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Summary

The subject of this thesis is a thorough investigation of the application of nonlinear
multigrid techniques, specifically the Full Approximation Scheme (FAS), for simulation
of subsurface multiphase porous media flow. The main motivation for addressing this
topic is a need for higher resolution and efficient simulations leading to better decision
making in the production of oil and gas. Higher resolution simulations require efficient
utilization of many-core parallel architectures. Current numerical methods employed in
industrial reservoir simulators are memory intensive and not readily scalable on large-
scale distributed systems and modern many-core architectures such as GPUs or Intel

MICs.

In a first step, we investigate alternative numerical methods to establish algorithmic
performance in serial computations. The nonlinear multigrid technique FAS uses local
linearization, which allows for local components suitable for parallel implementation.
Furthermore, FAS is a memory lean algorithm. To our knowledge, very little work is
published on FAS for reservoir simulation. Molenaar, [36], considers the application of
FAS on a simple 2D immiscible two-phase no gravity homogeneous example. To our
knowledge, FAS has not been applied successfully to more complicated heterogeneous
reservoir problems.

Two reservoir simulators have been implemented in C++ in serial. The first simulator
is based on conventional techniques with global linearization in Newton’s method and
state-of-the-art choice of methods for the linear solver. The second simulator is based on
the nonlinear multigrid method FAS. Both simulators solve the same system of PDEs
governing 3D three-phase flow of oil, water and gas in a subsurface porous medium
taking into account gravitational effects. The same discretization techniques are used
for both simulators. For spatial discretization, the Finite Volume Method is used and for
temporal integration, the backward Euler method is used. This enables fair comparisons
between the conventional methods and FAS.

The two reservoir simulators have been tested extensively to compare the nonlinear
multigrid approach FAS with the conventional techniques applied in modern reservoir
simulation. It has been demonstrated that, without loss of robustness, FAS outper-
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forms the conventional techniques in terms of algorithmic and numerical efficiency for
the model equations considered. Furthermore, memory comparisons have been carried
out, which show that FAS provides a significant memory reduction in comparison with
conventional techniques. This memory reduction is an attractive feature, which enables
higher resolution simulation for the beforementioned modern many-core architectures.



Resumé pa dansk

Emnet for denne afhandling er et grundigt studie i anvendelsen af ikke-linesere multigrid
teknikker, herunder Full Approximation Scheme (FAS) til simulering af undergrunds
flerfase strgmninger i et porgst medium. Den primesere motivation for at undersgge
dette emne er et behov for effektiv simulering i hgjere oplgsning, hvilket vil muligggre
bedre beslutningstagning i produktionen af olie og gas. Simulering i hgjere oplgsning
kreever effektiv anvendelse af parallelle beregnings-arkitekturer med mange kerner. De
nuvaerende numeriske metoder, som bliver anvendt i industriel reservoir simulering, har
et hgjt hukommelsesforbrug og er ikke umiddelbare skalerbare pa stor-skala distribuerede
systemer og moderne mange-kerne arkitekturer sasom grafikkort eller Intel MICs.

Som et fgrste skridt undersgger vi alternative numeriske metoder for at fastsla den al-
goritmiske ydelse ved almindelige sekventielle beregninger. Den ikke-linesere multigrid
teknik FAS er baseret pa lokal linearisering, hvilket tillader brugen af lokale komponen-
ter, som er velegnet til parallel implementering. Yderligere er FAS en algoritme, der
ikke bruger meget hukommelse. Sa vidt vi ved, er der kun publiceret meget lidt om FAS
for reservoir simulering. Molenaar, [36], betragter anvendelsen af FAS pa et simpelt 2D
ikke blandbart to-fase homogent eksempel uden hensyntagen til tyngdekraften. Sa vidt
vi ved, er FAS ikke blevet anvendt med succes pa heterogene reservoir problemer.

To reservoir simulatorer er blevet implementeret i C++ i sekventiel. Den forste simu-
lator er baseret pa konventionelle teknikker med global linearisering i Newton’s metode
samt nyeste metodevalg i den linesere lgser. Den anden simulator er baseret pa ikke-
lineser multigrid metoden FAS. Begge simulatorer lgser det samme system af partielle
differentialligninger, hvilket beskriver 3D tre-fase strgmning af olie, vand og gas i et
porgst medium i undergrunden under hensyntagen til tyngdekraften. De samme diskre-
tiseringsteknikker er brugt for begge simulatorer. Finite Volume metoden er anvendt
til rumlig diskretisering og backward Euler metoden er anvendt til tidslig diskretisering.
Dette sikrer et fair ssmmenligningsgrundlag mellem de konventionelle metoder og FAS.

De to reservoir simulatorer er blevet grundigt testet for at sammenligne den ikke-linesere
multigrid tilgang med de konventionelle metoder anvendt i reservoir simulering. Det er
blevet vist, at uden tab af robusthed udkonkurrerer FAS de konventionelle teknikker
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bade med hensyn til algoritmisk og numerisk effektivitet for de anvendte modelligninger.
Yderligere er der blevet foretaget sammenligninger af hukommelsesforbrug, der viser, at
brugen af FAS giver et signifikant mindre hukommelsesforbrug i sammenligning med
de konventionelle teknikker. Det lavere hukommelsesforbrug er en attraktiv egenskab,
som tillader simuleringer med hgjere oplgsning pa de fgrnsevnte moderne mange-kerne
arkitekturer.
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CHAPTER 1

Introduction

The purpose of this introductory chapter is to motivate the work presented in this thesis
and state the objectives of the research. The motivation is founded by a literature review
providing an overview of the current status of strategies employed in reservoir simulation.

Section 1.1 motivates the need for considering alternative methods in reservoir simu-
lation. This is followed by a literature review in section 1.2. A short introduction to
modern hardware is given in section 1.3. In section 1.4, the objectives of the thesis are
listed. The novel contributions are described in section 1.5. A thesis outline is given in
section 1.6.

Both authors have contributed equally to all of the work presented in this thesis.

1.1 Motivation

The world energy outlook from the International Energy Agency estimates that due to
rising incomes and population, the global energy demand increases by one-third from
2010 to 2035 [7, International Energy Agency|. The passenger vehicle fleet alone is
estimated to double to 1.7 billion in 2035, driving the oil demand to new heights. In
Denmark, oil production in 2010 in the North Sea experienced a 6 percent decline
compared to 2009. This reflects the trend of oil production in Denmark, which has
continued with a downwards rate of 3-9 percent per year since 2005 [14, Danish Energy
Agency, p. 19]. Figure 1.1 shows the oil and gas production in Denmark since the first
oil field, Dan, started producing in 1972.

This decline is partly due to aging fields and is also a problem on a global basis. The
most easily accessible oil has already been produced. To keep up with current demands

1
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Figure 1.1: Oil and gas production in Denmark. Numbers are from the Danish Energy Agency,
www. ens. dk.

and to possibly increase production to meet the future requirements, new and better oil
recovery techniques are a necessity.

New enhanced oil recovery techniques are applied more and more to both existing and
new fields. Oil prices have been steadily increasing and with recent social and political
events occuring in several Middle Eastern and North African economies, oil prices are
driven even higher, [44, World Energy Outlook 2011, p. 1]. Sustained high oil prices
allow enhanced oil recovery techniques to become economically competitive [44, World
Energy Outlook 2011, p. 25].

These enhanced oil recovery techniques, such as gas injection (COg, natural gas, ni-
trogen), chemical injection (surfactants, polymers, alkaline, low-salinity) and thermal
methods (in-situ combustion, hot water injection, steam injection), all require elaborate
mathematical simulations to optimize the oil recovery. Decisions such as placements of
new wells and injection patterns are very dependent on reliable and quick simulation
strategies.

Many oil and gas reservoirs have large amounts of seismic, geological and dynamic
reservoir data available. This vast amount of data provides high resolution geological
models. However, for conventional reservoir simulators to run in practical times, upscal-
ing of these high resolution geological models from data points at a density of e.g. 25-50
meters to 250 meters is required. Simulators using upscaled reservoir properties often
fail to accurately predict oil recovery [16, 17, 18, Dogru]. To fully utilize the seismic
data and capture the flow of components in the reservoirs accurately, simulators must
accommodate giga-cell scale models.

Actual field case experiences described in [16, Dogru] show how an increase in model
resolution from 53,000 cells to 1.4 million cells revealed trapped oil. Based on these
results, a decision was made to change the location of a new well. Consequently, a new
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horizontal well was drilled and oil was found as predicted by the simulator. Based on
the simulator results, four new wells were drilled in 2003 and 2004 in similar locations
to produce trapped oil. All wells found oil and are still producing today.

For large reservoirs, more geological data exists than can be used in the mathemati-
cal models. With more and more new technologies being implemented recently, such as
deep-well electro-magnetic surveys, new borehole gravimetric surveys, new seismic meth-
ods, use of geochemistry and new sensor technology, even middle-sized reservoirs will
have giga-cell geological models describing heterogeneity more accurately, [17, Dogru].

As demonstrated in [16, Dogrul, even increasing model resolution without more geo-
logical data available is beneficial for accurately simulating advancing water fronts and
water breakthrough at wells. Experiments in [16, Dogru] describe how a coarse model
miscalculates water arrival by a few years, whereas the fine model agrees with the ob-
servations of the well. Evidently, increasing resolution of the mathematical models is
beneficial both when additional geological data exists and when it does not.

Current industrial simulation tools have advanced to running mega-cell scale models
on parallel hardware in practical times. These tools are often based on conventional
simulation techniques predating the parallel hardware that has become a necessary part
of scientific computing. As a consequence, industrial simulation tools often cannot
utilize the performance capacity in modern parallel architectures. For giga-cell models
to become a reality, new methods with more parallelizable algorithms for modern and
emerging architectures are needed.

1.2 Literature review

In this literature review, we give a brief overview of the methods used in relation to
our subject. We review both the conventional methods, which we aim at comparing
against and the work already done on the nonlinear multigrid method FAS for reservoir
simulation.

A petroleum reservoir is a porous medium containing hydrocarbons. The purpose of
reservoir simulation is to predict future performance of a reservoir in order to find ways
of optimizing the recovery of those hydrocarbons. Fluid flow in reservoirs is normally
described mathematically with a system of PDEs governing subsurface porous media
flow, [6, Aziz] and [12, Chen]. The system of PDEs cannot be solved analytically and
hence must be solved with numerical techniques. Different numerical techniques, e.g.
finite difference, finite volume or finite element methods, can be applied to solve the
system of PDEs. In [12, Chen] the finite element method is employed, whereas [6,
Aziz] describes the use of the finite difference and finite volume methods for reservoir
simulation.

Common for all of the methods is a discretization of the continuous system of equations
to a discrete system of equations. The discretization yields a set of equations whose
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solution approximates the solution of the continuous system of equations at discrete
points or volumes in the reservoir. The system of equations is highly nonlinear and stiff.
An approximation to the solution of the nonlinear system of equations can be found
with an iterative method.

With conventional techniques, it is common to use a global linearization in a Newton-
type method to solve the strongly nonlinear system of equations arising from the spatial
and temporal discretization of the governing system of PDEs, [6, Aziz, p. 48]. The
global linearization in e.g. Newton’s method results in very large linear systems, which
means the linear solver component often constitutes more than 70% of the computation
time in reservoir simulators. Iterative linear solvers depend on effective preconditioners,
which can be hard to parallelize to the extent required by many-core simulations [38,
Saad, p.393|. Additionally, the memory requirement to store the sparse Jacobian for the
linear systems is significant. To our knowledge, very little research has been published on
matrix-free methods for reservoir simulation. The complexity of designing an effective
matrix-free preconditioner might be the limiting factor.

The linear solver methods employed nowadays to solve the linear system in each newton
iteration are iterative methods. These include the combination of ORTHOMIN with
nested factorization as preconditioner used by the established commercial simulator
ECLIPSE from Schlumberger, [19, Durlofsky, p. 40]. Wallis introduced the Constrained
Pressure Residual preconditioning (CPR) in [45, 46]. CPR preconditioning is developed
specifically for reservoir simulation and targets the individual elliptic and hyperbolic
parts of the system of equations effectively in two stages. The first stage of the precon-
ditioner deals with the pressure system and resolves global coupling and low frequency
errors. As a consequence, the second stage only needs to deal with the remaining high
frequency errors, which can be dealt with effectively by well-known Incomplete LU fac-
torizations, [11, Cao].

In [11, Cao] it is demonstrated how a simulator with a linear solver based on CPR
preconditioning using Algebraic Multigrid (AMG) to solve the first stage pressure sys-
tem outperforms ECLIPSE. AMG is a black-box type of multigrid method that works
without knowledge of the underlying partial differential equation. It is based solely on
the information provided in the coefficients of the linear system. For more information
on AMG, see [43, Stiiben, p. 413]. The work presented in [11, Cao] is the basis of the
linear solver in the next generation reservoir simulator INTERSECT!. INTERSECT is
the result of combined research and development from Schlumberger and Chevron since
2000. It was released in 2009 and recently Total joined the collaboration for further
development.

As [11, Cao] and [22, Fung] describe, a linear solver based on CPR-AMG preconditioning
is extremely effective in terms of algorithmic efficiency (convergence rate). However,
there are still challenges to overcome in implementing a near-ideal scalable AMG solver.
Also the second stage of CPR preconditioning often includes some variant of Incomplete

2 www.slb.com/intersect
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LU factorization, which again is hard to parallelize. As a result, the linear solver is still
some way from near-ideal scalability.

In [22, Fung], a preconditioning method is described which is coined Line Solve Power
Series (LSPS). It is a generalization of the z-line Neumann series method used to approx-
imate inverses. With this approach, they demonstrate linear strong scalability as both
single-stage preconditioner and two-stage CPR (LSPS as both pressure solve and full
system solve in CPR) preconditioner. Despite the better numerical efficiency and scal-
ability of CPR-~-LSPS compared to CPR-AMG, they also demonstrate that algorithmic
efficiency is still better with CPR-AMG. This implies that if AMG could be implemented
in a near-ideal scalable fashion, the CPR-AMG combination would be a very powerful
strategy.

Much research in reservoir simulation has been done on optimizing the methods used for
solving the linear systems resulting from global linearization in e.g. Newton’s method.
An alternative approach is to deal directly with the nonlinear system at hand. This
is possible with nonlinear multigrid. In [28, Henson] and [43, Trottenberg], overviews
of the two possible variations of nonlinear multigrid are given. One is based on global
linearization in Newton’s method and linear multigrid, which means it does not deal
differently with the nonlinear system compared to any of the beforementioned methods.
The second variation is called the Full Approximation Scheme (FAS). FAS is a nonlinear
solver method, where the linearization happens on a local basis and therefore the method
becomes very interesting with modern many-core architectures. Modern many-core ar-
chitectures such as Graphics Processing Units (GPUs) or Intel Many Integrated Core
(MIC) can obtain very high floprates at relatively low cost given the methods are “local
enough” (parallelizable). Furthermore, the bandwidth of GPUs is high, [31, Keckler],
which is beneficial for memory bound applications.

Interestingly, very little work has been published on the use of FAS for reservoir simula-
tion. Molenaar, [36], demonstrates convergence rates of the two variations of nonlinear
multigrid on a simple 2D immiscible two-phase no gravity homogeneous example. In
this work, it is found that nonlinear multigrid provides fast, grid independent conver-
gence behaviour and optimal complexity, meaning the time needed per time step per
grid point is independent of the number of grid points.

1.3 Modern many-core architectures

Due to high power consumption and heat issues, a bottleneck has been reached for
increasing clock frequencies in modern processors. To accomodate the growing need
for more computational power, multi-core processors were introduced and are now the
standard in both personal laptops and in clusters at universities and industry. The
well-established multi-core systems have complex scheduling procedures and memory
pipelining, which enable highly optimized execution on each core, [31, Keckler].
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Meanwhile, NVIDIA and ATI grew big on selling graphics cards for computer games.
This has resulted in a spin-off into scientific computing. With the support of double-
precision arithmetics and more user-friendly programming paradigms for GPUs, the
scientific computing field has widely adopted these PCl-accelerators as a means to speed
up computations. However, many existing and well-functioning algorithms on CPUs
need changing to give real world applications any significant speedups. This in turn
means that legacy codes cannot be adjusted with simple means to achieve near-optimal
performance. The big difference between CPUs and GPUs is that GPU chips have
significantly less physical space allocated with various control units. Instead, more
physical space is dedicated to a larger number of cores, the so-called Single Instruction
Multiple Data (SIMD) units, [31, Keckler].

With GPUs disrupting the architectural foundation of scientific computing, Intel is now
responding with the launch of MICs (Many Integrated Core), specifically the Knights
Corner. Similarly to GPUs, the Knights Corner is a PCl-accelerator. It has more than
50 cores per chip and is based on a more traditional approach with Multiple Instruction
Multiple Data (MIMD) and vector design. Intel’s intention with MICs is to allow an
easier transition from legacy codes to massively parallel architectures by enabling the
use of known parallel languages?.

Since many legacy codes have not been written for modern many-core systems, a simple
recompilation to the MIC architecture is unlikely to provide good utilization of the
performance capabilities. Common for both GPUs and MICs is the need to revisit “old”
algorithms and evaluate and likely change these algorithms if they do not have sufficient
parallel capabilities. It is no longer sufficient to only consider pure serial algorithmic
performance without considering if a given algorithm is parallelizable and preferably
massively parallelizable.

Currently, many-core architectures are attached through the PCI. The trend seems
to go in the direction of more hybrid architectures. Many scientific and engineering
applications are memory bound, meaning they depend on high-bandwidth access to
memory. Architecturally this means that memory has to be placed close to the processing
units which complicates and increases cost for extending the capacity of memory spaces.
This suggests more memory lean algorithms would be preferable on emerging many-
core architectures. Prototypes of hybrid memory cubes have proven to be promising
and perhaps these will play a big role in the next generation many-core architures, [23,
Farber].

No matter what the architectural evolution might be, a physical limitation in terms
of power consumption and heat has been reached for the transistor based chips. The
current way forward is many-core architectures and this approach will require adapting
algorithms implemented in most applications.

2) www.intel.com
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1.4 Objectives

The main objective of this thesis is to investigate feasibility of numerical methods for
advanced reservoir simulation. We propose the use of nonlinear multigrid techniques to
solve the equations governing the flow of components in reservoirs. These techniques
have proven highly efficient on modern many-core architectures in other fields, [21,
Engsig-Karup]. Specifically, we propose the Full Approximation Scheme (FAS).

Components of the nonlinear multigrid solver are local and therefore appropriate for
efficient and scalable implementation on modern, many-core architectures such as GPUs
or Intel MICs. Furthermore, by using FAS we avoid having to assemble the Jacobian
on the finest grid, which results in major memory savings.

We have found that only little work has been published on this topic. We want to inves-
tigate if it is possible to apply FAS to more complicated and realistic reservoir models
than described by [36, Molenaar|. If FAS can be successfully applied, it should have
superior algorithmic abilities in the sense that optimal complexity is attainable, namely
that the number of arithmetic operations needed to solve a problem is proportional to
the number N of unknowns in the problem considered [43, Trottenberg p. 20]. Further-
more, FAS has memory requirements that are lower than conventional techniques which
may provide a basis for larger simulations and more efficient simulators.

The objectives of this work are

e Develop and implement a sequential 3D immiscible three-phase reservoir simulator
based on FAS in C++.

e Study its effectiveness and robustness under various heterogeneous cases.

o Compare with current reservoir simulation strategies based on global linearization,
e.g. Newton’s method. This will be accomplished through implementation of such
a simulator in C++.

This work will contribute to and advance the knowledge of FAS applied to reservoir
simulation.

1.5 Novel contributions

The novel contributions of this work are the application and study of nonlinear multigrid
techniques, specifically FAS, on mathematically challenging reservoir model equations.
These challenges include high nonlinearity and heterogeneity. To our knowledge, similar
studies do not appear in any published litterature.

Furthermore, comparisons are carried out of a FAS based reservoir simulator with a
reservoir simulator based on global linearization in Newton’s method. The global lin-
earization technique used for comparison is implemented with state-of-the-art choice of
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methods for the linear solver, also applied in commercial simulators. We demonstrate
improved algorithmic and numerical efficiency using FAS for the given model equations
and problems considered.

Lastly, the work in this thesis contribute to the knowledge of nonlinear multigrid tech-
niques applied to complicated engineering problems. Specifcally, we recommend that
further studies in the application of FAS based techniques for reservoir simulations are
considered.

The work presented in this thesis has been selected for presentation at three conferences.
Appendix G contains the abstracts submitted and a poster presented at one of the
conferences.

1.6 Thesis outline

Chapter 2 presents the differential equations governing immiscible multiphase flow of
fluids in a porous medium, which are the equations considered throughout this thesis.
The spatial and temporal discretization of these equations are thoroughly described in
chapter 3.

The methods used to solve this discretized system of differential equations are presented
in chapter 4. The result is a simulator based on global linearization with Newton’s
method. The chapter covers theory, implementation, verification and a small perfor-
mance study.

Chapter 5 is dedicated to the introduction of multigrid methods, starting with a simple
linear multigrid method and moving on to the nonlinear Full Approximation Scheme
method. A simulator based on this nonlinear method is implemented, verified and
tested.

The implementation of the FAS simulator presented in chapter 5 is a working prototype.
Some of the strategies applied in the simulator leave room for improvement. Chapter 6
suggests alternative strategies and studies whether or not these alterations provide im-
provements. The chapter follows the actual work process, meaning that one alternative
at the time is proposed, implemented and evaluated. If it provides an improvement, it
is used as the standard from that point onwards.

After the final modifications at the end of chapter 6, an extensive performance study of
the two simulators is carried out in chapter 7. Finally, chapter 8 presents considerations
for a parallel implementation, which however, is not carried out due to time constraints.
Chapter 9 concludes the work done in the thesis.

Appendix A specifies the input parameters kept fixed for all the tests carried out in
the thesis, and Appendix B lists the hardware used for these test. The properties
describing the discretized reservoir are introduced in Appendix C, and the derivation of
the derivatives of the Jacobian matrix for the system of differential equations is presented
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in Appendix D. Some of the test cases used in the thesis consider smooth heterogeneous
permeability fields. Appendix E describes how to generate such a permeability field.
Appendix F contains additional verification plots for the FAS simulator using more grid
levels.

Finally, Appendix G lists the conferences, for which we have been selected to give a
presentation based on the work done in this thesis.
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CHAPTER 2

Model equations

Following the approach described in [12, Chen, p. 10] we derive the equation governing
single-phase flow of fluids in a porous medium. Specifically, the equation is given by
the conservation of mass and momentum. The momentum is governed by Darcy’s law,
which was first derived empirically in 1856 [15, Darcy]. Darcy’s law describes a linear
relationship between the fluid velocity and the pressure gradient. Later, the extension
to the multiphase flow model, which forms the basis for this thesis, is presented.

We assume that the mass flux due to diffusion, meaning the mass flux caused by differ-
ences in concentrations is negligible compared to mass flux due to advection and that
the fluid cannot go through solid material. Based on these assumptions, we derive the
differential form of the governing equation using a differential volume.

Before deriving the model equations we establish a convention for notation used through-
out this thesis. The following notation applies

a : scalar a : vector A : matrix

Consider the rectangular cuboid in Figure 2.1 with volume AzAyAz.

Flow in : Flow out

Az

Ax

Figure 2.1: Differential volume.

11
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We denote in the following the porosity of the porous medium: ¢ (the fraction of volume
available for the fluid taking into account rock compressibility), the density of the fluid
per unit volume: p, the Darcy velocity: v = (vg, vy, v,) and the external sources/sinks
(wells): w. The porosity is described in more detail in Appendix C.7.

The rectangular cuboid in Figure 2.1 has faces parallel to the coordinate axes and its
center is given by (z,y, z). We only consider flow perpendicular to the faces. Now the
Az

mass flux in the z-direction is the mass inflow at the surface at x — 5 and the mass

outflow at the surface at = + %. These mass flows are given by
In: (pvz)xi%’y’szAz, Out : (pvx)er%’y’ZAyAz, (2.1)

where pv is the mass flow per unit area per unit time. Similarly, these mass flows in the
y- and z-directions are given by:

In: (pvy)%y_%’ZAxAz, Out : (pvy)x’y+%7zAxAz, (2.2)
in the y-direction and

In : (pvz)x’yyzi%AxAy, Out : (va)Ly’er%AxAy, (2.3)

in the z-direction.

Having defined the mass flows, we continue with mass accumulation due to compress-
ibility. Mass accumulation per unit time is

0
MA{L‘A:I/AZ (2.4)
ot
and the removal (or addition) of mass in the cuboid from external sinks/sources with
strength w (mass per unit volume per unit time) is

— wArAyAz (2.5)

Using that the difference between mass inflow and mass outflow equals the sum of mass
accumulation within the cuboid, the following equation holds:

{(pvx)z—%,y,z - (pv$>z+%,y7z} AyAz
+ (va)xyyf%yz - (pvy)x7y+A2y7Z:| AzAz
i (2.6)
+ _(pvz)%%z_% - (Pvz)x7y72+%] AxAy
= a(gtp) — w] AxzAyAz
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Dividing by AzAyAz yields

(pvx)x+%’yyz - (pvm)gj—%’yvz

Ax
T e T
Ay (2.7)
- (pvz)x,y,er% o (pvz)x,y,zf%
Az
_9(¢p)
ot

and letting Az, Ay, Az — 0, the differential form of the mass conservation equation is
obtained:
A(¢p)

ot + V- (pv) =w, (2.8)

where the divergence operator is

_ Ovg % ov,

V'V_%+ dy * 0z

(2.9)

2.1 Immiscible multiphase flows

In multiphase models we operate with different components and phases. The convention
here is that the subscript ¢ denotes a component and the superscript o denotes a phase.

The derivation of the equations governing multiphase flows is similar to the description
above. The only difference is the accumulation term, where saturations (or molar den-
sities) of individual phases are included. Using this approach, the differential form of
the mass conservation for each component can be formulated as a conservation law

d(pm.)
ot

where m. is the component molar density, o. is the source term and f* = b*v® is the
flux with b* being the phase molar density and « denoting the phase, [42, Trangenstein].
The distinction between component molar densities and phase molar densities can be
confusing. The phase molar density is a function of pressure as described in Appendix
C.2, whereas the component molar density is considered a primary variable.

+V =0, (2.10)

Note that since the components are immiscible, phases essentially equal components. In
the oil business, a system of immiscible fluids with oil, water and gas is called dead oil,
dry gas, meaning oil does not vaporize into the gas phase and gas does not dissolve in
the oil phase. For more complicated fluid models, the oil component can vaporize into
the gas phase and the gas component can dissolve in the oil phase.
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A system consisting of 3 components/phases (oil, water and gas) is then modelled with
the following system of differential equations:

8((;577’10) o __

5 4+ V. -f°=o0g,
8(%7:9) LV =, (2.11)
T + V . f = Oy,

The component molar densities m,, mgy, m,, and the pressure p are the primary vari-
ables of the system. We do not consider the effects of capillary pressure. This is a
simplification.

The phase velocities are given by Darcy’s law:

(67

k
v = —KM—;(Vp — p*gVz), (2.12)

where K is the absolute permeability, u® is the viscosity, k& is the relative permeability,
p% is the density and g is the gravitational acceleration. The phase velocities in equa-
tion (2.12) take into account the coordinate system in Figure 2.2, which we are using
throughout this thesis.

-

N

Y

Figure 2.2: Coordinate system

The absolute permeability K describes the capacity of the porous medium to transport
the fluids through its interconnected pores. It can vary over the domain in both the
x-,y- and z-direction. It can be defined as the following diagonal matrix.

ke 0 0
K=[0 k, 0 (2.13)
0 0 k

The diagonal matrix in (2.13) is for anisotropic permeability fields when k, # k, # k.
as opposed to isotropic permeability fields when k, = k; = k.. For simplicity we assume
isotropic permeability fields.

The viscosity pu® of a fluid is a measure of its resistance to flow. See Appendix C.4
for details. The relative permeability £ describes how the different fluids flow in the
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presence of each other. It is a dimensionless term devised to adapt Darcy’s law (2.12)
to multiphase flow conditions. See Appendix C.6 for details. The mass density p® of a
material is defined as its mass per unit volume. See Appendix C.5 for details.

Volume balance constraint

The system is closed with a "volume balance" type constraint that is constant. For this
we use the saturation constraint.
Dy osr=1, (2.14)
6

Initial and boundary conditions

The initial molar densities are given by initial saturations as described in Appendix C.3.

The boundary conditions are no flow conditions, meaning
n-f%t,z,y,2) =0 (z,y,2) € 09, (2.15)

where t is time, the spatial domain ) represents the whole reservoir, 92 is the bound-
ary of the domain and n is an outward pointing normal vector. No flow conditions
correspond to Neumann type conditions.
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CHAPTER:3

Discretization

With the model equations being introduced we are ready to discretize the system of
differential equations in (2.11). Instead of discretizing each of these three differential
equations we consider discretization of the general form, (2.10), in space and time.

The method of lines is used to solve the system of partial differential equations. Spatial
discretization is done using the Finite Volume Method (FVM), which is explained in sec-
tion 3.1. The actual discretization is carried out in section 3.2. Temporal discretization
is performed with a backward Euler scheme as described in section 3.3.

3.1 The Finite Volume Method

For spatial discretization we use the FVM, since this method is commonly used when
considering time-dependent conservation laws.

The following convention is used throughout this thesis. Subscripts of the type ¢ and
j refer to an index position in a 3-dimensional grid, whereas the subscript ij refers to
something being evaluated across the interface between cell 7 and cell j. The superscripts
n and n + 1 are used for indicating time steps.

Let the domain of the considered 3-dimensional oil reservior be denoted Q € R3. In the
FVM the domain 2 is represented by N non-overlapping grid cells or control volumes.
Let the ith grid cell be denoted Q;, i € C = {1,..., N}. The domain € can then be
expressed as

Q=% (3.1)
ieC
The volume of §2; is denoted V; and the surface of €);, which is denoted 9€;, has the
total area A;.

17
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The ith grid cell €2; is centered around the point (z,y, ) = (i, yi, 2;) as illustrated in
Figure 3.1.

(z,y, z)(-i)E (z,y, z)m%

Figure 3.1: The grid cells §2; and Q; in the discretized reservior.

This means that the volume of the ith grid cell €; is defined as
Vi = AIL’Z'AyiAZi, 1eC (32)

where Ax;, Ay;, Az; are the lengths of grid cell ¢ in each of the three dimensions, re-
spectively. In this thesis, we consider only regularly structured grids, meaning that two
grid cells €; and Q;, i,j € C, © # j have the same dimensions, i.e.

AJJi:ACL'j, Ayi:ij, AZZ':AZ]', V:L:V} Vi, jeC,i#j (33)

Thus we skip the index and use Az, Ay, Az and V. Note that Az, Ay, Az and V are
positive values. Furthermore, due to (3.3) we know that two cells have the same total
area, i.e. A;=A;,1,7€C,1#j.

