Tool Support for
Inspections

Alexander Egorov

DIU

Kongens Lyngby, 2013
IMM-MSc-2013-95

Technical University of Denmark

Department of Applied Mathematics and Computer Science

Building 303B, Matematiktorvet, DK-2800 Kongens Lyngby, Denmark
Tel.: +45 45253031, Fax: + 45 45881399

reception@compute.dtu.dk

www.compute.dtu.dk IMM-MSc-2013-95

Summary

Nowadays software systems play an important role in a human life, since they are
present almost in every aspect of it. Software systems surround us and they are
everywhere: from tiny little devices such as thermometers and sensors to airplanes
and production factories. Unfortunately, these software systems are not completely
free from defects. Defect can cause a small embarrassment or a large scale disaster.
However there are techniques that can help software developers to find defects, and
formal inspection is one of those techniques. The technique can be applied to any
development document at any stage of the development process.

This thesis is dealing with a modified version of formal inspection process that suits
better for academic purposes. The inspection process is considered to be rather
complex, it involves many interactions and paper work, which distracts participants
from defect finding. In order to make the process more transparent an online support
tool should be created. Due to software system introduction to the inspection
process, the process was modified in order to fit better to the new conditions.
Background analysis of previous works was conducted and their drawbacks were
analyzed, concluding that a new tool should be implemented using a different
approach.

The support tool received name “FIT” that stands for “Formal Inspection Tool”. Since
the tool is a web based application it is possible to make a clear separation between a
front-end and back-end components. Bootstrap framework was user to produce the
front-end component, Ruby on Rails web application framework was used in the
back-end component. The application was deployed on Heroku that is PaaS provider.
FIT is a free open-source software product, which sources are worldwide publicly
available through GitHub.

The security issues of a web application represent a great concern, thus the
application was analyzed on possible vulnerabilities and security breaches. The
analysis showed that FIT is not a subject to most popular attacks.

Preface

This thesis was prepared at the Institute for Applied Mathematics, Technical
University of Denmark in order to acquire the MSc degree in Computer Science. This
thesis was prepared between 5th of February and 30th of August under the
supervision of Associate Professor Dr. Harald Storrle. This thesis is worth 35 ECTS
credit points.

The thesis deals with subject of formal inspections. The outcome of the project is a
fully functional web application that is used in the process of formal inspections
within academic environment. Preliminary research, design analysis, prototyping,
detailed design and implementation, testing and deployment of this application is
performed and described in this thesis. Chapter 1 describes theoretical background
for the application. Chapter 2 presents the analysis of the problem with regards to
the web application. Chapter 3 focuses on the application design and describes
change decisions that was made during the project. The implementation of the
application is presented in Chapter 4. The results of the implementation and testing
results are described in Chapter 5. Conclusion section focuses on possible follow-up
on the application. The content that is delivered with the thesis is described in
Appendix A. Appendix B describes terms and abbreviations used in the thesis.
Appendices C and D contain accordingly lists of figures and tables that were
presented in this thesis.

Lyngby, 30 August 2013

Alexander Egorov

Acknowledgements

| would like to thank Harald Storrle for his great supervision, not to mention that it
was a pleasure for me to work with him during the project.

| am glad to give exceptional thanks to Andrii Sereda, Anton Makarov, and Vlad
Acretoaie for providing a shoulder to lean on during difficult moments and giving
useful advices when it was needed.

I would like to say special thanks to Attila Sukosd, who helped me with security
analysis.

And of course | cannot express the amount of acknowledgement to my parents, who
always motivate me to push forward.

Contents

YU 0] 0 0=] Y25 PPN 3
=) £ 1P PR PRSPPI 4
F N QYo AV TAL=To F o= o 0 =T o 5
A = 7= Yol =4 o 1V] o Vo FSS PP 8
1.1, FOrmal INSPECLION cooueeiiieiciieee et e e e s saeea e s 8
INSPECLION ROIES .oveiiiiiiee ettt s e e e e s abae e s s eaaeeeesnes 10
INSPECLION PrOCESS ... i i 10

[a T o=Tord o o I =TT Y=Y i1 £ USRS 13

1.2, Fagan-style INSPECION ..o e e e e e e e 13
1.3. Need for TOOI SUPPOIt ...ccceeiiieeecieee ettt err e e e e e e 16
1.4, Previous WOIK (FIT=1) ..ueeeieiieeeeiiiiee ettt ee e e e e e e e e e s 17
1.5, The NEW SYSTEM .eiiiiiiiee ettt e s e e e s aae e e e e naaees 18

2 SYSEEM ANQIYSIS coeeieieeeeee e e e e e aaeaae s 20
2.0, SYSTEM USEIS. iiiiiiiiiiiiiiiiiitiieeeetteteeeeeetee ettt eeeeeee e eeee ettt ee e e e resesesererareresereseaesenes 20
2.2, USE CASES .uuriiiiiiiiiiiiiiiiiti it e e 20
USEr Case OVEIVIEW......uiiiiiiiiiiiiiiiiiiee ittt e st e e s rae e s eaae e e s 20
Highlights of IMportant Use Casesccuueeeeeiiieeeiciiee e et e ecree e e ecvee e e e enneee e 23

B T U LY V=LY ol o = Lo TP 25
2.4. Inspection Process With FITccoiciiiiiiiiiie e eeieee e e e sseee e 27
2.5. Business Processes and BUSiNeSs LOZIC ...ccccuvrvereeeeeeieiiiinrieeeee e eeeirneeeeeeee e 28
2.6. Information MOdelcocoeoiiiiiiie e 30
Y =T 0 1 W 1= =4 o PP PP PP PPPPPPPPPPPPPPPPRE 33
C 78 B 1'=Yol oY To] Uo7 =4V of s Vo ol ISP 33
I D 1= Ty 1= o T o | =] o o PP 33
ACTIVE RECOTT...c ittt s s 33
Model View CONLIOIIEreeiiiiieieeeeeete e 34

3.3, ArCRITECTUNE . e 35
3.4, Chat Capabilitiesccccorieeieei e e 39
3.5, USEr INTErface .coueeeieeeeeeee e e 42
SKETCH e 42

[oY (o] 1V o 1 U UPPPPPTPPRRRN 43
WOTKING PrOtOtYPE cuueiiieee ettt e e e e e rbrre e e e e e e e e nnraaaeeas 45

4 System IMplementation ... 47
g I = To] o o Yo [o -4V AR URUR RO PPP 47

O O ™ > N o

RUDBY ON RIS 1eiiiiiiiee ettt e e e s e e e s s saaaeeesans 47

VErsion CONTIOL......eiiiiiiiie ettt e s sane e 48
Integrated Development ENVIrONMENtooceeiiiiiiiee e 48
4.2, COUR SEIUCTUIE ..ottt s 49
MOTEIS .. e 49
CONTIOIIEIS .. 50
VIBWS ettt e e s e e e s e a e e e e e e s e sennnee 52
4.3, SECUIILY ANAIYSIS ceoiiiieieieiiie ettt e s st e e e nraae e 53
] O] T4 =Tel o] o L3P PP PP PP PP P PP PP P PPPPPPPPPPPPPPPPPPR 54
Mass Assignment Misuse VUINerability......cccceeeiiiiieeiiniiee e 54
Cross-Site REQUEST FOIZEIY ..uuvuiiiiiiiiiiiiiiiiiuiiiuiereeerrrrrrrereesreeerresrreee. 55
CrOSS-Site SCIIPTING . uuviviviiiiiiiiiiiiitieteierererrrrrerererrrr e 55
S 0 T o1 03] o 1T o | SRR 56
HEIOKU ..ttt sttt e e st e st e e an e e s eanee s 56
FIT Deployment 0N HEIOKUcccuiiieiiiiieeeciieee ettt see e e e e s sieeee e 57
4.5. Libraries and COMPONENTS......ccuiiiiiiiiiieeciiee e ceciree e e s e e e e e sareea s 59
System Operation and TStccuiieeiiieiee et e e e e 60
5.1. Operation from User Perspective......ccccccueeeeeiiieeeieiieee et eeveee e 60
5.2. Operation from Administrator Perspective.........cccccveeeeecieeeecciieeececieee e 62
TS TR =T | =SSP 63
Browser Compatibilityccuuveeeeeiei e 63
LR o=t Lo T =1 o 3RS 64
DEAAIING EFTOIS ...t s 64
T S o Y=Y [oY= 1 o1 TSP 66
(0o Y ol [U1] o o FPU SRR 70
27 oY [ToT=4 =T o1 1 V2SR 71
D= 1LYl o USSP 72
(€111 Y- | o 73
LISt OF FIUIES..uuiiiiiee ettt e e e e e e s e e e e e e e s esnntraneeeeaeeeas 74
[o) B - | o] 1= USRS 76

1 Background

Very often software is shipped with defects. A software defect is a deficiency in a
software product that causes it to preform unexpectedly, while from user perspective
a defect is a cause for the software not to meet user’s expectation (McDonald,
Musson, & Smith, 2007). An example of user’s perspective on software defects is
presented in Table 1.

User Expectation Software defect

The software will help in accomplishing a Desired functionality is missing.
task.

The software will respond quickly. The software responds too slowly
from the user’s perspective.

The software is secure from hackers. Hackers are able to exploit software
vulnerabilities and attack the
system.

A fatal error message is shown in case of No error is presented, and the
inappropriate actions or system software freezes.
malfunction.

Software defects can cause user’s dissatisfaction and may even lead to project failure
if the amount of defects is too high. It is a well-known fact that the cost of error
elimination in software development increases as project progress. Clearly to reduce
overall cost of the project, it is vital to make an attempt of finding and fixing errors as
early as possible.

There are several techniques designed for finding defects and improving software
quality during software development process. Formal inspection (often referred as
Fagan inspection) is one of those techniques. During 02264 Requirement Engineering
course the author had a possibility to participate in two formal inspections.

1.1. Formal Inspection

The software inspection process was created for purposes of both improving
software quality and increasing productivity by M. Fagan in 1972. An inspection is a
formal, efficient and economical method of locating errors in both design and code
(Fagan M. E., 1976). The development process with two inspections is demonstrated
on Figure 1.

e (o o x|
_salyun S (21 g uony 1~ .

ipanosal
210113

Nd 0E8 £ L/9 LIS | S1ER UONEINPON
Nd LB ELatla
A010f3 Jepuexaly Joyiny

alEp UoNEaID)

suopaadsu) yumuawdoaaad| swel welleq

q e ubseqg |
Soh (1) } uopaadsu) ubisag T\) T.

ihanosal
1013

J0M
ou U_ 24

? sUozadsU] yuam uswdoEasg ﬁ] suonoadsu) s awdoaaag h__:_uuu_

Figure 1: Development with Fagan Inspections

The inspection team consists of inspection participants that are usually programmers
who are chosen form the project involved in the inspection. There are several roles to
be played by inspection participants during inspection process. The roles are
presented in Table 2.

Role Description

Moderator The moderator is the key person for a successful
inspection. It is not necessary for a person playing the
moderator role to be a technical expert on the project
being inspected, but he must be qualified programmer. It is
strongly recommended that the moderator should not
originate from the project that is subject to inspection,
therefore on the grounds of maintaining objectivity and
increasing integrity of the inspection the moderator should
be picked from an unrelated project (Fagan M. E., 1976).
Managing the inspection team and guiding the inspection
direction are the major responsibilities of the moderator, in
consideration of that the person playing the role must have
a leadership qualities such as personal sensitivity, tact and
passion. In order to produce synergistic effect he should
utilize the strength of team members. The moderator is
responsible for scheduling inspection stages, reporting on
the results of the inspection and follow-up on rework.
Briefly trained moderator produce the best results (Fagan
M. E., 1976).

Designer (Author) The inspection participant is responsible for producing the
program design.

Coder/Implementer The Coder is implementing the design in code.

(Author)

Tester The programmer responsible for writing and/or executing
test cases or otherwise testing the product of designer and
coder.

The inspection process consists of five stages: Overview, Preparation,
Inspection, Rework and Follow-up that are demonstrated in Figure 2.

The first stage called Overview. The whole inspection team participates in this
stage of the inspection process. During the first inspection (l;) the designer describes
the overall idea behind the inspected design and provides the rest of the team with
appropriate documentation.

The next stage — Preparation - is performed individually. Inspection participants
read up the documents provided by the author on the previous stage in order to
understand the design, its intent and logic. The most discernible errors are found
during the preparation stage.

10

Wd v0:5 £ 1L/0E/3 | 21ER UOREINPOW

Wd L5°F £1L/0E/S S1ER UDRESID

A0loB3 Japuexaly loyiny

ssadnld uonaadsu) (ewlod| aweu welfeiq

sah

—4 \WT_.. dn-mojo4 T_ yiomay T_ uonaadsul T_ uoneedaig T_ MaIAIaND H £ .
é

paylomal
s =

? 5522014 uonoadsu) euuo ﬁ_]ssa00.4 uonoadsul Euuo b_______vum\

Figure 2: Inspection Process

11

The first stage called Overview. The whole inspection team participates in this
stage of the inspection process. During the first inspection (I;) the designer describes
the overall idea behind the inspected design and provides the rest of the team with
appropriate documentation.

The next stage — Preparation - is performed individually. Inspection participants
read up the documents provided by the author on the previous stage in order to
understand the design, its intent and logic. The most discernible errors are found
during the preparation stage.

On the Inspection stage the whole team is gathered. The moderator chooses a
“reader” (typically the coder) that will describe how he will implement the design.
The reader explains his vision on the design described by the designer. The objective
of the Inspection stage is to find errors. The error finding is actually done during the
“readers” discourse (Fagan M. E., 1976). Fagan recommend limiting the inspection
meetings to two hours, due to the fading in error detection efficiency. (Fagan M. E.,
1986). The moderator should write a report no later than one day after the stage
conclusion where he states all errors or problems.

During the Rework stage all errors or problems mentioned at the inspection report
should be resolved by the designer or coder.

It is crucial that at the Fol1low—-up stage every issue is addressed. The moderator is
responsible for ensuring all issues discovered during the inspection are resolved.
Reinspection should be carried out in case of more than five percent of the materials
has been reworked.

