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Summary (English)

Finger image quality assessment is a crucial task in the �ngerprint-based bio-
metric systems, and plenty of publications state that singular points have the
profound in�uence on the biometric performance. The aim of the thesis is to
analyse whether the singular points are signi�cant and what is the degree of
importance on the biometric performance.

Existing approaches of orientation �eld estimation and singular point localiza-
tion are discussed in this work, and the most accurate and robust of them are
applied. Five pattern-based �lters are proposed to reduce the detected spurious
singular points. One segmentation algorithm is proposed using morphological
image processing.

Seven singular point localization-based global Quality Measurement Algorithms
are proposed to systematically analyse the e�ect of singular points on the bio-
metric performance by measuring the �nger sample displacement and rotation.
Experimental results establish the property of singular points does have in�u-
ence on biometric performance although not better than the analysis of �ne
level characteristics. Four local Quality Measurement Algorithms are proposed
to give the quality score by analysing the coherence of the ridgeline. Acceptable
results are achieved with excellent execution time.

Additionally all the proposed Quality Measurement Algorithms can be poten-
tially incorporated in the ISO/IEC standards or in NIST Finger Image Quality
2.0.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in cooperation with Center
for Advanced Security Research Darmstadt in ful�lment of the requirements for
acquiring an M.Sc. in Informatics.

The thesis deals with the singular point localization and analyse the e�ect of
singular point on the performance of biometric systems.

The thesis consists of an introduction, description of related biometric back-
ground, proposed singular point localization algorithm and quality metrics, ex-
perimental setup and results, conclusion and appendices.

Lyngby, 07-July-2013

Jinghua Wang
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Chapter 1

Introduction

Biometric recognition is widely used for identi�cation and veri�cation because
the biometric identi�er cannot be easily misplaced, forged or shared unlike tra-
ditional token- (e.g., keys or ID cards) or knowledge- (e.g., password or PIN)
based methods [MMJP09]. It also possess the excellent property of security,
e�ciency and ease of use and thus the deployed number of biometric systems is
increasing continuously and rapidly.

As one of the biometric characteristics, �ngerprints were �rst proposed as an
approach for identi�cation and veri�cation over 100 years ago. Because of the
excellent distinctiveness and persistence, as well as the ease of collection, the
�ngerprint based biometric systems have almost become synonym of biometric
systems. Meanwhile, with the relatively low cost and high maturity, �ngerprints
based products has seen increasing usage over the past decades in a wide range of
scenarios, spanning from access control in recreational resorts and �tness centres,
to identi�cation of individuals in border control and forensic investigations.

The large-scale �ngerprint recognition systems have extensively used by the
governments of di�erent countries. U.S.A. has introduced Customs and Border
Protection (CBP) management system to collect and analyse the �ngerprints by
O�ce of Biometric Identity Management (OBIM) [oHS]. The Schengen States
exchanges visa data via Visa Information System which performs primarily �n-
gerprint identi�cation and veri�cation [Com]. Unique Identi�cation Authority
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of India (UIDAI) is issuing Unique identi�cation numbers and collecting the
�ngerprints for more than 1.2 billion citizens of India.

1.1 Motivation

Myriad techniques have been applied in the comparison subsystems, but the
performance of biometric systems is su�ered from the low quality of samples.
Historically, quality measurement algorithm (QMA) have lagged behind recog-
nition algorithm development. As a result, the research attention recently has
been shifted from sample comparison to sample quality measurement. High
quality of samples can be ensured by analysing the �ngerprint using various
techniques. For instance, NIST proposed a �ngerprint quality measurement
tool - NIST Fingerprint Image Quality (NFIQ) in August 2004, and more po-
tential features are being evaluated in NFIQ 2.0 [NIS12]. Meanwhile, with the
increasing signi�cance of QMA, ISO/IEC 29749:2009 has de�ned and speci�ed
the methodologies for objective and quantitative quality score expression, inter-
pretation and interchange [ISO12b].

The singular point (SP) of a �ngerprint are the most important global feature.
Typically SPs, known as core and delta, are located in the regions which pos-
sess the higher ridgeline curvature and used as landmarks for classi�cation and
alignment of �ngerprints in a comparison process. Besides, the position and
orientation of SPs indicates the �nger displacement and rotation in the sam-
ple, and thus the other common use is in registration, i.e., they are used as
references to line up two �ngerprints in one-to-one comparison [BG02]. Various
publications support these view:

�The singular points of �ngerprints play an important role in �ngerprint
recognition and classi�cation systems [WYY11].�

�These singular points are the most important topological features of a
�ngerprint and are extremely important in biometric identi�cation systems
based on �ngerprint analysis [fSoP].�

�Singular point, as a global feature, plays an important role in �ngerprint
recognition [JK10].�

Nevertheless, none of the existing work analyses whether SPs is of importance
exactly. It leaves us with the question, do the properties of these landmark
points (e.g. position and orientation) have the in�uence on the �nger image



1.2 Goals and methodologies 3

quality? If yes, how signi�cant are SPs and its in�uence on the biometric per-
formance?

1.2 Goals and methodologies

The research goals of the thesis are:

• Develop an algorithm to localize singular points with high precision and
low processing time. The assessment of the algorithm performance is
benchmarked against the existing methods using a ground-truth �nger-
print database and several public databases.

• Investigate the relationship between biometric performance and properties
of SPs. Series of SP localization-based QMAs are required to be proposed,
and the assessment is carried out by observing the correlation between the
ground-truth comparison scores and computed quality scores.

1.3 Thesis overview

This thesis is divided into four parts. Firstly, chapter 2 and chapter 3 introduces
the basic concepts of biometrics. The second part discusses and proposes the
algorithm to localize SPs, where chapter 4 and chapter 5 focus on the orientation
�eld estimation and SP localization respectively. Chapter 6 proposes several
QMAs using SP localization. Finally the assessments are presented in chapter 7
and chapter 8, and the conclusion and future work are presented in chapter 9.
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Chapter 2

Introduction to Biometrics

The purpose of this chapter is to introduce the general terminology and overview
of biometric systems to those readers who are unfamiliar with this �eld so that
they can follow the following chapters. The terms and de�nitions in this thesis
are based on ISO/IEC 2382-37:2012 [ISO12a] from International Organization
for Standardization/International Electrotechnical Commission (ISO/IEC).

2.1 Biometric recognition

The word biometrics, also called biometric recognition, refers to the automated
recognition of individuals based on their behavioural (e.g., speech, gait) and bi-
ological (e.g., �ngerprints, face, iris) characteristics [ISO11]. Any characteristic
can be used as a biometric identi�er to recognize a person as long as it satis�es
the following requirements [MMJP09]:

• Universality: each person should possess the biometric characteristic.

• Distinctiveness: each pair of persons should perform su�ciently di�er-
ence with regard to the biometric characteristic.

• Permanence: the biometric characteristic should be invariant over time.
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• Collectability: the biometric characteristic can be measured and stored
quantitatively.

• Performance: the recognition accuracy, speed, and robustness to opera-
tional and environmental factors should be accepted.

• Acceptability: the measurement and collection of the biometric charac-
teristic should be user-friendly so that each capture subject are willing to
accept the biometric identi�er.

• Circumvention: ease with which the biometric system can be circum-
vented by fraudulent approaches.

The most widely used biometric characteristics include: face, �ngerprint, hand
geometry, hand/�nger vein, iris, signature, and voice. They are compared in
terms of the biometric requirements in table 2.1.

Table 2.1: Comparison of commonly used biometric characteristics. High,
Medium, and Low are denoted by H, M, and L, respectively. Taken
from [MMJP09]

2.2 Biometric systems

Biometric system refers to the system for the purpose of the automated recog-
nition of individuals based on their behavioural and biological characteristics
[ISO11]. Depending on how an individual will be recognized, a biometric system
can be stated either a veri�cation system or an identi�cation system [MMJP09]:
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• A veri�cation system authenticates an individual's identity by comparing
the presently captured biometric characteristic with the person's enrolled
biometric reference template which is previously pre-stored in the system.
It veri�es the identity of the individual by a one-to-one comparison, and
then the veri�cation system either accepts or rejects the submitted claim
of identity.

• An identi�cation system recognizes an individual by comparing a bio-
metric probe with the entire database of stored the enrolment reference
templates. It returns whether the individual is present in the database
by a one-to-many comparisons. The identi�cation system veri�es whether
the individual is enrolled in the system database, without any claim of the
identity.

Throughout this thesis, there is no interest in distinguishing the veri�cation and
identi�cation so that the generic term recognition is used to represent both of
them.

Figure 2.1 depicts the overview of a general biometric system which contains
several subsystems: data capture, signal processing, data storage, comparison,
and decision. It also contains transmission, administration subsystems and in-
terface which are not portrayed. In practice some conceptual components might
be absent or not have a direct correspondence with a physical or software entity
in the practical biometric systems.

• Data capture subsystem: collects the individual's biometric character-
istic using capture devices, and outputs an image or signal as a biometric
sample.

• Signal processing subsystem: performs the processes such as quality
control, segmentation, feature extraction and quality enhancement, then
generates features which is numbers or labels extracted from biometric
samples. In the case of enrolment, the subsystem also creates the reference
for the enrolment database.

• Data storage subsystem: stores the reference within the enrolment
database in order the conduct the the veri�cation and identi�cation. The
reference can be stored as either sample or features or both.

• Comparison subsystem: compares the presently captured features with
one or more of the references according to the type of recognition, and
outputs a comparison score indicating the degree of the similarity.

• Decision subsystem: generates the decision outcome for a veri�cation
or identi�cation transaction by the de�ned threshold and decision policy.
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Figure 2.1: Components of a general biometric system. Taken from [ISO11].

• Transmission subsystem: connects the entire biometric system and
transmits the outputted biometric data to the following subsystem.

• Administration subsystem: governs the overall con�guration (e.g.,
threshold and decision policy) and usage of the biometric system.

• Interface: performs as an external application or system via an applica-
tion programming interface, hardware interface or a protocol interface.

2.3 Biometric errors

2.3.1 System errors

Associated with a acquisition of a biometric sample or its image processing,
there are multiple system errors a biometric system might be su�ered [Bus09]:

• Failure-to-Capture: the data capture subsystem is not capable to gen-
erate a biometric sample. The reason can be the insu�ciency of either the
biometric characteristic or sample quality.
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• Failure-to-eXtract: the signal processing subsystem cannot extract the
features of a biometric sample. This can be caused by either the de�ciency
of the features or the performance of the algorithm.

• Failure-to-Enrol: the data storage subsystem is not able to create a
biometric reference for the data subject. The failure can be caused by the
absent biometric characteristic or the insu�cient sample quality.

• Failure-to-Acquire: the entire system fails to acquire the features for
the decision subsystem, as the biometric sample is not generated (Failure-
to-Capture), or the features are failed to extracted (Failure-to-eXtract).

2.3.2 Recognition errors

In contrast to system errors, the recognition errors indicate the errors that are
attributed to the decision subsystem.

The decision subsystem will produce the match or non-match decision relying
on whether the comparison score exceeds the speci�c threshold. Figure 2.2
illustrates the probability distribution between the imposter and genuine com-
parison. In ideal case the imposter and genuine comparison distribution are
totally separated with respect to the comparison scores. However, in practice
the undesired case is commonly existed which the impostor and genuine distri-
butions are overlapped.

Figure 2.2: FMR and FNMR for a given threshold t are displayed over the
genuine and impostor comparison score distribution.
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As a result, the False-Match-Rate (FMR) and False-Non-Match-Rate (FNMR)
are constituted [ISO12a]:

• False-Match-Rate: proportion of the completed biometric non-match
comparison trials that result in a false match. For a speci�ed threshold
t, the FMR is computed in eq. (2.1), where s is comparison score, Φi is
probability distribution function of impostor comparison.

FMR(t) =

∫ 1

t

Φi(s)ds (2.1)

• False-Non-Match-Rate: proportion of the completed biometric match
comparison trials that result in a false non-match. For a speci�ed threshold
t, the FNMR is computed in eq. (2.2), where s is comparison score, Φg is
the probability distribution function of genuine comparison.

FNMR(t) =

∫ t

0

Φg(s)ds (2.2)

There is a strict tradeo� between FMR and FNMR in every practical biometric
system. For a given threshold t, if t is decreased, then the system is more tolerant
regarding input variations and noise and FMR(t) increases. On the other hand,
if t is raised, then the system is more secure and FNMR(t) increases.

For a given biometric system, the measurement of FMR and FNMR can be done
by plotting a Detection Error Tradeo� (DET) [MDK+97] curve. for various
threshold t, the DET curve plots FMR(t) against FNMR(t) and provides a
straight views of the error-vs-error tradeo�, i.e., false (false positive) and missed
(false negative) detections. An example is illustrated in �g. 2.3.

Receiver Operating Characteristic (ROC) curve [ZC93] also can depict the per-
formance of biometric systems which is out of the scope of this thesis.

2.4 Biometric sample quality

In biometrics, the term sample can be an image, signal, or pattern based in-
terpretation of a physical human feature used for identi�cation or veri�cation
using biometric techniques [ISO12b].
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Figure 2.3: DET curves for a speaker recognition evaluation. Taken from
[MDK+97].

2.4.1 Quality components

The quality refers to the degree to which a biometric sample ful�ls speci�ed
requirements for a targeted application [ISO12b]. In the area of biometrics, the
quality of the sample can be measured in terms of the following aspects:

• Character: the inherent features of the source from which the biometric
sample is derived.

• Fidelity: the degree how a sample is similar with the source.

• Utility: the predicted positive or negative contribution of an individual
sample to the overall performance of a biometric system.

Utility-based quality depends on both the character and �delity of the biometric
sample shown in table 2.2.
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Fidelity
Low High

Low Low �delity and low char-
acter results in low utility.
Recapture might improve
utility. However, if pos-
sible use of other biomet-
ric characteristics is rec-
ommended.

High �delity and low char-
acter results in low util-
ity. Recapture will not
improve utility. Use of
other biometric character-
istics is recommended.

Character High Samples with high charac-
ter and low �delity typi-
cally will not demonstrate
high utility. Utility can
be improved upon recap-
ture or image enhance-
ment techniques.

Samples with high charac-
ter and high �delity indi-
cate capture of useful sam-
ple. High utility is ex-
pected.

Table 2.2: Relationship between character, �delity, and utility. Taken from
[ISO12b].

2.4.2 Quality measurement algorithm

Quality measurement naturally lags comparison algorithm development, but has
emerged as it is realized that biometric systems fail on certain pathological sam-
ples. The main use of a quality measure is an approach to reject a poor quality
sample and then initiate another capture attempt [GT07] [YC06] [AFFOG+07]
[XYP+11].

