

Tool Support for
Inspections

Alexander Egorov

Kongens Lyngby, 2013

IMM-MSc-2013-95

2

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Building 303B, Matematiktorvet, DK-2800 Kongens Lyngby, Denmark
Tel.: +45 45253031, Fax: + 45 45881399
reception@compute.dtu.dk
www.compute.dtu.dk IMM-MSc-2013-95

3

Summary
Nowadays software systems play an important role in a human life, since they are
present almost in every aspect of it. Software systems surround us and they are
everywhere: from tiny little devices such as thermometers and sensors to airplanes
and production factories. Unfortunately, these software systems are not completely
free from defects. Defect can cause a small embarrassment or a large scale disaster.
However there are techniques that can help software developers to find defects, and
formal inspection is one of those techniques. The technique can be applied to any
development document at any stage of the development process.

This thesis is dealing with a modified version of formal inspection process that suits
better for academic purposes. The inspection process is considered to be rather
complex, it involves many interactions and paper work, which distracts participants
from defect finding. In order to make the process more transparent an online support
tool should be created. Due to software system introduction to the inspection
process, the process was modified in order to fit better to the new conditions.
Background analysis of previous works was conducted and their drawbacks were
analyzed, concluding that a new tool should be implemented using a different
approach.

The support tool received name “FIT” that stands for “Formal Inspection Tool”. Since
the tool is a web based application it is possible to make a clear separation between a
front-end and back-end components. Bootstrap framework was user to produce the
front-end component, Ruby on Rails web application framework was used in the
back-end component. The application was deployed on Heroku that is PaaS provider.
FIT is a free open-source software product, which sources are worldwide publicly
available through GitHub.

The security issues of a web application represent a great concern, thus the
application was analyzed on possible vulnerabilities and security breaches. The
analysis showed that FIT is not a subject to most popular attacks.

4

Preface
This thesis was prepared at the Institute for Applied Mathematics, Technical
University of Denmark in order to acquire the MSc degree in Computer Science. This
thesis was prepared between 5th of February and 30th of August under the
supervision of Associate Professor Dr. Harald Störrle. This thesis is worth 35 ECTS
credit points.

The thesis deals with subject of formal inspections. The outcome of the project is a
fully functional web application that is used in the process of formal inspections
within academic environment. Preliminary research, design analysis, prototyping,
detailed design and implementation, testing and deployment of this application is
performed and described in this thesis. Chapter 1 describes theoretical background
for the application. Chapter 2 presents the analysis of the problem with regards to
the web application. Chapter 3 focuses on the application design and describes
change decisions that was made during the project. The implementation of the
application is presented in Chapter 4. The results of the implementation and testing
results are described in Chapter 5. Conclusion section focuses on possible follow-up
on the application. The content that is delivered with the thesis is described in
Appendix A. Appendix B describes terms and abbreviations used in the thesis.
Appendices C and D contain accordingly lists of figures and tables that were
presented in this thesis.

Lyngby, 30 August 2013

Alexander Egorov

5

Acknowledgements
I would like to thank Harald Störrle for his great supervision, not to mention that it
was a pleasure for me to work with him during the project.

I am glad to give exceptional thanks to Andrii Sereda, Anton Makarov, and Vlad
Acretoaie for providing a shoulder to lean on during difficult moments and giving
useful advices when it was needed.

I would like to say special thanks to Attila Sukosd, who helped me with security
analysis.

And of course I cannot express the amount of acknowledgement to my parents, who
always motivate me to push forward.

6

Contents
Summary ... 3

Preface .. 4

Acknowledgements .. 5

1 Background ... 8

 Formal Inspection .. 8 1.1.

Inspection Roles ... 10

Inspection Process .. 10

Inspection Benefits ... 13

 Fagan-style Inspection ... 13 1.2.

 Need for Tool Support ... 16 1.3.

 Previous work (FIT-1) ... 17 1.4.

 The New System .. 18 1.5.

2 System Analysis .. 20

 System Users .. 20 2.1.

 Use Cases ... 20 2.2.

User Case Overview .. 20

Highlights of Important Use Cases ... 23

 Usage Scenario... 25 2.3.

 Inspection Process with FIT ... 27 2.4.

 Business Processes and Business Logic ... 28 2.5.

 Information Model .. 30 2.6.

3 System Design .. 33

 Technology choice ... 33 3.1.

 Design Patterns .. 33 3.2.

Active Record .. 33

Model View Controller ... 34

 Architecture ... 35 3.3.

 Chat Capabilities .. 39 3.4.

 User Interface .. 42 3.5.

Sketch ... 42

Prototype .. 43

Working Prototype ... 45

4 System Implementation ... 47

 Technology ... 47 4.1.

7

Ruby on Rails .. 47

Version Control ... 48

Integrated Development Environment .. 48

 Code Structure ... 49 4.2.

Models .. 49

Controllers .. 50

Views .. 52

 Security Analysis .. 53 4.3.

SQL injections ... 54

Mass Assignment Misuse Vulnerability .. 54

Cross-Site Request Forgery .. 55

Cross-Site Scripting ... 55

 Deployment ... 56 4.4.

Heroku .. 56

FIT Deployment on Heroku .. 57

 Libraries and Components ... 59 4.5.

5 System Operation and Test .. 60

 Operation from User Perspective .. 60 5.1.

 Operation from Administrator Perspective ... 62 5.2.

 Testing .. 63 5.3.

Browser Compatibility .. 63

Inspection Errors .. 64

Deadline Errors ... 64

 Loading Time .. 66 5.4.

6 Conclusion .. 70

7 Bibliography .. 71

A Delivery ... 72

B Glossary .. 73

C List of Figures .. 74

D List of Tables ... 76

8

1 Background
Very often software is shipped with defects. A software defect is a deficiency in a
software product that causes it to preform unexpectedly, while from user perspective
a defect is a cause for the software not to meet user’s expectation (McDonald,
Musson, & Smith, 2007). An example of user’s perspective on software defects is
presented in Table 1.

User Expectation Software defect

The software will help in accomplishing a
task.

Desired functionality is missing.

The software will respond quickly. The software responds too slowly
from the user’s perspective.

The software is secure from hackers. Hackers are able to exploit software
vulnerabilities and attack the
system.

A fatal error message is shown in case of
inappropriate actions or system
malfunction.

No error is presented, and the
software freezes.

Table 1: Software defects from the user's perspective (McDonald, Musson, & Smith, 2007)

Software defects can cause user’s dissatisfaction and may even lead to project failure
if the amount of defects is too high. It is a well-known fact that the cost of error
elimination in software development increases as project progress. Clearly to reduce
overall cost of the project, it is vital to make an attempt of finding and fixing errors as
early as possible.

There are several techniques designed for finding defects and improving software
quality during software development process. Formal inspection (often referred as
Fagan inspection) is one of those techniques. During 02264 Requirement Engineering
course the author had a possibility to participate in two formal inspections.

 Formal Inspection 1.1.

The software inspection process was created for purposes of both improving
software quality and increasing productivity by M. Fagan in 1972. An inspection is a
formal, efficient and economical method of locating errors in both design and code
(Fagan M. E., 1976). The development process with two inspections is demonstrated
on Figure 1.

9

Figure 1: Development with Fagan Inspections

10

Inspection Roles

The inspection team consists of inspection participants that are usually programmers
who are chosen form the project involved in the inspection. There are several roles to
be played by inspection participants during inspection process. The roles are
presented in Table 2.

Role Description

Moderator The moderator is the key person for a successful
inspection. It is not necessary for a person playing the
moderator role to be a technical expert on the project
being inspected, but he must be qualified programmer. It is
strongly recommended that the moderator should not
originate from the project that is subject to inspection,
therefore on the grounds of maintaining objectivity and
increasing integrity of the inspection the moderator should
be picked from an unrelated project (Fagan M. E., 1976).
Managing the inspection team and guiding the inspection
direction are the major responsibilities of the moderator, in
consideration of that the person playing the role must have
a leadership qualities such as personal sensitivity, tact and
passion. In order to produce synergistic effect he should
utilize the strength of team members. The moderator is
responsible for scheduling inspection stages, reporting on
the results of the inspection and follow-up on rework.
Briefly trained moderator produce the best results (Fagan
M. E., 1976).

Designer (Author) The inspection participant is responsible for producing the
program design.

Coder/Implementer
(Author)

The Coder is implementing the design in code.

Tester The programmer responsible for writing and/or executing
test cases or otherwise testing the product of designer and
coder.

Table 2: Inspection Roles

Inspection Process

The inspection process consists of five stages: Overview, Preparation,

Inspection, Rework and Follow-up that are demonstrated in Figure 2.

The first stage called Overview. The whole inspection team participates in this
stage of the inspection process. During the first inspection (I1) the designer describes
the overall idea behind the inspected design and provides the rest of the team with
appropriate documentation.

The next stage – Preparation - is performed individually. Inspection participants
read up the documents provided by the author on the previous stage in order to
understand the design, its intent and logic. The most discernible errors are found
during the preparation stage.

11

Figure 2: Inspection Process

12

The first stage called Overview. The whole inspection team participates in this
stage of the inspection process. During the first inspection (I1) the designer describes
the overall idea behind the inspected design and provides the rest of the team with
appropriate documentation.

The next stage – Preparation - is performed individually. Inspection participants
read up the documents provided by the author on the previous stage in order to
understand the design, its intent and logic. The most discernible errors are found
during the preparation stage.

On the Inspection stage the whole team is gathered. The moderator chooses a
“reader” (typically the coder) that will describe how he will implement the design.
The reader explains his vision on the design described by the designer. The objective
of the Inspection stage is to find errors. The error finding is actually done during the
“readers” discourse (Fagan M. E., 1976). Fagan recommend limiting the inspection
meetings to two hours, due to the fading in error detection efficiency. (Fagan M. E.,
1986). The moderator should write a report no later than one day after the stage
conclusion where he states all errors or problems.

During the Rework stage all errors or problems mentioned at the inspection report
should be resolved by the designer or coder.

It is crucial that at the Follow-up stage every issue is addressed. The moderator is
responsible for ensuring all issues discovered during the inspection are resolved.
Reinspection should be carried out in case of more than five percent of the materials
has been reworked.