Process operations Rate of progressl, loc/hr.? Objectives of the
Design (I1) Code (1,) operation
Overview 500 not necessary Communication,
education
Preparation 100 125 Education
Inspection 130 150 Find errors
Rework 20 hrs./K.NCSS® 16 hrs./K.NCSS Rework and fix error

found by inspection

Follow-up - - Ensure that all errors,
problems and concerns
have been resolved

! According to M. Fagan the exemplified rates are conservative and applied to systems programming,
while comparable rates for applications programming are much higher

? Lines of code per hour

* 1000 Non-Commentary Source Statements

12

Purging error from the project results in the immediate improvement in productivity
(Fagan M. E., 1976). Observation of sample of software developers proposed that
experience gained from inspections led to reduction in defects inserted in the design
and code of systems created later during the same project”.

Studies conducted by M. E. Fagan showed that the cost of rework on errors as a
fraction of overall project cost is significantly higher that for the projects were
inspections were not used in comparison with the projects were inspections were
conducted (Fagan M. E., 1976).

With and Without Formal Inspections:
Development models for people,
A resources and schedule

Without
Inspections

S With N
- Inspections

People Resource
Planning
Requirements

-+ Ship »

Design —-‘-— Coding —I-‘-l— Testing ——— |

Fagan, 1986 Schedule

The main benefits from conducting inspections are defect reduction, defect
prevention and cost improvement (cost of inspections is included in the project cost)
(Fagan M. E., 1986). Fagan estimates all design and code inspections cost to be
around 15 percent of the project cost.

1.2. Fagan-style Inspection

An adaptation of Fagan inspections for academic usage was proposed by associate
professor H. Storrle. Storrle introduced new terminology to the inspection process
and modified rules of the inspection. The Fagan-style inspection is supposed to be

* IBM Technical Newsletter GN20-3814, Base Publication GG20-2000-0, Aug. 15, 1978
13

conducted on a project-oriented course where a project is conducted by a group of
students. Each group participates in an inspection process presenting their project to
other group.

An artifact is a piece of documentation, code, model, diagram or any file that is
intended for the inspection. A campaign is a group of individual inspections that
are conducted simultaneously for all groups participating in the course.

The rules of inspection changed in the way suitable for an academic purpose. There
are five (six) possible roles that can be taken during the inspection process: author,
moderator, inspector, scribe, admin, and supervisor. An inspection
team should consist of three to seven members one of which must be the moderator
and another one the author (Storrle, QA3 Inspection Process Guide, 2012).

An author is a person that represents a group whose project is subject to the
inspection. Obviously an author should originate from the same group that produced
artifacts that are inspected. The moderator role is kept almost intact and well
coincide with Fagan’s descriptions. Another role introduced is an inspector, who is
responsible for providing a feedback on a given artifact. The scribe takes notes during
the inspection meeting; typically this role is carried on by the moderator. The
moderator and the inspectors should originate from different group in order to
reduce ambiguity and provide an independent unbiased point of view on the artifact
being inspected. Figure 4 shows the inspection process of Fagan-style inspection.

14

Ingpection team
Moderator Author Inspectors Scribe
s l
£ Guidelines
™ Flam Inspection
]
(=1
E Fropare for
L Inspection
J |
£ L L
% [Read Artifact .ﬂ.laud] [Inspect Artifact [Log Defects]
5 []
E L Inzpection Log
w1
=
Prioritize Defects
Determine Rework
=
o
E_ Sign OFf Rewaork }—4']
=
z
=
©
T Update Inspection
Statistics

Figure 4: Inspection process (Storrle, Requirements Engineering, 2012)

The admin role is taken by teacher or teacher assistants; the role includes overall
supervision of an inspection process. The admin provides help and assistance for the
inspection team participants, assigns roles and aggregates the results of the process.
Table 4 demonstrates compatibility of roles and their responsibilities.

15

Responsibilities Compatibility
Role
Tasks Forms to fill M| S |A|I
* Organize inspection * Inspection Process Summary
¢ Collect preparation ® [nspection Preparation Summary
Moderator | ® Lead meeting ¢ Additional Rework Assignments v ix|v
¢ Determine rework
¢ Follow up on rework
* Sign off process steps
*¢ Compile and consolidate ® Inspection Preparation Summary
inspectors’ comments e Additional Rework Assignments
Scribe * Take notes during inspection ¥ X | v
meeting
¢ Support moderator, as assigned by
moderator
* Prepare and make available none
inspection artifact
* Presentinspection artifact in
Author meeting x| X v
* Answer questions to inspectors
¢ Forward inspection results to co-
authors (if any)
* Inspect artifact as meeting ® Individual Inspection Preparation
preparation e Additional Comments
Inspector | o Submit results to moderator IV X
¢ Explain and elaborate comments
during inspection

In what follows, ‘Fagan-style inspection’ process is assumed, when an ‘inspection’,

‘inspection process’ or a ‘formal inspectio

1.3. Need for Tool Support

n’ is mentioned.

Figure 5 demonstrate the results of evaluation of formal inspection process.

Fl useful

L 1__1__1
]]]]]]
| | | | | |
I et i R Ry B
| | | | | |
1

Frcompicfisd [T TTTTTTTT

~__4;__J__J;___i___i___i__ i

|
|
1
|
|
1
|
|
1
|
|
1
|
|
|
|
|
|
|
|
|

|
|
d — -
| | | | | |
| | | | | |

|
|
|
|
N R O N I B
|

- AT AT
| | | |

| | | | | | .|

|
J J J J J J
| | | | | |
| | | | | |
T T T
| | | | | |
T T
L——L__L__l__1__1__/|
| | | | | |
| | | | | |
TrT T T T T T T T T T T T T T
| | | | | |
Sy R SR S S B
| | | | | |
[I I R IO R
r T T T T T
| | | | | |

| | | | | | |
| | | | | | |
L R e I I |
| | | | | | |
T T T
_—d L]
| | | | | | |
| | | | | | |
L D A R I B |

| | |
A R e I I

“F——t——t——t——t——t——A
[e
[N

16

- === ————d————————

I' Fluseless | | | | | |

. @
‘ Fl nn*:umplll'cated

The evaluation was conducted among 02264 Requirement Engineering course
listeners who participated in formal inspections. The evaluation showed that all
participants recognize the inspection process as a useful technique, while half of the
polled students consider the inspection process complicated.

As it is possible to conclude from the evaluation, there should be a support tool for
the inspection process. In order to reduce the process complexity, support
distributed work, and provide better control on the inspection process for a
supervisor, a support tool should be created.

1.4. Previous work (FIT-1)

The previous work was conducted in 2011 (Petrolyte, 2011). The support tool that
was created suffered from a group of major drawbacks.

During the 02264 Requirements Engineering course the author of the thesis had
experience with a previous version of a Formal Inspection Tool. The system handicaps
became obvious from the very first moment after the system was presented to the
course listeners. The author experienced a problem with logging in to the system.
The problem was solved in an extravagant way; the author’s teammate on the course
project, Attila Sukosd, appeared to be a very talented programmer. He was able to
locate the error and exploit the tool vulnerabilities in order to gain privileged access
to the system in 10 minutes. After another couple of minutes the problem was fixed
and the author could log in to the system. The previous system was a subject to a
great deal of vulnerabilities, such as SQL injection, JS injection and HTML injection.
The input was not filtered at all and uploaded files were stored in a publicly
accessible location. It was also possible to execute the uploaded script. Table 5 shows
that user passwords were stored in a plain text, which is a great security threat
(MITRE Corporation, 2011). It is essential to notice, that user passwords were also
exposed to the administrator of the system as it is shown in Figure 6.

user id first name last name student id e mail username password
1 admin admin adrmin admini@admin.dk admin admin
2 Hita Petralyte sO90657 090657 @ student dtu.dk rita_petrolyte 12345
3 FRobetas Fetralis SOS0ESE so0ESEER student. diu.dk robertas_petrolis 543521
g Raimonda Lukosiunaite s090B55 s090659 @ student diu.dk raimanda_lukosiunaite. abcde
9 Danute Apulskyte s090660 s090660E student. diu.dk danute_petraliens adeba
10 Tarmas Tomasauzkas cO94534 s094534@E student diu dk tomas_tomasauskas 11223
11 Lina Linkaite 5093595 s093598G student dtu.dk lina_linkaite 22334
12 Mantas Ionkunas sO92312 s34 student diu.dk mantas_monkunas 33445
31 Ruta Rutkauskaite s0907734 =0907734@siudent dtu.dk nta_rutkauskaite 55667

The design decisions were rather controversial, as it may be seen from the Figure 6
while there is plenty of unused horizontal space on the page, an overflow occurs on
all cells in e-mail column and many other cells where long text string is present.

17

Figure 6: FIT-1 administrator panel (Petrolyte, 2011)

The other system handicap was an absence of non-ASCII characters support, in other
words it was impossible to use national keyboard layouts (e.g. Chinese, Russian) or
special characters.

The absence of communication medium for the inspection participants may also be
considered as a major drawback of the system.

Looking at the system from administrator’s point of view shown in Figure 6, it is
possible to notice the lack of possibility for the administrator to have an overview on
several inspection activities.

The summary of system handicaps is presented in Table 6.

Drawback

Absence of communication medium
Vulnerability to SQL injections
Vulnerability to Cross-Site Scripting
Artifacts stored in public folder
Passwords stored in plain text

Absence of non-ASCIl character support

Absence of administrator tools
Table 6: Previous system drawbacks

1.5. The New System

Considering the drawback of the previous system it was decided to produce a
completely new system that would utilize different principles, i.e. a modern web
application framework should be involved into the development process, the system
should be secure and modular.

In order to provide a quality services for the inspection participants the drawback of
the previous system should be precluded. Hence the system should:

e be written in one of well acknowledged frameworks (in order to reduce
overhead and do not repeat on what has been used)
e support non-ASCll characters

18

not be a subject for simple attacks

provide a communication medium for inspection participants
have a support of administrative function

provide guidance for the system users

19

2 System Analysis

2.1. System Users

In order to provide a system that satisfies user expectations it is vital to understand
the target audience of the system. The system is supposed to implement Fagan-Style
inspection process that is applied at the academic institutions, therefore students,
professors and teacher assistants are representative auditory of the system.

Since future system users are determined it is important to understand what roles
they would play during system operation. The determination can be carried out
without any hesitation, on grounds of Fagan-Style inspection description. While
students will utilize the system as ordinary users with no special privileges and
restricted rights, i.e. they would have such roles as moderator, inspector, and author.
Teaching staff will have full access to the system with their admin role. Considering
that scribe role in most of the times is combined with the moderator role even in
paper-based version it was decided to exclude scribe role from the inspection process
in support tool.

Taking into the account the 02264 Requirements Engineering course® participants as
a base for the system user estimation, the typical user would have knowledge in
programming languages, understand basic concepts of software engineering, and
have a basic knowledge of a modeling language, such as UML®. Users with full-
fledged access to the system will have more advanced knowledge and skills than
ordinary users.

2.2. Use Cases

The use cases provide the short summary on the required system features. Table 7
shows use cases for FIT system.

Use case Description

Create Campaign The administrator creates a campaign. Is should be also
possible to user a spreadsheet with staffing information in
order to create underlying inspections and grant roles to

users.
Edit Campaign The administrator can edit the campaign, change name,
delete campaign or add new inspection to campaign.
Delete Campaign The administrator can delete the campaign with all
inspections inside the campaign.
Write Message Any system user can write a message in the inspection chat.
Create User Anyone can create a new profile in the system.
Edit User Non privileged user can edit his profile, while the admin can

® http://www.kurser.dtu.dk/02264.aspx?menulanguage=en-GB

® The estimation of user’s knowledge and skills is taken from 02264 Requirements Engineering course
prerequisites.

20

http://www.kurser.dtu.dk/02264.aspx?menulanguage=en-GB

Delete User
Upload Artifact
Delete Artifact
Edit Artifact
Download Artifact
Create Remark
Upload Remarks
Delete Remark

Download Remarks

Create Inspection

Edit Inspection

Delete Inspection

Add Participant

Delete Participant
Change Deadlines

Change
Status

Inspection

edit any user profile.

User account can be deleted by the administrator.

The author uploads the artifact.

The moderator can delete the artifact if it is consideret
inappropriate. The author can delete the artifact he
uploaded.

The author can change displayed name, comment, and
content of the artifact he uploaded.

Any inspection participant can download the artifact.

The inspector or the moderator can create a remark.

The inspector or the moderator can upload remarks from a
spreadsheet.

The inspector can delete remarks that he created, when the
moderator can delete any remarks.

Any inspection participant can download all remarks for the
inspection as file.

Inspection can be created by the admin only, during the
creation process the admin can specify to what campaign
the inspection would belong

Inspection can be edited by the admin, e.g. he can add or
remove participants from the inspection.

The inspection can be deleted by the administrator only.
This assumes that all uploaded artifacts and created
remarks will be deleted.

The admin can add participant to the inspection with
specified role.

The admin can delete participant from the inspection.
Inspection deadline can be changed by the moderator. The
deadline date of an inspection stage should be within the
interval of neighboring inspection stages deadline dates.
The inspection status can be change by the moderator.

Use case diagram for overview is presented in Figure 7.

21

Wd 655 £ HDEMS

2jep UOREIHPON

Nd LE8 EWELE

alep uonealn

aolofig xa)y

oy

MEIBAD

alUEU WeIBEIQ

unupy

ubedwe? up3 % 195 919124 m.l‘hum_._ up3
_ufledwes ajajaqg s1as(1oy,

e —a swalshsgns:

ubedwes aea1n

—— — afiessaly aIM

subedwesy T—— —
zwalsisgns: rUD
_m zalsisgns:
_ ey peoydn Au\wﬁ.\u.__td 22124 ——
RElE %ﬂ peojumoq L—]—
SNy 10yaadsu]
= zasisgns:
I-|-||||I|III-III||
_ S¥leway peojumoq _ Mieway ajal2q syIeway peodn |quu,ﬁ_ uEEUﬂ
sHIeway
[E “lz]shsgnss
wedianied a3ajaq wedpnied ppy saunpeaq abuey) 1oje1apo
CE = = S N = —
smes
.fr_m.m_Wun_m:_ uWWW . mm«uunw:_m_“m_ﬁ _m.w_mun_m:_ umulhlum uonadsuy ua:u_._u.\\
— ||ll|l\
suonaladsu|
_m “Washsgns:
114
[mainazang @ lasen asn abeyaed

Figure 7: Overview use case diagram

22

The most important and complex use cases are Create Campaign, Upload
Artifact,and Upload Remarks. They are described in detail below.

package Use Case| @Crea’(e Campaign U

Diagram name | Create Campaign

‘Admin

Author Alex Egorov
BM5M3 346 PM

8/15/13 5:58 PM

Creation date

Modification date

|

FIT

\ Create Campaigr_l::'/'

e

hS

zincludes # zincludes
s ~

~
-

.
3

k (zreate Inspectio[lf') ':-.,__ Create User __F_/

UcC-1 Create Campaign

Description An administrator creates a campaign
Actors Administrator

Triggers ‘Create Campaign’ URL visited

Preconditions
Regular Scenario

Exceptional
Scenario

Results

Frequency

The administrator is authenticated

1) The administrator types a campaign name and uploads a
spreadsheet file with role assignments.