Figure 2.4 illustrates the relationship between quality and system performance.
The observed utility is the ground-truth quality score as it is derived by the
comparison algorithm. The utility-based quality (predicted utility) is used to
predict the system performance, instead of the quality based on character or
�delity. Furthermore throughout this thesis, the term quality only concentrates
on the aspect of the observed utility.

In order to improve the prediction for the observed performance, the quality
measurement algorithm (QMA) should convey a predicted utility as much as
correlated with the observed utility. Many researches have focused on the qual-
ity estimation, For instance, National Institute of Standards and Technology
(NIST) evaluated the performance in accordance with a few quality metrics
within NFIQ (NIST Fingerprint Image Quality) [TG09] and more candidate
features is assessing in NFIQ 2.0 [NIS12].
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Figure 2.4: Relationship between quality and system performance. Taken
from [ISO12b].

2.4.3 Utility-based quality computation

In order to construct the observed quality to predict the performance of a bio-
metric sample regarding character and �delity, ISO/IEC 29794-1:2009 proposed
an approach to quantify the utility scores, and then compute the quality scores
by binning the utility scores [ISO12b]. The quality socres are assign to each
sample, i.e., for a biometric dataset containing Ni (Ni ≥ 2) samples andM sub-

jects, each sample d
(1)
i , d

(2)
i ,..., d

(Ni)
i is assigned a quality score q

(1)
i , q

(2)
i ,..., q

(Ni)
i ,

where i = 1, ...,M , note each sample only contains one biometric characteristic.

2.4.3.1 Utility computation

For each comparator Vk, k = 1, ...,K, of K available comparators, a set of
utility scores can be computed as:

1. For each instance record d
(u)
i (i.e. the uth sample of subject i):
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(a) Generate the set of all possible genuine comparison scores using the
kth comparator,

Sii =
{
su,vi,i |s

u,v
i,i = Vk(d

(u)
i , d

(v)
i )
}

(2.3)

u = 1, ..., Ni and v = u+ 1, ..., Ni

i = 1, ...M

(b) Generate the set of all impostor comparison scores using the kth

comparator,

Sij =
{
su,vi,j |s

u,v
i,j = Vk(d

(u)
i , dj(v))

}
(2.4)

u = 1, ..., Ni and v = u+ 1, ..., Nj

i = 1, ...M and j = 1, ...M and i 6= j

2. compute the utility for sample d
(u)
i as

utilityui =
mgenuine
i,u −mimposter

i,u

σgenuinei,u + σimposteri,u

(2.5)

where mgenuine
i,u is the mean of sample d

(u)
i 's genuine comparison scores

computed as:

mgenuine
i,u =

∑Ni

v=1,v 6=u s
u,v
i,i

Ni − 1
(2.6)

and mimposter
i,u is the mean of sample d

(u)
i 's imposter comparison scores

computed as:

mimposter
i,u =

∑M
j=1,j 6=i

∑Nj

v=1 s
u,v
i,j∑M

j=1,j 6=iNj
(2.7)

similarly σgenuinei,u is the standard deviation of sample d
(u)
i 's genuine com-

parison scores computed as:

σgenuinei,u =

√∑Ni

v=1,v 6=u(su,vi,i −m
genuine
i,u )2

Ni − 1
(2.8)

and σimposteri,u is the standard deviation of sample d
(u)
i 's imposter compar-

ison scores computed as:

σimposteri,u =

√√√√∑M
j=1,j 6=1

∑Nj

v=1(su,vi,j −m
imposter
i,u )2∑M

j=1,j 6=iNj
(2.9)
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2.4.3.2 Quality computation

Once all utility values have been computed, they can be binned into several
de�ned quality classes:

1. Insert (i, u) into set T if its genuine comparison scores is greater than all
its impostor comparison scores, i.e. su,vi,i > su,vi,j ∀j 6= i, v 6= u,w, which
can be computed by eq. (2.3) and eq. (2.4).

2. Compute two empirical cumulative distribution functions:

C(z) =
| {utilityui : (i, u) ∈ T, utilityui ≤ z} |
| {utilityui : (i, u) ∈ T, utilityui <∞} |

(2.10)

and another for those not in that set,

W (z) =
| {utilityui : (i, u) /∈ T, utilityui ≤ z} |
| {utilityui : (i, u) /∈ T, utilityui <∞} |

(2.11)

3. Select quality resolution L(2 ≤ L ≤ 100), then the quality levels will be
q = 1, ...L where 1 is the lowest and L is the highest quality score.

4. Bin sample utility scores in to L bins based on quantiles of the target
utility distributions C(.) and W (.) in eq. (2.10) and eq. (2.11). One ex-
ample for L = 5 is shown in table 2.3, which W−1(.) and C−1(.) are the
quantile functions, and C−1(0) and C−1(1) (W−1(0) and W−1(1)) denote
the empirical minima and maxima, respectively, x and y are appropriate
percentile points selected based on the shape of C(.).

Bin Range of target utilities

1
{
zi : −∞ < zi < C−1(0.01)

}
2

{
zi : C−1(0.01) ≤ zi < W−1(1)

}
3

{
zi : W−1(1) ≤ zi < C−1(x)

}
4

{
zi : C−1(x) ≤ zi < C−1(y)

}
5

{
zi : C−1y ≤ zi

}
Table 2.3: Binning utility scores. Taken from [ISO12b].
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2.4.4 Quality score fusion

In order to evaluate the overall biometric performance of a sample, there are
some options to aggregate the K sets of quality scores into quality reference
dataset:

1. Unanimity: only samples with identical quality assignments from all K
comparators are stored in the quality reference dataset, and the rest of
them are discarded.

2. Median or other speci�ed percentile point: samples with identical
quality assignment from more than x percent of K comparators become
members of the quality reference dataset. The rest can be discarded.

3. Arithmetic mean: quality score of is the arithmetic mean of its quality
score from each K comparator.

2.4.5 Applications of QMA

Measuring the quality of biometric samples is a crucial step so the importance
of QMA becomes more signi�cant. There has been a variety of applications are
applied using QMA [ISO12b]:

• Real-time quality assessment: estimated quality data can be used by
an operator, automated system or capture subject to help to improve the
average quality within biometric systems.

• Use in di�erent applications: by means of establishing a set of metrics,
quality measurement can evaluate, compare and optimize performances for
several biometric systems which might use di�erent capture equipment and
comparison algorithm.

• Use as a survey statistic: used for operational quality monitoring of
the system, e.g., identify anomalous operation according to the quality
score.

• Accumulation of relevant statistics: by accumulating statistics of
capture subjects, informs the system and/or operators of whether a higher
quality sample is likely if another capture is attempted.

• Reference dataset improvement: improve the quality of reference
datasets for the sake of underlying comparisons.
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• Quality-based conditional processing: evaluates the performances of
the existing biometric samples with various metrics, and the poor qual-
ity sample can be processed using di�erent algorithm or threshold than
normal.

• Interchange of quality data by disparate systems: standardized
exchange of quality data between disparate systems is used for retaining
the modular interchangeability of local or remote system hardware and
software components, and the integrity of quality data in the event of
such an interchange.
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Chapter 3

Fingerprint Image Quality

The previous chapter has introduced the concepts of biometrics and biometric
sample quality to the reader. In this chapter the discussion will further con-
centrate on �ngerprint analysis, �ngerprint image quality as well as give an
overview of existing �ngerprint QMAs.

3.1 Fingerprint analysis

Human �ngerprints have been discovered on a large number of archaeological
artefacts and historical items [MMJP09]. In 1788, Mayer thoroughly described
the anatomical formation of �ngerprint [Moe71] in which several �ngerprint
characteristics were identi�ed and characterized. Henry Fauld, in 1880, �rst sci-
enti�cally indicated the individuality of �ngerprints based on empirical observa-
tions. At the same period, Herschel stated that he had researched on �ngerprint
recognition for about 20 years [LG10] [Moe71]. The above mentioned research
established the foundation of modern �ngerprint recognition.
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3.1.1 Fingerprint feature

A �ngerprint refers to the unique pattern of friction ridge and valley information
commonly, depicted in �g. 3.1. Furthermore, the term friction ridge, also called
ridge, presents on the skin of the �ngers and toes, the palms and soles of the
feet, which makes contact with an incident surface under normal touch, and
valley refers to the area between two friction ridges that does not make contact
with an incident surface under normal touch [ISO11].

Figure 3.1: Ridges and valleys in a �ngerprint image. Taken from [MMJP09].

The orientation at a pixel of the �ngerprint image is de�ned by ridge structure.
The overall orientation pattern is called orientation �eld. Chapter 4 will further
discuss the detailed issues with regard to orientation �eld estimation.

In the major part of the �ngerprint area, ridges run smoothly in parallel but
particularly some regions perform higher curvature, called singular region, which
contains one of the singular points: core or delta, respectively depicted in �g. 3.2.
Chapter 5 will cover the further discussion within this �eld.

Ridge also results in anther commonly used features, called minutia which refers
the friction ridge characteristics that are used to individualize a �ngerprint
illustrated in �g. 3.3. The minutiae occur at points where a single friction
ridge deviates from an uninterrupted �ow. Deviation might cause the form of
ending, bifurcation, or a combined type [ISO11]. This term is proposed by
Galton [Gal92], as well as he construct a statistical proof of the individuality
of �ngerprints, which lays the foundation for meaningful comparison among
di�erent �ngerprints.
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Core

Delta

Figure 3.2: Singular points within a �ngerprint. The sample is taken from
FVC2002DB1 [MMC+02].

Figure 3.3: Seven most common minutia types. Taken from [MMJP09].
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3.1.2 Fingerprint representation

The �ngerprint representation is an important issue for the comparison sub-
systems in �ngerprint recognition systems. A e�ective representation should
possess saliency and suitability [MMJP09], which refer to the distinctness and
ease of use respectively.

Image sample is an natural and simple option to represent �ngerprints, how-
ever, the image-based representation does not perform fair due to di�erent envi-
ronments (e.g., brightness variations and image quality variations) and sample
quality (e.g., scars and large global distortions). Furthermore the image-based
representation requires a large amount of storage. An feasible alternative is
a feature-based representation by analysing the image at di�erent scales and
extracting unique numbers and labels:

• Level 1: at the global level, the ridge line delineates a pattern so that �n-
gerprint shape, orientation �eld and frequency can be extracted. Singular
points, core and delta act as control points around which the ridge lines
are �wrapped� [LS72]. Singular points and coarse ridge line shape are use-
ful for �ngerprint classi�cation, but their distinctiveness is not su�cient
for accurate recognition.

• Level 2: at the local level, a total number of 150 di�erent local ridge
characteristics, called minute details, have been identi�ed [Moe71]. The
two most signi�cant ridge characteristics, also are most common minutiae:
ridge endings and ridge bifurcations, i.e., a ridge point where a ridge ends
abruptly and a ridge point where ridge forks or diverges into branch ridges.
Although minutiae performs a high saliency, automatic minutiae extrac-
tion can be problematic in extremely low-quality �ngerprints without clear
ridge structure.

• Level 3: at the very-�ne level, permanent intra-ridge details can be ex-
tracted, which contain width, shape, curvature, edge contours of ridges,
dots and incipient ridges. One of the most important �ne-level details is
the �nger sweat pores, whose positions and shapes are considered highly
distinctive. However, extracting very-�ne details including pores is feasi-
ble only in high-resolution (e.g., 1,000 dpi) �ngerprint images with good
quality. With cost and bene�t analysis, therefore this level is not practical
for non-forensic applications.
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3.1.3 Fingerprint classi�cation

In order to reduce the search time and computation complexity in one-to-many
comparisons, usually �ngerprints are classi�ed and then stored in enrolment
dataset. Purkinje, in 1823, proposed the �rst �ngerprint classi�cation scheme,
which classi�ed �ngerprints into nine categories according to the ridge con�g-
urations [Moe71]. Unfortunately it is not an feasible classi�cation due to the
ambiguous pattern, such as No. 5, 7 and 8 in �g. 3.4.

Figure 3.4: The nine patterns illustarated in Purkinjes's thesis. Taken from
[Moe71]

In order to establish a reasonable formation of �ngerprints, the biological prin-
ciples of �ngerprint patterns are summarized below [Moe71]:

• Individual epidermal ridges and furrows have di�erent characteristics for
di�erent �ngerprints.

• The con�guration types are individually variable, but they vary within
limits that allow for a systematic classi�cation.

• The con�gurations and minute details of individual ridges and furrows are
permanent and unchanging.

Based on the above factors, an prominent milestone in �ngerprint classi�cation
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was made in 1899 by Edward Henry, who introduced the famous Henry system
to classify the �ngerprint as �ve classes: left loop, right loop, whorl, arch, tented
arch depicted in �g. 3.5 [LG10].

(a) Left loop (b) Right loop (c) Whorl

(d) Arch (e) Tented Arch

Figure 3.5: Fingerprints are classi�ed in �ve major classes by Henry clas-
si�cation system. The samples are taken from FVC2000DB2
[MMWJ02].

The �ve classes are non-uniformly distributed in Henry system, the natural
proportion of �ngerprints in left loop, right loop, whorl, arch, tented arch is
33.8%, 31.7%, 27.9%, 3.7% and 2.9% respectively from a classi�cation summary
of 222 million prints [WCW94].

Because of the small inter-class variability and large intra-class variability within
the classi�cation, �ngerprint classi�cation is a di�cult pattern recognition is-
sue. For instance, in the top row in �g. 3.6, the three �ngerprints belong to
di�erent classes but have the similar appearance. On the other hand, the three
�ngerprints in the bottom row belongs to the same class but have di�erent
characteristics.

3.1.4 Fingerprint comparison

Fingerprint comparison is an extremely challenging issue in recognition, be-
cause each impression for capturing the same �nger might be di�erent. The
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Figure 3.6: Fingerprint classi�cation problem: small inter-class variability and
large intra-class variability. Taken from [MMJP09]

main factors can be displacement, rotation, partial overlap, non-linear distor-
tion, variable pressure, changing skin condition, noise, and feature extraction
errors. As as result, �ngerprints from the same �nger may be di�erent and vice
versa. A large number of approaches have been proposed which can be classi�ed
as follows [MMJP09]:

• Correlation-based comparison: a pair of �ngerprint samples are su-
perimposed and the correlation between related pixels is computed for
di�erent alignments (e.g., various displacements and rotations).

• Minutiae-based comparison: minutiae are extracted from the two �n-
gerprints and stored as sets of points in the two-dimensional plane. Minu-
tiae comparison aligns the template and the input minutiae set resulting
in the number of matched minutiae.

