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Summary

The development of fingerprint quality assessment algorithms has seen increas-
ing popularity throughout the recent years, since the accuracy of the fingerprint
biometric systems is heavily dependent on the quality of the acquired samples.
There exist a variety of image analysis methods for quality estimation, however
they are usually characterized with high computational complexity. Block-wise
finger image quality assessment based on Self-Organizing Maps (SOM) is a novel
approach that has shown promising results in terms of speed and performance.

The goal of the thesis is to conduct experiments by training SOM networks
with a large dataset of raw fingerprint image blocks in order to extract quality
features. These features are to be interpreted by another machine learning model
trained to predict the quality score of the fingerprint image. In this thesis two
datasets with two block sizes each are used for training linearly initialized SOM
networks.

The results from the trainings are analyzed and the extracted quality features
are used as an input for the training of four different machine learning models.
These four machine learning models are used to predict the quality scores of the
fingerprint images and are based on three machine learning techniques: Self-
Organizing Maps, Generative Topographic Mapping and Random Forests. The
performance of the models is comparatively evaluated with two state of the art
approaches using ERC curves and Spearman’s Correlation matrices.

Some of the proposed methods show improvement of the results obtained by
previous work in the field and can possibly take part of the ISO/IEC or NIST
Finger Image Quality 2.0 standards.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark during an exchange visit at
the Center for Advanced Security Research Darmstadt (CASED) in fulfilment of
the requirements for acquiring an M.Sc. in Computer Science and Engineering.

The thesis deals with block-wise fingerprint image quality assesment techniques
based on applying a set of machine learning methods.

The thesis consists of introduction, theoretical background chapters, state of
the art, previous work, proposed methods, experimental setup and results, con-
clusions, direction for future works and a couple of appendices.
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Chapter 1

Introduction

As more and more people get involved in the expanding digital life and new
technologies arise easing the work of both citizens and governments, biometrics
gain increasing popularity. For a single person accessing many security contexts
it becomes harder to manage all the tokens (keys, ID cards, RFID tokens, etc.)
she owns and to remember all the passwords and PIN codes required for each
context by itself. Moreover different security contexts require different levels
of security, so ease of use is not the only concern. Since biometrics offer both
flexible security settings and ease of use, they seem to be a logical solution to
most of the faced identification and verification problems.

There are many different biometric characteristics and fingerprints are probably
the most popular of them all. Fingerprints have been used extensively through-
out the history of humankind, especially for the last couple of hundred years.
Due to their uniqueness and ease of collecting, they have been used for authen-
tication, identification and verification purposes as well as in forensics. Their
long history of usage has proved them as a preferred biometric characteristic
used in medium to high security contexts.

Fingerprints are used by private, corporate and governmental institutions. Some
of the largest-scale examples of fingerprint recognition biometric systems are
the Customs and Border Protection Management System of USA [oHS] and
the Schengen Area’s Visa Information System [Com]. Another example is the
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Unique Identification Authority of India, which is collecting the fingerprints for
more than 1.2 billion citizens for issuing their Unique Identification Numbers
[oI].

1.1 Motivation

During the years fingerprint biometric systems have evolved and have reached
maturity. Comparison subsystems offering sufficient accuracy have been devel-
oped by researchers and corporations. Nowadays the error levels of these subsys-
tems are mainly stemming from the quality of the probe and reference samples.
Therefore recently researchers have raised their interest in suppressing the error
levels by developing quality measurement algorithms and implement them as a
subsystem of the Automated Fingerprint Identification Systems (AFIS). As a re-
sult many different fingerprint quality measurement algorithms were proposed.
In August 2004 a standardized tool has been proposed by National Institute of
Standards and Technology of the U.S. Department of Commerce (NIST) and it
was named NIST Fingerprint Image Quality (NFIQ) [TWW04]. A new version
of the NFIQ (NFIQ2.0) is currently under development [NIS12a] by NIST and
the International Organization of Standardization (ISO), based on ISO/IEC
29794-1:2009 [ISO12b].

Most of the already proposed methods are image analysis based. However,
some recent researches [Mak12] [OTMB13] have shown that applying machine
learning methods, in particular Self-Organizing Maps, could be used to extract
quality features from the raw image data and have shown promising results.
Therefore a further research in the field is welcome and different approaches must
be tried out in order to improve the performance of the considered methods.

1.2 Goals of the research

The research goals of the thesis are:

• Repeat the research of block-wise fingerprint image quality assessment
using machine learning methods [OTMB13]

• Investigate whether the block-wise fingerprint image modeling could be
improved
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• Investigate different feature interpretation methods of obtaining finger-
print image quality

• Compare all considered approaches in terms of performance and speed

1.3 Thesis overview

This thesis consists of eleven chapters, that could be split into four parts. Firstly,
chapters from 1 to 4 could be considered as an introduction to the topic and
the theoretical background needed for the methods used in the thesis. Secondly,
chapters 5 and 6 show state of the art and current developments in the field. The
third part consists of chapters 7 to 9, which present the approaches proposed in
this thesis and the performed experiments throughout the course of the research.
The last chapters, forming the fourth and last part, are dedicated to conclusions
and some directions for future work.
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Chapter 2

Biometrics

This chapter contains an overview of the field of biometrics for the unfamil-
iar reader. Basic concepts of biometrics like biometric recognition, biometric
systems, biometric performance and biometric errors are discussed. The def-
initions and the terms used are synchronized with the ISO/IEC 2382-37:2012
[ISO12a] vocabulary, developed by International Organization for Standardiza-
tion/International Electrotechnical Commission (ISO/IEC). The provided ter-
minology in this chapter is to be used by the following chapters as well.

2.1 Biometric recognition

Biometric recognition refers to the use of distinctive anatomical and behavioral
characteristics for automatically recognizing individuals. The word biometrics
comes from the Greek words bios (life) and metron (measurement) depicting the
process of measuring of living human body. The biometric characteristics are
also called traits or biometric identifiers and should satisfy specific requirements,
if to be used as biometric identifiers:

• Universality: each person should possess the trait
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• Distinctiveness: any pair of persons should possess sufficiently different
traits

• Permanence: the biometric characteristic should be invariant over time

• Collectability: the trait should be available for measuring quantitatively

• Performance: recognition accuracy, speed, resource requirements, ro-
bustness to operational and environmental factors should be acceptable

• Acceptability: the measurement and collection of the trait should be
positively perceived amongst the subjects

• Circumvention: it should be hard for fraudulent activities to achieve
circumvention of the biometric system

Table 2.1: Comparison of most popular biometric traits. Level of satisfying
the requirements are denoted (H)igh, (M)edium and (L)ow. Taken
from [MMJP09]

2.2 Biometric systems

Biometric system is a system for the purpose of automated recognition of indi-
viduals based on their behavioral and biological traits [ISO11]. The recognition
could be either verification or identification. The term authentication from the
information technology language has the meaning to let the system know the
identity of the user, regardless of verification or identification mode has been
used. However, authentication is used sometimes in the field of biometrics as a
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synonym for verification. Throughout this thesis the more generic term recog-
nition will be used.

• A verification system authenticates the identity of a person by captur-
ing a biometric characteristic and comparing it with a previously captured
and stored biometric reference template. After one-to-one comparison, a
verification system rejects or accepts the submitted identity claim.

• An identification system recognizes the identity of a person by one-to-
many comparisons with the entire enrollment template database. The re-
sult of an identification system is either an established identity of the sub-
ject or a response that the subject is not enrolled in the system database.

2.2.1 Biometric system processes

A biometric system is involved in three main functional processes, namely en-
rollment, verification, and identification. A verification system uses only the
first two processes, where identification system uses enrollment and identifica-
tion processes. The three processes are more precisely defined as follows:

• Enrollment process: this process is responsible for registering an indi-
vidual who is a subject of the enrollment. The biometric characteristics of
the subject are captured by a biometric scanner producing a sample that
is usually itself a subject of a quality check. Later on, features of the sam-
ple are extracted and enrolled as a reference in the enrollment database
with the identity reference.

• Identification process: the biometric characteristics of the subject are
captured and the extracted biometric features are searched against the
enrollment database to produce a candidate list. That list consists of
identities of individuals, whose references match the features extracted
from the captured sample, and could be an empty list if none match.

• Verification process: the subject presents an identity reference for a
claim of identity along with her biometric characteristics to the capturing
device. The acquired biometric sample is used for extracting the features
and comparing them with the biometric reference linked to the claimed
identity.
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Figure 2.1: Enrollment, identification and verification processes. Taken from
[MMJP09].
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2.2.2 Biometric system components

Biometric systems consists of subsystems, that have certain roles in the biomet-
ric system processes. Figure 2.2 shows the interactions between the following
technical and functional blocks:

Figure 2.2: Components of a general biometric system. Taken from [ISO11].

• Data capture subsystem: this subsystem consists of biometric capture
devices and sensors to collect biometric characteristics. The result of this
subsystem is a biometric sample such as a fingerprint image, iris image,
facial image, voice recording, gait sequential data, etc.

• Signal processing subsystem: this subsystem extracts features from
the biometric sample as numbers or labels, so that the resulting biometric
features can be compared with those extracted from other biometric sam-
ples. Features extracted during the enrollment process are stored in the
data storage subsystem as a biometric reference.

• Data storage subsystem: this component of the biometric system stores
the references in the enrollment database usually along with identities
linked to the references. The reference can be stored as a sample, or
features, or even as both of them. This storage of references makes possible
subsequent identification or verification of an identity.
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• Comparison subsystem: this subsystem performs the comparison be-
tween the captured biometric samples (or the extracted features) and the
stored biometric references. In the case of verification, a one-to-one com-
parison is performed for a claimed identity. In the case of identification,
a one-to-many comparison is performed of the captured biometric sample
(or its extracted features) with the stored references in the database. The
output of that subsystem is a comparison score for each comparison that
has been done.

• Decision subsystem: this subsystem makes a decision, based on the
produced comparison scores by the comparison subsystem, whether the
captured biometric sample and the reference(s) used for comparison have
the same biometric source. For the verification process, an identity claim
is accepted or rejected according to the comparison score. For the iden-
tification process, a list of candidate identities (possibly an empty one) is
returned. A decision subsystem has a decision policy, that is to be followed
for making the decisions.

2.3 System errors

Every system is prone to errors, so are biometric systems. There are several
types of errors that one should be aware of and their short overview is presented
in this section. More comprehensive definitions could be found in ISO/IEC
19795 and more specifically in ISO/IEC 19795-2 (2007) [ISO07].

2.3.1 Failure To Acquire (FTA)

FTA error is caused by failures in the data capture subsystem and the signal pro-
cessing subsystem. A high rate of FTA affects the throughput of the biometric
system and cause user frustration due to the need of reacquiring the biometric
trait. This error is resulted by the combination of the following errors:

• Failure To Detect (FTD): this error occurs when the biometric scanner
used by the data capture subsystem fails to detect the presence of the
biometric source.

• Failure To Capture (FTC): this error occurs when the biometric scan-
ner detects the presence of the biometric source, but fails to capture a
sample. This failure occurs when the biometric sample is of poor quality
or due to misuse of the data capture subsystem.
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• Failure To Process (FTP): this error occurs when the captured bio-
metric sample is sent to the signal processing subsystem, which fails to
extract usable feature set. Captured biometric samples of low quality usu-
ally cause this error.

2.3.2 Failure To Enroll (FTE)

Failure To Enroll (FTE) error occurs when the extracted features from the
biometric sample are either not enough discriminatory or too noisy, so creating
a template and storing it to the data storage system fails. If this error is not
considered and ignored, this will result in increase of the recognition error rate.

2.3.3 Recognition errors

Given two samples the comparison subsystem outputs a comparison score, which
is later on used by the decision subsystem. If the two given samples are from
the same biometric source, they are called mated samples H1 and their com-
parison score is known as genuine comparison score. If they are from different
biometric sources, they are non-mated samples H0 and they introduce impos-
tor comparison score. All impostor scores from a given dataset give a rise
to an impostor distribution p(s|H0) and genuine scores give rise to a genuine
distribution p(s|H1). Considering that comparison scores are usually similarity
scores, impostor comparison scores are expected to be lower than genuine scores.
Therefore a threshold t is defined to enable the decision subsystem to conclude
on match D1 or non-match D0 decision for each queried pair of samples.

Ideally, all impostor scores should be lower than the genuine scores, so defining a
threshold for the decision subsystem would be a trivial task. However, in reality
there is an overlap between genuine and impostor distributions, as shown in
figure 2.3. This overlap introduces two types of errors regardless of the choice
of threshold and a trade-off between their rate is to be faced:

• False Non-Match Rate (FNMR): the rate of error caused by making
non-match decision, when a match decision should be made.

FNMR = P (D0|H1) =
∫ t

0
p(s|H1) ds (2.1)
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Figure 2.3: FMR and FNMR for a given threshold t are shown over the gen-
uine and impostor comparison score distribution. Taken from
[MMJP09]

• False Match Rate (FMR): the rate of error caused by making a match
decision, when a non-match decision should be made.

FMR = P (D1|H0) =
∫ 1

t

p(s|H0) ds (2.2)

The trade-off of the two error rates is chosen in respect to the required se-
curity level. Higher security contexts would require lower or even zero FMR
(ZeroFMR), conversely lower security context would require a threshold closer
to the zero FNMR (ZeroFNMR) level. The point of Equal Error Rate (EER) is
also used to get the best of both rates.

2.4 Fingerprint recognition systems

Fingerprint recognition systems are a specific type of biometric systems focused
on fingerprints. A fingerprint is an impression or mark made on a surface by
a person’s fingertip, which has a distinctive and unique skin texture that does
not change over time. The skin texture pattern is made up of small ridges and
valleys. The first usages of fingerprints could be traced back to ancient times,
however their study has attracted scientists just a couple of centuries ago. They
have started being used for the purpose of forensics in the mid of 19th century
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and began being widely used for personal identification in the beginning of 20th
century [MMJP09].

2.4.1 Fingerprint acquisition

Fingerprint sample acquisition could be classified as off-line or live-scan. Images
acquired in off-line mode are typically obtained by smearing ink on the fingertip
and taking an inked impression of the fingerprint on paper. Digitalizing the
impression is done by scanning it using an optical scanner or a still camera.
Off-line acquisition is of high interest in forensics due to the so called latent
fingerprints that could be found at crime scenes. However, modern Automated
Fingerprint Identification Systems (AFIS) rely on live-scan images acquired by
scanning the fingertip on contact using a capable live-scan sensor.

(a) (b) (c)

(d) (e) (f)

Figure 2.4: Fingerprint images from: (a) a live-scan FTIR-based optical scan-
ner; (b) a live-scan capacitive scanner; (c) a live-scan piezoelectic
scanner; (d) a live-scan thermal scanner; (e) an off-line inked im-
pression; (f) a latent fingerprint. Taken from [MMJP09]

There are different live-scan sensing technologies, but the most popular ones
could be divided into optical and solid-state sensors:

• Optical sensors: they are usually based on the technology of Frustrated
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Total Internal Reflection (FTIR), where the fingertip is placed on a side
of a prism and is beamed with light from another side of the prism. Then
the image of the fingerprint is projected to the third side of the prism,
where a CCD or a CMOS camera is placed. The ridges touching the
prism absorb the light, unlike the valleys that reflect it to the camera.
Therefore the resulting image is with dark ridges and white valleys on
white background. There are also other types of optical sensors, most
robust of them use improved FTIR technology.

• Solid-state sensors: there are different types of solid-state sensors (also
known as silicon sensors), e.g. capacitive, thermal, electric field, piezo-
electric, etc. However, capacitive solid-state sensors are the most common
used ones. They are basically an array of micro-capacitor plates embedded
in a single chip. When the fingertip skin touches the chip, small electrical
charges are induced between the two surfaces. The charges are different at
ridge and valley regions, so each micro-capacitor registers different charge
level representing different pixel value in the resulting image.

(a)

(b)

Figure 2.5: Basic schemes for: (a) FTIR-based optical scanner; (b) capacitive
solid-state sensor. Taken from [MMJP09]
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2.4.2 Fingerprint features

The characteristics of a fingerprint should be described at three different levels:
global level, local level and very local level. Each of these levels are characterized
by different features that could be extracted:

• Global level (level 1): at this level ridges run usually in parallel, except
some distinctive regions, called singularities, that could be classified into
three subtypes: loop, delta and whorl. For the purpose of fingerprint image
alignment, a core point is defined as the center of the northernmost loop
type singularity, or if such does not exist - the point of maximum ridge line
curvature. Singular regions are typically used for fingerprint classification
among a set of distinct classes for easing further search and retrieval in
the database.