Process operations Rate of progress1, loc/hr.2 Objectives of the
operation Design (I1) Code (I2)

Overview 500 not necessary Communication,
education

Preparation 100 125 Education

Inspection 130 150 Find errors

Rework 20 hrs./K.NCSS3 16 hrs./K.NCSS Rework and fix error
found by inspection

Follow-up - - Ensure that all errors,
problems and concerns
have been resolved

Table 3: Inspection process and rate of progress (Fagan M. E., 1976)

1
 According to M. Fagan the exemplified rates are conservative and applied to systems programming,

while comparable rates for applications programming are much higher

2
 Lines of code per hour

3
 1000 Non-Commentary Source Statements

13

Inspection Benefits

Purging error from the project results in the immediate improvement in productivity
(Fagan M. E., 1976). Observation of sample of software developers proposed that
experience gained from inspections led to reduction in defects inserted in the design
and code of systems created later during the same project4.

Studies conducted by M. E. Fagan showed that the cost of rework on errors as a
fraction of overall project cost is significantly higher that for the projects were
inspections were not used in comparison with the projects were inspections were
conducted (Fagan M. E., 1976).

Figure 3: Software Development Process (Fagan M. E., 1986)

The main benefits from conducting inspections are defect reduction, defect
prevention and cost improvement (cost of inspections is included in the project cost)
(Fagan M. E., 1986). Fagan estimates all design and code inspections cost to be
around 15 percent of the project cost.

 Fagan-style Inspection 1.2.

An adaptation of Fagan inspections for academic usage was proposed by associate
professor H. Störrle. Störrle introduced new terminology to the inspection process
and modified rules of the inspection. The Fagan-style inspection is supposed to be

4
 IBM Technical Newsletter GN20-3814, Base Publication GG20-2000-0, Aug. 15, 1978

14

conducted on a project-oriented course where a project is conducted by a group of
students. Each group participates in an inspection process presenting their project to
other group.

An artifact is a piece of documentation, code, model, diagram or any file that is
intended for the inspection. A campaign is a group of individual inspections that
are conducted simultaneously for all groups participating in the course.

The rules of inspection changed in the way suitable for an academic purpose. There
are five (six) possible roles that can be taken during the inspection process: author,
moderator, inspector, scribe, admin, and supervisor. An inspection
team should consist of three to seven members one of which must be the moderator
and another one the author (Störrle, QA3 Inspection Process Guide, 2012).

An author is a person that represents a group whose project is subject to the
inspection. Obviously an author should originate from the same group that produced
artifacts that are inspected. The moderator role is kept almost intact and well
coincide with Fagan’s descriptions. Another role introduced is an inspector, who is
responsible for providing a feedback on a given artifact. The scribe takes notes during
the inspection meeting; typically this role is carried on by the moderator. The
moderator and the inspectors should originate from different group in order to
reduce ambiguity and provide an independent unbiased point of view on the artifact
being inspected. Figure 4 shows the inspection process of Fagan-style inspection.

15

Figure 4: Inspection process (Störrle, Requirements Engineering, 2012)

The admin role is taken by teacher or teacher assistants; the role includes overall
supervision of an inspection process. The admin provides help and assistance for the
inspection team participants, assigns roles and aggregates the results of the process.
Table 4 demonstrates compatibility of roles and their responsibilities.

16

Table 4: Roles and responsibilities in the inspection process (Störrle, QA3 Inspection Process Guide, 2012)

In what follows, ‘Fagan-style inspection’ process is assumed, when an ‘inspection’,
‘inspection process’ or a ‘formal inspection’ is mentioned.

 Need for Tool Support 1.3.

Figure 5 demonstrate the results of evaluation of formal inspection process.

Figure 5: Evaluation of formal inspection process in utility and complexity scale (Petrolyte, 2011)

17

The evaluation was conducted among 02264 Requirement Engineering course
listeners who participated in formal inspections. The evaluation showed that all
participants recognize the inspection process as a useful technique, while half of the
polled students consider the inspection process complicated.

As it is possible to conclude from the evaluation, there should be a support tool for
the inspection process. In order to reduce the process complexity, support
distributed work, and provide better control on the inspection process for a
supervisor, a support tool should be created.

 Previous work (FIT-1) 1.4.

The previous work was conducted in 2011 (Petrolyte, 2011). The support tool that
was created suffered from a group of major drawbacks.

During the 02264 Requirements Engineering course the author of the thesis had
experience with a previous version of a Formal Inspection Tool. The system handicaps
became obvious from the very first moment after the system was presented to the
course listeners. The author experienced a problem with logging in to the system.
The problem was solved in an extravagant way; the author’s teammate on the course
project, Attila Sukosd, appeared to be a very talented programmer. He was able to
locate the error and exploit the tool vulnerabilities in order to gain privileged access
to the system in 10 minutes. After another couple of minutes the problem was fixed
and the author could log in to the system. The previous system was a subject to a
great deal of vulnerabilities, such as SQL injection, JS injection and HTML injection.
The input was not filtered at all and uploaded files were stored in a publicly
accessible location. It was also possible to execute the uploaded script. Table 5 shows
that user passwords were stored in a plain text, which is a great security threat
(MITRE Corporation, 2011). It is essential to notice, that user passwords were also
exposed to the administrator of the system as it is shown in Figure 6.

Table 5: FIT-1 database user table (Petrolyte, 2011)

The design decisions were rather controversial, as it may be seen from the Figure 6
while there is plenty of unused horizontal space on the page, an overflow occurs on
all cells in e-mail column and many other cells where long text string is present.

18

Figure 6: FIT-1 administrator panel (Petrolyte, 2011)

The other system handicap was an absence of non-ASCII characters support, in other
words it was impossible to use national keyboard layouts (e.g. Chinese, Russian) or
special characters.

The absence of communication medium for the inspection participants may also be
considered as a major drawback of the system.

Looking at the system from administrator’s point of view shown in Figure 6, it is
possible to notice the lack of possibility for the administrator to have an overview on
several inspection activities.

The summary of system handicaps is presented in Table 6.

Drawback

Absence of communication medium
Vulnerability to SQL injections
Vulnerability to Cross-Site Scripting
Artifacts stored in public folder
Passwords stored in plain text
Absence of non-ASCII character support
Absence of administrator tools

Table 6: Previous system drawbacks

 The New System 1.5.

Considering the drawback of the previous system it was decided to produce a
completely new system that would utilize different principles, i.e. a modern web
application framework should be involved into the development process, the system
should be secure and modular.

In order to provide a quality services for the inspection participants the drawback of
the previous system should be precluded. Hence the system should:

 be written in one of well acknowledged frameworks (in order to reduce
overhead and do not repeat on what has been used)

 support non-ASCII characters

19

 not be a subject for simple attacks

 provide a communication medium for inspection participants

 have a support of administrative function

 provide guidance for the system users

20

2 System Analysis

 System Users 2.1.

In order to provide a system that satisfies user expectations it is vital to understand
the target audience of the system. The system is supposed to implement Fagan-Style
inspection process that is applied at the academic institutions, therefore students,
professors and teacher assistants are representative auditory of the system.

Since future system users are determined it is important to understand what roles
they would play during system operation. The determination can be carried out
without any hesitation, on grounds of Fagan-Style inspection description. While
students will utilize the system as ordinary users with no special privileges and
restricted rights, i.e. they would have such roles as moderator, inspector, and author.
Teaching staff will have full access to the system with their admin role. Considering
that scribe role in most of the times is combined with the moderator role even in
paper-based version it was decided to exclude scribe role from the inspection process
in support tool.

Taking into the account the 02264 Requirements Engineering course5 participants as
a base for the system user estimation, the typical user would have knowledge in
programming languages, understand basic concepts of software engineering, and
have a basic knowledge of a modeling language, such as UML6. Users with full-
fledged access to the system will have more advanced knowledge and skills than
ordinary users.

 Use Cases 2.2.

The use cases provide the short summary on the required system features. Table 7
shows use cases for FIT system.

User Case Overview

Use case Description

Create Campaign The administrator creates a campaign. Is should be also
possible to user a spreadsheet with staffing information in
order to create underlying inspections and grant roles to
users.

Edit Campaign The administrator can edit the campaign, change name,
delete campaign or add new inspection to campaign.

Delete Campaign The administrator can delete the campaign with all
inspections inside the campaign.

Write Message Any system user can write a message in the inspection chat.

Create User Anyone can create a new profile in the system.

Edit User Non privileged user can edit his profile, while the admin can

5
 http://www.kurser.dtu.dk/02264.aspx?menulanguage=en-GB

6
 The estimation of user’s knowledge and skills is taken from 02264 Requirements Engineering course

prerequisites.

http://www.kurser.dtu.dk/02264.aspx?menulanguage=en-GB

21

edit any user profile.
Delete User User account can be deleted by the administrator.
Upload Artifact The author uploads the artifact.
Delete Artifact The moderator can delete the artifact if it is consideret

inappropriate. The author can delete the artifact he
uploaded.

Edit Artifact The author can change displayed name, comment, and
content of the artifact he uploaded.

Download Artifact Any inspection participant can download the artifact.
Create Remark The inspector or the moderator can create a remark.
Upload Remarks The inspector or the moderator can upload remarks from a

spreadsheet.
Delete Remark The inspector can delete remarks that he created, when the

moderator can delete any remarks.
Download Remarks Any inspection participant can download all remarks for the

inspection as file.
Create Inspection Inspection can be created by the admin only, during the

creation process the admin can specify to what campaign
the inspection would belong

Edit Inspection Inspection can be edited by the admin, e.g. he can add or
remove participants from the inspection.

Delete Inspection The inspection can be deleted by the administrator only.
This assumes that all uploaded artifacts and created
remarks will be deleted.

Add Participant The admin can add participant to the inspection with
specified role.

Delete Participant The admin can delete participant from the inspection.
Change Deadlines Inspection deadline can be changed by the moderator. The

deadline date of an inspection stage should be within the
interval of neighboring inspection stages deadline dates.

Change Inspection
Status

The inspection status can be change by the moderator.

Table 7: Use case overview

Use case diagram for overview is presented in Figure 7.

22

Figure 7: Overview use case diagram

23

Highlights of Important Use Cases

The most important and complex use cases are Create Campaign, Upload

Artifact, and Upload Remarks. They are described in detail below.

Figure 8: Create campaign

UC-1 Create Campaign

Description An administrator creates a campaign
Actors Administrator
Triggers ‘Create Campaign’ URL visited

Preconditions The administrator is authenticated

Regular Scenario 1) The administrator types a campaign name and uploads a
spreadsheet file with role assignments.

2) The administrator inputs a default deadlines for
inspections.