2) The administrator inputs a default deadlines for

inspections.

FIT ensures that the entered information is valid, creates a

campaign, then parses the spreadsheet and creates

inspections and assigns roles to users.

4) The campaign view with a list of the campaign inspections

is presented to the administrator.

Entered data is wrong, error is displayed.

No spreadsheet was presented, an empty campaign is

created.

3) The role assignments file contains missing or conflicting
roles for several inspection participants, then error is
displayed and corresponding inspection highlighted with
red.

New campaign with inspections is created. Roles to the

participants are assigned

2/4/6 (min/avg/max)’ pr. semester

3)

1)
2)

7 Minimal frequency corresponds to two campaigns during one course, like 02264 Requirements

Engineering

23

package Use Case[@ Upload Artifact]J

Diagram name | Upload Artifact

Author

Author Alex Egorov
Creation date 8M5M13 346 PM

Modification date | B/15/13 5:58 PM

FIT A

~~ Upload Artifact JJ

ucC-2 Upload Artifact

Description An author uploads artifact to an inspection
Actors Author

Triggers ‘Upload Artifact” URL visited

Parameters -

Preconditions

Regular Scenario

The author is authenticated and signed up for the

inspection

1) The author visits an inspection where he wants to
upload an artifact.

2) The author clicks to ‘Upload Artifact’ button, selects a
file he wants to upload and then clicks ‘Upload’ button.

3) FIT ensures that the file size is within established limits.

4) Inspection view that contains newly created artifact is
presented to the author.

Exceptional 1) Filename contains dangerous symbols; the symbols are
Scenario changed with safe ones.
2) No file was presented, an error is displayed.
Results New artifact is created
Frequency 1/6/15 (min/avg/max) pr. inspection
Comments -

24

package Use Case| @Upload Remarks]J

Diagram name |Upload Remarks

Authaor Alex Egorov
Creation date 8/16/13 3:45 FPM
Modification date | 811513 6:11 PM

I |

h FIT A

Inspec‘tur\\\

.;H__Upload Rﬂmark_s_f_)

/ einciudes

™\ — — —_—
: =
Moderator
uc-3 Upload Remarks
Description An inspector or a moderator uploads remarks to an
inspection
Actors Inspector, Moderator
Triggers ‘Upload Remarks’ URL visited
Parameters -
Preconditions The participant is authenticated and signed up for the
inspection
Regular Scenario 1) The participant visits the inspection where he wants to
upload remarks.
2) The participant clicks to ‘Upload Remarks’ button, selects
a file he wants to upload and then clicks ‘Upload’ button.
3) FIT ensures that the file has an appropriate format.
4) Inspection view that contains newly uploaded remarks is
presented to the participant.
Exceptional 1) Several remarks have incorrect formatting and/or
Scenario missing attributes and error is displayed.
2) No or unsupported file was presented, an error is
displayed.
Results Remarks from the file are appended to the Remarks table
Frequency 0/2/15 (min/avg/max) pr. participant
Comments -
2.3. Usage Scenario

In the interest of providing better machine-user interaction it is crucial to understand
how the system is going to be used. Usage scenario is one of many tools that help to
build up this understanding. There are a few possible ways how usage scenarios can

25

be implemented. It can be done in form of a group of simple scenarios or as one
complex one, showing many possible user mistakes and their resolution. The last one
approach reveals the complexity of the inspection process, hence it seems more
beneficial. The usage scenario is presented in Table 11.

Role

Carried out Activities

admin

moderator

inspector

author

1) Administrator creates a campaign from a spreadsheet that

contains staffing information, that does the following:

Grants roles to users according to staffing information (if user is
not found, then it will be created).

Creates inspections, belonging to the campaign.

2) Administrator adds a new inspection participant that was not

mentioned in the excel file from user lists.

3) Administrator removes incorrect participant from the inspection

process.

4) Administrator reassigns roles in the inspection due to change in

1)

1)
2)

3)
4)

participants.

After establishing inspection guidelines and deadline, changes
status of inspection to ‘upload’.

Looks at uploaded files:

Finds that one artifact is inappropriate.

Deletes inappropriate content from the inspection.

Writes chat message notifying author that the artifact will not be
inspected and therefore it was deleted.

Changes status of inspection to ‘prepare’.

Looks at remarks that were made.

Notices a duplicate in remarks.

Deletes the duplicates.

Uploads remarks from a spreadsheet.

Changes status of inspection to ‘rework’.

Ensures that every issue is addressed in reloaded artifacts and
changes the status of inspection to ‘finished’.

Downloads artifacts.

Screens artifacts and notices that one file is not an artifact
expected. Writes a message in chat in order to notify the author.
Downloads corrected artifact.

Writes remarks considering inspected documents.

Uploads several artifacts.

e After an artifact uploaded a participant finds a mistake that
wrong file was uploaded and writes a message in chat. Author
edits the artifact and changes file to a proper one.

Deletes one artifact that he thinks should not be inspected.

Writes couple of messages to chat, making comments to what he

uploaded.

Refreshes required documents during rework.

26

2.4. Inspection Process with FIT

Business process reengineering is inevitable after an introduction of a new support
system and formal inspection is not an exception. The participant’s point of view on
the inspection process with FIT support is presented in Figure 11. It is important to
notice that in comparison with initial inspection process (shown in Figure 4) the
inspection process stages were reconsidered.

((activity Campsign[|5 Inspection]

Inspection Status

Moderator Inspector

Establish |

| Deadines |

! Upload Artifact | |

| |

| AN Appropriate |

Uploadt Artifact?

! Delete Artifact | No ™ !

| ™~ |

! Yes [Download !

| S Ariad |

| |

! (‘Inspect Artifact | :
|

| |

! Delete Remarks: & !

{) ~\
| AN I
| [preeee [
Upload Create
| | Remarks ‘ | Remarks | |
No

| |

| |

| AN |

<

| Accepted? |

| Evaliate | |

Remarks ¢ |

|

|

|

|

L B S |

Lead Meeting Read Artifact Answer Ask Questions Elaborate !

(\) == (PR) ‘

- i o Rl

|

|

3 [

Assign Rework ||

Accepted?

PAN

Evaluate
Rework

Mark
Inspection as
Finished

Diagram name
Authar

Inspection

Alex Egorov
8M913 9:51 PM
8MOM311:03PM

J

Creation date

Modification date

Figure 11: Inspection Process with FIT

There are seven inspection stages in the new process. Setup status is assigned
straight after the inspection process was initialized by an administrator. After the
moderator established guidelines and reconsidered the default deadlines, Upload
inspection stage is reached. During the Upload stage the author uploads artifacts and
the moderator checks if they satisfy the requirements, afterwards the Prepare
inspection status is established. The inspector downloads and inspects uploaded
artifacts, later he either uploads his remarks from a spreadsheet file or creates

27

remarks directly. The moderator ensures that there are acceptable, otherwise he
deletes inappropriate content. During the inspection the physical meeting of the
inspection participants occurs. The author reads an artifact aloud and answers on the
qguestions that were asked by the inspector. The inspector elaborates remarks and
asks the questions regarding the artifact. The moderator leads the meeting and
makes notes.

Basing on the results of the inspection meeting the moderator identifies what should
be revised by the author in the Rework stage. The author reworks the artifacts and
then after the moderator has accepted of the rework the Finished stage of
inspections is set.

2.5. Business Processes and Business Logic

The campaign creation process is probably the first process and the most complex
that will be executed by the administrator. The process is shown in Figure 12.

User FIT

Has
administrator
. role?

Request Hew - Check Rights

e
Campaign g
yes‘/

Display Errors
Correct
attributes?

Validate g Ves Create
Attributes e Campaign

no

Fill detail

Role
no "~ assignments
" file

T present?
yes

Parse Role

Assi nt
Render _ i mancn

Created & th
Campaign

l

If the administrator has a spreadsheet file with role assignment information, then he
would like to include the file into campaign creation process. By specifying role
assignment file the administrator wants the system to create a group of inspections
and assign role to user according to staffing information mentioned in the file. The
Parse Role Assignments process displayed on Figure 13 explains how it should be
carried out.

28

\
plea
a0 pUE
. wasaud
.wEM”M._a 1250
AT
uonaadsu] | & f ' of)
g | .
_ awary | ~ sah A SHECT AL
ou
A\. J ou
. el sak
épunoy
uoioadsu) e —
) - A | ab W |
o “A 10113 ppy | 1
ou
W d
..:u_uuua_m:_ puy = s T ou
dlasaud
dnoas sai
T, . . b
. 18sn seal) = oo N~ desnpuyg _ sunpeay sah i V@
—_ - ou
punoy nEmmEn .
5% sluasaud
N (=] auy pap

W 511 ELRLE

E1Ep UOREIYPO

Wd LEDL EWE WS

a1Ep Uoneal)

A0IDRT xay

loyinyg

sjuaLIUGISSY 8]0 asled

alleu welferq

3 SUBUBISSY 2|0y as1ed ﬁ_ Juonesiy ubledue: b_..___«uux

Role assignments file parsing process

Figure 13

29

2.6. Information Model

The information model consists of three diagrams: overview on information model,
detailed information model, and a diagram of information model types. The overview
of the information model of the FIT tools is presented in Figure 14.

The inspection is an object that represents a Fagan-style inspection process. The
inspection can have six deadlines that correspond to inspection statuses: Setup,
Upload, Prepare, Inspection, Rework, and Finished. A campaign unites a
group of inspections that are conducted at the same time by different groups of
users. Users communicate with each other via chat through writing chat messages.
The chat is a messaging subsystem that is individual for every inspection.

An artifact is a representation of the existing piece of documentation that is to be
reviewed during the inspection process. The user with appropriate rights is able to
create an artifact instance via uploading a file. The artifact belongs to both user and
inspection. The artifact must belong to one and exactly one inspection by grounds of
flexibility and independence of inspections as well as provide modularity for the
system, since it is much easier to control many-to-one relationship than many-to-
many relationship. The main argument to implement many-to-one relationship
between elements is that a consideration that a typical user participates in one
inspection at time, thus allowing the artifact to belong to many inspections does not
bring much sense.

package Information model [Ovel'view]J Diagram name | Overview
Author Alex Egorov
Creation date B/2113 235 PM
| Campaign | | Deadline |
Modification date | 8/30/13 8:10 PM
0.1 7
has W has A
. 1
[Inspecti | - reviewed on Artifact
| 0.+ L I [P S—]
| 1 1 0.1
I
|
has W=
o.r [
User writes s ChatMessage
1 0.
1 1 writes
uploads s

A remark is a user comment on the artifact; therefore it can belong to only one
artifact at the same time, while the artifact can have a multiple remarks.
Moreover the remark can refer to a general comment regarding the inspection,
thus it will belong to the inspection, not to the artifact. The detailed
information model is shown in Figure 15, while the data types are presented in Figure
16. Most of information items have basic CRUD operations that are omitted in order
to remove unnecessary details from the diagram.

30

Deadline missed? () function allows to check if the deadline is missed. The
possibility to upload remarks from a spreadsheet file is supported by
create from spreadsheet () function. In order to help the administrator to
determine inspections that has incomplete or incorrectly staffed teams Inspection
class have team valid?() and team complete?() functions. The
administrator can provide role assignments spreadsheet file to
create from role assignment spreadsheet () that will automatically
create stated amount of inspections, assign roles to users, and if necessary it will
create users.

package Information model [Detailed]J

Diagramname | Detailed
Campaign Deadline Author Alex Egorov
-name : String ~due_clate : date .
~comment Sting close_date " date Creation date 5124113 319 PM
S CERFRECI guETEr String Modification date | 8/30/13 8:08 PM
T Sring

+create_from_role_assignment_spreadsheet(f: File)

+missed_deadline?()

0.1 7
has A
1
has b Inspection Artifact
= - revi lon =
0.+ |-name: String -name : String
-comment : String 1 0.* |file : File "
-status : InspectionStatus -comment : String
T 0.% |+team_complete?()
| +team_valid?() 1
Participation 1 0.1
-role : Role
hi
has W as ¥
[0. [
User ChatMessage Remark
-name : String it -content : String -location : Location
-email : String writes B> -content : String
-password_digest : String 1 [0.+ |-level: RemarkLevel
-address ; String . -
-phone : String +create_from_spreadsheet(f: File)
-skype : String
-profile_picture : File o
-additional_information : String N
1 1 writes e
uploads b=

Figure 15: FIT information model details

Location is a very important field of Remark class and should be described
additionally. Location field have an abstract type Location, which can be
implemented by one of three concrete classes: LocationDocument,
LocationCode, LocationModel. If the artifact is a text, spreadsheet or similar
file type than location field of a corresponding remark should have
LocationDocument type. In this case the element of documentation to which the
remark is referencing would have such type as page, figure, table, line, etc. For the
LocationDocument type presence of element type and element name is
required, while element number field is optional. When the artifact is a piece of
code the locationCode type is applied, which describes to what line of code the
remark is pointing.

