
Python programming — Profiling

Finn Årup Nielsen

DTU Compute

Technical University of Denmark

January 3, 2014



Python profiling

Overview

time and timeit

profiling

Finn Årup Nielsen 1 January 3, 2014



Python profiling

Simpel profiling with time

time and timeit modules and times() function in the os module (Lang-

tangen, 2005, p. 422+)

Example with Python Standard Library’s time and its clock function:

from numpy import array, dot

import time

elapsed = time.time()

cpu = time.clock()

dummy = dot(array((100000,1)), array((100000,1)))

print time.time() - elapsed

print time.clock() - cpu

Finn Årup Nielsen 2 January 3, 2014

http://docs.python.org/2/library/time.html


Python profiling

Profiling with timeit

Python Standard Library’s timeit can loop a piece of code, executing it

many times and measuring the overall timing.

Useful for code that is fast.

Finn Årup Nielsen 3 January 3, 2014

http://docs.python.org/2/library/timeit.html


Python profiling

Python profiling with “profile”

Profiling: Measuring of time of execution, number of function calls, etc.

python -m cProfile -s time mypythonprogram

Finn Årup Nielsen 4 January 3, 2014



Python profiling

Try/except vs. testing for dict element

“It’s Easier to Ask Forgiveness Than Permission” (EAFP) vs. “Look

Before You Leap” (LBYL)

Consider a dictionary where you want to get an element where the key

does not necessarily exists. The following will result in an KeyError ex-

ception

>>> d = {’a’: 1}

>>> d[’b’]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: ’b’

Is it faster/better to encapsulate the code in a try/except block or test

for the existence first?

Finn Årup Nielsen 5 January 3, 2014



Python profiling

. . . Try/except vs. testing for dict element

It’s Easier to Ask Forgiveness Than Permission” (EAFP): Using try/ex-
cept

d = {’a’: 1}

keys = [’a’, ’b’]

for key in keys:

try:

d[key] += 3

except KeyError:

d[key] = 1

In this case the except block is executed if the key (here "b") does not
exist:

>>> d

{’a’: 4, ’b’: 1}

Finn Årup Nielsen 6 January 3, 2014



Python profiling

. . . Try/except vs. testing for dict element

“Look Before You Leap” (LBYL): check if element exist

d = {’a’: 1}

keys = [’a’, ’b’]

for key in keys:

if key in d:

d[key] += 3

else:

d[key] = 1

Finn Årup Nielsen 7 January 3, 2014



Python profiling

. . . Try/except vs. testing for dict element

See are profiling of the cases made by Patrick Altman in Try / Except

Performance in Python: A Simple Test

Generally, in standard Python an exception is expensive (but a try is not).

The if condition testing also requires some time to execute.

https://gist.github.com/fnielsen/6127124

Finn Årup Nielsen 8 January 3, 2014

http://paltman.com/2008/01/18/try-except-performance-in-python-a-simple-test/
http://paltman.com/2008/01/18/try-except-performance-in-python-a-simple-test/
https://gist.github.com/fnielsen/6127124


Python profiling

. . . Try/except vs. testing for dict element

Note in this simple case we could (also) have used defaultdict from the
collections module:

import collections

d = collections.defaultdict(lambda: -2)

d[’a’] = 1

keys = [’a’, ’b’]

for key in keys:

d[key] += 3

Or the setdefault method in the standard dict class:

d = {’a’: 1}

keys = [’a’, ’b’]

for key in keys:

d[key] = d.setdefault(key, -2) + 3

Finn Årup Nielsen 9 January 3, 2014

http://docs.python.org/2/library/collections.html#collections.defaultdict
http://docs.python.org/2/library/collections.html


Python profiling

Graphical representation

Graphical representation of call graph

pycallgraph

(Debian package: python-pycallgraph)

Finn Årup Nielsen 10 January 3, 2014



Python profiling

More information

Huy Nguyen, A guide to analyzing Python performance: Unix time, timing

context manager, line_profiler, memory_profiler and objgraph.

Finn Årup Nielsen 11 January 3, 2014

http://www.huyng.com/posts/python-performance-analysis/
http://mg.pov.lt/objgraph/


Python profiling

Summary

Do not write inefficient code, unless there are reason for it: readability,

maintainability, . . .

Profile you code.

For short code snippets use timeit.

For overall profiling use cProfile. This facility is directly available in, e.g.,

Spyder IDE.

Consider other tools: memory profiling, pycallgraph and objgraph.

Finn Årup Nielsen 12 January 3, 2014

http://mg.pov.lt/objgraph/


References

References

Langtangen, H. P. (2005). Python Scripting for Computational Science, volume 3 of Texts in Computa-
tional Science and Engineering. Springer. ISBN 3540294155.

Finn Årup Nielsen 13 January 3, 2014