Figure 2.6: Examples of different singular points: loop, delta, whorl and core.
Taken from [MMJP09]

• Local level (level 2): at this level other interesting patterns could be
found in the fingerprint image, called minutiae (literally meaning small
detail). There are several types of minutiae, namely - ridge line endings,
bifurcations, lakes, islands, crossovers, etc. Their type, spatial coordinates
and orientation (the angle between the tangent to the ridge line at the
minutia position and the horizontal axis) are of particular interest to the
comparison algorithms. Minutiae are important features in fingerprint
sample comparison and usually 12-15 coinciding minutiae are sufficient
evidence for high confidence match between two samples. However, a
full rolled fingerprint can have more than 100 minutiae points altogether.
Local ridge orientation is another local level feature, which could be used
in low-quality fingerprint images, if minutiae extraction is not possible.
These features distinctiveness is generally lower than minutiae.
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Figure 2.7: Seven most common minutia types. Taken from [MMJP09]

• Very local level (level 3): at this level very fine details could be ex-
tracted such as width, shape, contours, scars, etc. However, the most
common used features are the sweat pores on the ridges. Detection of
these features requires very high resolution (e.g., 1000 dpi) and very good
quality of the image sample, therefore not many AFIS use the features at
this level.

Figure 2.8: Fingerprint image taken with 1000dpi, where sweat pores are vis-
ible. Taken from [MMJP09]

2.4.3 Fingerprint comparison

Comparing fingerprint images is part of both identification and verification pro-
cesses and is a difficult process, since the same fingertip can produce different
impressions. These variations amongst fingerprints can be caused by displace-
ment, partial overlap, rotation, non-linear distortion, different pressure, differ-
ent skin conditions, image noise, unreliable feature extraction, etc. In order to
claim that a probe and a reference originate from the same biometric source
three types of approaches could be considered:
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• Correlation-based matching: two fingerprint images are compared
pixel-wise and the correlation between them is computed for different dis-
placements and rotations. Almost no feature extraction is needed, except
some global level features to help the alignment of the fingerprint images.

• Minutiae-based matching: for both the probe and the reference minu-
tiae are extracted. Then an alignment between the samples is found such
that the number of paired minutiae is the highest. This approach is the
most widely used one.

• Non-minutiae feature-based matching: for very low-quality images,
where minutiae extraction is extremely difficult, other types of features
are used for comparison such as local ridge orientation, local frequency in-
formation, ridge shape, texture information, etc. However, distinctiveness
of these features is generally lower than minutiae.



18 Biometrics



Chapter 3

Biometric sample quality

This chapter is focused on biometric sample quality and its definitions, appli-
cations, ways to measure it and assess the performance of quality measurement
algorithms (QMAs). More attention is regarded to fingerprint sample quality.
Vocabulary from ISO/IEC 29794-1 [ISO12b] is used for the definitions and the
terms related to the subject.

3.1 Definitions

Biometric sample quality is the degree to which a biometric sample fulfills spec-
ified requirements for a targeted application [ISO12b]. It is dependent on the
biometric source and the degree of its representation by the captured biometric
sample. It has several components that contribute to the performance of the
biometric system:

• Character : an expression of quality based on inherent features of the
biometric source. For example, scars on the fingertip would cause poor
character of the taken biometric sample.

• Fidelity: an expression of quality reflecting the similarity of the bio-
metric sample to the biometric source of that sample. It is comprised of
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different components, contributed by different aspects like user behavior,
environment conditions, biometric system modules performance, etc.

• Utility: an expression of quality reflecting the contribution of an indi-
vidual sample to the overall performance of a biometric system. It de-
pends on both the fidelity and the character of the biometric sample and
is intended to be more predictive of system performance than fidelity or
character alone.

Figure 3.1: Relationship between quality and system performance. Taken
from [ISO12b]

However, one measure of quality is biometric system dependent, as shown in
[GT07], since different comparison systems are sensitive to different sample ar-
tifacts like blurriness, contrast, disposition, rotation, etc. Due to that fact es-
tablishing a universal quality standard defining a singular metric for the utility
of the biometric sample for all applications is a challenge [ISO12b].

3.2 Applications

Biometric quality is of high importance to the modern biometric systems, there-
fore quality estimation and quality measurement have wide range of applications.
There are at least several uses of biometric quality values, each aiming to im-
prove the overall performance of biometric systems.
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Fidelity
Low High

Character Low Low fidelity and low character
results in low utility. Recapture
might improve utility. However,
if possible use of other biometric
characteristics is recommended.

High fidelity and low character
results in low utility. Recapture
will not improve utility. Use of
other biometric characteristics is
recommended.

High Samples with high character and
low fidelity typically will not
demonstrate high utility. Util-
ity can be improved upon recap-
ture or image enhancement tech-
niques.

Samples with high character and
high fidelity indicate capture of
useful sample. High utility is ex-
pected.

Table 3.1: Relationship between fidelity, character and utility [ISO12b].

3.2.1 Enrollment process

In the enrollment process a number of biometric samples are captured and stored
in the database subsystem as reference samples. Ensuring high quality of the
finally stored sample increases the overall performance of the biometric system.
Even though the enrollment process is usually supervised and the quality of the
samples could be checked by the operator, human judgement is subjective, slow,
requires training and not scalable. Therefore both supervised and unsupervised
systems would benefit from a good biometric sample quality measurement algo-
rithm that can give quantitative definition of the quality of captured biometric
samples. Then based on this quantitative measure a decision for reacquiring
the biometric sample might be taken by either the supervisor or the automated
system.

3.2.2 Quality assurance

Measuring quality levels and comparing them with aggregated data from different
historical or geographical points, thus monitoring the performance throughout
the usage of a biometric system, might signal some possible unexpected perfor-
mance issues. This way some actions could be taken to avoid biometric system
performance drops in the future.

3.2.3 Verification process

The policy "up to three attempts" is commonly used to ensure the good quality
of the captured sample for verification purposes. If a positive match occurs
within the three attempts, the sample is considered to be of a good quality
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even if the source happens to be an impostor. However, this policy might turn
non-applicable due to either computational expenses for the comparison or reac-
quisition expenses (i.e. time-waste, user frustration, etc.). Quality measurement
algorithms usually provide faster execution times due to the fact that they re-
quire access to only one image, since quality is computed per image. However,
they can be applied to both the probe and the reference, so they could be used
to predict the performance of the comparison itself.

3.2.4 Identification process

Biometric sample quality measurement could be useful for the identification
process for couple of reasons:

• Missing reference: , a one-to-many comparison is very inefficient in
terms of execution time and processing power. If a user has no associated
reference record in the database system, it can be also inconclusive, since
the returned set of candidate identities might include only impostor ones.
Therefore using a policy similar to the "up to three attempts" one would be
both inefficient and inconclusive method for assessing the probe sample’s
quality.

• Evasion detection: for negative identification systems (e.g. border se-
curity checks), the subjects providing the biometric sources might be mo-
tivated to evade detection, thus they would likely try to submit a poorly
performing biometric sample.

• FMR dominance compensation: since identification involves one-to-
many comparisons, FMR becomes increasingly dominant as the number of
comparisons grows. Using high quality samples that produce higher gen-
uine scores would influence the genuine scores distribution by increasing
its mean and decreasing its variance, thus reducing its overlap with the
impostor scores distribution. That would lower both FMR and FNMR,
so the matching threshold could be increased to compensate for the FMR
domination over FNMR.

3.2.5 Differential processing

The quality information for a biometric sample could be used for conditional
processing of the captured sample. For example, low-quality samples might
suggest the usage of better and slower: preprocessing steps, image restoration
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algorithms, feature extraction algorithms, comparison algorithms, etc.; on the
other hand, newly captured high quality samples could be used to update poorer
reference templates.

3.3 Quality measurement

The previous sections have shown what quality is and how it is useful for bio-
metric systems. However, the question for measuring the quality and developing
quality measurement algorithms remains open for research. For the sake of as-
sessing the performance of quality measurement algorithms, couple of metrics
should be introduced.

3.3.1 Utility-based quality

Utility was aforementioned as quality component, depending on both fidelity
and character of the sample, thus being better performance predictor in terms
of FNMR and FMR. If the performance of a dataset over a set of comparison
algorithms is known, a performance-based quality score directly related to the
results of the execution of the given biometric systems could be extracted for that
dataset. This performance-based quality score is known as observed utility and
a procedure for calculating it is defined in ISO/IEC 29794-1 [ISO12b]. Finally,
the produced results give a rise to a Quality Reference Dataset (QRD), enabling
a consistent and interoperable interpretation of the quality score.

3.3.1.1 Observed utility calculation

For calculating the observed utility score, a biometric dataset for a given biomet-
ric characteristic (e.g. fingerprint) containingNi ≥ 2 samples, d(1)

i , d
(2)
i , . . . , d

(Ni)
i ,

for each of M subjects, i = 1, . . . ,M , should be considered. Then for all im-
ages in the reference dataset, utility values utility1

i , utility
2
i , . . . , utility

Ni
i are

assigned by the following procedure [ISO12b]:

For each instance record d(u)
i (i.e. the uth sample of subject i) for comparator

Vk, k = 1, . . . ,K:

1. Generate the set of all possible genuine comparison scores given by the
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kth comparator

Sii ={su,v
i,i | s

u,v
i,i = Vk(d(u)

i , d
(v)
i )}

u =1, . . . , Ni and v = u+ 1, . . . , Ni

i =1, . . . ,M
(3.1)

2. Generate the set of all possible impostor comparison scores given by the
kth comparator

Sij ={su,v
i,j | s

u,v
i,j = Vk(d(u)

i , d
(v)
j )}

u =1, . . . , Ni and v = 1, . . . , Nj

i =1, . . . ,M and j = 1, . . . ,M and i 6= j

(3.2)

3. Compute the utility for sample d(u)
i

utilityu
i =

mgenuine
i,u −mimpostor

i,u

σgenuine
i,u + σimpostor

i,u

(3.3)

where mgenuine
i,u is the mean of sample d(u)

i ’s genuine comparison scores:

mgenuine
i,u =

Ni∑
v=1
v 6=u

su,v
i,i

Ni − 1 (3.4)

and mimpostor
i,u is the mean of sample d(u)

i ’s impostor comparison scores:

mimpostor
i,u =

M∑
j=1
j 6=i

Nj∑
v=1

su,v
i,j

M∑
j=1
j 6=i

Nj

(3.5)

where σgenuine
i,u is the standard deviation of sample d(u)

i ’s genuine compar-
ison scores:

σgenuine
i,u =

√√√√√√√
Ni∑

v=1
v 6=u

(su,v
i,i −m

genuine
i,u )2

Ni − 1 (3.6)
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and σimpostor
i,u is the standard deviation of sample d(u)

i ’s impostor compar-
ison scores:

σimpostor
i,u =

√√√√√√√√√√√√√

M∑
j=1
j 6=i

Nj∑
v=1

(su,v
i,j −m

impostor
i,u )2

M∑
j=1
j 6=i

Nj

(3.7)

3.3.1.2 Utility binning

Working with directly computed utility scores is not convenient due to the fact
that they are not normalized and can have quite different range across different
comparators. Therefore a binning procedure [ISO12b] is defined to separate the
scores into several quality levels for each comparator k:

1. A set T is defined by collecting all samples (i, u) having genuine com-
parison scores greater than all theirs impostor comparison scores, i.e.
su,v

i,i > su,w
i,j ∀j 6= i, v 6= u,w, known as rank 1 condition.

2. Define two empirical cumulative distribution functions:

C(z) = | {utility
u
i | (i, u) ∈ T, utilityu

i ≤ z} |
| {utilityu

i | (i, u) ∈ T} | (3.8)

and another for those not in that set,

W (z) = | {utility
u
i | (i, u) /∈ T, utilityu

i ≤ z} |
| {utilityu

i | (i, u) /∈ T} | (3.9)

3. Choose number of quality levels L(2 ≤ L ≤ 100), so quality scores will be
q

(u)
i = 1, . . . , L where 1 is the lowest and L is the highest.

4. Bin utility scores into L bins according to the quantiles of the target util-
ity distributions C(.) and W (.). An example binning for L = 5 is shown
in table 3.2, where W−1(.) and C−1(.) are the quantile functions, such
that C−1(0) and C−1(1) (W−1(0) andW−1(1)) denote the empirical min-
ima and maxima. Respectively, x and y are appropriate percentile points
selected based on the shape of C(.). An example plot of a cumulative
distribution function is shown in figure 3.2
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Bin Range of target utilities
1

{
zi | −∞ < zi < C−1(0.01)

}
2

{
zi | C−1(0.01) ≤ zi < W−1(1)

}
3

{
zi |W−1(1) ≤ zi < C−1(x)

}
4

{
zi | C−1(x) ≤ zi < C−1(y)

}
5

{
zi | C−1y ≤ zi

}
Table 3.2: Binning utility scores [ISO12b].

Figure 3.2: Example empirical cumulative distribution of the impostor scores
(red) and genuine scores (green). Taken from [ISO12b]
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3.3.1.3 Quality score fusion

Since quality score computation is comparator specific, a generalized quality
score might be produced by aggregating the results of all comparators. When
considering different aggregate functions, one should be aware of the possible
options:

• Unanimity: Samples with identical quality scores from all K compara-
tors become members of the QRD, where all the rest are discarded.

• Median (or other percentile point): Samples with identical quality
scores from more than X percent of K comparators become part of QRD
and the rest are discarded. Note that X = 100 is the unanimity and
X = 50 is the majority vote rule.

• Arithmetic mean: The final quality score of each sample will be the
mean of its quality scores from all K comparators.

3.3.2 Spearman correlation

After a quality measurement algorithm is developed, its performance needs to
be assessed. Direct comparison of the estimated quality scores with the binned
observed utility scores for a given dataset is one way of assessing it. However,
quality score resolution and score assigning might differ across different QMAs,
thus making direct comparison of the produced scores is unfit for the purpose.
Therefore different methods need to be applied. One of them is Spearman
correlation:

ρ =

∑
i

(xi − x̄)(yi − ȳ)√∑
i

(xi − x̄)2(yi − ȳ)2
(3.10)

Spearman’s rank correlation coefficient was first introduced by Charles Spear-
man [Spe87] for statistical measurement of the degree of correlation between
two variables. It is denoted ρ and it shows the degree of monotonicity of the
relation of the two variables. A perfect correlation will give value of ρ = ±1,
where positive value indicates that the variables share increasing monotonic
trend and negative value indicates that the monotonic trend is decreasing. A
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value of ρ = 0 indicates statistical independence of the two variables, i.e. they
are completely unrelated.

3.3.3 Error versus Reject Curves

Error versus Reject Curves (ERC) was proposed by Grother and Tabassi [TG09]
aiming to model real-world operational cases where quality is maintained by
reacquisition. The method visualizes the relation between FNMR and the frac-
tion of rejected poor quality samples. If well-performing QMA is causing rejec-
tion of poor quality samples and requiring their reacquisition until the quality
is good enough, the performance of the biometric system should improve in
terms of lowering FNMR, since poor quality samples tend be falsely rejected by
receiving genuine comparison scores below the biometric threshold. Rejecting
more than one third of the samples might lead to user frustration, therefore only
part of the ERC plot is of interest, namely the part showing the rejection of the
poorest 35% of the samples.

For a given dataset of samples d(u)
i (i.e. the uth sample of subject i), its all

genuine comparison scores su,v
i,i produced by comparator k, and all estimated

by the specified QMA quality scores q(u)
i , the procedure of generating the ERC

curve is as follows:

1. For each genuine comparison score s(u,v)
i,i , there is a pair of biometric sam-

ples p(u,v)
i = (d(u)

i , d
(v)
i ). Combine their quality scores into q(u,v)

i

q
(u,v)
i = H(q(u)

i , q
(v)
i ), e.g. H(.) =

√
q

(u)
i q

(v)
i (3.11)

If the number of quality levels is less than the suggested by ISO/IEC value
of 100, in order to arrive with non-stepwise and smoother approximation
of the lower convex hull of the geometric mean curve, a Gaussian noise
should be added to

√
q

(u)
i q

(v)
i , e.g. N(0, 0.01 × Lstep), where Lstep is the

step between two quality levels. This adding of Gaussian noise is called
jittering.