3) FIT ensures that the entered information is valid, creates a
campaign, then parses the spreadsheet and creates
inspections and assigns roles to users.

4) The campaign view with a list of the campaign inspections
is presented to the administrator.

Exceptional
Scenario

1) Entered data is wrong, error is displayed.
2) No spreadsheet was presented, an empty campaign is

created.
3) The role assignments file contains missing or conflicting

roles for several inspection participants, then error is
displayed and corresponding inspection highlighted with
red.

Results New campaign with inspections is created. Roles to the
participants are assigned

Frequency 2/4/6 (min/avg/max)7 pr. semester

7
 Minimal frequency corresponds to two campaigns during one course, like 02264 Requirements

Engineering

24

Table 8: Create Campaign Use Case

Figure 9: Upload artifact

UC-2 Upload Artifact

Description An author uploads artifact to an inspection
Actors Author
Triggers ‘Upload Artifact’ URL visited

Parameters -

Preconditions The author is authenticated and signed up for the
inspection

Regular Scenario 1) The author visits an inspection where he wants to
upload an artifact.

2) The author clicks to ‘Upload Artifact’ button, selects a
file he wants to upload and then clicks ‘Upload’ button.

3) FIT ensures that the file size is within established limits.
4) Inspection view that contains newly created artifact is

presented to the author.
Exceptional
Scenario

1) Filename contains dangerous symbols; the symbols are
changed with safe ones.

2) No file was presented, an error is displayed.
Results New artifact is created
Frequency 1/6/15 (min/avg/max) pr. inspection

Comments -
Table 9: Upload artifact use case

25

Figure 10: Upload remarks

UC-3 Upload Remarks

Description An inspector or a moderator uploads remarks to an
inspection

Actors Inspector, Moderator

Triggers ‘Upload Remarks’ URL visited

Parameters -

Preconditions The participant is authenticated and signed up for the
inspection

Regular Scenario 1) The participant visits the inspection where he wants to
upload remarks.

2) The participant clicks to ‘Upload Remarks’ button, selects
a file he wants to upload and then clicks ‘Upload’ button.

3) FIT ensures that the file has an appropriate format.
4) Inspection view that contains newly uploaded remarks is

presented to the participant.

Exceptional
Scenario

1) Several remarks have incorrect formatting and/or
missing attributes and error is displayed.

2) No or unsupported file was presented, an error is
displayed.

Results Remarks from the file are appended to the Remarks table

Frequency 0/2/15 (min/avg/max) pr. participant

Comments -
Table 10: Upload remarks use case

 Usage Scenario 2.3.

In the interest of providing better machine-user interaction it is crucial to understand
how the system is going to be used. Usage scenario is one of many tools that help to
build up this understanding. There are a few possible ways how usage scenarios can

26

be implemented. It can be done in form of a group of simple scenarios or as one
complex one, showing many possible user mistakes and their resolution. The last one
approach reveals the complexity of the inspection process, hence it seems more
beneficial. The usage scenario is presented in Table 11.

Role Carried out Activities

admin 1) Administrator creates a campaign from a spreadsheet that
contains staffing information, that does the following:

 Grants roles to users according to staffing information (if user is
not found, then it will be created).

 Creates inspections, belonging to the campaign.
2) Administrator adds a new inspection participant that was not

mentioned in the excel file from user lists.
3) Administrator removes incorrect participant from the inspection

process.
4) Administrator reassigns roles in the inspection due to change in

participants.

moderator 1) After establishing inspection guidelines and deadline, changes
status of inspection to ‘upload’.

2) Looks at uploaded files:

 Finds that one artifact is inappropriate.

 Deletes inappropriate content from the inspection.
3) Writes chat message notifying author that the artifact will not be

inspected and therefore it was deleted.
4) Changes status of inspection to ‘prepare’.
5) Looks at remarks that were made.

 Notices a duplicate in remarks.

 Deletes the duplicates.

 Uploads remarks from a spreadsheet.
6) Changes status of inspection to ‘rework’.
7) Ensures that every issue is addressed in reloaded artifacts and

changes the status of inspection to ‘finished’.

inspector 1) Downloads artifacts.
2) Screens artifacts and notices that one file is not an artifact

expected. Writes a message in chat in order to notify the author.
3) Downloads corrected artifact.
4) Writes remarks considering inspected documents.

author 1) Uploads several artifacts.

 After an artifact uploaded a participant finds a mistake that
wrong file was uploaded and writes a message in chat. Author
edits the artifact and changes file to a proper one.

2) Deletes one artifact that he thinks should not be inspected.
3) Writes couple of messages to chat, making comments to what he

uploaded.
4) Refreshes required documents during rework.

Table 11: FIT usage scenario

27

 Inspection Process with FIT 2.4.

Business process reengineering is inevitable after an introduction of a new support
system and formal inspection is not an exception. The participant’s point of view on
the inspection process with FIT support is presented in Figure 11. It is important to
notice that in comparison with initial inspection process (shown in Figure 4) the
inspection process stages were reconsidered.

Figure 11: Inspection Process with FIT

There are seven inspection stages in the new process. Setup status is assigned
straight after the inspection process was initialized by an administrator. After the
moderator established guidelines and reconsidered the default deadlines, Upload
inspection stage is reached. During the Upload stage the author uploads artifacts and
the moderator checks if they satisfy the requirements, afterwards the Prepare
inspection status is established. The inspector downloads and inspects uploaded
artifacts, later he either uploads his remarks from a spreadsheet file or creates

28

remarks directly. The moderator ensures that there are acceptable, otherwise he
deletes inappropriate content. During the inspection the physical meeting of the
inspection participants occurs. The author reads an artifact aloud and answers on the
questions that were asked by the inspector. The inspector elaborates remarks and
asks the questions regarding the artifact. The moderator leads the meeting and
makes notes.

Basing on the results of the inspection meeting the moderator identifies what should
be revised by the author in the Rework stage. The author reworks the artifacts and
then after the moderator has accepted of the rework the Finished stage of
inspections is set.

 Business Processes and Business Logic 2.5.

The campaign creation process is probably the first process and the most complex
that will be executed by the administrator. The process is shown in Figure 12.

Figure 12: Campaign creation process

If the administrator has a spreadsheet file with role assignment information, then he
would like to include the file into campaign creation process. By specifying role
assignment file the administrator wants the system to create a group of inspections
and assign role to user according to staffing information mentioned in the file. The
Parse Role Assignments process displayed on Figure 13 explains how it should be
carried out.

29

Figure 13: Role assignments file parsing process

30

 Information Model 2.6.

The information model consists of three diagrams: overview on information model,
detailed information model, and a diagram of information model types. The overview
of the information model of the FIT tools is presented in Figure 14.

The inspection is an object that represents a Fagan-style inspection process. The
inspection can have six deadlines that correspond to inspection statuses: Setup,
Upload, Prepare, Inspection, Rework, and Finished. A campaign unites a
group of inspections that are conducted at the same time by different groups of
users. Users communicate with each other via chat through writing chat messages.
The chat is a messaging subsystem that is individual for every inspection.

An artifact is a representation of the existing piece of documentation that is to be
reviewed during the inspection process. The user with appropriate rights is able to
create an artifact instance via uploading a file. The artifact belongs to both user and
inspection. The artifact must belong to one and exactly one inspection by grounds of
flexibility and independence of inspections as well as provide modularity for the
system, since it is much easier to control many-to-one relationship than many-to-
many relationship. The main argument to implement many-to-one relationship
between elements is that a consideration that a typical user participates in one
inspection at time, thus allowing the artifact to belong to many inspections does not
bring much sense.

Figure 14: FIT information model overview

A remark is a user comment on the artifact; therefore it can belong to only one

artifact at the same time, while the artifact can have a multiple remarks.
Moreover the remark can refer to a general comment regarding the inspection,
thus it will belong to the inspection, not to the artifact. The detailed
information model is shown in Figure 15, while the data types are presented in Figure
16. Most of information items have basic CRUD operations that are omitted in order
to remove unnecessary details from the diagram.

31

Deadline_missed?() function allows to check if the deadline is missed. The
possibility to upload remarks from a spreadsheet file is supported by
create_from_spreadsheet() function. In order to help the administrator to
determine inspections that has incomplete or incorrectly staffed teams Inspection

class have team_valid?() and team_complete?() functions. The
administrator can provide role assignments spreadsheet file to
create_from_role_assignment_spreadsheet() that will automatically
create stated amount of inspections, assign roles to users, and if necessary it will
create users.

Figure 15: FIT information model details

Location is a very important field of Remark class and should be described
additionally. Location field have an abstract type Location, which can be
implemented by one of three concrete classes: LocationDocument,
LocationCode, LocationModel. If the artifact is a text, spreadsheet or similar
file type than location field of a corresponding remark should have
LocationDocument type. In this case the element of documentation to which the
remark is referencing would have such type as page, figure, table, line, etc. For the
LocationDocument type presence of element_type and element_name is

required, while element_number field is optional. When the artifact is a piece of
code the locationCode type is applied, which describes to what line of code the
remark is pointing.

32

Figure 16: FIT information model data types

The last possible type of location is a LocationModel that is applied if the artifact
is a model, e.g. UML model. There are three possible combinations in this case:
element_type and element_name should not be empty, path to the
referenced object (element of the model) should present or diagram_name is
expected to be filled out.

33

3 System Design

 Technology choice 3.1.

There are many interesting technologies available on the market that can be used for
the development of the FIT system. These technologies include: Django based on
Python, Ruby on Rails based on Ruby, Spring based on Java, .Net MVC based on C#.
Since all mentioned frameworks are equally good, well known and widely used, the
choice process mostly becomes a matter of personal preferences. The framework
should be a full stack framework with possibility to encapsulate low-level
interactions, since the author haven’t had any previous experience with web
development and of course with any of mentioned frameworks. Due to author’s
personal preference to open-source software, the other requirement for the
framework is to be open-source product.

The author decided to choose Ruby on Rails framework, since it does satisfy the
requirements, i.e. it is a full stack open source cross-platform framework for creating
web applications8. Ruby on Rails has database abstraction layer that encapsulates
low-level database interactions. Ruby on Rails is considered to be one of the best
frameworks for building web application. As it is possible to conclude from the
framework name it is based on Ruby programming language. Ruby on Rails ships with
a sensible set of build in libraries and provide a well-proven, multilayer system form
organizing program files and concerns (Carneiro & Al Barazi, 2010).

