodes control information that con-
trols the data paths in the pipeline. In this sense, the execution engine does
not decode the instructions much. Encoded in the instructions are source and
destination selection, CCR control, branch control and ALU control. The in-
struction format is automatically generated from a description file. Methods to
access the fields of the instructions are automatically generated as C and VHDL.
The size of an instruction is currently around 100 bits. The instructions are laid
out as 128 bit fields in memory. In order to optimize memory performance, the
128 bit wide fields must be aligned to 16 byte boundaries. This allows for two
instructions per cache line.

One m68k instruction may be translated to a sequence of more than one internal
VLIW instruction. Therefore, when executing in direct mode, the m68k PC is
extended with two bits at the least significant end. This allows a m68k instruc-
tion to be expanded to 4 internal VLIW instructions. As most instructions (at
least 95.25% for the benchmark presented above) do not expand to more than
one internal VLIW instruction, operating in this mode wastes a lot of instruc-
tion cache space. In addition to this, because m68k instructions consist of a
variable number of 16 bit words, not every memory location holds a valid m68k
instruction. Locations in the data cache corresponding to such locations in main
memory must be marked as containing no valid instructions. Figure 5.2 depicts
the mapping concept.

It may be possible for the execution to cache the length of the translation of each
instruction. This can help improve performance by allowing the execution engine
to skip the empty slots. This concept shall be referred to as length prediction.
Length prediction was not implemented, but is set aside as a possible future
improvement.

In optimized mode the execution engine executes internal VLIW instructions
that were translated by the host CPU after a hot spot detection. Figure 5.3
shows how the host CPU optimizer might pack the instructions for better in-
struction cache utilization.

The hardware based on-the-fly translator is unable to perform such a compres-
sion of the instruction stream, because this requires a more global view of the
control flow of the program being executed. A branch to an address must be
rewritten in order to arrive at the address for the correct internal VLIW in-
struction. To do this, the translator has to maintain information describing
how instruction addresses was remapped. This is not feasible for a hardware
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Figure 5.4: PC in relation to memory locations in direct and optimized exe-
cution modes.

translator.

Because the on-the-fly hardware translator has these limitations, it is important
the hot spots are detected quickly, so that the cache can be properly utilized.

The operating mode of the execution engine is important when the execution
engine resolves branch targets or uses PC relative addressing modes. Refer
to figure 5.4. The figure shows how the direct mode PC and the optimized
mode PC is related to main memory addresses. When the execution engine
is operating in direct mode, the PC is effectively 33 bits long. The two lower
bit are used to address sub-instructions that originates from the same m68k
instruction. These bits are not used in relating the PC to a memory location.
Bit 0 in the figure is not part of the PC because m68k instructions must be 2
byte aligned. Therefore, bit 0 of the main memory address is always 0 when
addressing main memory instruction locations in direct mode. Bits 31 down to
1 form the most significant bits of the main memory address in direct mode.

When the execution engine is operating in optimized mode it is executing in-
ternal VLIW instructions directly from memory. As the instructions must be
alined to 16 byte boundaries, bits 3 down to 0 of the internal PC are always 0
when referencing instruction locations in main memory in optimized mode.

When the execution engine operates in direct mode, the instruction cache is
indexed using bit 1 + log2(i)− 2 down to bit 1 concatenated with the two bits
I, where i is the instruction cache size. In optimized mode, the instruction
cache is indexed using bits 4 + log2(i) down to bit 4. In direct mode, branch
targets can only be resolved to cache locations that correspond to 2 byte aligned
memory locations. That is, cache locations for which the two bits I and bit 0
are 0. These are the memory locations that can hold valid m68k instructions.
When the execution engine operates in optimized mode, branch targets can be
resolved to any cache location. That is, any PC where bits 4 + log2(i) down to
0 are all 0. These observations must be taken into account when implementing
the branch resolution logic.
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Figure 5.5: Pipeline layout overview

5.1.4 Pipeline layout

This section gives an overview of the execution engine implementation. The
execution engine is implemented as a statically scheduled in-order pipeline. An
overview of the pipeline layout is depicted in figure 5.5. The blue lines symbolize
pipeline registers.

The execution engine pipeline is divided into the following logical components
with accompanying short names:

• Program Counter, PC.
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• Instruction Cache, IC.

• Decode, DEC.

• Effective Address Read, EAR.

• Effective Address Calculation, EAC.

• Operand Read, OPR.

• Arithmetic Logic Unit, ALU.

• Write Back, WB.

The PC stage calculates the next address to feed the instruction cache. In
normal straight line code, this corresponds to incrementing the previous PC. The
PC update requires different logic depending on the current execution mode.

To operate block ram macrocells at full speed, the SRAM array inputs and out-
puts must be fully registered as depicted in figure 5.6. In most if not all FPGA
architectures, these interface registers are build into the block ram macrocell.
The output register is usually optional, and data can be routed arround the
output register. However, using this option will add a significant delay to paths
that depend on block ram output. Thus, the pipeline registers arround the IC
stage correspond to the input/output registers of a block ram macrocell. The
IC is queried along with branch target buffer and branch predictor memories.

The DEC stage is responsible for precomputing control signals for use in sub-
sequent pipeline stages. It is also repsonsible for performing IC hit detection,
BTB hit detection and evaluating branch prediction memories. Based on out-
put from the branch target buffer and the branch predictor memory, the decode
stage generates control signals that determine if the next address to enter IC
should be a cached branch target or simply an incremented version of the PC.
Decisions related to the decision of the next PC that are made at this stage
are speculative. Branch resolution occurs later in the pipeline, and corrective
measures must be taken in case of a wrong prediciton.

Because of the intricate addressing modes supported for memory operands, a
section of pipeline stages has to be devoted to address calculation. The EAR
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stage reads from register files the appropriate values required to construct the ef-
fective address. Like the instruction cache, the register file interfaces are guarded
by interface registers, and a read takes effectively two cycles.

The EAC stage calculates the effective address using the values read in the
EAR stage. The calculated address is fed into data cache read ports of the next
pipeline stage.

The data cache memory is read in parallel with the register files in the OPR
stage to feed the ALU stage with operands. The ALU stage performs some
operation on the operands and optionally updates the condition code register.
The pipeline provides one ALU that supports data register targets and one
ALU that supports address register targets. Because the branch unit has a data
dependency on the condition code produced by the ALU unit, the branch unit
cannot be placed earlier than the ALU units.

The ALU stage feeds the writeback stages. The ALU result may be written
directly to the the data cache, or to one of the register files.

As mentioned earlier, the DC memory offers only two read/write capable ports.
The cache controller uses one port, which leaves the execution engine with only
one port. This means that the DC read and DC write stages have to share a
single port to the DC memory. This removes potential complexity related to
the ordering of loads and stores that would arise if the execution engine had
access to two DC memory ports. However, it also limits the performance of the
pipeline by introducing a structural hazard around DC memory access.

5.1.5 Effective Address Calculation

The effective address calculation pipeline stage is depicted in figure 5.7. It
creates a memory address from a base address, an immediate field and an index
register. The base address may be an address register, the program counter, a
special TMP register (the use of which is elaborated later in the text), or 0. A
32 bit immediate field is added to the base address to create two variants of the
base address.

The index register may be either an address or data register in 8 or 16 bit sign
extended version or 32 bit version. The index value is shifted 0, 1, 2 or 4 times
to the left. It is also possible to use zero as the index value.

The effective address calculation circuit produces two vales; the base value prior
to the 32 bit immediate add, and the sum of the base value, the 32 bit immediate
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Figure 5.7: The effective address calculation circuit.

and the index value. The former value is referred to as the partial effective
address while the later is refereed to as the effective address.

Using this configuration it is possible to calculate most m68k ISA addressing
modes. Address register direct mode is achieved by placing a zero in the 32 bit
immediate and suppressing the index register using the last MUX on the index
path.

Address Indirect with Predecrement is implemented by placing -1, -2 or -4 in
the 32 bit immediate field, depending on the operand size. Address Indirect
with Postincrement is similarly implemented by placing +1, +2 or +4 in the
32 bit immediate field. Note that both the unaltered address register value and
the incremented value is available as outputs from the circuit. Thus the address
register can be updated with the altered value in the write back stage.

Address Indirect with Displacement is implemented by placing the displacement
in the 32 bit immediate field. Address Indirect with Index and Displacement
mode is implemented by allowing the index value to be added to the base value.

In a similar fashion, the PC relative addressing modes can be implemented by
using the PC input as the base value. Absolute addressing modes are imple-
mented by suppressing the base source and using only the 32 bit immediate to
form the base address.

However, double indirect access modes require two data cache accesses. To
implement these, the TMP register is used to hold the result of the first data
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access. This value of the TMP register can then be used as the base for a
subsequent effective address calculation.