• Non-minutiae feature-based comparison: minutiae are di�cult to be
extracted in low-quality �ngerprint images, whereas other features of the
�ngerprint ridge pattern (e.g., local ridge orientation and frequency, ridge
shape) may be extracted more reliably than minutiae, even though they
perform lower distinctiveness generally.
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3.2 Automatic �ngerprint identi�cation systems

With the rapid expansion of �ngerprint recognition, the number of samples
in �ngerprint databases became large so that manual �ngerprint identi�cation
became infeasible. Automated Fingerprint Identi�cation System (AFIS) is in-
vented and have been widely used in law enforcement and security applications
to identify individuals depending on �ngerprints [Yam98]. Automatic �ngerprint
recognition technology has now dramatically grown beyond forensic applications
into civilian and commercial applications. Figure 3.7 illustrates the procedure
of AFIS.

Quality 
Estimation

Fingerprint 
Segmentation

Fingerprint 
Classification

Feature 
Extraction

Feature 
Editing

Fingerprint 
Comparison

Fingerprint 
Acquisition 

Fingerprint 
Enhancement

Figure 3.7: Flow chart of a general automatic �ngerprint identi�cation system,
the dashed lines are the optional paths

However, sample quality often lacks the biometric performance of AFIS and
thus quality estimation becomes mandatory recently. It is a criteria to decide
whether a poor quality �nger sample is submitted to the AFIS for automated
processing in the �rst place. If the quality is assessed as poor, then the AFIS
is not considered to be capable of this challenging �ngerprint sample and the
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sample is thus rather investigated manually.

3.3 Finger image quality assessment

The quality of �ngerprint image data, same as mentioned in section 2.4, is
can be used as a predictor to improve the biometric performance in �ngerprint
recognition.

3.3.1 Defect factors of �ngerprint image

A captured �ngerprint image could have various quality. In general, the low-
quality might be caused by the following factors [ISO12c] [XYP+11] [UPPJ04]:

• Acquisition device: the type (e.g., optical and capacitive sensor, syn-
thetic generator [MMWJ02]) and quality (e.g., resolution depicted in �g. 3.8
and area) of external capture device.

(a) 500 dpi (b) 400 dpi (c) 300 dpi (d) 250 dpi

Figure 3.8: The same �ngerprint sample with di�erent resolution. Taken from
[MMJP09].

• Capture subject character: �nger condition (e.g., extremely dry and
wet depicted in �g. 3.9), character (e.g., scars, wrinkles), disease (e.g.,
blisters, eczema) and impurities (e.g., dirt latent print).

• Capture subject behaviour: improper behaviour when capture the
�ngerprint image, such as elastic deformation, improper �nger placement
and insu�cient area of �nger image.
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(a) Dry (b) Normal (c) Wet

Figure 3.9: Three �ngerprint images of the same �nger with di�erent skin
conditions. Taken from [MMJP09].

• Imaging: imperfection or quality control of in capture subsystem, such as
sampling error, low contrast or signal-to-noise ratio, distortion, erroneous
or streak lines, uneven background, insu�cient dynamic range, non-linear
or non-uniform grey scale output, pixels not available due to hardware
failure, aliasing problems.

• Environment: environmental factors, such as humidity, light, impurities
on the scanner surface.

Based on the above factors, Young and Elliott stated the result of a survey that
on the average, �ngerprint images from index and middle �ngers performs better
quality, and whorl is the �ngerprint class containing the largest proportion of
high quality �ngerprint image, where arch is at the opposite side of quality scale
[YE07].

3.3.2 Finger image QMAs

Finger image QMAs have attached lots of attention due to the requirement of
biometric systems, resulting in fruitful publications [ISO12c] [LJY02] [LTS+04]
[HUW+98] [OXB12] [SKK01]. The approaches can be classi�ed as local and
global methods, which measure the image quality in block-wise and as a whole
respectively.
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3.3.3 Approaches to local analysis

Local QMAs partition the �ngerprint image into blocks and let each block con-
tains su�cient ridge-valley information. The size of block is setted empirically
due to the image resolution. Usually for a 500 ppi �ngerprint image, the ridge
separation usually varies between 8 to 12 pixels [MMJP09], 32 × 32 pixels are
selected because there are at least two ridges existed. Note other sizes also could
be selected due to the requirement of approaches.

3.3.3.1 Orientation certainty level

Orientation certainty level (OCL) analyses the orientation certainty of each
block depicted in �g. 3.10. The grey level gradient (dx, dy) along x and y
direction exhibits the orientation and the orientation strength at this pixel.
Using Principal Component Analysis [Pea01] on the gradients in each block, an
orthogonal basis for the block can be obtained by computing its eigenvalues and
eigenvectors. The ratio between the two eigenvalues indicates how strong the
energy is concentrated along the dominant direction with two vectors pointing
to the normal and tangential direction of the average ridge �ow respectively
[LJY02].

Figure 3.10: A typical texture-like ridge block. Taken from [LJY02].

The covariance matrix C of the gradient vector for a N pixels block is given by:

C =
1

N

∑
N

{[
dx
dy

] [
dx dy

]}
=

[
a c
c b

]
(3.1)
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Based on the covariance matrix, eigenvalues λ are given:

λmax =
(a+ b) +

√
(a− b)2 + 4c2

2
(3.2)

λmin =
(a+ b)−

√
(a− b)2 + 4c2

2
(3.3)

For each block the ocli can be computed indicating the orientation certainty
level:

ocli =
λmin
λmax

=
(a+ b) +

√
(a− b)2 + 4c2

(a+ b)−
√

(a− b)2 + 4c2
(3.4)

The value of ocli is in [0, 1] as a, b > 0 and the lower value represents the
high orientation certainty level which the stronger energy concentrates along
the ridge-valley orientation. However, the low orientation certainty level will be
obtained in singular region due to the high curvature, i.e., the ridge orientation
performs the opposite orientation.

Finally the quality score QOCL is computed by the mean of ocl values. An
example is illustrated in �g. 3.11, where blocks with high and low quality are
mapped to white and black intensity respectively.

3.3.3.2 Frequency domain analysis

Frequency domain analysis (FDA) evaluates each block if the ridge possess a
periodic pattern using either a square wave or sinusoidal wave[LTS+04]. A
signature along ridge-valley direction, centred at the centre of each block is
used as illustrated in �g. 3.12. In the frequency domain, and ideal block wave
exhibits a dominant frequency with sideband frequency components by sinc
function [OLBC10]. A sinusoidal wave contains both dominant frequency and
minimum component at non-dominant frequencies. Therefore the existences of
one dominant frequency and the frequency of such dominant component are two
elements can be used to measure the quality of each block.

In the coordinate system, the signature is given by:
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(a) High quality sample (b) Low quality sample

Figure 3.11: Orientation certainty level in each block for high and low quality
sample. High intensity corresponds to high level of certainty.
The samples are taken from FVC2000DB1 [MMWJ02].

Figure 3.12: Signature along x direction. Taken from [LTS+04].



32 Fingerprint Image Quality

T (x) =
1

2r + 1

r∑
y=−r

I(x, y) (3.5)

where I(x, y) is the intensity at point (x, y); x is the index along x axis and the
range −25 ≤ x ≤ 26 is su�cient to cover two ridge separations [MMJP09]; r
is the width along y axis and −10 < r < 10 is su�cient to obtain the average
intensity along y axis.

For N segmented blocks, Discrete Fourier Transform (DFT) [Smi97] can trans-
form each signature T (x) to spacial frequency domain:

F (u) =
1

N

N−1∑
n=0

T (x)e−2πi( nu
N ), i =

√
−1 (3.6)

Figure 3.13 illustrates DFTs for the blocks with di�erent quality. Bad quality
block, such as �g. 3.13c and �g. 3.13d, can be identi�ed because of the very low
frequency and lack of obvious dominant frequency respectively.

(a) Good quality (b) Good quality (c) Bad quality (d) Bad quality

Figure 3.13: Di�erent blocks with DFTs of the signatures along x. Taken from
[LTS+04].

The quality score fdai of block i is given by:

fdai =
A(Fmax + 0.3[A(Fmax − 1) +A(Fmax + 1)])∑NF/2

F=1 A(F )
(3.7)
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where A(x) is the amplitude at frequency domain and F is the DFT frequency
index. The �nal quality score QFDA is the mean of scores assigned to foreground
blocks.

Due to the averaging process in eq. (3.5), the noises along the ridges and valley
�ow might be cancelled out or provide a better modelling of smoothing signal if
they are perpendicular to ridge �ow. Moreover, the pixel level noise along the
ridges and valleys are neglected. Figure 3.14 depicts the FDA result in terms of
high and low quality �ngerprint image

(a) High quality image (b) Low quality image

Figure 3.14: Frequency domain analysis in each block. High intensity cor-
responds to low quality block. The samples are taken from
FVC2002DB1.

3.3.4 Approaches to global analysis

Di�erent with local analysis, the global analysis takes the entire �ngerprint
image into consideration. These global features, such as ridge continuity and
ridge-valley uniformity, are used to give the quality score.



34 Fingerprint Image Quality

3.3.4.1 Gabor

Gabor quality measurement method performs on a pixel-wise evaluation by
calculating the standard deviation of the Gabor �lter bank responses. The
strength of the response at a given location corresponds agreement between
�lter orientation and frequency in the location neighbourhood. For areas in the
�ngerprint image with a clear ridge-valley pattern there will be a high response
from one or a few �lter orientations. In areas containing background or unclear
ridge-valley structure the Gabor response of all orientations will be low and
constant [OXB12].

The general form of the complex 2D Gabor �lter hcx in the spatial domain is
given by [HUW+98]:

hcx(x, y; f, θ, σx, σy) = exp(−1

2
(
x2
θ

σ2
x

+
y2
θ

σ2
y

)exp(i2πfxθ)), i =
√
−1 (3.8)

where

xθ = xsinθ + ycosθ

yθ = xcosθ − ysinθ

and f is gabor �lter frequency of the sinusoidal plane wave along the orientation
θ, and σx, σy are Gaussian window.

The �lter bank size with regard to the orientation θ in dependence on the input
value n:

θ =
k − 1

nπ
, k = 1, ..., n (3.9)

Empirically the parameters are recommended for 500 ppi images [NIS12]:

σx = σy = 6, f = 0.1, n = 4

Consequently a image possesses n Gabor �lter responses, �g. 3.15 depicts the
response for each orientation, 0, π/4, π/2, 3π/4.
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(a) Input image (b) Orientation 0 (c) Orientation 1
4

(d) Orientation 2
4

(e) Orientation 3
4

Figure 3.15: Garbor response for �ltered image at di�erent orientation. The
samples are taken from FVC2002DB1.

Compute the standard deviation of the Gabor magnitude response values Gstd
among all orientations depicted in �g. 3.16, The �nal quality score QGabor is pro-
duced by the mean of the Gstd. The background which performs the orientation,
such as latent �ngerprint, might have in�uence of this metric.

3.3.4.2 Radial Power Spectrum

The Radial Power Spectrum (RPS) is a metric to measure the maximal power
in a given frequency band of the global Radial Fourier spectrum. Ridges can
be locally approximated by means of a single sine wave, hence high energy con-
centration a narrow frequency band corresponds to consistent ridge structures
[NIS12] [CDJ05].

The two-dimensional Radial Fourier transform f(u, v) of image intensity I(x, y)
is given by:
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(a) Low quality image (b) High quality image

Figure 3.16: Standard deviation of Gabor �ltered responses. The samples are
taken from FVC2000DB1.

f(u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

I(x, y)e−i2π( mx
M + ny

N ), i =
√
−1 (3.10)

The Fourier spectrum J(r) is computed as:

J(r) =

∑π
α=0

∑r+∆r
r |f(α, r)|∑π

α=0

∑rmax

rmin
|f(α, r)|

(3.11)

where f(α, r) is the spectrum f(u, v) representation in polar coordinate system
(α, r), rmin, rmax is the lowest and highest frequency in the reasonable Fourier
domain and ∆r is sampling step. Note reasonable domain is also called region
of interest (ROI) which is determined by the ridge frequency in a �ngerprint
image [HJ04].

The quality score QRPS is the maximum value of J(r) in the ROI. Figure 3.17
illustrates the Radial Fourier spectrum for good and bad images.
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(a) High quality image (b) Low quality image

Figure 3.17: Radial Power Spectrum of images. The �rst row presents the
original �ngerprint images, the second row is the spectrum where
ROI is inside the ring pattern. The third row is the magnitude
spectrum where ROI is the region between two lines. The samples
are taken from FVC2000DB1.
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3.3.5 Foreground area

The �ngerprint foreground refers to �ngerprint area in a image with recognized
ridge-valley structures. It is also should be taken into consideration, as it is likely
that a �ngerprint image possesses a small ridge-valley area with good quality.
As a result, the acceptable quality score is given to the entire image, however,
a low comparison score might be obtained for this image. Figure 3.18 depicts
the di�erent foreground areas. Fingerprint segmentation is further discussed in
section 5.3.

Figure 3.18: Fingerprint ridge-valley region, the valid ridge-valley area is
marked by green block. Taken from [ISO12c] [MMC+04].

3.4 Aggregation of QMAs

In order to measure the quality of a �ngerprint image comprehensively, plenty
of metrics should be combined to measure the quality in both local and global
levels.

3.4.1 Weighted average

An approach to combine the M local, N global metrics QLi and QGj with
valid area V A, is to compute their weighted average as the �nal uni�ed quality
score[ISO12c]:



3.4 Aggregation of QMAs 39

QS = σ1

M∑
i=1

αiQLi + σ2

N∑
j=1

βjQGj + σ3V A (3.12)

where

M∑
i=1

αi = 1,

N∑
j=1

βj = 1,

3∑
k=1

σk = 1 (3.13)

and σ, α, β are the weights. Note the input scores are uni�ed, i.e., 0 ≤ QLi ≤ 1,
0 ≤ QGj ≤ 1 and 0 ≤ V A ≤ 1, resulting in 0 ≤ QS ≤ 1.

3.4.2 Pattern classi�er

Beside the above approach, the issue can be formulated as a classi�cation prob-
lem. Pattern classi�er refers to a mathematical model that can intelligently
predict an output for same sort of sample based on the learned concept after
well-formed training. Training a pattern classi�er could be performed using
utility or utility-based quality scores which generated by the ground-truth com-
parison scores as described in section 2.4.

A neural network pattern classi�er is trained to classify �ngerprint quality is
quanti�ed into 5 values [TG09] [TW05] within NFIQ according to the feature
vector in the table 3.1.

Similarly a new feature vector can be established depending on M local, N
global QMA quality scores and valid area:

f = (QL1, ..., QLM , QG1, ..., QGN , V A)T (3.14)

Once the pattern classi�er is well-formed trained with a feature, the pattern
classi�er will be able to produce the resultant overall quality score or quality
category.
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Number Description
1 number of blocks that are quality 1 or better
2 number of total minutiae found in the �ngerprint
3 number of minutiae that have quality 0.5 or better
4 number of minutiae that have quality 0.6 or better
5 number of minutiae that have quality 0.75 or better
6 number of minutiae that have quality 0.8 or better
7 number of minutiae that have quality 0.9 or better
8 percentage of the foreground blocks of quality map with quality = 1
9 percentage of the foreground blocks of quality map with quality = 2
10 percentage of the foreground blocks of quality map with quality = 3
11 percentage of the foreground blocks of quality map with quality = 4

Table 3.1: Features used in NFIQ. Taken from [TG09].