In order to provide smooth and easy user-machine interaction a front-end framework
should be selected. Bootstrap framework is considered to be one of the most popular
frameworks9 on GitHub, not only because it is sleek, intuitive, and powerful front-end
framework for faster and easier web development10, but also because of its
standardization of HTML syntax11.

 Design Patterns 3.2.

Ruby on Rails framework is shipped with a couple of very powerful instruments that
implement Active Record and Model View Controller patterns. While the usage of the
first pattern is optional, the second one is mandatory since the whole Rails
framework was built around MVC pattern.

Active Record

Active Record (AR) is a software architectural pattern named by Martin Fowler. The
pattern is presented by an object that wraps a row in a database table, encapsulates
access and adds domain-specific logic on the top of the data (Fowler, 2003). Active
Record object presents an interface to underlying relational database table of view

8
 http://rubyonrails.org/

9
 https://github.com/trending?since=monthly

10
 http://getbootstrap.com/2.3.2/index.html

11
 https://medium.com/what-i-learned-building/99fdd6e46586

http://rubyonrails.org/
https://github.com/trending?since=monthly
http://getbootstrap.com/2.3.2/index.html
https://medium.com/what-i-learned-building/99fdd6e46586

34

that describes the way the data from the database should be created, accessed,
modified or deleted.

Figure 17: Active Record Example (Fowler, 2003)

The data structure of an Active Record class should correspond to the underlying
database in the way that one field in the class is mapped to corresponding column in
the table. The Active Record class incorporates wrapper methods for create, read,
update and delete a SQL row, static finder methods to wrap commonly user SQL
queries and return AR objects, field getters and setters, business logic (Fowler, 2003).

In what follows further when Active Record is mentioned the concrete
implementation of the pattern in Ruby on Rails should be assumed.

Model View Controller

Model View Controller (MVC) pattern often used in UI frameworks12. There are three
roles in the pattern: model, view and controller. Figure 18 presents MVC interaction.

Figure 18: MVC Interaction (Fowler, 2003)

12

 http://martinfowler.com/eaaDev/uiArchs.html#ModelViewController

http://martinfowler.com/eaaDev/uiArchs.html#ModelViewController

35

The domain information is represented by the model. The user interface is
represented by the view that only responsible for displaying the information, while
the controller is triggers the view update after the model manipulation in response to
user input.

There are two principal separations in MVC: the model is separated from the
presentation and the controller is separated from the view (Fowler, 2003). The key
reason for separating the view from the model is that the presentation depends on
the model but no otherwise. Creating presentation is mostly about creating a good
and convenient user interface, while model creation implies consideration of
business policies, database interactions. The main advantage of separating the model
and the view is a possibility to alter the presentation without making changes in the
model, i.e. it is possible to provide completely different interfaces to the same model.

The separation between the controller and the view is less important, the support of
editable and not editable behavior is one the classic examples that motivates the
separation (Fowler, 2003).

Considering a web site, the controller main responsibilities are presented in Table 12.

Responsibility Description

URL decoding The controller extracts data from a form and determines an
appropriate action.

Model Invocation The controller creates and invokes an object model to
process the data.

View
Determination

The controller determines which view should be displayed as
the result of the user request and forwards the model
information to the view.

Table 12: Controller responsibilities

In what follows further when model, view or controller is mentioned it should be
understood in terms of Ruby on Rails as a concrete implementation.

 Architecture 3.3.

This section describes model architecture. The model in MVC is an object that
represents the information about the domain and contains all the data and behavior
other than the one used in the UI (Fowler, 2003). Model dependency diagram is used
to represent model architecture. It is an elaboration on the information model
(presented in Figure 15). In Ruby on Rails framework “Fat Model, Skinny Controller”13
is a common practice. It means that all logic should be put into the model and the
controller becomes just an interface between model and its graphical representation
– view14.

Looking at the model dependency diagram presented in Figure 19 it is possible to
notice a few significant changes in comparison to information model. One of the
most important ones is an introduction of Participation class between Inspection and

13

 http://www.sitepoint.com/10-ruby-on-rails-best-practices/

14
 http://guides.rubyonrails.org/layouts_and_rendering.html

http://www.sitepoint.com/10-ruby-on-rails-best-practices/
http://guides.rubyonrails.org/layouts_and_rendering.html

36

User classes instead of many-to-many relationship with association class between
Inspection and User. This change was implemented due to Active Record limitations
in case of supporting many-to-many relationship. There are two possible different
ways of implementing many-to-many relationship between models with Active
Record in Rails: has_and_belongs_to_many association15 and has_many
:through association. The first one creates a direct many-to-many connection
between the selected models without introducing an intervening model, but
nonetheless the joining table should be explicitly specified. The second possibility
involves creation of a join model. If validation is needed, that join model method is
recommended for use. Nevertheless the main difference between those two
methods is that in has_and_belongs_to_many association the underlying SQL
join table will be created without primary key.

Figure 19 Model Dependency

There is a necessity to introduce validation on User-Inspection relationship,
due to concerns identified in inspection process (There should be no more than one
user playing author role participating in the inspection process). Therefore the
second option of implementation many-to-many relationship was chosen. Also
has_many :through association since it assumes more meaningful model
name16, i.e. Participation, that is rather self-explanatory. Taking into account

15

 http://guides.rubyonrails.org/association_basics.html

16
 http://railscasts.com/episodes/47-two-many-to-many

http://guides.rubyonrails.org/association_basics.html
http://railscasts.com/episodes/47-two-many-to-many

37

Rail conventions, the join table in case of has_and_belongs_to_many

association between Inspection and User models should be named either
inspections_users or users_inspections and that name can be
confusing.

Mapping the location field of the abstract type Location of Remark class,
which described at information model17, directly to a group of fields with primitive
types, such as String and Integer was another important decision. There are
several possibilities of how to implement non-standard data type filed within Rails
model18. Those techniques are presented in Table 13.

 Technique Description Advantages Disadvantages

Object
serialization

There is a standard module
Marshal in Ruby that
serializes object to a
string19, which is later can
be effectively translated
into byte array. The result
of marshaling is stored in
the database as a standard
type.

Relatively easy
technique from
configuration
point of view.

Limited
searching
capabilities on
the key values.

NoSQL
datastore
integration

The custom field is stored
in NoSQL database.

Effective. High
configuration
and integration
cost.

Dynamic
columns

Dynamically add columns
to the Inspection table
when concrete type of
location is defined.

Allows strict type
validation.

Difficulties in
maintaining
standard
object-
relational
mapping.

PostgreSQL
extensions

Use PostgreSQL extensions
such as hstore20. The
extension mixes stores sets
of key/value pairs within a
single PostgreSQL value.
Keys and values are simply
text strings.

Useful in various
scenarios in case
of semi-structured
data or if the
attributes are
rarely examined21.

Applicable only
for certain
Ruby standard
types, such as
Hash.

17

 Figure 15: FIT information model details

18
 http://blog.artlogic.com/2012/09/13/custom-fields-in-rails/

19
 http://www.ruby-doc.org/core-2.0/Marshal.html

20
 http://www.postgresql.org/docs/9.2/static/contrib.html

21
 http://www.postgresql.org/docs/9.2/static/hstore.html

http://blog.artlogic.com/2012/09/13/custom-fields-in-rails/
http://www.ruby-doc.org/core-2.0/Marshal.html
http://www.postgresql.org/docs/9.2/static/contrib.html
http://www.postgresql.org/docs/9.2/static/hstore.html

38

Custom type
table

Design a standard
relational mapping to a
new custom type table that
has all required fields.

Widely used
solution, which fits
standard
relational
database
management
system schema.

Increase in the
number of
objects that
needed to be
managed.

Additional
fields in the
model

Mapping custom type fields
to the fields in the
underlying model, i.e. add
series of
custom_field_#{n}
fields into the underlying
table.

Straightforward
technique.

Adds a great
overhead for a
custom type
with many
fields that may
not be used.

Table 13: Comparison of custom field implementation techniques in Rails model

Taking into account that the strict type validation and efficient search for Remark
location is needed, the first and the third techniques, i.e. object serialization and
dynamic columns fell off. PostgreSQL extensions are also not appropriate in case of
Location type, since it is well-structured type and its attributes are often
examined, e.g. in case of uploading remarks from file. NoSQL datastore integration is
effective, but not efficient for the location field, due to its extremely high
integration and configuration overhead.

The last two techniques seem to be equivalent in implementation cost and they both
seem to be appropriate. Custom type table techniques assumes three additional
tables to the database, Location type is an abstract type and three are three
concrete types that is LocationDocument, LocationCode, and

LocationModel
22. In case of using the last method six additional fields should be

added to the Remark model.

Considering uploading remarks from a spreadsheet file as a critical functionality that
would likely to be used often23 and providing appropriate level of fault tolerance is
critical, last technique was chosen. It hands over a simple solution for importing
remarks from a spreadsheet that has incorrectly filled location cells. The solution is
just to import all fields, construct the remark object, then determine the location
type and just ignore incorrectly filled location cells.

RemarkLevel, InspectionStatus, CampaignStatus and Role classes can
be easily implemented with such a powerful Active Record instrument as callbacks
that hook into the life cycle of an Active Record object and trigger logic before or
after an alteration of the object state.24 The classes mentioned above implemented
as a string that corresponds to regular expressions.

22

 Figure 15: FIT information model details

23
 Table 10: Upload remarks use case

24
 http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html

http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html

39

 Chat Capabilities 3.4.

Instant messaging capabilities in the web application assume some kind of
mechanism to obtain updates from server. There are several technologies that can
provide such capabilities, one of them are Web-Sockets, Long Polling, and

Server-Sent Events.

Table 14 below demonstrates the comparison between mentioned above
technologies.

 Long-polling Server-Sent Events WebSockets

Browser
support

Supported by the
most of currently
use d browsers.

Chrome 9+, Firefox
6+, Opera 11+,
Safari 5+.

IE 10+, Firefox 7+,
Chrome 14+, Safari
5+, Opera 12+.

Server load Consumes a little
of CPU resources,
closes connection
every time the
event is sent.

Requires a very
limited amount of
resources, does
not need to close
connection after
response event is
sent.

Requires a very
limited amount of
resources, but
requires constantly
maintained HTTP
connection.

Client load Depends on
implementation.

Consumes
minimum
resources since
native
implementation in
the browser.

Consumes minimum
resources since native
implementation in the
browser.