5.1.6 ALU

A detailed view of the ALU and surrounding pipeline stages are depicted in
figure 5.8. The stage receives values from the OPR stage, selects the correct
operands, feeds the ALUs and configures the input for the Write Back stage.

The source for the Address ALU may be an address register, a data register,
a 32 bit immediate, a sign extended 8 bit immediate or a memory operand
provided by the data cache read port. The 8bit immediate and the source
register index may share the same instruction word bits, because neither can be
used simultaneously. The destination operand of the Address ALU can be an
address register or a memory value.

The Data ALU operand selection circuit has a similar structure, except that the
destination is a data register or a memory location.
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The write back source selection circuitry placed after the ALUs decide what
values are served to the write back stage. The Address Register File may receive
the Effective Address, the Partial Effective Address or the Address ALU result.
This allows automatically incremented values to be written back to the register
file, in the same cycle as the result of the operation is written to memory.

The Data Register File can only receive values from the Data ALU. The data
cache write port may receive a value from either of the ALUs.

A special temporary register is provided in order to ease implementation of
double indirect memory addressing modes, as described in section 3.1.1.

The ALUs also produce the condition code bits, to be stored in the condition
code register. In order to optimize throughput, both ALUs must be able to
update the CCR. Even though most operations that use an address register
destination do not update the CCR, the address ALU can also be used for
instructions that use a memory destination, and these instructions may need
update the CCR. Thus it is necessary to implement a path for both ALUs to
update the CCR.

5.1.7 Branch Unit

The branch unit is placed in parallel with the ALU stage. The branch decision
logic is depicted in figure 5.9. The next-pc logic is depicted in figure 5.10.

The next PC is predicted in the DC stage. The prediction relies on a Branch
Target Buffer, BTB, and a simple bimodal Branch Predictor, BP. The BTB
and the BP are indexed using the next PC from the PC stage. If the branch
prediction logic predicts a branch to be taken, and the target address is resident
in the BTB, then the next PC is changed to this target.

Because of the two cycle delay of the instruction cache, one instruction after the
branch is read from the instruction cache when a branch is predicted taken. To
be able to utilize this instruction, the architecture uses one delay slot.

Wrong predictions are detected by the branch unit in the ALU stage (figure
5.9). The branch unit logic calculates the correct target PC and compares it to
the predicted PC. The CCR is also checked against the condition code field of
the instruction. If any of these two checks fail, the next PC is changed to reflect
the correct target, the BTB memory is updated and the pipeline is flushed.
Flushing is achieved by injecting a NOP instruction into all relevant pipeline
stages. This can be implemented by using the set/reset logic of the register.
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Because the branch resolution is completed before any architected state is up-
dated, correct execution is ensured. The penalty for a wrong prediction consists
of cycles to re-fill the pipeline from PC to ALU.

The branch unit has to be placed in parallel with the ALU, because the ALU
computes the CCR bits. Thus, a branch cannot be resolved before the previous
instruction has passed the ALU stage.

5.2 Forwarding and Hazards

There are two places in the pipeline where values are consumed and produced
– the effective address calculation stage and the ALU stage. Each of these
are candidates for forwarding and stalling. The next sections elaborate the
conditions that must be effective to trigger forwarding or stalling.

5.2.1 Effective Address Calculation

The register values used by the EAC stage may be produced by the ALU stage
or the EAC stage itself. More specifically, the address register values may be
produced by either the EAC stage or the ALU stage, while the data register
value can only be produced by the ALU stage.

If a value required by the EAC stage is produced by the ALU stage, there must
be a number of instructions between the instruction in the EAC stage that use
the ALU produced value and the instruction in the ALU stage that produces
the value. If this is not the case, the pipeline must be stalled until the value
becomes ready.

If the EAC or ALU stages have produced values required by the EAC stage,
but not yet written the values back to the register file, then the value must be
forwarded to the EAC stage in, order to achieve optimal pipeline throughput.

Moreover, if the value is to be read from the register file, the value must be
resident in the register file, before the read address is clocked into the register file
read port interface register. This is due to block ram read/write synchronization
semantics. That is, writing a location of a block ram from one port and reading
the same location from another port on the same clock edge yields either old
data or invalid data, depending on block ram configuration. In addition, some
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block ram macro cells are able to operate on a higher frequency if reading from
and writing to the same location simultaneously is not required [Xil12].

There are a number of possible stages that may act as an EAC forwarding
source. The address registers may be sourced from EAC, OPR, ALU and WB
(WB because of block ram synchronization). The data registers may be sourced
only from ALU and WB.

The correct source for a forwarding destination is found by:

1. Deciding if any of the forwarding sources produce a value for the required
register.

2. Selecting between these values the value produced by the most recently
issued instruction.

Relevant stages of the pipeline carry control bits that specifies what destinations
the instruction currently occupying the stage will produce values for. Figure 5.11
depicts the use of these values to select a source for a forwarding target. The
box named “Select 1” contains the selection logic for comparing the source of one
stage with the destination of another stage. The logic includes a comparator
to detect if the register indexes of the two stages match. If the index match,
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and the stage that might produce the value writes the register defined by the
index which was used in the comparison, the output of the circuit is high. If
the width of the register indexes is r, then each select box has 2r + 1 inputs.
If n pipeline stages may produce values that might be a forwarding source, n
of these decision circuits are required. The output of the decision circuits are
used to select between the actual values from each of the pipeline stages. As
there are n sources to select from (source 1 to source n in the figure), n bits if
input to the selection logic that implements the multiplexer is required. The
total number of additional inputs is the sum of the preceding inputs:

ie = (2 · r + 1 + 1) · n (5.1)

where r is the register index width and n is the number of sources. The expres-
sion shows that the number of sources and the width of the register addresses
both affect the number of inputs. The number of inputs in turn limits the max-
imum operating frequency of the circuit. The consequence is that if too many
extra pipeline registers are added to the pipeline, it will become unfeasible to
allow forwarding from all of them. Similarly, if the number of registers become
too high, the number inputs to the forwarding detection logic may become so
large that they limit operating frequency.

Stall decisions require similar logic, but one bit less input per stall source, as
the value is not yet produced.

5.2.2 ALU

Logically, values consumed by the ALU stage can only be sourced from the
register files or the data cache. In practice, values must be forwarded from the
ALU itself, and from the WB stage. As with the EAC stage forwarding, the
WB stage must be considered due to the semantics of the register banks.

A construct similar to the one depicted in figure 5.11 is used to determine the
correct source to supply the values for the ALU stage.

5.3 Performance Considerations

Preliminary performance evaluation of the described pipeline layout was carried
out by building a VHDL model of the pipeline. The model was synthesized using
the Xilinx Vivado suite targeting the Zynq XC7020-1CLG484C device. The
first model to be synthesized included additional pipeline registers separating



52 Execution Engine

An

Dn

An Address ALU

An

Dn

Dn

src

dst

Dn

An

mem

mem_rd_data

8bit imm

part_ea

ea

Data ALU

dst

src

op_select alu1 alu2 mux

tmp

op_read

dc

1

1

SE

32bit imm

0

1

0

1
0

1

2

0

1

0

1

8bit imm
SE

32bit imm

0

1

0

1

0

1

0

1

0

0

1

0

0

1

ccr

ccr

ccr

wb

Figure 5.12: The ALU stage after inserting additional pipeline stages.

the ALU stage into OPS, ALU1, ALU2 and MUX as described below. These
registers were placed based on earlier experience with targeting FPGAs. This
initial design achieved a clock frequency of 80MHz. Using the Xilinx tools to
drive the optimization process, additional pipeline registers were inserted into
the pipeline.

The ALU stage was divided into four separate stages. Figure 5.12 depicts the
location of the additional pipeline stages. The selection of the operands that
feed the ALUs is given a separate stage named Operand Select, OPR. A pipeline
register is placed inside the ALUs in order to prevent long carry chains in combi-
nation with CCR update in limiting the frequency. This creates the two stages
ALU1 and ALU2. The selection of values for the WB stage is also given a
separate pipeline stage named MUX.

The EAC stage also requires additional pipelining. The extensive forwarding to
the base register, combined with the two 32 bit adders became a critical path.
The stage is divided into two separate stages EAC1 and EAC2 as seen in figure
5.13.

With most of the critical paths handled by inserting additional pipeline stages,
the logic that decides the next PC becomes the critical path. The branch res-
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Figure 5.13: Pipelining of the EAC stage.

ea

mem

pc+2

imm8

+

real_target_pc

pred_target_fail

/=

pred_pc

1

0

0

1

flush

Verify 
condition

CCR
cond

Target PC

pred_fail

ALU2ALU1OPS

Flush

To next PC logic

Figure 5.14: Pipeline registers inserted into the branch resolution logic.