2. Define a set of low quality entries R(m) by introducing level of acceptable
quality threshold m

R(m) =
{
p

(u,v)
i | q(u,v)

i < m
}

(3.12)
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3. Determine a threshold t = C−1(f) for the genuine comparison scores,
where C−1(.) is the quantile function (the inverse of the empirical cumu-
lative distribution) for the genuine comparison scores and f is a reasonable
FNMR, e.g. 10% for f = 0.1

4. Define the value of FNMR for all quality thresholds caused by the gradual
change of m from 0 to the fraction of rejected samples of interest, e.g. 0.35
for 35%

FNMR(t,m) =

∣∣∣{s(u,v)
i,i | s(u,v)

i,i ≤ t, p(u,v)
i /∈ R(m)

}∣∣∣∣∣∣{s(u,v)
i,i | p(u,v)

i /∈ R(m)
}∣∣∣ (3.13)
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Figure 3.3: An example ERC plot. FNMR is set to 0.1 and at most 35% are
rejected.

By following the procedure and gradually changing the fraction of rejected sam-
ples m, an ERC plot could be drawn, as shown on figure 3.3. There are three
curves on the example plot, all of them starting from the same point of f = 0.1,
i.e. the threshold is such that the FNMR is 10% with no samples rejected.
The dashed red one is denoting the ideal case, where rejecting the samples with
the poorest 10% of the quality scores would cause decrease in the FNMR by
the same fraction. However, such behavior in practice is unrealistic, so QMAs
usually have curves more similar to the other two curves. For better QMAs the
curve goes down faster (e.g. the green curve), thus approaching the ideal case
curve.
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3.4 Fingerprint sample quality

Fingerprint image samples are compared by the comparison algorithms for their
ridge impressions, either by extracting minutiae or by extracting some other
features. As mentioned in section 3.1, biometric sample quality has two com-
ponents: character and fidelity; both affecting the third component utility. On
the other hand QMAs try to assign quality score to each sample, which reflects
more or less their utility. Therefore a closer look at both character and fidelity
for fingerprint samples should be done.

(a) (b) (c) (d) (e)

Figure 3.4: Examples of fingerprint samples acquired with an optical scanner
from the same finger in different conditions:
(a) too much pressure;
(b) dry skin;
(c) normal conditions;
(d) dirty skin;
(e) wet skin.
Taken from [Dus13]

There are number of factors that influence the character of the fingerprints, such
as scars, creases, blisters, etc. All of them are inherent to the fingerprint source
and cannot be avoided. However, for improving the fidelity of the fingerprints
some actions before reacquiring could be taken, since it is highly dependent on
several controllable factors:

• Skin condition: moisture, dryness, cleanness, etc. Too wet, too dry
fingers or dirty fingertips cause capturing of poor impressions due to pres-
ence of artifacts in the captured image. Cleaning the fingertips and dry-
ing/moisturizing them before reacquisition improves the quality of the
captured samples.

• User behavior : finger positioning, pressure, deformations, etc. Improper
positioning of the fingertip causes rotation and translation image artifacts,
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for which many comparison algorithms are highly sensitive. Pressure and
ridge deformations may cause ridges to change their shape or even make
some valleys disappear completely. Reacquisition attempts under the su-
pervision of an assistant are very likely to improve the quality of the
captured samples.

• Environmental conditions: sensor platen cleanness, temperature, etc.
Sensor platen dirtiness causes artifacts or latent fingerprints to be captured
additionally to the impression of the ridges. Cleaning of the sensor solves
that issue for the subsequent attempts.
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Chapter 4
Considered machine learning

methods

The previous chapters have introduced the reader to the field of biometrics
and biometric sample quality. Throughout biometric sample quality analysis,
different features are considered and used to determine sample quality. The
problem of classifying or clustering samples, given a list of features each, is a
good invitation for applying machine learning methods for biometric features
analysis. Since machine learning is a broad topic itself, this chapter is aimed to
introduce the reader to the machine learning methods used in the experiments.
Some basic prior knowledge of machine learning, linear algebra and probability
theory is assumed.

4.1 Self-organizing maps

4.1.1 Essentials

Self-organizing maps (SOM) have been introduced by [Koh82] and are a bio-
logically inspired unsupervised learning neural network model [KSH01]. It is a
dimensionality reduction technique, similar in principle to vector quantization,
where a number of codebook vectors m are fitted to represent some larger list
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of data vectors x. The dimensionality of the codebook vectors is the same as
the dimensionality of the data and a distance metric is defined, e.g. Euclidean
distance:

d(x,m) = ‖x−m‖ =

√√√√ |x|∑
i=1

(xi −mi)2 (4.1)

Unlike vector quantization, SOM maintains globally and spatially ordered code-
book vectors, usually forming a two-dimensional grid for visualization purposes.
After the model has reached convergence, a non-linear mapping of the high-
dimensional data space to the lower-dimensional grid space is achieved. The
training data topology is preserved as much as possible by the resulting network
(map). Later on this network could be analyzed to find interesting patterns of
the data and cluster it.

(a) triangular 2D data (b) cuboidal 3D data

Figure 4.1: Example SOM networks trained with (a) triangular 2D data and
(b) cuboidal 3D data. Images taken from [KSH01]

The network could be calibrated if the labels of the training data are known.
Calibration is done in the following manner: each node gets a label, estimated
from the training samples mapped to that node, usually by majority voting. If
not calibrated, the coordinates of the best-matching unit (the node that is closest
to the sample) could be used as features themselves. This way the dimensionality
of the data is reduced to the dimensionality of the network lattice.

SOM lacks a well-defined objective function due to its heuristic nature, which
makes convergence hard to prove and measure mathematically. Therefore mean
quantization error (4.2) has been adopted to assess the quality of the trained



4.1 Self-organizing maps 35

maps, where N is the number of all samples x(t) and mc(t) is their best-
matching unit.

E = 1
N

N∑
t=1
‖x(t)−mc(t)‖ (4.2)

4.1.2 SOM network architecture

The network grid arrays could be constructed in a couple of different ways. The
most common of them is the regular grid array, where the two-dimensional array
represents a sheet in the data space. All nodes have a number of neighboring
nodes, except the bordering nodes at the edge of the sheet. This type of grid
arrays introduce bordering effects: the spacings of the neighboring nodes are not
as regular near the borders as in the middle of the SOM [Koh13].

However, if the data has a cyclic structure and to avoid some of the bordering
effects, a cyclic arrays could be used, either toroidal or spherical.

Depending on the number of node neighbors, a map could be rectangular (four
neighbors) or hexagonal (six neighbors) as shown in figure 4.2. Hexagonal maps
are more accurate and better suited for visualizations, therefore they are rec-
ommended [Koh13]. Some other number of neighbors are rarely used.

(a) (b)

Figure 4.2: Depending on the number of neighbors, a map could be: (a) rect-
angular; (b) hexagonal. Images taken from [SMN+13]

4.1.3 SOM network initialization

The size of the network (the number of the grid nodes) is usually determined
heuristically. Too small map would not reflect the data distribution well enough,
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while too big map would introduce some empty nodes, i.e. some nodes will be
responsible for no samples. Therefore the map size is taken as a fraction of
the number of training samples. However when dealing with large datasets, the
computational load should be taken into account, so a trade-off between the
processing power and the precision of the network is to be faced. Once the
number of nodes is determined, they should be initialized.

4.1.3.1 Random initialization

A fast and easy way to initialize the nodes is to randomize their codebook vectors
or to assign them to randomly selected samples from the training data. Since
no data structure information is known, the number of nodes in each dimension
of the grid lattice is taken to be the same. If the data is not available prior to
the training process, this way is the only way to initialize the SOM.

However, random initialization is not robust, so every new training on the same
data could result in different convergent state, if the random generator seed is
different. Also data structure is not taken into account and that may cause
poorer fitting of the map. Codebook vectors initially are not ordered globally,
so a rough training phase has to be introduced before the actual training begins.

4.1.3.2 Linear initialization

Another way of initializing the codebook vectors is to linearly initialize them
across the first principal components of the training data. The number of grid
nodes along each dimension of the lattice is determined respective to the eigen-
values of the principal components.

However, calculation of principal components is computationally expensive for
large datasets of high-dimensional vectors and requires availability of the train-
ing data prior to the training process. Since usually a two-dimensional SOM
maps are used, only the first two principal components are required, so they can
be estimated iteratively efficiently by [Row98].

4.1.4 Stepwise SOM algorithm

The original SOM algorithm is the stepwise SOM algorithm. The data is treated
as sequential data, where each data sample is a step t in a time sequence x(t).
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The codebook vectors are also treated as vector sequences mi(t), where i is the
spatial index of the grid node. The algorithm is as follows:

• Determine the best-matching unit

c = argmin
i
{‖x(t)−mi(t)‖} (4.3)

• Determine neighbors of each model mc(t) using a neighborhood function

hci(t) = α(t) exp
[
−‖mc(t)−mi(t)‖2

2σ2(t)

]
(4.4)

• Update grid node c and its spatial neighbors

mi(t+ 1) = mi(t) + hci(t) [x(t)−mi(t)] (4.5)

One has to notice that the neighborhood of the best-matching node is determined
by all the non-zero values of the neighborhood function, so only they contribute
to the update of the winner node and get updated themselves.

Figure 4.3: Best-matching unit is determined using equation (4.3), then the
neighborhood is determined by (4.4) and the winner node and its
spatial neighbors get updated. Images taken from [SMN+13]

The neighborhood function (4.4) changes over time, controlling the smoothness
of the training process. A simple values could be hci = 1 within certain neigh-
borhood from the best-matching unit and hci = 0 otherwise. This type of neigh-
borhood is called bubble neighborhood. However, equation (4.4) shows a more
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general Gaussian-like neighborhood function, where α(t) is a monotonically de-
creasing scalar learning rate function and σ(t) is a monotonically decreasing
scalar range representing function. While α(t) determines the influence to the
models of every new sample, i.e. the elasticity of the "memory" of the model,
σ(t) affects the neighborhood directly and usually starts with quite large values
(half the diameter of the grid in the data space) gradually decreasing to only
fraction of it, avoiding to reach zero.

(a) (b)

Figure 4.4: The neighborhood function could be either (a) a Gaussian or (b)
a bubble one. Images taken from [Sve98]

4.1.5 Batch SOM algorithm

The batch SOM algorithm relies on availability of all the training data, therefore
no learning rate function α(t) is needed in the neighborhood function hci(t). A
list of best-matched samples Nc is maintained for each model mc(t), where
references to all samples, whose winner node is c, are kept. The algorithm is as
follows:

• Determine the winner node mc(t) for each x(t) using (4.3) and put each
x(t) to the list Nc of their mc(t)

• Determine the neighbors of each modelmc(t) using hci(t) from (4.4) with-
out α(t)

• Update each model mc(t) with the weighted mean ofNc and allNi, where
each sample x(t) of node list Ni is weighted with hci(t)

• Clear the list of vectors Nc for each mc(t)

The update of the models is performed in a batch update iteration for all the
grid models at once, unlike the sequential update iterations used in the stepwise
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SOM. This makes the algorithm multithread- and multiprocess-friendly, so good
advantage of modern CPU architectures could be taken. However, it introduces
problems with storing all the data in the operating memory, so it should be
carefully implemented, if meant to deal with large datasets.

4.2 Generative topographic mapping

4.2.1 Essentials

Generative Topographic Mapping (GTM) was introduced by [Sve98] as a prin-
cipled alternative to the SOM. It is a probabilistic counterpart of SOM, that
models the distribution p(t) of the D-dimensional data by using a number of
L-dimensional latent variables x, where usually L = 2 for purposes of visual-
ization. The mapping from the latent space to the data space is done by using
the transformation y(x; W), where W is a parameter matrix of some non-linear
model, e.g. neural network [Bis07]. Usually y(x; W) is chosen to be a general-
ized linear regression model [Bis07] of the form y(x; W) = Wφ(x), where φ(x)
consists of M fixed radial basis functions [Bis07].

Figure 4.5: The mapping from latent space (left) to data space (right). Taken
from [Sve98]

Defining a probability distribution p(x) in latent space gives a rise to a corre-
sponding distribution p(t |W) in data space, which is confined to the image of
the L-dimensional manifold in the data space under the mapping x→ y of the
non-linear function y(x; W). Since in reality the data can only approximately
lie on a lower-dimensional manifold, a noise model for the t vector should be
included. The distribution for t, given x and W, becomes radially-symmetric
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Gaussian centered on y(x; W) having variance β−1 so that

p(t | x,W, β) =
(
β

2π

)D/2
exp

{
−β2 ‖y(x; W)− t‖2

}
(4.6)

In order to obtain the distribution in the data space, for a given weight matrix
W, an integration over the latent distribution should be done

p(t |W, β) =
∫
p(t | x,W, β)p(x)dx (4.7)

However, computing the integration would be infeasible, therefore a discrete
form of p(x) is taken, such that

p(t |W, β) = 1
K

K∑
i=1

p(t | xi,W, β) (4.8)

where all xi are K nodes, centered on a regular grid in the latent space.

Figure 4.6: The discrete regular grid of nodes in latent space (left), mapped
to the data space (right), where they correspond to centers of
Gaussians with variance β−1. Taken from [Sve98]

For a given data set, the log likelihood is defined as

L(W, β) = ln
N∏

n=1
p(tn |W, β) (4.9)

In order to determine the parameters W and β, one has to maximize the log
likelihood. That is done by an EM-algorithm [DLR77].
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4.2.2 EM-algorithm

The Expectation-Maximization algorithm (EM-algorithm) is done in two steps,
called respectively Expectation (E-step) and Maximization (M-step).

In the E-step, given the current weight matrix Wold and the current inverse
noise variance βold, the responsibilities of each Gaussian component i for every
training data vector tn are evaluated using Bayes’ theorem by:

Rin (Wold, βold) = p(xi | tn,Wold, βold) = p(tn | xi,Wold, βold)
K∑

i′=1
p(tn | xi′ ,Wold, βold) (4.10)

Then the expectation of the complete log likelihood is calculated by:

〈Lcomp(W, β)〉 =
N∑

n=1

K∑
i=1

Rin(Wold, βold) ln p(tn | xi,W, β) (4.11)

In the M-step, equation (4.11) is maximized with respect to W and β. The
maximized equation with respect to W can be written as:

ΦT GoldΦWT
new = ΦT RoldT (4.12)

where Φ is a K ×M matrix for all φm(xk), T is the N ×D data matrix, R is
the K × N matrix with elements Rin, G is K × K diagonal matrix, given by
Gii =

∑N
n=1 Rin(W, β).

If needed, a regularization term λ could be added to control the mapping
y(x; W), which could be interpreted as a radially-symmetric Gaussian prior
over the weights W:

p(W | λ) =
(
λ

2π

)MD/2
exp

−λ2
M∑

j=1

D∑
k=1

w2
jk

 (4.13)

That will lead to the modification of equation (4.12) as follows:(
ΦT GoldΦ + λ

β
I
)

WT
new = ΦT RoldT (4.14)
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Similarly, maximizing equation (4.11) with respect to β, gives:

1
βnew

= 1
ND

N∑
n=1

K∑
i=1

Rin(Wold, βold) ‖Wnewφ(xi)− tn‖2 (4.15)

By solving the equations for Wnew and βnew, the M-step is finalized.

4.2.3 Parameter selection

As with all parametric models, the GTM model depends on its choice of param-
eters. Having chosen the form of the non-linear mapping to be a generalized
linear regression model of the form y(x; W) = Wφ(x), where φ(x) consists of
M fixed radial basis functions, a couple of more parameters of the non-linear
model are introduced as well, i.e. the common width of the radial basis functions
σ and their number M .

Usually machine learning methods distinguish parameters that influence directly
the model (W) and ones that have an implicit effect (λ, β, σ) by calling the latter
hyper-parameters, however here all of them will be called simply parameters and
W will be called weights.

4.2.3.1 Parameters

A list and description of all the model parameters will be provided here:

• M - the number of radial basis functions to be used; each radial basis
function is situated on a regular grid in the latent space.

• σ - the common width of the radial basis functions, controlling the global
smoothness of the spanned manifold. Increasing σ would cause stiffer man-
ifolds, where decreasing it will make the radial basis functions increasingly
uncorrelated, thus non-linearity of the manifold will gradually diminish.

• K - the number of sample points xi controls the precision of the approxi-
mation of the integration from equation (4.7). It influences the flexibility
of the model and choosing K ≥ N can easily cause model overfitting.
Usually K is chosen to be N > K ≥M .
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• W - these weights directly control the mapping from latent to data space
and are estimated by the EM-algorithm.

• β - this parameter is the inverse noise variance and is estimated by the
aforementioned EM-algorithm. It affects the smoothness of the manifold
at local level. Too high values of β lead to training an inflexible model,
where too small values force the model to fit better the training data,
causing overfitting, if enough sample points K are given.