31

package Information model [Types]J

Diagram name | Types

Author

Alex Egorov

Creation date

8/21138:06 PM

Modification date | 8/21/13 810 FM

Location

«enumerations «enumerations aprimitives
RemarkLevel Inspecti Binary
-Major -upload
-Minor -setup
-Comment -finished
-preparation
-inspection
-rewwork
«enumerations
CampaignStatus
-opened
-closed

~content : String

ay

LocationDocument

-Element_name : String
-Element_number : String

-Element_type : String

LocationCode

-Line_number : Integer

LocationModel

-Diagram_name : String
-Path : String
-Element_type : String
-Element_name : String

«enumerations
Role

-author
-maderator
-inspector
-admin

Figure 16: FIT information model data types

The last possible type of location is a LocationModel that is applied if the artifact
is a model, e.g. UML model. There are three possible combinations in this case:
element type and element name should not be empty, path to the

referenced object (element of the model) should present or diagram name is
expected to be filled out.

32

3 System Design

3.1. Technology choice

There are many interesting technologies available on the market that can be used for
the development of the FIT system. These technologies include: Django based on
Python, Ruby on Rails based on Ruby, Spring based on Java, .Net MVC based on C#.
Since all mentioned frameworks are equally good, well known and widely used, the
choice process mostly becomes a matter of personal preferences. The framework
should be a full stack framework with possibility to encapsulate low-level
interactions, since the author haven’t had any previous experience with web
development and of course with any of mentioned frameworks. Due to author’s
personal preference to open-source software, the other requirement for the
framework is to be open-source product.

The author decided to choose Ruby on Rails framework, since it does satisfy the
requirements, i.e. it is a full stack open source cross-platform framework for creating
web applications®. Ruby on Rails has database abstraction layer that encapsulates
low-level database interactions. Ruby on Rails is considered to be one of the best
frameworks for building web application. As it is possible to conclude from the
framework name it is based on Ruby programming language. Ruby on Rails ships with
a sensible set of build in libraries and provide a well-proven, multilayer system form
organizing program files and concerns (Carneiro & Al Barazi, 2010).

In order to provide smooth and easy user-machine interaction a front-end framework
should be selected. Bootstrap framework is considered to be one of the most popular
frameworks® on GitHub, not only because it is sleek, intuitive, and powerful front-end
framework for faster and easier web developmentlo, but also because of its
standardization of HTML syntaxll.

3.2. Design Patterns

Ruby on Rails framework is shipped with a couple of very powerful instruments that
implement Active Record and Model View Controller patterns. While the usage of the
first pattern is optional, the second one is mandatory since the whole Rails
framework was built around MVC pattern.

Active Record (AR) is a software architectural pattern named by Martin Fowler. The
pattern is presented by an object that wraps a row in a database table, encapsulates
access and adds domain-specific logic on the top of the data (Fowler, 2003). Active
Record object presents an interface to underlying relational database table of view

8 http://rubyonrails.org/

® https://github.com/trending?since=monthly

1% http://getbootstrap.com/2.3.2/index.html

" https://medium.com/what-i-learned-building/99fdd6e46586

33

http://rubyonrails.org/
https://github.com/trending?since=monthly
http://getbootstrap.com/2.3.2/index.html
https://medium.com/what-i-learned-building/99fdd6e46586

that describes the way the data from the database should be created, accessed,
modified or deleted.

Person

lastName
firstName
numberOfDependents

insert
update
delete

getExemption
isFlaggedForAudit
getTaxableEarnings

Figure 17: Active Record Example (Fowler, 2003)

The data structure of an Active Record class should correspond to the underlying
database in the way that one field in the class is mapped to corresponding column in
the table. The Active Record class incorporates wrapper methods for create, read,
update and delete a SQL row, static finder methods to wrap commonly user SQL
gueries and return AR objects, field getters and setters, business logic (Fowler, 2003).

In what follows further when Active Record is mentioned the concrete
implementation of the pattern in Ruby on Rails should be assumed.

Model View Controller (MVC) pattern often used in Ul frameworks™. There are three
roles in the pattern: model, view and controller. Figure 18 presents MVC interaction.

View M e o e Controller

| 1
| |
I |
| |
| |
| |

Figure 18: MVC Interaction (Fowler, 2003)

12 http://martinfowler.com/eaaDev/uiArchs.html#ModelViewController

34

http://martinfowler.com/eaaDev/uiArchs.html#ModelViewController

The domain information is represented by the model. The user interface is
represented by the view that only responsible for displaying the information, while
the controller is triggers the view update after the model manipulation in response to
user input.

There are two principal separations in MVC: the model is separated from the
presentation and the controller is separated from the view (Fowler, 2003). The key
reason for separating the view from the model is that the presentation depends on
the model but no otherwise. Creating presentation is mostly about creating a good
and convenient user interface, while model creation implies consideration of
business policies, database interactions. The main advantage of separating the model
and the view is a possibility to alter the presentation without making changes in the
model, i.e. it is possible to provide completely different interfaces to the same model.

The separation between the controller and the view is less important, the support of
editable and not editable behavior is one the classic examples that motivates the
separation (Fowler, 2003).

Considering a web site, the controller main responsibilities are presented in Table 12.

Responsibility Description

URL decoding The controller extracts data from a form and determines an
appropriate action.

Model Invocation The controller creates and invokes an object model to
process the data.

View The controller determines which view should be displayed as

Determination the result of the user request and forwards the model
information to the view.

In what follows further when model, view or controller is mentioned it should be
understood in terms of Ruby on Rails as a concrete implementation.

3.3. Architecture

This section describes model architecture. The model in MVC is an object that
represents the information about the domain and contains all the data and behavior
other than the one used in the Ul (Fowler, 2003). Model dependency diagram is used
to represent model architecture. It is an elaboration on the information model
(presented in Figure 15). In Ruby on Rails framework “Fat Model, Skinny Controller”®
is @a common practice. It means that all logic should be put into the model and the
controller becomes just an interface between model and its graphical representation
— view™.

Looking at the model dependency diagram presented in Figure 19 it is possible to
notice a few significant changes in comparison to information model. One of the
most important ones is an introduction of Participation class between Inspection and

3 http://www.sitepoint.com/10-ruby-on-rails-best-practices/

" http://guides.rubyonrails.org/layouts and rendering.html

35

http://www.sitepoint.com/10-ruby-on-rails-best-practices/
http://guides.rubyonrails.org/layouts_and_rendering.html

User classes instead of many-to-many relationship with association class between
Inspection and User. This change was implemented due to Active Record limitations
in case of supporting many-to-many relationship. There are two possible different
ways of implementing many-to-many relationship between models with Active
Record in Rails: has and belongs to many association®> and has many
:through association. The first one creates a direct many-to-many connection
between the selected models without introducing an intervening model, but
nonetheless the joining table should be explicitly specified. The second possibility
involves creation of a join model. If validation is needed, that join model method is
recommended for use. Nevertheless the main difference between those two
methods is that in has and belongs to many association the underlying SQL
join table will be created without primary key.

package ActiveRecord structure [Model dependency]J Diagram name | Madel dependency

Author Alexander Egorov
Creation date 53113 11:33 AM
Modification date | 8/13/13 8:23 FM

Campaign Deadline
-name : String -dueDate : date
-comment : String -closeDate : date
-status : String -name : String
-comment : String
T
0.1
1
Participation Inspection Artifact
-role : String 0.+ |-name: String -name : String
-comment : String 1 0.* |file : Binary
e 1 -status : String -comment : String
- -filename : String N
1 -content_type : String
o.*
1 0.1
1
o.r o.r
User ChatMessage Remark
-name : String -content | String -description : String
-email : String -content : String
-password_digest : String 1 [p.+ |-remark_level : RemarkType
-remember_token : String " |-has_duplicates : Boolean
-address : String -duplicate_of : Integer
-phaone : String -element_name : String
-profile_picture : Binary -element_type : String
-shype : String -element_number : String
-additional_info : String S -line_numkber : Integer
-content_type : String 1 0. -location_type : String
-path : String
~dimgram : String
1

Figure 19 Model Dependency

There is a necessity to introduce validation on User-Inspection relationship,
due to concerns identified in inspection process (There should be no more than one
user playing author role participating in the inspection process). Therefore the
second option of implementation many-to-many relationship was chosen. Also
has many :through association since it assumes more meaningful model
name’®, i.e. Participation, that is rather self-explanatory. Taking into account

!> http://guides.rubyonrails.org/association_basics.html

!® http://railscasts.com/episodes/47-two-many-to-many

36

http://guides.rubyonrails.org/association_basics.html
http://railscasts.com/episodes/47-two-many-to-many

Rail conventions, the join table in case of has and belongs to many
association between Inspection and User models should be named either
inspections users or users inspections and that name can be

confusing.

Mapping the 1ocation field of the abstract type Location of Remark class,
which described at information model®’, directly to a group of fields with primitive
types, such as String and Integer was another important decision. There are
several possibilities of how to implement non-standard data type filed within Rails

model®. Those techniques are presented in Table 13.
Technique Description Advantages Disadvantages
Object There is a standard module Relatively easy Limited
serialization Marshal in Ruby that technique from searching
serializes object to a configuration capabilities on
string'®, which is later can point of view. the key values.
be effectively translated
into byte array. The result
of marshaling is stored in
the database as a standard
type.
NosSQL The custom field is stored Effective. High
datastore in NoSQL database. configuration
integration and integration
cost.
Dynamic Dynamically add columns Allows strict type Difficulties in
columns to the Inspection table validation. maintaining
when concrete type of standard
location is defined. object-
relational
mapping.
PostgreSQL Use PostgreSQL extensions Useful in various Applicable only
extensions such as hstore?. The scenarios in case for certain
extension mixes stores sets of semi-structured Ruby standard

of key/value pairs within a
single PostgreSQL value.
Keys and values are simply
text strings.

data or if the
attributes are
rarely examined®™.

types, such as
Hash.

v Figure 15: FIT information model details

'8 http://blog.artlogic.com/2012/09/13/custom-fields-in-rails/

' http://www.ruby-doc.org/core-2.0/Marshal.html

2% http://www.postgresgl.org/docs/9.2/static/contrib.html

*! http://www.postgresgl.org/docs/9.2/static/hstore.html

37

http://blog.artlogic.com/2012/09/13/custom-fields-in-rails/
http://www.ruby-doc.org/core-2.0/Marshal.html
http://www.postgresql.org/docs/9.2/static/contrib.html
http://www.postgresql.org/docs/9.2/static/hstore.html

Custom type Design a standard Widely used Increase in the

table relational mapping to a solution, which fits number of
new custom type table that standard objects that
has all required fields. relational needed to be
database managed.
management
system schema.
Additional Mapping custom type fields Straightforward Adds a great
fields in the to the fieldsinthe technique. overhead for a
model underlying model, i.e. add custom type
series of with many
custom field #{n} fields that may
fields into the underlying not be used.
table.

Taking into account that the strict type validation and efficient search for Remark
location is needed, the first and the third techniques, i.e. object serialization and
dynamic columns fell off. PostgreSQL extensions are also not appropriate in case of
Location type, since it is well-structured type and its attributes are often
examined, e.g. in case of uploading remarks from file. NoSQL datastore integration is
effective, but not efficient for the location field, due to its extremely high
integration and configuration overhead.

The last two techniques seem to be equivalent in implementation cost and they both
seem to be appropriate. Custom type table techniques assumes three additional
tables to the database, Location type is an abstract type and three are three
concrete types that is LocationDocument, LocationCode, and
LocationModel??. In case of using the last method six additional fields should be
added to the Remark model.

Considering uploading remarks from a spreadsheet file as a critical functionality that
would likely to be used often®® and providing appropriate level of fault tolerance is
critical, last technique was chosen. It hands over a simple solution for importing
remarks from a spreadsheet that has incorrectly filled location cells. The solution is
just to import all fields, construct the remark object, then determine the location
type and just ignore incorrectly filled location cells.

RemarkLevel, InspectionStatus, CampaignStatus and Role classes can
be easily implemented with such a powerful Active Record instrument as callbacks
that hook into the life cycle of an Active Record object and trigger logic before or
after an alteration of the object state.”* The classes mentioned above implemented
as a string that corresponds to regular expressions.

2 Figure 15: FIT information model details
> Table 10: Upload remarks use case

** http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html

38

http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html

3.4. Chat Capabilities

Instant messaging capabilities in the web application assume some kind of
mechanism to obtain updates from server. There are several technologies that can
provide such capabilities, one of them are Web-Sockets, Long Polling, and
Server-Sent Events.

Table 14 below demonstrates the comparison between mentioned above

technologies.

Long-polling

Server-Sent Events

WebSockets

Browser
support

Server load

Client load

Timeliness

Implementation
Complexity

Supported by the
most of currently
use d browsers.
Consumes a little
of CPU resources,
closes connection
every time the
event is sent.

Depends on
implementation.

Depends on
implementation.

No additional
gem required.

Chrome 9+, Firefox
6+, Opera 11+,
Safari 5+.

Requires a very
limited amount of
resources, does
not need to close
connection after
response event is
sent.

Consumes
minimum
resources since
native
implementation in
the browser.
Three seconds
delay by default
settings.
Additional Rails
gem required.

IE 10+, Firefox 7+,
Chrome 14+, Safari
5+, Opera 12+.
Requires a very
limited amount of
resources, but
requires constantly
maintained HTTP
connection.

Consumes minimum
resources since native
implementation in the
browser.

Real time.

Requires additional
infrastructure, i.e.
EventMachine server
with custom port
being open.

After comparing the solutions it looks like WebSockets is the best solution, since it
requires minimum resources from both client and server, followed by SSE and
Long-Polling looks like the worst decision to implement it terms of consumed
resources. But what is important to consider is that browser support is very
important due to large share of users still use Internet Explorer and old versions of
old browsers?. According to W3Counter statistics on July 2013 there is still more

%> http://dsheiko.com/weblog/websockets-vs-sse-vs-long-polling

°® http://www.w3counter.com/globalstats.php?year=2013&month=7

39

http://dsheiko.com/weblog/websockets-vs-sse-vs-long-polling
http://www.w3counter.com/globalstats.php?year=2013&month=7

than 22 percent of users utilize Internet Explorer and there is only 7 percent that use
IE 10 that natively supports WebSockets technology.

Server—-Sent Event technology is not supported by any version of Internet
Explorer and that WebSockets technology is not supported by approximately 15
percent of users in addition to requirements for maintaining constant connection and
having additional infrastructure®’, therefore Long-polling technology should be used.

Sequence diagram presented in Figure 20 demonstrates how Long-polling technology
works.