Timeliness Depends on
implementation.

Three seconds
delay by default
settings.

Real time.

Implementation
Complexity

No additional
gem required.

Additional Rails
gem required.

Requires additional
infrastructure, i.e.
EventMachine server
with custom port
being open.

Table 14: Chat update technologies comparison
25

After comparing the solutions it looks like WebSockets is the best solution, since it
requires minimum resources from both client and server, followed by SSE and
Long-Polling looks like the worst decision to implement it terms of consumed
resources. But what is important to consider is that browser support is very
important due to large share of users still use Internet Explorer and old versions of
old browsers26. According to W3Counter statistics on July 2013 there is still more

25

 http://dsheiko.com/weblog/websockets-vs-sse-vs-long-polling

26
 http://www.w3counter.com/globalstats.php?year=2013&month=7

http://dsheiko.com/weblog/websockets-vs-sse-vs-long-polling
http://www.w3counter.com/globalstats.php?year=2013&month=7

40

than 22 percent of users utilize Internet Explorer and there is only 7 percent that use

IE 10 that natively supports WebSockets technology.

Server-Sent Event technology is not supported by any version of Internet
Explorer and that WebSockets technology is not supported by approximately 15
percent of users in addition to requirements for maintaining constant connection and
having additional infrastructure27, therefore Long-polling technology should be used.

Sequence diagram presented in Figure 20 demonstrates how Long-polling technology
works.

Every chat message is wrapped in HTML element with data attribute data-id that
corresponds to the underlying ChatMessage id value. ChatMessage view uses
AJAX calls and sends the attribute value to the ChatMessages controller. The

controller asks ChatMessage model if there is any message with id bigger than the
received one from the view. If there are no new messages the controller sends
nothing to the view, otherwise it sends missing messages. The view in its turn on the
reception of the new messages appends them to the chat.

27

 http://www.html5rocks.com/en/tutorials/websockets/basics/

http://www.html5rocks.com/en/tutorials/websockets/basics/

41

Figure 20: Chat long-polling

42

 User Interface 3.5.

Sketch

Sketching user interface using simple tools like pen and paper or marker and
whiteboard is well-recognized solution for the very first round of product
development since it is easy and cheap solution (Störrle, Requirements Engineering,
2012). The result of the sketching has been photographed; the inspection list is
presented in Figure 21, opened inspection is presented in Figure 22 and the remark
table is presented in Figure 23.

Figure 21: Inspection list sketch

There are several methodologies to substitute desktop’s right-click menus in Web
application such as Always-Visible and Hover-Reveal Tools that are united under the
Contextual Tools name (Scott & Neil, 2009). As it is possible to notice from the
options names, the first ones place contextual tools directly in the content, while the
second one show tools on mouse hover.

During the sketching process the Hover-Reveal pattern was used.

43

Figure 22: Current inspection sketch

The initial idea was to present user a list of inspection as a block with nearest
deadline date, showing also inspections that are not available, i.e. either finished or
announced. The interaction assumed that when a user clicks on an active inspection
it will expand on the whole screen, showing the content and the inspection chat. The
remarks table initially supposed to be shown only when user clicks on the artifact.

Figure 23: Remarks table sketch

Prototype

During the next stage of user interface development, a prototype was created.
During the prototype implementation it was decided to change the list of inspections
from a group of boxes to a carousel, since the expansion of the block looked too

44

heavy and distracted the attention and was embarrassing especially if a wrong
inspection box was clicked.

Figure 27 demonstrates the implementation of the whiteboard sketches made in
Sublime Text 2 with Bootstrap library. The modal presents the PDF document
displayed on the right and the remarks table with comments corresponding to this
artifact. After clicking on artifact box the modal is displayed as it is demonstrated in
Figure 27.

As it is possible to notice from Figure 22 most of the artifacts boxes and inspection
boxes does not have any actions such as download, edit or delete being displayer,
because Hover-Reveal principle was utilized and the actions were displayed only on
mouse hover as it is presented in Figure 24. In order to show the design concept with
actions the inspection view on Figure 25 has Artifact 2 and Inspection 2 with actions
being forcefully displayed. That was impossible in the prototype to have more than
one hover event at the time.

Figure 24: Panel with actions hidden (left) and displayed on mouse hover (right)

Figure 25: Inspection view prototype

Taking into account that only the current status of the inspection and only the closest
deadline were shown in the inspection box, it was hard for unprepared user to

45

understand the inspection process work flow. Therefore it was decided to implement
some kind of a flow chart that would bring an understanding of the inspection
process for unprepared user. Figure 26 shows the inspection status bar prototype.

Figure 26: Status bar prototype

Figure 27: Remarks table and artifact overview during the implemented of the prototype

Working Prototype

The general ideas of the prototype were accepted, but during the user interface
design working prototype stage a few major changes were implemented. Hover-
Reveal pattern was changed to Always-Visible patter. The main issue for Hover-
Reveal tools is providing proper discoverability of the additional functionality,
therefore, taking into account that the majority of the system users are students
enrolled for courses similar to 02264 Requirements Engineering, they are likely would
see the system for the first time and would use it only a few times, hence it is
important that users could immediately understand what possible actions are
available. Thus for the sake of discoverability Hover-Reveal were reconsidered in
favor of Always-Visible Tools (Scott & Neil, 2009). In order to reduce visual noise
icons symbolizing the actions are rendered in as visually light manner, that is
achieved by making them half-transparent. Figure 28 shows that after user hovers on
the icon it becomes fully visible.

46

Figure 28: Artifact Action Panel rendered by default (left) and when download action is hovered (right)

Looking further at the artifact box it is possible to notice that the download icon
was changed to a different one and upload user icon was removed.

The inspection view outline that is presented in Figure 29 was also changed. The
status bar increased in size and incorporated all statuses from the inspection process
adapted to the support system. Deadlines were modified in order to follow the flow
created by the status bar. Considering the majority of users would participate at one
inspection at time and in two inspections per semester it was decided to the
inspection list from the carousel to a navigation bar menu item. Taking into account
that the page space as a most valuable resource it is unwise to spend up to 20
percent (for standard 720p screen resolution) of it for a feature that would not be
used often.

Since objective of the inspection process is to find defects in provided artifacts it is
not wise to hide the instrument that presents possible defects, i.e. remarks table.
Following Always-Visible tools principle it was decided to reveal remarks table and
make it central element of the inspection page.

Figure 29: Inspection final design

47

4 System Implementation

 Technology 4.1.

Ruby on Rails

Rails uses Ruby in order to create a domain-specific language. Rails utilizes several
concepts and principles: don’t repeat yourself (DRY) principle, you
ait’t gonna neet it (YAGNI), and convention over

configuration (Carneiro & Al Barazi, 2010).

DRY states that information in a system should be expressed in only one place.
YAGNI assumes that only actually needed functions are implemented, i.e. do the
simplest thing that could possibly work.

Convention over configuration is the most tangible principle in Ruby on
Rails framework. The principle assumes that the developer needs to define only
configuration that is unconventional. There are several naming conventions in Rails
framework: the first one tells that class names should be name with CamelCase,

methods and variables written with snake_case; a model should be named with a
singular noun, e.g. User and it will be stored in models/user.rb, then the
reciprocal controller should be named with a corresponding plural noun, i.e.
UsersController that is defined in

controllers/users_controller.rb file. Views that represent the model
should be stored in views/users/ folder, while stylesheets and javascript for
those views shall be defined accordingly in assets/stylesheets/users.css
and assets/javascripts/users.js files.

As it was mentioned earlier, Ruby on Rails implements Model View Controller
pattern. A model typically represents a database table. Since the application uses SQL
database the model is a subclass of ActiveRecord::Base class. All business logic
should be implemented in models according to Rails convention.

A view in Rails is a HTML or a JavaScript template with embedded Ruby that is called
ERB template. In general there are two types of views: a full-blow view and a partial
view. The full-blow view typically rendered as a result of the controller’s action
execution, e.g., in case an index action of UsersController is called, then by
default the action will render view that is stored in
views/users/index.html.erb file. The partial view (or just partial) is
rendered inside other views and can be nested. According to the convention the
partial should be denoted with underscore at the beginning of its name, e.g.
_status.html.erb.

A controller is a subclass of an abstract ApplicationController class in Ruby
on Rails framework. According to Rails convention controller’s public methods are
called actions28

. Depending on received URL the framework will determine which
controller and which action should be called. After that the framework creates an

28

 http://guides.rubyonrails.org/action_controller_overview.html

http://guides.rubyonrails.org/action_controller_overview.html

48

instance of that controller and runs the action. By default the controller in Rails
automatically renders the view that has the name of the action due to convention
over configuration principle.

Version Control

Modern software development process assumes that it is virtually impossible to
imagine any reasonable excuse for not using version control system. There are
several alternatives present on the market nowadays such as Concurrent Version
System (CVS), Subversion (SVN), Mercurial and Git. Taking into the account that the
project is supposed to be an individual work any of previously mentioned version
control tools are suitable. The main requirement the tool is that it should be an open-
source project; it should have an implementation and free online repository. Git has
been chosen as the version control system for the project since it is particularly
powerful, flexible and low-overhead version control tool (Loeliger, 2009) and there
are several web-based hosting services such as Github29 and Bitbucket that provide
free accounts for open source projects. Github has been chosen because the latest
versions of many third parties Ruby on Rails libraries are accessible via Github
repositories and it was built using Rails.

Integrated Development Environment

On the first stages of the development process Sublime Text 2 was used, taking into
account that it is not an IDE the decision to switch on a different product had been
made. The set of requirement was formed based on experience with Sublime Text 2.
An appropriate IDE contains Ruby debugger, version control integration, Ruby Gems
management system, code analysis and assistance capabilities as well as easy project
configuration and HTML, CSS, and JavaScript editing. There are several such systems
on such as TextMate, NetBeans for Ruby, JetBrains RubyMine and Aptana Studio. The
first one solution is designed for Mac OS X and was turned down automatically, since
the development was conducted under Microsoft Windows. NetBeans stopped Ruby
support and starting from version 7.0 and higher Ruby support was removed30.
Therefore NetBeans 6.9 for Ruby has been chosen, but it appeared that the IDE
cannot properly import an existing project, which was generated by Ruby on Rails
built-in generator, the IDE wiped out several important project files that fortunately
did not lead to disastrous events due to version control system usage and regular
commits to remote repository. Certainly the system usage was discarded and after
reading an article31, regarding JetBrains RubyMine was not initially considered as a
good choice due to it is commercial origin that implies obtaining a license, it has been
decided to try out 30 days trial version. After using the IDE for a couple of weeks
without any crash, RubyMine proved that it is a very stable IDE that has all required
features. Taking into account that FIT is an open-source project designed for

29

 https://help.github.com/articles/github-terms-of-service

30
 http://wiki.netbeans.org/RubySupport

31
 http://habrahabr.ru/company/JetBrains/blog/176891/

https://help.github.com/articles/github-terms-of-service
http://wiki.netbeans.org/RubySupport
http://habrahabr.ru/company/JetBrains/blog/176891/

49

educational purposes it was possible to apply for a free educational license JetBrains
RubyMine IDE.