The approach in the FVM is to approximate the solution to our problem locally over
each grid cell. This is done using cell averages, which according to [33, LeVeque, p.98]
are defined as

1
ui:V/QiudV, ieC (3.4)

Each grid cell can have up to 6 neighbouring cells. The cells located at the boundary of
the domain has less. Let the set A C C denote the set of indices for the neighbouring
cells to cell ;. We can then define the interface between two adjacent cells as

Tij:QiﬂQj, 1€C, j E/\/‘(Z) (35)
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The subscript 7§ means that 7;; is derived from information from the 7th cell {}; and one
of its neighbouring cells €2;. This notation will be used throughout the thesis for various
calculations made for interfaces.

3.2 Spatial discretization

Consider the conservation law in differential form in (2.10)

d(pm.)
ot

+V Y =0 (3.6)

By integrating locally over the ith grid cell and dividing by the volume €); we rewrite
equation (3.6) into

91 1 1
g adV =—= [ v.feqv 7/ dV, iec 3.7
8tV/Qi¢m’ V/Qi TV Jo, 7 ! (3:7)

where the subscript c,¢ refers to component ¢ at cell . Using the definition of a cell
average (3.4) gives us

O(Pme,i) 1 .
&”:—V/in-ffdvjuac,i, iec (3.8)
Instead of explicitly considering the porosity ¢ in the accumulation term, the convention
in the oil-business is to use the pore volume V,, = ¢V. Thus we multiply (3.8) with the
volume of the ith grid cell leading to

Vi (X )
‘9(197”7):_/ V£ dV + s, i€C, (3.9)
Q;

where s.; = 0.;V describes the average value of the source over the control volume.

By using the Divergence Theorem we can evaluate the flux term over the surface area
of the grid cell
O(Vpme,i)

:—/ n; £0dA+ s, i€C, (3.10)
ot o ’

where A is the total surface area of (2; and n; is the outward pointing normal field of
0£;.

Since the considered grid is regularly structured, the normal vectors, which are outward
pointing unit vectors to each cell in question, are defined as shown in Figure 3.2 below.
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(0,0-1)
X
i
1
y ;
(0,-1,0) i
\ i
1 ‘OW_ [ ] ! T T (1,00)
i
1
--------------- B\-‘ -k\
(0,1,0) \\

~
~

(0,0,1)

Figure 3.2: The normal vectors for a grid cell.

We now look at the flux over a single interface of the ith grid cell and sum over all the
interfaces 7;;. This leads to

v cz )
JEN@ “Tid

where fl-‘]‘- is the flux across interface 7;;, A;; is the surface area of interface 7;;, and nj;
is the normal vector for interface 7;;. This normal vector points outward as illustrated
in Figure 3.2.

By applying the midpoint rule to the surface integrals in (3.11), this equation can be
rewritten into

o(Vpmes)

o = > mny f3A;+ s, i€C (3.12)

]EN()

We do not know the flux across interface 7;;. Thus, we have to reconstruct it.

Flux reconstruction

In chapter 2 we defined the flux function as
ke
f =pv* = —bO‘K ~(Vp—p"gVz), (3.13)

We collect all the properties dependent on either the pressure p or the mass m. in a
single scalar called the mobility, which is denoted A. As seen in the dependencies table
C.1 in Appendix C the mobility therefore consists of b, k& and p®, meaning

bk
e

A =

(3.14)
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Note that A* is positive since b%, k* and p® are all positive scalar values. The absolute
permeability term K is static, since it does not depend on p or m.. All static terms are
later collected in a single scalar value T, called the transmissibility.

Inserting (3.14) into (3.13) yields
f* = —K\X*(Vp — p“gV2z), (3.15)

In (3.12) we consider this flux across interface 7;;, meaning that we have to determine
the normal flux of each face

—n;; - (KX*(Vp— p*gV2)),;, i€C, jeNV (3.16)

By using the definition of K in (2.13) and that the mobility );; is a scalar we can rewrite
(3.16) such that

LLF
n;; fijf

n;; £ = —kijA\n;; - (Vp— p®gVz)y, i€C, jeND, (3.17)
where the definition of k;; for regularly structured grids is
m if 7;; L 2-direction
kij = m if 7, L y-direction (3.18)
m it 7; L z-direction

The notation in (3.18) uses the assumption that the flow is parallel to either the z-, y-
or z-direction, such that 7;; is perpendicular to the flow direction.

Due to stability reasons, we reconstruct the flux across the interface 7;; using an upwind
method. Without upwinding, the numerical solution may display oscillations, overshoots
or undershoots (e.g., saturations less than zero or greater than one), or converge to an
incorrect solution, [6, Aziz, p.163]. An upwind flux is a type of flux, where information
is obtained by looking in the directions from which we expect this information to come,
[34, LeVeque, p.72].

The upwind idea is illustrated by the example in Figure 3.3.

Cell 7 Cell j
Pi > ])J < e
1
1
e E—

Figure 3.3: Upwind illustration with two cells i and j.
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The example considers the cells 7 and j, which are filled with the same fluid material.
However, the pressure in cell ¢ is higher than the pressure in cell j, and therefore material
is moving from cell 4, called the upwind cell, to cell j.

The idea is that, depending on the flow direction, we reconstruct the flux across the
interface using information from the upwind cell. In this case this information is the
mobility A“.

Direction of flow

In (3.17) it is not pressure alone, but also the normal vector n;; and the bracket in the
phase velocity v that determines the direction of the flow. For interface 7;; this is

n;; (Vp — pasz)ij = n;; - Vpij — p?jgnij . Vzij, 1€ C, j € N(Z) (3.19)

The derivative of the pressure at the interface is approximated locally using a finite
difference scheme

Opij [pj —Di
Ox Ny Lj — Li
Op;; Pj —Di . . ;
n;; - Vp;; = ng;j - 5;] RNy . ﬁ , t€C, je N(Z), (3.20)
Opij Nzli; | pj— pi
0z L %25 — %i |

where p; is the pressure of the ith grid cell.

In the rightmost vector in (3.20), the denominators of the fractions are the differences
between the coordinates for the cell center of cell ¢ and the cell center of cell j in either
the z-, y- or z-direction. This difference can be either positive or negative depending on
the location of j.

Since n;; is the outward pointing normal vector of interface 7;; only one of the elements
in n;; is nonzero, yielding

i wmmng (BR). e sent.aa

where n;; is either 1 or -1 depending on the interface considered, and h; — h; is defined
as
nij\xj — a:,\ = nijAa:, if Tij L z-direction
hj—hi = nij|h]~ —hi| = nijAh = nij|yj - yz| = nijAy, if Tij 1 y—direction , (3.22)

nijlzj — zi| = nijAz, if 7 L z-direction
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for i € C and j € N, Using (3.22) we rewrite (3.21) into

| — Di Apij . . ;

where Ah = |h; — h;| and Ap;; = pj — p;.

The mass density p;; for phase o is computed as a saturation weighted average between
the mass densities at cell ¢ and j, as explained in Appendix C.5. The reason for using
this average density is that it ensures symmetry, such that it is the same regardless of
whether the flow is going from cell ¢ to cell j or from cell j to cell i.

The dot product between n;; and the gradient Vz;; ensures that the gravitational part
of (3.19) is only taken into consideration when the flow is along the z-direction. We
approximate Vz;; using a finite difference approach similar to the approximation of the
pressure gradient described above. The result is

82’1']' (25 — %]
Ox Lj — Ty
075 Zi — 24 Azi- i . .
N Vi = .- i~ | 22 - 1 jed, ]GN(l), (3.24
8Zij Zj — 2
0z L 25 — 25 |

where Az;; = zj — z;, and z; is the z-coordinate of the cell center of the ith grid cell.
Note that even though we consider a regularly structured grid, Az;; and Az might be
different since Az;; can be negative.

Furthermore, note that Az;; = 0 if the flow is along either the z- or y-direction, since
in such cases z; = z;. This means that n;; - Vz;; only gives a contribution if the flow is
along the z-direction.

Inserting (3.23) and (3.24) in (3.19) yields

1
ni; - (Vp—p®gVa)i; =

~ 5y (Bp—pPgAz)y, i€C, je N (3.25)

We use the bracket on the right-hand side of (3.25) to determine the direction of the
flow across interface 7;;.

Mobility upwinding

Having determined the direction of the flow, we know the upwind cell. Using upwinding
the mobility becomes

\ {)\ if (Ap—p®gAz); <0
ij =

. , i€l jeN® (3.26)
Aj otherwise
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Flux over the entire cell

We can now derive an expression for the flux over the entire grid cell. Substituting
(3.25) into (3.17) yields

o ki
nij £ = = xn

X (Ap — pPgAz)y, i€C, jeND (3.27)

Inserting (3.27) into the semidiscrete differential equation in (3.12) leads to

A(Vyme; o
7( grtn : ) = — Z n;; - fiinj + Se,i
FEN(@
= — Z —A;L)\%(Ap — po‘gAz)iinj + Sci, t € C, je N(l) (3.28)
JjeN ()

As earlier mentioned, we collect the properties dependent only on the location of the
interface and the geometry of the grid cell. For this purpose we define the transmissibility
at interface 7;; as

Ah
Using this definition, equation (3.28) can be written as the following semidiscrete system
of differential equations

ieC, jeN® (3.29)

oV, Meg
(pat’) = > Ti)j(Ap— pPgAz)ij + s,
FeN()
=f+5ci, 1€C, jENO, (3.30)

where the flux over an entire grid cell ¢ is given by

f= 00 TyXg(Ap—ptgAz)y, ieC, jeN® (3:31)
JEN ()

This completes the spatial discretization of the differential equations. The next step is
temporal integration.

3.3 Temporal integration

The system of differential equations in (2.11) is considered a stiff system, since the
system includes terms that can lead to rapid variation in the solution. The gas phase is
considerably more mobile than the other phases due to differences in viscosities (cf. Table
C.2 and Table C.3). Furthermore, stiffness arises due to differences in how pressure and
saturations vary. Saturation changes are slow, whereas pressure changes spread more
rapidly across the field. This will be illustrated in plots of the solution later.
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Explicit methods are generally quite inefficient on stiff problems, since the time step
has to be very small for the method to stay in its stability region. We therefore use an
implicit method, namely the backward Euler method, as implicit methods are usually
more stable. This means that larger step sizes can be considered, [35, LeVeque, p.170],
and instead chosen based on accuracy requirements only.

The backward Euler method is used to march forward in time and it is based on the
Taylor expansion of the function y around the value ¢

y(t — At) = y(t) — i (t) At + O(At?) < (3.32)
Y (At = y(t) — y(t — At) + O(AL?),

By truncating terms of quadratic and higher order we end up with the first order ap-
proximation to y/(t)

1 y(t) —y(t — At)
y(t) = A7 (3.33)

This means that if we want to approximate the differential equation

y'(t) = fty(), (3.34)
where f(t,y(t)) in general is some nonlinear function, we get

O e R R (3.35)

YU =yt ALFE . (3.36)

This equation must be solved for y"*!. In practice this is done by approximating the

solution using some iterative method. One of the most popular approaches is to use
Newton’s method, also known as Newton-Raphsons method. Because the backward
Euler method provides an equation that has to be solved for 4”1 it is called an implicit
method, [35, p.120].

By using the backward Euler method on the semidiscrete system of equations in (3.30)

we obtain "
n n
‘/pmc,i - V})mc,i

At

= fomtl gl (3.37)

ci

which can be rewritten into

Vol = Vol + At (£ 521 (3.38)

7 c,

This is the fully discretized system of mass conservation equations, which we are using
throughout the thesis as the basis for multiphase reservoir simulation.
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CHAPTER 4

Applying Newton’s method

This chapter covers the theory necessary to develop our first multiphase reservoir simu-
lator. One of the main objectives of this thesis is to compare a reservoir simulator based
on global linearization with a reservoir simulator based on FAS. In order to do this fairly,
we implement a simulator based on global linearization as well. This chapter describes
all the considerations involved in implementing such a simulator. In fact, the simulator
based on FAS will use all of the same routines and therefore it is a good starting point
before considering the FAS method based on local linearization.

Section 4.1 introduces Newton’s method in general terms for nonlinear system of equa-
tions and section 4.2 describes how we apply Newton’s method to the reservoir model.
This is followed by section 4.3, where the implementation is described in detail. Section
4.4 verifies our first simulator against the commercial simulator ECLIPSE. An impor-
tant issue in simulators is time stepping. The three different time step selection methods
implemented in section 4.3.6 are compared in section 4.5. Lastly, a small performance
study is carried out in section 4.6.

4.1 Newton’s method

As shown in section 3 choosing an implicit method such as backward Euler

yn-i-l — yn + Atf(tn+1,yn+1) (41)

leads to an equation (or in our case a system of equations) that needs to be solved to
find the solution at the next time step y"*1.

Newton’s method is a root-finding method that successively approximates a root of a
given function, [20, Eldén, p. 69]. Since it is a root-finding method, equation (4.1) has
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to be formulated correspondingly

f(ynJrl) _ yn + Atf(tn+17yn+1) _ yn+1 =0 (4'2)

Newton’s method is derived from the Taylor series of F(z) around a point z = z[% 4+ h
F@ +n) = Fy + hF @) + . (4.3)

where we neglect higher order terms and set F(z%) + h) = 0, thus
F + p) = Fal) + nF @) =0 (4.4)

This expression is then used to estimate the offset & = hl% needed to come closer to the
root starting from an initial guess z[*

F(zo)

o — 2\
M= T E )

(4.5)

Letting z!Y = z[% 4 nl% and continuing the process of estimating offsets ¥, a root of
a given function can iteratively be found by

F (M)
k+1] _ [k
$[ +1] _ x[ ] _ Jrl(x[k]) (4.6)

for k=0,1,2,...

It should be noted that if the starting guess z[9 is not sufficiently close to the exact
solution, Newton’s method may not converge.

Nonlinear system of equations

Newton’s method readily extends to nonlinear system of equations, [35, Leveque, p. 38].
For 2 nonlinear equations with 2 unknowns we seck a better approximation x/+1 =
x[¥l 4+ hl¥l. Using Taylor series of F(x) gives

071

Fix by = 7y () 228 by 4 O (ol
8:61 8.7:2 4.7
OF» OF» (47)
Fo(x® +n) = FxMy + Z2(xFhpy + Z=2(xF)hy + ...
8:c1 81‘2

In matrix-vector notation this becomes

Fi(x™ 4 n) Fi(xH) O (xlk)y  0F1(xlK)] [,
= + | 6% % +. 4.8
l}"z(x[k] +h) Fo(xk) g;jz (x*1y g;% (x| | ha (4.8)
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The matrix above is the Jacobian matrix J leading to the following equation
F(xF +n) = FM) + 3xMh + ... (4.9)

Neglecting higher order terms and setting F (xm + h) = 0 we obtain

F(x 4 h) ~ FxM) + 3(xF)n = o, (4.10)

where the step h!¥l can be found by solving the following linear system of equations.

J(xFhntF = — F(xIH) (4.11)
By adding the step to the previous solution: xFH = xK 4 k] and performing the
same procedure for this newly found solution, the method iteratively finds better and

better approximations to the solution of the nonlinear system of equations. However,
as mentioned in the scalar case, Newton’s method is not guaranteed to converge.

4.2 Application to model equations

For the discretized model equations presented in equation (3.38) and the saturation
constraint in equation (2.14), we can write up the following residuals:

Toi(Mo,p) = At(so;+ f2)" T + (Vo)™ — (Vymg )"
rgi(mg,p) = At(sgi+ fiq)nH + (Vpmg,i)™ — (V}:mg,i)nﬂ
Pwi(Muyp) = At (swi+ )" 4 (Vomw)™ — (Vo)
rvb,i(mmmgamwap) = S+ 89485~ 1, (4'12)

where 7, denote the residual of the volume balance constraint, which we in this work
have chosen to be the saturation constraint.

This is a nonlinear system of equations, which can be solved using Newton’s method.
Following the approach in section 4.1, we formulate our nonlinear system of equations
as a root-problem

r(me, mg, My, p) =r(x) =0 (4.13)

and seek a better approximation to the root or solution

r(x—i—h)%r—l—?h:r—i—Jh:O (4.14)
X

by solving for h in the linear system of equations Jh = —r, where J is the Jacobian for
the nonlinear system of equations and r is the residuals.

For the choice of spatial discretization described in section 3.2, we have the 7-point
stencil in Figure 4.1.
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Figure 4.1: Seven-point stencil.

With a 3 x 3 x 3 grid, where the 3 layers of the z-dimension are shown side by side, the
indexing of the cells and a demonstration of how the seven-point stencil is applied to
the middle point of the grid, is displayed in Figure 4.2.

1 2 3 10 % 12 19 20 21

4 L] 6 3——+7—15 22 b 24

7 8 9 16 lr 18 25 26 27
y

Figure 4.2: Indexing of a 3 X 3 x 3 grid. The seven-point stencil from Figure 4.1 is applied to
the point in the middle of the cube.

For this grid, indexing and stencil, the Jacobian will have the sparsity structure displayed
in Table 4.1 below.
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Table 4.1: Sparsity structure of the Jacobian.
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For the considered system of equations, each cross in Table 4.1 represents a 4 x 4 block
matrix. On the diagonal, the block matrices are given by g;i, meaning the derivative
of the residuals for cell ¢ wrt. itself: cell 7. This means, the block matrices include flow,

accumulation and the volume balance constraint.

However, the block matrices on the off-diagonal are given by gi{ , meaning the derivative
J

of the residuals for cell ¢ wrt. a neighbour cell j. This means that the block matrices
only include flow as it is only the flow that have dependencies on neighbour cells. For
more details on the calculation of the derivatives of the residuals, see Appendix D.

The diagonal and off-diagonal block matrices are given in equation (4.15).

Diagonal block matrix Off-diagonal block matrix
o Or, _ .
w0 0 o Ze 0 o Iz
0,1 P P Di 8mo,] ap]
) Tg,i Tg,i ) Org,i Org.i
or; _ 0 Fm,; 0 Op; ori _| 0 omg,; U Op; (4.15)
a i 8rw,i aTlin ’ a . Oraw.i Orw,i )
X, 0 0 X 0 0 ’ :
8mw,i Op; amw,j apj
6Tvb,i 8rub,i 67‘1}1),1’ 87"111),1' 0 0 0 0
6moyi amg,i (')mw,i Op;

where the residual vector r and solution vector x corresponding to the Jacobian in Table
4.1 are given in (4.16).

T
r = [7'0,1 g1 Twa1 Tubl --- To27 Tg27 Tw,?27 7nvb,27}

T
X = [mo,l Mg1 Myl PL --. Mo27 Mg27 My27 p27} (4.16)

4.3 Implementation

Having presented the basic theory of discretizing a continouos system of equations to a
discrete nonlinear system of equations and the methods that are employed to solve these
nonlinear systems, we have the components necessary to create our first implementation
of a reservoir simulator. The most outer loop in the reservoir simulator controls the
time integration. For each iteration, it calls Newton’s method with an updated time
step size At. Algorithm 4.1 describes this procedure.

Algorithm 4.1 Main loop - Input: x°, A¢°

1: while time < finaltime do

2. x""! = newton(x", At)

3:  Update time step size At with some heuristic
4:  time = time + At

5 n=n+1

6: end while
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To reach the requested final time, the time step size is chopped to At = finaltime — time
if time+ At > finaltime. Newton’s method is implemented in accordance with Algorithm
4.2. The value k4, is the maximum number of newton iterations allowed per time step.

Algorithm 4.2 Newton’s method - x"*! = newton(x",At)

1: while stop = false or k < ky.x do
2 Compute properties

3 Compute residuals r

4:  Set up Jacobian J

5. if stop criteria is met and k£ > 0 then
6 stop = true

7 end if

8 Solve for h in Jh = —r

9:  Update solution: x =x+h

10 k=k+1

11: end while

Notice that Newton’s method is implemented such that we always do at least one newton
iteration. This is done to ensure that the solution is updated in each time step. The
individual steps of Newton’s method is explained in the following.

4.3.1 Properties

Before computing the residual and corresponding Jacobian, we need to update the prop-
erties for each cell. Given current values for the primary variables: molar densities and
pressure, we compute formation volume factors, viscosities, phase molar densities, mass
densities, saturations, relative permeabilities and mobilities. These variables are all nec-
essary to set up the residual and Jacobian for the linear solve. For more details on how
to compute these properties, see Appendix C.

4.3.2 Residuals

The first three equations in our residual in equation (4.12) consist of a source term, a
flow term and two accumulation terms. Equation (4.17) describes these. The source
term is kept to zero in all tests, meaning no well models are considered. Well models
in reservoir simulation can be implemented in many ways. See [6, Aziz, p. 220] for an
introduction. For simplicity and to get a working reservoir simulator up and running as
a first step, we have chosen not to include wells.

Source Flow Accumulation 1 Accumulation 2

1 1
Tei=Ats{"T LALLM e (Vum)E — (Veme) P! (4.17)
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The pore volume in the accumulation term V), = V¢ is computed as described in Ap-
pendix C.7. The flow is computed on an edge based basis. When initializing, we set up
a map of the edges with their corresponding transmissibilities as displayed in Table 4.2.

Edge Celli Cell; T

1 1 2 Ti2
2 1 4 Th.4

3 1 10 T1.10
4 2 3 Ty

5 2 5 Tys

6 2 11 Ty
54 26 27 The.27

Table 4.2: Edge map associated with the 3 x 3 x 3 grid in Figure 4.2.

The transmissibilities are computed once in the initialization as described in equation
(3.29). By looping over all edges and summing the contributions in the residual (same
approach is used for the Jacobian) for the respective cells, we end up with the cell
based residuals in (4.12) as needed. There are several advantages in using an edge based
approach.

e Due to mass conservation, redundant computations are avoided as we can exploit
the fact that the flow from cell ¢ to cell j equals the negated flow from cell j to

cell i: fij = _fjl'

e No-flow boundary conditions are treated by the absence of edges out of the domain
from cells on the boundary.

e Fewer memory reads as a result of avoiding redundant computations.

The fourth equation in the residual is given by the volume balance equation in (4.18)
rop = S°+ 89+ Y — 1 (4.18)

The contribution to the residual from this equation along with the accumulation terms
and the source term are computed on a cell based basis.

4.3.3 Jacobian

Similar to the flow in the residual, the derivatives of the flow part of the residual are
computed by traversing the edge map. For the ¢th cell, it involves computing the
block matrices in (4.15). The derivatives used to set up the Jacobian are all analytic
expressions. A detailed derivation of the derivatives is given in Appendix D.
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The Jacobian with the sparsity structure displayed in Table 4.1 contains N x N block
matrices all of size 4 x 4. From (4.15), we can see that each diagonal block matrix has 10
non-zero entries and each off-diagonal block matrix has 6 non-zero entries. For a cubic
reservoir of a typical N = 10 cells, this results in Nedges = 3+ N —3-100 = 2,999,700
edges and 10 - N + Negges - 2 - 6 = 45,996,400 non-zero entries in the Jacobian. For
this size of reservoir, the fraction of non-zero entries compared to total elements in the
Jacobian is roughly 2.9-1076. Evidently, a sparse linear solver is a necessity for efficient
simulations.

The choice of sparse linear solver is discussed in the following section. In accordance with
our choice of linear solver, we are using triplets or coordinate format (COO), namely

(row index, column index, value)
as sparse format to store the Jacobian.

When assembling the Jacobian on an edge based basis, all the entries in the diagonal
block matrices need to be accessed multiple times in order to accumulate contributions
from itself and all neighbour cells. Meanwhile, all the entries in the off-diagonal block
matrices are only written to once. As a result, we employ a system, where the first 10N
triplets are for entries in the diagonal block matrices and the remaining Negges - 2 - 6
triplets are for entries in the off-diagonal block matrices. Figure 4.3 illustrates the
system.

Total non-zero entries: 1I0N+N - 2-6
edges

Diagonal entries Off-diagonal entries
10N N - 2-6

edges

Figure 4.3: Sparse data structure for Jacobian.

By employing this system, the entries for the diagonal block matrices are easily found,
which makes it possible to accumulate the appropriate contributions. A counter is used
to write the entries for the off-diagonal block matrices. Because the edge map is traversed
from start to end in every iteration, it is only necessary to set up the row and column
indices once for the Jacobian.

4.3.4 Linear solver

When solving a linear system of equations, there are two classes of methods: direct
methods and iterative methods. In the absence of rounding errors, direct methods such
as Gaussian elimination find an exact solution to a linear system of equations by a finite
sequence of operations. For Gaussian elimination these operations include multiplying,
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adding and switching rows. In contrast, iterative methods use an initial guess of the
solution to iteratively generate better and better approximations to the solution.

For large systems in the order of millions of grid cells, direct methods for sparse linear
systems are insufficient and outperformed by iterative solution techniques. Implement-
ing an efficient iterative or direct linear solver for reservoir simulations is a challenging
task on its own, and as a result we have chosen to utilize an off-the-shelf linear solver.
To increase certainty on retrieving reliable results for the highly complex linear sys-
tems arising from strong heterogeneous reservoir models, we are using a library that
implements a direct method to solve the sparse linear system of equations. The library
that we apply is MUMPS! (MUltifrontal Massively Parallel sparse direct Solver), [3, 4,
Amestoy]. MUMPS is considered one of the best sparse direct linear solvers on the mar-
ket [25, 27, 37]. It is easy to use and it has many options for improving performance by
tweaking and using prior knowledge of the properties of the linear system of equations.
The results given later in this chapter in section 4.4 and 4.6 are all for the sequential
version of MUMPS that only need BLAS? (Basic Linear Algebra Subprograms) to run.

We realize that using a direct linear solver instead of an iterative linear solver prohibits
simulating larger systems. However, the primary focus in this work is nonlinear multi-
grid, where the goal is to reduce the dependence on the linear solver component for the
systems arising from global linearization from Newton’s method. Furthermore, while
developing it is good to know that errors do not come from an iterative linear solver
that fails to converge properly.

4.3.5 Stop criteria

The stop criterion we use in Newton’s method is kept simple. It computes the 2-norm of
the residuals over the number of grid cells N and compares with a user-given tolerance
7. Equation (4.19) describes this mathematically.

[Iron]l2

r r r
l[rol]2 <71, AND ||]5<[H2 <7y AND HX’/M? <Tw AND N <1y (4.19)

Since the values for the primary variables pressure and molar densities have different
magnitudes, the tolerances 7 have to be set accordingly. Typical values for the tolerances
that give reliable and efficient simulations are 7, = 7y = 7, = 10~% and 7,, = 1076.
Remember that pressure is linked to the volume balance constraint and as a consequence
T, has to be stricter.

In addition to comparing with given tolerances, Newton’s method is also stopped if
the number of newton iterations is larger than a given maximum number of newton
iterations. In our simulator, the default number of allowed newton iterations is 10.
More sophisticated stop criteria can be implemented, but for simplicity and to be able

Y http://graal.ens-1yon.fr/MUMPS/.
2) http://wuw.netlib.org/blas/.
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to directly control the size of the residual values, we keep to the above described stop
criterion.

4.3.6 Time stepping

As a consequence of using a fully implicit scheme, it is unconditionally stable, meaning
that we in theory can take time steps of arbitrary size. However, in practice there are
certain limitations given by the following considerations [6, Aziz, p. 207].

o Large time steps lead to large discretization errors. This follows from the derivation
of equation (3.33).

e When solving the nonlinear system of equations iteratively, the number of newton
iterations increases as the size of the time step increases, since the solution from
the previous time step is used as initial guess. The iterative process may not
converge, if the size of the time step is too large.

To obtain an effective simulator, a good balance between the size of the time step and
the number of newton iterations per time step has to be found. Most simulators use a
combination of various time step selection methods. Some popular choices are

e Limit on maximum change in key variables.
e Limit on time truncation error.

The time step selection method that utilizes the maximum change in key variables is
widely used, since it is fairly easy to implement. More simple heuristic methods that
consider the number of newton iterations for the previous time step can also be employed.
In this work, we have implemented and tested three different time step selection methods.
The three different methods are explained in the following. In section 4.5, a comparison
study of the three methods is carried out.

The first two time step selection methods are based on knowledge from previous time
steps. To begin with we implemented the naive method in Algorithm 4.3. It simply
increases the time step size with 30% when the number of newton iterations in the pre-
vious time step was less than 2/3 of the maximum allowed number of newton iterations
and chops the time step size in half otherwise.

Algorithm 4.3 Naive heuristic

if k < Zkmax then
At =1.3- At

else
At =0.5- At

end if

. At = min(At, Atpax)

ANl S S
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The increase and decrease factors: 30% and 1/2 are chosen by parameter tuning for
different problems. All parameters in the methods described in this section are chosen
on a heuristic basis. As it will be described later, the performance of this naive approach
is reasonable, but it leaves room for methods with more complexity for controlling time
step sizes. We found the naive approach to be overly aggressive in increasing time step
sizes in some situations and too slow at increasing time step sizes in other situations.
Furthermore, we found that the naive approach too often chopped the time step size in
half unnecessarily.

We attempt to overcome these deficiences by including knowledge from more than one
previous time step. The approach is described in Algorithm 4.4. If the number of newton
iterations from the previous iteration is less than half of the maximum allowed number
of newton iterations, a count of successful time steps is incremented and 10% for each
successful time step is added to the time step size. On the other hand, if the number of
newton iterations from the previous time step is greater or equal to 2/3 of the maximum
allowed number of newton iterations then the count of successful time steps is reset to
zero and the time step size is halfed. Lastly, if %k:max <k< %k‘max the time step size is
kept, but the count of successful time steps is reset to zero.

Algorithm 4.4 Improved heuristic

1: if k < Jkmax then

2 SuccessRuns = SuccessRuns + 1

3: At = At-(1.0+ 0.1 - SuccessRuns)
1: else if k > Zkpax then

5:  SuccessRuns = 0
6
7
8
9

At =05 At
. else
. SuccessRuns = 0
. end if
10: At = min(At, Atmax)

The third time step selection method we implemented is based on more mathematical
terms. It uses the maximum change in key variables as described in [6, Aziz, p. 207]
and [26, Grabowski]. The formula is given in equation (4.20)

1
A" = At" min M, (4.20)
i€ &; +wn
where w € [0; 1] is a tuning parameter, 7 is a desired change and ¢; is the change of the
value of a key variable over the previous time step n for a grid block ¢ in the domain
Q. The formula in equation (4.20) has to be applied to all key variables as outlined in

Algorithm 4.5.

Evidently, this approach requires more computational work, however this is negligible
compared to the other components of a simulator.
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Algorithm 4.5 Maximum change in key variables
1: frac = 10'6
2: for i =1..N do

1 - ngo
3:  frac = min | frac, - ( +Ow) s
’S i 01d| + wnge

(1
4:  frac = min [ frac, g +w) nss
"|S7 — i, SY 1al +wnss
1 w
5. frac = min (frac +w) -ns )
z Mg old‘ + wnsw
6: frac = min frac w) "l
— Di old’ + wnp

7: end for
8: At = min(At - frac, Atyax)

As mentioned before, a comparison of the three time step selection methods is carried
out in section 4.5.