Every chat message is wrapped in HTML element with data attribute data-id that
corresponds to the underlying ChatMessage id value. ChatMessage view uses
AJAX calls and sends the attribute value to the ChatMessages controller. The
controller asks ChatMessage model if there is any message with id bigger than the
received one from the view. If there are no new messages the controller sends
nothing to the view, otherwise it sends missing messages. The view in its turn on the
reception of the new messages appends them to the chat.

%7 http://www.html5rocks.com/en/tutorials/websockets/basics/

40

http://www.html5rocks.com/en/tutorials/websockets/basics/

WY 10T £ LG

S1EQ UOREINPOW

Wd LET ELST/E

SlER UdnEalD

r0Jobg xapy

louny

Guniod 1eyo

alleu Welbelg

|.___________

(Bswipuadde ¢

Bsw 7|

(pélaye” sabessau™ mau g

(pélayE" sabessan mau o)

(Bsw)pusadde ;|| T T T Bsw __ﬂ - - =
Bsw 5
= — — — — — — — — _— (P iaye™puy. g
MO L |
I
(Bsw)apes g "
" (Bsw)abessau mau § " "
| | |
| | fadwuz g
I I
| | it —
| | | (piiapge puy g
I I I I
I I I I
| | | |
| | |]
I I I I
| | | |
maipabessapneyD : Z128n _ _ J1ajonuosabessapney) : Z1asn _ _ lepoabessapneyn _ _ Jajonuo)sabessapneyd : L12sn _

_ maipabessapneys : piasn

? Buniod 12U [16uod U uonaelsy

Figure 20: Chat long-polling

41

3.5. User Interface

Sketch

Sketching user interface using simple tools like pen and paper or marker and
whiteboard is well-recognized solution for the very first round of product
development since it is easy and cheap solution (Storrle, Requirements Engineering,
2012). The result of the sketching has been photographed; the inspection list is
presented in Figure 21, opened inspection is presented in Figure 22 and the remark
table is presented in Figure 23.

Figure 21: Inspection list sketch

There are several methodologies to substitute desktop’s right-click menus in Web
application such as Always-Visible and Hover-Reveal Tools that are united under the
Contextual Tools name (Scott & Neil, 2009). As it is possible to notice from the
options names, the first ones place contextual tools directly in the content, while the
second one show tools on mouse hover.

During the sketching process the Hover-Reveal pattern was used.

42

Figure 22: Current inspection sketch

The initial idea was to present user a list of inspection as a block with nearest
deadline date, showing also inspections that are not available, i.e. either finished or
announced. The interaction assumed that when a user clicks on an active inspection
it will expand on the whole screen, showing the content and the inspection chat. The
remarks table initially supposed to be shown only when user clicks on the artifact.

Figure 23: Remarks table sketch

Prototype

During the next stage of user interface development, a prototype was created.
During the prototype implementation it was decided to change the list of inspections
from a group of boxes to a carousel, since the expansion of the block looked too

43

heavy and distracted the attention and was embarrassing especially if a wrong
inspection box was clicked.

Figure 27 demonstrates the implementation of the whiteboard sketches made in
Sublime Text 2 with Bootstrap library. The modal presents the PDF document
displayed on the right and the remarks table with comments corresponding to this
artifact. After clicking on artifact box the modal is displayed as it is demonstrated in
Figure 27.

As it is possible to notice from Figure 22 most of the artifacts boxes and inspection
boxes does not have any actions such as download, edit or delete being displayer,
because Hover-Reveal principle was utilized and the actions were displayed only on
mouse hover as it is presented in Figure 24. In order to show the design concept with
actions the inspection view on Figure 25 has Artifact 2 and Inspection 2 with actions
being forcefully displayed. That was impossible in the prototype to have more than
one hover event at the time.

Artifact1 | ATRRCIZ

Figure 24: Panel with actions hidden (left) and displayed on mouse hover (right)

¢ — A 3

01.01.2013 11.02.2013

Tinished

Inspection 2
= John Doe 30.12.2013 23:59
Artifact 1
hello!
m 3112 2013 20,09 Hank Moody
Hi, girls!
John Doe 31.12.2013 20:39
Artifact 33 Lorem ipsum dolor sit amet.
roancartatir adinicirinn alit
. Type your answer
= K .

Figure 25: Inspection view prototype

Taking into account that only the current status of the inspection and only the closest
deadline were shown in the inspection box, it was hard for unprepared user to

44

understand the inspection process work flow. Therefore it was decided to implement
some kind of a flow chart that would bring an understanding of the inspection
process for unprepared user. Figure 26 shows the inspection status bar prototype.

Inspection 2

01.03.2013 05.03.2013 11.02.2013 2B8.04.2013

D p - 2

Figure 26: Status bar prototype

Artifact modal

Artifact 2 Remarks

Alexander Egorov Comment Author

MNobody can pronounce my surname correct Alex
Looks nice John

Strange symbol Mr. Trollolo

v

Figure 27: Remarks table and artifact overview during the implemented of the prototype

The general ideas of the prototype were accepted, but during the user interface
design working prototype stage a few major changes were implemented. Hover-
Reveal pattern was changed to Always-Visible patter. The main issue for Hover-
Reveal tools is providing proper discoverability of the additional functionality,
therefore, taking into account that the majority of the system users are students
enrolled for courses similar to 02264 Requirements Engineering, they are likely would
see the system for the first time and would use it only a few times, hence it is
important that users could immediately understand what possible actions are
available. Thus for the sake of discoverability Hover-Reveal were reconsidered in
favor of Always-Visible Tools (Scott & Neil, 2009). In order to reduce visual noise
icons symbolizing the actions are rendered in as visually light manner, that is
achieved by making them half-transparent. Figure 28 shows that after user hovers on
the icon it becomes fully visible.

45

h 4

The Machine_Factory - | The Machine Factory -
_case.pdf _case.pdf

Figure 28: Artifact Action Panel rendered by default (left) and when download action is hovered (right)

Looking further at the artifact box it is possible to notice that the download icon E1
was changed to a different one = and upload user icon B was removed.

The inspection view outline that is presented in Figure 29 was also changed. The
status bar increased in size and incorporated all statuses from the inspection process
adapted to the support system. Deadlines were modified in order to follow the flow
created by the status bar. Considering the majority of users would participate at one
inspection at time and in two inspections per semester it was decided to the
inspection list from the carousel to a navigation bar menu item. Taking into account
that the page space as a most valuable resource it is unwise to spend up to 20
percent (for standard 720p screen resolution) of it for a feature that would not be
used often.

Since objective of the inspection process is to find defects in provided artifacts it is
not wise to hide the instrument that presents possible defects, i.e. remarks table.
Following Always-Visible tools principle it was decided to reveal remarks table and
make it central element of the inspection page.

Inspection 02264E14 1A

edit delete

R setup upload prepare inspection rework finished
ArtlfaCts 2013-08-15 »2013-08-17 22013-08-19 2 2013-08-23 ikl el i1y kR 2y Chat

minim veniam, quis nostrud

add artifact
exercitation ullamco laboris
nisi ut aliquip ex ea
U upload remarks Remarks Table commodo consequat. Duis
aute irure dolor in
) show| 10 ¥ entries Search reprehenderit in voluptate
ppidcmioadiastitacts velit esse cillum dolore eu
fugiat nulla pariatur.
Object * Location Content Level Auther Created_at Updated_at Excepteur sint occaecat
figure Information Model tesi1 minor Alexander Egorov 2013-08-13 04:58:38 2013-08-13 04:58 38 cupidatat non proident, sunt
q in culpa qui officia deserunt
Patterns_of_Enterprise line 234 test2 major Alexander Egorov 2013-08-13 04:58:38 2013-08-13 04:58:38 moII\IZnsn ——
—AP';'r'“t'°"—Am“"“‘” line 234 test5 minor Alexander Egorov 2013-08-13 04:58:38 2013-08-13 04:58:38 -
re
- Some:nice:path test6 comment Alexander Egorov 2013-08-13 04:58:38 2013-08-13 04:58:38
line 345 test minor Alexander Egorov 2013-08-13 04:59:02 2013-08-13 04:59:02
‘ line 5 supi comment testerin 2013-08-19 22:31°50 2013-08-19 22:31°50
Staffing_Review_02264 P
E11-2_error.xls Showing 1 to 6 of 6 entries
Send
Inspection |v code v minor v Submit

remarks_template

Figure 29: Inspection final design

46

4 System Implementation

4.1. Technology

Rails uses Ruby in order to create a domain-specific language. Rails utilizes several
concepts and principles: don’t repeat yourself (DRY) principle, you
ait’t gonna neet it (YAGNI), and convention over
configuration (Carneiro & Al Barazi, 2010).

DRY states that information in a system should be expressed in only one place.
YAGNI assumes that only actually needed functions are implemented, i.e. do the
simplest thing that could possibly work.

Convention over configuration isthe most tangible principle in Ruby on
Rails framework. The principle assumes that the developer needs to define only
configuration that is unconventional. There are several naming conventions in Rails
framework: the first one tells that class names should be name with CamelCase,
methods and variables written with snake case; a model should be named with a
singular noun, e.g. User and it will be stored in models/user.rb, then the
reciprocal controller should be named with a corresponding plural noun, i.e.
UsersController that is defined in
controllers/users controller.rb file. Views that represent the model
should be stored in views/users/ folder, while stylesheets and javascript for
those views shall be defined accordingly in assets/stylesheets/users.css
and assets/javascripts/users.js files.

As it was mentioned earlier, Ruby on Rails implements Model View Controller
pattern. A model typically represents a database table. Since the application uses SQL
database the model is a subclass of ActiveRecord: :Base class. All business logic
should be implemented in models according to Rails convention.

A view in Rails is a HTML or a JavaScript template with embedded Ruby that is called
ERB template. In general there are two types of views: a full-blow view and a partial
view. The full-blow view typically rendered as a result of the controller’s action
execution, e.g., in case an index action of UsersController is called, then by
default the action will render view that is stored in
views/users/index.html.erb file. The partial view (or just partial) is
rendered inside other views and can be nested. According to the convention the
partial should be denoted with underscore at the beginning of its name, e.g.
_status.html.erb.

A controller is a subclass of an abstract ApplicationController classin Ruby
on Rails framework. According to Rails convention controller’s public methods are
called actions®®. Depending on received URL the framework will determine which
controller and which action should be called. After that the framework creates an

%% http://guides.rubyonrails.org/action controller overview.html

47

http://guides.rubyonrails.org/action_controller_overview.html

instance of that controller and runs the action. By default the controller in Rails
automatically renders the view that has the name of the action due to convention
over configuration principle.

Modern software development process assumes that it is virtually impossible to
imagine any reasonable excuse for not using version control system. There are
several alternatives present on the market nowadays such as Concurrent Version
System (CVS), Subversion (SVN), Mercurial and Git. Taking into the account that the
project is supposed to be an individual work any of previously mentioned version
control tools are suitable. The main requirement the tool is that it should be an open-
source project; it should have an implementation and free online repository. Git has
been chosen as the version control system for the project since it is particularly
powerful, flexible and low-overhead version control tool (Loeliger, 2009) and there
are several web-based hosting services such as Github? and Bitbucket that provide
free accounts for open source projects. Github has been chosen because the latest
versions of many third parties Ruby on Rails libraries are accessible via Github
repositories and it was built using Rails.

On the first stages of the development process Sublime Text 2 was used, taking into
account that it is not an IDE the decision to switch on a different product had been
made. The set of requirement was formed based on experience with Sublime Text 2.
An appropriate IDE contains Ruby debugger, version control integration, Ruby Gems
management system, code analysis and assistance capabilities as well as easy project
configuration and HTML, CSS, and JavaScript editing. There are several such systems
on such as TextMate, NetBeans for Ruby, JetBrains RubyMine and Aptana Studio. The
first one solution is designed for Mac OS X and was turned down automatically, since
the development was conducted under Microsoft Windows. NetBeans stopped Ruby
support and starting from version 7.0 and higher Ruby support was removed™.
Therefore NetBeans 6.9 for Ruby has been chosen, but it appeared that the IDE
cannot properly import an existing project, which was generated by Ruby on Rails
built-in generator, the IDE wiped out several important project files that fortunately
did not lead to disastrous events due to version control system usage and regular
commits to remote repository. Certainly the system usage was discarded and after
reading an article®, regarding JetBrains RubyMine was not initially considered as a
good choice due to it is commercial origin that implies obtaining a license, it has been
decided to try out 30 days trial version. After using the IDE for a couple of weeks
without any crash, RubyMine proved that it is a very stable IDE that has all required
features. Taking into account that FIT is an open-source project designed for

% https://help.github.com/articles/github-terms-of-service

* http://wiki.netbeans.org/RubySupport

*! http://habrahabr.ru/company/JetBrains/blog/176891/

48

https://help.github.com/articles/github-terms-of-service
http://wiki.netbeans.org/RubySupport
http://habrahabr.ru/company/JetBrains/blog/176891/

educational purposes it was possible to apply for a free educational license JetBrains
RubyMine IDE.

4.2, Code Structure

It is reasonable to present code structure according to the MVC pattern. The model
dependency, controller hierarchy and view hierarchy is presented in this subsection.