 Code Structure 4.2.

It is reasonable to present code structure according to the MVC pattern. The model
dependency, controller hierarchy and view hierarchy is presented in this subsection.

Models

The actual implementation of the model dependency from design stage is presented
in Figure 30.

Figure 30: Model final design

Ability model is created by CanCan gem32 that handles authorization. The model
does not create a table in the database and it is used for describing the authorization
rules.

Campaign model has assignments=(f: File) function that acts as virtual
attribute in campaign form in the corresponding view. In other words when a simple

32

 Described in Libraries and Components on page 53

50

form file input field with conforming id and name attributes accepts a file

assignments=(f: File) is called. The function is responsible for parsing role
assignments file according to the business process described in Figure 13.

During the implementation an interesting bug of the Rails framework was discovered.
Since the virtual attribute assumes that assignments=(f: File) function is
called before the corresponding campaign is created, hence the campaign object is
not presented in the underlying database table at this moment, thus it does not have
an id. Taking into account that the campaign object has no id, then an inspection
object that belongs to the campaign cannot be created, it can only be built, i.e. it will
also not saved into the database until the campaign is saved. In case of a missing or
corrupted value in role column is the role assignments file for the inspection that
hasn’t been built yet, the record in Participation table will not be created,
since the conforming user does not have a proper role in this inspection. If there are

no errors with the inspection object it would be built. But find_by_name()33

function of the Inspection model cannot find already built inspection object
when the next line with the same inspection name in the corresponding cell in the
file for user and corresponding inspection is parsed. This event leads to the fact that
the after the campaign object is created there would be a set of inspections with the
same name.

In order to induce error tolerance in the create campaign business process34
was changed to the current state, i.e. the campaign object should be created before
the role assignments file is parsed. Therefore to implement proper handling of the
create campaign business process, the following measures has been conducted. The
assignments=(f: File) opens the role assignments file, reads the location of
the temp file (corresponding to the role assignments file) and the creates a soft link
with an extension corresponding to the spreadsheet file35 and stores it in temporary

variable. Then when the campaign object is created, create_inspections() is
executed with after_create Active Record callback.
create_inspections() calls open_spreadsheet(f: File) with the soft
link as the argument to handle the spreadsheet file. After the role assignments file is
parsed by create_inspections(), the next after_create callback
removes soft link that was created earlier.

Controllers

There are seven controllers in the application and there is one to one
correspondence between the controller and the model, except
SessionsController that does not have an underlying model. Figure 31
presents controllers hierarchy.

33

 The function is not shown on the diagram in Figure 30 since the method was created by the Rails
framework automatically.

34
 The process is described in Figure 13.

35
 A temporary file create by Rails framework does not have any extension

51

Figure 31: Controllers hierarchy

52

Taking into account that according to Rails convention the controller should be kept
“slim”, i.e it should be free from business logic, thus since controllers’ actions are
self-descriptive, there is no much sense in describing the action. The only function
that should be explained is correct_user(u: User) function in
UsersController, that is not an action. The functions is used in update() and

edit() actions, it checks that the User object is ether current user or an
administrative user, in order to prevent unauthorized user from modifying other
user’s profile.

There is no need in parameters for Ruby controllers’ actions, since there is a special
variable, called params that stores all necessary information, e.g. HTTP Get request
the params is a query string from the request, while for HHTP Post params is the
corresponding form data.

Views

Figure 32 demonstrates views structure and how assets are used. In the application
JavaScript ERB templates are used as a response on AJAX HTTP request. All views are
placed into folders according to the controller to whom they refer.

53

Figure 32: Views and asset usage

 Security Analysis 4.3.

Security issues were one of the many reasons why previous work on the similar
project had failed. The goal is to minimize the possibility of vulnerabilities exploit by
evildoer. SQL injection, Cross-Site Scripting, Mass Assignment Misuse, and Cross-Site
Request Forgery attacks should be address by the FIT application. The security
vulnerabilities and attack descriptions are not going to be elaborated as long as they
are well-known (MITRE Corporation, 2011). Passwords are hashed by brypt. Session
hijacking is prevented by forcing user to use HTTP SSL connection.

54

SQL injections

Whereas the application uses SQL database it is important to filter possible SQL

injections or use methods that do not allow SQL injection to happen.
Active Record provides parameterization of queries for many methods and therefore
it is fair to state that methods are secure, except extreme rare cases when
vulnerability found in the framework. As it was mentioned before, most of the
methods in Active Record escape input from SQL36, but there are plenty of methods
that does not do this in order to allow the programmer to have flexibility. There is a
list of methods and their parameters that are subject to SQL injection37 and
thus the usage of those methods should be conducted with care. It is worthwhile to
mention only methods that are used in the application. Methods with SQL

injection vulnerability used in the application together with measures taken to
prevent SQL injection are shown in Table 15.

Method Vulnerability Prevention Measures in FIT

find() Any argument following after
the first one will not be escaped

Method is used the only one
parameter, which is primary key

order() Accepts any SQL string User input is not passed to the
method

where() SQL query can be passed as a
parameter value.

The value for primary key
parameter is manually casted to
integer

Table 15: Methods with SQL injection vulnerability and prevention measures

Mass Assignment Misuse Vulnerability

Mass assignment misuse vulnerability is specific to Ruby on Rails applications. Active
Record methods like update_attributes(params) or build(params) are
quite often used in controller actions that respond to HTML Post request, e.g.

update or create38. The method takes a hash of attributes and their values that
are going to be assigned to the record. In order to prevent the misuse of the method,
e.g. an evildoer sending additional parameter that is not stated in the form through
the HTML Post action, a whitelist of attributes allowed to be mass assigned should be
declared. There is a special function attr_accessible in ActiveRecord Base
class that is superclass for all models used in the FIT application. The method
specifies which attributes may be assigned with mass assignment; any other
attributes not on the list are blocked (Ediger, 2008).

In FIT application all critical parameters are not stated in the whitelist, e.g. the piece
of code from create action in ChatMessages controller that is shown in Figure 33

user_id is not passed to the method that uses mass assignment.

36

 http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-your-horses-here-are-the-
facts/

37
 http://rails-sqli.org/

38
 http://happybearsoftware.com/how-i-avoid-the-rails-mass-assignment-security-mistake.html

http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-your-horses-here-are-the-facts/
http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-your-horses-here-are-the-facts/
http://rails-sqli.org/
http://happybearsoftware.com/how-i-avoid-the-rails-mass-assignment-security-mistake.html

55

Figure 33: Chat message protection from mass assignment misuse

Instead of it current_user method is used that is helper method, which obtains
the user who performed the action, thus it is not possible for one user to write a
message on other user’s behalf.

Cross-Site Request Forgery

Cross-Site Request Forgery exploits the trust that the application has for a particular
user. In case of this attack both the web application and the user are victims39. But
Ruby on Rails has a feature called protect_from_forgery that adds a hidden
field to any form in the application. The value in the form will be compared to an ID
stored in the session variable; if they differ the action will not be executed40. Figure
34 presents the code of send chat message form with authenticity token added by
protect_from_forgery feature.

Figure 34: HTML code with authenticity token of send chat message form

Cross-Site Scripting

According to Ruby on Rails security guides, Cross-Site Scripting is the most
widespread, and one of the most devastating security vulnerabilities in web
applications41. The attack injects malicious client-side executable code such as
JavaScript.

FIT application sanitize user input, therefore XSS menace is eliminated. Figure 35
demonstrates the result of failed XSS attack attempts, JS and HTML code is properly
filtered, therefore the alert message is not displayed on either AJAX create request or
page reload.

39

 http://shiflett.org/articles/cross-site-request-forgeries

40
 http://ruby.about.com/od/security/a/forgeryprotect.htm

41
 http://guides.rubyonrails.org/security.html

http://shiflett.org/articles/cross-site-request-forgeries
http://ruby.about.com/od/security/a/forgeryprotect.htm
http://guides.rubyonrails.org/security.html

56

Figure 35: XSS vulnerability test, the left part is conducted by Attila Sukosd, where the right one is done by

Alexander Egorov. Alert message is not displayed, since the attack was not successful.

 Deployment 4.4.

There are several possibilities of how to deploy a web application. In general there
are two possibilities either deploying the web application on a privately owned web
server or using third party services, e.g. cloud services. Taking into account that
during the focus of the thesis implementation part is on the development of the web
application and there was no infrastructure provided, the first option is not
applicable, since it take a great deal of resources to setup and configure a web server.
Hence, in order to minimize the efforts spent on deployment, cloud services should
be utilized. Considering fast deployment of the application as a goal, there are two
primary options for of what cloud areas are applicable for the case: Infrastructure as
a Service (IaaS) and Platform as a Service (PaaS). IaaS provides physical of virtual
machines and other resources such as firewalls, file-based storage, load balancers,
and software bundles (Amies, Sluiman, Qiang, & Guo, 2012). PaaS offers a platform
that includes operating system and middleware. In other words PaaS takes care of
everything needed to run a specific language or technology stack (McGrath, 2012).

The decision to deploy FIT application on PaaS was made, since using PaaS allows
not caring about configuration and maintenance of the infrastructure and underlying
platform. Considering the absence of budget for the application, possibility of
deploying the application for free is the main requirement for PaaS provider.

Heroku

Heroku is a platform as a service provider that supports Ruby programming language
and Ruby on Rails Rack-compatible projects. Heroku was choosen as PaaS provider,
since Heroku offers charge-free services for developing purposes and provides the
ability to deploy an application using a one-line command42.

Heroku terminology is presented in Table 16.

42

 http://www.building43.com/videos/2010/04/20/herokus-ruby-cloud-platform/

http://www.building43.com/videos/2010/04/20/herokus-ruby-cloud-platform/

57

Term Name Term Description

Dyno An isolated, virtualized Unix container that provides the
environment required to run an application43.