54 Execution Engine

olution logic is capable of flushing pipeline stages from PC to ALU2 in case of
a wrong branch prediction. This causes logic paths from the branch resolution
logic to the inputs of all the pipeline registers that require flushing to limit the
operation frequency. By storing the flush decision in a register and acting on
the registered value in the next clock cycle, this path is effectively eliminated.
This is achieved by registering the flush decision at the ALU2 pipeline register
level as depicted in figure 5.14.

The verification of the condition code cannot be moved earlier than ALU2,
because the condition code that the decision logic must act on is produced by a
previous instruction in the ALU2 stage. However, matching the condition code,
and verifying that speculated target PC was correct became a critical path. The
speculated target PC verification is moved to the ALU1 stage to kill this path.
Further, calculation of the 8 bit PC relative address is moved back to the OPS
stage.

5.3.1 Pipelining the Forwarding Logic

The consequence of adding additional pipeline registers to the pipeline is that
a number of additional forwarding paths and stall conditions are created. An
instruction entering EAC1 must now also stall if it depends on a value produced
by EAC2 that has not yet been latched in the EAC2 output registers. Similarly,
an instruction in EAC1 must be stalled if it depends on a value that is produced
by an instruction in ALU2 if that instruction has not yet reached ALU2.

Forwarding of the address index register value or the base register value for the
effective address calculation circuit now has no less than 9 sources, in addition to
the register file. In order to avoid the selection of the correct source to become a
frequency limiting path, the forwarding itself is pipelined. Figure 5.15 presents
a conceptual overview of the pipelined forwarding logic for an address register
source in the EAC1 stage.

In the DEC stage of the pipeline, 5 sources are monitored for forwarding con-
ditions. Instructions in EAC2, OPR, OPS and ALU1 may have produced an
address register value when they passed EAC2. The instruction in ALU2 may
have produced an address register value via either EAC2 or ALU2. The forward-
ing sources are effectively checked for forwarding conditions before the values
are required for forwarding. This moves some of the pressure away from the
pipeline stage that is the destination of the forwarding to some of the earlier
stages.

In the EAR stage, the 5 sources checked in DEC are condensed down to 1
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Figure 5.15: Conceptual overview of the pipelined forwarding logic for the
address register source of the EAC stage. The vertical blue lines
represent pipeline registers.

source using a priority selection scheme. In addition, the instruction that has
moved into ALU2 may have produced a value that was not available when the
instruction was in the ALU1 stage. If it is required for forwarding, it is captured
at this point. The instruction that has moved into EAC2 is checked and the
result of the check is propagated to the EAC1 stage. Partial checks for the
instructions that will be in EAC2 and ALU2 in the next clock cycle are also
performed in the EAR stage.

In the EAC1 stage, the final source for the operand is determined. The con-
densed value from EAR, the EAC2 check from EAR and the EAC2 and ALU2
checks for EAC1 are reduced to a single value. If no forwarding is required, the
register file is used as a source.

Pipelining the forwarding logic in this way presents a challenge in relation to
pipeline stalls. A decision made in one stage to capture a value for forwarding
in a subsequent stage may capture the wrong value if not implemented carefully.
This can happen if the first part of the pipeline (including the stage in which
the capture decision is made) stalls just after the capture decision has been
made, but the later stages of the pipeline continue to execute. When the stall
condition is resolved and the instruction in capture decision stage can move
forward, it will capture the forwarded value as decided by the logic in later
stage. But this decision was made when the last part of the pipeline contained
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Figure 5.16: Normal operation of gated and ungated registers.
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Figure 5.17: Operation of gated and ungated registers during a stall.

other instructions. These instructions may have left the pipeline, or be in a
different location when the stall condition is resolved.

In order to overcome this problem, the pipeline registers that capture the output
of the forwarding logic are never stalled. Thus, if the first section of the pipeline
is stalled for some reason, while the last section of the pipeline continues to
execute, the forwarding selection pipeline registers are continuously updated to
reflect the actual state of the pipeline.

However, having some registers that are never stalled (ungated registers) in
combination with registers that are stalled (gated registers) gives rise to further
complications. When the pipeline is operating in normal mode, an ungated
register that captures the output of some function F uses the same input as a
regular gated register at the same pipeline level. This situation is depicted in
figure 5.16. The output of the ungated register B is the result of function F
with the same input as is present on the output of gated register A.

Figure 5.17 shows the data flow when the pipeline is stalled. The output of
register B now holds the value of F based on a different input than the one
available at the output of register A. Using the value at the output of register B
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Figure 5.18: Overview of the integration of the data cache and the execution
engine pipeline.

as a representation of the function F with the input at the output of register A
would be wrong. Instead the output of register C is used to provide the value.
As an alternative to the depicted solution, the input to F might be multiplexed
instead of multiplexing the registered output. Depending on the criticality of
the paths from the inputs to F and into the register versus the paths from the
register and on, the placement of the multiplexer can be moved.

Thus, a function that uses the output of an ungated register as input must
consider twice as many inputs as if the input was provided unregistered. If the
function F depends on many input signals and produce few output signals, the
use of ungated registers may still lower the number of inputs to a function that
use the result of F.

5.4 Data Cache

A conceptual overview of the Data Cache is given in figure 5.18. Because one
port of the data cache must always be available to the cache controller, the
pipeline DC read and DC write stages must share a single port to the cache
memory. This complicates implementation and presents additional hazards to
the pipeline.

The data cache is arranged as an array of 32 bit locations. A cache line holds
8 32 bit words to form a 32 byte cache line. This line size was chosen to match
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Figure 5.19: Data cache load and store sequencing and resource utilization.

the maximal burst length of DDR3 memory [Jed12] on a 32 bit wide bus as
featured on the on the ZedBoard [AVN13].

In order to efficiently process stores and service dependent loads quickly, the data
cache uses a store buffer. This allows the pipeline to continue execution, even
when a store misses in the cache memory. However, store-to-load forwarding and
alias detection2 were not implemented due to lack of implementation time. For
the execution engine pipeline presented earlier, the consequence of this choice is
that all stores in the execution engine pipeline and in the store buffer must be
processed before loads in the pipeline.

Because of delays associated with block ram macro cells, a read of the data cache
memory has a latency of two cycles. One cycle to clock in the read address, and
one cycle to clock out the data. Therefore, the data cache must to handle
multiple operations at once to be effective. However, switching from servicing
stores to servicing loads requires some consideration.

To perform a load, the tag and data memories are read in parallel. When the
result is ready, the tag is verified, and if the tag indicates a cache hit, the data
is handed off to the pipeline. If the tag indicates a miss, the data cache notifies
the external data cache controller.

To perform a store, the tag memory is read first. When the tag value is ready,
the tag is checked to determine if the store is a cache hit. If the store is a cache
hit, the store data can be written to the data cache memory. Once the data
has been clocked into the data memory port, the data cache can forget about
it. The read and write sequence is depicted in figure 5.19.

Figure 5.20 shows a sequence of load/store operations. Two reads, two writes

2Two memory operations that access the same data in main memory are said to be aliasing.
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Figure 5.21: A load following a store in program order. The load cannot be
issued to the data cache before the store has been issued, unless
the two operations can be guaranteed not to be aliased.

and a read are performed in a pipelined manner. The figure shows how reads
can be executed in a pipelined manner. Stores can also be executed pipelined
after reads, and stores can be executed pipelined after stores. However, as the
last operation shows, loads cannot be executed pipelined after stores. This is
both because store operation requires use of the data memory port at the end of
its execution, and because of the adopted stores-before-loads policy. The control
logic must wait for the last store to complete before issuing the load. If the load
arrives earlier than it can be issued, the control logic must notify the execution
engine pipeline so it can be stalled.

Because of the missing alias detection logic, the situation of stores issued after
loads depicted in figure 5.20 cannot legally occur. Figure 5.21 shows the exe-
cution engine with a load about to issue and a store in the ALU1 stage. If the
load operation is aliased with the store operation, the load must not be issued
to the DC before the store has been issued. Alternatively, the value of the store
in ALU1 may be forwarded to the load once the store value has been produced.
Then the load may skip the DC entirely.
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Figure 5.22: Data cache core hardware. The TLB was not implemented.

The data path logic that facilitates the load/store pipelining is depicted in figure
5.22. The address for the memory cells may be routed from the read address
or the write address. Note the cc_inject label. When a cache miss is detected,
the data cache logic is stalled until the cache controller has resolved the miss.
When the data cache resumes operation, it will source the required value from
the cc_inject signal provided by the cache controller, instead of from the cache
memory. This eliminates the need to restart the operation, and to manage
restart of all the load/store operations that were in flight.