3.5 Benchmarking QMAs

Massive publications state that QMAs should provide acute prediction of the
comparison, however, it is di�cult to assert whether these approaches are viable
and appropriate due to lack of formal speci�cation. This section will discuss the
approaches to compare the performance of proposed QMAs.

3.5.1 Error versus reject curves

Error versus reject curves (ERC) are proposed as an visually approach to eval-
uate how e�ciently rejection of low quality samples results in improved perfor-
mance [TG09].

From the same subject i, there is a pair of samples q
(1)
i , q

(2)
i are compared to

generate a comparison score s
(k)
ii by a comparator. Two sample's quality in

biometric comparison can be combined as:

qi = H(q
(1)
i , q

(2)
i ) (3.15)

whereH(x, y) =
√
xy+N(0, 0.01), N is Gaussian noise which serves to randomly

reject samples within a quality level and produces an approximation of the lower
convex hull of the geometric mean curve [PR96].
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For a level of acceptable quality threshold u, the set of low quality entries R(u)
is given by:

R(u) = {i : qi < u} (3.16)

The FNMR is the fraction of genuine comparison scores below a given threshold
t computed for those samples not in the set R(u).

FNMR(u) =
| {sii : sii ≤ t, i /∈ R(u)} |
| {sii : sii ≤ ∞, i /∈ R(u)} |

(3.17)

Note the value of t is �xed and set empirically, in practice it will be set to give
some reasonable non-match rate r, i.e. t = M−1(r) where M is the comparison
algorithm from one of the comparators.

With the di�erent quantile of acceptable quality threshold u, the performance
among with mentioned QMAs in section 3.3.2 are depicted in �g. 3.19, where
NFIQ is the resultant algorithm of NFIQ project. In practice it is not realistic
higher than 1

3 samples could be rejected, so at most 35% rejection is presented.
If the computed quality values are perfectly correlated with the genuine scores,
then FNMR should decrease quickly with the fraction rejected. Visually a good
QMA should approach to the ideal case which means all the low comparison
scores are caused by the low quality sample.

3.5.2 Spearman correlation

An alternative method is to present the correlation between QMAs and ground-
truth scores (e.g., utility or utility-based quality scores) using Spearman correla-
tion. In statistics, Spearman correlation, fully called Spearman's rank correlation
coe�cient, named after Charles Spearman who �rst proposed this method in
[Spe87] and often denoted by ρ. Di�erent with Pearson correlation [RN88], it is
a non-parametric measure the degree of association between two variables using
a monotonic function. The Spearman correlation ρ is given by:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2(yi − ȳ)2

(3.18)
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Figure 3.19: ERC for database CASIAFPV5-FULL [oSIoA] using a black-box
comparator. FNMR is set as 0.1 and at most 35% samples are
rejected.
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Consequently −1 ≤ r ≤ 1, +1 or −1 is obtained if relation between two variables
can be described by a perfect monotone function. Table 3.2 illustrates the
correlation among QMAs and utility scores.

Table 3.2: Spearman correlation coe�cients among QMAs and utility scores
within NFIQ 2.0. Taken from [NIS12]

Beside the correlation between the ground-truth and QMA scores, the correla-
tion between QMAs is more important, which is used to analyse whether the
two QMAs give the similar indication or the scores are complementary.
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Chapter 4

Orientation Field
Estimation

Based on the previous chapters with the concepts of biometrics and �ngerprints,
this chapter will discuss techniques to estimate orientation �elds of �ngerprints,
which can be used as a foundation of singular point localization in 5.

4.1 Orientation �eld

The term local ridge orientation was �rstly proposed in 1969 [Gra69], which
represents the ridge-valley structure of a �ngerprint. With regard to the orien-
tation in a �ngerprint image, it is an cyclic and unoriented direction ranging
from (−π2 ,

π
2 ], or (0, π] depending on the representation. The angle θij at the

pixel (i, j) is depicted in 4.1, where an additional value rij is often obtained
with each orientation θij to denote the reliability of the orientation. In the
other words, the value rij is high for good quality regions in the �ngerprint im-
age and low for noisy and seriously corrupted regions. Furthermore, Orientation
�eld (OF), also called directional �eld, refers to the overall orientation patten
in a �ngerprint.
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Figure 4.1: A �ngerprint image faded into the corresponding orientation image
computed over a square-meshed grid of size 16 × 16. Each element
denoted the local orientation of the �ngerprint ridges; the element
length is proportional to its reliability. Taken from [MMJP09].

4.2 Orientation �eld estimation

4.2.1 Previous work

OF estimation is an essential step of �ngerprint recognition, especially in �n-
gerprint classi�cation and singular point localization. In order to estimate an
accurate OF, plenty of approaches have been proposed and they can be classi�ed
as [JK10] [MMJP09] [GMM09] [ZG04]:

• Gradient-based: it is proposed by Kass and Witkin in 1987 [KW87].
This approach is the simplest and most natural approach based on com-
putation of gradients of pixels or blocks. Nevertheless, it is susceptible to
interference by scars, dirt, moisture of the �nger with interrupted, thick
or grainy ridge structures in the acquired image.

• Filterbank-based: also called slit-based approach, orientation is deter-
mined according to highest �lter response based on a �xed number of
reference orientations [JPH99] [JPHP00]. It is resistant to noises but not
accurate due to the limited number of pre-de�ned orientations. Further-
more, moderately high computation cost is required.

• Model-based: Sherlock and Monroe introduced a zero-pole model using
rational complex functions [SM93], and some variants have been proposed
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[VG96] [ZG04]. It has the disadvantage of requiring the prior knowledge
of the singular regions which is violate the motivation of this thesis.

4.2.2 Gradient-based approach

Compared with the other approaches, gradient-based approach is reported as the
most accurate estimation with lowest computation complexity [BG02] [GMM09]
[WHH07] [ZYHZ06]. Hence OFs are estimated using gradient-based approach.
The proposed gradient-based approach can perform both in pixel- and block-
wise, so the term element is used to represent the both cases in the following.

The pixel-wise gradient vectors [Gx Gy]T whose phase angle denoted the direc-
tion of the maximum intensity change are given by:

[
Gx
Gy

]
= ∇I(x, y) =

[
∂I(x,y)
∂x

∂I(x,y)
∂y

]
(4.1)

where I(x, y) is the intensity at pixel (x, y). An example �nger sample and
its Region of Interest (ROI) is depicted in �g. 4.2, of which the gradients are
depicted in �g. 4.2.

The ridge orientation is orthogonal to the gradient phase angle at each pixel,
however, the gradient vector cannot directly be used to compute because op-
posite gradient vectors will be cancelled out with each other although they
represents the same orientations. Furthermore the orientation obtained from
the gradient vectors should be cyclically in (−π2 ,

π
2 ], for instance, the value 3π

4
should be treated as π

4 . A feasible representation is proposed by doubling the
angles of the gradients so that opposite gradient vectors will point in the same
direction [KW87].

Gradient vectors can be converted to polar coordinates from Cartesian coordi-
nates:

[
Gρ
Gφ

]
=

[√
G2
x +G2

y

tan−1Gy

Gx

]
(4.2)

so that gradient vectors can be represented using polar coordinates:



48 Orientation Field Estimation

Figure 4.2: Example �nger sample, the ROI is marked in the red square. The
sample is taken from FVC2000DB2

Figure 4.3: Gradients of ROI. The direction of arrow is from the low to high
intensity.
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[
Gx
Gy

]
=

[
GρcosGφ
GρsinGφ

]
(4.3)

With the doubling the angle of gradients, the length of gradient vectors is
squared. By computing trigonometric identities, squared gradient vectors [Gs,x Gs,y]T

does not require Gρ and Gφ:

[
Gs,x
Gs,y

]
=

[
G2
ρcos2Gφ

G2
ρsin2Gφ

]
=

[
G2
ρ(cos

2Gφ − sin2Gφ)
G2
ρ(2sinGφcosGφ)

]
=

[
G2
x −G2

y

2GxGy

]
(4.4)

Figure 4.4 illustrates the squared gradients of ROI where the length is uni�ed
in order to be observed and the one ridge orientation only has a unique squared
gradient representation.

Figure 4.4: Squared gradients of ROI.

An e�cient implementation can be achieved if gradient vectors are considered
as complex numbers. As a result, �doubling the angle and squaring the length
of a vector� is equivalent to �squaring a complex number�:

Gs,x + jGs,y = (Gx + jGy)2 = (G2
x −G2

y) + j(2GxGy) (4.5)

A single orientation at �ne pixel level is sensitive to noises in �ngerprints, thus
the averaged squared gradient [Gs,x Gs,y]T of each element is computed accord-
ing to squared gradient vectors within a M ×N window W :
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[
Gs,x
Gs,y

]
=

∑WGs,x∑
W

Gs,y

 =

∑WG2
x −G2

y∑
W

2GxGy

 =

[
Gxx −Gyy

2Gxy

]
(4.6)

where

Gxx =
∑
W

G2
x (4.7)

Gyy =
∑
W

G2
y (4.8)

Gxy =
∑
W

GxGy (4.9)

The edge length M , N is suggested in [15, 35] pixels for a 500 dpi image [BG02]
[ZYHZ06], because high curvature property of ridgeline in singular region will
be lost with a large size, whereas it is noise-sensitive with a small one. Further-
more, the averaging of squared vectors leads to a consequence that the stronger
intensity have a higher vote in the average orientation than weaker one.

The average gradient direction Φ is given by:

φ =
1

2
∠(Gxx −Gyy, 2Gxy) (4.10)

where the function ∠(x, y) is computed by

∠(x, y) =


tan−1(y/x), x ≥ 0

tan−1(y/x) + π, x < 0 ∧ y ≥ 0

tan−1(y/x)− π, x < 0 ∧ y < 0

(4.11)

Subsequently Φ lies in ( 1
2π,

1
2π]

θ =

{
φ+ 1

2π, φ ≤ 0

φ− 1
2π, φ > 0

(4.12)
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Figure 4.5: OF of ROI.

Figure 4.5 depicted the ridge OF within ROI.

A approach is proposed to measure coherence at each element how well all the
squared gradient vectors [Gs,x Gs,y]T in the averaging windowW have the same
orientation [KW87]:

Coh =

|
∑
W

(Gs,x, Gs,y)|∑
W

|(Gs,x, Gs,y)|
(4.13)

As a result, coherence lies in [0, 1], where the minimum coherence 0 indicates
the gradient vectors are distributed over all directions and all parallel to each
other for maximum coherence 1, receptively. The coherence of the sample in
�g. 4.2 is depicted in �g. 4.6.

The gradient-based approach is mathematically proofed that is equal to the
Principal Component Analysis of the autocorrelation matrix of the gradient
vectors [BG02]. Furthermore, the major �aw of this approach is the unreliable
orientation might be computed due the to small denominator in eq. (4.11).
Secondly the discontinuous orientation may be obtained especially for the block-
wise estimation.
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Figure 4.6: Coherence of the sample in pixel level, 0 and 1 are respectively
mapped to black and white.

4.2.2.1 Redundant Estimation

In order to address the mentioned problem, hierarchical [USKV07] and weighted
averaging scheme [WHS05] are proposed to guarantee the continuous and smooth
OF. The basic idea behind the approaches is to establish a redundant estima-
tion for each target element and the latter possesses the better improvement in
terms of the accurateness and computation complexity.

The approach initially groups every K×K adjoining elements into a composite
block, in which every J×J (J < K) adjoining elements is grouped into a neigh-
bourhood D. For instance in �g. 4.7, the elements {I, II, IV, V } are D1, and
similarly {II, III, V, V I} areD2, {IV, V, V II, V III} areD3, {V, V I, V III, IX}
are D4. In each computation the averaged squared gradients in eq. (4.6) of cen-
trally targeted element is re-estimated in accordance with the averaged squared
gradients and coherence of it and its neighbourhoods:

[
Gs,x

Gs,y

]
=

[∑
ω ·Gs,x∑
ω ·Gs,y

]
(4.14)

where ω is the elementary weight in the K element composite block which is
given by:
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Figure 4.7: A composite block consists of 3×3 elements for the target element
V in the centre and four overlapping neighbourhoods D1, D2, D3,
D4. Taken from [WHS05].

∑
I

ω =
∑
I

r

K
= 1 (4.15)

r is the constant counting the times of element involving in the estimation, i.e.,
how strong is the correlation between the element and target element in terms
of the neighbourhood D. For the case in �g. 4.7, r is 4

16 for element V , 2
16 for

element II, IV , V I, V II, and 1
16 for element I, III, V II, IX.



54 Orientation Field Estimation



Chapter 5

Singular Point Localization

The previous chapter discusses approaches to estimate the orientation �eld of
�ngerprint image. Depending on an accurate orientation �eld, singular points
can be extracted as a landmark of the �ngerprint. This chapter discusses related
techniques for singular point localization, and proposes several pattern-based
�lters to improve detection correctness.

5.1 Singular point

Singular point (SP), also called singularity, consists of core and delta which is
usually associated with the point of higher ridge line curvature [MMJP09]. The
region around SP is called singular region which is commonly used for �ngerprint
alignment and classi�cation.

There are a few of de�nitions for SP, leading to a contradiction whether there is a
core in arch �ngerprints, because highest curvature ridgeline is not as prominent
as the other types depicted in �g. 5.1. Some publications state that there is no
SP in arch �ngerprint [MMJP09] [BG02], while core is detected as a reference
point [WBS12]. Therefore the most authoritative de�nitions in ISO/IEC 19794-
1:2011 are adopted [ISO11]:
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Core

Singular 

region

Figure 5.1: Arch �ngerprint where the singular region and core is marked
by square and circle respectively. The sample is taken from
FVC2000DB2.

• Core: topmost point on the innermost recurving ridgeline of a �ngerprint.
Generally, the core is placed upon or within the innermost recurve of a
loop.

• Delta: point on a ridge at or nearest to the point of divergence of two
typelines and located at or directly in front of the point of divergence.
The typeline refers to one of the two innermost friction ridges that start
parallel, diverge, and surround or tend to surround the pattern area.

In terms of the mentioned de�nition, there is a core point presented in the arch
�ngerprints, because it does present a �recurving� pattern in singular region
where ridges are curved backward. However, it is unnatural to claim the core
is on the innermost recurving ridgeline, as it does not perform the highest cur-
vature. Hence, the core point is de�ned on the ridge with highest curvature for
the arch �ngerprints in this thesis.