• λ - this parameter is the inverse variance of the prior over the weights W
and is used as regularization term, controlling the magnitude of the weights
and the scale of the manifold. Therefore it restricts further capturing the
noise of the data, since the underlying distribution is of interest.

4.2.3.2 Cross-validation

Parameters of the model could be determined by cross-validation. For cross-
validation of given parameter values, the training set is divided into several
equally sized sets S. Each of the smaller sets is used as a validation set once
and the union of the other sets is used as training set. Therefore, a number
S of models are trained and the log likelihood of the trained model over the
validation set could be calculated. A mean of all log likelihoods is taken, in
order to improve the generalizability of the results.

Figure 4.7: A pictorial illustration of cross-validation. Each row correspond
to a different division of the data into validation set (shaded) and
training set (others). Taken from [Sve98]

The aforementioned procedure is performed for a range of parameter values and
the combination of parameters yielding the best average log likelihood is chosen
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for the final model training. However, since the number of trainings grows ex-
ponentially in the number of parameters to be chosen, some of them should be
estimated by the rule of the thumb in order to substantially reduce the compu-
tational expenses. Therefore the parameters M , K are determined heuristically
by human supervision, while for the parameters σ and λ are tried out range of
values. W and β are estimated by using the EM-algorithm, explained earlier
in this chapter. This way only a quadratic number of trials are performed to
approximate the best pair of σ and λ. However, since small changes in the
parameter values may cause large differences, hierarchical parameter space ex-
ploration could be considered for better results, thus slowing down further the
process of model selection.

4.2.3.3 Baysian approach

Since the GTM is a probabilistic model, estimating the parameters could be
done in Baysian framework. As shown in details in [Sve98], a distribution over
possible weight matrices depending on the training data could be defined

p(w | T) = p(T | w)p(w)
p(T) (4.16)

where w is a vector of all the weights in W, p(T | w) is the likelihood for
w, also called evidence, p(w) is the prior distribution over the weights, before
seeing any data and p(T) is a normalization constant ensuring that the posterior
distribution over the weights integrates to one.

New equations for λ, β as well as for the log-evidence for a given σi are derived
in section 5.3 of [Sve98]. These equations and derivations will not be listed
here, since they are rather complex and the Baysian approach for estimating
the parameters was not used in this thesis. However, the algorithm is to be
shown due to its ability to approximate the parameters to their close to optimal
values at relatively low computational cost. The algorithm is as follows:

This is done for a range of σi values and the one with best recorded log-evidence
is chosen for the model training. The other parameters are estimated as shown
in the algorithm.
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for i=1 to I do
initialize GTM using σi

repeat
repeat

optimize W by EM-algorithm with λ and β kept fixed
until stop criterion for W is met;
re-estimate λ and β, using the provided equations

until stop criterion for λ and β is met;
record the log-evidence for σi

end

4.3 Random forests

Random forests was introduced by [SB01] as an ensemble machine learning
method for supervised classification and regression. A brief overview of Random
Forests (RF) will be presented here in the context of classification by the means
of decision trees [Qui86].

4.3.1 Decision trees

Decision trees are trees with decision nodes, where splitting a training dataset
with class labels is done gradually by discriminating the samples by the values
of some of their features. If the dataset has N samples and each of these samples
has M features, at each node of the decision tree one or more features are to
be tested to make a split of the dataset. If all the training samples in the node
are from the same class or no more splitting can be done, the procedure stops
and the reached node is called a leaf and labeled with the most populous class.
When all training samples end up being part of leaves, the growing of a decision
tree is done.

Determining the splits and the features used for the split could be done in differ-
ent manners, however most of them try to minimize the impurity of the resulting
subsets adopting some impurity measure, such as Gini index, and making splits
according to gains in that measure. Tree nodes can have any number of children,
though binary decision trees are most common. Growing full decision trees may
cause overfitting, therefore there are different pruning methods [Min89] defined
to deal with that problem. Decision trees are not limited to classification tasks
and could also be adapted for regression tasks.
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Figure 4.8: A simple decision tree for data vectors with three categorical vari-
ables: outlook, humidity and windy. Taken from [Qui86]

4.3.2 Bagging

Bagging is an ensemble method [Bre96] improving the stability and the accuracy
of unstable machine learning algorithms. It also decreases overfitting of the
trained models, since it is similar to model averaging. The principle of bagging
is to bootstrap a number of datasets D out of the existing N samples. A size
n ≤ N of the bootstrapped datasets is defined and by drawing randomly n
samples from the original dataset with replacement, i.e. possibly duplicating
samples, all D datasets are created.

After having D datasets, D models, e.g. decision trees, are trained using these
datasets. Then unseen data is classified using all trained models, where the class
label is determined by choosing the most populous choice among the models.

4.3.3 Random feature selection

Random feature selection is based on choosing randomly m distinct features out
of M features to be used by the decision tree for the split at given node, where
m�M . For every node, a new set of m features are to be chosen, which could
be repeated among different splits.
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4.3.4 Random forest construction

Constructing a random forest is done by combining both bagging and random
feature selection methods, described in the previous subsections. The algorithm
proceeds as follows. Firstly, a number of decision treesD has to be chosen. Then
a dataset for each of these trees is bootstrapped by the bagging procedure. Then
the tree is fully grown by random feature selection method and not pruned. Later
on, classifying an unseen sample involves classifying it using all the trees grown
and labeling it with the most populous choice among the classifiers.

4.4 Discussion

The machine learning methods used in the thesis have been introduced in the
current chapter. Two unsupervised methods for modeling the data distribution
have been presented, one heuristically derived (SOM) and one derived using
Baysian setup (GTM).

The first one is very easy to understand and implement; it is also very popular
among image processing algorithms for different purposes, as it has been used
extensively for more than two decades. On the other hand GTM is harder
for implementation due to its probabilistic nature, requiring computations of
very small posterior probabilities, that may cause computational floating point
underflow. This problem becomes increasingly prominent as the dimensionality
of the feature vectors grows. However, modeling the data distribution with GTM
avoids some of the drawbacks of using SOM, described in details in [Sve98].

The third machine learning method (RF) is a supervised one and requires class
labels to be given prior the training. Therefore the trained model is dependent
on the class labeling and if different labeling is given, a new model should be
trained. All of the three machine learning methods are used in the current work
for specific purposes. Their usage is shown in the successive chapter.
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Chapter 5
State of the art in fingerprint

quality metrics

This chapter is focused mainly on two quality measurement algorithms, that are
to be used as a reference for the new proposals presented in section 7. There are
a couple more well-performing algorithms that will be also mentioned briefly as
part of the state of the art.

5.1 Introduction

Recently biometric quality measurement algorithms have drawn the attention of
the international biometric scientists community. Fingerprint quality assessment
algorithms have been developed and moves towards standardization have been
made. After the successful development of NFIQ, development of a second ver-
sion NFIQ 2.0 [NIS12a] have been started by NIST collaboratively with several
German institutions, namely BSI, BKA, Fraunhofer IGD, CASED (Hochschule
Darmstadt), Secunet Security Networks AG.

Definitions of state of the art quality features have been presented in ISO/IEC
29794-4 [ISO12c] as well as in NFIQ 2.0 Feature Definitions Document (cur-
rently v0.5) [NIS12b]. Their evaluated performance has been shown in NFIQ 2.0
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Feature Evaluation Document (currently v0.5) [NIS12a]. According to ISO/IEC
29794-4 feature analysis methods could be split into two categories: global fea-
tures analysis methods, that analyze the sample as a whole in order to produce
the quality score; local features analysis methods, that analyze blocks of the
sample and then producing the score as a result of the aggregated output of
block-wise analysis.

5.2 Orientation Certainty Level

Orientation Certainty Level (OCL) is a local feature analysis method for quality
estimation introduced by [LJY02]. It is part of both ISO/IEC 29794-4 [ISO12c]
and NFIQ 2.0 Feature Definitions Document (v0.5) [NIS12b]. This method
has grounds in the observation that good quality samples have well defined
ridges and valleys. If taken block-wise, ridge and valley lines have the same
orientation and determining that orientation for good quality samples could
be done with high certainty, unlike for poor quality samples. Therefore the
measured orientation certainty is used as quality feature for each block, which
are later aggregated into a single quality score.

The procedure is defined in both ISO/IEC 29794-4 [ISO12c] and NFIQ 2.0
Feature Definitions Document (v0.5) [NIS12b], where block size of 32×32 pixels
is suggested. However, NFIQ 2.0 has one difference from ISO/IEC 29794-4 and
that is the computation of OCL, where ISO/IEC 29794-4 indicates with 0 the
strongest OCL and with 1 the weakest, which is inverse for NFIQ 2.0. For each
block bj the NFIQ 2.0 procedure is as follows:

1. Compute the block-wise intensity gradient by applying a 3×3 Sobel opera-
tor on the block image. The result for each pixel pi = (x, y) is the gradient
(dx, dy), representing the strength and the direction of the orientation at
that pixel.

2. Compute the covariance matrix C by iterating over all N pixels in the
block

C = 1
N

∑
pi

{[
dx
dy

] [
dx dy

]}
=
[
a c
c b

]
(5.1)

3. Compute the eigenvalues αmin and αmax

αmin =
a+ b−

√
(a− b)2 + 4c2

2

αmax =
a+ b+

√
(a− b)2 + 4c2

2

(5.2)
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Processing steps for Orientation
Certainty Level

Input
(FVC2000Db1
1_1.bmp)

Input
(FVC200Db1
100_1.bmp)

Input with current block marked

Zoomed view of block

Ridge orientation indicated as an
ellipse. The eccentricity of the
ellipse corresponds to the orien-
tation certainty.

Orientation certainty level in
each block. High intensity corre-
sponds to high level of certainty.

Table 5.1: Computing the orientation certainty level. Taken from [NIS12b].



52 State of the art in fingerprint quality metrics

4. Compute the orientation certainty level OCL

bOCL = 1− αmin

αmax
(5.3)

Once the computing of the OCL for all Nb blocks is done, the quality score is
computed as:

QOCL = 1
Nb

∑
pi

bOCL (5.4)

5.3 NIST Finger Image Quality

NIST Finger Image Quality (NFIQ) was proposed in [TW05] and is currently
the best performing QMA according to the NFIQ 2.0 Feature Evaluation Doc-
ument (v0.5). The output of the QMA is within the range 1− 5, where 1 is the
highest quality level and 5 is the lowest quality level. NFIQ is very robust and
works good for wide range of comparison algorithms. It is also performing well
in terms of execution time for estimation, thus it could be used in live-fingerprint
scanners [TW05] [NIS12b].

Its working principle is based on extracting a number of different features by
analyzing the fingerprint image with NIST Fingerprint Image Software (NFIS)
[NIS] to produce a feature vector. Later on, this feature vector is given as an
input to an artificial neural network to classify the image to one of the five
quality levels. The neural network has been trained on subset of images from
five datasets with different capture conditions. The procedure of producing a
quality score from a fingerprint sample is as follows:

1. Generate image quality map by generating several image maps and then
combine the information from all the maps into one. The map is divided
into regions, each of them with assigned quality level from 0 − 4, where
4 indicates highest quality. Blocks with quality 0 are regarded as back-
ground blocks and the total fraction of foreground blocks out of all blocks
is calculated. Then the percentage of the foreground quality blocks with
quality 1, 2, 3 and 4 are computed, the resulting percentages are called
quality zones 1 − 4. Here is a list of image maps used to generate the
quality map:
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• Direction map: this map is produced by using Discrete Fourier
Transform (DFT) in several orientations of the block, rotated in-
crementally. Rotation of the block is done within a larger window
overlapping with the neighboring blocks for minimizing discontinu-
ity.
• Low contrast map: to produce this map the pixel intensity distribu-
tion within the surrounding window of the block is computed. Then
blocks with narrow dynamic range (defined by an empirically deter-
mined threshold) are flagged as low contrast, therefore unreliable for
minutiae detection.
• Low flow map: this map shows the areas that could not be assigned
with a dominant ridge flow, where detected minutiae are not reliable.
• High curve map: this map shows the blocks, where high curvature
exists. Areas with high curvatures are also not reliable for minutiae
detection.

2. Extract minutiae by using NFIS and estimate their quality by calculating
the mean and the standard deviation of the area they are detected. A
good minutiae should have high standard deviation and medium mean
pixel intensity. NFIS assigns a quality within the range of 0.01 − 0.99 of
each minutiae based on that assumption.

3. Produce 11-dimensional feature vector as described in table 5.2

Name Description
1 foreground number of block that are quality 1 or better
2 total number of minutiae total number of minutiae found in the fingerprint
3 min05 number of minutiae having quality 0.5 or better
4 min06 number of minutiae having quality 0.6 or better
5 min075 number of minutiae having quality 0.75 or better
6 min08 number of minutiae having quality 0.8 or better
7 min09 number of minutiae having quality 0.9 or better
8 quality zone 1 percentage of the foreground blocks with quality = 1
9 quality zone 2 percentage of the foreground blocks with quality = 2

10 quality zone 3 percentage of the foreground blocks with quality = 3
11 quality zone 4 percentage of the foreground blocks with quality = 4

Table 5.2: Description of the NFIQ 11-dimensional feature vector. Taken from
[TW05].
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5.4 Other QMAs

The above-described methods have been chosen to be used as reference meth-
ods for evaluating the performance of the proposed approaches in this thesis.
However, there are several more QMA methods presented in NFIQ 2.0 Feature
Definitions Document and some of them will be briefly discussed here.

5.4.1 Gabor Shen

Gabor Shen [SKK01] is one of the best performing methods and it is based on
applying a Gabor filter [FS89]. The image is separated into background and
foreground blocks and then the foreground is separated on good and bad blocks.
The quality score is the ratio of poor blocks in the foreground. Gabor Shen is
part of NFIQ 2.0 Feature Definitions Document (v0.5) [NIS12b].

5.4.2 Local Clarity Score

Local Clarity Score (LCS) is a local analysis method that computes the block-
wise clarity of ridge and valleys by using linear regression to determine a pixel
intensity threshold. Then pixels are classified as either ridge or valley and
compared with the normalized ridge and valley width of the block, looking for
misclassifications. Then ratio of misclassified pixels in the block is calculated
for each block. The method is described in NFIQ 2.0 Feature Definitions Docu-
ment (v0.5) [NIS12b] as LCS and in ISO/IEC 29794-4 [ISO12c] as Ridge-valley
Structure Analysis.

5.4.3 Ridge Valley Uniformity

The Ridge Valley Uniformity is defined in both ISO/IEC 29794-4 [ISO12c] and
NFIQ 2.0 Feature Definitions Document (v0.5) [NIS12b] and is a measure of
consistency of the ridge and valley widths. It is a global analysis method cal-
culating the standard deviation of the ratio of ridge width to valley width from
the mean ratio, where lower deviation indicates a better quality image.
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5.4.4 Orientation Flow

Orientation Flow is a global analysis method and it has found its place in
ISO/IEC 29794-4 [ISO12c] and NFIQ 2.0 Feature Definitions Document (v0.5)
[NIS12b]. It is a measure of the ridge flow continuity by calculating the abso-
lute orientation difference between a block and its neighbors. If there is small
difference (usually there is a small angular tolerance), the block is given high
orientation quality score. By increasing the difference, the orientation quality
score drops. The final score is obtained as the mean block-wise orientation
quality scores of all blocks.

5.5 Discussion

This chapter has provided basic overview of the state of the art in fingerprint
quality metrics. There are several well-performing QMAs, that are standardized
in the specifications of ISO/IEC 29794-4 [ISO12c] and NFIQ 2.0 Feature Defini-
tions Document (v0.5) [NIS12b]. However, NFIQ 2.0 is under development and
the list of feature definitions is open for new proposals. The research conducted
on the topic and the resulting proposed methods are meant to contribute to the
research for finding new candidates that are to be incorporated in the ISO/IEC
or NFIQ 2.0 standards.
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Chapter 6

Related work

Previous works have used Self-Organizing Maps to model the distribution of the
image data of fingerprint samples and then use the trained unsupervised model
to estimate the quality of unseen samples. Two approaches have been applied
for that purpose: the first one is by considering the whole image as the input
vector for the training of the model and the second one is to divide the image
into blocks. Both of them will be briefly introduced in this chapter.

6.1 Holistic approach

Self-Organizing Maps is a very popular unsupervised learning method, that has
proved to be very useful for clustering and data visualization. In the field of
image analysis, one of its best uses is for texture analysis [KSH01]. Therefore
using it in the field of fingerprint image sample analysis is a possible good appli-
cation, since fingerprint samples have very specific textures caused by the ridge
impressions. Anton Makarov et al [Mak12] have experimented with modeling
the whole-image data of a sample by applying SOM and then classifying the
new samples according to their best-matching unit. Since SOM is a mapping
of similar samples to the same node, then it is assumed that the unseen data,
being mapped to a given node, would have similar features as the previously
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mapped training data to that node. Thus the biometric performance of these
samples is expected to be similar as well.