In order to handle load/store operation issue and in order to handle unaligned
loads and stores, an additional layer of logic is placed between the data cache
pipeline and the execution engine pipeline. The data cache has a 32 bit interface
to the cache memory and supports 1 byte, 2 byte and 4 byte operand sizes in
a byte addressable address space. Unaligned load/store operations that do not
cross an aligned 4 byte boundary are handled as a single operation. For these
operations, the data is shifted into place before write or after read. Individual
byte wide write enable signals of the block RAMmacro cell are used to write only
the necessary bytes of the 4 byte word. Load and store operations that do cross
a 4 byte boundary require two accesses to the cache memory. Such operations
are split into two separate operations by the control logic. For writes, nothing
more is required. For reads, the data for each of the operations of the split
operation must be combined before it is handed off to the execution engine.
The sequencing for unaligned reads are depicted in figure 5.23.

The execution engine pipeline interfaces the data cache via the interface depicted
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in figure 5.24. Stores are accepted if there is at least two free slots in the store
buffer. Two slots must be available in order to handle unaligned stores. If the
store is unaligned, the store is split in two before being placed in the store buffer.

If the store buffer is empty, the interface will accept a load operation. The
result of the load operation will be available on the interface after at least two
cycles as depicted in figure 5.25. With store-to-load forwarding, the load would
be required to stall. If the address of the load was present in the store buffer,
the load could be service from the store buffer. Otherwise the load would be
serviced immediately from the data cache, before waiting stores in the store
buffer.

Experimental synthesis shows that one path in the data cache is particularly
critical for performance. This is the path that originates in the tag validation
logic, produces the data cache pipeline stall signal, goes through the store buffer
control logic and on to the interface control logic that determines if an operation
can be accepted. This path is depicted in figure 5.26. The tag is compared to
the address of the load/store operation after leaving the tag memory output
registers. If the tag does not match, the stall signal is raised. This stall signal
in turn determines whether an operation is removed from the store buffer to be
issued to the pipeline. This affects the number of available entries in the store
buffer that is reported to the interface logic, and whether the store buffer is able
to accept new entries. The store buffer fill level determines whether new store
operations can be accepted from the execution engine. If no more operations
can be accepted by the data cache, the execution engine pipeline stall logic is
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Figure 5.27: Optimized store command issue logic.

activated. This logic already has a high propagation delay, and the whole path
ends up limiting the operating frequency of the entire design severely.

To compensate for this effect, the stall logic of the data cache is pipelined as
seen in figure 5.27. To break the path, the stall signal is registered immediately
after tag validation. This breaks the critical path, but also has the effect that
the store buffer sees the stall signal one cycle too late. An additional register is
appended to the store buffer to compensate for this effect. The register holding
the stall signal is used to select between the value from the extra register and the
actual store buffer output. Deciding whether a new operation can be accepted
now amounts to checking the availability of the last store buffer slot and the
registered stall signal. If the registered stall signal is low, the store buffer will
always issue one operation on the next rising edge, and one free slot is enough.
If the registered stall signal is high, the store buffer will not issue any operation
in the next cycle, and two free slots is required in order to accept an operation
(two slots are required to accept unaligned stores).

5.5 Data Cache Controller

The data cache controller takes advantage of the fact that the AXI protocol
allows full duplex communication. The controller is constructed as three in-
terleaved state machines. Figure 5.28 presents the state diagram for the data
cache controller. The state machines are marked A, B and C. State machine A
is responsible for fetching data from memory, B is responsible for writing back
dirty lines to memory, and C is responsible for reading and writing the cache
memory. The black arrows represent state changes. The blue arrows represent
dependencies.
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Figure 5.28: State diagram for the data cache controller logic.

Even though the execution engine was designed with multiprocessor operation
in mind, no effort has been made to make the cache controller able to operate
in such an environment.

5.5.1 Short note on the AXI Protocol

The AXI protocol is a flexible master/slave micro controller bus standard devel-
oped by ARM Ltd. AXI is widely used in ASIC and SoC parts and for FPGA
IP.

An AXI read transaction is a two phase process. The first phase is the address
phase. In this phase, the address is driven on the address bus by the master,
and the slave drives accept or error signals on the response bus. The master
also drives signals that describe the size, width and type of the transaction. The
data cache controller uses 4 burst 64 bit wide transfers in order to transfer an
entire 32 byte cache line in one transaction.

The second phase is the response phase. In the response phase, the slave drives
the read data bus and the read response bus, and the master drives the accept
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signals. The response phase may contain many transfers to implement a burst
transfer.

The AXI write transaction is similar to the AXI read transaction, but requires
one more phase. The address phase is very similar to the AXI read transaction
address phase. In the second phase, data flows from the master to the slave,
as opposed to the second phase of the AXI read transaction. The third phase
is a response phase in which the slave indicates whether the transaction was
successfully completed.

For more information on the AXI protocol, refer to the AMBA, AXI and ACE
specification [ARM11].

5.5.2 Handling a Cache Miss

When a cache miss is signaled by the data cache logic, state machine B changes
state to the c_read state where it moves a cache line from the data cache memory
to an internal buffer. As machine B moves out of c_idle, state machine C is
allowed to enter the axi_rd_addr state, as shown by the blue dashed arrow in
the figure. When state machine C enters axi_rd_addr, it initiates a read of
the cache line in main memory that contains the word that caused the cache
miss. State machine C is allowed to proceed to the next state where it reads
the response from the AXI bus read data channel and places the response in an
internal buffer. Once the response has been read into the internal buffer, state
machine C is finished.

State machine B is allowed to enter the c_write when state machine C leaves the
axi_rd_resp state, as indicated by the figure. In the c_write state, the internal
buffer filled with data read by state machine C is written back to the data cache
memory.

State machine A waits for state machine B to leave the c_read state before
entering the axi_wr_addr state. In axi_wr_addr, an AXI write transaction is
issued in order to write the dirty cache line back to main memory.

State machine B must wait for state machine A to finish, before it signals the
execution engine that the cache miss has been resolved.

If the cache line that must be evicted is not dirty, state machine A is kept idle,
and state machine B skips the c_read state.
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5.6 Instruction Cache

The instruction cache is organized as an array of 128 bit instruction words with
two words per 32 byte cache line. Because the instruction cache is a read only
memory for the execution engine, implementation is straight forward.

As opposed to the data cache, the instruction cache tag is evaluated by the
execution engine itself. When a miss is detected no-op instructions are injected
into the pipeline until the cache controller has resolved the miss. No other logic
is changed. For instance, the program counter continues to progress during a
cache miss.

When the cache controller has resolved the miss, an artificial branch instruction
is executed to transfer control back to the instruction that caused the miss.
The logic to perform this action is the same logic that is used during a reset
operation. This approach is chosen in favor of stalling the front end of the
pipeline, because the stall logic must be inserted in all critical paths.

5.7 Instruction Cache Controller

The Instruction Cache Controller, ICC, is responsible for resolving cache misses
in the instruction cache. When operating in optimized mode, the ICC services
a cache miss by fetching the relevant cache line from main memory via an AXI
master interface. The line is placed in the cache memory, the execution engine
is notified that the miss is handled.

When operating in direct mode, the ICC services a cache miss by translating
m68k instructions to internal VLIW instructions. The miss address identifies
the address in memory where the m68k instruction to be translated is resi-
dent. To avoid problems with m68k instructions that span two cache lines, two
consecutive cache lines are always fetched.

The m68k instruction is decoded by a state machine over two cycles. The first
cycle examines the first 16 bit word of the m68k instruction. Based on this
examination, a sequence of VLIW instructions is emitted in the next cycle.

When the instruction has been decoded and the VLIW instructions written back
to the cache memory, the execution engine is notified and execution continues.



Chapter 6

Hot Spot Detection

The hot spot detection mechanism employed in this project is adapted from
work by Merten et al. [MTG+99, MTN+00, MTB+01]. During the early stages
of the project I planned to use a trace based method for detecting hot spots.
I was entrigued by research carried out by Fahs et al. that seeks to use the
trace cahce as a dynamic optimization target [FBC+01a, FMS+04b]. However,
trace based methods described in literature bring a lot of complexity to the
hardware. The trace has to be constructed by hardware, and it has to be placed
in a hardware buffer. The trace buffer space is wasted if the trace is shorter
than the buffer entry size. Also, a trace captures only a single path through a
hot spot. Even though this path may contain loops that are effectively unrolled
by the trace, a trace can still only capture one path.

In contrast, the method described by Merten et al. captures information, not
about traces, about heavily executed branch instructions. This information is
placed in a cache like structure that can be accessed by the user of the informa-
tion. It is a simpler and cleaner method which is easier to implement.