Slug A compressed and pre-packaged copy of an application that is
optimized for distribution to the dyno-manager44.

Stack A complete deployment environment that includes the base
operating system, the language runtime and associated
libraries45.

Table 16: Heroku terminology overview

Rails application supported by Heroku stack based on Ubuntu 10.04 that is called
Cedar. A dyno get 512MB of RAM and 1x CPU share in its default configuration (“1X”)
If the application requires more memory or CPU share it is possible to resize dyno to
a “2X” configuration that gives 1024MB of RAM an doubles the CPU share on a per
process-type basis46.

FIT Deployment on Heroku

A free Heroku account is limited to one “1X” dyno available, the PostgreSQL database
size is limited to 10000 rows, and there are only 20 simultaneous HTTP session are
allowed.

Figure 36: FIT deployment on Heroku

43

 https://devcenter.heroku.com/articles/how-heroku-works

44
 https://devcenter.heroku.com/articles/slug-compiler

45
 https://devcenter.heroku.com/articles/stack

46
 https://devcenter.heroku.com/articles/dyno-size

https://devcenter.heroku.com/articles/how-heroku-works
https://devcenter.heroku.com/articles/slug-compiler
https://devcenter.heroku.com/articles/stack
https://devcenter.heroku.com/articles/dyno-size

58

The expected uptime is 99.5%, but it is worthwhile to mention that is the application
deployed form free account has not been used for a while Heroku suspends the stack
and it takes approximately three to five minutes to start the application. To prevent
the application from sleeping there should be more than one dyno associated to the
application47.

The deployment diagram is presented in Figure 36.

Taking into account that during FIT development Git VCS was used and Heroku
Toolbelt is installed, the application deployment to Heroku can be done relatively
easy in a few steps using command line interface. After creating the application on
Heroku by executing create command from Git repository as it is shown in Figure 37
that will create remote repository called heroku. List of remote repositories shown
in Figure 38, where origin is a default remote repository on GitHub for FIT
application.

Figure 37: The application creation on Heroku

Figure 38: Git remote repository list of FIT application

Then the desired Git branch should be pushed to Heroku with one-line command
from command line interface that is shown in Figure 39.

Figure 39: The application deployment on Heroku

The command shown above pushes Git master branch to the Heroku that will
automatically compile the application to a slug. After the compilation is finished with
success, the application is deployed on Heroku and can be checked but the command
shown in Figure 40 that will open a new tab in default web browser with FIT
application.

Figure 40: Heroku open command to start FIT application in web browser

47

 https://devcenter.heroku.com/articles/dynos#dyno-idling

https://devcenter.heroku.com/articles/dynos#dyno-idling

59

 Libraries and Components 4.5.

All gems used in the application are free of charge and licensed under different open-
source licenses. Icons used in the application are free for any usage.

Gem name Description

rails Ruby on Rails application framework.
bootstrap-sass Includes and enables Bootstrap framework.
bcrypt-ruby The gem includes bcrypt function. Used for hashing

passwords.
cancan The gem provides authorization capabilities.
rolify Allows attaching roles to any resource, i.e. any class or

concrete class instance.
thin A web-server used for development.
roo Spreadsheet managing library.
bootstrap-datepicker-
rails

A component for picking dates with bootstrap styling.

kaminari The gem provides pagination functions.
jquery-datatables-rails HTML table wrappers.
sqlite3 Development database.
postgreSQL Production database.
annotate Annotates models with database fields.
rspec-rails Includes RSPEC language for writing unit tests and

testing environment.
factory_girl_rails A library for creating, building instances from objects.
faker Generates fake date, like email addresses or names.
capybara Simulates user’s activity, used in testing.
launchy Allows launching external application from within

Ruby programs.
database_cleaner Provides database cleaning features.
guard-rspec Automatically detects changes in code and launches

test suites.
sass-rails Includes SASS support.
coffee-rails Allows using CoffeeScript in Rails.

Figure 41: List of Rails gems

60

5 System Operation and Test

 Operation from User Perspective 5.1.

Taking into the account that many users would have the first encounter with the
system shortly after introduction of Fagan-Style Inspections concept it is vital to
provide appropriate guidance for the inspection participants.

After a user logs-in to the system his profile details are presented to him. If the
profile is incomplete, then it is recommended to add some information to the profile.
Figure 42 demonstrates changes (after the profile was updated, the notification of
incomplete profile disappeared).

Figure 42: User profile before change (left) and after (right)

After clicking on the inspections list at the navigation panel at the top as it is show on
Figure 43, the list of inspections where the user is a member is demonstrated. When
the user clicks on the inspection name he is redirected to the inspection page, which
is shown in Figure 44.

Figure 43: Inspections list

Alternatively, if the user decides to click on Users menu item then Inspection
Participants are presented. The page with participants list for the inspection is shown
in Figure 44. The page contains list of users with small amount of information such as
roles in inspections, profile pictures. The links to user profiles with full information
are available at this page.

61

Figure 44: Inspection Participants page

The figure below shows how FIT guides authors through the various stages of the
inspection process. The guidance contains information what author should do in
particular stage of the inspection process. During the setup and upload stages author
should upload one or more artifacts, so the inspectors can review them.

Figure 45: Author perspective on the inspection process

The inspection page from the moderator perspective is presented in Figure 46. As it is
possible to notice the status of the inspection was changed, thus the status bar
displayed that change by coloring past stages with dark gray color. The moderator
was able to change the status because one artifact was uploaded. During the prepare
stage the moderator received a personal guidance, which asks him to ensure that the
inspectors contributed to the inspection during this stage.

62

Figure 46: Moderator perspective on the inspection page

 Operation from Administrator Perspective 5.2.

Looking from the administrator point of view it is possible to notice some additional
features of the system. The administrator is able to perform any action that any other
user can and also he is able to create, modify and delete inspections, campaigns and
users. The inspection edit page is presented in Figure 47, where it is possible to
notice that additional actions became available in comparison to users participants
list.

Figure 47: Inspection edit

Figure 48 shows the combination of create and upload forms.

63

Figure 48: Create and upload pages combined

 Testing 5.3.

Browser Compatibility

The application was tested on several different browsers such as Chrome 28, Mozilla

Firefox 22, and Internet Explorer 10 with different screen resolutions starting from

1378x768 to 1920x1080. The application showed full compatibility with all tested

browsers.

Figure 49: Inspection view on mobile device

The application was also tested on different devices and operating systems. It was
tested under Windows 8, Mac OS X and Android 4.1. FIT showed acceptable results
for mobile devices, since the support of the mobile devices was not a goal for the

64

system development. The scaling problems may occur. Inspection view is presented
in Figure 49 as it is seen on Google Nexus S mobile phone perspective using Google
Chrome browser.

The application does not scale properly on some places, but it works with an
appropriate speed, and full functionality is preserved with a small limitations.

Inspection Errors

Figure 50 shows the campaign with four inspections, three inspections are properly
staffed with author, moderator and at least one inspector, while one inspection,
called 2B, is staffed incorrectly, therefore it is highlighted with red box and the
warning message appeared, notifying the administrator that there is a problem.

Figure 50: Inspection with staffing problems

If a deadline for an inspection is missed then the date font turns into red color. Figure
51 displays inspections a campaign with three inspections that have problems with
deadlines. A deadline can be missed in two cases: the first one if the deadline was not
clothed and current date is in highlighted (Upload and Prepare deadlines for
foobar inspection), the second one when the deadline was closed after the due

date (Setup and Upload deadlines on 1A inspection).

Figure 51: Missed deadlines

Deadline Errors

During the inspection process the moderator or the administrator can change a
deadline. Figure 52 displays the successful deadline change. The user after clicking on
the deadline (marked with one on the figure) will see the calendar appeared, a date
highlighted with blue show current date. When user clicks on the desired date
(marked with two on the figure) the calendar closes and the save icon appears.

65

Figure 52: Change Deadline

After user clicks on the icon it will disappear and no error message will be shown. It
means that the change was successful.

Figure 53: Select Wrong Deadline

66

If the user select incorrect deadline as it is presented in Figure 53 after pressing the
save button an error message would be shown notifying user that there a mistake
was done.

 Loading Time 5.4.

The loading time was measured for the application deployed on Heroku with Chrome
build-in developer tool. The average ping time for the Heroku website was 140ms.

The loading time for an inspection page was around 1.9s, the inspection contained
several artifacts, remarks and chat messages. The loading time graph is presented in
Figure 54. The HTML document was loaded in 0.9 seconds and during the other 0.9
second CSS, JS and image assets were loaded.

Figure 54: Loading time for inspection page

Remark upload is an important action during the inspection process, thus it is
important to ensure that the application quickly process the spreadsheet. The
response time for remark upload and subsequent inspection rendering reached 5.2
seconds for the test spreadsheet with 100 remarks. The graph with latencies is shown
in Figure 55.

Figure 55: Loading time for upload remarks

67

Campaign creation is also important action for an administrative user. Even that it
occurs relatively rarely48 in is essential to maintain adequate processing time for the
user request. Taking into account that the administrator user would like to use role
assignments file in order to make the system create inspections, assign roles and
create users if necessary. The response time graph for create campaign action is
presented in Figure 56.

Figure 56: Loading time for create campaign with role assignments file

In order to understand the system performance on real data, the special dataset was
used. The example of the spreadsheet structure is presented in Table 17. It should be
noticed that this file was used in 02264 Requirement Engineering in 2011. The
spreadsheet was used in create campaign action, thus according to the spreadsheet,
FIT had to create nine inspections, 59 new users and assign 59 roles.

Table 17: Role assignments spreadsheet example

Since it was a real data, the spreadsheet had a mistake: inspection 2B had two
authors, instead of one, therefore FIT discovered this inconsistency and one user
became an Author, the other one - didn’t. After the campaign was created a
notification message appeared as it shown in Figure 57.

48

 According to Table 8: Create Campaign Use Case

68

The latency for the create campaign action appeared to be 10.2 seconds, which may
seem a little bit too high, but can be considered as an appropriate result, since it
occurs only a few times during a semester.

The upload and processing time for an artifact with 1.8 Mb size had reached 23
seconds.

Figure 57: Error notification on role duplicate

Figure 58 demonstrates FIT performance evaluation on uploading and processing
remarks depending on a file size.