Figure 6.1: Feature vector construction. Taken from [Mak12]

The holistic approach is based on the following principle: the whole-image data
is taken row-wise to construct a single feature vector consisting of the pixel
values. Then a set of samples are used for the training of a randomly initialized
hexagonal SOM map with a predefined network sizes, e.g. 16 × 16, 24 × 24,
etc. The quality scores of the training samples are calculated by binning the
observed utility score and after the training has finished for each node a quality
class is assigned by themean quality score of all training samples mapped to that
node. In the performed experiments, also "winner takes it all" assignment was
tried, but did not show better results than the mean assignment. Also image
segmentation for background and foreground separation was applied is some of
the experiments, so the results could be compared with no image preprocessing
at all.

The main goal of the research was to prove that SOM is capable to provide
a mapping, such that it would be useful for predicting quality. Therefore a
validation set was used to produce the results. As seen from figure 6.4, the
samples predicted by the model to be of low quality consist of more samples
with low observed utility (left plot); respectively, the samples that are predicted
to be of high quality consist of more samples with high observed utility (right
plot). That gave promising results on the CASIAFPV5 dataset [oSIoA] and
fueled further research of the usage of SOM for modeling fingerprint image
data.
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Figure 6.2: U-matrix of the trained SOM map of size 64×64 with the holistic
approach. Taken from [Mak12]

(a) Group 1 (b) Group 2 (c) Group 3

Figure 6.3: Fingerprint images mapped to nodes in the trained SOM map,
whose U-matrix is shown in figure 6.2. Taken from [Mak12]
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Figure 6.4: Histogram of the results binned into low and high predicted qual-
ity scores from Makarov’s holistic approach research: left plot
shows histogram of samples with low observed quality; right plot
shows histogram of samples with high observed quality. Taken
from [Mak12]

6.2 Block-wise approach

Even though the holistic approach have shown promising results, the trained
models were not able to capture some specific differences in the images. The
global analysis of the images leads to separating them into different groups,
but often these groups have large inter-group variations as it could be observed
in figure 6.3b. Therefore, the next step of the research was done by Martin
Olsen [OTMB13] and it was based on block-wise fingerprint image division and
training a randomly initialized SOM model that has to capture the block images
data. Before dividing images into blocks, they were normalized using pyramid
decomposition [FKB08].

Then each of the nodes of the trained SOM of size, say 24×24, has been given an
index number. Therefore, each block of the fingerprint image sample is assigned
with its best-matching unit’s index number.

Having each block of the image labeled with a number, a vector of numbers
can be constructed. Then, for this vector the normalized histogram could be
computed, i.e. another feature vector with the length of the number of SOM
nodes, containing the normalized histogram is constructed. One might expect
that the histograms of low quality and high quality samples will be different and
this expectation has proven to be true, as seen in figure 6.8.
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Figure 6.5: Overview of the block-wise system architecture. Taken from
[OTMB13]

Figure 6.6: Visualization of the nodes of the trained SOM map of size 24× 24
for blocks of size 24× 24. Taken from [OTMB13]
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(a) raw image (b) block-wise best-
matching unit indices

Figure 6.7: Illustration of relationship between finger image and SOM code-
book shown in figure 6.6. Taken from [OTMB13]

Figure 6.8: Aggregated histograms of the Low and High comparison scores
sets of 64 images each. Taken from [OTMB13]
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Therefore these histogram feature vectors are used for training a supervised
Random Forest (RF) model to classify them into five quality classes, determined
by the produced comparison scores. Once the two models (the SOM and the
RF) are trained, the same feature extraction procedure is done using the SOM
model for the validation set and the constructed feature vectors are used to
classify the samples into one of the five quality classes by using the RF model.
The procedure was applied on a NIST operational dataset and the method has
shown very good results, surpassing the performance of the Orientation Flow
method defined in [NIS12b].

Figure 6.9: ERC plot showing the performance of the method with different
SOM map sizes compared to the performance of Orientation Flow.
Taken from [OTMB13]

6.3 Discussion

The novel approach of modeling fingerprint image data with Self-Organizing
Maps has shown very good results. The holistic approach has shown the capa-
bility of SOM to model fingerprint image data, where the block-wise approach
has applied these findings and has produced results, comparable with some of
the best state of the art methods.

However, the RF model is a supervised training model and precomputed target
classes are used for the training. Since the target classes are computed out of the
comparison scores produced for each sample by a specific comparison algorithm,
the trained RF model should be retrained for every other comparison algorithm
that is to be used. Also the training of the underlying SOM model is done
by random initialization of the codebook nodes, so a linear initialization could
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be introduced in the hopes of improving the obtained results. Moreover the
experiments should be repeated and the results analyzed, so a better view for
the direction of further studies could be gained. Therefore, the goal of this thesis
is to deal with all these aspects and try to contribute to the improvement of the
developed method.



Chapter 7

Proposed two-tier approach

This chapter describes the proposed two-tier approach for quality estimation,
inspired by the explained related works in the previous chapter. According
to the obtained results, the block-wise approach shows good results, therefore
repeat of the experiment and further development of the method is presented
here.

7.1 Processing pipeline

The overview of the proposed approach is presented here. The input of the algo-
rithm is a list of gray-scale fingerprint images and their corresponding averaged
genuine comparison scores as a column vector y. For the purpose of model-
ing and testing the algorithm, the data is divided into training and validation
set. If desired or needed a prior image preprocessing may be performed on the
fingerprint images, e.g. pyramid decomposition, normalization, etc.

The algorithm is divided into two phases. For the low-level phase, the images
are cut into blocks and a model is trained over the image blocks of the training
set of images. Then by using the trained model, feature vectors are extracted for
each fingerprint image in the dataset. These features are further processed by
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Figure 7.1: Overview of the training process pipeline. Each process or data
source is separated in a blue block and the communication between
processes is denoted as arrows. Some of the processes are grouped
to form a big dashed blocks which are used for unseen data in the
prediction mode.
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the high-level, where another model is trained using the features of the training
set to interpret them into quality levels. The high-level model is used to predict
quality levels over the whole dataset.

Figure 7.2: The process of quality score prediction. Each of the dashed blocks
corresponds to the processes grouped together in figure 7.1.

7.2 Low-level phase

As already mentioned, the low-level processing of the training data results into
a trained model. This model is used for extracting the feature vectors of both
training and validation data. The chosen model is a SOM one and the algorithm
for training it and extracting the features is as follows:

1. Given the list of fingerprint images meant for training and the block size
bsize, all the training images are divided into square blocks of that size.
Depending on the image size, different number of blocks are produced
along each of the two dimensions N (x)

b and N (y)
b .

2. For each block b(x,y)
I , its fingerprint image source I and spatial index (x, y)

are kept, so later this information could be used in feature construction
for the high-level modeling.

3. All image blocks are converted into row-vectors v(x,y)
I of length bsize×bsize

by taking the pixel values of the blocks row-wise as previously shown in
figure 6.5.

4. AllNtrain training vectors are combined in a matrix T . No special ordering
of the vectors is required, though random ordering is preferred.

T =

∣∣∣∣∣∣∣∣∣
v(x,y)

I

v(x+1,y)
I

. . .

v(N
(x)
b

,N
(y)
b

)
Ntrain

∣∣∣∣∣∣∣∣∣ (7.1)
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(a) raw image (b) divided image

Figure 7.3: Example of dividing a fingerprint image into blocks of size 24×24.
The spatial index (x, y) of the block is taken as screen coordinates,
i.e. starting from the left top-most block and x stands for horizon-
tal and y for vertical coordinates. Fingerprint sample taken from
[oSIoA]

5. Linearly initialize SOM as shown in section 4.1.3.2 by doing a PCA anal-
ysis of the data matrix T . For too big matrices to fit in the main memory,
an iterative PCA algorithm [Row98] should be used. The number of map

nodes Mlow is determined heuristically by Mlow =
⌈√

N
(blocks)
train

⌉
in de-

pendence of the total number of training image blocks N (blocks)
train and is

upper bounded by a manually chosen number (e.g. 4000 in the current
thesis), such that a trade-off between computational speed and SOM map
smoothness for big datasets is achieved.

6. Stepwise SOM training process is performed with previously determined
parameters: initial and final α(t) and σ(t), which define the neighbor-
hood function and the training length. These parameters could be either
heuristically determined or by cross-validation over the training data.

7. After the model has been trained, each block vector v(x,y)
I is propagated

through the network, so the best-matching unit is determined and its
coordinates on the SOM map produce a two-dimensional coordinate row-
vector c(x,y)

I for each block of the image. See figure 7.4.

8. For each image I all blocks’ coordinate vectors c(x,y)
I are concatenated,

where block indices in the image are taken row-wise. Thus, for each image
I a feature vector fI of length 2×N (x)

b ×N (y)
b is constructed.
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(a) the BMU on a part of the SOM map (b) propagated block from the fin-
gerprint image

Figure 7.4: The best-matching unit on the SOM map (left) and the block of
the fingerprint image propagated through the map (right). The
coordinates of the best-matching unit from figure (a) are saved
in a coordinate row vector c(x,y)

I , indexed by (x, y), which are
the coordinates of the block itself on the fingerprint image from
figure (b).

7.3 High-level phase

The low-level model is used to extract feature vectors fI for each image. These
feature vectors are used to assign a quality level for each image. However, in
order to construct the model labeling each feature vector to a quality level, one
has to train that model. There are several approaches used in this thesis for the
high-level modeling and they will be described here.

In order to quantize the results of the algorithms, a binning procedure for con-
verting from genuine comparison scores into quality scores must be performed.
That is done by defining a cumulative distribution function C(.) of the observed
genuine comparison scores of the training set. Then a number of levels L is
chosen and L − 1 thresholds in the range 0 − 1 are defined. Using the inverse
cumulative distribution function C−1(.), these fraction thresholds are converted
into genuine comparison score thresholds. Having these thresholds and a given
genuine comparison score, a quality level could be obtained.
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7.3.1 Self-organizing maps

Similarly to the low-level training procedure, for the high-level a SOM model is
to be used for modeling the feature vectors fI input data. Since the datasets
are usually consisting of tens of thousands samples and each feature vector for
block sizes higher or equal to 16 × 16 are of length up to couple of thousand
features, the batch SOM algorithm could be used without requiring too much
RAM for the training. Thus, the learning rate α(t) becomes obsolete and only
the training length and the neighborhood range σ(t) should be determined either
by cross-validation or heuristically.

After having chosen the right parameters, a final SOM model is trained with the
whole training data. The SOM model is linearly initialized prior to the training
and the number of nodesM is heuristically determined byM =

⌈
5×
√
Ntrain

⌉
.

The nodes of the constructed SOM map are then each labeled with the mean
average genuine comparison scores of the image samples, that are mapped to
that node. This labeling process is called SOM map calibration. Thus, by
propagating a feature vector through the SOM map and assigning an estimated
average genuine comparison score, a quality score could be determined using
the already defined binning procedure.

7.3.2 Generative topographic mapping

Modeling the feature vectors fI data by GTM is done as shown in section 4.2.
Parameters like the number of grid nodes K and the number of radial basis
functions M are determined heuristically. σ and λ could be determined either
heuristically or by cross-validation, while W and β are estimated by the EM-
algorithm. All the parameters might be estimated using the Baysian approach,
however in the current thesis all parameters are determined heuristically.

The training process is the process of estimating W and β, given all other
parameters and the training data feature vectors. The final GTM model is
constructed once the EM-algorithm converges and after that a calibration of the
GTM map is performed. Since GTM is a mixture of Gaussians, each node xi of
the GTM map is labeled by computing its expected average genuine comparison
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score by calculating the Gaussian components’ means zi using

zi =

∑
n

snp(xi | tn,W, β)∑
n

p(xi | tn,W, β)
(7.2)

where sn is the average genuine comparison score for training sample tn and
n is iterating over all Ntrain training samples. After having all zi values, one
could predict the expected conditional mean y(tn) of an arbitrary sample tn by
computing the convex combination of the components means zi in the output
space

y(tn) =
M∑
i

ziP (xi | tn,W, β) (7.3)

where P (xi | tn,W, β) is the calculated responsibility Rin. This way an esti-
mated average genuine comparison score y(tn) is calculated and could be con-
verted into a quality score using the defined binning procedure.

7.3.3 Random forests: features

Another approach for the high-level phase is to use RF to model the data. RF
is a supervised learning model and it requires not only the feature vectors, but
also the output quality levels of the data prior the training. Since different
comparison algorithms result in different average genuine comparison scores for
the training samples, for each comparison algorithm a new model should be
trained. A classification RF is used, so the binning of the genuine comparison
scores is done prior the training as well. Then a RF model is trained, where the
parameters m and n are defined by either cross-validation or heuristically, like
in the current thesis.

7.3.4 Random forests: histogram

The feature vector fI is only one way of representing the information retrieved
by the low-level phase. Another way is by constructing a histogram of the SOM
hits for each image. Each node of the SOM map is assigned with an index in
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the range 1 . . .Mlow, where nodes are counted column-wise. Then each pair of
coordinates in fI is converted into index, resulting into a vector of indices indI

of length N
(x)
b × N

(y)
b . The values in that vector could be summarized in a

histogram hI with bins 1 . . .Mlow.

Using the feature vector hI for training the RF classification model could be
considered as another high-level modeling approach. This approach is the same
as the one described in section 7.3.3, except that the input data for this one
is the vector hI and for the other one is fI . By using the histogram features
the information of the spatial coordinates of the blocks is lost and only their
best-matching units are considered. However, it is not trivial to state whether
this information is important or not for constructing better models, therefore
the two approaches are considered in the current thesis.



Chapter 8

Experimental setup

This chapter deals with the details for the experimental setup used for apply-
ing the proposed approaches. It provides information about the hardware and
software used, datasets experimented on and specific configuration parameters
for the trained models. Some implementation issues will be discussed as well.

8.1 Hardware configuration

Hardware used for the experiments is a Windows machine with the following
properties:

• 2x quad-core processor CPU AMD Opteron 4130 2.60GHz

• 16GB RAM

• Windows Server 2008 R2 Datacenter SP1 64-bit

• HDD with more than 300GB free space
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8.2 Software used

8.2.1 Matlab

MATLAB [MAT12] is a computer software and a programming language for
implementing algorithms. It is especially useful for mathematical computations
with matrices. The proposed methods from chapter 7 are implemented in Mat-
lab scripts and run in MATLAB R2012a. Most of the work in this thesis is done
in Matlab, including data preparation, low-level SOM map linear initialization
and results interpretation and visualization.

8.2.2 SOM_PAK

For constructing the low-level SOM maps, the software package SOM_PAK
Version 3.1 [KHKL96] is used. This package is providing implementation of the
original stepwise SOM algorithm. It is using its own data format for the input
and the output of the trainings, so the data should be converted prior to the
training. It is written in C and compiled as a separate executable.

8.2.3 SOM Toolbox

The SOM Toolbox 2.0 [VHAP00] is a Matlab implementation of many helpful
functions and algorithms, needed for constructing SOM maps. It has an imple-
mentation of the batch SOM algorithm and interface functions for interacting
with SOM_PAK. This package has been used for initializing and constructing
the SOM maps in the high-level phase, where the data matrix is much smaller
and able to fit in the memory, so batch SOM is used.

8.2.4 Netlab Toolbox

The Netlab Toolbox 3.3 [Nab02] is a neural network software package for Matlab,
developed by a team at Aston University. It is a comprehensive Matlab toolbox
for machine learning, however in the current thesis only the GTM related func-
tions are used. It has not been optimized for working with small probabilities,
therefore the code had to be patched with a logarithmic numerical trick, so the
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equation (4.10) is transformed as follows:

Rin (Wold, βold) =
exp

{
log p(tn | xi,Wold, βold)−A(n)

max

}
K∑

i′=1
exp

{
p(tn | xi′ ,Wold, βold)−A(n)

max

} (8.1)

where A(n)
max is computed as

A(n)
max = max

i
{log p(tn | xi,Wold, βold} (8.2)

This way the mathematical underflow is avoided and the responsibilities com-
puted without the need of increasing the precision of the data types in Matlab.

8.2.5 R

R is a language and environment for statistical computing [R C13] and in this
thesis R scripts are used for training the RF models due to existence of legacy
code from previous experiments with RF models. R provides very large number
of packages for dealing with linear and non-linear modeling, classification, clus-
tering, etc. Therefore it is often used by scientists for performing experiments
with any kind of input data.