The next sections describe the implementation of the HSD mechanism.
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6.1 Concept

The HSD detects hot branch instructions by monitoring the execution frequency
of the branches executed by the execution engine over a closed time interval (the
sampling window). The hot branch instructions are sets of branches, that are
active for at least some amount of time, and that constitutes at least a predefined
percentage of all executed branches in that same period of time. If such a group
of branches can be located, the HSD emits an event that indicates that a hot
spot was found. The HSD relies on the execution engine to emit an event each
time it retires a branch instruction. The event must inform the HSD unit of the
address of the branch instruction, and whether the branch was taken or not.

Let the amount of time that the set of branches must be active in order to
be considered a hot spot ws, and the minimum execution percentage of these
branches xt. The amount of time is not measured in time, but rather in a
number of retired branches.

The HSD operates with two sampling windows whose length is measured in
retired branches. The Candidate Window, CW, is used to decide if a set of
branches are candidates for a hot spot. The Sample Window, SW, is used to
decide if a set of candidate branches constitues a hot spot. The length of the
SW is ws, the length of the CW is wc and ws = s · wc where s = 2n, n ∈ N.
To reiterate, in order to be reported as part of a hot spot, a branch must first
become a candidate by achieving a certain execution percentage in the CW, and
then the set of candidate branches must hold a second execution percentage over
the SW.

When the HSD is activated, it first looks for a set of candidate branches. Can-
didate branches are branch instructions that have an execution count of at least
ec in some CW. If the CW is wc branches long, the execution percentage that
a branch must have to become a candidate branch during some CW is:

xc =
ec
wc

(6.1)

When a set of candidate branches has been identified, the HSD measures how
often the candidate branches are executed, and for how long they are active.
If the candidate set is active over the entire SW of length ws branches and
constitutes at least xt percentage of all executed branches, the set of candidate
branches is declared to be a hot spot. This decision is carried out by maintaining
a saturating counter of n bits that is initialized to (2n)− 1. This shall refer to
this counter as the Hot Spot Counter, HSC. Each time a candidate branch is
retired, the counter is decremented by D. Each time a non candidate branch is
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retired, the counter is incremented by I. If the counter reaches zero before the
SW ends, the set of candidate branches are determined to be a hot spot.

The values of I and D are chosen so that if the candidate branches have an
execution percentage larger than xt, the counter will begin to move down. If
this is the case for a longer period of time, the counter will reach zero.

If x is the execution percentage of a set of candidate branches, the HSC will
decrease when the increment value I multiplied by the non candidate execution
percentage is less than the candidate execution percentage times the decrement
value D:

I(1− x) < xD (6.2)

Thus, if we want the HSD to decrement for some x, then I and D must satisfy:

I

D + I
< x (6.3)

and therefore I and D can be set to achieve an execution percentage threshold
xt of hot branches as follows:

xt =
I

D + I
(6.4)

Let N be the minimum number of branches to be executed before a hot spot
is detected and let x be the execution frequency of a set of candidate branches.
Then D′ = NDx is the total amount by which the HSC is decremented by, due
to candidate branches in a window of N branches. Likewise I ′ = NI(1 − x) is
the total amount that the HSC is increment by due to non candidate branches
in a window of N branches. The total value by which the HSC is decremented
in a window of N branches must then be D′′ = D′−I ′. If we want the minimum
number of branches to be executed before a hot spot is detected to be N , the
total value by which the HSC is decremented in a window of N branches must
satisfy:

(2n)− 1 < D′′ = D′ − I ′ = NDx−NI(1− x) (6.5)

where n is the number of bits in the HSC. Solving for N yeilds:

N >
(2n)− 1

(D + I)(x− xt)
(6.6)

From equation 6.6 we see that the minimum number of branches that must
be executed before a region is classified as a hot spot decreases if the actual
execution percentage, x, of the candidate set is larger than the threshold xt. N
is a not a fixed amount. A hot spot is detected faster if the actual candidate
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branch execution percentage is higher than the threshold execution percentage.
If all branches executed are candidate branches, such as in a tight loop that
runs for a long time, then

N >
(2n)− 1

D
(6.7)

Thus, the least detection time can be set by selecting D and n according to 6.7.

6.2 Architecture

The HSD captures branch information in an internal block RAM structure.
Ideally, the HSD would capture information on all branches retired by the exe-
cution engine in the sampling window. However, due to resource constraints it
is not feasible to log information on all retired branches. To conserve resource
utilization, the HSD employs a hashing policy as known from cache structures.
The lower order bits of a branch address is used to form an index into a memory
array, while the upper bits form a tag that is stored in the memory row. Figure
6.1 shows the layout of a row in the memory array.

When the HSD encounters a branch, it uses the lower bits of the branch instruc-
tion address to index the internal memory array. If the valid flag of the entry is
0, the entry is unused. It is allocated by setting the valid flag to 1. The tag field
is set to the upper bits of the branch instruction address and the two counters
are initialized to zero. If the entry is in use, the tag is matched against the up-
per part of the branch instruction address. If a match is detected, the execute
counter is incremented. If the execution engine signaled that the branch was
taken, the taken counter is also incremented. If the counters are incremented to
the point of overflow, their values are kept instead of being incremented. Even
though the values do not represent actual execution frequency, it is still clear
that the branch is hot, and by stalling the counters, the branch bias is still
available to clients of the HSD. If bit bc of the execute count field is changed
from 0 to 1 by an update, the candidate field of the entry is set. The updated
values are stored back in the memory array.

If a branch maps to a slot that is occupied by another branch, the incoming
branch is simply discarded. If the discarded branch is in fact a hot branch,
sampling precision is lost. Precision can be increased by changing the memory
array to an n-way set associative structure.

If no hot spot is found before the SW has passed, the detection memory is reset
and the process is restarted.
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Figure 6.2 depicts the data path hardware constructed to implement the de-
scribed functionality.

The logic that implements the HSC is depicted in figure 6.3. When a candidate
branch is retired the value D is subtracted from the HSC. When an non candi-
date branch is retired, the value I is added to the the HSC. When no branch is
retired, the HDC keeps its value. When the counter reaches zero, the Detect!
flag is raised.

When the CW counter wraps, all entries not marked as candidate branches are
expunged from the memory array and the CW counter is reset. This process
repeats up to s times. If no hot spot is found in s iterations, the memory array
is cleared and the process can start over.

The state diagram for the control logic of the HSD is depicted in figure 6.4.
The HSD starts in the idle state. When the HSD is activated, it transitions to
the reset state. The reset state initializes internal state and clears the memory
array. The HSD then transitions to the wait_br state where it waits for the
execution engine to signal retirement of a branch. If the CW counter expires,
the HSD transitions to the rf_read state. The rf_read, rf_wait and rf_write
states refreshes the memory array by invalidating all entries that has not reached
candidate status. If the execution engine signals that a branch is retired while
the HSD is in the wait_br state, the HSD presents the address to the memory
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array and transitions the the read_bbb state. The read_bbb state is a wait state
for the read of the internal block ram. In the hit_detect state the tag of the
selected memory row is checked against the incoming branch address. If the
branch was a hit, or the row was empty, approproate modifications are made
to the memory cell before it is written back. Otherwise, no write is performed
before the HSD returns to the wait_br state.

The initial implementation of the HSD is not pipelined, and therefore the system
may not register control flow events that occur back-to-back. It is possible to
solve the problem by pipelining the state machine and using a dual-ported block
RAM to implement the memory array.

6.3 Infrastructure

The HSD core is managed by a HSD Controller as seen in figure 6.5. The system
is controlled by a register based interface. Execution engine branch events enter
the HSD core via a separate interface that connects directly to the execution
engine. The HSD Controller is responsible for starting and stopping the core,
and for dumping the detected hot spot information to memory. The hot spot
information is transferred to main memory via an AXI master interface. A
memory mapped register based interface is available to the host CPU to control
the HSD. Through this interface the CPU is able start, stop and reset the HSD
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and to set the address where the profiling information is dumped.

6.4 Monitoring

When a hot spot has been detected and entry points to the optimized code
has been installed in the execution engine, it is important to know if execution
in fact continues in the detected hot spot. If the path of control strays away
from the hot spot, it might be a good idea to restart the hot spot detection
procedure to see if another area of code is hot. In the context of this project, it
may be feasible to simply restart the HSD and see if it detects a hot spot that
is different from the optimized regions. There is no cost associated with this
process, because the host CPU is freely available to perform this task. However,
in a setup where there is only one CPU, i.e. no extra host CPU, it makes sense
to interrupt the CPU only if execution actually moves away from the detected
hot spot.

Meten et al. describes a way to implement this feature using a structure very
similar to the branch detection feature. A table similar to the HSD memory
is filled with branch addresses of branches in the detected hot spot. A counter
similar to the HSC is decremented by D each time a non hot spot branch is
executed and incremented by I each time a hot spot branch is executed. If the
counter reaches zero, an interrupt is raised. The counter will only reach zero
if enough non hot spot branches are executed. The calculations to determine
design parameters I, D and counter sizes described in section 6.1 can be used
in a similar way to determine the parameters for the monitoring component.