Figure 58: Remark upload performance

4.5 4.7

6.8

9.2

0

2

4

6

8

10

25 100 250 500

p
ro

ce
ss

in
t

ti
m

e
, s

Number of remarks

Remark Upload Performance

69

Considering that loading time test result may vary due to a complex combination of
factors not depending from the system such as internet connection speed, browser
version, and load on Heroku and that the application was tested on representative
data, the obtained results on the most critical actions is can be considered as
excellent, since the application is hosted in North America using free services.

70

6 Conclusion
The targets that were set by the thesis were successfully accomplished. Preliminary
research on previous works revealed a great number of drawbacks and weaknesses.
They were carefully analyzed and measures had been taken to improve in the new
application.

During system analysis phase the formal inspection process was modified to comply
with the introduction of the online support tool. The business processes were
determined and reengineered on later stage.

The system was designed with extensive usage of prototyping. The whiteboard
sketching was used during the first round of the prototyping. On the next stage of the
prototyping the user interface was implemented using Bootstrap framework. The
working prototype was created with Bootstrap and Ruby on Rails framework.

During the implementation process the application was created. FIT is based on
Model View Controller architecture, which was implemented according to modern
trends in web application development with an extensive use of most reliable and
popular frameworks, such as Bootstrap and Ruby on Rails. The system is modular and
flexible; therefore it provides great extensibility possibilities.

During the testing phase the tool was checked for possible drawbacks. It was
concluded that FIT does not suffer from the drawbacks that led predecessor system
to failure. FIT does support national character sets, it provides guidance for the
inspection participants and is equipped with communication medium. The
administrative load on privileged users lowered in great extent, due to FIT tolerance
to errors and automation in most routine tasks, such as a campaign creation or
overview on current status of multiple inspections.

The security analysis was conducted, it showed that the system is reliable and it is not
a subject to the most popular attacks on web applications. The application was
deployed on Heroku cloud platform that makes FIT easily maintainable, since
concerns related to a web server setup and maintenance are eliminated. Formal
Inspection Tool is a free open-source software product, which sources are worldwide
publicly available through GitHub, therefore other developers can use the experience
and results of this work.

The author waits with anticipation when the application is going to be used during
autumn semester in 02264 Requirements Engineering course.

71

7 Bibliography

Amies, A., Sluiman, H., Qiang, G., & Guo, N. (2012). Developing and Hosting
Applications on the Cloud. IBM Press.

Carneiro, C. J., & Al Barazi, R. (2010). Beginning Rails 3. Apress.

Ediger, B. (2008). Advanced Rails. Sebastopol: O'Relly.

Fagan, M. E. (1976). Design and Code inspection to reduce errors in program
development. IBM Systems Journal, 182-211.

Fagan, M. E. (1986, July 7). Advances in Software Inspections. IEEE Transactions on
Software Engineering, pp. 744-751.

Fowler, M. (2003). Patterns of Enterprise Application Architecture. Addison-Wesley
Professional.

Loeliger, J. (2009). Version Control with Git. O’Reilly Media.

McDonald, M., Musson, R., & Smith, R. (2007). The Practical Guide to Defect
Prevention. Microsoft Press.

McGrath, M. P. (2012). Understanding Paas. Sebastopol: O'Reilly.

MITRE Corporation. (2011, September 13). 2011 CWE/SANS Top 25 Most Dangerous
Software Errors. USA.

Petrolyte, R. (2011). FIT - an Online Inspection Support Tool. Kgs. Lyngby: DTU.

Scott, B., & Neil, T. (2009). Designing Web Interfaces. O’Reilly Media.

Störrle, H. (2012). QA3 Inspection Process Guide.

Störrle, H. (2012). Requirements Engineering.

72

A Delivery
The table below contains information regarding delivery of the project data.
Filenames are written in “quotation marks”, while directories are written without.

File or Directory Description

“readme.txt”
An explanation of the contents
of the delivery.

“MSc_Alexander_Egorov_s111888.pdf” The thesis as such (this
document), as submitted to the
IMM librarian for print.

https://aqueous-anchorage-
4810.herokuapp.com

It is important to remember
that since the project is open-
source and does not have any
budget, a free account was
used. The account assumes that
the process manager puts the
application into ‘sleep’49 if it is
not used for a while. It takes
approximately from 3 to 5
minutes to ‘wake up’ the
application and an error may be
presented, to eliminate error
the browser page should be
refreshed, e.g. by pressing F5.

Thesis

“MSc_Alexander_Egorov_s111888.docx”

Microsoft Word file user to
generate the PDF version of this
paper.

Picture Pictures included as figures

“Project_s111888.zip” The compressed development
version of the project.

Project The development version of the
project.

https://github.com/AIEg0r0v/ActualFIT FIT Github repository.

Table 18: Delivery

49

 https://devcenter.heroku.com/articles/dynos#dyno-sleeping

https://devcenter.heroku.com/articles/dynos#dyno-sleeping

73

B Glossary

Term Description

AJAX Asynchronous JavaScript and XML
AR Active Record pattern
Artifact Any kind of document, i.e. design

specification, model or part of model, code
documentation, code listings, etc.

CSRF, XSRF Cross-Site Request forgery
DBMS Database management system
Dyno Virtualized lightweight container on Heroku
ERB HTML or JS template with embedded Ruby

Fagan Inspection, formal
inspection

A process for detecting defect in software
engineering process

FIT formal inspection tool
Gem Ruby pluggable library

Heroku PaaS provider
IaaS Infrastructure as a Service
IDE Integrated development environment
Inspection, Inspection process Formal inspection process
JS JavaScript
Long-Polling Technique to obtain updates from server
MVC Model View Controller pattern
NoSQL Non relation DBMS that does not use SQL
PaaS Platform as a Service
Rack Rack is web server interface for Ruby

Rails, RoR, Ruby on Rails Web application framework based on Ruby
RDBMS Relational DBMS
Remark Comment to artifact
Slug Precompiled application on Heroku
SSE Server-Sent Events, technology used for

server push
Stack Heroku…
VCS Version control system
WebSockets Technique to obtain updates from server
XSS Cross-Site Scripting

Table 19: Glossary

74

C List of Figures
Figure 1: Development with Fagan Inspections ... 9

Figure 2: Inspection Process ... 11

Figure 3: Software Development Process (Fagan M. E., 1986) 13

Figure 4: Inspection process (Störrle, Requirements Engineering, 2012) 15

Figure 5: Evaluation of formal inspection process in utility and complexity scale
(Petrolyte, 2011) ... 16

Figure 6: FIT-1 administrator panel (Petrolyte, 2011) .. 18

Figure 7: Overview use case diagram ... 22

Figure 8: Create campaign .. 23

Figure 9: Upload artifact ... 24

Figure 10: Upload remarks ... 25

Figure 11: Inspection Process with FIT ... 27

Figure 12: Campaign creation process ... 28

Figure 13: Role assignments file parsing process ... 29

Figure 14: FIT information model overview ... 30

Figure 15: FIT information model details ... 31

Figure 16: FIT information model data types ... 32

Figure 17: Active Record Example (Fowler, 2003) ... 34

Figure 18: MVC Interaction (Fowler, 2003) .. 34

Figure 19 Model Dependency .. 36

Figure 20: Chat long-polling ... 41

Figure 21: Inspection list sketch ... 42

Figure 22: Current inspection sketch ... 43

Figure 23: Remarks table sketch .. 43

Figure 24: Panel with actions hidden (left) and displayed on mouse hover (right) 44

Figure 25: Inspection view prototype .. 44

Figure 26: Status bar prototype ... 45

Figure 27: Remarks table and artifact overview during the implemented of the
prototype .. 45

Figure 28: Artifact Action Panel rendered by default (left) and when download action
is hovered (right) .. 46

Figure 29: Inspection final design ... 46

Figure 30: Model final design ... 49

75

Figure 31: Controllers hierarchy ... 51

Figure 32: Views and asset usage ... 53

Figure 33: Chat message protection from mass assignment misuse 55

Figure 34: HTML code with authenticity token of send chat message form 55

Figure 35: XSS vulnerability test, the left part is conducted by Attila Sukosd, where
the right one is done by Alexander Egorov. Alert message is not displayed, since the
attack was not successful. .. 56

Figure 36: FIT deployment on Heroku .. 57

Figure 37: The application creation on Heroku .. 58

Figure 38: Git remote repository list of FIT application ... 58

Figure 39: The application deployment on Heroku ... 58

Figure 40: Heroku open command to start FIT application in web browser 58

Figure 41: List of Rails gems ... 59

Figure 42: User profile before change (left) and after (right) 60

Figure 43: Inspections list ... 60

Figure 44: Inspection Participants page ... 61

Figure 45: Author perspective on the inspection process ... 61

Figure 46: Moderator perspective on the inspection page ... 62

Figure 47: Inspection edit ... 62

Figure 48: Create and upload pages combined.. 63

Figure 49: Inspection view on mobile device ... 63

Figure 50: Inspection with staffing problems ... 64

Figure 51: Missed deadlines ... 64

Figure 52: Change Deadline.. 65

Figure 53: Select Wrong Deadline .. 65

Figure 54: Loading time for inspection page .. 66

Figure 55: Loading time for upload remarks .. 66

Figure 56: Loading time for create campaign with role assignments file 67

Figure 57: Error notification on role duplicate ... 68

Figure 58: Remark upload performance .. 68

76

D List of Tables
Table 1: Software defects from the user's perspective (McDonald, Musson, & Smith,
2007) ... 8

Table 2: Inspection Roles .. 10

Table 3: Inspection process and rate of progress (Fagan M. E., 1976) 12

Table 4: Roles and responsibilities in the inspection process (Störrle, QA3 Inspection
Process Guide, 2012) .. 16

Table 5: FIT-1 database user table (Petrolyte, 2011) ... 17

Table 6: Previous system drawbacks .. 18

Table 7: Use case overview .. 21

Table 8: Create Campaign Use Case ... 24

Table 9: Upload artifact use case ... 24

Table 10: Upload remarks use case .. 25

Table 11: FIT usage scenario .. 26

Table 12: Controller responsibilities .. 35

Table 13: Comparison of custom field implementation techniques in Rails model 38

Table 14: Chat update technologies comparison ... 39

Table 15: Methods with SQL injection vulnerability and prevention measures 54

Table 16: Heroku terminology overview .. 57

Table 17: Role assignments spreadsheet example .. 67

Table 18: Delivery ... 72

Table 19: Glossary .. 73