The actual implementation of the model dependency from design stage is presented
in Figure 30.

package ActiveRecord structure [Model dependency]J Diagram name | Model dependency
Author Alexander Egorov
Campaign Deadline N
[Creation date | 5/31/13 11:33 AM
-name : String -due_dste : date
-comment : String -close_date : date Modification date | 2/30M13 813 PM
-status : String -name : String
= it String
+assignments=(f: Filz)
-create_inspections() +missed_deadline?()
-open_spreadsheet(f : File)
7
0.1
[q
Participation Inspection
+add_user{ u: User, r: String) -name : String Artifact
+remove_user(u: User i: Inspection) o 1 -comment : String -name : String
o - -status : String ~file : Binary
- L -comment : String
-status Tist -filename : String
+acli::?_‘(l) 0 1 0.+ |-content_type : String N
+activell) +datafile=(f: File)
+change_status{ s © Status) -sanitize_filename(n: String)
+close_deadline()
+cleadines_to_hashi) 0.1
+cleadling_valid?(n: String, due_date : Date) -
+elefault_deadlinel()
+fullname()
+status_of_status(s @ String) 1
+eam_complete?()
+eam_valid?(r: String)
+Update_deadline n: String, due_date : Date, ¢ : String)
1 0.1
1
0. *
User ChatMessage Role 0.* 0.*

-name : String 1 0.+ |-content: String -name : String Remark

-email : String resource_id : Integer P

-password_digest | String -resource_type : String -descnmgnn __5‘“ ng

-remember_token : String - -contert : String

-address : String ~possible_roles() -remark_level - RemarkType

-phone : String T -has_duplicates : Boolean

-profile_picture : Binary 0. -duplicate_of - Integer

-shype: String -element_name : String

-acditional_info : String -element_type : String

-content_type : String -element_number : String

= -line_number : Integer
~g_user_find_or_create(s : String) -location_type : String

+datafile=(f: File) 1 -path : String

-create_remember_token() -diagram : String

-default_profile_picture()

-sanitize_filename(f: Fils) 1 0.+ |~documert_clement_type()
~open_spreadsheet(f: File)
~parse_excel f: File, i Inspection, u : User)

1 ~possible_remark_type()
-cleanup_location()
+same_location?(r . Remark)
— +location_to_s()
Ability +ocation_type_list()

inttialize(u : User) +location_valid?(r - Remark)

+o_csv()

Figure 30: Model final design

Ability model is created by CanCan gem32 that handles authorization. The model
does not create a table in the database and it is used for describing the authorization

rules.

Campaign model has assignments=(f: File) function that acts as virtual
attribute in campaign form in the corresponding view. In other words when a simple

*? Described in Libraries and Components on page 53

49

form file input field with conforming id and name attributes accepts a file
assignments=(f: File) is called. The function is responsible for parsing role
assignments file according to the business process described in Figure 13.

During the implementation an interesting bug of the Rails framework was discovered.
Since the virtual attribute assumes that assignments=(f: File) function is
called before the corresponding campaign is created, hence the campaign object is
not presented in the underlying database table at this moment, thus it does not have
an id. Taking into account that the campaign object has no id, then an inspection
object that belongs to the campaign cannot be created, it can only be built, i.e. it will
also not saved into the database until the campaign is saved. In case of a missing or
corrupted value in role column is the role assignments file for the inspection that
hasn’t been built yet, the record in Participation table will not be created,
since the conforming user does not have a proper role in this inspection. If there are
no errors with the inspection object it would be built. But find by name () *
function of the Inspection model cannot find already built inspection object
when the next line with the same inspection name in the corresponding cell in the
file for user and corresponding inspection is parsed. This event leads to the fact that
the after the campaign object is created there would be a set of inspections with the
same name.

In order to induce error tolerance in the create campaign business process34
was changed to the current state, i.e. the campaign object should be created before
the role assignments file is parsed. Therefore to implement proper handling of the
create campaign business process, the following measures has been conducted. The
assignments=(f: File) opens the role assignments file, reads the location of
the temp file (corresponding to the role assignments file) and the creates a soft link
with an extension corresponding to the spreadsheet file* and stores it in temporary
variable. Then when the campaign object is created, create inspections() is
executed with after create Active Record callback.
create inspections () calls open spreadsheet (f: File) with the soft
link as the argument to handle the spreadsheet file. After the role assignments file is
parsed by create inspections(), the next after create callback
removes soft link that was created earlier.

There are seven controllers in the application and there is one to one
correspondence between the controller and the model, except
SessionsController that does not have an underlying model. Figure 31
presents controllers hierarchy.

** The function is not shown on the diagram in Figure 30 since the method was created by the Rails
framework automatically.

* The process is described in Figure 13.

A temporary file create by Rails framework does not have any extension

50

(Jaanoie+

(Jamedwa] peoumop+
(J=1epdn+

(JHpa+

(Jxapu+

(Imoys+

(JAonsap+

(Jaeala+

(Jmau+

{Isylewai peojdn+
(Jamedwa)l sylewal peoUAMODR+
(Isyiewal peoUMOp+
(Jlasn aaowal+
(Jlasn ppe+
(Jaupeap abueya+
(J=ne)s abueya+
(Jsyiewai peodn+
(JAonsap+

[Jxapu+

{Janoys+

(J=yepen+

(ypa+

(Jaeaio+

(Jamnau+

(JAonsap+
(J=1epdn+
(ypa+

[Jxapu+
(Imoys+
(J2eala+
{Jmau+

{ 1250 - N U2sn 1230

(Jaunyd aoad 126+
(J2100" ayonal+

(2o welb+
{Imoys+

{Japu+

{J21epdn+

(ypa+

(J21eala+

{Janau+

Jaqonuoeysubieduwesy

JajjonuojsucnIadsu)

1ajjonuo)sIRIIY

J9]|0NUODS IS

(JAonsap+
[Jxapu+
(Jaeala+

130 NUoDSHIeWSY

(JAonsap+
(J2eala+
(Jmau+

120 NUODSUDISSIS

(Jaeala+
(Jxapu+

1aonuogsabessapneyn

Wd 2L EETIE | S1ED UOREILPOWN

Wd ¥t € L/9T/8

alep uonealn

{Juonoadsul walnog
(Nsanbal paylaAun 3puUeL+

AOJORT xapy

0Ly

depjonuoynonpesyddy

S1a||0L0D

allel Welbeq
e

D Em__EEan_ﬁ lainanags Jgoauosy abeyaed

Figure 31: Controllers hierarchy

51

Taking into account that according to Rails convention the controller should be kept
“slim”, i.e it should be free from business logic, thus since controllers’ actions are
self-descriptive, there is no much sense in describing the action. The only function
that should be explained is correct user(u: User) function in
UsersController, that is not an action. The functions is used in update () and
edit () actions, it checks that the User object is ether current user or an
administrative user, in order to prevent unauthorized user from modifying other
user’s profile.

There is no need in parameters for Ruby controllers’ actions, since there is a special
variable, called params that stores all necessary information, e.g. HTTP Get request
the params is a query string from the request, while for HHTP Post params is the
corresponding form data.

Figure 32 demonstrates views structure and how assets are used. In the application
JavaScript ERB templates are used as a response on AJAX HTTP request. All views are
placed into folders according to the controller to whom they refer.

52

package ‘iew structure| Views]J

Diagram name | Views

Author Alex Egorov
inspections artifacts Creation date B/28/13 7:00 PM
Modification date | 8/2913 1110 PM

]

|

|upload_remarl(3 | |3how | |inde: |

|new | |edit | | _inspection |
| _deadline | |_deadline_har|
_artifacts_list campaigns

_status | |_s1.atus_hﬂr|

edit show
= | i
= |

users remarks
| edit | |inde: | | e | |show | |_he|per_message | | _remark |

| _create_remark | |_remark_tah|e|

_user_inspections || _user_grant_role |

user_compact| [user_roies | [user| | | OS] HoSiioy| [Gieite |
‘I - - - - - - - - - =

[

I
J

e e o e A e e e e

I
I
| .
layouts shared | ﬂfﬂﬂﬂe’» full-blown views
HTWML ERE
' T
| AR
—pink L —partial HTML ERB
I
I
I
I
I
I
I

chat_messages

| _user_header |

_admin_header

| system folder

m JS ERB template

Figure 32: Views and asset usage

4.3. Security Analysis

Security issues were one of the many reasons why previous work on the similar
project had failed. The goal is to minimize the possibility of vulnerabilities exploit by
evildoer. SQL injection, Cross-Site Scripting, Mass Assignment Misuse, and Cross-Site
Request Forgery attacks should be address by the FIT application. The security
vulnerabilities and attack descriptions are not going to be elaborated as long as they
are well-known (MITRE Corporation, 2011). Passwords are hashed by brypt. Session
hijacking is prevented by forcing user to use HTTP SSL connection.

53

Whereas the application uses SQL database it is important to filter possible SQL
injections or use methods that do not allow SQL injection to happen.
Active Record provides parameterization of queries for many methods and therefore
it is fair to state that methods are secure, except extreme rare cases when
vulnerability found in the framework. As it was mentioned before, most of the
methods in Active Record escape input from SQL*®, but there are plenty of methods
that does not do this in order to allow the programmer to have flexibility. There is a
list of methods and their parameters that are subject to SQL injection37 and
thus the usage of those methods should be conducted with care. It is worthwhile to
mention only methods that are used in the application. Methods with SQL
injection vulnerability used in the application together with measures taken to
prevent SQL injection are shown in Table 15.

Method Vulnerability Prevention Measures in FIT
find() Any argument following after Method is used the only one
the first one will not be escaped parameter, which is primary key
order() Accepts any SQL string User input is not passed to the
method
where() SQL query can be passed as a The value for primary key
parameter value. parameter is manually casted to
integer

Mass assignment misuse vulnerability is specific to Ruby on Rails applications. Active
Record methods like update attributes (params) or build (params) are
quite often used in controller actions that respond to HTML Post request, e.g.
update or create®®. The method takes a hash of attributes and their values that
are going to be assigned to the record. In order to prevent the misuse of the method,
e.g. an evildoer sending additional parameter that is not stated in the form through
the HTML Post action, a whitelist of attributes allowed to be mass assigned should be
declared. There is a special function attr accessible in ActiveRecord Base
class that is superclass for all models used in the FIT application. The method
specifies which attributes may be assigned with mass assignment; any other
attributes not on the list are blocked (Ediger, 2008).

In FIT application all critical parameters are not stated in the whitelist, e.g. the piece
of code from create action in ChatMessages controller that is shown in Figure 33
user 1idis not passed to the method that uses mass assignment.

% http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-your-horses-here-are-the-

facts/

* http://rails-sqli.org/

38 http://happybearsoftware.com/how-i-avoid-the-rails-mass-assighment-security-mistake.html

54

http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-your-horses-here-are-the-facts/
http://blog.phusion.nl/2013/01/03/rails-sql-injection-vulnerability-hold-your-horses-here-are-the-facts/
http://rails-sqli.org/
http://happybearsoftware.com/how-i-avoid-the-rails-mass-assignment-security-mistake.html

@inspection.chat messages.build(params|[:chat m

ezsage.user id current user.id

Figure 33: Chat message protection from mass assignment misuse

Instead of it current user method is used that is helper method, which obtains
the user who performed the action, thus it is not possible for one user to write a
message on other user’s behalf.

Cross-Site Request Forgery exploits the trust that the application has for a particular
user. In case of this attack both the web application and the user are victims. But
Ruby on Rails has a feature called protect from forgery that adds a hidden
field to any form in the application. The value in the form will be compared to an ID
stored in the session variable; if they differ the action will not be executed. Figure
34 presents the code of send chat message form with authenticity token added by
protect from forgery feature.
¥ odiv class="row-fluid SendMessage":>
¥ idiv class="spanl? SendMessagelnner">
¥ <form accept-charset="UTF-8" action="/inspections/ 28/
chat_messages" class="new_chat_message"” data-remote="true" id=
"new_chat_message"” method="post">
¥ odiv style="margin:@;padding:@;display:inling”>
<input name="utf8" type="hidden" value="/">
<input name="authenticity_token"™ type="hidden" walue=
"yE2WLwkARBIv]sVAeWKKRHYrPIRGUbBYXRE1EIPi hro=">
£ _."di'._.' T

Figure 34: HTML code with authenticity token of send chat message form

According to Ruby on Rails security guides, Cross-Site Scripting is the most
widespread, and one of the most devastating security vulnerabilities in web
applications*’. The attack injects malicious client-side executable code such as
JavaScript.

FIT application sanitize user input, therefore XSS menace is eliminated. Figure 35
demonstrates the result of failed XSS attack attempts, JS and HTML code is properly
filtered, therefore the alert message is not displayed on either AJAX create request or
page reload.

* http://shiflett.org/articles/cross-site-request-forgeries

“ http://ruby.about.com/od/security/a/forgeryprotect.htm

* http://guides.rubyonrails.org/security.html|

55

http://shiflett.org/articles/cross-site-request-forgeries
http://ruby.about.com/od/security/a/forgeryprotect.htm
http://guides.rubyonrails.org/security.html

Attila Sukosd <h1>hi</h1> profile

Edit Profile

Email
atlila@sukosd.com
Skype
<script=alert(hi"y«</script=
Phone

<h1=hi</h1>

Address

=h1=hi=/h1>

Additional Information
<h1=hi</h1=

Chat

DIL— NP0 KA KRR KRR
width=5 height=5
style="display-none">
<fiframe:=
2013-08-23 19:05:25 Alexander
Egorov
<div
style="background:url('javascr
ipt-alert(1))">
2013-08-23 19:05:44 Alexander
Egorov
<script=alert('Hello"); </script>

<script=alert('Hello") <«'suript>|

Figure 35: XSS vulnerability test, the left part is conducted by Attila Sukosd, where the right one is done by
Alexander Egorov. Alert message is not displayed, since the attack was not successful.

4.4. Deployment

There are several possibilities of how to deploy a web application. In general there
are two possibilities either deploying the web application on a privately owned web
server or using third party services, e.g. cloud services. Taking into account that
during the focus of the thesis implementation part is on the development of the web
application and there was no infrastructure provided, the first option is not
applicable, since it take a great deal of resources to setup and configure a web server.
Hence, in order to minimize the efforts spent on deployment, cloud services should
be utilized. Considering fast deployment of the application as a goal, there are two
primary options for of what cloud areas are applicable for the case: Infrastructure as
a Service (Iaas) and Platform as a Service (PaasS). Iaas provides physical of virtual
machines and other resources such as firewalls, file-based storage, load balancers,
and software bundles (Amies, Sluiman, Qiang, & Guo, 2012). Paas offers a platform
that includes operating system and middleware. In other words PaaS takes care of
everything needed to run a specific language or technology stack (McGrath, 2012).

The decision to deploy FIT application on PaaS was made, since using Paa$sS allows
not caring about configuration and maintenance of the infrastructure and underlying
platform. Considering the absence of budget for the application, possibility of
deploying the application for free is the main requirement for PaasS provider.

Heroku is a platform as a service provider that supports Ruby programming language
and Ruby on Rails Rack-compatible projects. Heroku was choosen as PaasS provider,
since Heroku offers charge-free services for developing purposes and provides the
ability to deploy an application using a one-line command®.

Heroku terminology is presented in Table 16.

* http://www.building43.com/videos/2010/04/20/herokus-ruby-cloud-platform/
56

http://www.building43.com/videos/2010/04/20/herokus-ruby-cloud-platform/

Term Name Term Description

Dyno An isolated, virtualized Unix container that provides the
environment required to run an application43.