Because the host CPU is available at all time to process the output of the
HSD, the monitoring feature is not strictly necessary in the proposed setup.
The feature was set aside as future work, and implementation time was spent
elsewhere.
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Host CPU Software

This section describes the software that runs on the host CPU. The software
includes initialization code and hot spot optimization code.

7.1 m68k Instruction Decoder

In order to decode m68k instructions, the host CPU software relies on a modified
version of the decoder found in the Unified Amiga Emulator which is used in
the Hatari project [Hat13].

The decoder uses a textual description of decode information. The represen-
tation describes how bit patterns are mapped to instruction mnemonics and
how operands for the instructions are encoded. The textual representation also
details how condition flags are affected by each instruction. The textual rep-
resentation is parsed by an instruction decoder builder. This software builds
a table of 216 entries. The first 16 bits of an m68k instruction are used as an
index into this table. The result is a pointer to a structure that uniquely de-
scribes the instruction being decoded, how many extension words it uses, and
what the meaning of the extension words are. The UAE software goes on to use
this information to build an emulator for the m68k architecture. However, the
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Figure 7.1: Overview of the optimization process.

host CPU software of this project only uses the decode table constructed by the
UAE software.

7.2 Optimization Process

When the host CPU is notified of a hot spot detection by the execution engine,
the hot spot optimization process is activated. The major phases of the process
is depicted in figure 7.1.
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The first phase of the optimization process collects targets of hot branches found
by the HSD. These targets are processed into an internal representation of basic
blocks by Process Targets. Extract CF connects these basic blocks into a control
flow graph, CFG. Translate performs a translation that maps the decoded m68k
instructions to a symbolic representation of internal VLIW instructions. Finalize
patches the translated CFG with proper exits, so that control can enter and leave
the translated code segment. Activate performs the necessary actions to notify
the execution engine of the existence of the newly translated code.

The initial implementation does not perform any optimization. It does however
achieve a much better instruction cache utilization than the hardware translator
is able to achieve. After translation, the translated code is kept in a symbolic
form with the intention of performing peephole optimization on the code. Such
an optimization pass would be inserted after the Finalize pass, where it may
capture most optimization opportunities.

An example of a pattern that might be targeted by a peephole optimizer is given
below. Consider the following m68k instruction sequence:
add d0, d1
move d2, (a2)

If we represent the VLIW instructions as <dalu> | <aalu> then the result of the
translation to internal VLIW instructions can be represented as:
add d0, d1 | nop
move d2, (a2) | nop

The peephole optimizer could change this sequence by moving the second in-
struction to the empty slot in the first instruction:
add d0, d1 | move d2, (a2)

This gives an excellent example of how the address ALU may be utilized to
off-load the data ALU.

7.2.1 Collect Targets

When the optimization process is started, hot spot information has been dumped
to main memroy by the HSD Controller. The dumped hot spot information con-
tain addresses of hot branches and branch afinity information. The Collect Tar-
gets process decodes the branch instruction at the specified address and pushes
the branch targets on a queue structure along with the afinity information.
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Figure 7.2: Overview of the Process Targets process. This process decodes
m68k instructions.

7.2.2 Process Targets

When the targets have been collected and pushed to an internal work queue, the
Process Targets process creates an internal structure representing a basic block
for each target address. The flow of the process is sketched in figure 7.2. The
process decodes instructions starting at the target address in a linear fashion.
If the decoding point reaches a control flow instruction, or an address that has
already been decoded, the current basic block is finished and pushed on a result
queue.

If the target to be processed is contained in a basic block that has already been
processed, then this basic block is split into two blocks at the target. This
process is depicted in figure 7.3. Figure 7.3a shows the input blocks, the control
flow unknown to the process. The process starts by decoding the instructions
in the Init block in a linear fashion (7.3b) from the beginning of the block.
The decoding continues until the control flow instruction at the end of the body
block is decoded (7.3c). The target of the control flow instruction is internal to
a block that has already been processed, namely the currently processed block,
which contains both the init and body blocks. The block is split at the target of
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Figure 7.3: Decoding a block and splitting it in two. The blue arrow points
to the instruction being decoded.

the control flow instruction, resulting in the correct control flow graph (7.3d).

7.2.3 Extract Control Flow

Figure 7.4 gives an overview of the Extract Control Flow process. The purpose
of the process is to detect control flow edges between blocks that were decoded
in the Process Targets process. Before the process starts, all the decoded blocks
are pushed on a queue. The process takes blocks off this queue until it is empty.

For each block, the fall through address of the block is checked against the list
of block start addresses. If a match is found, the fall through successor of the
block is set to be the block that starts at the given address. If the block ends
with a control flow instruction (finalizer), the branch target of this instruction is
checked. If the instruction is an indirect jump, no further action is taken. If the
target is a direct jump where the target can be calculated, the list of decoded
address ranges is checked. If a range is found that contains the jump target, the
taken successor of the block being processed is set to that block. If the jump
target is not the beginning of the target block, the block is split at the target
address to correctly reflect the discovered control flow.

7.2.4 Translate

The translation of instructions from m68k instructions to internal VLIW uses
a straight forward pattern matching algorithm. Specific m68k instructions are
always translated to the same sequence of internal VLIW instructions.
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A better result might be achieved by translating the instructions to an interme-
diate form before converting them to internal VLIW instructions. The interme-
diate form of the code might expose optimization opportunities not otherwise
available. The intermediate form would be lowered to intermediate VLIW in-
structions by an instruction selection pass such as peephole selection [TC11] or
a DAG based selection algorithm [KG08, Ert99]. This would also open up for
other optimization passes on the intermediate code.

7.2.5 Finalize

Figure 7.5 gives an overview of the Finalize process. The purpose of the process
is to insert control flow instructions at the end of the translated basic blocks
and to select an ordering for the blocks to be emitted back to main memory.
The process takes blocks from a queue until this queue is empty. The blocks
are appended to an emit queue in the order which they should be laid out in
memory.

If the block from which the translated block originates (original block) has a final
control flow instruction (finalizer), but the target of the finalizer is unknown, the
translated block is finalized by translating the original finalizer to an indirect
jump.

If the finalizer is a direct jump and the target is a translated block, then the
translated block is finished with a branch to this translated block. Otherwise
the finalizer is translated to a branch to the original code. If the finalizer is
conditional, care is taken to keep the semantics of the condition in the translated
instructions.

After the taken successor of the block has been processed, the fall through
successor is processed. If the fall through target of the block is not translated,
an unconditional branch instruction to the original code is appended to the
translated block. Otherwise, if the address of the translated block is translated,
but not yet queued for emission, it is moved to the front of the work list. This
will cause the block to be emitted after the current block in memory. If the
block of the through address is already queued for emission, an unconditional
branch to this block is inserted.

The described process does not take branch affinity into consideration when
laying out basic blocks. An interesting optimization is to lay out the blocks of
the mostly taken path as straight line code. To achieve this, the conditional
finals need to be inverted if the taken target is the most frequent target.
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Chapter 8

Simulation

In order to verify a system like the one produced in this project, a proper
simulation platform is required. Once the VHDL model is synthesized and
loaded into actual hardware, it becomes very difficult to determine the source
of errors in the model. The presence of errors can be verified easily by setting
up proper tests, but to locate the source of the problems is another story.

Matters are further complicated by the fact that the system to be tested contains
RTL logic described by VHDL code and host CPU software written in C code.
One way to handle such a situation is by simulating the VHDL model and
running the C code on the host CPU. Xilinx supports such a feature in their
development tools. The feature is called HIL, short for Hardware In the Loop.
However, Xilinx do not support HIL for the ZedBoard, which is the platform
available for testing. Only the more expensive development kits manufactured
by Xilinx currently support HIL.

In order to effectively track down bugs in the system, the GHDL HDL simulator
was utilized. GHDL is a HDL simulator that is able to compile a VHDL model
to a native x86 executable [GHD13]. To simulate the VHDL model, the native
executable produced by GHDL is executed. The executable is capable of pro-
ducing a value change file in the ghw format. The ghw file contains information
on signal changes during simulation of the VHDL model. The file can be viewed
in a viewer such as GTKWave [GTK13].
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GHDL is implemented as a front end to GCC. It uses GCC to generate exe-
cutable code that links with the GHDL run-time library, which is written in
ADA. GHDL has a fairly undocumented feature that allows a VHDL procedure
to be implemented in a foreign language. To activate this feature, the name of
the foreign language procedure is given in an attribute for the VHDL procedure,
and the procedure must be declared as having foreign linkage:
attribute foreign of <proc_name> : procedure is "VHPIDIRECT <←↩

foreign_link_name>";

This causes the procedure proc_name to have external linkage. Technically,
GHDL produces an executable file where proc_name is an undefined symbol.
During the link step of the compilation, an external object file or library must
supply the location of the symbol. This corresponds to having undefined symbols
in a regular C object file.