8.3 Datasets

8.3.1 CASIAFPV5

CASIA Fingerprint Image Database Version 5.0 (CASIAFPV5) [oSIoA] is col-
lected by the Chinese Academy of Sciences’ Institute of Automation and all
fingerprint images are 8-bit gray-scale BMP files with resolution 328×356. The
dataset consists of 20,000 fingerprint samples, taken from 500 volunteers con-
tributing 40 fingerprint images each. 5 fingerprint samples were captured from
all the fingers, but the pinkie, on both of their hands using URU4000 optical
fingerprint sensor in one session. The fingerprint samples are with significant
intra-class variations, caused by rotation, dislocation and high or low pressure.
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The training set is composed by choosing randomly 12,000 fingerprint samples
of the dataset and the rest 8,000 are used as a validation set.

Figure 8.1: Example fingerprint image samples taken from [oSIoA]

8.3.2 MCYT330-DP

MCYT330-DP is a subset of the dataset of Ministerio de Ciencia y Tecnologia
(MCYT) 330 bimodal Fingerprint subcorpus [OGFAS+03]. For collecting the
dataset 330 individuals have provided 10 fingers and 12 acquisitions with an
optical sensor UareU from Digital Persona. The dataset consists of 39,600
fingerprint samples with resolution 296 × 400 gray-scale BMP files. For this
dataset much smaller intra-class variations are observed, unlike CASIAFPV5.
The training set is composed of randomly drawn 23,760 samples from the full
dataset. The remaining 15,840 samples are used as a validation set.

Figure 8.2: Example fingerprint image samples taken from [OGFAS+03]

8.4 Low-level

Training for the low-level is done for the training set of each dataset separately.
Two models per dataset are constructed: one for block size 16 × 16 and one
for block size 24 × 24. After the images are cut into blocks, the number of
16 × 16 training block samples for CASIAFPV5 is 5,280,000 samples and for
MCYT330-DP is 9,504,000 samples. The number of 24× 24 training samples is
2,184,000 and 3,801,600 for CASIAFPV5 and MCYT330-DP respectively.
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The training is done by using SOM_PAK, where the starting parameter α(0) =
0.05, the neighborhood function is a Gaussian one with initial σ(0) = 2×unitdist.
After the linear initialization of the SOM map unitdist is calculated by taking
the diagonal distance of the map in data space and dividing it by the number
of nodes along the longest side of the map.

The total number of nodes and the SOM map dimensions are determined after
its linear initialization as shown in section 7.2. The number of training iterations
for block size 16× 16 is 5,000,000 for both databases and for block size 24× 24
is 2,100,000 and 3,800,000 for CASIAFPV5 and MCYT330-DP respectively.

Dataset Block size Training set Training length
CASIAFPV5 16× 16 5,280,000 5,000,000
CASIAFPV5 24× 24 2,184,000 2,100,000
MCYT330-DP 16× 16 9,504,000 5,000,000
MCYT330-DP 24× 24 3,801,000 3,800,000

Table 8.1: Summarized numbers of samples and training length for the four
different models.

8.5 High-level

After the low-level model is constructed, both the training and the validation
sets are propagated through the trained SOM maps in order to compose the
feature vectors that are to be used by the high-level phase of the process. For
CASIAFPV5 these feature vectors are of length 880 and 364 for 16 × 16 and
24 × 24 respectively. For MCYT330-DP the feature vectors are of length 900
and 384 for 16× 16 and 24× 24 respectively.

For obtaining results and converting them to quality scores, average genuine
comparison score is determined for each fingerprint sample by using a single
comparison algorithm as a black box for computing all possible genuine com-
parison scores and taking their average value. Since there are three compari-
son algorithms available at CASED, codenamed as {28}, {63} and {83}, each
sample will receive three average genuine comparison scores. Therefore the un-
supervised models (SOM and GTM) have to be calibrated separately for each
comparison algorithm and the supervised models (RF-feat and RF-hist) have to
be trained for each comparison algorithm separately. The performance evalua-
tion of all high-level approaches is done by using ERC curves and Correlation
tables for each comparison algorithm alone.
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8.5.1 SOM

Since for the high-level SOM training the batch SOM algorithm is used over a
linearly initialized map, only the number of batch iterations and the initial σ(0)
are to be set. The number of batch iterations is set to 30 and σ(0) = 2×unitdist,
where unitdist is calculated as noted in section 8.4. After the model is trained,
three calibrations are done for all three comparison algorithms and evaluated
using the validation set of the data.

8.5.2 GTM

For constructing the GTM model the EM-algorithm is used to estimate the
parameters W and β. The size of the grid of sample points is heuristically set
to 20× 20, resulting in K = 400 sample points xi. The form of the RBF grid is
set to 9× 9 RBFs, so the number of radial basis functions used is M = 81. The
other two parameters, the common width of the radial basis functions σ and the
regularization term λ, are determined heuristically as well and set to λ = 1 and
σ = 2s, where s is the spacing of the radial basis functions centers. Similarly to
the previous section 8.5.1, three different calibrations are done for the different
comparison algorithms.

8.5.3 Random Forests: features and histogram

For constructing the RF model, two parameters are to be set. The first one is
the number of trees D to be grown, where each tree uses n = N bootstrapped
samples. The second parameter is the number of features to be chosen at each
split m. For both RF-feat and RF-hist, these parameters are the same and are
set to D = 500 and m = 100. The only difference between RF-feat and RF-
hist is that the first one uses the feature vectors extracted from the low-level as
input data, where the second one uses a histogram of these features as defined
in section 7.3.4.
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Experimental results

This chapter presents overview of the results from the experiments. Results are
presented and discussed separately for the low-level phase, the high-level phase
and the final ERC curves and Correlation tables. More figures from the results
can be found in the appendix.

9.1 Low-level

The low-level training is performed after dividing the fingerprint images and
linearly initializing the SOM map. The results are discussed where evaluation
is done in terms of speed and SOM maps visualization.

9.1.1 General statistics

In table 9.1 one could observe the most important numbers taken from the
experiments. In all time calculations I/O time is included, therefore it is not
easy to state whether the method can be considered as fast or not. However,
the best-matching unit calculation time (BMU time) is the one of the highest
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importance, since it is the one determining the operational time for calculating
the quality score of an unseen sample. As it can be seen from the table, for all of
the tested configurations, the time per image is more than 2s. Combined with
the image dividing time, which is always more than 1s, at least 3s are needed for
the process of constructing the feature vector of a fingerprint image. Obviously
this is not an acceptable speed, since total processing times more than 1s may
cause user frustration.

CASIAFPV5 MCYT330-DP
16× 16 24× 24 16× 16 24× 24

Blocks (per image, w × h) 20× 22 13× 14 16× 25 10× 16
Dividing time (per image) 2.62s 1.38s 3.34s 1.45s
Training set (blocks) 5,280,000 2,184,000 9,504,000 3,801,600
Validation set (blocks) 3,520,000 1,456,000 6,335,200 2,534,400
Map size (w × h) 27× 148 28× 143 26× 154 28× 143
Lininit time (per block) 32.43ms 15.59ms 34.54ms 16.33ms
Lininit time (per image) 14.27s 2.84s 13.82s 2.61s
Init qerr 577.822 954.996 465.007 791.548
Final qerr 446.403 818.578 391.196 695.737
Training steps 5,000,000 2,100,000 5,000,000 3,800,000
Training time 1742min 1607min 1760min 2904min
BMU time (per block) 6.28ms 14.92ms 6.54ms 20.46ms
BMU time (per image) 2.76s 2.72s 2.62s 3.28s

Table 9.1: Summarized times and data for the trained models with different
datasets.

The poor performance in terms of time is not a big issue, since the code should be
evaluated without the I/O operations for real-world uses. That will eventually
halve the operational time. Also better multi-threaded algorithm for finding
the BMUs could be applied, that can further bring down the operational time
needed. And finally, the current SOM maps are of very big size (around 4000
nodes each). Therefore finding the BMUs take long time and cutting the number
of nodes will definitely improve the running speed. Smaller maps may cause
worse data distribution mapping, but experiments with maps of size 24×24 were
done in [OTMB13] and they have shown quite sufficient results in constructing
the maps (see figure 6.6). Therefore any number of nodes between 500 and 4000
will suffice and it should be chosen to optimally use the available processing
power.

Table 9.2 shows the PCA analysis of the data. The variance explained by the
first three principal components are shown and as evident from the table, the
first principal component is very dominant. In the next section 9.1.2 it could
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Variance explained by PCA components in %
CASIAFPV5 MCYT330-DP

16× 16 24× 24 16× 16 24× 24
Number of PC 256 576 256 576
1st PC 64.03 59.86 57.58 52.93
2nd PC 2.66 3.28 2.12 2.69
3rd PC 1.99 1.71 1.82 1.45
All other PCs 31.38 35.15 38.48 42.93

Table 9.2: Variance of the training data explained by the first 3 PC and all
other PCs in %. Numbers do not sum to 100% due to roundings.

be seen that the first PC is the brightness of the image.

9.1.2 Resulting maps

Analyzing the results from the training is done by observing the constructed
SOM maps. Each of the nodes of these maps is a data vector, that could be
transformed back into image block. Each of the SOM map nodes has different
number of blocks mapped to it and analyzing the number of mapped blocks to
each node is done using hitmaps. However, the data from these experiments
is not smoothly distributed over the SOM map, therefore a log-hitmap is con-
sidered. These blocks show the data distribution and give better feeling of the
data cloud being mapped by the SOM map.

Observing the results from figure 9.1, one might notice that a lot of the data is
concentrated in the parts of the SOM map, representing image blocks from the
background. That is because there are too many background images and since
they look quite similar, they appear in close regions, where the nodes are not
that far in the data space from each other, as it could be seen in figure 9.2d.
The result of that is capturing a lot of variance in the background image data
during the training.

Capturing the variance in the background is probably useless for evaluating
the quality of the fingerprint images, since the comparison algorithms usually
segment out the background before comparing the fingerprint images. A lot of
training time is wasted for propagating background blocks through the SOM
map, which slows down the training process. The background data is white,
where the fingerprint patterns are darker, causing the first principal component
to be the brightness of the blocks. Since the SOM maps are linearly initialized,
the presence of so many blocks of background data distorts the eigenvalues of
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Figure 9.1: Results for dataset CASIAFPV5 and block size 16× 16
(a) the SOM map after being linearly initialized;
(b) the log-hitmap before the training (using validation data);
(c) the SOM map after the training;
(d) the log-hitmap after the training (using validation data).
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the principal components, thus the SOM map’s elongated shape is not reflecting
the real foreground data distribution.

Figure 9.3 shows more detailed what kind of samples are mapped to the nodes.
As one might observe, the SOM map nodes represent more or less a mean of all
training blocks, mapped to them. So the training process could be interpreted as
unsupervised block image pattern learning and propagating through the SOM
map is block image pattern classification. This classification is local feature
extraction, so the resulting local features are used as input for the high-level
phase.
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(a) trained SOM
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Figure 9.2: The trained SOM map, the log-hitmaps for the validation and the
training sets and the distance matrix U-mat. The dataset used for
training is CASIAFPV5 and the block size is 16× 16.
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(a) top 20 rows of the trained map (b) example block samples

Figure 9.3: Part of the trained map from figure 9.1c with selected region of
nodes and example validation block samples from each of the se-
lected nodes.
(a) top 20 rows of the trained map from figure 9.1c;
(b) randomly chosen validation block samples, whose best-
matching units are the nodes in the selected region.
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9.2 High-level

After having observed the details in the results of the low-level training phase,
the high-level phase results should be discussed. There are couple of approaches
used for the high-level phase and the results of all of them will be presented
here.

9.2.1 SOM

Using the low-level results, a high-level SOM map is trained. Then the calibra-
tion is done in accordance with the scores obtained by the given comparison
algorithm provider. Each node is labeled with the mean average comparison
score of the mapped to it samples. The variance for that node is calculated in
the same manner after having the mean values.

The results from this calibration are shown in figure 9.4. As it could be seen
from the variance maps, the majority of the nodes possess quite low variance,
therefore they are expected to have quite stable predictions. Unfortunately
most of the high-variance nodes are labeled with low prediction scores, thus low
predicted values are prone to errors, which results in degrading performance.

The SOM map training is very fast and it takes less than a minute altogether
with the initialization of the map. The calibration takes just a couple of sec-
onds, therefore a lot of experiments could be done to improve the training and
once trained, the map could be calibrated in accordance with any comparison
algorithm provider without any hassle.

The SOM map’s hitmap shows strong bordering effect, meaning that the data
is concentrated in the edges of the map. As it could be noticed from the predic-
tion maps as well, there are some empty nodes, that do not have any samples
assigned. That might suggest the need for better training parameters or even
different map topology, e.g. toroidal SOM, in order to be able to capture the
data distribution better. However, only experiments with the data could prove
better effectiveness of the proposed improvements. More images showing the
results could be found in the appendix of this thesis.
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Figure 9.4: The trained high-level SOM map for CASIAFPV5 and block size
16×16 with the assigned prediction and its variance of the average
genuine score values for each node. This map is calibrated for each
of the three providers: {28}, {63} and {83}.
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9.2.2 GTM

The GTM training finished in less than a minute altogether with the initializa-
tion. The calibration is done for a couple of seconds, therefore calibrating the
map for different providers is very fast and easy process. Figure 9.5 shows the
prediction and the variance maps, similarly to the ones shown for the SOM map
from the previous section 9.2.1.

Observations similar to the ones from the previous section could be formed for
the GTM as well. However, the prediction maps here contain more homogeneous
regions and the low-valued nodes are grouped together, unlike in the SOM map.
That might suggest that GTM is able to capture the data distribution better.
Another figure showing how the data is captured by the model is the log-hitmap
seen in figure 9.6, where the data distribution could be analyzed by observing
the concentration of the data posterior modes.

9.2.3 RF: features and histogram

1 2 3 4 5
1 852 519 338 192 75
2 248 303 284 204 136
3 231 297 305 293 200
4 179 261 395 501 508
5 105 142 226 389 817

(a) provider {28}

1 2 3 4 5
1 710 449 395 323 212
2 372 422 293 200 131
3 229 229 266 271 183
4 219 290 392 512 382
5 165 163 194 263 735

(b) provider {63}

1 2 3 4 5
1 850 470 328 227 101
2 299 286 251 253 182
3 191 232 246 251 234
4 195 298 312 353 361
5 167 239 389 471 814

(c) provider {83}

Table 9.3: Confusion matrices for RF:feat for different providers and dataset
CASIAFPV5 with block size 16× 16.

There are couple of RF models constructed during the training process for the
RF high-level phase. Each comparison score provider requires a new model to
be trained. The training of the RF-feat model needs between an hour and two
hours to complete and is trained to classify the samples into five quality score
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Figure 9.5: The trained high-level GTM map for CASIAFPV5 and block size
16×16 with the assigned prediction and its variance of the average
genuine score values for each node. This map is calibrated for each
of the three providers: {28}, {63} and {83}.
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Figure 9.6: The GTM log-hitmap for CASIAFPV5 and block size 16 × 16,
where the posteriors’ modes are counted as hits.

classes. The training of the RF-hist model needs more than ten hours, due to
the larger feature vectors used. The confusion matrices for each of the models
are shown in table 9.3 for RF-feat models and in table 9.4. Results for the other
dataset and different block sizes could be found in the appendix.

1 2 3 4 5
1 1041 658 450 291 140
2 192 218 212 174 119
3 186 296 309 293 181
4 135 235 343 455 515
5 61 115 234 366 781

(a) provider {28}

1 2 3 4 5
1 801 516 467 395 264
2 271 282 210 191 142
3 239 259 259 246 172
4 251 321 403 455 463
5 133 175 201 282 602

(b) provider {63}

1 2 3 4 5
1 1032 613 429 321 156
2 205 214 193 214 139
3 168 232 277 269 245
4 193 266 330 366 413
5 104 200 297 385 739

(c) provider {83}

Table 9.4: Confusion matrices for RF:hist for different providers and dataset
CASIAFPV5 with block size 16× 16.



9.3 Final results 91

9.3 Final results

In order to evaluate the performance of the proposed approaches, the ERC
curves and the Spearman correlation matrices should be analyzed. Since the
quality levels used by the RF approaches and NFIQ are quantized into five
levels, a jittering is added for drawing them as shown in section 3.3.3. In order
to eliminate the fluctuations caused by the randomness, 20 ERC curves are
calculated for each approach and the mean curve is drawn in the figure. Area
under the curve is computed and the area of the perfect curve is subtracted, so
the approaches could be evaluated quantitatively how close they are to the ideal
curve.