4.4 Verification

Complex reservoir models are hard to verify, since no comparable analytic solutions exist.
In this work, we verify our implementation by comparing solutions with the solutions
from the most established commercial reservoir simulator on the market: ECLIPSE from
Schlumberger?. For this comparison, we use the 2012.1 version of ECLIPSE. Given the
input values in Appendix A and the grid cell sizes Az = 20, Ay = 10, Az = 2 meters,
we verify our implementation using three different test cases.

Note that porosities are kept constant throughout the domain. This is primarily done
to keep focus on how permeabilities affect the robustness and the performance of the
simulator as we expect the simulator to be more sensitive towards heterogeneous per-
meability fields rather than heterogeneous porosity fields. This is due to the fact that
permeabilities explicitly control the flow of fluids, whereas the porosities are part of the
accumulation term.

The three test cases are:

e The simplest possible case with a homogeneous permeability field. Problem size:
1x1x3.

e More complicated case with a smooth heterogeneous permeability field. Problem
size: 18x18x18.

3) www. s1b. com.
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e Even harder case with a very heterogeneous permeability field derived from the
SPE10 comparative solution project*. Problem size: 10x10x10.

For all three test cases, the initial saturations, the permeability field and the solution
are presented. All test cases are what we call “gravity inversion”, where the components
water and gas switch place due to the gravity and their given densities. The initial
pressure for all test cases is p = 250 bar.

4.4.1 Simple homogeneous permeability field

The first test case consists of three vertical grid cells, where the top cell has a water
saturation of one, the middle cell has an oil saturation of one and the bottom cell has a
gas saturation of one. Because of the gravity and the given densities of oil, water and
gas, we expect the water to end up in the bottom cell and gas to end up in the top cell.

The saturations are initialized as depicted in Figure 4.4.

Oil saturation Gas saturation

Water saturation

Figure 4.4: Initial saturation values.

Given these initial saturations, we initialize the primary variables molar densities using
formula (C.9). The absolute permeability is 100 millidarcy (mD) in all three cells. Note
that we are using isotropic permeability fields. We allow 10 newton iterations per time
step. The solution is displayed in Figure 4.5.

As Figure 4.5 shows, the solution is the same as the solution obtained from ECLIPSE.
The simulation is carried out with a maximum time step of 0.1 days to ensure that we
take exactly the same time steps as ECLIPSE.

ECLIPSE has a more sophisticated time step selection procedure and uses a type of
damped Newton’s method [47, Younis| with better convergence properties. This allows

4 http://wuw.spe.org/web/csp/.
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Figure 4.5: Verification of a 1 x1x 3 problem, 150 days of simulation, Aty = 0.1 and initial

time step length of 0.1 days.
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time step length of 0.1 days.
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ECLIPSE to take longer and more adaptive time steps than we are able to with the
time step selection method in Algorithm 4.4 and standard Newton’s method. However,
if we permit ECLIPSE and our simulator to take time steps of up to one month, the
results are still very much alike as depicted in Figure 4.6. The dots indicate the data
points. ECLIPSE uses 17 time steps and our simulator uses 24 time steps. Despite the
low number of data points, the difference in the solutions is hardly visible.

4.4.2 Smooth heterogeneous permeability field

The second test case is using a smooth heterogeneous permeability field, which is gen-
erated using trigonometric formulas and a random number generator. We have imple-
mented a function that given any problem size will generate a fixed pattern permeability
field. See Appendix E for details. This approach will allow for more comparable sim-
ulations across various problem sizes. The generated permeability fields have higher
variation in the z-direction than in the x- and y-directions. This mimics what we expect
from real reservoirs, where different rock types are layered on top of each other. We can
control the fixed pattern by setting a seed for the random number generator.

The initial saturations are similar to the previous test case. As Figure 4.7 shows, the
top 6 layers are water, the middle 6 layers are oil and the bottom 6 layers are gas.

Oil saturation Gas saturation

Water saturation ]
“0.75

05

025
0

Figure 4.7: Initial saturation values.

The permeability field is displayed in Figure 4.8. The permeabilities range from 200 to
600 mD.

10 newton iterations are allowed per time step. The solution is shown in Figure 4.9.
The results obtained from ECLIPSE are similar.
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Figure 4.8: Smooth heterogeneous permeability field.
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initial time step length of 0.1 days.
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4.4.3 SPEI10 derived heterogeneous permeability field

The last test case is using a permeability field derived from the SPE10 comparative
solution project. SPE10 is designed to compare upscaling approaches [13], but it is also
widely used as a benchmark for large-scale highly heterogeneous reservoir simulation.
Compared to geological models of real reservoirs, the SPE10 is less realistic, however, as
a stress test for validation and performance evaluations of a simulator, it is relevant. The
second SPE10 case models a 1200 x 2200 x 170 ft reservoir with 60x220x85 = 1, 122, 000
grid cells, but we are only using a small segment of 10x10x10 = 1,000 grid cells and
scaling the permeabilities between 0.1 and 1,000 mD.

Again, the problem is initialized with water in the top, oil in the middle, and gas in the
bottom as depicted in Figure 4.10.

Oil saturation Gas saturation

Water saturation E

Figure 4.10: Initial saturation values.

The permeability field is displayed in Figure 4.11. As it can be seen, it is highly hetero-
geneous with large and small permeability values scattered around the domain.

1000
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E2OO

0.10356

Figure 4.11: Permeability field.

Since some of the permeability values are very small (=~ 0.1 mD), it now takes more
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than 40 years to reach equilibrium. 10 newton iterations per time step are allowed. The
solution is displayed in Figure 4.12 and, as it can be seen, ECLIPSE provides similar
results.
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Figure 4.12: Verification of a 10 x 10 x 10 problem, 16000 days ~ 44 years of simulation,
Atmax = 30 and initial time step length of 0.1 days.

4.5 Time stepping study

The performance of the three time step selection methods described in section 4.3.6 are
studied on the three test cases introduced in the verification, section 4.4. The hardware
used to run the tests is hardware specifications 2 in appendix B. Table 4.3 contains
the results for the naive approach described in algorithm 4.3, the improved approach in
algorithm 4.4 and the maximum change in key variables approach in algorithm 4.5.

Naive Improved Max change
Test case 1 | 26 steps 24 steps 24 steps
Test case 2 | 108 steps/1092 secs | 110 steps/963 secs | 141 steps/1102 secs
Test case 3 | 944 steps/275 secs | 965 steps/265 secs | 809 steps/291 secs

Table 4.3: Performance of time step selection methods.



4.5. Time stepping study 45

Test case 1 is too small to measure any meaningful timings. We observe that the naive
approach uses 2 additional time steps compared to the two other methods. The improved
approach is better than the two other methods for test case 2 and test case 3 in terms of
computation time. From extensive testing, this is the general behaviour we experience.
The length of the time steps used by each of the three methods for the test cases are
distributed as depicted in Figure 4.13.
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Figure 4.13: Distribution of time step sizes for each method for the test cases. The top plot is
for test case 1, the middle plot is for test case 2 and the bottom plot is for test
case 3.

The distribution of time step sizes for the three time stepping methods appears quite
similar. However, the method based on maximum change in key variables seems to take
more of the shorter steps than the other two methods for test cases 1 and 2. For the
very heterogeneous test case 3, the method based on maximum change in key variables
takes more of the longer steps than the other two methods.

The maximum change in key variables method is very sensitive to changes in its pa-
rameters. After some testing and tuning, we found the following parameters to give
reasonable results:

e 150 =0.1
e ngg =0.1
e nsw =0.1
« =5

These values are to some extent problem specific and, as a result, it can be hard to find
optimal parameter values. If the n values are set too small, too many time steps are
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carried out. However, if the n values are set too large, it attempts to take too long time
steps, resulting in Newton’s method failing to converge for many time steps.

Overall, the improved method works well for all problems we have encountered. As a
consequence, we use this method in the rest of this thesis.

4.6 Performance study

This section contains a small performance study of the simulator using Newton’s method
to solve the nonlinear system of equations. In Chapter 7, a more comprehensive perfor-
mance study is carried out that includes all of the improvements described in Chapter 6.
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Figure 4.14: Run time as a function of number of grid cells.

Figure 4.14 shows the run time of the simulator for different problem sizes with a fixed
reservoir size (480m x 240m x 48m). The permeability fields are generated using the
technique described in Appendix E. Simulations are running 150 days with the parame-
ters specified in Appendix A, initial time step size of 0.1 days and maximum time steps
size of 30 days. Hardware specifications 2 in Appendix B is used. 10 newton iterations
are allowed for these simulations.

The run time is increasing dramatically as the number of grid cells increases. This can
be seen by comparing the O(N3/2) and O(N?) lines with the scaling of the simulator.
This increase is expected, since we are using the sparse direct solver MUMPS to solve the
linear systems in each newton iteration. The reason is that the complexity of factorizing
a band matrix is dependent on the bandwidth of the matrix. The larger the bandwith
is, the higher is the complexity, [24, p.152]. The example in section 4.2, leading to the
Jacobian matrix in Table 4.1, illustrates that the bandwidth of the Jacobian matrix for
the reservoir problem is dependent on the problem size. This implies that the complexity
increases as the problem size increases, which leads to poor scalability.
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Profiling the code with the tool callgrind in Valgrind®, the percentage of total compu-
tation time for MUMPS for different problem sizes is measured and displayed in Figure
4.15. Again the reservoir size is fixed.
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Figure 4.15: Percentage of total computation time for the sparse direct solver MUMPS for
different number of grid cells.

MUMPS quickly takes up 99% of the computation time even for small problems. Conse-
quently, effort has been put into replacing MUMPS with an iterative linear solver. This
is explained in detail in section 6.3.

4.7 Summary

A working simulator has been implemented, verified and studied. As most other reservoir
simulators, it is based on global linearization in Newton’s method to solve the nonlinear
system of equations arising at each time step. The linear solver is a direct linear solver
from a library and as demonstrated in section 4.6, it scales poorly for larger 3D problems
and consequently it makes up nearly all computation time in the reservoir simulator.
As described in the objectives, section 1.4, we aim at decreasing the dependence on the
linear solver. This is accomplished through implementation of a FAS-based simulator
as described in the following chapter.

5 http://valgrind.org/.
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CHAPTER 5

Nonlinear multigrid

In chapter 4, we used Newton’s method to solve the discretized system of differential
equations in (3.38). We are now going to solve this system of differential equations using
a nonlinear geometric multigrid method called the Full Approximation Scheme (FAS).
As it will be outlined later, Newton’s method is an essential part of the FAS algorithm.

Before approaching the theory behind the nonlinear FAS method in section 5.2, an
introduction to the basic concepts of multigrid methods is provided in section 5.1. This
introduction is based on linear multigrid methods. Furthermore, this section presents
a naive MATLAB implementation of the FAS method for solving a simple nonlinear
problem, with the purpose of getting familiar with the method before applying it to
the more advanced reservoir problem. In section 5.3, the first version of our FAS based
reservoir simulator is described. The implementation is done in C++-. Section 5.4 holds
a verification study of the FAS simulator presented in 5.3, and finally section 5.5 contains
a small performance study of the algorithm.

5.1 The multigrid idea

A multigrid method operates on a set of M +1 grids G°, G, ..., GM, all approximating the
same domain ). These grids have different mesh sizes h, such that hg < h; < ... < hyy.
This means that G° has the finest mesh resolution and GM the coarsest, [8, Brandt,
p.337]. Given a differential equation we want to approximate the solution at the finest
grid by doing most of the computational work at the coarsest grid.

The two main principles in a multigrid method is error smoothing and coarse grid
correction.

49
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5.1.1 Error smoothing

Assume that we want to solve the linear system
Au=f (5.1)
By v we denote an approximation to the exact solution u and by
e=u—v (5.2)

we denote the error. If we apply an iterative relaxation method to v, e.g. the Jacobi
method or the Gauss-Seidel method (these methods are described below), then it is
possible in only a few iterations to remove the high frequency contributions to the
error. This means that the error of the approximation becomes smooth quickly, [43,
Trottenberg, p.15].

In order to illustrate this statement we consider the linear 2-dimensional Poisson equa-
tion

—Vu(z,y) = f(z,y) €90 (5.3)
u(z,y) =0 € 09,

where we assume that the analytical solution is given by

u(a,y) = (z —2%)(y - y°) (5.4)
This gives us the righthand-side
fla,y) = 2((x —2*) + (y — v*)) (5.5)

We define our initial guess, v, to the solution, u, as the exact solution minus a random
noise signal w

’U(.’E,y) = U(IE,y) —w (56)
This means that the error, e, defined in (5.2) becomes this random noise signal. In this
way, we are able to study how well our relaxation method eliminates the error.

If we discretize (5.3) using a central finite difference approximation and use the notation
u; j = ui;(x,y) we end up with the following equation

U‘717'—2U'7‘+U/+1,' U'7'71—2U/‘,'+U"'+1
—(1 e e ) = (5.7)

which by isolating u; ; can be rewritten into
1
Uij = (tim1g + i1 + wigo1 +uigr + h2 i) (5.8)

We can apply this scheme iteratively to our initial solution v and thereby approximate
the exact solution u. If we traverse all cells in our grid before updating any of the values
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in the solution, such that we operate with a u and a u,;4, we reach the Jacobi relaxation

method 1
k+1 k k k k 2
uiy = 1 (“z‘—l,j Fui i U R fz‘,j) , (5.9)
where k is an iteration number. By applying the Jacobi method to the initial guess
given in (5.6) and comparing the output data to the exact solution, we can study the
error e as a function of the number of Jacobi smoothings. The result is seen in Figure

5.1.
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Figure 5.1: Initial error and error after different number of Jacobi smoothings.

The top left plot of this figure shows the initial error, which resembles white noise. The
remaining five plots illustrate the error after respectively 5, 10, 100, 1000 and 10000
Jacobi smoothings. It is seen that the Jacobi method slowly eliminates the error, and
somewhere between 10 and 100 iterations the error becomes smooth. However, even
after 10000 iterations the error is still quite large, meaning that the Jacobi method has
a slow convergence rate.

Instead of applying the stencil in (5.8) to all the cells in the grid before making an update,
we could update the solution continuously. This leads to the Gauss-Seidel relaxation
method given by

1
ukjl ~ ( f+11] + Uz+1j + u 1 + uf’jﬂ + h2fi,j) , (5.10)

Repeating the experiment in Figure 5.1 using the Gauss-Seidel method leads to the
results in Figure 5.2.
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Figure 5.2: Initial error and error after different number of Gauss-Seidel smoothings.

The figure shows that after only 5-10 smoothings the error is relatively smooth, and after
10000 smoothings the Gauss-Seidel smoother has reduced the error to a magnitude of
1073, This indicates that the Gauss-Seidel method has a higher convergence rate than
the Jacobi method. Theory also confirms that the Gauss-Seidel method in general has
better smoothing properties than the Jacobi method, [43, Trottenberg, p.29].

Furthermore, the Gauss-Seidel method uses less memory than the Jacobi method, be-
cause the Gauss-Seidel method does not operate with a u,y solution vector. On the
other hand, the Gauss-Seidel method is not as straightforward to parallelize as the Jacobi
method. This will be addressed in more detail in chapter 8.

5.1.2 Coarse grid correction

Consider a quantity which is smooth on a certain grid. According to [43, Trottenberg,
p.16], it is possible to approximate this quantity on a coarser grid without any essential
loss of information.

In the perspective of solving the system Au = f, this means that quantities, such as
the error e, and the approximate solution vy at a certain grid level with mesh size h,
can be approximated relatively well as ey and vy at a coarser grid level with mesh size
H > h, as long as these quantities are smooth.
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This gives the opportunity to do computations at a coarser and less computationally
expensive grid.

As mentioned, it is essential that the considered quantities are smooth. We illustrate
this importance with an example.

Once again we consider the equation given in (5.3), and its solution u in (5.4). The
initial guess v is given as in (5.6) with the exception of the random noise signal w being
added instead of subtracted. The exact solution u and the initial guess v are plotted
on a uniform cell-centered grid with 128 x 128 grid cells and mesh size h. Furthermore,
we plot v after 10 Gauss-Seidel iterations. These plots are seen in the three top plots
of Figure 5.4.

From these plots it is seen that the exact solution is very smooth and the initial guess is
not at all smooth because of the random noise. However, after 10 Gauss-Seidel iterations
the initial guess has become smooth.

We interpolate (restrict) each of these quantities u, v and vgg to a coarser grid with
only 64 x 64 grid cells and mesh size H = 2h. The restriction stencil, which is applied,
is the four-point average stencil, [43, Trottenberg, p.69 |, given by

2h
141 1

h
1 h h h h
4{vh<x—2,y—2)+vh<x—2,y+2> (5.11)
o (ot 5o—5) +on (o4 50+ 5]
Up | X 2ay 9 Up T 27y 9 )

meaning that in a cell-centered 4 x 4 fine grid we end up with the 2 x 2 coarse grid seen
in Figure 5.3.

Figure 5.3: Cell-centered grid cells in fine 4 x 4 and coarse 2 x 2 grid, where (o) indicate fine
grid cells and (o) indicate coarse grid cells.

The middle three plots in Figure 5.4 shows the restricted quantities u, v and vgg. These
plots illustrate that information is lost if a quantity is not smooth before restricting it.
If the quantity is smooth, then the essential information is preserved.
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Solution u on 128x128 grid Init. guess v on 128x128 grid v after 10 GS smoothings on 128x128 grid
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Figure 5.4: Illustration of the importance of smoothing. Exact solution wu, initial guess v and
smooth initial guess v restricted to a coarser grid and prolongated back again. After
prolongation only the smooth quantities resemble themselves as before restriction.
Note that the discrepancies on the boundary of the restricted and prolongated solu-
tions are due to the grid being cell-centered.



5.1. The multigrid idea 55

In the last three plots of Figure 5.4 the restricted quantities are interpolated (prolon-
gated) back to the fine grid. The smooth quantities resemble themselves as they were
before restriction. The non-smooth initial guess does not resemble itself.

The prolongation is done using the following stencil

h

11

Ir?h:[l 1] , (5.12)
2h

meaning that the information held in the coarse grid cell is prolongated (injected) to
the 4 surrounding fine grid cells.

In practice, we are not at the coarsest grid seeking an approximation to the system of
equations, but a correction term which can bring our initial guess closer to the exact
solution.

5.1.3 A multigrid algorithm

Having introduced these two main principles, we are ready to describe a multigrid
method for solving the linear system in (5.1). We define the residual of this system
as

r=f— Av, (5.13)

where v is an approximation to the exact solution u. Using the definition of the error
in (5.2), the linear system is rewritten into

Au=A(v+e)=Av+Ae=f (5.14)
Inserting (5.13) in (5.14) reveals a critical relationship
Av+Ae=Av+rs

Ae=r, (5.15)
which is known as the residual equation, [28, Henson, p.1].

The concept in the multigrid algorithm described below is to consider the system Av = f
at the finest grid. Here the high frequency contributions to the error are removed using
the Gauss-Seidel method and the fine grid residual rj is restricted to a coarser grid
ry = I,{{ . Calling the algorithm recursively, we reach the coarsest grid, where the
residual equation in (5.15) is solved, yielding a correction term ey. This correction is
prolongated one grid up and used to correct the initial solution at that current grid level,
v, =vp+1 ?Ie - Doing this recursively gives us an approximation to the solution to the
fine grid problem Au = f, [28, Henson, p.1]. If this approximation is not satisfactory,
the procedure is repeated with the approximation being the new initial guess.

This method is described in pseudo code in Algorithm 5.1.
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Algorithm 5.1 Multigrid method for solving linear system Au = f
0

1: Provide initial guess v
2: k=0

3: while not converged and k < k4, do
4: k=k+1

5. vE = MGCYC(vFL,f)

6 Compute residual r* = f — AvF

7: end while

Given an initial guess v of the solution to the linear system, the algorithm enters a
while-loop with conditions on both the accuracy of the solution and the number of
iterations used. At each iteration, an updated solution and the corresponding residual
are computed. The residual is given by (5.13). If the norm of this residual is smaller
than some user specified tolerance, the algorithm stops.

The solution update in line 5 in Algorithm 5.1 is computed using the MGCYC sub-
routine, which is a multigrid cycle algorithm following the above presented concept and
the description in [43, Trottenberg, p.47]. This algorithm is given in pseudo code in
Algorithm 5.2.

Algorithm 5.2 Multigrid Cycle - v;, = MGCYC(vy, fp)

1: if on coarsest grid level then

2: Solve Apvy, =13,

3:  Return vy

4: else

Pre-smoothings on vy,

Compute residual: ry, = f;, — Apvy,
Restrict residual: ry =1 }IL{ r),
Recursive call: ey = MGCYC(0g,ry)
Prolongate correction: e, = I fé]e H
10:  Correction: vy = v, + ey,

11:  Post-smoothings on vy,

12: end if

The MGCYC algorithm is a recursive algorithm, which at the finest grid level is provided
with an initial guess v. In order to smooth the error, a number of pre-smoothings is
done using the Gauss-Seidel method. With the error being smooth we can compute a
residual, rjy, according to (5.13) and restrict it to a coarser grid without losing essential
information. At the coarser grid, a recursive call to the MGCYC algorithm is made,
where a vector of all zeros, Og, is provided as initial guess and the restricted residual,
ry, is provided as right-hand side. In this way the residual equation in Agep = rp is
solved at the coarsest grid using some kind of iterative or direct solver. At the coarsest
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grid, the algorithm does not make a recursive call, but returns the correction term eg.
This term is prolongated to the second-coarsest grid level and added to the initial guess
at this level. Thereby, a solution to the residual equation at this grid level is obtained,
which again serves as a correction term to the residual equation at the third-coarsest
grid. Before prolongating this correction term, a number of post-smoothings are done.
This correction procedure is repeated all the way to the fine grid, where the algorithm
returns an approximation to the fine grid problem.

The multigrid method given in Algorithms 5.1 and 5.2 are using a V-shaped solution
approach, where the algorithm interpolates the problem all the way down from the
fine grid to the coarse grid in a straight line, before it in a straight line interpolates a
correction term up to the fine grid again. Because of this V-shaped solution approach the
method is said to use a V-cycle. There are many different kinds of cycles all depending
on the number of grid levels used. Some alternatives are listed in Figure 5.5. All of
these cycles are shown for 4 grid levels.

V-cycle W-cycle F-cycle FMG

R Y

Figure 5.5: Different types of multigrid cycles using 4 grid levels, where (o) indicates grid
levels, (\) indicates restriction, (/) indicates prolongation and (/) indicates
FMG-interpolation.

The cycles shown in Figure 5.5 all start at the finest grid, except for the full multigrid
(FMG) cycle. The FMG method is based on the idea of nested iteration, meaning that
the initial guess on a certain grid level is based on computations and interpolation of
approximations on a coarser grid level, [43, Trottenberg, p.56]. The FMG method in
Figure 5.5 is called a FMG V-cycle, since it uses V-cycles, but combinations such as
FMG W-cycle and FMG F-cycle are also possible.

According to [43, Trottenberg, p.58], the FMG algorithm proceeds as in Algorithm 5.3.

Algorithm 5.3 FMG method for solving linear system Au = f

1: if on coarsest grid level then

2:  Provide initial guess v

3:  Solve Av=f

4: else

5:  FMG-interpolation of v

6:  Cycle call: v=MGCYC(v,f)
7. end if
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At the coarsest level, an initial guess of the solution is provided to the linear solver. The
resulting approximate solution is prolongated (FMG-interpolated) one grid level up to
a finer grid, where it is used as an initial guess for a multigrid cycle algorithm like the
one in Algorithm 5.2. The approximate solution found by this multigrid cycle algorithm
is prolongated to a finer grid, where the multigrid cycle algorithm is called again. This
procedure continues until an approximate solution at the finest grid is found.

5.2 The FAS method

With the basic concepts of linear multigrid being described in section 5.1 we move on
to the topic of nonlinear multigrid, and in particular the FAS algorithm.

Consider the nonlinear system

Au) =t (5.16)

where A(u) is a nonlinear operator which depends on u. We use the parentheses to
indicate nonlinearity. Again the error is defined as e = u — v. However, this time the
residual for the approximated v is defined as

r=f—A(v) (5.17)
Inserting (5.16) in (5.17) yields
Au)—A(v)=r (5.18)

Since we are considering nonlinear systems, in general A (e) # r. This means that we
cannot use the multigrid approach described in section 5.1 to find a correction term at
the coarsest grid. Instead we use (5.18) as residual equation and use a multigrid method
suitable for solving this type of equation, [28, Henson, p.2].

5.2.1 Newton-MG or FAS

There are two approaches to apply multigrid methods for the solution of nonlinear prob-
lems. One approach is to apply a global linearization method such as Newton’s method
to the nonlinear problem, [43, Trottenberg, p.147]. This is similar to the approach de-
scribed in section 4.2, meaning that we end up with the linear system Jh = —r, where
J is the Jacobian matrix of the nonlinear system of equations.

Then, instead of solving the entire linear system Jh = —r using some kind of solver as
in chapter 4, a multigrid method, like the one described in section 5.1, could be applied
to this linear system. This approach is called Newton-multigrid (Newton-MG).

As beforementioned, much research is carried out on solution methods using global lin-
earization. Nonlinear multigrid also enables us to deal directly with the nonlinear sys-
tems using the FAS algorithm. As described in section 1.4, this is a relatively unexplored
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area in reservoir simulation and with recent trends in many-core parallel architectures,
the locality of the method makes it interesting. The fact that global linearization can be
avoided results in significant memory savings, since the Jacobian matrix does not need
to be assembled for the finest grid level. Furthermore, the FAS rate of convergence is
not contrained by the convergence rate of Newton’s method, [9, Brandt, p. 84].

The FAS algorithm exploits the fact that the two main components of multigrid, er-
ror smoothing and coarse grid correction, are applicable to nonlinear problems, [43,
Trottenberg, p.148].

5.2.2 FAS theory

As described in [28, Henson, p.3], the FAS method computes a coarse grid correction
term based on the residual equation in (5.18), which using the error relation u =v + e
can be rewritten as

A(v+e)—A(v)=r (5.19)

Assuming uniform grids, consider this equation on the coarsest grid with mesh size
H = 2h (h being the mesh size of the finer grid one grid level up)

Ay (vH+eH)—AH (VH) =ry (5.20)
The coarse grid residual rg is the restriction of the fine grid residual, meaning
ry :I}?I‘h:I}fl (fh_Ah (Vh>) (521)

Similarly, the coarse grid approximation vy is the restriction of the fine grid approxi-
mation v;. This is in contrast to the approach used in linear multigrid, where only the
residual is restricted. Using these definitions we rewrite equation (5.20) into

Ay (I}{{Vh + eH> =Ayg (I}{{Vh) + I;{f (fh — Ay (Vh)) (5.22)

ug fH

Since the right-hand side of (5.22) consists of known terms, the solution ug to this
equation can be determined. Based on this solution, the coarse grid correction term is
computed as ey = ug — [ ,{{ vp. This correction term is prolongated one grid level up,
where it is used to correct the solution to the residual equation at that grid level, which
again can be used to determine a correction term for an even finer grid, and etc. In the
end we find an approximation to the nonlinear problem at the fine grid.

Following [43, Trottenberg, p.157], the nonlinear FAS cycle algorithm is presented in
pseudo-code in Algorithm 5.4.

In its construction this algorithm is very similar to the linear multigrid cycle algorithm
MGCYC presented in Algorithm 5.2. The differences between the two algorithms lies in
lines 8-11 of the FAS Cycle pseudo-code, where the approximated solution is restricted
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to a coarser grid and used to compute a right-hand side for the residual equation at
that grid level. Furthermore, a system of the type Ay (ugy) = £y is solved at coarsest
grid, and based on this solution a correction term is determined. This is in contrast to
the linear case, where the correction term is directly obtained at the coarsest level by
solving Ageyg =rg.

Algorithm 5.4 FAS Cycle - vj, = FAScycle(vy, f1,)

1: if on coarsest grid level then

2: Solve A, (Vh) =1,

3:  Return vy

4: else

5:  Nonlinear pre-smoothings on vy,

6:  Compute residual: r, = £, — Ay (vy)

7:  Restrict residual: rg =1 ,{{ Ty

8:  Restrict approximate solution vy: vy =1 ,{J v,
9:  Compute right-hand side: fy =ry + Apg (vy)
10:  Recursive call: ug = FAScycle(vy, frr)

11:  Compute correction: ey = ug — vy

12:  Prolongate correction: e, = [%ey

13:  Correction: vy, = vy, + e,

14:  Nonlinear post-smoothings on vy
15: end if

With the theory of FAS being introduced we move on to the implementation phase.

5.2.3 Getting familiar with FAS

In order to get acquainted with the FAS method before applying it to the more advanced
oil reservoir problem, we consider the nonlinear problem presented in [28, Henson, p.6]

~Viu(w,y) +yu(z,y) "V = f(z,y) €O
u(z,y) =0 € 090 (5.23)
v>0 eR

Except for the nonlinear term, this is the same equation as in (5.3). We assume that
the exact solution is given by

u(z,y) = (z — 22)(y — %), (5.24)
which gives us the righthand-side

fla,y) =2((x — %) + (y — y?) +(z — 2?)(y — y?)ele=)=v") (5.25)
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By solving this problem, where the exact solution is known, we can verify our imple-
mentation and thereby our understanding of the FAS method before applying it to a
more advanced problem. Since solving this problem is done to gain knowledge about
the method, and performance is not essential, the implementation of the FAS method is
done in MATLAB. The implementation is in accordance with Algorithm 5.4 and follows
the approach in [28, Henson|, meaning that we use the same nonlinear Gauss-Seidel
smoother and the same restriction and prolongation stencils. By using the same ap-
proach and setup for the problem as in the article, we expect to observe similar trends
in the results. The nonlinear Gauss-Seidel smoother is described in section 5.3.1.

We use a regularly structured, vertex centered grid with fine grid spacing h = %,
meaning that the fine grid has 129 x 129 nodes. The coarse grid problem is solved on a
3 x 3 coarse grid using the smoothing function. At the fine grid, the solution is accepted
when the residual is smaller than 1e-10. We study the performance of the FAS solver
for varying values of ~y, starting with the linear case v = 0 and ending with « = 10000,
where the nonlinear term dominates. The results are seen in Table 5.1.

¥ 0 1 10 100 1000 10000
Convergence factor 0.064 0.062 0.064 0.035 0.019 0.005
Number of FAS cycles | 10 10 10 9 8 7

Table 5.1: Performance of the FAS method for the problem in (5.23) for various .

We observe that the FAS solver is able to solve the problem for each of the test cases
in the table. We also see that the problem becomes easier to solve the more nonlinear
it is. This seems intuitively wrong, but the same trend is observed in [28, Henson, p.8],
where a similar study is conducted. Even though we do not experience the exact same
results as in [28, Henson, p.8|, we are satisfied with the results, since the trend is the
same. A possible reason for the results to slightly deviate from the ones presented in the
article is that we use a different number of pre- and post-smoothings and smoothings at
coarsest level.