As a result, the analysis of the di�erent �ngerprint classes with regards to the
number of SPs and the relative examples are illustrated in �g. 5.2:

• Arch �ngerprints consist of one core point.
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(a) Left loop (b) Right loop (c) Whorl

(d) Arch (e) Tented Arch

Figure 5.2: SPs for di�erent type of �ngerprints, where cores and deltas are
marked by circles and triangles respectively. The samples are
taken from FVC2000DB2.

• Left loop, right loop and tented arch �ngerprints all consist of one core
and one delta point.

• Whorl �ngerprints consist of two core and delta points.

5.2 Singular point extraction

5.2.1 Related work

There are plenty of approaches proposed for SP extraction and most of them
are based on the ridge OF. They can be classi�ed as:

• Poincaré index : it is an natural and practical method based on Poincaré
index and �rstly proposed by Kawahgoe and Tojo in 1984 [KT84].
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Each element (i, j) is surrounded by a orientation �eld G, and then a
closed curve C is formed which is immersed in G. The Poincaré index
PG,C(i, j) is de�ned as the total rotation of the orientations of G along C
at (i, j). However, it is not resistant with noises and ine�cient especially
especially when smaller size of element is adopted in OF estimation.

Figure 5.3 illustrated an example for a 3× 3 element length curce C. The
path de�ning C is the ordered sequence of the eight elements dK (k = 0...7)
surrounding (i, j). The Poincaré index is then computed as:

Figure 5.3: Poincaré index computation in the 8-neighbourhood of points be-
longing to a whorl, core, and delta (from left to right), respectively.
Note that, for the core and delta points, the direction of d0 is �rst
chosen upward (to compute the angle between d0 and d1) and
then successively downward (when computing the angle between
d7 and d0). Taken from [MMJP09]

PG,C(i, j) =


0◦, (i, j)does not belong to any SP

360◦, (i, j)belongs to two core points

180◦, (i, j)belongs to core point

180◦, (i, j)belongs to delta point

(5.1)

Note when OFs are estimated in a �ne level using a smaller element, the
whorl type is detected as two core points.

• Local characteristics-based: this series of approaches analyses the ori-
entation so that the SP is characterized by high irregularity , curvature,
or symmetry [CLMM99] [SM92] [LZH06]. However, these methods cannot
provide an high accuracy.

• Partitioning-based: the orientation is only coarsely discretized by a
limited number of orientation values and each orientation value determines
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a region. SPs are detected on the crossing point of borderlines which
are formed between two adjacent orientations. Wang, Bhattacharjee and
Srinivasan reported an excellent result but it requires the pre-alignment
[WBS12].

5.2.2 Green's Theorem-based approach

In order to address the problems of noise-sensitivity and low computation ef-
�ciency of Poincaré index, an discrete line integral in applied using Green's
Theorem [BG02]. The algorithm doubles the orientation �eld resulting in an
interval (−π, π], and then compute gradients of the doubled orientation �eld,
that the gradient vectors around SPs is depicted in �g. 5.4. Because of the dou-
bling and integral, the Poincaré index values for non-SP, core and delta points
becomes approximated values which are approaching to 0, 2π, −2π respectively.

[
Jx(x, y)
Jy(x, y)

]
= ∇2θ(x, y) =

[
∂2θ(x,y)
∂x

∂2θ(x,y)
∂y

]
(5.2)

(a) Core (b) Delta

Figure 5.4: Gradients of doubled OFs. The core and delta possess particular
patterns respectively.

Due to the periodicity of ridge orientation, the gradients of doubled orientation
�eld should be computed cyclically, i.e., the transition of doubled orientation
from −π to π is continuous. For instance, there is only π

4 di�erence between − 3π
4

and π, instead of their absolute di�erence. An alternative approach is proposed
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to address this issue depending on the periodicity of trigonometric functions
[Has08]:

Jx =
∂2θ

∂x
(5.3)

= (sin22θ + cos22θ) · ∂2θ

∂x
(5.4)

= cos2θ · ∂sin2θ

∂x
− sin2θ · ∂cos2θ

∂x
(5.5)

and similarly along the y direction:

Jy =
∂2θ

∂y
(5.6)

= (sin22θ + cos22θ) · ∂2θ

∂y
(5.7)

= cos2θ · ∂sin2θ

∂y
− sin2θ · ∂cos2θ

∂y
(5.8)

Green's Theorem can be applied instead of using the conventional Poincaré index
method, whereas a closed line-integral over a vector �eld can be computed as
the surface integral over the rotation of this vector �eld [Nyk]:

∮
ωxdx+ ωydy =

∫ ∫
A

rot[ωx ωy]T dxdy =

∫ ∫
A

(
∂ωy
∂x
− ∂ωx

∂y
)dxdy (5.9)

where A is the surface area for the vector �eld [ωx ωy]T , and ∂A is the contour
around this area.

The discrete Green's Theorem can be applied by summing the gradients of the
doubled orientation [Jx Jy]T over the contour [YA06]:

Index =
∑

∆x,∆y along ∂A

(Jx ·∆x+ Jy ·∆y) =
∑
A

rot[Jx Jy]T =
∑
A

(
∂ωy
∂x
− ∂ωx

∂y
)

(5.10)

In practice because of the summing used in the computation, results in the non-
zero Poincare index values being spread over a small cluster of pixels around the
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SPs rather than being isolated at one pixel. Depending on the de�nition of SP,
one of the pixels performing the strongest rotation is identi�ed as the detected
SPs.

Compared with the conventional Poincaré index approach, this method is more
robust against noises, because obtained values are various instead of limited
candidates 0◦, 180◦, −180◦. As a result, noisy points without enough rotation
can be eliminated by setting a proper threshold while they might be detected as
SPs by conventional Poincaré index. Moreover, a typically spurious core-delta
pair being appeared nearby can be easily cancelled out using a proper size of
window.

Nevertheless, this method cannot detect core points in arch �ngerprints, as it
does not perform a strong rotation degree as the others although it possesses
the strongest rotation in the whole sample. As a solution, the �ngerprint is
considered as a arch type if there is no SP detected, and then the threshold
is lowered so that the point with the highest curvature in a arch �ngerprint is
extracted as core point.

5.2.3 Orientation of singular points

Furthermore, orientations of extracted SPs can be estimated by comparing the
doubled OF with precomputed reference models that representing prototypes
for both core and delta. The orientation of core is the direction where the core
points to, and for delta is the direction where one of the three vertexes points
to the top of the image, depicted in �g. 5.5

The e�ectiveness of this method is proofed [BG02], and the basic idea is that
all the components of doubled orientation �eld rotate the same angle when they
image rotates around the SP.

The reference models of doubled orientation �elds around core and delta can be
established by:

DOFcore,ref =
(y,−x)√
x2 + y2

(5.11)

DOFcore,ref =
(−y,−x)√
x2 + y2

(5.12)
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Figure 5.5: Orientations of SPs, the orientation of core and delta is represented
by the red and green arrows.

Note |DOFcore,ref | = |DOFdelta,ref | = 1 for all pixels. Example precomputed
reference models are illustrated in �g. 5.6.

(a) Core (b) Delta

Figure 5.6: Reference models of core and delta with the size of 11× 11 pixel.

The orientation of core is given by taking the element-by-element product of the
estimated doubled gradient vectors DOFcore,obs and the complex conjugated of
the reference model DOFcore,ref :

α̂C = ∠
1

N

∑
x,y

DOF ∗core,ref ·DOFcore,obs (5.13)

Similarly with delta, but the value is divided by three due the the de�nition:
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α̂D =
1

3
∠

1

N

∑
x,y

DOF ∗delta,ref ·DOFdelta,obs (5.14)

5.3 Segmentation

Gaussian �lter is usually applied to smooth the �ngerprints and reduce the ef-
fects of noisy areas on �ngerprint images [HA91], however, the strength of the
smoothing �lter is di�cult to determined because the foreground and back-
ground of �ngerprint su�ers from noises with di�erent degrees, i.e., SPs might
be missed with stronger Gaussian �lter and the slight smoothing �lter may not
remove the in�uence of noises.

One of the good choice is to segment the background and apply the Gaussian
�lter to the foreground. At �rst a simple and rough method is used by thresh-
olding the variance of each M ×N block [Meh93][Kov]:

V ar =
1

MN

M−1∑
i=0

N−1∑
j=0

(I(x, y)−Mean)2 (5.15)

where I is the intensity at pixel (x, y) and Mean is the mean of the intensity in
each block.

Consequently the �ngerprint segmentation might su�er from the following prob-
lems:

• Singular region as part of foreground might be eliminated exactly, illus-
trated in �g. 5.7.

• More than one fragments are detected due to latent �ngerprint or noises,
which might cause spurious SPs, illustrated in �g. 5.8.

• The foreground edgeline shows blocking artefacts so that part of back-
ground is still remained, illustrated in �g. 5.9.

It is valuable to apply the mathematical morphology to images [Jai89]. Empir-
ically a �ngerprint image always possesses a unique connected area with round
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(a) Original (b) Segmentation

Figure 5.7: The singular region is eliminated because of the low variance, and
the boundaries of foreground is surrounded by green lines. The
sample is taken from FVC2000DB2.

(a) Original (b) Segmentation

Figure 5.8: More than one fragments are remained due to the latent �nger-
print, and the boundaries of foreground is surrounded by green
lines. The sample is taken from FVC2000DB2.
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(a) Original (b) Segmentation

Figure 5.9: The edge of foreground presents a square shape, and the bound-
aries of foreground is surrounded by green lines. The sample is
taken from FVC2000DB2.

edge. Hence after the rough segmentation, a couple of morphological methods
is applied as a post-possessing:

• Select the largest area as the underlying �ngerprint foreground.

• Fill all the holes in the selected area.

• Morphologically open the selected area using disk shape to erode the
square shape edge.

The same �ngerprints are segmented with post-processing, where the mentioned
issues are resolved, depicted in �g. 5.10.

5.4 Singular point validation

After the segmentation, there still might be some spurious SPs remained on the
foreground due to noises. Filters are required to proposed in order to eliminate
false detections from a set of candidate SPs. Simple idea takes the mean and
standard variance as the �lters, but it does not provide fair performance because
OF for the areas with low mean and variance might be estimated accurately
resulting in correct SPs detections, depicted in �g. 5.11.
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(a) Figure 5.7 (b) Figure 5.8 (c) Figure 5.9

Figure 5.10: The results of segmentation and the boundaries of foregrounds
are surrounded by green lines. The samples are taken from
FVC2000DB2.

Figure 5.11: Correct SPs detection with low mean and variance area. The
cores is marked by the circles. The sample is taken from
FVC2000DB2.
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A series of semantic �lters is proposed, which are based on the assumption that
the core is in the centre of the �ngerprint area and further that the �ngerprint
area provides higher signal quality if around the core. Therefore, if SPs does not
satisfy the �lters then part of them which are near to the edge will be removed.

In any �ngerprint image, the following conditions should be satis�ed:

• C2D2: There are at most two cores and two deltas.

• CCDIS: If there are two cores, then they are not far from each other.

• CCORIDIFF: If there are two cores, then they possess the approximately
opposite orientations.

• DDORIDIFF: If there are two deltas, then they possess the similar ori-
entations.

• DCDANGLE: If there are two deltas and at least one core, then angle
delta1− core− delta2 lies in a certain interval depicted in �g. 5.12.

Delta1

Delta2

Core

Figure 5.12: Angle delta1− core− delta2 of a image, the midpoint is used as
the position of core if there are more than one core points.
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Chapter 6

Proposed Quality
Measurement Algorithms

The previous chapters discuss the approaches to conduct OF estimation and
SP localization respectively. Based on the mentioned methods, this chapter
proposes several QMAs to measure �ngerprint image quality.

The international standard ISO/IEC 29794-1:2009 de�nes that a quality score
lies in [0, 100] with ascending order in terms of the quality, i.e. high score refers
to a high quality and vice versa [ISO12b]. Hence eventually all the scores of
proposed QMAs are normalized and inverted if they are descending.

6.1 Position-based QMAs

Core points are located in the centre of �ngers so that the position of core is
commonly used to obtain displacement of �nger sample. Plenty of publications
suggest to use these centre points as registration points to line up a pair of
�ngerprint in comparison process, because the displacement or presence of core
point is one of the criterion to register a �ngerprint for measuring whether the
�nger is placed properly [Weg82] [Lin98]. The error or warning can be reported
if its �ngerprint performs a large displacement because a poor comparison score
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might be obtained between two �ngerprint images if they shift to the opposite
direction.

Depending on the position of core, metrics can be established to measure the
displacement of �ngerprint image, i.e., whether the core is located around the
centre of �ngerprint foreground. Given a foreground of a �ngerprint, the coor-
dinate of centre (Cx, Cy) of N pixels foreground is computed as:

Cx =
1

N

N−1∑
i=0

Mx (6.1)

Cy =
1

N

N−1∑
i=0

My (6.2)

where [Mx,My] is the index of foreground mask along x and y direction. It
is fair that the centre of foreground is computed without the consideration of
the image intensity, as there is no interest to �nd the centre of gravity of a
�ngerprint image.

6.1.1 Euclidean distance

• Distance: the quality score is given by the distance from the centre to
the core, depicted in �g. 6.1a. For a given �nger sample, the algorithm
performs as follows:

1. Obtain the �ngerprint foreground by the segmentation algorithm in
section 5.3.

2. Localize the position of core point by the algorithm in section 5.2.2
and apply the core-related �lters in section 5.4. If there are two cores
detected, the midpoint is used as the core position.

3. The quality score is given by Euclidean distance from the centre of
the foreground to the point of core.

4. Invert the order of the quality scores and normalize to [0, 100].

• Distance ratio: The quality score is given by the ratio of the distance
from the centre to the core, to the maximum distance from the centre
to the edge of the foreground, illustrated in �g. 6.1b. For a given �nger
sample, the algorithm performs as follows:
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C

O

(a) distance

C

O

M

(b) distance ratio

Figure 6.1: Example of distance and distance ratio, where O is the centre of
the foreground, C is the position of the core point, and M is the
farthest point from the centre to the boundary. The sample is
taken from FVC2002DB2 [MMC+02].

1. Obtain the �ngerprint foreground by the segmentation algorithm in
section 5.3.

2. Localize the position of core point by the algorithm in section 5.2.2
and apply the core-related �lters in section 5.4. If there are two cores
detected, the midpoint is used as the position of core.

3. The quality score is given by the ratio:

Q = 1− OC

OM
(6.3)

where OC is the distance from the centre to core, and OM is the
maximum distance fro the centre to the edge of the foreground.