Slug A compressed and pre-packaged copy of an application that is
optimized for distribution to the dyno—manager44.

Stack A complete deployment environment that includes the base
operating system, the language runtime and associated
libraries™.

Table 16: Heroku terminology overview

Rails application supported by Heroku stack based on Ubuntu 10.04 that is called
Cedar. A dyno get 512MB of RAM and 1x CPU share in its default configuration (“1X”)
If the application requires more memory or CPU share it is possible to resize dyno to
a “2X” configuration that gives 1024MB of RAM an doubles the CPU share on a per
process-type basis*°.

A free Heroku account is limited to one “1X” dyno available, the PostgreSQL database
size is limited to 10000 rows, and there are only 20 simultaneous HTTP session are
allowed.

package Composite Structure | Deployment]J

Diagram name |Deployment

Author Alex Egorov
Creation date 22013 1:46 PM
Modification date | B/20M311:33 PM

Server : Heroku

FIT : PostgreSQL FIT : Dyno Chrome : Weh
DBEMS Browser

Figure 36: FIT deployment on Heroku

* https://devcenter.heroku.com/articles/how-heroku-works

* https://devcenter.heroku.com/articles/slug-compiler

** https://devcenter.heroku.com/articles/stack

% https://devcenter.heroku.com/articles/dyno-size

57

https://devcenter.heroku.com/articles/how-heroku-works
https://devcenter.heroku.com/articles/slug-compiler
https://devcenter.heroku.com/articles/stack
https://devcenter.heroku.com/articles/dyno-size

The expected uptime is 99.5%, but it is worthwhile to mention that is the application
deployed form free account has not been used for a while Heroku suspends the stack
and it takes approximately three to five minutes to start the application. To prevent
the application from sleeping there should be more than one dyno associated to the
application‘”.

The deployment diagram is presented in Figure 36.

Taking into account that during FIT development Git VCS was used and Heroku
Toolbelt is installed, the application deployment to Heroku can be done relatively
easy in a few steps using command line interface. After creating the application on
Heroku by executing create command from Git repository as it is shown in Figure 37
that will create remote repository called heroku. List of remote repositories shown
in Figure 38, where origin is a default remote repository on GitHub for FIT
application.

Then the desired Git branch should be pushed to Heroku with one-line command
from command line interface that is shown in Figure 39.

The command shown above pushes Git master branch to the Heroku that will
automatically compile the application to a slug. After the compilation is finished with
success, the application is deployed on Heroku and can be checked but the command
shown in Figure 40 that will open a new tab in default web browser with FIT

application.

* https://devcenter.heroku.com/articles/dynos#dyno-idling

58

https://devcenter.heroku.com/articles/dynos#dyno-idling

4.5. Libraries and Components

All gems used in the application are free of charge and licensed under different open-
source licenses. Icons used in the application are free for any usage.

Gem name

Description

rails
bootstrap-sass
bcrypt-ruby

cancan
rolify

thin

roo
bootstrap-datepicker-
rails

kaminari
jquery-datatables-rails
sqlite3

postgreSQL

annotate

rspec-rails

factory_girl_rails
faker

capybara
launchy

database_cleaner
guard-rspec

sass-rails
coffee-rails

Ruby on Rails application framework.

Includes and enables Bootstrap framework.

The gem includes bcrypt function. Used for hashing
passwords.

The gem provides authorization capabilities.

Allows attaching roles to any resource, i.e. any class or
concrete class instance.

A web-server used for development.

Spreadsheet managing library.

A component for picking dates with bootstrap styling.

The gem provides pagination functions.

HTML table wrappers.

Development database.

Production database.

Annotates models with database fields.

Includes RSPEC language for writing unit tests and
testing environment.

A library for creating, building instances from objects.
Generates fake date, like email addresses or names.
Simulates user’s activity, used in testing.

Allows launching external application from within
Ruby programs.

Provides database cleaning features.

Automatically detects changes in code and launches
test suites.

Includes SASS support.

Allows using CoffeeScript in Rails.

59

5 System Operation and Test

5.1. Operation from User Perspective

Taking into the account that many users would have the first encounter with the
system shortly after introduction of Fagan-Style Inspections concept it is vital to
provide appropriate guidance for the inspection participants.

After a user logs-in to the system his profile details are presented to him. If the
profile is incomplete, then it is recommended to add some information to the profile.
Figure 42 demonstrates changes (after the profile was updated, the notification of
incomplete profile disappeared).

Profile updated

Hello, Birka Dregart Larsen Hello, Sved Frazin

Edit Profile Edit Profile

Email
S0629687@student dtu.dk

Email

5062987 @student dtu dk

skype

the_white_knight

Phone

12345678

Address

Additional Information

Skype me if you have any questions

author at AccessTimeTest 3B Member of AccessTimeTest 3B

author at AccessTimeTest 3B Member of AccessTimeTest 3B

Figure 42: User profile before change (left) and after (right)

After clicking on the inspections list at the navigation panel at the top as it is show on
Figure 43, the list of inspections where the user is a member is demonstrated. When
the user clicks on the inspection name he is redirected to the inspection page, which
is shown in Figure 44.

Inspections -

AccessTimeTest 3B

Figure 43: Inspections list

Alternatively, if the user decides to click on Users menu item then Inspection
Participants are presented. The page with participants list for the inspection is shown
in Figure 44. The page contains list of users with small amount of information such as
roles in inspections, profile pictures. The links to user profiles with full information
are available at this page.

60

Inspection AccessTimeTest 3B Participants

Lasse Bach Nielsen lon-Daniel Cimpeanu-Bradiceanu Sved Frazin
moderator at AccessTimeTest 3B inspector at AccessTimeTest 3B author at AccessTimeTest 3B
™ ™™ Member of AccessTimeTest 38 l Member of AccessTimeTest 38 ‘ Member of AccessTimeTest 38

i

Thomas Rossen Morten Foged Schmidt Kenneth Andersen Skovhus

inspector at AccessTimeTest 3B inspector at AccessTimeTest 38 inspector at AccessTimeTest 3B
l Member of AccessTimeTest 3B l Member of AccessTimeTest 38 l Member of AccessTimeTest 38
Nan Wu

inspector at AccessTimeTest 36
l Member of AccessTimeTest 3B

Figure 44: Inspection Participants page

The figure below shows how FIT guides authors through the various stages of the
inspection process. The guidance contains information what author should do in
particular stage of the inspection process. During the setup and upload stages author
should upload one or more artifacts, so the inspectors can review them.

Inspection AccessTimeTest 3B

; setup upload prepare inspection rework finished
Artl faCts VAGRSSATep 2013-08-29 2013-08-31 2013-09-02 2013-09-04 2013-09-06 c h at
l‘u“ add artifact Be the first to write a message
A 4 download artifacts Remarks Table
show 10 || entries Search

Deployment diagram
please don't look at the
last page

Object “ Location Content Level Author Created_at Updated_at
No data available in table

Showing 0 o 0 of O entries

Figure 45: Author perspective on the inspection process

The inspection page from the moderator perspective is presented in Figure 46. As it is
possible to notice the status of the inspection was changed, thus the status bar
displayed that change by coloring past stages with dark gray color. The moderator
was able to change the status because one artifact was uploaded. During the prepare
stage the moderator received a personal guidance, which asks him to ensure that the
inspectors contributed to the inspection during this stage.

61

Inspection AccessTimeTest 3B

. setup upload prepare inspection rework finished
ArtlfaCts p Sl r iy ksl iy Fkailisilp 2013-09-02 2013-09-04 2013-09-06 Ch at
'—|_|A upload remarks Be the first to write a message
4 download artiracts Remarks Table
Show 10 [v] eniries Search
Deployment diagram Object “ Locaticn ~ Centent Level Author Created_at Updated_at
Deployment diagra deployment1 The diagram looks nic comment Lasse Bach 2013-08-27 2013-08-27
m e Nielsen 00:51:40 00:51:40
Showing 1 fo 1 of 1 entries
Inspection |v| | code ¥ minor |v|| Submit

remarks_template
Figure 46: Moderator perspective on the inspection page

5.2. Operation from Administrator Perspective

Looking from the administrator point of view it is possible to notice some additional
features of the system. The administrator is able to perform any action that any other
user can and also he is able to create, modify and delete inspections, campaigns and
users. The inspection edit page is presented in Figure 47, where it is possible to
notice that additional actions became available in comparison to users participants
list.

Rogue Insp

delete

setup upioad prepare rework finished
2013-08-19 2013-08-26 2013-08-27

Inspection Participants

no name Edit Delete User
author at 02264E13 1A revoke
l Member of 02264E13 1A delete
Add Role | author v|| Global ~ grant

Add Participant

Lasse Bach Nielsen

G2

Edit Delete User
moderator at AccessTimeTest 3B

revoke
Member of AccessTimeTest 38
E delete
Add Role author v Global v grant

testerin Edit Delete User
moderator at Rogue Insp revoke
inspector at Rogue Insp revoke
Member of Rogue Insp delete

Add Role | author ~| || Global v grant

Users

test test Edit Delete User
inspector at 02264E13 Spezialtest
revoke
Member of 02264E13 Spezialtest
delete

Add Role | author ¥| || Global v grant

Figure 47: Inspection edit

Alexander Egorov

FPgEN admin revoke
inspector at Rogue Insp revoke
Member of Rogue Insp delete

Edit Delete User

Add Role

author v/ | Global v | grant

Attila Sukosd <h1>hi</h1>

)

Add Role

Edit Delete User
moderator at 02264E13 Spezialtest
revoke

Member of 02264E13 Spezialtest
delete
author v

Global v grant

Figure 48 shows the combination of create and upload forms.

62

Create Campaign Create Inspection

Name Name
Comment Comment

Download group assignment template Select campaign 02264E13 v

Group assignment
P 9 Choose File | No file chosen Create
Create

Upload remarks for inspection Upload artifact for Rogue Insp
Rogue Insp

Choose File
Download a template for remarks file

Name
Remarks to upload | [spoose File | Mo file chosen

Comment

Upload

Figure 48: Create and upload pages combined

5.3. Testing

The application was tested on several different browsers such as Chrome 28, Mozilla
Firefox 22, and Internet Explorer 10 with different screen resolutions starting from
1378x768 to 1920x1080. The application showed full compatibility with all tested
browsers.

upload prepare inspection rework finished
2013-08-19 2013-08-26 2013-08-27

Remarks Table

Show | 10 v entries Search:
. Conte
Object Location nt Level Author Created_at Updated_at
figure Information test1 minor Alexander 2013-08-13 2013-08-13
Model Egorov 04:58:38 04:58:38
line 234 test2 major Alexander 2013-08-13 2013-08-13
Egorov 04:58:38 04:58:38
line 234 test5 minor Alexander 2013-08-13 2013-08-13

Figure 49: Inspection view on mobile device

The application was also tested on different devices and operating systems. It was
tested under Windows 8, Mac OS X and Android 4.1. FIT showed acceptable results
for mobile devices, since the support of the mobile devices was not a goal for the

63

system development. The scaling problems may occur. Inspection view is presented
in Figure 49 as it is seen on Google Nexus S mobile phone perspective using Google
Chrome browser.

The application does not scale properly on some places, but it works with an
appropriate speed, and full functionality is preserved with a small limitations.

Figure 50 shows the campaign with four inspections, three inspections are properly
staffed with author, moderator and at least one inspector, while one inspection,
called 2B, is staffed incorrectly, therefore it is highlighted with red box and the
warning message appeared, notifying the administrator that there is a problem.

AccessTimeTest

visit edit delete

visit 1A inspection edit 1A inspection visit 1B inspection edit 1B inspection
setup upload prepare inspection rework finished setup upload prepare inspection rework finished
ks gy 2013-08-29 2013-08-31 2013-09-02 2013-09-04 2013-09-06 Ay RS Tey 2013-08-29 2013-08-31 2013-09-02 2013-09-04 2013-09-06
visit 2A inspection edit 2A inspection Team assignment is wrong edit 2B inspection

setup upload prepare inspection rework finished setup upload prepare inspection rework finished
kSIS ey 2013-08-29 2013-08-31 2013-09-02 2013-09-04 2013-09-06 vigksuiurgy 2013-08-29 2013-08-31 2013-09-02 2013-09-04 2013-09-06

Figure 50: Inspection with staffing problems

If a deadline for an inspection is missed then the date font turns into red color. Figure
51 displays inspections a campaign with three inspections that have problems with
deadlines. A deadline can be missed in two cases: the first one if the deadline was not
clothed and current date is in highlighted (Upload and Prepare deadlines for
foobar inspection), the second one when the deadline was closed after the due
date (Setup and Upload deadlines on 1A inspection).

02264E13

visit edit delete

visit 1A inspection edit 1A inspection Team assignment is wrong edit foobar inspection
upload prepare inspection rework finished setup upload prepare inspection rework finished
““ 2013-08-25 2013-08-27 2013-08-29 ‘ 2013-08-21 2013-08-23 2013-08-27 2013-08-29 2013-08-31
visit i i i edit i ir
upload prepare inspection rework finished
w 2013-08-23 2013-08-26 2013-08-27 2013-08-29 2013-08-31

Figure 51: Missed deadlines

During the inspection process the moderator or the administrator can change a
deadline. Figure 52 displays the successful deadline change. The user after clicking on
the deadline (marked with one on the figure) will see the calendar appeared, a date
highlighted with blue show current date. When user clicks on the desired date
(marked with two on the figure) the calendar closes and the save icon appears.