The convergence factor in Table 5.1 is an average convergence factor over the number
of FAS cycles, and it is calculated according to [43, Trottenberg, p54]

I3

IN

m

Average convergence factor =

(5.26)
Iy

where 7*2 is the initial fine grid residual and 73" is the final fine grid residual.

Based on the above results we conclude that our implementation is correct and our
understanding of the method sufficient to move on to the reservoir problem.
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5.2.4 The reservoir model equations

In our introduction to the FAS method, we have used nonlinear systems of equations
of the form in (5.16). The reservoir model equations can be formulated in the same
nonlinear setting as given in (4.12).

5.3 Implementation

In this section, details and results for our first C++ implementation of the FAS method
are presented. Some of the strategies used in this first version are not optimal with
respect to algorithmic and numerical efficiency, but the essential part is to get the FAS
simulator up and running before further optimization. Suggestions for improvement of
the algorithm are implemented and tested in Chapter 6. This presentation approach is
chosen to reflect the actual work process.

Algorithm 4.1 in section 4.3 illustrates how for each time step the reservoir problem
is solved using Newton’s method. We now substitute the function call to the newton
routine in line 2 with a function call to the FAS routine seen in Algorithm 5.5.

Algorithm 5.5 FAS method - x}™' = FAS(x?, At)

1: while stop = false or kFAS < kFAS,,.x do

2:  Single V-cycle, x5, = FASCycle(xy, 0p,)

3 if Newton’s method in FASCycle did not converge then
4: break

5. end if
6
7
8
9

Compute flows
Compute residuals
if stop criteria are met then
: stop = true
10:  end if
11:  kFAS =kFAS+1
12: end while
13: if kKFAS > kFAS.x or Newton’s method in FASCycle did not converge then
14:  Chop time step to At = At/2
15:  Recursive call to FAS
16: end if

Provided the fine grid solution x}! to the current time step n, the FAS routine computes
the fine grid solution to the next time step n + 1. This is essentially done by updating
the current solution a number of times using the FASCycle routine, until the stopping
criteria are met. The cycle-type used in the FASCycle routine is a V-cycle, and the
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implementation is done in accordance with Algorithm 5.6. The stopping criteria are the
same as used for the newton routine in section 4.3.5.

If Newton’s method in the FASCycle routine does not converge within the allowed
number of iterations, then exit the while-loop in the FAS routine, chop the time step
and make a recursive call to FAS. If on the other hand, FASCycle finds an update to the
solution, then check whether or not this new solution satisfies the stopping criteria. In
order to do this, the residual is needed, meaning that the computations in line 6 and 7
of Algorithm 5.5 are necessary. The residual routine is the same as presented in section
4.3. The flow routine computes for each grid cell the total flow in or out of the cell. If
the stopping criteria are satisfied, then accept current approximate solution, otherwise
take one more iteration. If a valid solution is not found within the allowed number of
cycles, then reduce the time step and call FAS recursively.

Algorithm 5.6 FAS cycle - x;, = FASCycle(xy, f1,)

1: if on coarsest grid level then

2:  Solve Ayp, (xp) = fj, using Newton’s method, x;, = newton(xy)
3: else

4:  Nonlinear pre-smoothings on xp

5:  Compute flow

6:  Compute residual: rj, = £, — Ay (x3)

7:  Restrict residual: rg =1 ,? r

8:  Restrict primary variables: xp =1 f Xp

9:  Compute properties based on xg

10:  Compute flow based on xp

11:  Compute Ay (xp) using residual routine

12:  Compute right-hand side: fiy =rgy + Ap (x5)
13:  Recursive call: Xy = FASCycle(xy, fyy)

14: Compute correction: ey = Xy — Xy

15:  Prolongate correction: ej, = I}"}eH

16:  Correction: x; = X5, + ey,

17: Nonlinear post-smoothings on xj
18: end if

The FASCycle routine in Algorithm 5.6 follows the theory presented in section 5.2.2.
The coarsest grid problem is solved using the newton routine presented in Algorithm
4.2. The properties routine is the same as presented in section 4.3. In lines 9 and 10, the
properties and the flow at the coarser grid with grid spacing H are computed. Using
this it is possible to apply the residual routine to compute A (Xpr).

The ideas behind the properties routine, flow routine and residual routine have already
been introduced. The remaining parts of Algorithm 5.6 are presented below.

Notice that if the total number of grid levels equals one, then the FAS algorithm reduces
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to the nmewton routine presented in section 4.3.

As described in section 4.3.6, our time step size controller generates the size of the
next time step based on the numbers k and k4. For the standard newton simulator,
presented in chapter 4, the value k4, is defined as the maximum number of newton
iterations allowed per time step. The value k is the number of newton iterations used for
the current time step. However, the FAS simulator also takes the maximum number of
FAS cycles per time step, kFAS, 42, and the number of FAS cycles used for the current
time step into consideration. Hence, for the FAS simulator

kEmaz = min(kNewton,,q., kFAS;42) and k = max(kNewton, kFAS) (5.27)

5.3.1 Smoother

The smoothing technique applied at this stage of the work is based on the pointwise
nonlinear Gauss-Seidel method. This method is chosen in favour of the nonlinear Jacobi
method, because of its higher convergence rate and smaller memory requirement, [43,
Trottenberg, p.29].

In section 5.1.1 we presented the linear pointwise Gauss-Seidel method for a simple scalar
problem. However, since we are now considering a nonlinear problem we have to use
Newton’s method when computing the grid point update. Hence, the method is known
as the Gauss-Seidel-Newton (GSN) method, [43, Trottenberg, p.152]. Furthermore, we
are now considering a system of equations instead of a scalar problem. A natural way to
generalize scalar smoothing schemes to systems is to use collective relaxation, meaning
that all unknowns at each single grid cell are updated simultaneously, [43, Trottenberg,
p.289]. This implies that we relax each grid cell at a time by

X, =%X;+h;, i€C, (528)
where h; is determined by solving the linear system
Jh;=-r;,, i€C, (529)

for C = {1,..., N}. Here x; refers to the current solution for a given cell, meaning

T
xi:{moyi Mgi My p’i} , iEC, (530)

and r; refers to the corresponding residuals. The matrix J; refers to the ith diagonal
block in the full Jacobian matrix for the current grid level, meaning that J; is a 4 x 4
matrix containing the elements seen in (4.15) for the diagonal block matrix. The reason
for not considering the off-diagonal block matrices is that we consider a pointwise GSN
method (point smoother), where only the derivatives of cell ¢ wrt. cell i are computed.
Had it been a line smoother, meaning that all grid cells in either z-, y- or z-direction
are relaxed at a time, the off-diagonal blocks in the full Jacobian matrix should have
been taken into consideration.
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The GSN point smoother is implemented in accordance with Algorithm 5.7.

Algorithm 5.7 GSN point smoother - x = smoother(x)

1: Compute properties
2: while k£ < Number of smoothings do

3 for All cells in current grid do
4 Compute J;

5: Compute r;

6: Solve J;h; = —r;

7 Update solution x; = x; + h;
8 Update properties for cell i.

9 end for

10 k=k+1

11: end while

The smoother routine performs a user-specified number of smoothings, where in each
smoothing sweep, each cell is updated one at a time. For each cell we take only a single
newton iteration, since we do not have to solve the system in line 6 of Algorithm 5.7 to
any particular accuracy. The reason for this is that we only want to smooth the error,
not eliminate it, and this is therefore done with minimal effort, [28, Henson, p.7].

When solving the linear system in line 6 of Algorithm 5.7 we use the MUMPS solver
presented in section 4.3.4. To use a direct library solver developed for solving large
sparse systems when solving a small 4 x 4 system is not an optimal strategy, since the
time spent by the solver on analyzing the matrix pattern and choosing the optimal
solving method introduces a lot of overhead and unnecessary work. With this said, we
still use MUMPS, because it is a straightforward solution, since the framework is already
up and running in the newton routine. This is without doubt a part of the code, where
there is room for improvement.

As illustrated in section 5.1.1 for the linear scalar case, it is possible to use the Gauss-
Seidel method as solver. However, due to the poor final convergence rate it is necessary
to use many iterations to reach a reasonable accuracy. Even though this fact speaks
against using the collective GSN method as the coarsest grid solver, we can still use the
approach to verify our implementation of the method.

We solve the 1 x 1 x 3 homogeneous problem presented in section 4.4.1 for a period of
150 days with an initial time step of 0.1 days and At = 0.15 days. At each time step
10000 GSN iterations are used in order to reach the required accuracy. The results are
seen in Figure 5.6 below.

Since the smoother algorithm reaches a result comparable to the result ECLIPSE finds,
we conclude that the implementation is correct. It has to be mentioned that the simu-
lation illustrated in Figure 5.6 took a very long time to run, meaning that there is no
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practical perspective in using the smoother algorithm in its current state as the coarsest
grid solver.
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Figure 5.6: Solution to 1x1x3 homogeneous case generated by the GSN smoother, using 10000
smoothings at each time step.

As it will be demonstrated later in section 7.2.1, the smoother makes up a large por-
tion of the computation time. Furthermore, a nonlinear Gauss-Seidel smoother is local
in that for each cell, the smoothing procedure is only based on information from its
six neighbours. This makes it a good match for many-core architectures, where good
scalability depends on reducing the number of global reductions and inner products or
essentially any process that involves communication between grid cells in opposite sides
of the domain. A massively scalable GPU implementation of a multigrid solver has been
demonstrated in [21, Engsig-Karup] and in [1, Adams], a scalable Gauss-Seidel smoother
for distributed systems is presented.

5.3.2 Restriction

The restriction stencil is a (z, y)-semicoarsening stencil, meaning that it only restricts
along the z- and y-direction. The reason for this is that we consider gravity inversion
test cases, leading to all the dynamics of the system happening along the z-direction.
We therefore do not coarsen in the z-direction in order to preserve as much information
as possible in this direction. The restriction stencil is given by

11

H
I =w [1 11 (5.31)
h
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meaning that four fine grid cells are restricted into one coarse grid cell, like it was the
case in (5.11). This gives us a refinement factor of two in both the z- and y- direction.
The weight w equals i when restricting the primary variables, x, and 1 when restricting
the residual, r. The reason for this distinction is that the primary variables are per
volume, whereas the residual is for a specific volume. For the residual this means that
we have to sum (w = 1) the four fine grid contributions in order to get the restricted
residual for the coarse grid. Otherwise the coarse grid cell does not represent the same
volume as the four fine grid cells, [48, Zhou].

5.3.3 Prolongation

The prolongation stencil is given by

h
I,@_H ﬂ , (5.32)
H

meaning that the information held in the coarse grid cell is prolongated to the four
surrounding fine grid cells. This is the same stencil as in (5.12).

5.4 Verification

The implementation of the FAS routine is verified in the same way as the newton routine
was verified in section 4.4. The same test cases are used, except for the 1 x 1 x 3 case,
which is now a 2 x 2 x 3 case. Once again ECLIPSE is used for comparison.

5.4.1 Simple homogeneous permeability field

The 2 x 2 x 3 homogeneous test case, which is initialized as in Figure 4.4, is solved for
150 days. The results are depicted in Figure 5.7.

The FAS simulator using two grid levels, FAS(2), finds the same result as ECLIPSE. The
small differences are due to the two simulators having different time stepping methods.
This can be verified by forcing both simulators to take small identical time steps. Figure
5.8 shows the oil saturation if both ECLIPSE and FAS(2) integrates in time with 0.1
days per time step.

As depicted in Figure 5.8, the small differences seen in Figure 5.7 are not observed any-
more. The same behaviour applies to the solution of the three other primary variables.

For all the test cases in this section we use two grid levels, 0.1 days as initial time step,
20 pre- and post-smoothings and At = 30 days. No more than 10 FAS cycles and
10 Newton iterations for the coarsest grid solver are allowed. Furthermore, the initial
pressure at all cells is 250 bar.
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5.4.2 Smooth heterogeneous permeability field

The next test case is the smooth heterogeneous permeability field presented in section
4.4.2, which has permeabilities between 200-600 mD. The problem is initialized as in
Figure 4.7. The problem size is 18 x 18 x 18 and the simulation horizon is 100 days.

When starting this simulation, we immediately observe that the simulator is very slow.
In fact, it is slow beyond what is practically acceptable. A profiling using Valgrind
identifies the linear solver in the smoother as the problem. Section 6.1 explains how the
problem is identified and solved. After having replaced the linear solver in the smoother
the numerical efficiency of the algorithm has increased significantly. The results of the
simulation are in Figure 5.9.

252 e L C P S 1§ . —rrr———————————
T \ P Cell1
2515+ .: 1 '-_ Fi Cell 3088
H 08f % f Cell 5832
251} ._. q -‘. :‘ """ ECLIPSE
§ 25050 ¢ s v e Sosl 3 /
e e B Iy
5 250p° 5 s ”
o [
= 04}
E 2495 (=}
249
0.2
2485 1 .
£ Srrewag
248 . L L . 0 kun SSSvususmspusssEsssampnamnnnnnn]
0 20 40 60 80 100 0 20 40 60 80 100
Time (days) Time (days)
1 L e T kbbb bbb
0 punn
[-‘ 4
oslf i 0.8
c
c (=]
206 & E 06
5 E 3
E H & .: ....... .,
@ 0.4 : Z 04 ¢
8 ': : 4 '-
o2 o2} £y
i H \
0 il ': ............................................ 0 ':k: N emnnepanmese————————
0 20 40 60 80 100 0 20 40 60 80 100
Time (days) Time (days)

Figure 5.9: 18 x 18 x 18, 100 days, 2 grid levels.

The FAS(2) simulator finds the same results as ECLIPSE. Similar results for the FAS(3)
and the FAS(4) simulators are found in Appendix F.

5.4.3 SPE10 derived heterogeneous permeability field

The final test case is the SPE10 derived heterogeneous permeability field presented in
section 4.4.3. The problem is initialized as in Figure 4.10. The problem size is 10x10x 10
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and the simulation horizon is 16000 = 44 years. The results are in Figure 5.10.
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Figure 5.10: 10 x 10 x 10, 16000 days, 2 grid levels.

Once again the FAS(2) simulator finds the same results as ECLIPSE. Based on the test
cases presented we conclude that the implementation of the FAS algorithm is correct.

5.5 Performance study

A small performance study of the FAS(2) simulator is now carried out. For comparison
reasons this study is similar to the one for the standard newton simulator in section 4.6,
using the same hardware specifications and input values as in that section.

We study the run time as a function of the number of grid cells for a reservoir with a
fixed size of 480 x 240 x 48 meters. The results seen in Figure 5.11 clearly illustrate
the potential of the FAS algorithm. The results are generated using FAS(2), where 20
pre-smoothings and 20 post-smoothings are used. The same absolute tolerances apply
for both simulators. These can be seen in Appendix A.
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Figure 5.11: Run time as a function of number of grid cells for the prototype FAS implemen-
tation.

The figure shows that for small problem sizes there is no gain in using FAS(2). This seems
intuitively correct, since the time saved in the linear solver due to a smaller problem
size at coarsest grid is lost in the restriction, prolongation and especially the smoother
function. However, after break even FAS(2) is found to be superior. The simulator
based on FAS(2) appears to have linear scaling for these relatively small problem sizes,
whereas the simulator based on global linearization with standard Newton’s method is
closer to O(N?). The scalability of the simulator based on standard newton directly
reflects the poor scalability of the sparse direct solver MUMPS. Because the FAS(2)
simulator restricts the problem size, the point at which poor scalability becomes evident
is postponed. A more comprehensive performance study is conducted in chapter 7.

By using Valgrind to profile the above simulation study for FAS(2), the results in Figure
5.12 are produced.
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Figure 5.12: Distribution of computation time for the FAS(2) simulator for various problem
sizes.
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The figure illustrates that a significant amount of the computation time is used on error
smoothing. As previously discussed, point smoothing operations are local and therefore
well-suited for modern many-core architectures.

However, as the problem size increases, the general trend is that the linear solver at
coarsest grid makes up more and more of the computation time. This indicates that it
might be beneficial to use more grid levels as the problem size increases in order to keep
the main workload in the smoother.

Furthermore, Figure 5.12 indicates that there is no potential in using MUMPS as coarsest
grid solver if we want to solve very large problems due to the poor scaling. The largest
problem considered in the figure is relatively small (21,600 cells), but MUMPS still
makes up about 90% of the computation time when using two grid levels. As mentioned,
we could use more grid levels, but also a faster linear solver would be beneficial. An
improvement of this kind is described in section 6.3.

5.6 Summary

A first multiphase reservoir simulator based on the FAS method has been implemented
and verified. In a small performance study, this simulator has been compared to the
newton based simulator presented in chapter 4. The results show that the FAS sim-
ulator is able to perform better than the newton based simulator. Furthermore, the
performance study shows a need for a faster linear solver, since we would like to keep
the main workload in the highly parallelizable parts of the code, even for large problems.
A more extensive performance study is carried out in chapter 7.



CHAPTER 6

Improvements

The starting point for this chapter is the prototype implementation of the FAS algorithm
presented in section 5.3. In this chapter we suggest different changes to the implemen-
tation in order to improve algorithmic and numerical efficiency of the FAS simulator.
The chapter reflects the actual work process, meaning some of the suggestions do in fact
provide improvements and some do not.

In section 6.1, the Gaussian elimination approach replaces MUMPS as linear solver in
the Gauss-Seidel-Newton point smoother. Section 6.2 proposes line smoothing as an
alternative to point smoothing, and in section 6.3 the direct linear solver MUMPS is
replaced as the coarsest grid solver by an iterative solver from the PETSc library. The
effect of applying the Full Multigrid (FMG) approach in FAS is considered in section
6.4, and section 6.5 proposes alternative ways of restricting the cell-based input data.
Finally, in section 6.6 the two-stage preconditioner CPR is presented and implemented,
which enables us to apply a linear solver based on state-of-the-art choice of methods.

6.1 Removing MUMPS from the smoother

As mentioned in section 5.4.2, we cannot solve the 18 x 18 x 18 smooth heterogeneous
permeability field problem within reasonable time. Using the profiling tool Valgrind, we
can identify which parts of the code that take the longest time to execute. We profile
the simulation of the 2 x 2 x 3 homogeneous permeability field problem described in
section 5.4. The problem is initialized as usual with gas in the bottom layer, oil in the
middle layer and water in the top layer. The simulation is run for 150 days, using two
grid levels, 0.1 days as initial step, Aty = 30 days and no more than 10 FAS cycles
and newton iterations. We use 20 pre-smoothings and 20 post-smoothings.

The profiling of this simulation run shows that the smoother routine makes up 98.7%

73
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of the overall computation time. The time spent by the various subroutines of the
smoother routine are distributed as in Figure 6.1 below. This figure illustrates that
the linear solver, meaning MUMPS, is the critical part of the smoother routine. In
fact, it makes up about 93% of the overall computation time and roughly 95% of the
computation time used in smoother. In section 5.3.1 we mentioned our concerns about
applying a direct linear solver developed for large sparse systems to the small 4 x 4
system that is solved in the smoother, and evidently it is a poor choice.

mCompute J_i
M Linear solver
Property

calculations

m Other

Figure 6.1: Distribution of time spent in the smoother when using MUMPS as linear solver for
a 2 X 2 x 3 problem.

By implementing a linear solver ourselves, we save the time spent by MUMPS on analyz-
ing the system and the time wasted due to overhead of the MUMPS library routines. We
choose to solve the linear system using Gaussian elimination, since the implementation
is rather straightforward. Even though this type of algorithm has complexity O(n?3) for
dense systems, [35, LeVeque, p.67], it seems suitable as a linear solver in the smoother
routine, since we only solve systems of the size 4 x 4.

Due to stability reasons the implementation of the Gaussian elimination algorithm uses
partial pivoting, [20, Eldén, p.199], meaning that the pivot element of the column cur-
rently considered is the element with the largest absolute value in this column.

The implementation of the Gaussian elimination algorithm follows Algorithm 6.1.

Algorithm 6.1 Gaussian elimination - r; = GaussianElimination(J;, r;, n)

1: for j=1,..,nin J matrix do

2:  Consider rows k = j + 1,..,n and swap rows, such that the row with largest
absolute value in the jth column becomes row j
Swap same rows in r
Eliminate entries in column j below row j using elementary row operations
Apply same elementary row operations to r

end for

: for j=mn,..,1in J matrix do

Eliminate entries in column j above row j using elementary row operations

Apply same elementary row operations to r

10: end for
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Note that the routine reduces the augmented matrix to reduced row echelon form. It
might be faster to reduce only to row echelon form and then apply backward substitution,
but by reducing all the way to reduced row echelon form the same approach can be
applied for matrix inversion, which we need in section 6.2. We solve for the system
J;h; = r; presented in section 5.3.1. The parameter n is the size of the square matrix
J;, which in our case always equals 4.

Notice that r; holds the residual when the algorithm is initialized and the solution h;
when the algorithm terminates.

We remove MUMPS as the linear solver and apply the GaussianElimination routine
instead. When rerunning the above simulation study, we immediately observe that the
FAS simulator has become much faster. In fact, it is about 25 times faster than before for
the homogeneous 2 x 2 x 3 problem. The smoother still takes up a relatively large part of
the computation time, 85.5%, but this is okay since the basis for this measurement has
been reduced significantly. The time spent in the smoother routine is now distributed
as illustrated in Figure 6.2.
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Figure 6.2: Distribution of time spent in the smoother when using Gaussian-Elimination as
linear solver for a 2 x 2 x 3 problem.

Regarding computation time, the linear solver now constitutes a much smaller part of
the smoother routine than before when using MUMPS.

6.2 Line smoother

All the different oil reservoir test cases considered so far have been anisotropic problems.
Even though we use isotropic permeability fields as mentioned in section 2.1, anisotropy
is introduced into the problems through anisotropic cell sizes, which affect the transmis-
sibility in (3.29). With anisotropic cell sizes we mean that the dimension of the cells are
not the same in the z-, y- and z-direction.

The reason for considering anisotropic cell sizes is that a high grid resolution along the
z-direction better represents the gravitational effect, [16, Dogru, p.6], and since oil fields
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are usually much larger in the z- and y-directions than in the z-direction, (see SPE10
and [16], [17], [18]) it is inevitable to use anisotropic cell sizes.

When a problem is very anisotropic, it is not possible to reach a satisfactory convergence
factor using standard coarsening and point wise smoothing techniques, [43, Trottenberg,
p.132]. Trottenberg et al. [43, p.133] suggests two approaches to deal with this, namely
semicoarsening and stronger coupled smoothing techniques.

As mentioned in section 5.3.2, we are already using (x,y)-semicoarsening in order to
preserve as much information as possible in the z-direction. The reason is that we
consider gravity inversion test cases, meaning that nearly all of the dynamics in the
system are happening along the z-direction. For the same reason we suggest using a
linewise smoother in the z-direction in order to reach a higher convergence rate of the
smoother routine.

The concept in a line smoother is to update all primary variables along a line simultane-
ously. In this way a stronger coupling of the primary variables along this line is ensured.
As mentioned we consider a z-line smoother, meaning that for all the grid cells in the
zy-plane, the cells in the z-direction are updated collectively.

The implementation of the linesmoother routine is very similar to the point smoother
routine smoother in Algorithm 5.7. However, the big difference is that the system
Jh = —r solved in the Newton step in line 6 of Algorithm 5.7 is no longer a 4 x 4
system. Since all the grid cells along the z-axis are updated simultaneously, we now

consider the block tridiagonal system Jj;,chiine = —Tpine given by
Jline hiine Fline
B, C; 0 | h; r1
Ay By G hy ry
A; By - : = - Co, (6.1)
Cn._1| |[BNz—1 rN.-1
L0 Ay: By. | LB IN=

where the matrices By, ..., By, are the 4 x 4 diagonal matrices presented in (4.15) and
the matrices Ag, ..., Ay, and Cy, ..., Cy,_1 are the 4 x 4 off-diagonal matrices presented
in (4.15). The 4 x 1 vectors ry,...,ry, contains the corresponding residuals. Nz is the
number of grid cells in the z-direction. Note that all the matrices and vectors in (6.1)
use local indices, not global.

This block tridiagonal system is solved using the block version of the tridiagonal matrix
algorithm, also known as the Thomas algorithm.

The linesmoother routine is not restricted to be a z-line smoother. Depending on the
input the routine can also be applied as a z-line smoother or a y-line smoother.
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6.2.1 The Thomas algorithm

The Thomas algorithm is an algorithm for solving tridiagonal systems of equations. The
algorithm is a simplified version of the Gaussian elimination algorithm and it has com-
plexity O(n), which is better than O(n3) for dense Gaussian elimination, [49, Zikanov,
p.139].

The Thomas algorithm for solving a scalar PDE is presented in [41, Thomas, p. 87].
The algorithm consists of a forward sweep and a backward sweep, and the scalar version
can be extended to a block version. The implementation of the block Thomas algorithm
follows Algorithm 6.2, which is in accordance with [41, Thomas, p. 295].

Algorithm 6.2 Block Thomas - hy;,. = Thomas(Jjine, Tiine, N2)

1: Compute H; = —B1_1C1

2: Compute g1 = Bl_lrl

3: for j=2,...,. Nz—1do

4:  Compute H; = — (B; + AjHj—l)_l C;

5. Compute g; = (B + AjHj—l)_l (rj — Ajgj-1)
6: end for

7. Compute gy, = (By. + Anv.Hy. 1) (rn: — An.gno—1)
8: Compute hy, = gn.

9: for j=Nz-1,...,1do

10: hj =g; + Hjhj+1

11: end for

Note that in the implementation of the block Thomas algorithm we store the solution in
rline in order to reuse the memory. The matrix invertions are done using the Gaussian
elimination approach described in section 6.1.

6.2.2 Performance of line smoother

A small performance study comparing the efficiency of the point smoother routine,
smoother, to the line smoother routine, linesmoother, is now conducted.

In order to compare the algorithmic efficiency for the two methods, we consider how
the residual for a single time step is reduced as a function of the number of FAS cycles.
For both methods we consider the first time step of the simulation for the 18 x 18 x 18
problem with smooth heterogeneous permeability field. The simulations are run using an
initial step of 0.1 days and the input parameters in Appendix A. Hardware specification
2 in Appendix B is used. We use the anisotropic cell size 20m x 10m x 2m.

For both the point smoother and the line smoother we use 5 pre-smoothings and post-
smoothings and allow no more than 100 FAS cycles and 10 Newton iterations. The
results are seen in Figure 6.3 below.
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The figure shows that for the given problem, the z-line smoother uses much fewer FAS
cycles to reach a certain tolerance than the point smoother (The point smoother curve
is almost hidden behind the green and black curves). This indicates that the z-line
smoother is algorithmically more efficient than the point smoother, which is in line
with theory. Furthermore, the figure shows that applying a z-line smoother or y-line
smoother does not improve the algorithmic efficiency.

Even though the algorithmic efficiency of the FAS simulator is improved by using the
line smoother, this might not be the case in terms of numerical efficiency. The reason
is that the systems solved in the line smoother are larger than the systems solved in
the point smoother. We investigate this by computing the simulation time for various
problem sizes of the smooth heterogeneous permeability field problem. The cell sizes
are fixed at 20m x 10m x 2m. The simulation runs for 150 days, initial time step is 0.1
days, Atmee = 30 days and the input parameters in Appendix A are applied. Hardware
specification 2 in Appendix B is used.

The problems are solved to the same tolerance, and again we use 5 pre- and post-
smoothings and allow no more than 10 FAS cycles and 10 newton iterations. The
results are displayed in Figure 6.4.

This figure shows that even though the system solved in the line smoother is larger than
the system solved in the point smoother, the z-line smoother is superior with respect to
numerical efficiency. The reason is that the line smoother needs much fewer FAS cycles
to reach a certain accuracy than the point smoother. This is not the case for the z-line
and y-line smoothers, which have almost the same algorithmic efficiency as the point
smoother according to Figure 6.3. The x-line and y-line smoothers perform worse than
the point smoother, since the systems solved in the line smoothers are larger.

Only 5 pre-smoothings and post-smoothings have been used for this test. This is a
reasonable amount of smoothings for the z-line smoother, but both algorithmic and
numerical efficiency of the point smoother could be increased by using more smoothings.
However, our experiences with the FAS simulator shows that the z-line smoother is
always superior for the given test case no matter the number of pre- and post-smoothings
used for the point smoother.

The scalability of the simulator is not limited by the point or line smoothers. In the
point smoother, Gaussian elimination on N small 4 x 4 problems scales linearly. In
the line smoother, the Thomas algorithm also has linear scalability. The limiting factor
is still the sparse direct solver MUMPS for the coarsest grid solve. The outliers in
Figure 6.4 can be caused by the fact that a permeability field perhaps favours the z-line
smoother. Also the problem sizes are relatively small, which introduces larger relative
measurement errors.

One has to bear in mind that the above results are for a single time step of a given
gravity inversion test case using (z, y)-semicoarsening, where a strong connection in the
z-direction is introduced due to the cell size 20m x 10m x 2m. It is possible that the
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z-line smoother would not be the optimal choice if we consider a flooding! test case with
most of the dynamics along the zy-plane.

The superiority of the z-line smoother is also affected if we change the cell dimensions
and thereby the anisotropy of the problem. This is illustrated by conducting the exact
same test as in Figure 6.3, but using a different cell size. If isotropic cells with the size
10m x 10m x 10m are considered, the results in Figure 6.5 are obtained.
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Figure 6.5: Number of iterations used to reduce the residual to a certain tolerance for FAS(2)
using cell size 10m x 10m x 10m.

This figure clearly shows, that the difference between the line smoothers and the point
smoother reduces as the anisotropy of the problem decreases. In fact, the z-line smoother
is only slightly better than the other smoothers. This is as expected, since our reason
for considering a line smoother is the high anisotropy of the problem.

If the cell size is changed to 2m x 10m x 10m, meaning that a relatively strong connection
is made between the cells in the x-direction, the results are as in Figure 6.6. In this
figure, it is illustrated that the z-line smoother is now the optimal choice.

All in all, the above results indicate that it is worth implementing a line smoother when
considering an anisotropic problem. However, the line smoothing strategy should be
chosen with care, since parameters such as cell size has large effect on the performance.
Furthermore, the problem at hand should be taken into consideration.

D By flooding we mean that water is injected into the reservoir, leading the oil to the production
wells.
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Figure 6.6: Number of iterations used to reduce the residual to a certain tolerance for FAS(2)
using cell size 2m x 10m x 10m.

Throughout the remainder of this thesis, we use the z-line smoother unless otherwise
stated, since it performs very well for cell sizes giving a strong connection in the z-
direction.

Note that a line smoother is less local than a point smoother, meaning a line smoother
is less suitable for efficient implementation on modern many-core architectures than a
point smoother. However, the Thomas algorithm is O(n) and if there is enough work so
that the threads can be kept busy, an implementation of a line smoother is still scalable.
This is demonstrated in [21, Engsig-Karup]. Furthermore, the line smoother provides
significantly better convergence rates.