The resulting ERC curves for the providers {28} and {83} are shown in fig-
ure 9.7. These results show that the worst performing approach is using SOM
for the high-level training. Second worst is the high-level approach used in
[OTMB13], which is the RF model trained with the histogram as an input,
rather than using directly the extracted features. The other two methods are
performing quite similar quantitatively, however the GTM approach is better
than the RF-feat approach if only the worst 20% of the samples are rejected.

The ERC curve for provider {63} is shown separately in figure 9.8, since it
is not very illustrative of the performance of the methods. That is because
the comparison algorithm {63} is performing poor with the samples from the
dataset CASIAFPV5, due to existence of rotated samples and this algorithm
gives very low, even zero, genuine comparison scores for samples that have larger
difference in the angle of rotation. However, the results shown in figure 9.7 are
coherent and conclusions for the performance of the methods could be drawn
easily. These conclusions are confirmed by the results obtained for the other
tested dataset MCYT330-DP, which could be seen in the appendix.

Figure 9.9 shows the Spearman correlation tables for the dataset CASIAFPV5
with block size 16 × 16. From these tables is visible that NFIQ shows highest
correlation with the average genuine comparison scores of the samples. OCL and
the two RF methods show also quite high correlation with the comparison scores
and the NFIQ as well. On the other hand, the GTM approach is very highly
correlated with the SOM approach and poorly correlated with the comparison
scores. Looking at these tables, it is easily visible that the SOM and GTM
approaches are somehow related, the same is true for the two RF approaches.
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Figure 9.7: ERC curves for CASIAFPV5 with block size 16 × 16 for two
providers.
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Figure 9.8: ERC curves for CASIAFPV5 with block size 16× 16 for provider
{63}.
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Figure 9.9: Correlation tables for CASIAFPV5 with block size 16× 16.
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Chapter 10

Conclusions

The goals of the thesis, listed in section 1.2, are met and some more useful infor-
mation about the data distribution is obtained. As proposed in the beginning of
the thesis, the experiments performed in [OTMB13] were repeated with slightly
changed low-level training process, result of the investigation whether this low-
level phase could be improved. A couple more high-level phase methods (SOM,
GTM and RF-feat) were proposed and evaluated for their performance.

Since the low-level training phase used linear initialization, computation of the
principal components (PCs) of the block image data was performed. As the
eigenvalues of the covariance matrix is showing, the first principal component
explains more than the half of the variance of the data. However, by looking at
the constructed initialized map, one might easily notice that the first principal
component is the brightness of the image data, which is not surprising. However,
by looking at the log-hitmap of the initial SOM map, the U-matrix and the log-
hitmap of the final SOM map, as well as the SOM map itself, one might notice
that more than a third of the map is explaining the variance in the background
blocks. The variance data in the background blocks is useless, due to the fact
that the comparison algorithms usually segment the background out. Therefore
only the fact that the block is part of the background is important, but not
the information what type of background block it is actually. By removing the
background blocks from the training, smoother SOM map could be constructed
for the foreground image data, thus better final results are expected.
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Initializing linearly the low-level SOM map gives better overview of the data
cloud that is inspected, however performance comparison with random initial-
ization was not done due to the limited time for training and computational
resources available. Despite that the deeper analysis of the low-level SOM map
have shown better the form of the data cloud and how this low-level phase
could be possibly improved by applying the suggestions proposed in the next
chapter 11.

The evaluation of different high-level approaches has shown good results for the
methods GTM and RF-feat, which have outperformed the proposed in previous
works RF-hist for dataset CASIAFPV5. For dataset MCYT330-DP the method
RF-hist outperforms slightly the new methods. The histogram features used in
[OTMB13] for the RF training increase the length of the training vectors for
big maps and loose important information, namely the position of the blocks in
the fingerprint image sample. However, this seems to be crucial only for dataset
CASIAFPV5 and stating that these observations are valid for all datasets, re-
quires more experiments with better model selection for the high-level models.

Another conclusion that could be drawn is that the RF training requires much
longer time, compared to the other two approaches - SOM and GTM. Also
for each comparison algorithm, a different model should be trained, where the
constructed SOM and GTM maps need only to be calibrated, which is fast and
easy process. The training of the SOM and GTM maps does not require quality
levels to be defined prior to the training and the number of quality levels does
not influence the training process, unlike the two RF approaches. Therefore,
this observation is arguably an important one, if more quality levels are needed.
Comparative analysis of the operational speed for the high-level phase methods
unfortunately was not done, however the propagation time for all the high-level
methods is neglectable compared to the time needed by the low-level phase.
Thus the gain of optimizing the low-level phase is much bigger.

As final according to the ERC plots GTM and RF-feat have outperformed the
old high-level method RF-hist for CASIAFPV5, but for MCYT330-DP the re-
sults are controversial and more experiments should be conducted. The resulting
low-level maps for both datasets for block size 24× 24 have shown to be under-
trained, thus more training cycles are needed for this block size. Additionally
much better model parameter selection could be performed for both low- and
high-level models and this will yield more robust and stable results, that could
be used as confirmation to the drawn conclusions. For the low-level phase,
training without the background blocks is expected to construct a much finer
low-level model, thus improving the results of all high-level methods.



Chapter 11

Future works

The conclusions from the previous chapter 10 lead to the rise of new questions
to be asked. These new questions are mainly focused on the improvement of
the performance of the proposed approaches. They should be used to determine
the directions for the future works, based on the current progress. The future
works could be focused on improving either the low-level phase or the high-level
phase.

The low-level training is performed using linearly initialized SOM. However,
SOM maps could be initialized randomly as well and no evaluation of the re-
sults was done using both methods. Therefore research focused on comparing
linear versus random initialization could prove empirically the superiority of
the either of methods. However, linear initialization is suggested by [Koh13] as
better alternative, so the expectations are that the linear initialization would
outperform random initialization. Also linear initialization guarantees robust
starting point of the training process, thus determining the training parameters
could be done easily by cross-validation. The parameters in the current thesis
are determined heuristically, therefore applying cross-validation may yield much
better training results, which could be tried out in future works.

The observations showing that about a half of the data variance is explained by
the first principal component, which turned out to be the brightness of the block
image, suggests that the SOM map nodes are spent to explain that variance.
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However, by looking at the final SOM map codebook vectors, one might notice
that at least a third of them explain the variance within the different background
blocks. Therefore, a process of segmenting out the background blocks could
contribute for decreasing the influence of the first principal component and
focus the training of the SOM on the foreground data. That would lead to
the need of smaller SOM maps and shorter and faster trainings of better maps.
However, that would require additional image preprocessing and the background
blocks features to be extracted by segmentation, where the foreground features
by propagating through the trained low-level SOM map.

For the feature extraction low-level phase, the SOM method could be replaced
by GTM. However, interpreting the results and extracting feature vectors of
quite low dimensionality, e.g. less than 1000 features, might be a challenge,
if GTM is used. A totally different approach by using deep belief networks
[LGRN09] might show good results, if one decides to follow the trend of deep
learning from the more recent couple of years.

For the high-level phase the first thing to be done is better parameter selection,
since for the current thesis a heuristic approach was taken and it was not backed
by many experimental runs. The high-level training phase is very fast to com-
pute, thus a cross-validation approach is also possible. Comparative analysis of
the speed of all tested methods should be done, even though all of them are
expected to be very fast. Another approach to improving the high-level phase is
to suggest other supervised or unsupervised learning methods that might prove
useful.

The problem of fingerprint image quality estimation is a hard one and machine
learning techniques are a very natural choice for dealing with it. It is an active
research topic and more experiments in the field would definitely contribute to
the improvement of the fingerprint quality assessment in general.



Appendix A

Results for CASIAFPV5

A.1 Block size 16× 16

A.1.1 Low-level
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Figure A.1: Linearly initialized SOM map for dataset CASIAFPV5 and block
size 16× 16
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(a) final SOM map
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Figure A.2: Results of the training for dataset CASIAFPV5 and block size
16× 16
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Figure A.3: Final SOM map codebook vectors for dataset CASIAFPV5 and
block size 16× 16, first quarter of the map.
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Figure A.4: Final SOM map codebook vectors for dataset CASIAFPV5 and
block size 16× 16, second quarter of the map.
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Figure A.5: Final SOM map codebook vectors for dataset CASIAFPV5 and
block size 16× 16, third quarter of the map.



A.1 Block size 16× 16 105

Figure A.6: Final SOM map codebook vectors for dataset CASIAFPV5 and
block size 16× 16, last quarter of the map.
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Figure A.7: Subsets of the samples mapped to each node of the final SOM
map for dataset CASIAFPV5 and block size 16×16, first quarter
of the map.
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Figure A.8: Subsets of the samples mapped to each node of the final SOMmap
for dataset CASIAFPV5 and block size 16 × 16, second quarter
of the map.
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Figure A.9: Subsets of the samples mapped to each node of the final SOMmap
for dataset CASIAFPV5 and block size 16× 16, third quarter of
the map.
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Figure A.10: Subsets of the samples mapped to each node of the final SOM
map for dataset CASIAFPV5 and block size 16×16, last quarter
of the map.
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A.1.2 High-level

1 2 3 4 5
1 852 519 338 192 75
2 248 303 284 204 136
3 231 297 305 293 200
4 179 261 395 501 508
5 105 142 226 389 817

(a) RF-feat; provider {28}

1 2 3 4 5
1 1041 658 450 291 140
2 192 218 212 174 119
3 186 296 309 293 181
4 135 235 343 455 515
5 61 115 234 366 781

(b) RF-hist; provider {28}

1 2 3 4 5
1 710 449 395 323 212
2 372 422 293 200 131
3 229 229 266 271 183
4 219 290 392 512 382
5 165 163 194 263 735

(c) RF-feat; provider {63}

1 2 3 4 5
1 801 516 467 395 264
2 271 282 210 191 142
3 239 259 259 246 172
4 251 321 403 455 463
5 133 175 201 282 602

(d) RF-hist; provider {63}

1 2 3 4 5
1 850 470 328 227 101
2 299 286 251 253 182
3 191 232 246 251 234
4 195 298 312 353 361
5 167 239 389 471 814

(e) RF-feat; provider {83}

1 2 3 4 5
1 1032 613 429 321 156
2 205 214 193 214 139
3 168 232 277 269 245
4 193 266 330 366 413
5 104 200 297 385 739

(f) RF-hist; provider {83}

Table A.1: Confusion matrices for RF-feat (left) and RF-hist (right) for dif-
ferent providers and dataset CASIAFPV5 with block size 16× 16.
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Figure A.11: The trained high-level SOM map for CASIAFPV5 and block
size 16 × 16 with the assigned prediction and its variance of
the average genuine score values for each node. This map is
calibrated for each of the three providers: {28}, {63} and {83}.
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Figure A.12: Log-hitmaps and distance matrix for the trained high-level SOM
map for CASIAFPV5 with block size 16× 16.
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(a) vertical features (b) horizontal
features

(c) codebook blocks

(d) example samples

Figure A.13: Top leftmost node of the trained high-level SOM map for dataset
CASIAFPV5 with block size 16× 16.
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(a) vertical features (b) horizontal
features

(c) codebook blocks

(d) example samples

Figure A.14: Top rightmost node of the trained high-level SOM map for
dataset CASIAFPV5 with block size 16× 16.
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(a) vertical features (b) horizontal
features

(c) codebook blocks

(d) example samples

Figure A.15: Bottom rightmost node of the trained high-level SOM map for
dataset CASIAFPV5 with block size 16× 16.
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(a) vertical features (b) horizontal
features

(c) codebook blocks

(d) example samples

Figure A.16: Bottom leftmost node of the trained high-level SOM map for
dataset CASIAFPV5 with block size 16× 16.
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Figure A.17: The trained high-level GTM map for CASIAFPV5 and block
size 16 × 16 with the assigned prediction and its variance of
the average genuine score values for each node. This map is
calibrated for each of the three providers: {28}, {63} and {83}.
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Figure A.18: Log-hitmaps and distance matrix for the trained high-level GTM
map for CASIAFPV5 with block size 16× 16, where the poste-
riors’ modes are counted as hits.
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(a) vertical features (b) horizontal
features

(c) codebook blocks

(d) example samples

Figure A.19: Top leftmost node of the trained high-level GTMmap for dataset
CASIAFPV5 with block size 16× 16.
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(a) vertical features (b) horizontal
features

(c) codebook blocks

(d) example samples

Figure A.20: Top rightmost node of the trained high-level GTM map for
dataset CASIAFPV5 with block size 16× 16.
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(a) vertical features (b) horizontal
features

(c) codebook blocks

(d) example samples

Figure A.21: Bottom rightmost node of the trained high-level GTM map for
dataset CASIAFPV5 with block size 16× 16.
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(a) vertical features (b) horizontal
features

(c) codebook blocks

(d) example samples

Figure A.22: Bottom leftmost node of the trained high-level GTM map for
dataset CASIAFPV5 with block size 16× 16.
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A.1.3 Final results

c
m

p
−

s
c
r

n
fi
q

o
c
l

s
o

m
−

s
o

m

s
o

m
−

g
tm

s
o

m
−

rf
−

h
is

t

s
o

m
−

rf
−

fe
a

t

100 −61 43 20 28 52 50

−61 100 −60 −28 −36 −60 −59

43 −60 100 36 39 49 44

20 −28 36 100 66 36 35

28 −36 39 66 100 45 48

52 −60 49 36 45 100 75

50 −59 44 35 48 75 100

cmp−scr

nfiq

ocl

som−som

som−gtm

som−rf−hist

som−rf−feat

(a) provider {28}

c
m

p
−

s
c
r

n
fi
q

o
c
l

s
o

m
−

s
o

m

s
o

m
−

g
tm

s
o

m
−

rf
−

h
is

t

s
o

m
−

rf
−

fe
a

t

100 −38 31 14 15 33 36

−38 100 −60 −26 −30 −51 −43

31 −60 100 32 37 52 43

14 −26 32 100 60 34 35

15 −30 37 60 100 36 39

33 −51 52 34 36 100 63

36 −43 43 35 39 63 100

cmp−scr

nfiq

ocl

som−som

som−gtm

som−rf−hist

som−rf−feat

(b) provider {63}

c
m

p
−

s
c
r

n
fi
q

o
c
l

s
o

m
−

s
o

m

s
o

m
−

g
tm

s
o

m
−

rf
−

h
is

t

s
o

m
−

rf
−

fe
a

t

100 −57 41 17 23 44 42

−57 100 −60 −28 −34 −59 −57

41 −60 100 35 40 52 47

17 −28 35 100 66 36 36

23 −34 40 66 100 42 47

44 −59 52 36 42 100 73

42 −57 47 36 47 73 100

cmp−scr

nfiq

ocl

som−som

som−gtm

som−rf−hist

som−rf−feat

(c) provider {83}

Figure A.23: Correlation tables for CASIAFPV5 with block size 16× 16.
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Figure A.24: ERC curves for CASIAFPV5 with block size 16×16 for provider
{28}.
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Figure A.25: ERC curves for CASIAFPV5 with block size 16×16 for provider
{63}.
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Figure A.26: ERC curves for CASIAFPV5 with block size 16×16 for provider
{83}.
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A.2 Block size 24× 24

A.2.1 Low-level
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(a) initial SOM map
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Figure A.27: Linearly initialized SOM map for dataset CASIAFPV5 and
block size 24× 24



128 Results for CASIAFPV5

(a) final SOM map
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Figure A.28: Results of the training for dataset CASIAFPV5 and block size
24× 24
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Figure A.29: Final SOM map codebook vectors for dataset CASIAFPV5 and
block size 24× 24, first quarter of the map.
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Figure A.30: Final SOM map codebook vectors for dataset CASIAFPV5 and
block size 24× 24, second quarter of the map.
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Figure A.31: Final SOM map codebook vectors for dataset CASIAFPV5 and
block size 24× 24, third quarter of the map.
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Figure A.32: Final SOM map codebook vectors for dataset CASIAFPV5 and
block size 24× 24, last quarter of the map.
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Figure A.33: Subsets of the samples mapped to each node of the final SOM
map for dataset CASIAFPV5 and block size 24×24, first quarter
of the map.
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Figure A.34: Subsets of the samples mapped to each node of the final SOM
map for dataset CASIAFPV5 and block size 24 × 24, second
quarter of the map.
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Figure A.35: Subsets of the samples mapped to each node of the final SOM
map for dataset CASIAFPV5 and block size 24×24, third quar-
ter of the map.
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Figure A.36: Subsets of the samples mapped to each node of the final SOM
map for dataset CASIAFPV5 and block size 24×24, last quarter
of the map.
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A.2.2 High-level