4. Normalize the quality scores to [0, 100].

The proposed distance and distance ratio are based on the conclusion that the
displacements in x and y have the same e�ect to the comparison score, so the
weights for di�erent directions are not required. The conclusion is obtained with
prototype databases FVC2000DB2 and FVC2002DB2 [MMWJ02] [MMC+02],
which both consist of 880 images and the core points are marked manually.
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The similar e�ect is made although there are di�erent size of height and width,
256 by 364 and 396 by 560 pixels respectively. Figure 6.2 illustrates the e�ects
of displacements both in x and y direction to one of the comparators. The
complete observation for three comparators can be found in the appendix A.

(a) x dirction (b) y direction

Figure 6.2: The e�ects of displacements to the genuine comparison scores for
FVC2000DB2 using one of the comparators. The value of each
block is the mean of the comparison scores within 10 pixels.

The distance ratio consider the area of the foreground, because a high score
might be obtained in a large area foreground although the core is far away from
the centre. By contrast, the dis only consider the absolute distance. Both two
core points might be absent in a �ngerprint image, so workaround in this case
is to give a low value 0.

6.1.2 Horizontal and vertical distance

Besides Euclidean distance, It is also interesting to observe the e�ect of displace-
ment in either horizontal or vertical direction, i.e., the length of projection onto
x or y axis. For instance, there is a possibility that the second phalanx of �nger
is also captured in a sample, and thus the vertical dislocation is larger and core
points cannot be in the centre of the �ngerprint area. As a result, the measure-
ment of displacement in x direction is signi�cant because more �ngerprint area
is lost with displacement in x direction. Vice versa the same scenario might be
existed in the vertical direction. For a given �nger sample, quality scores are
given given by :

• Horizontal distance: the horizontal distance from the centre to the core,
depicted in �g. 6.3a.
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• Horizontal distance ratio: the ratio of the horizontal distance from the
centre to the core, to the maximum horizontal distance from the centre to
the edge of the foreground, depicted in �g. 6.3b.

• Vertical distance: the vertical distance from the centre to the ore, de-
picted in �g. 6.3a.

• Vertical distance ratio: the ratio of the vertical distance from the centre
to the core, to the maximum vertical distance from the centre to the edge
of the foreground, depicted in �g. 6.3b.

C

O
O’

(a) Horizontal and vertical distance

C

O

O1
M1

M2

(b) Horizontal and vertical distance ratio

Figure 6.3: Example of horizontal, vertical distance and horizontal, vertical
distance ratio, where O is the centre of the foreground, C is the
position of core point, OO1 and CO1 are the horizontal and verti-
cal distance of OC respectively; M1 and M2 is the farthest point
from the centre to the edge on horizontal and vertical direction
respectively. The sample is taken from FVC2002DB2.

The proposed algorithms perform similarly with distance and distance ratio in
section 6.1.1. The position of core point is detected, and the horizontal and
vertical distances and ratios are computed, the scores computed by ratios are
inverted, and all the scores are normalised to be in [0, 100].
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6.2 Orientation-based QMA

The comparison algorithms high likely su�er from the not only displacement
but also rotation of the �nger sample, i.e., strong rotation might degenerate the
biometric performance. ISO/IEC 19794-4:2011 proposes the �nger orientation
is measured as angle with respect to the horizontal axis from right to the left
[ISO12c], depicted in �g. 6.4. The �nger orientation generally can be represented
by the orientation of core point (one of the cores for whorl type) although there
exists minor di�erence for left and right loop. Therefore, the orientation of core
can be proposed as a metric to check if the �nger is placed properly without
signi�cant rotation.

Figure 6.4: Finger orientation, the orientations of �ngers (from left to right)
are θ10, θ9, θ8, θ7 respectively. Taken from [ISO12c].

• Orientation: the quality score is given by the rotation of the �nger sam-
ple. In practice the ideal �ngerprints are captured with the orientation
π
2 (�ngertip points to the upward). Hence the quality score is highest at
π
2 and decreased along the angle of rotation in �g. 6.5a. The algorithm
performs as follows:

1. Obtain the �ngerprint foreground by the segmentation algorithm in
section 5.3.
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2. Localize the position of core point by the algorithm in section 5.2.2
and apply the core-related �lters in section 5.4. If there are two
cores detected, the core near to the foreground centre is selected to
compute the orientation using the method in section 5.2.3.

3. The quality score is given by the orientation, highest score is obtain
when �ngertip points to the top of image, and scores are decreased
symmetrically along with the rotation from left and right side. An
example is illustrated in �g. 6.5b:

y

O

x

(a) The quality score is decreased symmet-

rically along the arrows

C

O

O’

x

y

C’

(b) Orientation ∠OO′C, C′O′ is the ex-

tended line of CC′ and intersects y axis
at point O′.

Figure 6.5: Orientation of the �ngerprint, the x and y axes are shifted to the
centre of foreground O and C is the position of core point, and.
The sample is taken from FVC2002DB2.

4. Normalize the quality scores to [0, 100].

The highest value of this metric is selected by the empirical observation that
most of the sample is captured upside down (�ngertip points to the top of
the image). Moreover the ideal orientation can be adjusted according to the
database.

6.3 Coherence

Due to the continuity and smoothness of �ngerprint ridges, the ridges in a small
area usually provide a similar shape so that the sharp orientation changes often
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denote low-quality area. The squared gradient can uniquely represent each ridge
orientation as the discussion in chapter 4, therefore the coherence as the norm
of the sum of orientation vectors divided by the sum of their individual norms
can be used to measure the quality of each block [MMJP09].

• Coherence: the quality score is given by the mean of the coherence values
of all blocks. The algorithm performs as follows:

1. Compute the coherence of each block using eq. (4.13). The example
is depicted in �g. 6.6.

(a) Original (b) Coherence

Figure 6.6: Coherence of each 32 × 32 block, high and low values are map
to white and black receptively. The sample is taken from
FVC2002DB2.

2. The quality score is given by the mean of the coherence values of all
blocks.

3. Normalize the quality scores to [0, 100].

• Coherence Segment: using segmentation, the quality score is given by
the mean of the coherence values of foreground blocks. The foreground is
segmented by thresholding the variance in 4.13, because the each whole
block is required to be maintained, i.e., mathematical morphology might
break the desired blocks.

1. Obtain the �ngerprint foreground by the segmentation algorithm in
eq. (5.15).
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2. Compute the coherence of each block on the foreground using eq. (4.13),
the block size is selected as same in segmentation. An example is de-
picted in �g. 6.7.

(a) Original (b) Segmentation (c) Coherence

Figure 6.7: Coherence of each 32 × 32 foreground block which is surrounded
by the green lines, and the high and low values are map to white
and black receptively. The sample is taken from FVC2002DB2.

3. The quality score is given by the mean of the coherence values of all
foreground blocks.

4. Normalize the quality scores to [0, 100].

As for computation, for block i, the cohi in eq. (4.13) can be computed further
by eq. (4.9):

cohi =

|
∑
W

(Gs,x, Gs,y)|∑
W

|(Gs,x, Gs,y)|
(6.4)

where the numerator is given by:
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|
∑
W

(Gs,x, Gs,y)| =
√

(
∑
W

(Gs,x))2 + (
∑
W

(Gs,y))2

=

√
(
∑
W

(G2
x −G2

y))2 + (
∑
W

(2GxGy))2

=
√

(Gxx −Gyy)2 + 4G2
xy

(6.5)

and the denominator is given by:

∑
W

|(Gs,x, Gs,y)| =
∑
W

√
((Gs,x))2 + (

∑
W

(Gs,y))2

=
∑
W

√
(G2

x −G2
y)2 + (2GxGy)2

=
∑
W

√
G4
x + 2G2

xG
2
y +G4

y

=
∑
W

√
(G2

x +G2
y)2

=
∑
W

G2
x +G2

y

= Gxx +Gyy

(6.6)

In the computation the denominator might be equal to 0 so that the workaround
is to ignore the these blocks for computing the mean value. Similarly with
orientation certainty level as discussed in section 3.3.3.1, a low value of singular
region is given because of the high curvature.
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Experimental Setup

This chapter describes the experiment preparations in this thesis. Foremost,
the �ngerprint sample databases are selected. Furthermore all the empirical
parameters of proposed algorithm in chapter 4, chapter 5 and chapter 6 are
speci�ed.

7.1 Database selection

In order to conduct the experiments, the databases of �ngerprints samples are
required.

• FVC2000DB2: Fingerprint Veri�cation Competition (FVC) 2000 database
2 was collected using low-cost capacitive sensor �TouchChip� by ST Mi-
croelectronics [MMWJ02] with 500 dpi resolution. There are 110 �ngers
and 8 impressions per �nger resulting in 880 256 × 364 �ngerprints. The
examples are illustrated in �g. 7.1.

• FVC2002DB1: FVC 2002 database 1 was collected by optical sensor
"TouchView II" by Identix with 500 dpi resolution. The 880 388 × 374
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Figure 7.1: Example �ngerprint images in FVC2000DB2.

Figure 7.2: Example �ngerprint images in FVC2002DB1.

pixels images in the same �le structure are acquired [MMC+02]. The
example �ngerprint images are depicted in �g. 7.2

• FVC2002DB2: FVC 2002 Database 2 was collected by optical sensor
�FX2000� by Biometrika with 569 dpi resolution. The 880 296×560 pixels
images in the same �le structure are acquired [MMC+02]. The example
�ngerprint images are depicted in �g. 7.3

Figure 7.3: Example �ngerprint images in FVC2000DB2.

• SD14-BKA-GTD: ground-truth database of which foregrounds, minu-
tiae, and SPs are identi�ed by the forensic experts in Federal Criminal
Police O�ce (BKA) and CrimeTrac, based on the NIST Special Database
14 including 486 832×768 pixels o�-line inked impression images. All the
�ngerprints are scanned at 19.7 pixels per mm and examples are depicted
in �g. 7.4.

• MCYT330PB: a subset of Ministerio de Ciencia y Tecnología (MCYT)
330 biomodal Fingerprint subcorpus [OGFAS+03]. 330 individuals has
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Figure 7.4: Example �ngerprint images in SD14-BKA-GTD.

been acquired by a CMOS-based capacitive capture device, model 100SC
from Precise Biometrics, with a resolution of 500 dpi. Each individual
provides 10 �ngers and 12 acquisitions resulting 39600 300 × 300 pixels
�ngerprints 1.

• MCYT330DP: the other subset of MCYT 330 biomodal Fingerprint
subcorpus [OGFAS+03]. Same �le structure are collected with an optical
capture device, model UareU from Digital Persona, also with a resolution
of 500 dpi. The resolution of images are 296× 400 pixels.

• CASIAFPV5-FULL: CASIA Fingerprint Image Database Version 5.0
consist of 20,000 �ngerprint images of 500 subjects [oSIoA]. Each �nger
is captured for 5 acquisitions by URU4000 optical �ngerprint sensor with
500 dpi, so that the image resolution is 328 × 356. The examples are
depicted in �g. 7.5.

Figure 7.5: Example �ngerprint images in CASIAFPV5-FULL.

• CASIAFPV5-SUB: there is large-scale systematic rotations in CASIA5-
FULL where the orientation distribution of �nger sample is illustrated
�g. 7.6. It is also interesting only to analyse the performance of samples
which the �nger points to top of the image and thus the samples whose
rotation is greater than π

4 are �ltered out. As a result 6603 samples are se-
lect in this subset. The full version of distance and orientation distribution
for databases can be observed in appendix B.

The small-scale databases FVC2000DB2, FVC2002DB1, FVC2002DB2, SD14-
BKA-GTD are used to evaluate the performance of the �st experiment - SP

1MCYT bimodal database is con�dential according to the MCTY-license.
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Figure 7.6: Orientation distribution for CASIA-FULL. The orientation is es-
timated using the Orientation metric in section 6.2. The x coor-
dination refers to the orientation values, i.e., value π and 0 refers
to non-rotation and full-rotation.

localization. On the other hand, it make more sense to observe the performance
of QMAs for large databases, so MCYT330PB, MCYT330DP, CASIAFPV5-
FULL and CASIAFPV5-SUB are adopted.

7.2 Orientation �eld estimation

This section describes the experiment perpetration for OF estimation, which all
the related parameters are speci�ed. The database FVC2000DB2, FVC2002DB1,
FVC2002DB2, and SD14-BKA-GTD are used in this part of experiment.

Initially the Gaussian window is adopted to smooth the �nger images in order to
reduce the in�uence of the noises [Lin93]. For a 500 dpi image, 2×2 window and
σ = 6 is taken. Then the segmentation and morphological processing described
in section 5.3 is applied with 8× 8 window and threshold 0.2.

Based on the obtained foreground, the OF is estimated as the foundation of SP
extraction. In order to maintain the SP information and reduce the interference
of noises, the �ngerprint samples can be downsized. Good results are achieved
for the 500 dpi images by resizing to the quarter of the original image. Meanwhile
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much less computation is requested due to the processing of smaller images.

As mentioned in section 4.2.2, the orientation estimation can be carried out both
in pixel and block level. As for the resized images, the pixel-wise computation is
selected, as in section 5.2.2 the computation of Poincare index values requires a
cluster of elements to approach 2π and −2π for core and delta respectively, i.e.,
pixel-wise element can provide more values involved in the computation. As for
averaging the orientation for each pixel, the window size 15× 15 is empirically
selected for 500 dpi image. For SD14-BKA-GTD 25×25 pixels window is taken
because of the di�erent resolution and serious noises.

The redundant OF estimation in section 4.2.2.1 can improve the accurateness
for larger size element. However, for pixel-wise OF estimation it does not o�er
dramatical improvement and spend more time. As a result, redundant OF
estimation is not applied for pixel-wise element in the experiment.

7.3 Singular point localization

This section describes the experiment perpetration for SP localization, and all
the related parameters are speci�ed.

7.3.1 Singular point identi�cation

The �ngerprint samples captured by various sensors are intended to be observed.
Therefore, SD14-BKA-GTD are selected for inked samples of which the SPs
are marked by the �ngerprint specialists. FVC2000DB2 is used for capacitive
sensors, FVC2002DB1, FVC2002DB2 are used for optical sensors, and the SPs
in those databases are identi�ed manually according to the de�nition in 5.1.

7.3.2 Singular point extraction

Based on the estimated OF, three approaches of SP extraction - conventional
Poincaré index, Green's Theorem-based approach and Green's Theorem-based
approach and proposed �lters are tested to compare the performance.
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7.3.2.1 Poincaré index

Using the algorithm in section 5.2.1, each 3× 3 pixels curve is used to compute
the Poincaré index around the central pixel.

7.3.2.2 Green's Theorem-based approach

As for the Green's Theorem-based approach, a relatively large 23× 23 window
are applied in the computation of Poincaré index values, so that the commonly
spurious core-delta pair can be cancelled out itself by the summation.

The thresholds are selected by the DET curves in �g. 7.7, which plots the false
(false positive) and missed (false negative) detection rate for various thresholds.