6.3 Iterative linear solver

In this section, we describe how the solver for the linear systems on the coarsest grid is
improved. We replace the direct solver MUMPS with an iterative solver. Specifically,
the iterative solver method GMRES with ILU preconditioning is implemented using the
PETSc? library.

In section 6.3.1, a brief overview of the commonly used linear solvers in reservoir simula-
tion is given. Section 6.3.2 gives a basic introduction to GMRES and Arnoldi’s method.
Since the PETSc library is used to implement the iterative linear solver, only a basic
theoretical introduction is given.

For reservoir simulation, GMRES is useless without good preconditioning. Section 6.3.3

2) http://www.mcs.anl.gov/petsc/.
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and 6.3.4 introduce Incomplete LU preconditioning and how it is used with GMRES.
Section 6.3.5 provides some insight to implementing the iterative solver and precondi-
tioner in Newton’s method using PETSc. Lastly, the improvement from switching to an
iterative linear solver instead of a direct solver is documented in section 6.3.6.

6.3.1 Introduction

Figure 5.12 reveals that using a sparse direct linear solver (in this case MUMPS) to
solve the linear system in each newton iteration on the coarsest grid is prohibitive.
Furthermore, an iterative linear solver will facilitate realistic comparisons between the
standard newton approach with a global linearization and FAS.

For large three-dimensional reservoir simulation problems, iterative linear solvers to
solve the nonsymmetric linear system Jh = —r or more generally

Ax=Db (6.2)

are the only viable option, [6, Aziz, p.338]. An iterative linear solver is a procedure that,
given an initial solution x, finds the solution by successive approximations

X' s xtax? % (6.3)

where x* — x when k — co. The simplest iterative methods are the stationary methods
such as the Jacobi method, the Gauss-Seidel method or the Successive Over-Relaxation
method (SOR). As shown in section 5.3.1, the Gauss-Seidel method is not efficient
enough as stand-alone solver and from [43, Trottenberg, p. 52| we know that this
applies to the Jacobi method and the SOR method as well.

The most popular linear solver methods for reservoir simulation are the Krylov subspace
methods. These include the Conjugate Gradient method applied to the normal equa-
tions (CGN), the Generalized Minimal Residual method (GMRES) and the Biconjugate
Gradient Stabilized method (BiCGSTAB) [12, Chen, p. 220]. Previously, ORTHOMIN,
still used in the commercial simulator ECLIPSE, was the leading method. Currently,
the most popular method is GMRES. Studies have shown that GMRES performs better
than ORTHOMIN, since ORTHOMIN in general requires more arithmetic operations
and storage than GMRES [12, Chen, p. 224].

GMRES is known to be a very efficient and robust method for solving general sparse
nonsymmetric systems. Due to its wide usage in reservoir simulation, GMRES is also
used in our simulator as the coarsest grid linear solver. In the following, we will give a
basic introduction to GMRES. For a more detailed explanation see [38, Saad)].
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6.3.2 GMRES

The following description of the GMRES method follows the approach in [35, LeVeque,
p.96]. Consider the linear system of equations

Ax =b, (6.4)

where A € R™". In each iteration k of the GMRES method, an approximation x* to the
solution of (6.4) is determined by solving a least squares problem. The approximation
x¥ is chosen as the best approximation from the affine space x° + K¥, where K is the

k-dimensional Krylov space
KF = span (rO,ArO,AQrO, . Ak_lro) , (6.5)

which is based on the initial residual r® = b— Ax°. Note that superscripts on r indicate
the iteration number and superscripts on A indicate the power. In order to formulate
this least squares problem we have to build a matrix

Qk _ [ql q2 qk} c RnXk, (6.6)

whose columns form an orthonormal basis for the Krylov space KF. This orthonormal
basis is computed using Arnoldi’s Method, [5, Arnoldi].

Arnoldi’s method applied to GMRES

Arnoldi’s method is an orthogonal projection method onto the Krylov subspace KCF.
It was discovered that it can be used to efficiently find eigenvalues for large general
non-Hermitian matrices. Later, the method was extended to solve large sparse linear
systems, [38, Saad, p.160].

In iteration k of the Arnoldi method, the vector q**! is determined using a Gram-
Schmidt type procedure. This is done by taking some vector v¥, which is not in X and
orthogonalizing it to q', q2,...,q*. The vector v¥ is chosen as v¥ = AqF, since q* is
orthogonal to all the previous basis vectors, meaning that v¥ = Aq” is not likely to be
in K. The first of the basis vectors is chosen as q' = r®/||r?||.

The GMRES algorithm is outlined in pseudo code in Algorithm 6.3 below, where the
first 9 lines constitute the basic Arnoldi method.

In the kth and (k + 1)th iteration of this algorithm we have
Qk _ [ql q’ - qk] c R™™*  and Qk+1 _ {ka qk+1] eRnx(k—&-l)’ (6.7)

which forms an orthonormal basis for ¥ and IC¥*1, respectively.
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Algorithm 6.3 GMRES method - x = GMRES(A, x°, r%)
l

1: Choose vector q* = r%/||r

2: for k=1,2,... do

3 vF=AqgF

fori=1,2,...,k do
Compute hg, = (q°)TvF
Compute v¥ = v*

end for

hisik = [|VF||2

a" = vF /g

10:  Compute H*

11:  Check residual r* of least squares problem in (6.21)

12:  if r* sufficiently small then

— hirq’

13: Compute x based on (6.16)
14: return x

15:  end if

16: end for

All the h values computed after k iterations, except for hjpi iy, are used to form an
upper Hessenberg matrix

hii hi2 higz -+ hig—1 hig
ha1 hao haz -+ hop_1 hoy

HF = hs2 hss -+ hgk-1 hak| =~ cREXE (6.8)
hi -1 hig

Based on (6.8) we define the matrix H* as

where h* is the row vector
h* =100,0,...,0, hpy1p], €RVF (6.10)

Note that the value hy1j is found in the kth iteration of the GMRES algorithm.

Consider the matrix product

AQF = [Aql, N Aqk] c R (6.11)

and notice that for j = 1,...,k the jth column of this matrix is equal to the starting
vector v/ in the jth iteration of Algorithm 6.3. The jth column of (6.11) is alternatively
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expressed as
hj+17jqj+1 = qu — hl,qu — h27jq2 i thq], (612)

which can be rearranged into

qu = hl,qu + h27]‘q2 +...+ hj,jqj + hj.,.l,jqurl (6.13)

The equation in (6.12) is obtained by considering the starting vector in line 3 of Algo-
rithm 6.3 and the computations done in lines 4-9. Primarily notice the computations in
lines 6 and 9.

The left-hand side of (6.13) is the jth column of AQF, and for j < k the right-hand side
represents the jth column of Q¥H*. This means that

AQF = Q"HF + hypy 1q ("), (6.14)

where (e®)” is a unit vector of length k& with a 1 in the last element. The last term in
(6.14) corresponds to the last term in (6.13) for j = k. Using the definitions in (6.7)
and (6.9) we rewrite (6.14)

AQF = QFIHF (6.15)

The least squares problem

We are now ready to define the least squares problem for finding an approximate solution
x" to the problem in (6.4). We know that the columns in Q* form a basis for ¥, meaning
that x* can be written as
xF = x0 + QFy*, (6.16)
for some vector y* € R¥. This means that the residual at iteration k is
' =b— A (x"+Q'y")
=1’ — AQFy" (6.17)

— 0 _ QMIFYF,

where we have used (6.15). Since the first column in Q**'is defined as q' = r%/|r?|],
we rewrite the initial residual into r® = Q*+'w, where the vector w is

T
w= [ 0,...,0] , eRF! (6.18)

Using this we rewrite (6.17)

rF = QM (w - ﬂkyk) (6.19)



86 Improvements

Since the columns in Q*! form an orthonormal basis, it holds that (Q*1)TQF! =1.
Using the definition of the dot products of vectors, computing (r*)”r* leads to

[Ie¥]]2 = [lw — Hy*|]2 (6.20)

In the kth iteration of the GMRES method we choose y* to solve the least squares
problem

min ||w — H*y||5, (6.21)
yERK

and based on this we find the solution x* as in (6.16).

Remarks

The Arnoldi method considered in this section is the basic Arnoldi procedure, which
assumes exact arithmetic. In practice, Arnoldi’s method is improved with a modified
Gram-Schmidt procedure to obtain a much more reliable implementation in case of
round-off. Even Arnoldi’s method with modified Gram-Schmidt can be insufficient. To
deal with this, a double orthogonalization procedure can be implemented. Another op-
tion is to use a different orthogonalization technique called the Householder Algorithm.
These improvements are described in [38, Saad, p. 163].

If the Arnoldi method uses all k = n iterations (n being the dimension of A), then the
starting vector v* = Aq" lies in the Krylov space K™, which then will be all of R™, [35,
LeVeque, p.98]. This means that GMRES is guaranteed to find the exact solution, at
least in theory. However, the idea is that after a small amount of iterations, a sufficient
approximation is found.

If only a small number of iterations is used, meaning k << n, then H* and w* are
small, leading to the least squares problem being small. This least squares problem
is relatively cheap to solve using a QR factorization of H¥, since this matrix is nearly
upper triangular. Furthermore, H* consists of H*~! with one additional row and column
added. By reusing the factorization of H*~! (which has already been QR factorized in
the previous iteration) it is cheap to compute the factorization of HF, [35, LeVeque,
p.99].

According to LeVeque, it is possible to compute the residual of (6.21) without actually
solving for y*, using the R matrix from the QR factorization. In this way, the conver-
gence criterion can be checked at each iteration k without having to solve for y*. This
means that the final y* and x* are computed only after the convergence criterion is
satisfied, [35, LeVeque, p.99].

Algorithm 6.3 describes the very basic GMRES method. It requires storing both the
q”s and v¥’s. A modification can be implemented, where Arnoldi’s method is replaced
with the Householder method. In this way, the GMRES algorithm can be altered to
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only require storage of the v¥’s. See [38, Saad, p. 174] for specific information on how
to do this.

Even with modifications as the Householder method, the immediate concern of the
GMRES method is the growing storage requirement. If GMRES needs a high number
of iterations to converge, the memory requirement could outgrow the capacity. GMRES
is guaranteed to converge in at most n iterations, however this would become impractical
if the problem is large and many steps are required. In practice, GMRES is restarted
after a given number of iterations m. This is done by setting x° = x™ and restarting the
algorithm. Restarting GMRES can introduce difficulties with stagnation. To overcome
these difficulties, preconditioning is applied to lower the required number of GMRES
iterations.

For further information about Arnoldi’s method and GMRES see [38, Saad, p.160] and
38, Saad, p.171].

6.3.3 Preconditioning

For more complicated problems, where the linear systems come from linearizing strongly
heterogeneous and nonlinear systems, applying iterative linear solvers without precon-
ditioning results in slowly converging or even non-robust solvers. In reality, the choice
of preconditioner has greater impact on performance than the Krylov method that it is
used with.

Preconditioning is a technique, which transforms the original linear system into a differ-
ent linear system that is likely to be easier to solve with an iterative solver, but where
the solution remains the same as the one for the original system. There are three ways of
performing preconditioning. The three techniques are left-preconditioning as in (6.22)

M 'Ax=M""'b (6.22)

or right-preconditioning as in (6.23)

AM lu=b, (6.23)

where x = M~!u or split-preconditioning as in (6.24)

M;'AMz'u=M;'b, (6.24)

where x = Mﬁlu. Here M is a preconditioning matrix. It can be generated in many
ways, but common for all of the approaches is that it should result in M being non-
singular, close to A and in practice reduce the condition number of the resulting linear
system. Applying preconditioning to GMRES can be done with all three techniques
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above. One very significant difference is that right preconditioning allows for the Flexi-
ble Generalized Minimal Residual method (FGMRES), where the preconditioner can be
changed in each iteration [12, Chen, p. 229].

Some of the simplest methods used for preconditioning are the stationary methods:
Jacobi, the Gauss-Seidel and SOR. These can only be applied with limited success in
reservoir simulation [12, Chen, p. 231]. More powerful preconditioning techniques are
based on LU factorizations. In the following we will describe the basics of Incomplete
LU factorization.

6.3.4 Incomplete LU factorization

ILU factorization can be performed by applying Gaussian elimination and dropping
some elements in predetermined nondiagonal positions. Common for all types of ILU
factorizations is that they generate a sparse lower triangular matrix L and a sparse
upper triangular matrix U such that the residual matrix

R=LU-A (6.25)

satisfies certain conditions, such as having zero entries in some locations [38, Saad, p.
301].

The simplest ILU factorization is ILU(0), meaning ILU with no fill-in. It uses the exact
same zero pattern as the matrix A. By introducing fill-in, namely ILU(p), p = 1,. ..,
where p is an indicator for the amount of fill-in, more efficient and reliable ILU factor-
izations can be obtained. This involves some additional challenges when constructing
and implementing the methods. Some of these challenges are addressed in [38, Saad, p.
311].

6.3.5 Implementation

For our simulator, PETSc is built with the standard BLAS kernels provided through
PETSc for hardware specification 1 in Appendix B. For hardware specification 2, the
ATLAS? implementation is used. In the following, a brief overview is given of how
PETSc is integrated into our simulator. Before starting the time integration, the nec-

essary data structures and PETSc operators are initialized in a setup phase. This is
described in Code 6.1.

Code 6.1: PETSc setup

1 PetscInitialize ()
2 VecCreate(sol)
3 PetscObjectSetName (sol,"Solution")

%) http:/ /math-atlas.sourceforge.net/
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VecSetSizes (sol ,4*N) // N is number of coarsest grid cells
VecDuplicate(sol,b) // Vector sol is duplicated to rhs vector b
MatCreateSeqAIJ() // Create matrix

KSPCreate () // Create solver context

When creating the matrix, an average number of non-zero elements per row is specified.
In our implementation, this is chosen to 14, since this is the highest possible number of
non-zeros in a row for our Jacobian. Specifying a too low average number of non-zero
elements per row results in the first matrix assembly in the first newton iteration to
be very slow. During the time integration, PETSc functions are continously called in
Newton’s method. Code 6.2 gives an idea as to how the framework is integrated.

Code 6.2: PETSc implementation in Newton’s method

For each newton iteration
MatSetValue (A) // Function is called in loop to cache elements put in A
MatAssemblyBegin() // Assemble A
MatAssemblyEnd ()
VecSetValues(b) // Define rhs
VecAssemblyBegin() // Assemble rhs
VecAssemblyEnd ()
KSPSetOperators() // Give it solver context and system
KSPGetPC() // Define preconditioner
PCSetType () // Set ILU as preconditioner
KSPSetTolerances () // Set tolerances for linear solver
KSPSolve () // Solve linear system

The tolerances for the linear solver are, unless a given experiment demands otherwise,
set to 10719 for the absolute tolerance and 10~ for the relative tolerance. The function
MatSetValue can be replaced with MatSetValues to cache more than one element at a
time. This would probably increase efficiency of assembling the matrix. However, the
function constructing the sparse Jacobian is designed for coordinate list format (COO)
instead of compressed sparse row format (CSR), which means MatSetValues cannot
be used without converting to CSR format or changing the method of constructing
Jacobian matrices. Both options would require extra computational work. For optimal
performance, more sophisticated assembling procedures can be applied.

After completing the time integration, PETSc data structures and operators need to be
destroyed. This is straightforward as demonstrated in Code 6.3.

Code 6.3: PETSc destroy

VecDestroy(sol) // Destroy solution, rhs and matrix
VecDestroy (b)

MatDestroy (A)

KSPDestroy () // Destroy linear solver context
PetscFinalize ()

Keep in mind this is just a brief overview of the most essential functions. The real
implementation contains all the necessary function calls and arguments.
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6.3.6 Improvement

We conduct a small performance study, where the performance of the FAS(2) simulator
using MUMPS as linear solver is compared to the performance of the FAS(2) simulator
using the iterative linear solver GMRES with ILU(1) preconditioning from the PETSc
library. The performance study is similar to the studies in sections 4.6 and 5.5.

We consider a fixed reservoir of size 480m x 240m x 48m. The reservoir has a smooth
heterogeneous permeability field with permeabilities in the range 200-600 mD. This
permeability field is generated as described in Appendix E.

The simulation horizon is 150 days, the initial time step is 0.1 days and the maximum
allowed time step is Atnee = 30 days. We allow no more than 10 FAS cycles per time
step and no more than 10 newton iterations per FAS cycle. We use 5 pre- and 5 post-
smoothings. The input values in Appendix A and hardware specifications 2 in Appendix
B are used.

GMRES is given a stack of 30, meaning that if GMRES has not converged within
30 iterations, it is restarted as described in section 6.3.2. We use GMRES with left
preconditioning. Figure 6.7 shows the run time comparison for different problem sizes.

For small problems there is no advantage in using the iterative solver. MUMPS is
in fact a little faster for smaller problems. However, for larger problems there is a
significant gain in using GMRES with ILU preconditioning. When more than 10000
grid cells are used, the poor scaling of MUMPS is evident. Meanwhile, GMRES with
ILU preconditioning is somewhere between O(N) and O(N3/2) (closer to O(N?3/2)).
GMRES scales linearly, however this is not the case for ILU(1) preconditioning, where
fill-in is introduced.

Figure 6.8 depicts profiling of the FAS(2) simulator with the GMRES-ILU solver for the
coarsest grid solve for different problem sizes.

Similarly to the sparse direct solver MUMPS, the iterative solver GMRES-ILU also
makes up the majority of the computation time, when only two grid levels are used in
FAS. The percentage of computation time spent in the GMRES-ILU solver increases
as the problem size increases. In chapter 7, we investigate if it is possible to move the
main workload to the more local smoother component by increasing the number of grid
levels.

The above studies show that the iterative solver presented in this chapter is more efficient
than MUMPS. From this point onwards, the GMRES-ILU solver is used as standard.
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Figure 6.7: Run time as a function of number of grid cells for the FAS implementation using
either MUMPS or GMRES from PETSCc.
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Figure 6.8: Distribution of the computation time for the FAS(2) simulatior using GMRES for
various problem sizes.
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6.4 Applying FMG

In section 5.1.3 different multigrid cycle types were presented. So far, only the V-cycle
has been considered, but according to Trottenberg et al. the FMG scheme is often the
most efficient multigrid version, [43, Trottenberg, p.56].

We consider a FMG V-cycle method, which is the FMG approach presented in section
5.1.3. Recall that the FMG method starts by solving the coarse grid problem and in
the end produces an approximation to the fine grid problem. If this approximation does
not satisfy the stopping criteria, additional V-cycles are carried out in order to make
the approximation more accurate.

Figure 6.9: A 'MG V-cycle followed by one or more multigrid V-cycles.

In our implementation at least one additional multigrid V-cycle, or FAS-cycle, is per-
formed to reduce the residual below the tolerance. This approach is illustrated in Figure
6.9. The implementation of the FMG approach is in accordance with Algorithm 5.3,
where the cycle routine call in line 6 is a call to the FAScycle routine presented in sec-
tion 5.3. The additional V-cycles are carried out by calling the FAS routine described
in section 5.3.

As initial guess for the coarsest grid problem considered in the beginning of the FMG
approach, we use the restricted fine grid solution from the previous time step. This way
of choosing the initial guess is illustrated in part a) of Figure 6.11 below. We will later
consider other ways of generating the initial guess.

When applying the FMG method Trottenberg et al. suggest that the FMG-interpolation,
which is the prolongation of the primary variables, uses an interpolation operator of
higher accuracy than the prolongation operator used in the multigrid cycle, [43, Trot-
tenberg, p.58]. Since we in the FAScycle routine use the 4-point prolongation stencil
given in (5.32), we choose our FMG-interpolation as the 16 point interpolation operator

given by
133 11"
11399 3
h—i
1= 13 9 9 3 (6.26)
13 3 1),

Note that the time step size controller seeks to optimize efficiency by taking the number
of newton iterations used in the FMG approach into consideration. This means that the
time step is not solely based on the FAS cycles and newton iterations in the additional
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V-cycles, as it is the case without applying FMG. Hence, k and k4, in Algorithm 4.4
is defined as

kmaz = min(kNewton,,qz, kFASqz) (6.27)
k = max(kNewton, kFAS, kFMG.q),

where kEFMG,4 is the average number of newton iterations used at the coarsest levels
during the FMG approach.

We conduct a performance study to test whether or not applying FMG provides an
improvement to the FAS simulator.

6.4.1 Improvement

Using various gravity inversion test cases we compare the performance of the FAS simu-
lator without using FMG with the performance of the FAS simulator using FMG. For a
given test case we measure the total number of time steps used and the run time of the
simulation. Furthermore, we measure the average number of FAS cycles used per time
step, meaning the number of V-cycles used per time step after the FMG approach.

By measuring the simulation run time we can immediately in practical tests observe
how the numerical efficiency of the simulator is affected by introducing the FMG ap-
proach. The average number of FAS cycles used per time step is a direct indication of
the algorithmic efficiency of the simulator. The total number of time steps indirectly
provides information about the algorithmic efficiency. The reason is that the time step
size controller takes the number of FAS cycles and the number of newton iterations used
for previous time steps into account when computing the size of the next time step.
Therefore, the time step size accepted by the time step controller is affected by the
algorithmic efficiency.

We consider test cases with homogeneous permeability fields with permeabilities of 100
mD and test cases with smooth heterogeneous permeability fields with permeabilities in
the range 200 — 600 mD. The smooth heterogeneous permeability fields are generated
as described in Appendix E. The test cases are initialized as described in section 4.4.
We use the parameter settings listed in Appendix A and hardware specification 2 in
Appendix B.

For all of the test cases we use a fixed choice of 5 pre- and 5 post smoothings, an initial
time step of 0.1 days and At,,q = 30 days. The simulation horizon is 150 days, and no
more than 10 FAS-cycles and 10 newton iterations/FAS-cycle is allowed. We consider
cells with the anisotropic cell size 20m x 10m x 2m.

The results are listed in Table 6.1 below. All of the tests are solved to the same accuracy.

On the basis of the results in Table 6.1, it is difficult to conclude whether or not using
FMG provides an improvement to the FAS simulator. For the 24 x 24 x 24 homogeneous
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Problem Method | Apply | Avg. no. of FAS No. of Run time
specifications FMG | cycles/time step | time steps (secs)
- 1.4 32 81
FAS(2) + 1 38 131
Homogeneous - 4.3 41 137
24 x 24 x 24 FAS(3) + 1 36 70
- 4.7 36 117
FAS(4) + 1 36 59
- 1.4 45 333
FAS(2) + 1.0 63 731
Homogeneous - 4.5 58 482
32 x 32 x 32 FAS(B) + 1.1 73 405
- 4.7 65 508
FAS(4) + 1.0 129 535
; 17 91 366
FAS(Q) + 1 1021 5521
Smooth - ia 81 280
heterogeneous FAS(3) + 10 1004 9956
24 x 24 x 24
FAS(4) - 4.7 98 317
+ 1.0 3322 5690

Table 6.1: Comparisons of the FAS simulator using FMG and the FAS simulator without using
FMG for various test cases.

permeability field problem FMG improves the number of time steps and the run time
when using three or four grid levels, but not when using two grid levels.

For the 32 x 32 x 32 homogeneous permeability field problem, the only improvement
when using FMG is the run time when considering three grid levels. The number of
time steps is increased no matter how many grid levels are used. The run time when
using two or four grid levels is also increased.

The last test case is the 24 x 24 x 24 smooth heterogeneous permeability field problem.
For this problem, the use of FMG increases both the number of time steps and the run
times significantly.

One conclusion that can be drawn based on the results in Tabel 6.1 is that the algorithmic
efficiency per time step is improved by using FMG. This is indicated by the average
number of FAS cycles per time step generally decreasing when applying FMG. At first
glance, this constitutes an improvement of the simulator, since the point in applying
FMG is to provide a better initial starting guess for the additional V-cycles. However,
this improvement might be due to the increase in time steps, which means smaller time
steps, since the simulation horizon is fixed. If the time step size is small, then the coarse
grid problem is easier to solve, since the initial guess (the solution from the previous
time step) is closer to the solution for the current time step. Especially for the smooth
heterogeneous case, the number of time steps is very high.
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While generating the above test results we observed that the simulator often fails to
converge at the first of the coarsest levels in the FMG approach. This coarse grid
problem is indicated with a red circle in Figure 6.10.

I/‘ )
=

Figure 6.10: When time steps are too large, FAS with FMG fails to converge at grid levels
marked with circles.

This means that the simulator has to reduce the length of the current time step in order
to converge. Often this results in very small time steps. Once the size of the time step
has been reduced so much, our observation is that it is difficult for the simulator to
increase the time step size again. The reason is that it often fails at one of the coarsest
levels in FMG marked with green circles in Figure 6.10.

One possible explanation is that the starting guess provided to FMG is not close enough
to the solution to the coarse grid problem, which causes Newton’s method to fail to
converge. So far this initial guess has been generated by restricting the fine grid solution
from the previous time step all the way to the coarsest grid. This is the case illustrated
in part a) of Figure 6.11. We now consider two other strategies to generate the initial
guess for FMG.

+ + n n+1

n n+1 n n+1
a) b)

Figure 6.11: Three strategies for generating initial guess for FMG. a) restrict fine grid solution
from previous time step. b) use half V-cycle and c) use coarse grid solution from
previous time step.

An alternative strategy for generating the initial guess for FMG is to apply the operations
corresponding to a half V-cycle. This means that the computations in lines 4-12 of
Algorithm 5.6 are performed several times until the coarsest level is reached. At each of
the grid levels visited in the half V-cycle we apply 10 smoothings. The reasoning behind
this strategy is that the simulator not using FMG seldom diverges at the coarsest grid
level. The third strategy is to use the coarse grid solution from the previous time step
as initial guess for the FMG approach. These strategies are illustrated in parts b) and
c) of Figure 6.11.
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The right-hand side of the coarse grid problem has so far been the restriction of the right-
hand side for the fine grid problem. However, applying strategy b) when generating the
initial guess for FMG also affects the right-hand side of the problem. The explanation
is found in line 12 of Algorithm 5.6, which describes how the right-hand side for a given
grid level is generated. For strategy c), where the initial guess is the coarse grid solution
from the previous time step, we choose the right-hand side for the current coarse grid
problem as the right-hand side for the coarse grid problem at the previous time step.

The three different approaches for generating the initial guess (and the right-hand side)
for FMG are tested and compared to the FAS simulator not using FMG. As test case we
use the 16 x 16 x 16 smooth heterogeneous permeability field problem. The input values
are the same as used to generate the results in Table 6.1. The results are presented in
Table 6.2.

Method Apply | Avg. no. of FAS No. of Run time
FMG | cycles/time step | time steps (secs)
- 2.0 61 54
a) 1 670 776
FAS(Q} b) 1 701 927
o) 1 689 776
- 4.0 71 65
a) 1.1 390 260
FAS(3) b) 1.1 347 305
c) 1.1 369 240
: 44 67 61
a) 1.0 2956 1570
FASM) b) 1.0 1989 1529
c) 1.0 1880 998

Table 6.2: Comparison of FAS simulator without FMG and FAS simulator using FMG for
various strategies for generating initial guess.

Based on the results in Table 6.11 it appears strategy c) performs the best of the three
strategies, at least for the problem considered. However, the FAS simulator using FMG
is far from as efficient as the FAS simulator not using FMG.

The literature suggests that multigrid performs better when applying FMG, [43] and
[28]. This is not the result observed in this section. For the test cases considered in this
section there is no improvement in using the FMG approach. The FAS simulator using
FMG often has a longer run time and is using more time steps than the simulator not
using FMG. The simulator applying FMG is not able to take as long time steps due to
failure to converge at the coarsest grid. This leads to an increment in the number of
time steps.

The conclusion is that it is not straightforward to make an efficient FMG implementation
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for the reservoir problem at hand.

6.5 Restricting cell-based input data

In the FAS method, restriction operators for the residual and for the primary variables
are needed. In addition to these operators, restriction operators for the absolute per-
meabilities (and porosities if not kept constant) are needed as these properties are cell
dependent. Currently, in a (x,y)-semicoarsening context, the absolute permeabilities
are restricted by an arithmetic average over 4 cells equivalently to the restriction of the
primary variables. The illustration on the left of Figure 6.12 shows how the permeabil-
ities of four cells are restricted to one cell by taking the arithmetic average of the four
cells.

Alterations to this approach of restricting the input data are tested. The idea is to
include more of the expected physical behaviour in the coarser grid representations.
Experiments are carried out, where the arithmetic average is replaced with the minimum
of the permeabilities of the four cells. The reasoning is that the limiting permeability
should reflect in the coarser grid cell average. This does not improve performance and

it is therefore dismissed.
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Figure 6.12: Illustration of restricting input data. The left figure illustrates the restriction of
permeabilities going from 4 to 1 cells. The middle figure illustrates the restriction

of transmissibilities on an edge-based basis in the x- or y-direction. The right
figure illustrates the restriction of transmissibilities in the z-direction.
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Instead of restricting cell-based permeabilities, it could be beneficial to restrict the edge-
based transmissibilities. It can be argued that the permeabilities for cell 1, 5, 4 and 8 in
the illustration in the middle of Figure 6.12 should not be included in the transmissibility
for the coarser grid. This is because only the edges between cell 2 and cell 3 and between
cell 6 and cell 7 are represented on the coarser grid.

As given in equation (3.29), the transmissibility between cell ¢ and its neighbour cell j
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is computed as

Ty = =zp

where Ah is either Az, Ay or Az depending on the flow direction and A;; is the area
of the interface perpendicular to the flow direction. Due to (x,y)-semicoarsening, the
transmissibility on a H = 2h coarser grid is

for flow in the z- or y-directions. H is the coarse grid mesh spacing and h is the fine
grid mesh spacing. The two factors of 2 are due to the geometry of the coarser grid
cells. When flow is along the x- or y-direction the factors cancel out. This means that
the transmissibility over an edge on the coarser grid can be computed as an average of
the two transmissibilities over the corresponding two edges on the fine grid. This is the
situation illustrated in the middle part of Figure 6.12.

For flow along the z-direction, the transmissibility over an edge on the coarser grid can
not be computed directly as an average of four transmissibilities over the fine grid edges.
This can be seen from the transmissibility formula

AA: ki
1, = ks, (629
where the factor 4 is because A;jg = ArvyAyy with Azy = 2Az), and Ay = 2Ay;,.
This means that the transmissibility over an edge on the coarser grid is computed as
4 times an average of four transmissibilities over corresponding edges on the fine grid.
For the arithmetic mean, this is the same as the sum of the four transmissibilities on
the fine grid. This is the situation depicted in the right of Figure 6.12. Note that the
void space with the arrows in the right illustration of Figure 6.12 does not exist, but
it is only there to allow for illustration of the transmissibility of the interfaces in the
z-direction.