The interface that GHDL uses when calling externally supplied functions is not
easily deduced from the sparse GHDL documentation. GHDL uses the same
mechanics when linking an external C function to a VHDL procedure as GCC
uses when linking ADA programs with C functions. However, it is not clear
from the documentation what ADA data types are passed to the called external
C function. By reading the GHDL ADA code and using a combination of trial
and error, it was possible to construct a working interface between the GHDL
compiled VHDL model and the GCC compiled C code.

This interface is used to construct a simulation environment where the VHDL
model can be simulated along with the host CPU software. AXI master and
slave interfaces were implemented in part VHDL and part C code.

In order to run the host CPU software simultaneously with the simulator, the
GHDL entry point is wrapped in a custom initialization routine written in C.
This routine takes care of initialization tasks and spawns a POSIX thread for
the host CPU software to run in. When the host CPU thread has been spawned,
the simulation is started in the main thread.

8.1 Virtual AXI Master

Figure 8.1 shows how a virtual AXI master interface is coupled with the host
CPU software during execution of a GHDL simulation. The host CPU software
initiates AXI transactions using the C AXI Master API. The transactions are
converted to messages that are passed over a thread safe queue, the AXI Request
Queue, to the simulator thread. The transactions are dequeued by the C AXI



8.1 Virtual AXI Master 85

VHDL AXI Master

C AXI Master Code

Simulator thread

C AXI Client

C AXI Request 
Queue

C AXI Response 
Queue

Host CPU thread

Host CPU Software

VHDL AXI Slave

AX
I S

im
ul

at
io

n 
C

om
po

ne
nt

Figure 8.1: Overview of the virtual AXI master interface for the simulation
environment.
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Master Code in the simulator thread when invoked by the simulator. The C AXI
Master Code is invoked by the simulator via the VHDL AXI Master component
every time input signals to the procedure mapped to the C function is updated.
Care is taken to only dequeue at most one message in each clock cycle, and only
when the master interface is not currently processing another transaction. The
VHDL AXI Master component communicates with its VHDL peer using valid
AXI signaling. The response is pushed back to the host CPU thread via the C
AXI Response Queue.

8.2 Virtual AXI Slave

A similar system has been constructed for providing a virtual AXI Slave inter-
face, as depicted by figure 8.2. In the slave setup, the virtual AXI slave interface
simulates slave interfaces to a shared block of memory. AXI requests originating
in the simulator thread are routed over the thread boundary via the thread safe
queue. In the host CPU thread they are converted to reads and writes to a
block of memory.

8.3 Interrupt Delivery

In addition to the AXI interfaces, an interrupt delivery component was also
constructed. The component allows the simulated VHDL model to deliver inter-
rupts to the host CPU thread. However, the interrupt delivery is not performed
by interrupting the host CPU thread. The thread must check for interrupts by
polling a shared variable. This choice of using a polling mechanism was taken
in order to cut down implementation time. A better implementation could be
achieved by using UNIX signal delivery to interrupt the host CPU thread.
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Chapter 9

Results

When the project was kicked off, the intention was that this section should
present the performance of a couple of benchmarks executed on the developed
emulator, on a software interpreter, and a software binary translator. Unfor-
tunately, this has not been possible. The system currently runs in the GHDL
simulator. But because the simulator does not account for memory latency, and
because the host CPU code is executed natively on the simulator host, running
benchmarks on the simulator would provide misleading results. The following
reasons also apply:

• The developed emulation system does not yet support enough instructions
to run complete benchmarks.

• In order for the host CPU software to run on an ARM core in the Zynq
device, some change to the software is required.

• Even though a significant amount of time has been spent on testing and
verificaiton, the system probably still contains many bugs.

In the rest of this chapter, a theoretical absolute maximum performance for the
emulation system is calculated. The calculations are based on synthesis results
of the VHDL model and provides an upper bound for the performance of the
system. The size of the synthesized logic and the size of the implementation is
also discussed.
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Figure 9.1: Using Vivado to connect the accelerator to the ARM cores.

Device Speed Grade Frequency (MHz)
XC7Z020 -1 120
XC7Z020 -3 156
XC7Z030 -3 237

Table 9.1: Implementation results.

9.1 Synthesis Results

The VHDL model was synthesized using Xilinx Vivado 2013.2. The processing
system was configured using the default ZedBoard settings, but with varying
FPGA device. The Processing System is used to generate a 100 MHz clock for
a PLL in the FPGA fabric. The PLL synthesizes a clock that drives the AXI
interfaces and the execution engine component. The setup is depicted in figure
9.1. The figure is a screen-shot from Vivado.

The Vivado tools are able to achieve timing closure using a 120 MHz clock
frequency on a XC7Z020 speed grade -1 device and 156 MHz clock frequency on
a XC7Z020 speed grade -3 device. On a XC7Z030 speed grade -3 device Vivado
is able to achieve timing closure using a 237 MHz clock frequency.

In comparison, Xilinx reports that the Xilinx MicroBlaze RISC processor is ca-
pable of operating at 165 MHz on an unspecified speed grade -3 Zynq device
[Xil13a]. MicroBlaze is a commercially available soft processor system, devel-
oped by Xilinx that is optimized for Xilinx FPGAs.
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The Tinuso soft processor developed by Schleuniger et al. achieves 220 MHz on
a Spartan 6 speed grade -3 device [SMK12]. Tinuso is a state of the art research
processor system that aims to explore the limits of performance achievable for
soft processors on FPGA devices.

It is possible that the performance of the execution engine could be increased by
applying some of the design principles advocated by Schleuniger et al.. However,
the instruction set of the VLIW engine is much wider and more complex than
the instruction sets of both the MicroBlaze and the Tinuso core. This may be
a limiting factor in achievable operating frequency.

The utilization reports for implementation in the XC7Z020 speed grade -1 device
are given in figure 9.1 and 9.2. They show that only 4 block RAM primitives
were used. Close investigation of the synthesis report has shown that these are
used to implement data and instruction caches. The Vivado tool has chosen to
implement the register files using CLB registers. This is probably because the
register files are too small to spend an entire block ram. It is a bit of a mystery
why LUT RAM was not used for the register file implementation. LUT RAM
should be useful to implement wide, shallow memories such as the register files.
The tool could be forced to use the LUT RAM by directly instantiating the
LUT primitives.

The memory array of the HSD is not implemented as a block RAM either. The
reason for this is an implementation technical detail. The Vivado tool does not
support inferring block RAM structures for the coding pattern that was used to
describe the HSD memory.

Listing 9.1: Utilization of FPGA CLB resources.
+-------------------------+-------+-------+-----------+-------+
| Site Type | Used | Loced | Available | Util% |
+-------------------------+-------+-------+-----------+-------+
| Slice LUTs* | 7370 | 0 | 53200 | 13.85 |
| LUT as Logic | 7370 | 0 | 53200 | 13.85 |
| LUT as Memory | 0 | 0 | 17400 | 0.00 |
| Slice Registers | 10767 | 0 | 106400 | 10.11 |
| Register as Flip Flop | 10624 | 0 | 106400 | 9.98 |
| Register as Latch | 143 | 0 | 106400 | 0.13 |
| F7 Muxes | 1158 | 0 | 26600 | 4.35 |
| F8 Muxes | 549 | 0 | 13300 | 4.12 |
+-------------------------+-------+-------+-----------+-------+
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Listing 9.2: Utilization of FPGA memory resources.
+-------------------+------+-------+-----------+-------+
| Site Type | Used | Loced | Available | Util% |
+-------------------+------+-------+-----------+-------+
| Block RAM Tile | 4 | 0 | 140 | 2.85 |
| RAMB36/FIFO* | 4 | 0 | 140 | 2.85 |
| RAMB36E1 only | 4 | | | |
| RAMB18 | 0 | 0 | 280 | 0.00 |
+-------------------+------+-------+-----------+-------+

Even though a significant amount of time was spent on optimizing and pipelining
the design, the optimization phase of the process was ended prematurely because
other parts of the project required attention. It may be possible to raise the
clock frequency further by spending some more time scrutinizing the design for
inefficiencies and optimization possibilities.

One interesting observation that can be made from the utilization data is that
it should be possible to implement a multi-processor system on a Zynq 7020
device. The implementation utilizes less that 14% of the LUTs in the device.
This number is not expected to increase much with the implementation of the
remaining instructions. The reason for this is that no extra inputs to the ALU
are required to implement the extra instructions, and thus no more LUTs should
be required.