(a) FVC2000DB2 (b) FVC2002DB1

(c) FVC2002DB2 (d) SD14-BKA-GTD

Figure 7.7: DET curves for databases where the thresholds are from 5.0 to 6.2
(step is 0.1).
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The principle for selecting is to choose the threshold resulting in the least number
of errors (sum of false and missed detection), as a result the thresholds for core
and delta are speci�ed in table 7.1.

Database Core Delta
FVC2000DB2 6.1 -6.2
FVC2002DB1 5.8 -6.2
FVC2002DB2 5.9 -6.2

SD14-BKA-GTD 6.2 -6.2

Table 7.1: The thresholds of core and delta for each databases
.

7.3.2.3 Green's Theorem-ased approach with proposed �lters

As for SP validation, the parameters of proposed �lters in section 5.4 are applied
to eliminate the spurious SPs. The parameters in each �lter are speci�ed in
table 7.2.

Database CCDIS CCORIDIFF DDORIDIFF DCDANGLE
FVC2000DB2 [0, 101] [0, 1.6] [0, 0.2] [1.2, 1.5]
FVC2002DB1 [0, 107] [0, 1.4] - -
FVC2002DB2 [0, 115] [0, 1] - -

SD14-BKA-GTD [0, 112] [0, 1.6] [0, 0.8] [0.8, 2.6]

Table 7.2: The values of parameters used in proposed pattern-based �lter. The
DDORIDIFF and DCDANGLE is not required for FVC2002DB1
and FVC2002DB2 because they already possess low false detection
rate.

.

7.4 Proposed QMAs

This section describes the preparation for the second part, QMAs assessment.
The computation for the comparison scores, utility scores, and quality scores
are explained, as well as the empirical parameters used in the proposed QMAs
are speci�ed. In this part, large-scale database MCYT330PB, MCYT330DP,
CASIAFPV5-FULL and MCYT330FPV5-SUB are used.
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7.4.1 Fingerprint data computation

Three commercial comparison algorithms are used for research purposes which
are provided by the industrial vendors. The source of these comparators is
con�dential so that they are used as black-box to produce the comparison scores
in terms of a pair of �ngerprint samples. The codenames for these anonymous
comparator are called 28, 63 83 which are used in this thesis.

7.4.1.1 Comparison score calculation

Genuine and imposter comparison scores are computed in each database by the
three comparators:

• Genuine comparison scores: all the genuine comparison (same �nger
from the di�erent acquisition) are computed.

• Imposter comparison scores: 25 imposter comparison scores (di�erent
�nger) are computed for the large-scale database MCYTPB, MCYTDP,
CASIAFPV5-FULL and CASIAFPV5-SUB. All the imposter combina-
tions are selected by random seeds.

7.4.1.2 Utility score calculation

The utility values are computed using comparator 28, 63 and 83, in accordance
with ISO/IEC TR 29794-4 [ISO12b] as describe in section 2.4.3.1. They are
used as �ground truth� metric for quality, i.e. the correlation coe�cients of the
quality values with utility are supposed to indicate their dependency on quality
and vice versa.

7.4.2 Fingerprint quality estimation

For each �nger sample, the quality scores are computed by the reference and
proposed QMAs.
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7.4.2.1 Reference QMAs

The resultant algorithm of NFIQ introduced in section 3.4.2:

• NIST Finger Image Quality (NFIQ)

Several NFIQ 2.0 candidate quality features introduced in section 3.3.2 :

• Orientation Certainty Level (OCL)

• Frequency Domain Analysis (FDA)

• Gabor (GABOR)

• Radical Power Spectrum (PS)

7.4.2.2 Proposed QMAs

The global SP localization-based approaches proposed in section 6.1 and sec-
tion 6.2:

• Distance (DIS)

• Distance ratio (DISR)

• Horizontal distance (HDIS)

• Horizontal distance ratio (HDISR)

• Vertical distance (VDIS)

• Vertical distance ratio (VDISR)

• Orientation (ORI)

The local method by measuring the coherence of ridgeline proposed in sec-
tion 6.3:

• Coherence (COH_x): x = 16, 32, i.e., this QMA is assessed with the two
size of block, 16× 16, 32× 32 pixels.

• Coherence Segment (CS_x): x = 16, 32, similarly the QMA is assessed
using the 16× 16, 32× 32 pixels blocks.
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7.4.3 Error versus reject curves

ERC is a visual approach to evaluate the performance of proposed QMAs as
explained in section 3.5.1, and empirically the FNMR is set as 0.1 and at most
35% samples are rejected. There might be a variety of QMAs are presented in
the same graph, so that it is di�cult to compare if they are seriously multiple
intersection. In order to improve the readability, the green area under the curve
in �g. 7.8 is used to indicate the performance. Therefore, the QMA possesses
better performance if the area is in proximity of 0.

Figure 7.8: Example area of ERC curve. For the ease of reading, the area
under the curve is enlarged as 100 times. The area in yellow
indicates the area of ideal case, and green indicates the area under
the QMA curve subtract the ideal area.

7.4.4 Spearman correlation tables

As mentioned in section 3.5.2, the Spearman correlation is the rank correlation
which can be used among the QMAs and �ground-truth� utility scores. Fur-
thermore among the QMAs, correlation coe�cients with other feature's values
indicate the potential redundancy among the di�erent features. In order to be
readable, the correlation matrices are coloured according to the absolute value
of the correlation coe�cient (darker colour for higher absolute values) and the
coe�cients are shown multiplied by 100 and rounded.
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7.4.5 Utility heatmaps

In order to investigate the e�ect of displacement on the biometric performance,
utility heatmaps are generated according to the position of core points (middle
point is adopted if there are two cores) and utility scores. These utility heatmaps
can be plotted for comparator 28, 63 and 83 respectively to observe their per-
formance in terms of the displacement of the �nger image using the dislocation
of core points. In addition, the number of samples in each area is also plotted
in order to comprehensively analyse utility heatmaps, i,e., the utility scores are
meaningful only if they are averaged by plenty of samples.

7.5 Computation aspects

All the algorithms are implemented in Matlab, and the execution time is tested
based on a 3.0 GHz with duo core computer with 4 GB memory. The exe-
cution time is computed by averaging the processing time for 100 samples in
FVC2000DB2 (256 × 364 pixels) and the I/O time is included.
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Chapter 8

Experimental Results

Associated with the previous chapter 7 the experiment is conducted to evaluate
performance of OF estimation, SP localization as well as proposed QMAs.

8.1 Orientation �eld estimation

The OF estimation approach can be carried out in either pixel- or block-wise,
and this section presents resultant OF which is estimated in pixel-wise described
in section 7.2.

8.1.1 Orientation �eld estimation assessment

Since no ground-truth database can be used to benchmark the estimation of OF,
so several examples are presented. The OF of region of interest (ROI) su�ers
from the di�erent noises e�ects, caused large creases, callus, moist or smudges
are illustrated:

In �g. 8.1, for the left original �nger sample, the OF estimation for ROI is �cor-
rect� locally if only the ROI are observed. However, globally the OF estimation
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is incorrect because of the interference of large area noises, resulting in spurious
core and delta area. For the right sample, the resizing operation can improve
the accurateness of OF estimation because the areas of noises are downsized.

Figure 8.1: Comparison of pixel-wise OF estimation for original (left) and
quarter size (right). Squares, circles and triangle refer to ROI,
spurious core and delta region. The sample is taken from
FVC2000DB2.

Figure 8.2 illustrates the performance of the approach for the detailed area.
Although the �nger sample is resized as quarter, the approach can still o�er
accurate OF estimation. The OF of crease of ridgeline is restored by averaging
squared gradients, and even though the OF approaching to the boundary can
be estimated correctly.

Figure 8.2: Pixel-wise OF for quarter size sample, squares refers to ROI. The
sample is taken from FVC2000DB2.

However, the seriously corrupted area cannot be estimated in �g. 8.3 because the
ridge-valley structure of ROI and the area around ROI has almost disappeared.
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Figure 8.3: Pixel-wise OF for seriously corrupted ridgeline area, the squares
refers to ROI. The sample is taken from FVC2000DB2.

8.1.2 Timing

The execution time of OF estimation is tested in pixel-wise for original and
quarter size, the execution time is 0.44s and 0.11s respectively. On the other
hand, the block-wise estimations with redundant estimation are tested based
on the original size, 4 × 4, 8 × 8 and 16 × 16 pixels take 0.10s, 0.09s, and
0.08s respectively, and. If the redundant estimation is applied with 3× 3 pixels
window, the execution time are 0.70s, 0.68s, and 0.65s.

Furthermore, the proposed segmentation algorithm requires 0.42s per quarter
size sample.

8.1.3 Summary

The approach of OF estimation can provide a accurate OF for the fair quality
sample. The resizing operation is applied to resist the interference of large-scale
noises, but the OF cannot be estimated for the seriously corrupted area.

As for timing, the approach OF estimation which used in the following SP
extraction only takes 0.11s, segmentation takes 0.42 in quarter size.
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8.2 Singular point localization

This section presents the result of SP localization based on speci�ed parameters
in section 7.3.2.

8.2.1 Singular point extraction assessment

The results of the three approaches, conventional Poincaré index in section 5.2.1,
Green's Theorem-based approach in 5.2.2 and Green's Theorem-based approach
with proposed �lters in section 7.3.2 are presented in following. The performance
for core, delta and SP (core and delta) are presently separately. The values of
false (false positive) and missed (false negative) detection are computed with
regards to the number of samples, i.e., what percent of samples have false or
missed detection. For the ease of reading, the percent sign % is omitted in the
following tables.

• FVC2000DB2

Type Error PI Green Green & Filters

Core
False 26.7 11.4 6.6
Missed 7.7 4.8 6.6

Delta
False 29.0 5.3 4.9
Missed 3.4 4.7 4.8

SP
False 33.5 13.4 9.9
Missed 11.1 9.0 10.7

Table 8.1: Results of SP localization for FVC2000DB2 (in %).

• FVC2002DB1

Type Error PI Green Green & Filters

Core
False 13.9 6.3 3.0
Missed 3.4 2.0 3.1

Delta
False 14.6 0.8 0.8
Missed 3.3 3.2 3.2

SP
PI 24.9 7.0 3.8

Missed 6.7 5.2 6.3

Table 8.2: Results of SP localization for FVC2002DB1 (in %).
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• FVC2002DB2

Type Error PI Green Green & Filters

Core
False 15.9 6.9 3.3
Missed 4.8 3.0 3.6

Delta
False 18.5 3.5 3.5
Missed 2.3 2.3 2.3

SP
False 24.6 8.6 5.9
Missed 7.1 5.3 5.9

Table 8.3: Results of SP localization for FVC2002DB2 (in %).

• SD14-BKA-GTD:

Type Error PI Green Green & Filters

Core
False 58.9 31.3 9.9
Missed 8.4 9.0 10.5

Delta
False 62.4 23.5 11.3
Missed 4.7 7.2 9.3

SP
False 66.7 38.5 17.3
Missed 11.5 14.8 15.0

Table 8.4: Results of SP localization for SD14-BKA-GTD (in %).

The conventional Poincaré index method possesses the worst performance, which
in general possesses lower missed rate, but rather higher false detection rate.

In contrast, the Green Theorem-based approach are more robust for the noises,
resulting to relatively lower false detection, especially for FVC2002DB1 and
FVC2002DB2 (3.8% and 5.9% respectively). The missed detection rate is almost
equivalent to conventional Poincaré index method.

By �ltering out the spurious SPs by proposed �lters, the SPs are validated so
that the false detection is further decreased dramatically. Meanwhile the missed
detection rate is slightly higher due to the elimination by mistake. A typical
case is SD14-BKA-GTD, which the false rate detection is dramatically decreased
(from 38.5% to 17.3%), and SPs in only more 0.2% sample are missed.
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8.2.2 Timing

The SPs are detected based on the obtained OF (quarter size), and the �lters
are applied. As a result, Poincaré index and Green's Theorem version takes
1.45s and 0.09s respectively.

8.2.3 Summary

Conventional Poincaré index approach is not noise-resistant, and Green's Theorem-
based method is more robust because the spurious core-delta pair can be can-
celled out by the summing in the window, depicted in �g. 8.4. To address the
high sensitivity and low computation e�ciency of conventional Poincaré index
approach, the block-wise OF estimation and redundant estimation is suggested
to be applied, instead of pixel-wise estimation.

Figure 8.4: Result of SP extraction by conventional Poincaré index (left) and
Green's Theorem-based method (right) on the same OF. The cir-
cle, triangle and cross refers to the detected core, delta and cen-
tre of foreground. A cluster of spurious SPs are detected on the
background by conventional Poincaré index method because of the
latent �ngerprint. The sample is taken from FVC2000DB2.

After applying the proposed pattern-based �lters, the performance of SP lo-
calization is improved with a bene�cial tradeo�, i.e., false detection rate is de-
creased and missed rate is only slightly higher.
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With regards to the existing faults, the type can be classi�ed as follows:

• Segmentation fault: The noises (e.g., latent �ngerprint and smudge)
on the background cannot be eliminated if they have the similar variance
with foreground, and thus they might generate false detection.

• OF estimation fault: the seriously corrupted ridgeline might leads to
the inaccurate OF estimation, which may results in the potential false and
missed detection.

• SP extraction fault: The structures of SPs are incomplete if they are
approaching to the boundary of foreground in �g. 8.5. The squared OF
around this type of SP cannot o�er the su�cient rotation so that the
computed Poincaré index values cannot reach the pre-de�ned threshold.

Figure 8.5: Incomplete structure of core (left) and delta (right), where the
ROI is marked by the squares. The samples are taken from
FVC2000DB2.

8.3 Proposed QMAs

The proposed QMAs are analysed by ERC and Spearman correlation and com-
pared with reference methods as described in section 7.4.2.1.
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8.3.1 Error versus reject curves

Foremost, ERC visually presents how low quality samples given by proposed
QMAs are correlated with ground-truth comparison scores as introduced in
3.5.1. In order to improve readability, the area values under the curves are
presented, rather than the various curves, as described in section 7.4.3.

Due to the more than one comparators, the mean of the area vales for the three
comparators (28, 62, 83) are given as the results in table 8.5. The full version
of ERC can be observed in appendix D.