Based on this alternative way of restricting the cell-based input data, two tests are
carried out to see if this has any effect on the performance of the FAS solver. The
two test cases are the SPE10 derived 10 x 10 x 10 and a 16 x 16 x 16 problem with a
heterogeneous permeability field with a permeability range of 0.1-20000 mD generated
as explained in Appendix E. These test cases are selected because of their extreme
heterogeneity. The SPE10 derived permeability field consists of scattered high and low
permeability values, whereas the second test case has a more smooth permeability field.
Table 6.3 gives an overview of the performance of the FAS solver for the two ways of
restricting the cell-based input data.
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Time Run
Levels: Restriction type: steps: time:
10 x 10 x 10
SPE10 derived | FAS(2) Restricting permeabilities 211 81
permeability FAS(2) Restricting transmissibilities 229 83
field, 200 days
16 x 16 x 16
smooth FAS(2) Restricting permeabilities 126 122
heterogeneous | FAS(2) Restricting transmissibilities 132 118
0.1-20000 mD
permeability FAS(3) Restricting permeabilities 184 152
field, 150 days | FAS(3) Restricting transmissibilities 175 151

Table 6.3: Performance comparison of restricting permeabilities or transmissibilities for two
different very heterogeneous test cases.

The FAS solver is more or less indifferent in terms of computation time. For this reason,
the original approach is kept. Tests have been conducted with harmonic means instead
of arithmetic means. This proved to have a negative effect on performance.

6.6 Two-stage preconditioner: CPR

One of the main objectives of this thesis is to compare the conventional techniques
based on global linearization in Newton’s method against local linearization in FAS. As
mentioned earlier, simulators based on global linearization are highly dependent on an
effective linear solver for very large linear systems. Consequently, a choice was made
to replace the direct linear solver with an iterative linear solver. The first iterative
linear solver described and tested in section 6.3 is GMRES with ILU preconditioning.
This is a generic combination of methods used in many fields as well as in reservoir
simulation. This combination of linear solver and preconditioner results in a fairly high
number of linear iterations as shown later in this section. Furthermore, the number of
linear iterations increases as a result of increasing problem sizes or more heterogeneous
systems.

The systems arising in reservoir simulation are of mixed character. They consist of
a near-elliptic pressure part with long-range coupling and a near-hyperbolic conserva-
tion part with steep local gradients, [11, Cao]. Consequently, the systems are obvious
targets for a two-stage preconditioner, where each stage deals effectively with the er-
ror characteristics of the individual parts of the systems. The two stages are obtained
through decomposition of the systems. Currently, the most popular of such methods
is the Constrained Pressure Residual (CPR), [45, 46, Wallis|. This preconditioner is
implemented in the next-generation commercial reservoir simulator INTERSECT [11,
Cao], and in the in-house reservoir simulators GPRS from Stanford University, [19], and
GigaPOWERS from Saudi Aramco, [22, Fung].
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In the following, we give a description of the algorithm, the implementation in PETSc
and the improvements obtained compared to GMRES with ILU preconditioning.

6.6.1 Forming the pressure matrix

Before starting the linear solver, a full system matrix A (the Jacobian J) and its cor-
responding pressure matrix A, are set up in Newton’s method. The pressure matrix
is formed by reducing the full system matrix using an elimination process similar to
Gaussian elimination. There are two ways to reduce the full system matrix, namely
quasi-IMPES and true-IMPES [30, Jiang p. 128]. IMPES is an abbreviation for Im-
plicit Pressure Explicit Saturations. It is a method used to reduce the size of the linear
system of equations in Newton’s method to one equation and unknown per grid cell, [6,
Aziz, p.186]. The basic idea of IMPES is to

e obtain a single pressure equation by a combination of the flow equations
e solve this equation implicitly for pressure
o update saturations explicitly using the pressure computed in the previous step

Due to explicit treatment of saturations, the IMPES method imposes limitation on
the size of the time step to maintain stable solutions. Keep in mind that CPR is a
preconditioner for a linear solver and that an IMPES-like reduction technique is merely
used as part of CPR and thus poses no limitations on the size of the time steps.

Having introduced the basic idea of IMPES, we can continue with the derivation of the
pressure matrix used in the CPR preconditioner. The diagonal and off-diagonal block
matrices used to construct the Jacobian or full system matrix have the form

Diagonal block matrix

Aomo + Fomo’i 0 0 Aop + F, ;
0 0 Awm + Fum . Auwp + Fup:
VB, VB, VB, VB,
Off-diagonal block matrix
Fomo,j O O FOpj
0 Fgmg J 0 ngj
: : 6.31
0 0 Fom,; Fup; ( )
0 0 0 0
where
Acmc — 0(‘/17m)0ﬂ

ome,;

)
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is the derivative of the accumulation of some component ¢ = {o, g, w} wrt. the molar
density of the same component and

afe

_ )

" oo

is the derivative of the flow term for some phase a = {o, g, w} for cell ¢ wrt. pressure
for cell i. In the off-diagonal block, the flow term

_9ff

= o,

is derived wrt. a neighbour cell j. The derivatives of the residual of the volume balance
constraints wrt. molar density of some component are

apj

arvb i
VB, = 24
¢ 8mc,i

The two IMPES reductions can be performed in the following ways.

Quasi-IMPES

In Quasi-IMPES, the derivatives VB, are eliminated by a Gaussian elimination approach
using elementary row operations. By computing the three fractions

VB,
=P
! Aomo + Fomoyi
B,
o L - (6.32)
Agmg + Fgmg,i
VB
F3 = = )

Aomw + mew,i

we reduce our diagonal block matrix in (6.30) to an upper triangular matrix. This means
that we have decoupled the system by eliminating the dependence on molar densities
in the “pressure linked” equation (the volume balance equation). Therefore, a diagonal
element of the pressure matrix A, can be computed as the result of the elementary row
operations on the element VB, in (6.30)

Apy(ivi) = VB, — Fi(Aop + Fop,) — Fa(Agp + Fgp,) — F3(Awp + Fup,) (6.33)

Since we are using elementary row operations on the full system Jacobian matrix, the

off-diagonal elements of the pressure matrix A, are formed as

Ap,(i,j) =0- FlFopj - FQngj - F3prj (6.34)

Applying this process to the full system 4N x 4N Jacobian matrix results in a N x N
pressure matrix, where N is the number of grid cells.
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True-IMPES
In true-IMPES the molar densities (corresponding to saturations in other formulations)
in the flow terms are treated explicitly. Therefore, the diagonal and off-diagonal block

matrices can be simplified to

Diagonal block matrix

Aom, 0 0 Aop + Fop,
0 Agm, 0 Agp+Fy,
’ 6.35
0 0 Auny Aup+ Fup, (6.35)
VB, VB, VB, VB,
Off-diagonal block matrix

00 0 F,

00 0 Fy,

000 Fl (6.36)

0 00

Here the derivatives of the flow terms wrt. molar densities are dropped, since they are
treated explicitly and as a result they do not depend on the next time step n + 1. In
the true-IMPES approach, the three fractions are given by

VB,

B = o
VB

By= 9 (6.37)
Agmg
VB,

Fa—

3 Aomw )

With these fractions the pressure matrix is computed like in Quasi-IMPES using equa-
tion (6.33) and (6.34). Having formed the pressure matrix, we can continue with the
actual steps taking place inside the CPR preconditioner in each linear iteration.

6.6.2 Algorithm

Given the full system matrix A, the pressure matrix A, and the 3N fractions from
either (6.32) or (6.37), we apply the following CPR preconditioner steps to the residual
r given by the linear solver Flexible GMRES (FGMRES).

1. Restrict the full system residual r with length 4N to the pressure residual r, with
length N using the fractions Fy, F5 and Fj.

Tpi = Tobi — F1roi — Forgi — Fary,; (6.38)
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2. Solve the pressure system
Ayx, =r, (6.39)

3. Expand pressure solution to full system

T
s=[0 00 2 - 00 0 z,x (6.40)

4. Correct the full system residual using the expanded pressure solution

re=r—As (6.41)

5. Apply the “second stage” preconditioning to the corrected full system

Mx =r, (6.42)

6. Add the expanded solution s from step 3 with the preconditioned vector x from
step 5 and output this as the CPR preconditioned vector y to FGMRES

y=Xx + s (643)

The first stage of the CPR preconditioner is to solve for the pressure correction in step
2. This is a near-elliptic system and one of the most popular methods in reservoir
simulation for solving this system is the Algebraic Multigrid (AMG) method. AMG
is considered a black-box solver for elliptic linear systems, since it requires no grid
information but rather operates directly on the linear (sparse) algebraic equations. In
this thesis, a theoretical introduction of AMG is beyond the scope. Instead we refer to
the introduction in [43, Stiiben p. 413]. To ensure robustness in some special cases, the
AMG method can be used as the preconditioner in GMRES when solving the pressure
system in step 2. This is slower than just using AMG, but it may prove useful under
very special circumstances, [30, Jiang, p.131].

The second stage of the CPR preconditioner in step 5 is often ILU(0). ILU(0) deals
effectively with high frequency errors. If ILU(0) is used as preconditioner by itself, the
low frequency error components linger and requires a large number of iterations to be
affected, [11, Cao]. However, if ILU(0) is used after the pressure correction, only the
high frequency errors remain and ILU(0) is quite effective at dealing with such systems.
The reason only high frequency errors remain is that the first stage in CPR deals with
the pressure system and resolves global coupling and low frequency errors. Individually,
the two components ILU(0) and AMG would be inefficient, but together they constitute
a powerful preconditioner.
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6.6.3 Implementation

The CPR preconditioner is developed specifically for reservoir simulation and therefore
it is not to be found in generic iterative linear solver libraries. In the PETSc framework
it is possible to write your own preconditioner. This can be done in two ways. The
first approach is to write your own preconditioner with functions defining interfaces
to the rest of PETSc. The second approach is to use PCSHELL to create your own
preconditioner class. In this way, it is only necessary to implement the essentials such
as create, apply and destroy functions.

Both the true-IMPES and quasi-IMPES reductions are implemented and tested. Fur-
thermore, it is possible to choose between solving the pressure system solely with AMG
or with AMG as preconditioner for GMRES (GMRES+AMG). Both options are tested
and evaluated. The tolerances used for GMRES+AMG or AMG (with more than one
V-cycle) are a relative tolerance of 107> and an absolute tolerance of 10719, However,
investigations have shown that the best overall performance is often achieved using just
one V-cycle, [30, Jiang, p.132].

6.6.4 Improvement

In this section, the CPR preconditioner is compared to single-stage ILU preconditioning.
Furthermore, GMRES-AMG is compared to just AMG for the first stage solve in CPR
and lastly true-IMPES is compared to quasi-IMPES. All of these tests are conducted to
establish the best preconditioner for the given problems.

The first test case is the 10 x 10 x 10 problem with the SPE10 derived permeability
field from section 4.4.3. The simulations are 16000 days == 44 years, Atyax = 30.0 days
and cell sizes are 20m x 10m x 2m. The initial step size is 0.1 days and the number of
pre- and post-smoothings are 5. Hardware specification 1 in Appendix B is used in this
section.

Method: Time steps: Run time: Linears/newton:
ILU(1) 997 800 62.59
CPR true-IMPES (1 AMG V-cycle) 994 326 4.08
CPR quasi-IMPES (1 AMG V-cycle) 1031 378 4.12
CPR true-IMPES (GMRES+AMG) 990 472 3.76

Table 6.4: Comparison of preconditioners for 10 x 10 x 10 heterogeneous problem. 44 years of
simulation. Run time is in seconds.

The test case is very heterogeneous due to the permeability field. The results in table
6.4 demonstrate the effectiveness of the CPR, preconditioner compared to ILU for highly
heterogeneous problems. The number of linear iterations per newton iteration is much
lower for the CPR preconditioner compared to ILU(1). The performance of ILU(0) was
too slow to wait for 44 years of simulation time.
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True-IMPES reduction in the CPR preconditioner performs better than quasi-IMPES.
This is confirmed by experiments in [19, Durlofsky, p.34]. Furthermore, using just one
V-cycle of AMG instead of GMRES4+AMG to solve the pressure system is faster. It
takes 4 more time steps due to some loss of accuracy when not solving the pressure
system to the given tolerances, but this is well worth it in terms of run time.

As a second experiment, we compare the CPR and ILU preconditioners for two similarly
heterogeneous problems with different resolutions. Using the fixed pattern smooth het-
erogeneous permeability field generated as explained in Appendix E, a 480m x 240m x
48m reservoir is simulated for 150 days with two different cell sizes. Table 6.5 holds the
results of the experiment.

Time Run Linears per
Method: steps: time: newton:
16 x 16 x 16 CPR true-IMPES (1 AMG V-cycle) 101 148 4.69
. CPR quasi-IMPES (1 AMG V-cycle) 99 155 5.28
grid cell ILU(0) 167 1084 151.77
problem ILU(1) 102 228 37.72
ILU(2) 102 188 18.91
ILU(3) 100 318 15.06
94 % 24 x 24 CPR true-IMPES (1 AMG V-cycle) 152 737 4.83
. CPR quasi-IMPES (1 AMG V-cycle) 148 867 5.77
grid cell ILU(0) 237 6370 198.14
problem ILU(1) 181 2569 78.85
ILU(2) 154 1383 33.49
ILU(3) 155 2175 25.02

Table 6.5: Comparison of preconditioners for two similarly heterogeneous problems with differ-
ent resolution. 150 days of stimulation. Run time is in seconds. Note that there is
a limit of 1000 linear iterations per newton iteration.

The results show that the CPR preconditioning is almost unaffected by larger problem
sizes in terms of linear iterations per newton iterations. Of course, each linear iteration
is more expensive due to the larger problem size, but the number of linear iterations per
newton iteration only increases with very little. ILU preconditioning on the other hand
results in a factor between 1.3-2.1 of additional linear iterations per newton iteration.
Equally important is the fact that the relative increase in run time is larger for ILU
preconditioning than for the CPR preconditioning. Table 6.5 does not contain results
for CPR preconditioning with GMRES4+AMG for the pressure solve, since it is not
competitive for the given problems. The last conclusion, which can be made from the
results in Table 6.5, is that true-IMPES continues to outperform quasi-IMPES.

Overall, CPR preconditioning effectively deals with highly heterogeneous problems and
increasing problem sizes. It outperforms ILU preconditioning both in terms of conver-
gence rate and timings. From this point onwards, the best performing solver in the
above tests, namely FGMRES with CPR preconditioning with true-IMPES reduction
and 1 AMG V-cycle is used as standard.



106 Improvements




CHAPTER 7

Performance study

The performance studies considered so far have primarily been conducted in order to
see how a change in some components of the simulator affects the performance. In this
chapter, we provide a more extensive performance study of the two simulators developed
in this work.

The chapter consists of two parts. The first part in section 7.1 compares the simulator
based on standard Newton’s method (the standard newton simulator) with the FAS
based simulator. The second part in section 7.2 considers how specific parameters or
choices in various components of FAS affect the performance.

In section 7.1.1, a study is carried out to see how the simulators scale in terms of run
time as the number of grid cells increases. The algorithmic efficiency of the simulators
are compared in 7.1.2, and in section 7.1.3 a study considering the number of property
calculations per fine grid cell is done. Finally, a memory comparison and a heterogeneity
stress test are carried out in sections 7.1.4 and 7.1.5.

In the second part of the chapter, a profiling study illustrating the effect of using more
grid levels is conducted. This is done in section 7.2.1. In section 7.2.2 it is studied how
the number of smoothings affects the performance of FAS. An alternative coarsening
technique is investigated in section 7.2.3, and in section 7.2.4 it is studied how FAS
is affected by using a specific number of newton iterations at coarsest level instead of
solving to a certain accuracy.

All of the test cases considered in this section are gravity inversion cases. For these test
cases, the molar densities are initialized with water in the top third of the cells, oil in
the middle third of the cells and gas in the bottom third of the cells. This is similar to
the initialization used for the verification cases described in section 4.4. The pressure is
initialized to 250 bar. Hardware specification 2 in Appendix B is used for all timings.
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7.1 FAS compared to Standard Newton

In this section, the FAS based reservoir simulator is compared to the reservoir simulator
based on conventional global linearization using standard Newton’s method.

7.1.1 Scalability

This test compares the run time for the FAS based reservoir simulator with the run time
for the standard newton based reservoir simulator. The reservoir is kept at a fixed size
and the resolution of the problem is increased while maintaining equivalent anisotropies.
The reservoir is 480m x 240m x 48m. The simulation horizon is 150 days, the initial
time step is 0.1 days and the maximum allowed time step size is At;,q, = 30 days. No
more than 10 FAS cycles and 10 newton iterations are allowed. We use the input values
specified in Appendix A. The FAS simulator uses 5 pre- and 5 post-smoothings. The
reservoir has a smooth heterogeneous permeability field with permeabilities in the range
200-600 mD. The permeability field is generated as described in Appendix E.

The same tolerances apply for both the standard newton simulator and the FAS simu-
lator. Figure 7.1 displays the results.
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The FAS based reservoir simulator outperforms the standard newton based reservoir
simulator in terms of run time. The difference becomes larger as the problem sizes
increase. With an appropriate number of grid levels, FAS appears to have linear scaling
for the larger problem sizes considered in Figure 7.1. This is not the case for the
standard newton based reservoir simulator, where the scaling appears to be somewhere
between O(N) and O(N?3/2). The limiting factor should be the ILU factorization in the
second stage of the CPR preconditioner as a results of the involved factorization cost
for the sparse Jacobian matrix. With increasing problem sizes, the 2 outer bands of the
Jacobian matrix get further away from the diagonal. This means that the bandwidth of
the matrix is increased when the problem size is increased. ILU factorization depends
on the bandwidth, [24, Golub, p.152], and consequently, perfect linear scaling should
not be expected.

Also, the performance of the algebraic multigrid method in BoomerAMG on these types
of linear systems should probably be studied further. Nevertheless, Figure 7.1 displays
the measured results using the popular PETSc and Hypre libraries. With FAS, it appears
feasible to avoid scaling issues by increasing the number of grid levels and consequently
keeping the coarsest grid systems to be solved relatively small. In this way, linear scaling
should be possible for even larger sizes as indicated by the results in Figure 7.1.

Part of the reason that FAS is quicker than standard newton can be found in the number
of time steps spent during simulations. For the run times in Figure 7.1, the corresponding
number of time steps can be found in Table 7.1.

Problem size
Method 8X8x8 16x16x16 24 x24 x24 48 x 48 x 48
Standard newton 68 101 152 201
FAS(2) 40 60 91 171
FAS(3) 65 83 82 161
FAS(4) N/A 93 94 127

Table 7.1: Number of time steps for the simulations displayed in Figure 7.1.

For all four problem sizes, the FAS based reservoir simulator spends fewer time steps
than the standard newton based reservoir simulator. The length of the time steps are
controlled as outlined in section 4.3.6. The time step lengths are directly related to the
number of outer iterations for the previous time steps. For the standard newton solver,
the outer iterations are the number of newton iterations and for the FAS solver, the
outer iterations are the number of FAS cycles. This suggests that the FAS solver has
better algorithmic efficiency than the standard newton solver for the given problems
and for the given tolerances. This seem to be in line with theory, which states that the
convergence rate of FAS is not bound by the convergence rate of Newton’s method, [8,
Brandt, p.85]. Note that the second type of nonlinear multigrid, namely Newton-MG
would be bounded by the convergence rate of Newton’s method.
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7.1.2 Residual plots

In this test, the residuals for the outer iterations are studied. The outer iterations of the
nonlinear solvers are respectively the newton iterations for standard newton and FAS-
cycles for the FAS solver. We investigate how the residuals are reduced for each outer
iteration. The absolute and relative tolerances for the linear solver are set to 10~ and
the tolerances for the outer iterations are set to 7, = 7y = 7, = 10712 and 7, = 10714,
Figure 7.2 shows the residuals until convergence for standard Newton’s method, FAS(2)
and FAS(3). Each line represents a time step. The first 50 time steps are depicted.
Time integration is fixed with 0.1 days per time step. The test is for a 24 x 24 x 24 grid
cell problem with 20m x 10m x 2m cell sizes. 5 pre- and post-smoothings are used in
FAS. The permeability field is generated as described in Appendix E with permeabilities
ranging from 200-600 mD.

The black line, which is separated from the cluster of lines, is the first time step. We
suspect that the reason for the first time step to deviate may be due to the fact that
pressure is initialized to 250 bars for all grid cells. For the first few time steps and
especially for the first time step, the pressure solution exhibits large variations until it
settles with an incrementally higher pressure towards the bottom of the domain due to
gravity. This large variation is reflected in the difficulty of converging for the first time
step.

Note that the plotting of the residuals for the volume balance equation starts at itera-
tion 1. This is because the residual for the volume balance equation for iteration 0 is
equivalent to the residual for the volume balance equation for the last iteration of the
previous time step. Consequently, it is very close to zero for iteration 0.

The 49 remaining lines in the plots of Figure 7.2 representing 49 time steps are all
clustered and clearly show the trend of residual reduction in the nonlinear solvers. The
standard newton solver typically converges after 3 or 4 iterations, whereas FAS(2) uses
4-5 iterations and FAS(3) uses 18-20 iterations. Evidently, convergence rate is deterio-
rating when using more than 2 levels for this problem. This is a general trend we observe
when the number of grid levels is increased. However, as it can be observed in Figure
7.2, the initial residual reduction is very fast, which means for engineering accuracy
purposes, FAS is competitive with standard Newton’s method. In fact, as results in
Table 7.1 show, the FAS solvers in general step longer than the standard newton solver
for general engineering tolerances. Keep in mind that the length of time steps is directly
reflected in the number of outer iterations for the previous time steps.

7.1.3 Property calculations

As mentioned in section 4.3.1, certain properties such as the formation volume factors,
viscosities, phase molar densities, mass densities, saturations, relative permeabilities
and mobilities are computed for each cell. These properties are based on the current
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values for the primary variables, meaning that they have to be updated each time the
approximation for the current solution is updated.

For more advanced reservoir simulation models than the one considered in this thesis
(e.g. models considering more components and /or miscible fluids) the number of proper-
ties computed for each cell is larger and /or the properties are more complex to compute.
This means that these property calculations can be quite expensive in terms of run time.

As described in Algorithms 5.6 and 5.7, the properties are updated at each grid level in
the FAS cycle and in each smoothing sweep in the smoother. This results in the FAS
simulator doing more property calculations than the standard newton simulator.

For the problems considered so far, the FAS simulator has proven to perform better in
terms of run time than the standard newton simulator. Since the property calculations
are more expensive for more advanced reservoir simulators, we study how much more
expensive the property calculations in our model can be, before the standard newton
simulator becomes faster than the FAS simulator.

This is done by adding a for-loop around the property calculations in the properties
routine, such that the calculations are repeated a number of times.

As a test case we consider the 24 x 24 x 24 smooth heterogeneous permeability field
problem with permeabilities in the range 200-600 mD. This field is generated as described
in Appendix E. The simulation horizon is 150 days, the initial time step is 0.1 days and
the maximum allowed time step size is 30 days. The smoother uses 5 pre- and 5 post-
smoothings and no more than 10 FAS cycles and 10 newton iterations are allowed. We
use the parameter settings in Appendix A.

The number of property calculations per fine grid cell for this problem is for each of the
simulators specified in Table 7.2.

Method | SN FAS(2) FAS(3) FAS(4)
Prop. calcs. | 894 2312 5665 7268

Table 7.2: Number of property calculations per fine grid cell for the considered 24 x 24 x 24
problem.

The results of the study are depicted in Figure 7.3. The problem are solved to the same
accuracy for all of the simulations.

These results show that for the considered problem FAS(4) can use up to about 150 times
more time on computing property calculations before being slower than the standard
newton simulator. For FAS(3) it is up to about 200 times more time, and for FAS(2) it
is up to about 800 times more time.

These estimates are based on the number of property calculations per fine grid cell
given in Table 7.2, meaning that the estimates depend on the problem considered. The
number of property calculations per fine grid cell in a simulation varies from problem
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These results show that the number of property calculations per fine grid cell is more
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or less reflected in the number of time steps used in the simulation. Note that the step
size controller takes the number of FAS cycles and the number of newton iterations per
FAS cycle (and thereby how hard the problem is to solve) into consideration.

The results in Figure 7.4 are for a fixed reservoir size of 480m x 240m x 48m. The
permeability field is a smooth heterogeneous permeability field with permeabilities in
the range 200-600 mD. The input specifications are the same as used for the problem
considered in Table 7.2.

The results presented in this section indicate that there is room for considering more
complex property calculations without the FAS simulator losing its advantage in terms
of run time.

7.1.4 Memory comparison

As previously discussed, the memory required with FAS is significantly less than for
the conventional methods with global linearization. Figure 7.5 shows actual memory
measurements of the two simulators implemented in this work. Standard newton with
global linearization is compared to FAS with 2, 3 or 4 grid levels. The tool massif in
Valgrind! is used to measure the memory usage.
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Figure 7.5: Memory usage as a function of the number of grid cells. Measured with massif
using Valgrind.

Figure 7.5 shows, that the memory usage scales linearly with the number of grid cells for
both simulators as expected. Compared to the standard newton based simulator, the
FAS based simulator uses 3-6 times less memory depending on the number of grid levels
used in FAS. For very large problems and a higher number of grid levels, the memory
savings will be even more significant. In practice, this means it is possible to fit more
grid cells on each node (multi-core CPU, GPU or MIC).

"http://valgrind.org/
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The large memory savings are due to the fact that FAS linearizes locally. This means
that the Jacobian matrix is not computed or stored on the finest grid. It can be argued
that a matrix-free linear solver can be constructed, which might also result in memory
savings. Very little work has been published on this topic in reservoir simulation. The
complexity of designing an effective matrix-free preconditioner for reservoir simulations
might be the limiting factor. Furthermore, the number of function evaluations (to
continuously recompute entries in the Jacobian) might become prohibitive.

The fact that we can significantly reduce memory consumption with FAS is an interesting
aspect. For memory bound applications, reducing memory consumption results in faster
run times. Furthermore, the reduced memory consumption enables simulation with
higher resolution on the same hardware.

7.1.5 Heterogeneity stress test

A large challenge in reservoir simulation is efficient simulation of very heterogeneous
permeability fields. The performance of generic linear solvers such as GMRES with
ILU preconditioning is very affected by the nature of the coefficients introduced through
heterogeneity and anisotropy. As demonstrated in section 6.6 and in [11, Cao], a linear
solver using CPR preconditioning effectively deals with these issues. However, this is in
a linear setting. The nonlinear solver when using Newton’s method is still affected by
the heterogeneity, no matter how effective the linear solver is. This inevitably leads to
shorter time steps.
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Figure 7.6: Left plot: Run time as a function of range of permeabilities. Right plot: Number
of time steps as a function of range of permeabilities. Problem size: 24 x 24 x 24,
5 pre- and post-smoothings, 150 days, cell sizes: 20m x 10m x 2m.

Figure 7.6 demonstrates results from a “stress test”, where the range of permeabilities
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is varied between two extremes. The two extremes are a homogeneous permeability
field and a permeability field with permeabilities ranging from 0.1 — 20,000 mD. The
heterogeneous permeability fields are generated by the technique explained in Appendix
E. The left plot shows the run time for standard newton with global linearization and
FAS with 2,3 and 4 grid levels. The corresponding number of time steps are displayed
in the right plot.

The results are encouraging for the application of FAS on challenging reservoir problems.
The FAS based reservoir simulator remains superior both in run time and algorithmic
efficiency. Keep in mind that the number of time steps is a direct consequence of the
number of outer iterations (FAS cycles). FAS(4) spends an increasing number of time
steps for the 0.1 — 20,000 mD case, but it is also a fairly high level of coarsening with a
coarsest grid problem of 3 x 3 x 24 grid cells. Despite this relatively larger number of time
steps, the number of time steps is still lower than for standard newton. Furthermore,
the run time exhibits the same trend as FAS(2) and FAS(3).

7.2 FAS components

In this section, further studies of the FAS simulator are conducted. We investigate how
the distribution of work depends on the number of grid levels. Furthermore, we study
how the performance of the simulator is affected by the number of smoothings used and
the coarsening strategy applied. Lastly, a study is carried out to see how changing the
accuracy requirements for the newton solver for the coarsest grid problem affects the
performance.

7.2.1 Profiling

As mentioned in section 1.2, the global linearization approach used in conventional
reservoir simulation techniques result in very large linear systems. This implies that the
linear solver makes up a large part of the computation time. Since the FAS simulator
only solves the linear systems at the coarsest grid, it is less dependent on the linear
solver, which is illustrated in Figure 5.12 for the FAS(2) simulator. However, this figure
shows that for larger problem sizes the linear solver still constitutes a large fraction
of the computation time. We investigate if it is possible to reduce this dependence by
using more grid levels. This is done by profiling the simulation for FAS(2), FAS(3) and
FAS(4) for the same problem solved to the same accuracy. The profiling is done using
Valgrind.

As test case we consider the 24 x 24 x 24 smooth heterogeneous permeability field problem
with permeabilities in the range 200-600 mD. This permeability field is generated as
described in Appendix E. We consider a simulation horizon of 150 days, an initial time
step of 0.1 days and the maximum time step size is 30 days. 5 pre- and 5 post-smoothings
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are used, and no more than 10 FAS cycles and 10 newton iterations per FAS cycle is
allowed. Furthermore, we apply the input values in Appendix A.

The profilings show that the work in the simulators are distributed as depicted in Fig-
ure 7.7.

M Linear solver
M Line smoother

m Other

FAS(2) FAS(3) FAS(4)

Figure 7.7: Distribution of computational work for FAS(2), FAS(3) and FAS(4) for the same
problem. The problem size is 24 x 24 x 24.

These results indicate that it is possible to reduce the dependence on the linear solver by
using more grid levels. Note that the problem size considered in this study is quite small,
meaning that for larger problems the linear solver would probably constitute a larger
part of the work than depicted in Figure 7.7. However, the figure shows an interesting
trend.

Furthermore, the results in Figure 7.7 indicate that by introducing more grid levels,
it is possible to keep the main workload in the smoother. In the aspect of many-core
architectures, this is an important result since smoothers are suitable for implementation
on parallel architectures, as explained in section 5.3.1.

7.2.2 Number of smoothings

In this section we study how the number of smoothings affects the performance of the
FAS simulator.

As seen in Figure 7.2, the FAS(3) simulator has fast initial convergence for the considered
problem. However, below engineering accuracy the convergence rate curve is less steep.
The results in Figure 7.2 is obtained when 5 pre- and 5 post-smoothings are applied.
The results for FAS(3) is represented in the four top plots of Figure 7.8.

We redo the study in section 7.1.2 for the FAS(3) simulator, but now we use 10 pre-
and 10 post-smoothings instead of 5. The results are depicted in the four bottom plots
in Figure 7.8.

A comparison of the top plots with the bottom plots shows that it is possible to reach a
higher accuracy within the first few iterations by increasing the number of smoothings,
i.e. the algorithmic efficiency is increased. This result indicates that it is beneficial to
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Figure 7.8: Residual plots for FAS(3). For the four top plots 5 pre- and 5 post-smoothings are
used. For the four bottom plots 10 pre- and 10 post-smoothings are used. Problem
size: 24 x 24 x 24 with 20m x 10m x 2m cell sizes.

use a large amount of smoothings. However, if the number of smoothings is too large
then the numerical efficiency suffers.