Figure 9.2 shows how the design was mapped to the FPGA fabric. The figure
represents the entire area of the Zynq chip. The ARM cores reside in the upper
left corner of the chip. Even though the design utilizes less than 14% of the
chip, it is clear that the tool has spread the implementation over a large area.
The tool might not be able to achieve the same clock frequency for the design,
if it is constrained to use a smaller space.

9.2 Estimated Performance

An absolute best case performance estimate can be constructed for the execution
engine using the operating frequency reported by Vivado.

The best performance is achieved when executing a long running loop that has
enough ILP to keep the pipeline busy without stalling. The loop will be detected
by the HSD and executed in optimized mode. If all these conditions are true,
the execution engine will retire one instruction per clock cycle, resulting in a
theoretical peak performance of 237 million instructions per second (MIPS) for
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Figure 9.2: A graphical representation of the utilized CLBs on the Zynq de-
vice.
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the XC7Z030 speed grade -3 device.

Because most m68k instructions are translated to a single VLIW instruction, this
translates to 237 emulated MIPS theoretical peak performance, if the optimizer
is unable to place multiple m68k instructions in a single VLIW instruction. If
the optimizer is able to place more than one than one m68k instruction into a
single VLIW instruction on average, the theoretical peak performance will be
higher.

9.3 Complexity

In order to give an idea of where the complexity of the emulator is placed, table
9.2 provides a statistical breakdown of the size of all VHDL files in the project.

The file combinatorics.vhd implement most of the logic of the execution
engine pipeline. Together combinatorics.vhd and core.vhd implement
the entire execution engine pipeline, without the cache memories. These are
factored out in the icache.vhd and dcache.vhd files. The instruction cache
controller is the second largest file in the project. The reason that this file is
so large is that it contains the simple dynamic translator that translates m68k
instructions to internal VLIW instructions on the fly.

One interesting observation is that the HSD implementation in hsd.vhd is
implemented in only 302 lines of code. This is only 3.4% of the total code size.
The conclusion that follows from this observation is that the HSD as proposed
in [MTG+99] is simple to implement and easy to add to an existing design.

In addition the VHDL code, 3.3K lines of C code and 0.8K lines of Scala code was
also written. The C code implements the hot spot translation software and the
software part of the virtual AXI bus. The Scala code implements an assembler
that was used to generate test cases for the pipeline before the translator was
implemented.
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File Blank Comment Code
combinatorics.vhd 344 362 2079
ic_control.vhd 130 142 886
ghdl_top.vhd 90 84 631
types.vhd 76 59 544
inst_func.vhd 70 0 484
top.vhd 73 117 476
ic_decode.vhd 83 58 430
dcache.vhd 90 100 376
dc_control.vhd 59 29 303
hsd.vhd 55 26 302
ghdl_axi_sw_slave.vhd 30 9 277
hsd_axi.vhd 41 21 238
axi_ctl.vhd 27 5 233
ghdl_axi_sw_master.vhd 35 16 211
core.vhd 55 36 207
tb_dc_control.vhd 23 8 205
core_pkg.vhd 17 9 119
dcache_tag.vhd 16 24 100
tb_icache.vhd 25 5 100
icache_altera.vhd 8 2 89
icache.vhd 23 6 88
dcache_data.vhd 15 25 85
dcache_data_altera.vhd 10 4 67
dcache_tag_altera.vhd 10 4 63
tb_core.vhd 10 4 61
synth_tb.vhd 13 1 52
ghdl_intr.vhd 13 0 48
tb_top.vhd 9 0 43
func.vhd 7 0 17
SUM 1457 1156 8814

Table 9.2: Breakdown of the VHDL code.
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Chapter 10

Future Work

This section lists tasks which would be interesting to complete, but which could
not be completed within the time frame of the project. A number of interesting
ideas for future research are also presented.

It was not possible to measure the performance of other emulators in time for
the deadline. It would be interesting to see what level of performance that is
required in order to have a better solution than what is available in software
today.

The first point of a future work list for the project should should be to make the
implementation feature complete by implementing missing instructions, making
the necessary changes to the design to allow it to run on real hardware, and
developing a series of automated tests.

In the current implementation, the hot spot regions are not optimized at all.
Investigation of the effect of different optimization algorithms on the detected
hot spots would be interesting future work. As mentioned in chapter 2, past
research has shown that a significant increase of performance is attainable by
optimizng hot progam regions dynamically.

Store-to-load forwarding was never implemented, even though a store buffer was
added to the data cache. It would be interesting to see what performance gains
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are available by implementing store-to-load forwarding.

The instruction set for the VLIW processor was developed in a very ad-hoc
manner. The result of this is that it contains some redundancies. Removal of
these redundacies might decrease the size of the instructions a little bit.

No attention was given to the implementation of (precise) exceptions. A study
of how to implement m68k exceptions in the emulation system is required in
order to make the emulator useful.

Support for speculative execution and delivery of exceptions under speculative
execution could also be interesting.

The emulator currently have no way of detecting self-modifying code. In order
to make the emulator practical, it has to be able to detect self-modifying code.

Originally, the implementation was planned to have memory protection and
TLB caches. A return address stack and a length prediction feature was also
planned. These were not implemented due to lack of time.

Because the execution engine VHDL model is not able to operate at more than
120 MHz on a low end device, it might be feasible to apply some of the techniques
presented in section 3.3.1 to create more write ports in the caches and register
files. The block RAM primitives of the XC7Z020 device is capable of operating
at speeds of up to 388 MHz for the speed grade -1 device [Xil12]. Implementing
a double pumped block RAM structure should not be a problem with such block
RAM operating frequencies.

It might also be possible to add a Software Managed Cache, SMC, to the
pipeline. The SMC could be implemented as a couple of block RAM struc-
tures. Special instructions could be used to move content to and from the SMC.
The optimizer might be able to utilize such a structure to avoid some memory
operation delays.

Currently, the execution engine handles all forwarding and hazard detection in
hardware. It would be interesting to see if the pipeline could be completely
exposed to the optimizer. With an exposed pipeline, the optimizer would have
to handle all predictable forwarding and hazard conditions. This might allow
the frequency of the pipeline to be increased while operating in optimized mode.
However, changing the operating frequency of a circuit that is operating might
be quite difficult.



Chapter 11

Conclusion

The original goal of the project was to emulate the m68k ISA on a custom
FPGA based execution engine using binary translation. While this goal has not
been completely satisfied, many components of the proposed emulation system
were implemented and tested. It is possible to emulate a subset of the m68k
ISA using the solution implemented during the project.

During the project, a VLIW execution engine targeting FPGA implementa-
tion was implemented. The execution engine is capable of operating at a clock
frequency of 237 MHz and has moderate resource utilization. The execution
engine is the target for a simple hardware-based binary translation engine. The
translation engine translates m68k instructions to the ISA of the VLIW.

By using an implementation of a hot spot detection mechanism proposed by
Merten et al. [MTG+99], hot regions in the emulated m68k code can be de-
tected. The hot spot detection mechanism has proved simple to implement and
operate.

Separate data and instruction caches have been implemented in order for the
VLIW execution engine to efficiently interface a memory subsystem. The caches
use the AXI bus standard to interface a memory system.

A binary translation software component capable of retranslating hot regions
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of m68k code was also implemented. The translation system reads output pro-
duced by the hot spot detection mechanism and uses this information to drive
the translation process. The translation system emits the translated code to
system memory and notifies the VLIW execution engine of the existence of the
translations. This causes the VLIW engine to execute the translated regions
the next time it encounters a branch target for which there exists translation.

A system simulation tool based on GHDL that allows external software to com-
municate with a simulated VHDL model via emulated AXI transactions was
also developed. This system allows software and VHDL hardware model to be
co-simulated in a regular PC. The system was used for testing and verification
of the implemented emulator system.

Based on the maximum frequency of the VLIW execution engine, the perfor-
mance of the system is bounded from above at 237 million emulated instructions
per second. With the implementation of one or more optimization passes in the
translation software, this bound may be moved yet higher.

In order for the project goal to be considered completely satisfied, the imple-
mentation of more instructions in the VLIW engine and in the binary translator
is required. The reason that these milestones were not reached is an underesti-
mation of the implementation time required to implement these features.



Appendix A

Project Management

Aspects of the Agile Unified Process was used as a basis for managing the
project. A project document was produced during the start-up phase of the
project. The document defines the scope of the project, a schedule with relevant
milestones and a section on risk management. The risk management section
was a major help in identifying early risk factors. Based on the risk analysis,
all identified problems have been avoided.

Because of external events, the project was not kicked off at the initially planned
date. When the project was resumed, the scope was refined, but the milestone
dates were not updated, and thus do not reflect the actual project progress.

The initial project management document is available upon request.
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VM, see Virtual Machine

Zynq, 31
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