1 2 3 4 5
1 804 505 337 174 90
2 279 303 287 229 134
3 233 303 315 316 197
4 185 268 378 454 480
5 114 143 231 406 835

(a) RF-feat; provider {28}

1 2 3 4 5
1 1041 644 459 312 183
2 179 229 219 162 88
3 182 281 253 247 162
4 142 252 370 487 507
5 71 116 247 371 796

(b) RF-hist; provider {28}

1 2 3 4 5
1 659 432 378 303 192
2 341 374 282 250 144
3 236 243 244 257 163
4 252 275 398 459 344
5 207 229 238 300 800

(c) RF-feat; provider {63}

1 2 3 4 5
1 810 550 468 402 323
2 267 248 204 165 112
3 186 216 239 239 142
4 261 320 360 449 373
5 171 219 269 314 693

(d) RF-hist; provider {63}

1 2 3 4 5
1 828 467 330 240 99
2 316 292 240 249 182
3 176 240 281 230 231
4 205 283 301 348 361
5 177 243 374 488 819

(e) RF-feat; provider {83}

1 2 3 4 5
1 1010 619 454 351 194
2 212 209 197 199 152
3 168 197 215 254 207
4 183 269 333 377 405
5 129 231 327 374 734

(f) RF-hist; provider {83}

Table A.2: Confusion matrices for RF-feat (left) and RF-hist (right) for dif-
ferent providers and dataset CASIAFPV5 with block size 24× 24.
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Figure A.37: The trained high-level SOM map for CASIAFPV5 and block
size 24 × 24 with the assigned prediction and its variance of
the average genuine score values for each node. This map is
calibrated for each of the three providers: {28}, {63} and {83}.
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(c) distance matrix (U-matrix)

Figure A.38: Log-hitmaps and distance matrix for the trained high-level SOM
map for CASIAFPV5 with block size 24× 24.
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(a) vertical features (b) horizontal
features

(c) codebook vectors

(d) example samples

Figure A.39: Top leftmost node of the trained high-level SOM map for dataset
CASIAFPV5 with block size 24× 24.
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(a) vertical features (b) horizontal
features

(c) codebook vectors

(d) example samples

Figure A.40: Top rightmost node of the trained high-level SOM map for
dataset CASIAFPV5 with block size 24× 24.
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(a) vertical features (b) horizontal
features

(c) codebook vectors

(d) example samples

Figure A.41: Bottom rightmost node of the trained high-level SOM map for
dataset CASIAFPV5 with block size 24× 24.
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(a) vertical features (b) horizontal
features

(c) codebook vectors

(d) example samples

Figure A.42: Bottom leftmost node of the trained high-level SOM map for
dataset CASIAFPV5 with block size 24× 24.
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Figure A.43: The trained high-level GTM map for CASIAFPV5 and block
size 24 × 24 with the assigned prediction and its variance of
the average genuine score values for each node. This map is
calibrated for each of the three providers: {28}, {63} and {83}.
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Figure A.44: Log-hitmaps and distance matrix for the trained high-level GTM
map for CASIAFPV5 with block size 24× 24, where the poste-
riors’ modes are counted as hits.



146 Results for CASIAFPV5

(a) vertical features (b) horizontal
features

(c) codebook vectors

(d) example samples

Figure A.45: Top leftmost node of the trained high-level GTMmap for dataset
CASIAFPV5 with block size 24× 24.
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(a) vertical features (b) horizontal
features

(c) codebook vectors

(d) example samples

Figure A.46: Top rightmost node of the trained high-level GTM map for
dataset CASIAFPV5 with block size 24× 24.
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(a) vertical features (b) horizontal
features

(c) codebook vectors

(d) example samples

Figure A.47: Bottom rightmost node of the trained high-level GTM map for
dataset CASIAFPV5 with block size 24× 24.
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(a) vertical features (b) horizontal
features

(c) codebook vectors

(d) example samples

Figure A.48: Bottom leftmost node of the trained high-level GTM map for
dataset CASIAFPV5 with block size 24× 24.
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A.2.3 Final results
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(b) provider {63}
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Figure A.49: Correlation tables for CASIAFPV5 with block size 24× 24.
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Figure A.50: ERC curves for CASIAFPV5 with block size 24×24 for provider
{28}.
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Figure A.51: ERC curves for CASIAFPV5 with block size 24×24 for provider
{63}.
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Figure A.52: ERC curves for CASIAFPV5 with block size 24×24 for provider
{83}.
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Results for MCYT330-DP

B.1 Block size 16× 16

B.1.1 Low-level
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(a) initial SOM
map
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(c) initial SOM
map’s log-hitmap
(validation set)

Figure B.1: Linearly initialized SOM map for dataset MCYT330-DP and
block size 16× 16
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(a) final SOM
map
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(b) final SOM map’s
log-hitmap (train-
ing set)
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Figure B.2: Results of the training for dataset MCYT330-DP and block size
16× 16
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Figure B.3: Final SOM map codebook vectors for dataset MCYT330-DP and
block size 16× 16, first quarter of the map.
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Figure B.4: Final SOM map codebook vectors for dataset MCYT330-DP and
block size 16× 16, second quarter of the map.
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Figure B.5: Final SOM map codebook vectors for dataset MCYT330-DP and
block size 16× 16, third quarter of the map.
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Figure B.6: Final SOM map codebook vectors for dataset MCYT330-DP and
block size 16× 16, last quarter of the map.
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Figure B.7: Subsets of the samples mapped to each node of the final SOMmap
for dataset MCYT330-DP and block size 16× 16, first quarter of
the map.
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Figure B.8: Subsets of the samples mapped to each node of the final SOM
map for dataset MCYT330-DP and block size 16 × 16, second
quarter of the map.
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Figure B.9: Subsets of the samples mapped to each node of the final SOMmap
for dataset MCYT330-DP and block size 16 × 16, third quarter
of the map.
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Figure B.10: Subsets of the samples mapped to each node of the final SOM
map for dataset MCYT330-DP and block size 16×16, last quar-
ter of the map.
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B.1.2 High-level

1 2 3 4 5
1 2409 1438 863 381 237
2 751 1021 910 736 664
3 197 435 497 492 473
4 28 133 181 266 272
5 109 393 762 822 1368

(a) RF-feat; provider {28}

1 2 3 4 5
1 2621 1361 713 355 159
2 428 647 552 401 238
3 196 428 523 393 306
4 58 193 183 187 192
5 191 791 1242 1361 2119

(b) RF-hist; provider {28}

1 2 3 4 5
1 2750 1790 1145 766 320
2 959 1341 1166 710 269
3 387 586 634 597 406
4 71 166 204 367 384
5 33 66 148 213 360

(c) RF-feat; provider {63}

1 2 3 4 5
1 2612 1547 914 566 207
2 1287 1828 1626 1125 411
3 194 355 408 367 272
4 80 172 253 422 558
5 27 47 96 173 291

(d) RF-hist; provider {63}

1 2 3 4 5
1 2337 1591 1125 547 208
2 563 906 758 423 176
3 406 677 864 823 490
4 154 289 498 554 441
5 149 197 314 535 813

(e) RF-feat; provider {83}

1 2 3 4 5
1 2565 1769 1194 542 182
2 449 830 836 523 192
3 272 484 669 635 341
4 148 296 466 478 370
5 175 281 394 704 1043

(f) RF-hist; provider {83}

Table B.1: Confusion matrices for RF-feat (left) and RF-hist (right) for differ-
ent providers and dataset MCYT330-DP with block size 16× 16.
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Figure B.11: The trained high-level SOM map for MCYT330-DP and block
size 16 × 16 with the assigned prediction and its variance of
the average genuine score values for each node. This map is
calibrated for each of the three providers: {28}, {63} and {83}.
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Figure B.12: Log-hitmaps and distance matrix for the trained high-level SOM
map for MCYT330-DP with block size 16× 16.
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(a) vertical
features

(b) horizontal
features

(c) codebook
blocks

(d) example samples

Figure B.13: Top leftmost node of the trained high-level SOM map for dataset
MCYT330-DP with block size 16× 16.
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(a) vertical
features

(b) horizontal
features

(c) codebook
blocks

(d) example samples

Figure B.14: Top rightmost node of the trained high-level SOM map for
dataset MCYT330-DP with block size 16× 16.
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(a) vertical
features

(b) horizontal
features

(c) codebook
blocks

(d) example samples

Figure B.15: Bottom rightmost node of the trained high-level SOM map for
dataset MCYT330-DP with block size 16× 16.
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(a) vertical
features

(b) horizontal
features

(c) codebook
blocks

(d) example samples

Figure B.16: Bottom leftmost node of the trained high-level SOM map for
dataset MCYT330-DP with block size 16× 16.
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Figure B.17: The trained high-level GTM map for MCYT330-DP and block
size 16 × 16 with the assigned prediction and its variance of
the average genuine score values for each node. This map is
calibrated for each of the three providers: {28}, {63} and {83}.
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Figure B.18: Log-hitmaps and distance matrix for the trained high-level GTM
map for MCYT330-DP with block size 16 × 16, where the pos-
teriors’ modes are counted as hits.



B.1 Block size 16× 16 173

(a) vertical
features

(b) horizontal
features

(c) codebook
blocks

(d) example samples

Figure B.19: Top leftmost node of the trained high-level GTMmap for dataset
MCYT330-DP with block size 16× 16.
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(a) vertical
features

(b) horizontal
features

(c) codebook
blocks

(d) example samples

Figure B.20: Top rightmost node of the trained high-level GTM map for
dataset MCYT330-DP with block size 16× 16.
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(a) vertical
features

(b) horizontal
features

(c) codebook
blocks

(d) example samples

Figure B.21: Bottom rightmost node of the trained high-level GTM map for
dataset MCYT330-DP with block size 16× 16.
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(a) vertical
features

(b) horizontal
features

(c) codebook
blocks

(d) example samples

Figure B.22: Bottom leftmost node of the trained high-level GTM map for
dataset MCYT330-DP with block size 16× 16.
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B.1.3 Final results
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Figure B.23: Correlation tables for MCYT330-DP with block size 16× 16.
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Figure B.24: ERC curves for MCYT330-DP with block size 16 × 16 for
provider {28}.
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Figure B.25: ERC curves for MCYT330-DP with block size 16 × 16 for
provider {63}.



B.1 Block size 16× 16 179

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fraction rejected

F
a

ls
e

 N
o

n
−

M
a

tc
h

 R
a

te
 0

.1

 

 
nfiq − area: 3.87

ocl − area: 2.82

som−som − area: 3.29

som−gtm − area: 3.02

som−rf−hist − area: 2.82

som−rf−feat − area: 2.87

ideal behavior − area: 0

Figure B.26: ERC curves for MCYT330-DP with block size 16 × 16 for
provider {83}.
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B.2 Block size 24× 24

B.2.1 Low-level
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(a) initial SOM map
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Figure B.27: Linearly initialized SOM map for dataset MCYT330-DP and
block size 24× 24
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(a) final SOM map
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Figure B.28: Results of the training for dataset MCYT330-DP and block size
24× 24
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Figure B.29: Final SOM map codebook vectors for dataset MCYT330-DP
and block size 24× 24, first quarter of the map.
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Figure B.30: Final SOM map codebook vectors for dataset MCYT330-DP
and block size 24× 24, second quarter of the map.
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Figure B.31: Final SOM map codebook vectors for dataset MCYT330-DP
and block size 24× 24, third quarter of the map.
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Figure B.32: Final SOM map codebook vectors for dataset MCYT330-DP
and block size 24× 24, last quarter of the map.



B.2 Block size 24× 24 187

Figure B.33: Subsets of the samples mapped to each node of the final SOM
map for dataset MCYT330-DP and block size 24×24, first quar-
ter of the map.



188 Results for MCYT330-DP

Figure B.34: Subsets of the samples mapped to each node of the final SOM
map for dataset MCYT330-DP and block size 24 × 24, second
quarter of the map.
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Figure B.35: Subsets of the samples mapped to each node of the final SOM
map for dataset MCYT330-DP and block size 24 × 24, third
quarter of the map.
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Figure B.36: Subsets of the samples mapped to each node of the final SOM
map for dataset MCYT330-DP and block size 24×24, last quar-
ter of the map.
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B.2.2 High-level

1 2 3 4 5
1 2320 1316 811 400 247
2 795 1074 900 677 581
3 213 419 474 482 460
4 59 215 260 281 299
5 107 397 768 857 1428

(a) RF-feat; provider {28}

1 2 3 4 5
1 2332 1194 713 343 263
2 332 386 233 164 73
3 174 259 223 153 107
4 47 74 88 78 57
5 609 1508 1956 1959 2515

(b) RF-hist; provider {28}

1 2 3 4 5
1 2767 1946 1337 1049 570
2 989 1326 1186 761 360
3 402 582 635 584 430
4 40 93 134 247 369
5 2 2 6 12 11

(c) RF-feat; provider {63}

1 2 3 4 5
1 2516 1668 1147 917 542
2 1231 1706 1534 1109 674
3 375 493 489 421 250
4 36 41 46 92 108
5 42 41 82 114 166

(d) RF-hist; provider {63}

1 2 3 4 5
1 2233 1516 1116 593 282
2 638 1002 878 551 239
3 413 684 850 749 465
4 193 296 467 529 462
5 133 162 248 460 681

(e) RF-feat; provider {83}

1 2 3 4 5
1 2532 1997 1544 789 375
2 303 452 451 289 136
3 276 416 501 422 267
4 239 390 568 618 445
5 260 405 495 764 906

(f) RF-hist; provider {83}

Table B.2: Confusion matrices for RF-feat (left) and RF-hist (right) for differ-
ent providers and dataset MCYT330-DP with block size 24× 24.
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Figure B.37: The trained high-level SOM map for MCYT330-DP and block
size 24 × 24 with the assigned prediction and its variance of
the average genuine score values for each node. This map is
calibrated for each of the three providers: {28}, {63} and {83}.
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Figure B.38: Log-hitmaps and distance matrix for the trained high-level SOM
map for MCYT330-DP with block size 24× 24.
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(a) vertical
features

(b) horizontal
features

(c) codebook
vectors

(d) example samples

Figure B.39: Top leftmost node of the trained high-level SOM map for dataset
MCYT330-DP with block size 24× 24.
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(a) vertical
features

(b) horizontal
features

(c) codebook
vectors

(d) example samples

Figure B.40: Top rightmost node of the trained high-level SOM map for
dataset MCYT330-DP with block size 24× 24.
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(a) vertical
features

(b) horizontal
features

(c) codebook
vectors

(d) example samples

Figure B.41: Bottom rightmost node of the trained high-level SOM map for
dataset MCYT330-DP with block size 24× 24.
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(a) vertical
features

(b) horizontal
features

(c) codebook
vectors

(d) example samples

Figure B.42: Bottom leftmost node of the trained high-level SOM map for
dataset MCYT330-DP with block size 24× 24.
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Figure B.43: The trained high-level GTM map for MCYT330-DP and block
size 24 × 24 with the assigned prediction and its variance of
the average genuine score values for each node. This map is
calibrated for each of the three providers: {28}, {63} and {83}.
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Figure B.44: Log-hitmaps and distance matrix for the trained high-level GTM
map for MCYT330-DP with block size 24 × 24, where the pos-
teriors’ modes are counted as hits.
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(a) vertical
features

(b) horizontal
features

(c) codebook
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(d) example samples

Figure B.45: Top leftmost node of the trained high-level GTMmap for dataset
MCYT330-DP with block size 24× 24.
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(a) vertical
features

(b) horizontal
features

(c) codebook
vectors

(d) example samples

Figure B.46: Top rightmost node of the trained high-level GTM map for
dataset MCYT330-DP with block size 24× 24.
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(a) vertical
features

(b) horizontal
features

(c) codebook
vectors

(d) example samples

Figure B.47: Bottom rightmost node of the trained high-level GTM map for
dataset MCYT330-DP with block size 24× 24.
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(a) vertical
features

(b) horizontal
features

(c) codebook
vectors

(d) example samples

Figure B.48: Bottom leftmost node of the trained high-level GTM map for
dataset MCYT330-DP with block size 24× 24.
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B.2.3 Final results
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Figure B.49: Correlation tables for MCYT330-DP with block size 24× 24.
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Figure B.50: ERC curves for MCYT330-DP with block size 24 × 24 for
provider {28}.
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Figure B.51: ERC curves for MCYT330-DP with block size 24 × 24 for
provider {63}.
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Figure B.52: ERC curves for MCYT330-DP with block size 24 × 24 for
provider {83}.
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