Figure 7.9 depicts a study of the run time as a function of the number of smoothings for
FAS(2), FAS(3) and FAS(4). Furthermore, this figure shows a study of the number of
time steps used as function of the number of smoothings. The test case is the 24 x 24 x 24
smooth heterogeneous permeability field problem, with permeabilities in the range 200-
600 mD. The simulations are run for 150 days, the initial time step is 0.1 days and the
maximum time step size is 30 days. We allow no more than 10 FAS cycles ad 10 newton
iterations. The size of the cells is 20m x 10m x 2m. We use the input parameters listed
in Appendix A.

Figure 7.9 shows that in terms of run time and number of time steps, there is a big
difference in applying 1 pre- and post-smoothing or applying more than 1 pre- and post-
smoothing. This is depicted in the two top plots of the figure. The two bottom plots
show the exact same result as the two top plots, but the bottom plots consider a smaller
range of values on the y-axis.

The results in Figure 7.9 show that by increasing the number of smoothings, the al-
gorithmic efficiency is improved. Remember that the number of time steps implicitly
indicates the algorithmic efficiency, since the time step size controller takes the number
of FAS cycles and newton iterations into consideration.
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Figure 7.9: Run time and number of time steps as a function of number of smoothings. Top
plots and bottom plots show same results, but bottom plots zoom in on a smaller
range of values on the y-axis. Problem size: 24 x 24 x 24 with 20m x 10m X 2m
cell sizes.

However, at some point there is no gain in terms of run time in further increasing the
number of smoothings. At this point the extra number of smoothings appears to be
unnecessary work. This result is most significant for FAS(3) and FAS(4), which also in
total uses more smoothings than FAS(2), since more grid levels are considered.

Based on the results in Figure 7.9, it seems that the optimal number of smoothings for
the considered problem for FAS(2) is in the range 8-12 smoothings, and for FAS(3) and
FAS(4) it is in the range 3-5 smoothings.

Similar studies considering a 32 x 32 x 32 smooth heterogeneous permeability field prob-
lem and a 32 x 32 x 32 homogeneous permeability field problem have been carried out.
The same input values and hardware specifications have been used for these studies.
The results are depicted in Figures F.1 and F.2 in Appendix F. For these problems the
optimal number of smoothings seems to be in the range 7-12 for FAS(2) and 1-2 for
FAS(3) and FAS(4). This indicates that the number of smoothings is problem specific.

Furthermore, Figures 7.9, F.1 and F.2 indicate that the larger the problem is, the more
expensive it is to deviate from the optimal number of smoothings.

7.2.3 Standard coarsening vs semicoarsening

So far we have only considered (z,y)-semicoarsening. As mentioned in section 5.3.2, the
reason for this is that we want to preserve as much information in the z-direction as
possible.
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In this section, we test the effect of using standard coarsening instead of using (z,y)-
semicoarsening. By standard coarsening it is implied that coarsening takes place in all
three dimensions simultaneously. Hence we extend the restriction stencil in (5.31) and
the prolongation stencil in (5.32) to consider 8 points instead of 4.

We verify the implementation of the FAS(2) simulator using standard coarsening by
comparing the solution to the solution obtained from ECLIPSE. As verification case for
the FAS(2) simulator using standard coarsening, we use the 18 x 18 x 18 problem with a
smooth heterogeneous permeability field with permeabilities between 200-600 mD. This
permeability field is generated as descibed in section E. The simulation horizon is 100
days, the initial time step is 0.1 day and the maximum allowed time step is also 0.1
day. We use 5 pre- and 5 post-smoothings and allow no more than 10 FAS cycles and
10 newton iterations per FAS cycle. We force ECLIPSE to take small time steps, such
that the two simulations are comparable. The input values in Appendix A are used.
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Figure 7.10: Verification of FAS(2) using standard coarsening for 18 x 18 x 18 problem with
smooth heterogeneous permeability field.

As illustrated in Figure 7.10 the FAS(2) simulator finds a solution similar to the so-
lution from ECLIPSE. Verifications of the FAS(3) and the FAS(4) simulators are in
Appendix F.

The performance of the FAS simulator using standard coarsening is compared to the FAS
simulator using (z, y)-semicoarsening coarsening. As test cases we consider a 32 x 32 x 32
homogeneous permeability field problem with permeabilities of 100 mD and a 24 x 24 x 24
heterogeneous permeability field problem with permeabilities in the range 200-600 mD.
We use the same parameter settings as for the verification test except the simulation
horizon is now 150 days. The results are listed in Table 7.3.
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Problem Method | Coarsening No. of Run time
specifications method time steps (secs)
semi 45 243
Homogeneous e std. 39 258
32 x 32 x 32 FAS(3) se 59 458
std. 58 375
100 mD -
FAS(4) semi 65 493
std. 69 447
semi 91 235
Smooth FAS(2) std. 426 1195
heterogeneous semi 82 269
24 x 24 x 24 FAS(3) std. 563 1396
200-600 mD semi 95 305
FAS(4) std. 524 1232

Table 7.3: Comparison of the FAS simulator using (x,y)-semicoarsening and the FAS simulator
using standard coarsening.

For the homogeneous test case, the two coarsening techniques seem to perform nearly
equally well in the FAS simulator. In terms of run time, FAS(3) and FAS(4) are faster
when applying standard coarsening. However, for the smooth heterogeneous problem
the simulator using (z,y)-semicoarsening is superior in terms of run time and number
of time steps. A possible explanation is that the correction term obtained when using
standard coarsening, is not as good a correction as the correction term obtained when
applying (x,y)-semicoarsening. We investigate this by increasing the number of pre-
and post-smoothings used in the simulation of the smooth heterogeneous problem. The
result is in Table 7.4.

Problem Method | Coarsening No. of Run time

specifications method time steps (secs)
FAS(2) std. 206 1363

105:5)'0?}?31 pSOSt FAS(3) std. 362 1660
& FAS(4) std. 304 1317

FAS(2) std. 192 1508

20511”;‘0:‘;131 pSOSt FAS(3) std. 280 1795
& FAS(4) std. 174 1510

Table 7.4: Performance of the FAS simulator using standard coarsening for the smooth hetero-
geneous 24 x 24 x 24 problem using a different number of smoothings.

By comparing these results with the results in Table 7.3 it is seen that the algorithmic
efficiency is improved when more smoothings are applied. This is indicated by a reduced
number of time steps when applying more smoothings, since the time step size controller
takes the number of FAS cycles and newton iterations into consideration. However,
the numerical efficiency is decreased when applying a higher number of smoothings as
indicated by the increase in run times.



122 Performance study

It seems that (x, y)-semicoarsening is the best strategy for the gravity inversion problems
considered in this work.

7.2.4 Number of newton iterations

Until now, the coarsest grid problems in FAS have been solved with Newton’s method
for which the iterative process is continued until the conditions of the stopping criteria
with the absolute tolerances in Appendix A have been met. Since the solution on the
coarsest grid only is used to compute a correction, it might be beneficial not to solve
the coarsest grid problems to a given tolerance but rather use a fixed number of newton
iterations. This also removes any sum reductions necessary when computing the 2-norms
used to evaluate whether the tolerances have been met.

Note that for all tests conducted here, the stopping criteria and tolerances for the non-
linear solver (outer loop) is exactly the same. Furthermore, the permeability fields are
generated as explained Appendix E with permeabilities ranging from 200 — 600 mD.

Figure 7.11 demonstrates how using a fixed number of newton iterations on coarsest
grid affects the run time and the number of time steps. The experiments are carried out
using 1, 2,3 or 4 newton iterations on coarsest grid in FAS. The rightmost points with
the label “Tolerance” are the run time and number of time steps when Newton’s method
for the coarsest grid problem is forced to converge to the given tolerances in Appendix
A. The initial time step size is At = 0.1 days and 10 outer iterations are allowed for
both FAS and Newtons’s method. The input values in Appendix A are used.
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Figure 7.11: Study of the effect of the number of newton iterations used on the coarsest grid
problem for FAS with 2,3 and 4 grid levels for a 24 X 24x smooth heterogenenous
(200 — 600 mD range) in 150 days and 5 pre- and post-smoothings.
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Figure 7.11 shows that 1 newton iteration is the best in terms of run time for this
problem. Furthermore, Figure 7.11 shows that for FAS with 3 or 4 grid levels, the
number of time steps do not decrease when more newton iterations are applied on
the coarsest grid problem. Experiments carried out for other problems have the same
behaviour. For this reason, only 1 newton iteration is applied on the coarsest grid
problems from now on.

The first test carried out in this chapter in section 7.1.1 studies the scaling of Standard
Newton and FAS. This test is carried out again to see how only using 1 newton iteration
on the coarsest grid problems affects this scaling. Figure 7.12 displays the run time as
a function of the number of grid cells for a fixed reservoir size.
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Figure 7.12: Run time as a function of the number of grid cells for SN, FAS(2), FAS(3) and
FAS(4). The reservoir size is fized at 480m x 240m x 48m.

The trends in Figure 7.12 are similar to those observed in Figure 7.1. The only difference
is that the run times are faster when only using 1 newton iteration for the coarsest grid
problems. The simulator has been verified with this change. The verification plots are
in Appendix F.

The results in Table 7.5 are far more interesting. The rows without the stars (*) are
the same number of time steps as before in Table 7.1 and the rows with the stars (*)
are the number of time steps when only using 1 newton iteration for the coarsest grid
problems in FAS.

Table 7.5 demonstrates that by selecting an appropriate number of grid levels in FAS
we are now able to maintain the same number of time steps when the number of grid
cells increases. This means that the convergence rate of FAS does not deteriorate with
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Problem size
Method 8x8x8 16x16x16 24 x24x24 48 x 48 x 48
Standard newton 68 101 152 201
FAS(2) 40 60 91 171
FAS(2)* 25 33 48 57
FAS(3) 65 83 82 161
FAS(3)* 65 79 70 58
FAS(4) N/A 93 94 127
FAS(4)* N/A 97 88 69

Table 7.5: Number of time steps. Rows without the stars (*) are the same number of time steps
as before in Table 7.1 and the rows with the stars (*) are the number of time steps
when only using 1 newton iteration for the coarsest grid problems in FAS.

increasing grid resolution as it is the case for Standard Newton. This result is very
interesting as it addresses a serious problem in conventional reservoir simulators, which
are based on global linearization with Newton’s method. In reservoir simulation it is
normal that the convergence rate of Newton’s method deteriorates as the number of
grid cells increases for a fixed reservoir size. Similar behaviour is observed for other
applications, [10, Cai]. This will have an impact on the scalability of the standard
Newton method, which is not favorable for very large-scale simulations.

To verify this result, a series of experiments are carried out. For different number of
grid cells and a fixed reservoir size, we perform fixed time stepping with At = 0.5 days,
At = 1 days and At = 2 days for 100 days and compute the average number of outer
iterations per time step. The outer iterations are newton iterations for Standard Newton
and FAS-cycles for FAS. Table 7.6, 7.7 and 7.8 show the results.

Problem size
Method 8X8x8 16x16x16 24 x24x24 48 x 48 x 48
Standard newton 3.2 3.3 4.3 8.1
FAS(2) 1.9 1.7 1.2 N/A
FAS(3) 2.9 3.2 2.3 N/A
FAS(4) 4.0 3.4 2.5 1.8

Table 7.6: Average number of outer iterations (newton iterations for Standard Newton and
FAS-cycles for FAS) for fived At = 0.5 days.

Problem size
Method 8Xx8x8 16x16x16 24 x24x24
Standard newton 4.0 6.1 9.4
FAS(2) 2.2 2.2 1.8
FAS(3) 3.6 4.2 3.3
FAS(4) 4.2 4.6 3.9

Table 7.7: Average number of outer iterations (newton iterations for Standard Newton and
FAS-cycles for FAS) for fized At =1 days.
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Problem size
Method 8Xx8x8 16x16x16 24 x24x24
Standard newton 6.7 14.5 10.7
FAS(2) 2.5 2.8 3.0
FAS(3) 4.2 5.4 5.0
FAS(4) 5.08 5.8 5.8

Table 7.8: Average number of outer iterations (newton iterations for Standard Newton and
FAS-cycles for FAS) for fized At = 2 days.

The results in Table 7.6, 7.7 and 7.8 supports the beforementioned statement that the
convergence rate of FAS does not deteriorate as the resolution increases. Generally, this
is not the case for Standard Newton, where the average number of newton iterations
increases as the resolution increases. For the 48 x 48 x 48 grid cell problem, only
Standard Newton and FAS(4) with At = 0.5 days is simulated due to time constraints.
We expect similar trends for the other combinations as it is also indicated by the number
of time steps for FAS(2) and FAS(3) in Table 7.5. This should be confirmed in tests in
continuation of this work.

Another interesting study is the average number of linear iterations for the same tests
as above. Table 7.9, 7.10 and 7.11 show the results. N/A is indicated for some of the
48 x 48 x 48 problem sizes due to the long run times exceeding the time constraints of
this work.

Problem size
Method 8X8Xx 8 16x16x16 24 x24x24 48 x 48 x 48
Standard newton 2.7 4.1 5.1 8.1
FAS(2) 2.5 3.0 4.0 N/A
FAS(3) 1.8 2.3 4.1 N/A
FAS(4) 1.0 1.7 3.0 5.5

Table 7.9: Average number of linear iterations for fired At = 0.5 days.

Problem size
Method 8Xx8x8 16x16x16 24 x24x24
Standard newton 3.6 6.2 7.9
FAS(2) 2.9 3.8 5.7
FAS(3) 2.5 3.0 5.1
FAS(4) 1.0 2.0 3.6

Table 7.10: Average number of linear iterations for fized At =1 days.

We observe that the number of linear iterations decreases when more grid levels are
used in FAS. This indicates that the coarsest grid problems are easier to solve for the
linear solver when more grid levels are used. Whether this is due to the fact that the
coarsest grid problems are smaller when more grid levels are used or if it is because of
the relaxation performed by the smoother is a subject for further study. In this work,
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Problem size
Method 8Xx8x8 16x16x16 24 x24x24
Standard newton 5.0 8.9 8.4
FAS(2) 3.6 5.7 8.8
FAS(3) 2.8 3.8 6.8
FAS(4) 1.0 2.5 4.8

Table 7.11: Average number of linear iterations for fired At =2 days.

we note that this effect also is of significant importance if simulation of higher resolution
models is to be performed on a daily basis.



CHAPTER 8

Considerations for parallelization

The main motivation for the work presented in this thesis is to investigate if nonlinear
multigrid techniques have the potential to enable efficient simulations of higher resolu-
tion models. Higher resolution models require parallel reservoir simulators. With the
rapidly growing number of cores available, algorithms capable of good parallel perfor-
mance are needed. FAS has interesting abilities in this direction. As demonstrated
in section 7.2.1, the majority of the computational work can be kept in the smoother,
which is a local operator in that for any given cell, information is only required from its
six neighbours, meaning it is point-to-point communication. To understand the paral-
lelization of multigrid, we need to consider how parallizable each component of multigrid
is.

e Restriction and prolongation: The restriction and prolongation operators are
local and hence they can be performed in parallel.

e« Smoothing: Parallelizing the smoothing operator is the most challenging part.
In this work, we are using a Gauss-Seidel line smoother. In parallel, a Gauss-Seidel
smoother would either require some sort of coloring scheme or it can be combined
with Jacobi smoothing on the edges of the subdomains assigned to each proces-
sor. The first approach can be cumbersome and requires a good balance between
interior grid cells compared to boundary grid cells, [2, Adams]. In constrast to
boundary grid cells, interior grid cells do not communicate with cells of another
processor. A scalable implementation of Gauss-Seidel with a coloring scheme is
presented in [1, Adams]. The second approach is to perform Jacobi smoothing
on the boundary grid cells and Gauss-Seidel smoothing for the interior grid cells.
This is perfectly scalable, but the resulting multigrid convergence usually suffers
or in some circumstances the multigrid method even diverges with this approach,
[2, Adams].
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Another issue that has to be taking into consideration is the level of coarsening used
in a parallel multigrid implementation. If too much coarsening is applied, the amount
of communication between nodes compared to the work for each thread will become a
bottleneck. Parallelization of multigrid on uniform meshes is quite easy to implement,
however for non-uniform meshes it becomes more challenging, [40, Sundar|. Despite
this, there are many success stories for regularly structered grids. For unstructered
grids, the challenge becomes harder. It requires efficient construction of restriction and
prolongation operators and the need for repartitioning and load balancing the mesh all
the way to the coarse grid while minimizing communication, [40, Sundar].

A way to overcome the difficulties in implementing a parallel Gauss-Seidel smoother
is by replacing it with a polynomial smoother. In [1, Adams]|, a comparison between
Gauss-Seidel and polynomial smoothing is carried out on unstructered meshes. It is
demonstrated that polynomial smoothing is competitive in serial and outperform Gauss-
Seidel smoothing in parallel.

With respect to parallelization, one limitation in the current implementation of our
FAS based simulator is the fact that we are using FGMRES as a linear solver on the
coarsest grid. GMRES is using orthogonalization, which requires global communication
for the inner products. This is a problem on massively parallel distributed systems, [39,
Sturler].

Another limitation in terms of achieving a scalable implementation on modern many-
core architectures is the components used in the CPR preconditioner. The current
implementation is using AMG for the first stage and ILU(0) for the second stage of
the CPR preconditioner. Research is going on into parallelizing both components on
massively parallel architectures, [32, 29]. However, this is not a straightforward task.
An alternative approach is to use polynomial preconditioning as described in [22, Fung].
This approach only uses matrix-vector products for which highly effective kernels have
been developed.

Another interesting aspect of FAS is that by increasing the number of grid levels, we
should be able to maintain a constant amount of work in the linear solver independent
of the problem size. For this reason, we may not experience the same scaling issues
for the linear solver as for conventional methods with global linearization in Newton’s
method.



CHAPTER 9

Conclusion

The primary work presented in this thesis is a thorough investigation of the application
of nonlinear multigrid techniques, specifically the Full Approximation Scheme (FAS), for
simulation of subsurface multiphase porous media flow. Two reservoir simulators have
been implemented. The first simulator uses the FAS method and the second simulator
uses global linearization with Newton’s method. The reason for implementing both
simulators is to enable comparison between a reservoir simulator using conventional
techniques based on Newton’s method and a reservoir simulator using the nonlinear
multigrid technique FAS.

The most essential component of a conventional reservoir simulator is the linear solver.
In this work, the linear solver has been implemented with state-of-the-art choice of meth-
ods. These methods include FGMRES with CPR preconditioning, where the first stage
of the CPR preconditioner is using the algebraic multigrid method and the second stage
is using ILU(0). The fact that state-of-the-art choice of methods are used for the linear
solver has facilitated fair comparisons between the two beforementioned simulators.

Extensive comparisons have been carried out between the two simulators. In chap-
ter 7, we have demonstrated that for the given model equations and for the range of
problems considered here, the simulator based on FAS outperforms the simulator based
on standard newton in terms of algorithmic efficiency, computation time and memory
requirements. The range of problems considered in this work are all so-called “gravity
inversion” test cases, where the water and gas components switch place. These tests have
been conducted with both homogeneous and highly heterogenenous permeability fields.
In both situations, the simulator based on FAS has proven robust and more efficient
than the simulator based on global linearization with standard Newton’s method.

In chapter 7 the effect of changing various parameters in the FAS solver has been stud-
ied. The optimal number of smoothings for the given problems has been investigated.
Profiling has been carried out, which indicates that the majority of the computational
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work can be kept in the smoother. As discussed previously, the smoothing operator is
due to locality considered a good match for many-core implementation.

The standard coarsening procedure has been compared with semicoarsening. We found
that (x,y)-semicoarsening works better than standard coarsening for the range of prob-
lems considered here. Furthermore, a study has been carried out on the number of
newton iterations performed for the coarsest grid problem in FAS. We found that one
newton iteration on the coarsest grid is sufficient for finding a good correction to the
finest grid solution.

The reservoir simulator based on FAS is a proof of concept to establish algorithmic per-
formance in serial. As discussed in chapter 8, an implementation of FAS on a distributed
system e.g. multi-core CPU or multi-GPU/MIC require many further investigations.
Also the model equations include several simplifications. More complexity needs to be
included in the model to see if FAS is capable of dealing with these as effectively as
demonstrated in this work. However, compared to the previous work published on FAS
for reservoir simulation, [36, Molenaar|, these model equations and the range of problems
considered here are much more complex and much closer to real world application.

9.1 Suggestions for future work

The proof of concept FAS based reservoir simulator presented in this thesis has been
proven to have good algorithmic performance in serial for the model equations and for
the range of problems considered here. Investigations should be carried out to see of this
trend continues for more complex model equations and for a larger range of problems.

The following simplifications should be omitted.
e The relative permeabilities equal the saturations.
e The effects of capillary pressure are neglected.
e Immiscible fluids are assumed.
e The porosities are kept constant throughout the domain.

Furthermore, some sort of well modelling should be included to see how FAS deals with
problems, where water is injected in one or more wells and oil is produced in some other
wells.

An interesting study, especially in terms of parallel implementation, could be polynomial
smoothing. It has been demonstrated for a range of problems that polynomial smoothing
can be competitive with Gauss-Seidel smoothing, [2, Adams]. Polynomial smoothing is
trivial to implement in parallel, since it only requires matrix-vector products.

If FAS continues to exhibit good performance for the challenges presented above, a
natural extension is a parallel implementation. As a first step, a single GPU or MIC
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implementation would be a good starting point to see how FAS works with the large
number of cores available. If FAS achieves good many-core performance on a single PCI
accelerator, the next step would be a multi-GPU or multi-MIC implementation to see
if the communication between GPU/MIC nodes can be sufficiently hidden to achieve a
distributed massively parallel implementation.

In section 7.2.4, we show that by selecting an appropriate number of grid levels, the
convergence rate of FAS does not deteriorate with increasing problem sizes. This is a
very interesting result as it addresses a serious problem for conventional methods in
large-scale reservoir simulations. Further investigations should be carried out to see if
this behaviour is maintained when the simplifications stated above are disregarded.
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APPENDIX A

Input values

This appendix contains the physical constants, reservoir specific data and simulator
settings used in the implementation. To obtain the same units for the accumulation
and flow terms, a so-called Darcy constant is multiplied with the transmissibilities and
hence with the flow term. It is merely a unit conversion factor with a value of Cparcy =
0.00852702 cPm?/day /bar.

Symbol Value Units
P2 800.0 kg/m3
pd. 0.9907 kg/m3
P 1022.0 kg /m?
M?° 120.0 kg/kmol
M9 25.0 kg/kmol
M©W 18.025 kg/kmol
g 0.0000980665 m?kg/bar

Table A.1: Physical constants.

Symbol  Value Units

© 0.3 -
Pref 250 bar
BY.; 1.03 -
/L;;)Tef 0.3 cP
C, 0.0 1bar
C 0.000041 1/bar

Crock 0.000053  1/bar

Table A.2: Reservoir specific input values.
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Input values

Description Value
Absolute tolerance for linear solver 10-10
Relative tolerance for linear solver 107°
Absolute tolerance for Newton’s method - 7, 1074
Absolute tolerance for Newton’s method - 7, 1074
Absolute tolerance for Newton’s method - 7,  107%
Absolute tolerance for Newton’s method - 7,, 1076
Absolute tolerance for FAS - 7, 10~4
Absolute tolerance for FAS - 7, 10~*
Absolute tolerance for FAS - 7, 10~4
Absolute tolerance for FAS - 7, 106

Table A.3: Simulator settings.



APPENDIX B

Hardware specifications

The specifications of the hardware used for tests with timings are given below.

Hardware specification 1
Processor:

Clock speed:

Cache:

FSB speed:

Instruction set:

Hard drive:

Memory:

OS:

Hardware specification 2
Nodes:

Each node:

Clock speed:

Cache:

FSB speed:

Instruction set:

Hard drive:

Memory:

Interconnect:

OS:

Intel Core 2 Duo P8600
2.4 GHz

3 MB L2

1066 MHz

64-bit

512 GB 7200 RPM

2x4 GB DDR3 1066 MHz
Ubuntu 12.04

64 x HP ProLiant SL2x170z G6

2x Intel Xeon X5550 (quad-core)

2.66 GHz

8 MB L3

1333 MHz

64-bit

500 GB internal SATA (7200 RPM) per node
24 GB per node

QDR Infiniband

Scientific Linux 6.1
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APPENDIX C

Property calculations

This appendix contains the formulas used to evaluate the properties of a grid cell. Table
C.1 gives an overview of the properties described in this appendix.

Property Symbol | Dependants
Formation volume factor B P

Phase molar density b D

Saturation S Me—qs P
Viscosity ue P

Mass density p* P *(Me=a,Pp)
Relative permeability k& Me—as P
Porosity o} P

Table C.1: Owverview of properties described in this appendix and their dependency on pressure
p and molar densities m...

Furthermore, the table shows the dependencies of the different properties with respect
to pressure p and molar densities m.. This information we need in order to derive the
derivatives wrt. p and m, of each of the properties. These derivatives are also listed in
this appendix.

C.1 Formation volume factor

The formation volume factor B is defined as the ratio of the volume of the fluid measured
at reservoir conditions to the volume of the same fluid measured at standard conditions
[12, Chen, p. 12].
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We compute formation volume factors differently for the oil and gas phases compared
to the water phase. For the oil and gas phases linear interpolation on pressure from
tabulated inputs is used, whereas for the water phase a formula is used. The reason for
this is that water is less compresssible than oil and gas, meaning using a fixed formula
is sufficient to obtain an accurate approximation. However, for the oil and gas phases,
using a fixed formula is not always sufficiently representative of the lab experiments.
Instead tabulated inputs are used to achieve a better approximation and a more flexible
approach.

Oil and gas

The formation volume factor of oil, B°, and of gas, BY, depends on pressure and is
computed using linear interpolation on reservoir specific input values. Note that oil and
gas have different values in their interpolation tables, which are seen below.

Entry p  B°(p) p°(p) Entry p  Bi(p) p(p)

1 50 1.18 0.8 1 50 0.0205 0.014

2 600 1.08 1.6 2 600 0.0039 0.025
Table C.2: Interpolation table for oil. Table C.3: Interpolation table for gas.

In the implementation, the oil interpolation table in Table C.2 and the gas interpolation
table in Table C.3 are respectively called PVDO and PVDG, short for pressure, volume,
dead oil/dry gas.

Based on one of these tables the formation volume factor is calculated as

B“[2] — B*[1]
B* =B+ (p—p[l])) —=—————,
W+ =)= 5=
where p is the actual pressure in the grid cell and [] indicates an index number in the
interpolation table.

a=o,g, (C.1)

Example:

If a cell has pressure p = 300, the formation volume factor of gas is calculated as

0.0039 — 0.0205
BY = 0.0205 + (300 — 50) =5 —=- = = 0.0130 (C.2)

Derivatives for oil and gas

As indicated in Table C.1 the formation volume factor depends only on pressure p. The
derivative of (C.1) wrt. p is

9B* _ B°[2] - B°[1]

a=o0,g (C.3)
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Water

The formation volume factor for water also depends on pressure, but instead of linear
interpolation the following formulas are used.

X=C- (p_pref)
BY — B;;;"ef (04)

1 9
L4 X 45X

Here C is the compressibility of water, p,.r is a reference pressure and Bpisa reference
formation volume factor measured at reference pressure. These values are listed in Table
A.1. In the implementation all of these are user-given inputs.

Derivative for water

The derivative of (C.4) wrt. p is

oB*Y 0 By

o\ yx iy
5

_ 0 Bpre
dp 1 2
1+C'(p_pref)+§(c'(p_pref))

) (9ap (1 +C - (p—pres) + %(C ' (p—pref))2>
1

~Dpref ?
(1 +C - (p—pres) +5(C-(p —pref))Z)

2

(C+02 ) (p_pref))

- 1171'}'"5]" 1 2
(14 €0 pres) + 5(C (0= prer)?)

C.2 Phase molar density

The phase molar density is defined as the number of moles per volume for a single phase,
and it is given by

bOé

bOé S SC

= =, (C.6)
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where b, is the phase molar density at standard conditions. It is calculated as

o _ Psc
[ .
sc Me’ (C 7)

where M® is the molecular weight and p¢, is the mass density at standard conditions.
The values for M and p¢. are physical constants, which are displayed in Table A.1.

Derivatives

The derivative for the phase molar density wrt. pressure is given by
b 8<@>_baa(1)_ bs. 9B _ b* 9B”
*op (BOl)2 op B> 9p’

87p:8p

Ba

= (C.8)

where 88% is defined in either (C.3) or (C.5).

C.3 Saturation

The saturation of a fluid phase is defined as the fraction of the pore volume of a porous
medium filled by this phase. It is given by

me

S%=— C.9
b ? ( )
where m, is the component molar density and b is the phase molar density.
Derivatives
The derivatives of the saturation wrt. m, and p are given by
05« a [me 1
_ e} - = 1
om, Ome (ba ) b’ (C.10)
and 95* 0 e Se e
_9 (m> — o Me O 20 (C.11)
Op Op \ b™ (b*)* Op b Op

where % is defined in (C.8).

C.4 Viscosity

The viscosity of a fluid is a measure of its resistance to flow. The computation of the
viscosity is completely analogous to that of the formation volume factor B*. Like for the
formation volume factor, the viscosity for the oil and gas phases are computed differently
than the viscosity for the water phase.
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Oil and gas

The viscosity of oil u° and the viscosity of gas u9 depend on pressure and is computed
using linear interpolation on the table values in Table C.2 and Table C.3.

Based on one of these tables the viscosity is calculated as

p2 - el (C.12)

p* = p*[1]+ (p — p[1]) pR—pa] . AT

where p is the actual pressure in the grid cell and [] indicates an index number in the
interpolation table.
Example:

If a cell has pressure p = 300, the viscosity is calculated as

0.025 — 0.014

=0.014 — —  =0.01 1
= 0.014 + (300 — 50) == = 0.019 (C.13)
Derivatives for oil and gas
The derivative of (C.12) wrt. p is
@ aml] — a1
op” _ p*[2] — p[1] o=o.g (C.14)

op — pl2]—pl]

Water

The viscosity for water also depends on pressure, but instead of linear interpolation the
following formula is used

Xv = Cv ' (p _pref)
w
. Nprefl (C.15)
1+ X, + ng

Here C), is a constant indicating how much the viscosity of water changes as pressure
changes, ps is a reference pressure and ,u;f’re ¥ is a reference viscosity. In the implemen-
tation all of these are user-given inputs.



142 Property calculations

Derivative for water

The derivation of the derivative of (C.15) wrt. p is completely analogous to the derivation
of 8(133;; in (C.5). Thus

8”71” (C+02'(p_pref))

ap = _:U“;}ref 1 2 (C.16)
<1 +C- (p _pref) + §(C ' (p _pref))2>
C.5 Mass density
The mass density p® is defined as the mass per volume and it is given by
pOA _ pSC (017)

= Ba

where p%, is the mass density at standard conditions (given in Table A.1) and B? the
formation volume factor from either (C.1) or (C.4).