QMA MCYT330DP MCYT330PB CASIAFPV5 CASIAFPV5
-FULL -SUB

NFIQ 1.56 1.47 2.26 2.15
OCL 2.58 2.10 2.17 2.00
FDA 1.71 1.91 2.39 2.39

GABOR 2.62 1.99 2.28 2.20
PS 2.14 2.11 2.21 2.00
DIS 2.57 2.41 2.96 2.75
DISR 2.40 2.23 2.95 2.59
HDIS 2.92 2.64 2.89 2.52
HDISR 2.68 2.46 2.87 2.41
VDIS 2.63 2.58 3.03 3.04
VDISR 2.42 2.37 2.98 2.88
ORI 2.81 2.53 2.97 2.71

COH_16 2.58 2.22 2.18 2.01
COH_32 2.52 2.21 2.24 2.07
CS_16 2.47 2.14 2.39 2.34
CS_32 2.47 2.09 2.39 2.36

Table 8.5: The values of area under the ERC curves for large-scale
database MCYT330DP, MCTY330PB, CASIAFPV5-FULL and
CASIAFPV5-SUB. The values are computed by the mean of the
three comparators (28, 63 and 83).

It seems the SP-localization QMAs are not a fair metric for CASIAFPV5-FULL,
but the opposite point is obtained for MCYT330DP, MCYT330PB an CASIA-
SUB (no-rotation subset of CASIAFPV5-FULL), which means the measurement
of displacement and orientation should be based on the prerequisite that no
presence of the systematic rotation in the database. The proposed ORI which
measures the rotation is also does not have fair performance, also because the
orientation for the highest value cannot be determined, i.e., there is no great
most sample possess the same orientation depicted in �g. B.4 due to the large-
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scale rotation. As a result, it is not meaningful to analyse the experimental
results of SP localization-based method for CASIAFPV5.

Among these SP localization-based methods, for MCYT330DP and MCYT330PB,
DIS possess the better performance than HDIS and VDIS, which means the
displacement on both x and y direction interfere the sample quality for these
databases. Furthermore, the vertical displacement has more signi�cant e�ect
than the horizontal one , as the vertical distance distribution has larger scale
than the horizontal direction in �g. B.1 and �g. B.2 for MCYT330DP and
MCYT330PB.

However for CASIAFPV5-SUB, HDIS possess the best performance whereas
VDIS does not o�er fair performance, because the height is larger than the
width of the foreground depicted in �g. 8.6. DIS is worse than HDIS due to
the negative e�ect of VIDS. Furthermore, all the ratio version of DIS, HDIS
and VDIS provide the better performance, which indicated the foreground area
should be considered when measuring the displacement.

Figure 8.6: The height is larger than the width of the foreground, so that the
e�ect of displacement in vertical direction is not as important as
horizontal direction. The sample is taken from CASIAFPV5-SUB.

According to �g. B.1, �g. B.2 and �g. B.4, the ideal case can be determined
where the �ngertip points to the top of the image, and ORI can be used as a
metric to measure the rotation of �nger samples.

As a result of proposed SP localization-based QMAs, the displacement and
orientation have the e�ect to the �nger sample quality, i.e., large displacement
and strong rotation does degenerate the �nger sample quality.

Regarding to the proposed local QMAs, COH_x and CS_x has the satis�ed
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performance which is similar and even better than the reference methods for
CASIAFPV5-FULL and CASIAFPV5-SUB. The performance of COH_x is sim-
ilar with CS_x for MCYT330DP, whereas worth for MCYT330PB, and better
for CASIAFPV5-FULL and CASIAFPV5-SUB. With regards to the size of x,
the size 16× 16 and 32× 32 have almost the same performance.

8.3.2 Spearman correlation tables

Spearman correlation table can be used to observe whether two QMAs or QMA
and utility scores give the same indication. The correlation with utility cannot
fully re�ect the scenario of QMA performance, because it is not signi�cantly
important to observe the correlation for the entire quality values. In practice
at most 35% low quality samples are rejected, i.e., the correlation between high
scores cannot indicate the performance of QMA. As a result, It is more inter-
esting to observe the inter-QMA correlation by analysing if they are duplicated
or complementary. The full correlation tables for MCYT330DP, MCYT330PB,
CASIAFPV5-FULL and CASIAFPV5-SUB are illustrated in appendix E.

8.3.2.1 Inter-QMA correlation

It is reasonable that DIS, HDIS and VDIS are highly correlated with their ratio
versions (DISR, HDISR and VDISR), as samples possess the similar foreground
area in the same database. DIS is correlated with HDIS and VDIS (43% and 50%
in CASIAFPV5-FULL) and HDIS and DIS are not correlated with each other.
ORI does not correlated with any QMA. These SP localization-based QMAs are
not correlated with the reference methods, which means these proposed metrics
measure the quality using the new features.

Unsurprisingly the COH_x and its segmentation version CS_x are correlated,
and for both mehtods x = 16 and x = 32 give highly similar indication. Further-
more, COH_x and CS_x are extremely correlated with the reference method
OCL (98% for COH_32 and 80% for CS_32 in CASIAFPV5), as both give
quality scores by measuring the reliability of ridgeline. COH_x and CS_x
are also correlated with NIFQ and GABOR (both are 59% with COH_32 in
CASIAFPV5-FULL).
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8.3.2.2 Correlation with utility

Among all the three comparators, the computed utility scores by 63 are the
highest correlated ones with SP localization-based QMAs (11%, 13%, 19%
and 18% with DIS in MCYT330DP, MCYT330PB, CASIAFPV5-FULL and
CASIAPFV5-SUB) except the ORI, which means the comparison algorithm 63
is the most position-sensitive.

In general, COH_x and CS_x are correlated with utility (44% and 31% between
COH_x and utility 28 and CS_x and utility 28 in CASIAFPV5-FULL).

8.3.3 Utility heatmaps

The heatmap is generated according to the position of core point and util-
ity scores as described in section 7.4.5. The full collections for MCYT330DP,
MCYT330BP, CASIAFPV5-FULL and CASIAFPV5-SUB are depicted in ap-
pendix F.

Take MCYT330PB as an example in �g. 8.7, where each block is 10× 10 block.
The utility scores for comparator 63 are moderately decreased along with the
increase of the displacement both in x and y direction, which means the com-
parison algorithm 63 is sensitive to the displacement. The utility scores for
comparator 83 are slightly decreased especially the core position shifts to the
left and bottom side. The high value around the boundary should be ignored
because only extremely limited number of samples are computed as the mean of
the utility scores, which cannot re�ect the average utility score. It seems that
the comparator 28 is not displacement-sensitive.

However, the utility map does not o�er the same scenario for the CASIAFPV5-
FULL, but CASIAFPV5-SUB does, which means the utility scores are interfered
not only the displacement but also the rotation. Furthermore, it is reasonable
that in CASIAFPV5-SUB, the average scores by comparator 28 and 83 are
decreased starting from the coordinate (0, 50) approximately, instead of the
foreground centre (0, 0), because as mentioned the height of foreground is larger
than the width and thus most of the core points are on the bottom, depicted
in �g. 8.8. As a result, the �ngerprint in vertical direction is over complete, so
that the displacement in horizontal direction is more important than the vertical
direction. This point of view veri�es the conclusion that HDIS o�ers the better
performance by ERC in section 8.3 in CASIAFPV5-SUB.
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(a) Sample number (b) Comparator 28

(c) Comparator 63 (d) Comparator 83

Figure 8.7: Number of samples and utility maps for MCYT330PB. Each block
is 10 × 10 pixels, and the value of each block is the mean of the
utility scores.
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Figure 8.8: The core position of sample, which is lower than the centre of the
foreground. The cross and circle refer to the centre of foreground
and detected core. The sample is taken from CASIAFPV5-SUB.

8.3.4 Timing

The execution time for proposed QMAs are listed in table 8.6.

QMA Execution time
NFIQ 0.16
OCL 0.08
FDA 0.18

GABOR 0.22
PS 0.06

SP localization-based 0.66
COH_16 0.02
COH_32 0.01
CS_16 0.12
CS_32 0.04

Table 8.6: Execution time for proposed QMAs (in s), where the quality mea-
surement results of DIS, DISR, HDIS, HDISR, VDIS, VDISR and
ORI can be obtained at once in SP localization-based approach.

Although the SP localization-based QMAs takes 0.66s which is higher than
the reference methods, seven results of QMAs for measuring the distance and
orientation of SP can be obtained. On the other hand, the COH_x and CS_x
possess the much less execution time than the reference methods.
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8.3.5 Summary

Foremost the SP localization-based QMAs are interfered by presence of large-
scale systematic rotation. In the other words, the measurement of displacement
and rotation is meaningful when they have similar orientation.

It is reasonable that the performance of SP localization-based QMAs provide
slightly worse performance than the reference methods because each metric only
measure one global property via one or two SPs, which hardly o�er su�cient
information for measuring the quality of �ngerprints comprehensively. By con-
trast, most QMAs measure �ne level characteristics (e.g., ridgeline, frequency
and minutiae).

However, the slightly worth performance cannot be a reason to reject the mea-
surement of property (displacement and orientation) of SPs because they are
complementary to the reference methods with low correlation values.

In accordance with correlation tables with utility and utility heatmaps, the per-
formance among di�erent comparators are obtained that comparator 63 is sen-
sitive to displacement and 28 is not. Although comparator 28 is not sensitive to
displacement, the large dislocation degenerated the performance of comparison
algorithm by the results of ERC.

As for COH_x and CS_x, the window size 32×32 pixels can be selected because
almost the same result is obtained. Furthermore, theoretically it make more
sense to measure the coherence when there are at least two ridges existed and less
execution time is required. COH_x and CS_x o�er extremely similar indication
with the reference method OCL, and thus they can be considered to substitute
OCL due the the less execution time.

It leaves an open question whether segmentation should be applied, because
the contradicted results are obtained between the di�erent databases. Hence,
segmentation is recommended to the reference methods and the performance
for more databases are expected to be observed.
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Conclusion

The �rst task of this thesis is to propose a systematic singular point localization
approach. Plenty of approaches are investigated for orientation �eld (OF) esti-
mation and singular point (SP) extraction. The OF is estimated in pixel-wise
for downsized �nger sample, furthermore the SPs are extracted using Green's
theorem-based approach. Most spurious SPs can be eliminated by the proposed
segmentation algorithm. In addition, the �ve proposed pattern-based �lters
improve the correctness e�ectively.

Based on the proposed SP localization approach with the accepted error rate,
the second task is to propose Quality Measurement Algorithm (QMA) to analyse
the importance of SPs, which is possibly to be considered as Fingerprint Image
Quality (NFIQ2.0) features [NIS12] and incorporated in ISO/IEC TR 29794-4
[ISO12c].

Because of the better performance of detection and the characters, the core
point are used as a landmark to measure the displacement and orientation of
�ngerprints. Seven SP localization-based global QMAs are proposed to verify
the signi�cance of SP.

The QMA experiment is based on the large-scale databases and evaluated by
Error versus Reject Curves (ERC) and Spearman correlation table. The conclu-
sion is obtained that the large displacement and strong rotation does degenerate
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the biometric performance, although it is not as profoundly important as in�u-
ence of the other �ne features such as ridgeline, frequency and minutiae. The
low correlation with the reference QMAs means these SP-localization QMAs
are complementary by measuring di�erent features. Furthermore the quality
measurements by these metrics are meaningful without presence of the large
systematic rotation.

Additional conclusion is obtained that among the three comparators (28, 63
and 83), comparator 83 is the most position-sensitive, i.e., the biometric per-
formance is degenerated along with the increase of the dislocation from the
foreground centre. Even though for the least sensitive comparator 28, ERC in-
dicates the biometric performance still su�ers from the large displacement and
large rotation. The two research goals are achived as described in .

Beside the research goals, two local QMAs, coherence (COH) and coherence
segmentation (CS) are proposed by analysing the coherence of the ridgeline.
COH and CS have the slightly better performance with the reference QMAs in
NFIQ 2.0 and much less execution time.

In summary, the measurement for the displacement and orientation of �nger
sample are suggested to be applied in case of the presence of large dislocation
and strong rotation. Moreover, practically the proper placement can be easily
achieved by the capture device which can o�er the exact slot to guarantee the
mentioned properties.

9.1 Future work

The pattern-based �lters eliminate spurious SPs based on the assumption the
certainty of detected SPs are uniform distributed from the centre of foreground
to the boundary. The methods are suggested to be proposed for determining the
reliability of the extracted SPs by measuring the features of detected singular
regions. Moreover, the alignment or classi�cation can be applied before the
SP localization in order to apply more constraints, such as the position of core
should not be much lower than the delta for the aligned �nger sample and there
are at most one core and one delta in the loop �ngerprint.

In this thesis the importance of SP in biometric system is investigated. However,
the signi�cance in each procedure of comparison (e.g., alignment and class�ca-
tion) is not indicated due to the close-source of the comparator. This unknown
factors allows to speci�ed further to observe how does SP have the in�uence to
the biometric performance.
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It is ambiguous whether the segmentation in QMAs can improve the perfor-
mance of quality prediction. The segmentation can be applied to the existing
approached in NFIQ 2.0 and the result for more databases are suggested to be
observed. Meanwhile, the area and degree of the noises also might be considered.
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Appendix A

E�ect of Displacement to
Comparison Scores

E�ects of displacement to the genuine comparison scores is illustrated using
comparison algorithm 28, 63 and 83. The value of each block is the mean of the
comparison scores within 10× 10 pixels.
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Appendix B

Distance and Orientation
Distributions

The distance and orientation distribution for MCYT330DP, MCYT330PB, CASIAFPV5-
FULL and CASIAFPV5-SUB. In orientation distribution, π and 0 refer to the
�ngertip points to the top and bottom of images.
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Appendix C

Comparison Scores
Distribution

Genuine and imposter comparison scores distribution for MCYT330DP, MCYT330PB,
CASIAFPV5-FULL and CASIAFPV5-SUB by comparator 28, 63 and 83.
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Appendix D

Error versus Reject Curves

ERC for the references QMAs (NFIQ, OCL, FDA, GABOR, PS) and Proposed
QMAs (DIS, DISR, HDIS, HDISR, VDIS, VDISR, ORI, COH_16, COH_32,
CS_16, CS_32) and utility (utility_28, utility_63, utility_83) in MCYT330DP,
MCYT330PB, CASISFPV5-FULL and CASIAFPV5-SUB by comparator 28,
63, 83
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Appendix E

Spearman Correlation
Tables

Spearman correlation tables for MCYT330DP, MCYT330PB, CASIAFPV5-
FULL and CASIAFPV5-SUB using the references QMAs (NFIQ, OCL, FDA,
GABOR, PS) and Proposed QMAs (DIS, DISR, HDIS, HDISR, VDIS, VDISR,
ORI, COH_16, COH_32, CS_16, CS_32) and utility (utility_28, utility_63,
utility_83).
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Appendix F

Utility Heatmaps

Utility heatmaps plotted by the position of cores and utility scores for MCYT330DP,
MCYT330PB, CASIAFPV5-FULL and CASIAFPV5-SUB by comparator 28,
63, 83. The values in each 10 × 10 pixels block are computed by the mean of
utility scores, and number of samples in each block are also plotted.
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