Note that the mass density used in the reconstruction of the flux across an interface
in (3.31) differs from the mass density defined in equation (C.17). In order to ensure
symmetry regardless of the flow direction we are using a saturation weighted average

o S0P+ 5705

o “vTr TJ T ; ; (@) 1
Pij S T g i€C, jeNY, (C.18)

where S is given in (C.9).

Derivatives

The mass density p* depends on pressure alone and the derivative of (C.17) wrt. p is
given by

&)_3<%):aa(l):_pw33_ »* OB (C.19)

op  Op \ B~ Cop \ B (B*)? dp = B> 9p’

where aa% is defined in either (C.3) or (C.5).

The saturation weighted average of the mass density in (C.18) is dependent on m, and
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p at both cell 7 and its neighbour cell j, leading to the derivatives

iy 0[S+ 570
8mc7i N 8mc¢ Sza + S]a

=0 =0
IS pet N 0S5 ps 0S¥ N 085"

amc,i 8mc,i 8mc72- 8mc,i

(52 +59) = (S2pg + 535

(s¢+59)°

oS¢ . 0SE  0S: . .
omesi b T ome, _ Ome; (pi _pij>

T (seasy) o (seasy) (€20

where i € C and j € N and 88751 is defined in (C.10). Following the same approach

for the derivative wrt. me, j leads to

05¢
R o )

- , ie€C jeNW (C.21)
Ome, (S +59)
The derivative of (C.18) wrt to p; is given by
Opi 0 (S + 5705
api N 8pi S? +qu
=0 =0
« a «Q
os¢ e | 970] osy | 0s;

(52 +59) = (S2pg + 555

dp;  Op;

(se+59)°

osipy 08" 0SY | oaOpy L OSY  OSY . el
Opi Pij Op; Opi Pt Opi Pij Opi Op; (pi P ) 5 p

)

(se+s8) (50 +59) - (50 +59)

(C.22)
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where i € C and j € N, The derivative dSZ is defined in (C.11) and & ll is defined in
(C.19). Following the same approach for the derivative wrt. p; leads to

o5
oy, 75

ieC jeNU (C.23)

C.6 Relative permeability

The relative permeability describes how the different fluids flow in the presence of each
other. It is a dimensionless term devised to adapt Darcy’s law (2.12) to multiphase flow
conditions and it is defined as the ratio of effective permeability of a particular fluid at
a particular saturation to absolute permeability of that fluid at total saturation.

If there is only a single fluid in a porous medium, its relative permeability is 1.
For simplicity we choose to use “miscible” relative permeabilities meaning
kY =S¢ (C.24)

In the implementation we use normalized saturations to compute the relative perme-
abilities. This is done to ensure stability in case of numerical discrepancies.

Derivatives

The relative permeability depends on both m,. and p yielding
oky  985%

I = B (C.25)
and oke  9S°

where gimi and 88% are defined in (C.10) and (C.11) respectively.

C.7 Porosity

The porosity is the percentage of the volume within a porous medium that is able to
contain fluids. To account for rock compressibility under pressure we use

Xr = Crock(p - pref)

1 (C.27)
¢ =p(l+ X, + X7,
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where ¢ is a porosity constant (Table A.2), which is a reservoir specific input, p,.s is a
reference pressure, Cioc is the compressibility of the rock and p is the pressure.

Derivative

The derivative of (C.27) wrt. p is given by

op O (gp(l + X, + %Xf))
ap ap

Op 2 Op

Crock + 20 ck ap

_p (8 (Crock(p - pr@f)) + 18 (Cw?ock(p - p’ref)2)>

c2 0 (p*+ 1R — 2prer) )

Cc? i
= (Crock’ + % (2]9 - 2pref)

=@ (Crock + Czock (p - pref))

=@ (Crock + CrockXT)
(C.28)
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APPENDIX D

Derivatives of residuals

In this appendix, all derivatives used to set up the Jacobian described in section 4.2
are derived. This amounts to finding the derivative of the residuals with respect to
molar densities m. and pressure p. In the Jacobian we need both the derivatives in the
diagonal blocks and in the off-diagonal blocks, which means we want to derive

87“671'

aTC I
. and :
8mc,i 8m67 v

87”vb,i
a
amc,i Opi

The residual for the volume balance constraint does not contain a flow term which means
it has no dependency on m, ; and p;, where j € N/ (1), For this reason it is only derived
wrt. mc; and p;.

D.1 Derivatives with respect to m,;

The derivatives wrt. mass of the residuals r.; and r,; in the diagonal blocks in the
Jacobian are derived in this section.

Derivative of r.;

We consider the derivatives of the first three equations in equation (4.12). We can use
the a-notation, since the derivations are the same for all three components.
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Source Flow Accumulation 1  Accumulation 2

/_/T /_/T . PR,
O AtsF" AL (Vome)) = (Vpme) Pt
87"??1
8m;‘+1 = Omi T (D.1)

c, c,

The accumulation terms and the flow term are treated separately. Note that the deriva-
tive of the accumulation term at time step n wrt. m?*! or p"*! is equal to zero. We
therefore omit the time step indication throughout this appendix to keep the notation
more compact. However, all terms in this appendix are evaluated at time step n + 1.

The derivative of the source term evaluates to zero.

Accumulation terms

Keeping in mind that the volume V; of the ith grid cell (V; is equal to V since we consider
regularly structured grids) is independent of mass and pressure and that ¢ only depends
on the pressure, the derivative of the accumulation term is

I(Vpm)e,i _ oO(Vom)e;

= (Vo); D.2
e, e (V)i (D.2)
Flow term
To keep notation compact we introduce
@7, = Ap — p®gAz (D.3)

The derivative of f& in (3.31) wrt. m.; is given by

a 0 (A*(Ap — p“gAz))..
3af1,=ZTij ( (pa p‘g ))ij
Mei JEN Mei
=0
o Ap—pgAz);
JEN Meyg Me
8)\7,& o « 8(pa)1] «
s T AgAz oy f@f <0
s Tvon oo
JEN® res O — Af gAzf?mc,i’ if ®f; >0
=0
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A e n900Yii g
- 3 T (D-4)
N op%
€ XggAz T if B2 > 0
(X)

&

4 ap2.
where i € C, j € N and amL’Zi is defined in (C.20). The derivative of the mobility is

a o 1.0 (e aka o3 o
g 0 (b k) _ b Ok b} 05 (D.5)

= o )
amc,i 6mc,i e l’['za amc,i Mz‘a 8mc,i

where k¥ = S® according to section C.6 and 5 Sia, is defined in (C.10).

0
Me,q

Derivative of r,;,;
m
Using that S% = b—;, the derivative of the residual for the volume balance constraint is

derived in equation (D.6).

Orwi  O(S?+S!+S¥—1)
amm N Omc,i

= (D.6)

D.2 Derivatives with respect to m,;

The derivatives wrt. mass of the residuals in the off-diagonal blocks in the Jacobian are
derived in this section. The derivatives of the residual for the volume balance constraint
evaluates to zero leaving only the derivatives of the first three equations in (4.12).

Source Flow Accumulation 1  Accumulation 2
o e, T CTRTTE
a,n a,n
O | Ats" T +AL ff +  (Vpme)? — (Vpme)it
n+1
87“0;;—}—1 - n+1 (D?)
8mc’j 8mc7j

The source and accumulation terms evaluate to zero leaving only the flow term to be
derived.
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Flow term

The derivative of f{* in (3.31) wrt. m,; is given by

off 3 T,ka (A*(Ap — p*gAz))y,
8m,37j BN () 8mw~
=0
9 (A" (Ap — p*gAz)),; 9 (A*(Ap — p*gAz))y,
=1 Oome.; + Z T Ome.;
! REN O\ {5} “
=0
—~
0N O(Ap—p“gAz)y;
=T, Y_pe 4\ Y
J quj ZJ + K Gmc,j
=0
a op¢
ON o xergAz 2P0 i o < 0
omej Ome,
ON¢ op
L% — \2gAz—Y f o
5mc,j K jg ZaTI’Lc,]7 : " >0
9
SXpghde L if 2 < 0
Me. i
=T BA? 7 8pg; (D.8)
O — \gAz—2L if ®% >0
Bmcyj K ]g Zamaj’ ! K >
where i € Cand k,j € N and 8(25%1 is defined in (C.21). Following an approach similar

to (D.5) the derivative of the mobility is found to

Xy by 987

?
Omej  pif Ome

(D.9)

[e3

where 685_7. - is defined in (C.10).

Me,j

D.3 Derivatives with respect to p;

The derivatives wrt. pressure of the residuals r.; and 7., ; in the diagonal blocks in the
Jacobian are derived in this section.
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Derivative of r.;

Again we consider the derivatives of the first three equations in equation (4.12)

Source Flow Accumulation 1 Accumulation 2
e n ” N —— —
a,n+1 a,n+1 +1
0| Ats; +At f; + (Vpme)? — (Vpme)?
ormtl
(X}
i D.10)
n—+1 n+1 ( :

The derivative of the source term evaluates to zero.

Accumulation terms

As earlier mentioned the derivative of the accumulation term at time step n wrt. p
evaluates to zero. The derivative of the accumulation term at time step n + 1 wrt. p is

£ b Vi, 22 D.11
Opi Opi " O (D-11)
where g}i is defined in (C.28).
Flow term
The derivative of f in (3.31) wrt. p; is given by
o 9 (N*(Ap — p*gAz))..
afZ:ZTij (A*(Ap — p¥gAz)),;
Op; ) ; Opi
]GN(”
=1
ONE o(A “gA
_ Z T ijq)ia'_i_A?‘ (Ap—p“gAz)i;
v op; 7Y Ip;
JEN @
ONE . op; o
i Q7 + A <—1— i gAz |, i ®F <0
= Tis D.12
Jgf:‘” J O o 4o [—1— 2ign if &% >0 o
op "9\ T T 00 B
——

=0
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ONY . dpi; o
Op: DF + A <—1 - ?gAz , Y <0
= Y Ty (D.13)
JENT) opf; :
A% (—1 - ap:gAz> : if &% >0
where i € C, j € N and %’3 is defined in (C.22). The derivative of the mobility is
bk 9 (b7'k7 3
X a( ) ( ’h?—b?k?ia“l
Ad pe S Opi " Opi
Opi Opi (ug)?
O(bke)  oue Ok Lok ou
s _/\?a. b?a?—‘_k%ia._)‘?a,
— p’L = pZ — p’L ap’t pZ , (D14)
H K
where aéﬁfi = %i? given in (C.11), ?)IZ is given in (C.8) and %’g is given in (C.14) or
(C.16).

Derivatives of 7,

The derivatives of the residual for the volume balance constraint wrt. p; are

Orwpi O0(S°+S9+8S¥—1 0S5 087  osv
Tlh:(z—’—z—’_z ): . i i

Ipi Ip; op;  Opi  Opi’
where 255 is defined in (C.11).

(D.15)

D.4 Derivatives with respect to p;

The derivatives of the residuals in the off-diagonal blocks in the Jacobian are derived in
this section. The derivatives of the residual for the volume balance constraint evaluate
to zero leaving only the derivatives of the first three equations in (4.12).

Source Flow Accumulation 1 Accumulation 2
ol At a,n+1 At a,n+1 v n \Va n+1
i +At f; + (Vpme)i = (Vome);
orntt
c,i
i D.16)
n+1 n+1 ( :
op; Op;

The source and accumulation terms evaluate to zero leaving only the flow term to be
derived.
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Flow term

The derivative of f{* in (3.31) wrt. p; is given by

Op; keN (@ p;
=0
O (X (Ap — pgAz)), YT 9 (A*(Ap — p“gAz))y,
- Ty . ¢ .
Ip; KEN O\ {5} O
=1
O, O(Ap —p®gAz)
- T Upa 4 \a P —p gRaz)ij
J 8]7] () + ) ap]
=0
oA Ipij
0%+ A (11— —LgAz |, f B <0
apj 8pj
=Tjj (D.17)
IN p2
—Loe 4\ (11— —HgA if % >0
op; zﬂ‘;( 8pjg z), I ®;; >
Hp%
A <1—;Z]9Az> ) if 7 <0
Dj
=T (D.18)
N g pae (1- 975 80) . i >0
3pj ) J apj ’ )

where i € C and k,j € N and %pT% is defined in (C.23). Following an approach similar
to (D.14) the derivative of the mobility is found to

k% ob% ous
e "J ko J _ \Q J
axe Uiy, TGy TN B,
= = , (D.19)
Ip; K

kg S¢ obe
E/ A— J ] ] J
where ap. = op, Slven in (C.11), T,

(C.16).

o
is given in (C.8) and % is given in (C.14) or
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APPENDIX E

Generating permeability fields

Many of the test cases used throughout the thesis are using a generated permeability
field based on “randomly” generated numbers and trigonometric functions. Using the
same seed number, this enables us to generate permeability fields, which all have the
same pattern independent of the size of the problem. Furthermore, we can set the range
of permeabilities to generate anything from easy permeability fields to very demanding
fields. Also, the variation of permeabilities in each dimension can be controlled to
emulate real reservoirs, where the permeabilities in the z-direction often vary more than
in the z- and y-directions.

The algorithm for generating permeability fields is given in Algorithm E.1. Notice that
i and j in the algorithm do not indicate a given cell and its neighbour, but instead i
and j are indexing coordinates in a regularly structured 3D grid. The inputs ox, oy, and
oz control the variation of permeabilities in each dimension by setting the length of the
sums. The inputs min and max determine the range of permeabilities.
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Algorithm E.1 Generate permeabilities k = genPermFields(min,max,ox,0y,0z)

1: Set seed for random value generator

2. Ix = AxNy; ly = AyNy; 1z = AzN, {Periodic scaling constants}
3: for ok = 0...0z-1 do

4: for oj=0...0y-1 do

5: for oi = 0...0x-1 do

6: scoeffs = rand {Generate random values}

7: ccoeffs = rand

8: xsscale = (rand-7)/lx {Generate random value with periodic scaling}
9: ysscale = (rand-7)/ly

10: zsscale = (rand-m)/lz

11: xcscale = (rand-m)/Ix

12: ycscale = (rand-m)/ly

13: zescale = (rand-7r)/lz

14: Set all values in k equal to zero

15: for k=0...N,—1do

16: for j=0...N,—1do

17: fori=0...N,—1do

18: ki j -+ = scoefls - sin (oi - (Az - i 4 0.5 - Ax) - xsscale) -
19: sin (0j - (Ay - j + 0.5 - Ay) - ysscale) -
20: sin (ok - (Az -k + 0.5+ Az) - zsscale) -
21: ki jx+ = ccoeffs - cos (oi - (Az - i+ 0.5 - Az) - xcscale) -
22: cos (0j - (Ay -7+ 0.5 - Ay) - yescale) -
23: cos (ok - (Az-k+0.5- Az) - zcscale) -
24: end for

25: end for

26: end for

27: end for

28: end for

29: end for

30: Scale values in k between min and max




APPENDIX F

Additional plots

This chapter contains additional plots used to support some of the conclusions drawn
in the thesis.

F.1 Increasing the number of smoothings

Run time (seconds)

Figure F.1:
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Run time and number of time steps as a function of number of smoothings. Problem:
32 x 32 x 32 smooth heterogeneous permeability field problem with permeabilities
in the range 200-600 mD. Cell size: 20m x 10m x 2m.
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Figure F.2: Run time and number of time steps as a function of number of smoothings. Problem:
32 x 32 x 32 homogeneous permeability field problem with permeabilities of 100 mD.
Cell size: 20m x 10m x 2m.

F.2 Verifying FAS using (x,y)-semicoarsening

In this section the FAS simulator using 3 or 4 grid levels with (z,y)-semicoarsening is
verified by comparing solutions to the solutions from ECLIPSE.
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Figure F.3:

Figure F.4:
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Verification of FAS(3) using (x,y)-semicoarsening for 24 x 24 x 24 problem with
smooth heterogeneous permeability field, for 100 days, initial time step 0.1 days,
Atpae = 30 days, 5- pre and 5 post-smoothings, and no more than 10 FAS cycles
and 10 newton iterations per FAS cycle.
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Verification of FAS(4) using (x,y)-semicoarsening for 24 x 24 x 24 problem with
smooth heterogeneous permeability field, for 100 days, initial time step 0.1 days,
Atiae = 30 days, 5- pre and 5 post-smoothings, and no more than 10 FAS cycles
and 10 newton iterations per FAS cycle.
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Additional plots

F.3 Verifying FAS using standard coarsening

In this section the FAS simulator using 3 or 4 grid levels with standard coarsening is
verified by comparing solutions to the solutions from ECLIPSE.
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Figure F.5: Verification of FAS(3) using (z,y)-semicoarsening for 24 x 24 x 24 problem with
smooth heterogeneous permeability field, for 100 days, initial time step 0.1 days,
Atpae = 30 days, 5- pre and 5 post-smoothings, and no more than 10 FAS cycles
and 10 newton iterations per FAS cycle.
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Figure F.6: Verification of FAS(4) using (x,y)-semicoarsening for 24 x 24 x 24 problem with
smooth heterogeneous permeability field, for 100 days, initial time step 0.1 days,
Atmaz = 30 days, 5- pre and 5 post-smoothings, and no more than 10 FAS cycles
and 10 newton iterations per FAS cycle.

F.4 Verifying FAS with one newton iteration on coarsest
grid

In this section the FAS simulator using 3 or 4 grid levels with one newton iteration on
coarsest grid are verified by comparing solutions to the solutions from ECLIPSE.
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Figure F.7: Verification of FAS(3), one newton iteration on coarsest grid for 24 x 24 x 24

problem with smooth heterogeneous permeability field, for 100 days, initial time

step 0.1 days, Atymee = 30 days, 5- pre and 5 post-smoothings, and no more than
10 FAS cycles and 10 newton iterations per FAS cycle.
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Figure F.8: Verification of FAS(4), one newton iteration on coarsest grid for 24 x 24 x 24
problem with smooth heterogeneous permeability field, for 100 days, initial time

step 0.1 days, Atpar = 30 days, 5- pre and 5 post-smoothings, and no more than
10 FAS cycles and 10 newton iterations per FAS cycle.
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Conference contributions

Based on the work presented in this thesis we have been selected to give presentations
at the following conferences.

BIT Circus

e Topic: Numerical Mathematics and Computational Science
o Date: 23-24 August 2012
e Location: Technical University of Denmark, Lyngby, Denmark
o Type: Oral presentation
e Abstract:
Nonlinear Multigrid for Oil Reservoir Simulation

To keep up with current and future energy demands, new and better oil recov-
ery techniques are a necessity. All these techniques require advanced oil reservoir
simulation. Modern industrial simulation tools are presently able to run simula-
tions with mega-cell scale models, however for many oil and gas reservoirs, larger
amounts of seismic, geological and dynamic reservoir data is available. As a re-
sult, geological models are upscaled to fit current simulation capabilities. To fully
utilize this large amount of data, reservoir simulation tools must accommodate
giga-cell scale models. More accurate simulations will have a significant impact on
reservoir decision making, resulting in improved oil recovery.

Present industrial simulation tools are based on conventional simulation techniques
also used before parallel hardware became a necessary part of the scientific com-
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puting field. It is standard in the conventional techniques to use a global lin-
earization in a Newton-type method to solve the strongly nonlinear system of
equations arising from the spatial and temporal discretization of the governing
system of PDEs. Consequently, the memory requirement to store the sparse Ja-
cobian requires significant resources. Such very large linear systems result in the
linear solver component to constitute more than 70% of the computation time in
reservoir simulators. Linear solvers are due to their dependence on a good pre-
conditioner hard to parallelize and therefore result in poor scalability on modern
parallel architectures.

We will present numerical methods that aim to reduce the dependence on the
linear solver. Specifically, we have developed a nonlinear Multigrid solver based
on the Full Approximation Scheme (FAS) for a black oil reservoir model. Using
FAS we avoid having to assemble the Jacobian on the finest grid, which results in
major memory savings. Furthermore, all components of the nonlinear Multigrid
solver are highly local and therefore appropriate for efficient and scalable imple-
mentation on modern many-core architectures (e.g. such as many-core Graphics
Processing Units (GPUs)). Studies on the robustness, efficiency and scalability
of the simulator in case of highly heterogeneous models are presented, as well as
estimates of memory savings in comparison with conventional methods.

Society of Petroleum Engineers (SPE)

Topic: Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs
Date: 3-5 September 2012

Location: Swissotel, Istanbul, Turkey

Type: Poster presentation (see end of this appendix)

Abstract:

Nonlinear Multigrid for Reservoir Simulation

In the pursuit of higher resolution simulation models that use all seismic, geolog-
ical, and dynamic reservoir data-and to make use of modern parallel computing
architectures-we consider alternative numerical methods to solve the system of
equations governing subsurface porous media flow.

Current industrial simulation tools are based on conventional simulation tech-
niques, predating the parallel hardware that has become a necessary part of sci-
entific computing. With conventional techniques, it is standard to use a global
linearization in a Newton-type method to solve the strongly nonlinear system of
equations arising from the spatial and temporal discretization of the governing
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system of PDEs. Consequently, the memory requirement to store the sparse Jaco-
bian is significant. Very large linear systems result in the linear solver component
constituting more than 70% of the computation time in reservoir simulators. It-
erative linear solvers depend on effective preconditioners, which can be hard to
parallelize to the extent required by many-core simulations.

We present numerical methods that aim to reduce the dependence on the linear
solver. Specifically, we have developed a nonlinear multigrid solver based on the
full approximation scheme (FAS) for a black-oil reservoir model. By using FAS,
we avoid having to assemble the Jacobian on the finest grid, which results in major
memory savings. Furthermore, all components of the nonlinear multigrid solver
are highly local and therefore appropriate for efficient and scalable implementation
on modern, many-core architectures (e.g., many-core graphics processing units).
Studies on the robustness, efficiency, and scalability of the simulator in the case of
highly heterogeneous models are presented, as well as estimates of memory savings
in comparison with conventional methods.

STC, German Section SPE (GSSPE)

e Topic: Petroleum engineering
e Date: 18-19 October 2012
e Location: German Oil Museum, Wietze, Germany
o Type: Oral presentation
e Abstract:
Nonlinear Multigrid for Reservoir Simulation

In the pursuit of higher resolution simulation models that use all seismic, geolog-
ical, and dynamic reservoir data-and to make use of modern parallel computing
architectures-we consider alternative numerical methods to solve the system of
equations governing subsurface porous media flow.

With conventional techniques, it is standard to use a global linearization in a
Newton-type method to solve the strongly nonlinear system of equations. Conse-
quently, the memory requirement to store the sparse Jacobian is significant. Very
large linear systems result in the linear solver component constituting more than
70% of the computation time in reservoir simulators. Iterative linear solvers de-
pend on effective preconditioners, which can be hard to parallelize to the extent
required by many-core simulations.

We present numerical methods that reduce the dependence on the linear solver.
Specifically, we have developed a nonlinear multigrid solver based on the Full Ap-
proximation Scheme (FAS) for a black-oil reservoir model. By using FAS, we
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avoid having to assemble the Jacobian on the finest grid, which results in major
memory savings. Furthermore, all components of the solver are local and there-
fore appropriate for efficient and scalable implementation on modern, many-core
architectures (e.g., GPUs). Studies on the robustness, efficiency, and scalability of
the simulator in the case of highly heterogeneous models are presented, as well as
estimates of memory savings in comparison with conventional methods.
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Motivation

In the pursuit of higher resolution simulation models that
use all seismic, geological, and dynamic reservoir data
- and to make use of modern parallel computing archi-
tectures - we consider alternative numerical methods
to solve the system of equations governing subsurface
porous media flow.

It is standard in conventional techniques to use a global
linearization in a Newton-type method to solve the
strongly nonlinear system of equations arising from the
spatial and temporal discretization of the governing sys-
tem of PDEs. Consequently, the memory requirement
to store the sparse Jacobian is significant. Such very
large linear systems result in the linear solver component
to constitute more than 70% of the computation time in
reservoir simulators. lterative linear solvers depend on
effective preconditioners, which can be hard to paral-
lelize to the extent required by many-core simulations.
In a first step, we investigate feasibility of using the lo-
cally linearizing nonlinear multigrid method Full Approx-
imation Scheme (FAS) in serial to establish algorithmic
performance.

Contribution

» Reservoir simulator based on the nonlinear multigrid
method FAS.

» Comparison with conventional techniques in reservoir
simulation, specifically a reservoir simulator based on
global linearization in Newton’s method. Linear solver
is FGMRES with CPR-AMG preconditioning
implemented using PETSc/BoomerAMG.

Full Approximation Scheme
Consider the nonlinear system
Au) =f, Q)

with error e = u — v, where v is an approximation to the
exact solution u The residual is

r=f—A(v) )
Inserting (1) in (2) gives
Au) —A(V)=r (3)

Using the error relation, equation (3) becomes
A(v+e)—A(v)=r

For coarsest grid with mesh size H = 2h, where h is
the fine grid mesh size, this is

A (Vi +en) — Au (Vu) = tn )
The coarse grid residual rg is computed by applying the
restriction operator I,{’ to the fine grid residual

e = Iffty = I (f, — An (Vi)
Similarly, the coarse grid approximation vy is the restric-
tion of the fine grid approximation v;,. Using these defi-
nitions, equation (4) is rewritten into

Ay (Ii'v, + en) = A (Ii'vh) + I (f, — A (V4))
ch R PR

upy fu

Based on this solution, the coarse grid correction term is
computed as ey = Uy — I,f’vh. This correction term is
prolongated to a finer grid, where it is used to correct the
solution to the residual equation at that grid, which again
can be used to determine a correction term for an even
finer grid and etc.

The FAS concept is depicted below

11 1
1

i
—
| 7

Solve Apg(up) =fu

Model equations

Conservation of mass

9(¢pm.)
ot

where ¢ is the porosity dependent on pressure, m.. is

molar density of component ¢ and f* = b*v* is the flux

with the phase molar density b* and the phase velocity

v given by Darcy’s law.

Volume balance constraint

dose=1,

where S« is the saturation of phase a.

LV =0,

» 3D with gravitational effects.
» Three immiscible phases: oil, gas and water.

» No capillary effects.

Discretization

» Finite Volume method.
» Backward Euler - Fully Implicit.

FAS components

» V-cycles.

» Nonlinear collective Gauss-Seidel z-line smoother
using 1 newton iteration.

» Thomas algorithm for block tridiagonal systems in
smoother.

» (x, y)-semicoarsening, meaning only - and
y-directions are coarsened.

Numerical results

For fixed pattern permeability fields as depicted in Fig-
ure 1

Figure 1: lllustration of permeability field

a comparison between a reservoir simulator based
on conventional techniques (standard newton(SN)) with
global linearization in Newton’s method and the simula-
tor based on FAS is displayed in Figure 2. Tests are
“gravity inversion”, where water and gas components
switch place.

= Stindard Newtin FGMRES + CPRAWOA10)
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Figure 2: Run time as a function of number of grid cells
for standard newton and FAS with 2,3 and 4 grid levels.
Fixed reservoir size: 480m X 240m X 48m.

FAS is faster and appears to have linear scaling for the
larger problem sizes. The corresponding number of time
steps is listed in Table 1.

Problem size
Method |8 x 8 X 8 16 X 16 X 16 24 X 24 X 24 48 X 48 X 48
SN 68 101 152 201
FAS(2) 40 60 91 171
FAS(3) 65 83 82 161
FAS(4) N/A 93 94 127

Table 1: Number of time steps for the simulations
displayed in Figure 2. An adaptive time stepping
strategy is employed that seeks to minimize the overall
computational effort.

Residuals for outer iteration

Figure 3 shows residual reduction for 50 time steps,
where each line represents a time step.

N
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Figure 3: Residual reduction for standard newton and
FAS with 2 and 3 grid levels. Problem size:

24 X 24 X 24.

FAS has quick initial residual reduction suitable for
engineering accuracy purposes.

Computational distribution

As indicated by Figure 4, the majority of the
computational work can be kept in the parallelizable
smoother by increasing the number of grid levels in
FAS.

™ Linear solver

‘ ‘ ‘ = Other

= Line smoother
FAS(2) FAS(3) FAS(4)

Figure 4: Distribution of computational work for FAS
with 2,3 and 4 grid levels. Problem size: 24 x 24 X 24.

Memory comparisons

FAS is based on local linearization, meaning we avoid
having to assemble the Jacobian on the finest grid,
which results in significant memory savings as outlined
in Table 2.

Method: kB per grid cell:
Standard newton 23
FAS(2) 07
FAS(3) 0.3
FAS(4) 0.2

Table 2: Memory comparisons for a 128 x 128 x 128
grid cell problem.

Heterogeneity stress test

As demonstrated by Figure 5, FAS appears to handle
very heterogeneous permeability fields better than
standard newton.

i - v

Figure 5: Run time and number of time steps for
problems with different ranges of permeability. Problem
size: 24 X 24 x 24.

Conclusion and perspectives

» Promising aspects for modern many-core
implementation, e.g. GPUs or Intel MICs.

» Fit larger problems on same hardware and extend to
distributed large-scale simulations.

» Algorithmic performance established for model
equations.

» Next step: More complicated model including wells,
parallel implementation and feasibility study of
polynomial smoothing.

Contacts: Max: s072245@student.dtu.dk - Klaus: s072272@student.dtu.dk - Allan: apek@imm.dtu.dk
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Nomenclature

Physical quantities

Symbol Description Units
Me Component molar density —kmol/m3
D Pressure bar
b Phase molar density kmol /3
v Darcy phase velocity m/day
K Absolute permeability mD
k& Relative permeability -
ue Viscosity of phase « cP
S Saturation of phase « -
g Gravitational acceleration —m*kg/bar
P Mass density of phase kg/m3
T Transmissibility cPm? /qay /bar
fe Flux km(ﬂ/m2 /day
V Volume (Bulk) m3
Vp Pore volume m3
¢ Porosity -
Abbreviations
AMG Algebraic Multigrid
BiCGSTAB  Stabilized Bi-Conjugate Gradient
CGN Conjugate Gradient applied to the Normal equations
COO Coordinate list
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CPR
CPU
CSR

FAS
FGMRES
FMG
FVM
GMRES
GPU
GSN

ILU
LSPS

MG

MIC
MIMD
ORTHOMIN
PDE
SIMD
SOR

Constrained Pressure Residual
Central Processing Unit
Compressed Sparse Row

Full Approximation Scheme
Flexible Generalized Minimal Residual
Full Multigrid

Finite Volume Method

Generalized Minimal Residual
Graphics Processing Unit
Gauss-Seidel-Newton

Incomplete LU

Line Solve Power Series

Multigrid

Many Integrated Core

Multiple Instruction Multiple Data
Orthogonal Minimization

Partial Differential Equation
Single Instruction Multiple Data
Successive Over-Relaxation
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