64

rework

2013-08-27 p 2013-08-26 ekl by

“« August 2013 »
Su Mo Tu We Th Fr $Sa
29 1 2 3

search ’ 4 5 6 7 8 9 10 ¢

11 12 13 14 15 16 17

Created at Updated ; Creay 18 19 20 21 22 23:[

2013-08-13 02:58:38 2013-08-1: 2013 25 [l 27 28 29 30231 34
2013-08-13 02:58:38 2013-08-1: 2013, 1 2 3 4 5 6 7 3
2N12.NR_12 N9 AR-28 2n12.n8_1* 204 2_TAT s a1

rework

rework

D RISy 2013-08-27 0 kSR Ly 2013-08-27

3
Search ' Searc!
Created_at Updated_; Created_at Updated_
2013-08-13 02:58:38 2013-08-1: 2013-08-13 02:58:38 2013-08-1
2013-08-13 02:58:38 2013-08-1: 2013-08-13 02:58.38 2013-081
2013-08-13 N7 R&-3R 2013-08-1! AN12 NE 13 N9-RR-AR N42 e 4

Figure 52: Change Deadline

After user clicks on the icon it will disappear and no error message will be shown. It
means that the change was successful.

rework

2013-08-27 0 PRy 2013-08-27

“« September 2013 »

Su Mo Tu We Th Fr Sa
* 25 27 28 20 30 3
Search T2 3 4 5 6 @ch

8 9 10 11 12 13214

Created_at Updated_; Creat 15 16 17 18 19 20 21 4.
2013-08-13 02:58:38 2013-08-1: 2[]134. 22 23 24 25 26 27 28 |1
2013-08-13 02:58:38 2013-08-1: 20134 20 30 1 2 2 4 5 A
2N12.N2_ 42 N2-RR-28 2N13.NR_1* e a kR ol e Rt R T - N Ta | ke |- I

rework

D 2013-09-07 o kRilrrg

FIT

l Searchl

Deadline for the inspection is not valid

Created_at Updated_:
2013-08-13 02:58:38 2013-08-1
2013-08-13 02:58:38 2013-08-1
2N13-NR-13 NP-AR-3] 2N13-NR-1!

Figure 53: Select Wrong Deadline

65

If the user select incorrect deadline as it is presented in Figure 53 after pressing the
save button an error message would be shown notifying user that there a mistake
was done.

5.4. Loading Time

The loading time was measured for the application deployed on Heroku with Chrome
build-in developer tool. The average ping time for the Heroku website was 140ms.

The loading time for an inspection page was around 1.9s, the inspection contained
several artifacts, remarks and chat messages. The loading time graph is presented in
Figure 54. The HTML document was loaded in 0.9 seconds and during the other 0.9
second CSS, JS and image assets were loaded.

MName Time

Method Timeling
Path Latency 41T ms 625 ms 834 ms 1Mz 125s 146= 167s 1885
1 11 897 ms
| .) GET . y
==l /inspections 895 ms
-| application-16426920... 351 ms
C55 GET _
fassets 350 ms
‘| application-172442b4... 378 ms
| i GET .
=] /assets 375ms
x_| delete_16-db704f7d62... == 452 ms]
—1 fassets/icon_16 491 ms o
| save_32-99c15ch73369... 348 ms .
El| R e GET ==
== /assetsficon_32 259 ms
.| delete_32-275fc597da... 325 ms .
4 - . GET ; — —
== fassetsficon_32 213 ms
| down_32-9d2e0f2ae3.. 321 ms .
| . . . GET -]
L= fassetsficon_32 207 ms
F il_32-11120bf720... 321 ms
&, | pendl == : N
i '3 sficon_32 206 ms —
| up_32-6b21127385082... 3M3ms)
| . - GET - —
=1 /assetsficon_32 193 ms
| plus_32-afc0e3dec3fca... 300 ms .
. = GET ~ T)
=] /assetsficon_32 168 ms

Figure 54: Loading time for inspection page

Remark upload is an important action during the inspection process, thus it is
important to ensure that the application quickly process the spreadsheet. The
response time for remark upload and subsequent inspection rendering reached 5.2
seconds for the test spreadsheet with 100 remarks. The graph with latencies is shown
in Figure 55.

iane Method pime Timeine
Path Latency 941 ms 1415 1885 2385 2825 3285 376s 4235 4703 517
| upload_remarks 2465
‘ ; N POST -
. /inspections/32 2455
=] 32 GET 143s
I==] Jinspections 845ms ' —
-| application-164e692063b3F972... 395ms
l.:-b‘ : GET .
= /assets 392ms
" application-178442b4bbdaalh... 1.01s
GET
= /assets 1.01s
| save_32-99¢15¢b73369a7124d9b. .. 604 ms
=] ‘ - =l
‘assets/ficon_32 465 ms
x_ delete_16-db704f7dEe2a58c09a4... CET 534ms
=] /assets/icon_16 367 ms
| down_32-9d2e0f2ae39ebcfeds.., GET 497 ms
| ¥ /assets/icon_32 276 ms h—
7‘ up_32-6b811273890827b4cefd9... GET 473 ms
| = /assetsficon_32 233ms —
| plus_32-afcle34ec3fc318b523b.., == 444 ms
|2 assets/icon_32 176 ms —

Figure 55: Loading time for upload remarks

66

Campaign creation is also important action for an administrative user. Even that it
occurs relatively rarely48 in is essential to maintain adequate processing time for the
user request. Taking into account that the administrator user would like to use role
assignments file in order to make the system create inspections, assign roles and
create users if necessary. The response time graph for create campaign action is
presented in Figure 56.

MName Method Time Timeline
Path Latency 1845 2763 3683 4595 551s €435 7355 82735

g 8125
| campaigns i B12s
1.23s
GET -
659 ms
253 ms
{5z 252 ms
429ms

GET .
428 ms

464 ms
& 172 ms

In order to understand the system performance on real data, the special dataset was
used. The example of the spreadsheet structure is presented in Table 17. It should be
noticed that this file was used in 02264 Requirement Engineering in 2011. The
spreadsheet was used in create campaign action, thus according to the spreadsheet,
FIT had to create nine inspections, 59 new users and assign 59 roles.

Last name First name S-number Role Group

Sgrensen Morten Chris072440 A 1A
Glantz Christian Fr{s062906 |l 1A
Petersen Bjarne s052513 | 14
Warnecke Christian |s062018 |l 1A
Vargas Luis Fernan{s111613 M 14
Hgvelt Frederikke {s062656 |A 1B
Espersen Asger lgrge|s112343 | 1B
Magnusson Magnus 104893 | 1B
Shanti Daniel Mart|s082941 I 1B
Winstram-Meller Melvin lengs072435 |l 1B
Bosca Moya Jose 5111778 |M 1B
Mahboob Muhammads112044 A 2A
Gruber Thierry 111106 |l 2h
Kristiansen Casper 082916 |l 24

Since it was a real data, the spreadsheet had a mistake: inspection 2B had two
authors, instead of one, therefore FIT discovered this inconsistency and one user
became an Author, the other one - didn’t. After the campaign was created a
notification message appeared as it shown in Figure 57.

8 According to Table 8: Create Campaign Use Case

67

The latency for the create campaign action appeared to be 10.2 seconds, which may
seem a little bit too high, but can be considered as an appropriate result, since it
occurs only a few times during a semester.

The upload and processing time for an artifact with 1.8 Mb size had reached 23
seconds.

02264E11

visit edit delete

visit 1A inspection edit 1A inspection

setup upload prepare inspection rework finished
2013-09-01 2013-09-03 2013-09-05 2013-00-07 2013-09-09 2013-09-11

visit 1B inspection edit 1B inspection

setup upload prepare inspection rework finished

RSVt Ry 2013-09-03 2013-09-05 2013-09-07 2013-09-09 2013-09-11

visit 2A inspection edit 2A inspection

setup upload prepare inspection rework finished

RSVt Ry 2013-09-03 2013-09-05 2013-09-07 2013-09-09 2013-09-11

Team assignment is wrong edit 2B inspection

setup upload prepare inspection rework finished

RSVt Ry 2013-09-03 2013-09-05 2013-09-07 2013-09-09 2013-09-11

Figure 57: Error notification on role duplicate

Figure 58 demonstrates FIT performance evaluation on uploading and processing
remarks depending on a file size.

Remark Upload Performance
9.2

[any
o
)

processint time, s

0 T T r T)
25 100 250 500

Number of remarks

Figure 58: Remark upload performance

68

Considering that loading time test result may vary due to a complex combination of
factors not depending from the system such as internet connection speed, browser
version, and load on Heroku and that the application was tested on representative
data, the obtained results on the most critical actions is can be considered as
excellent, since the application is hosted in North America using free services.

69

6 Conclusion

The targets that were set by the thesis were successfully accomplished. Preliminary
research on previous works revealed a great number of drawbacks and weaknesses.
They were carefully analyzed and measures had been taken to improve in the new
application.

During system analysis phase the formal inspection process was modified to comply
with the introduction of the online support tool. The business processes were
determined and reengineered on later stage.

The system was designed with extensive usage of prototyping. The whiteboard
sketching was used during the first round of the prototyping. On the next stage of the
prototyping the user interface was implemented using Bootstrap framework. The
working prototype was created with Bootstrap and Ruby on Rails framework.

During the implementation process the application was created. FIT is based on
Model View Controller architecture, which was implemented according to modern
trends in web application development with an extensive use of most reliable and
popular frameworks, such as Bootstrap and Ruby on Rails. The system is modular and
flexible; therefore it provides great extensibility possibilities.

During the testing phase the tool was checked for possible drawbacks. It was
concluded that FIT does not suffer from the drawbacks that led predecessor system
to failure. FIT does support national character sets, it provides guidance for the
inspection participants and is equipped with communication medium. The
administrative load on privileged users lowered in great extent, due to FIT tolerance
to errors and automation in most routine tasks, such as a campaign creation or
overview on current status of multiple inspections.

The security analysis was conducted, it showed that the system is reliable and it is not
a subject to the most popular attacks on web applications. The application was
deployed on Heroku cloud platform that makes FIT easily maintainable, since
concerns related to a web server setup and maintenance are eliminated. Formal
Inspection Tool is a free open-source software product, which sources are worldwide
publicly available through GitHub, therefore other developers can use the experience
and results of this work.

The author waits with anticipation when the application is going to be used during
autumn semester in 02264 Requirements Engineering course.

70

7 Bibliography

Amies, A., Sluiman, H., Qiang, G., & Guo, N. (2012). Developing and Hosting
Applications on the Cloud. IBM Press.

Carneiro, C. J., & Al Barazi, R. (2010). Beginning Rails 3. Apress.
Ediger, B. (2008). Advanced Rails. Sebastopol: O'Relly.

Fagan, M. E. (1976). Design and Code inspection to reduce errors in program
development. IBM Systems Journal, 182-211.

Fagan, M. E. (1986, July 7). Advances in Software Inspections. IEEE Transactions on
Software Engineering, pp. 744-751.

Fowler, M. (2003). Patterns of Enterprise Application Architecture. Addison-Wesley
Professional.

Loeliger, J. (2009). Version Control with Git. O’Reilly Media.

McDonald, M., Musson, R., & Smith, R. (2007). The Practical Guide to Defect
Prevention. Microsoft Press.

McGrath, M. P. (2012). Understanding Paas. Sebastopol: O'Reilly.

MITRE Corporation. (2011, September 13). 2011 CWE/SANS Top 25 Most Dangerous
Software Errors. USA.

Petrolyte, R. (2011). FIT - an Online Inspection Support Tool. Kgs. Lyngby: DTU.
Scott, B., & Neil, T. (2009). Designing Web Interfaces. O'Reilly Media.

Storrle, H. (2012). QA3 Inspection Process Guide.

Storrle, H. (2012). Requirements Engineering.

71

A Delivery

The table below contains information regarding delivery of the project data.
Filenames are written in “quotation marks”, while directories are written without.

File or Directory

Description

“readme.txt”

“MSc_Alexander_Egorov_s111888.pdf”

https://aqueous-anchorage-
4810.herokuapp.com

Thesis

“MSc_Alexander_Egorov_s111888.docx”

Picture
“Project_s111888.zip”

Project

https://github.com/AIEg0rOv/ActualFIT

An explanation of the contents
of the delivery.

The thesis as such (this
document), as submitted to the
IMM librarian for print.

It is important to remember
that since the project is open-
source and does not have any
budget, a free account was
used. The account assumes that
the process manager puts the
application into ‘sleep’® if it is
not used for a while. It takes
approximately from 3 to 5
minutes to ‘wake up’ the
application and an error may be
presented, to eliminate error
the browser page should be
refreshed, e.g. by pressing F5.

Microsoft Word file user to
generate the PDF version of this

paper.
Pictures included as figures

The compressed development
version of the project.

The development version of the
project.

FIT Github repository.

* https://devcenter.heroku.com/articles/dynos#dyno-sleeping

72

https://devcenter.heroku.com/articles/dynos#dyno-sleeping

B Glossary

Term Description

AJAX Asynchronous JavaScript and XML

AR Active Record pattern

Artifact Any kind of document, i.e. design
specification, model or part of model, code
documentation, code listings, etc.

CSRF, XSRF Cross-Site Request forgery

DBMS Database management system

Dyno Virtualized lightweight container on Heroku

ERB HTML or JS template with embedded Ruby

Fagan Inspection, formal A process for detecting defect in software

inspection engineering process

FIT formal inspection tool

Gem Ruby pluggable library

Heroku PaaS provider

laas Infrastructure as a Service

IDE Integrated development environment

Inspection, Inspection process
JS

Long-Polling

MVC

NoSQL

PaaS

Rack

Rails, RoR, Ruby on Rails
RDBMS

Remark

Slug

SSE

Stack

VCS
WebSockets
XSS

Formal inspection process

JavaScript

Technique to obtain updates from server
Model View Controller pattern

Non relation DBMS that does not use SQL
Platform as a Service

Rack is web server interface for Ruby

Web application framework based on Ruby
Relational DBMS

Comment to artifact

Precompiled application on Heroku
Server-Sent Events, technology used for
server push

Heroku...

Version control system

Technique to obtain updates from server
Cross-Site Scripting

73

C List of Figures

Figure 1: Development with Fagan INSPeCtioNS.......cccevvieciiiiiieeee e 9
Figure 2: INSPeCtion PrOCESS....cciiiiiiiiiii i, 11
Figure 3: Software Development Process (Fagan M. E., 1986)ccccceceevrveeeeecrreeennns 13
Figure 4: Inspection process (Storrle, Requirements Engineering, 2012) 15

Figure 5: Evaluation of formal inspection process in utility and complexity scale

(Petrolyte, 20L1)...uuiiee ettt e e e e e et e e e et e e e e e b e e e e e ntae e e e enraeeeennraeaean 16
Figure 6: FIT-1 administrator panel (Petrolyte, 2011).......ccccecoviieeeiiiieeeeciee e 18
Figure 7: Overview Use €ase diagram......cccoeiccceiireieeeeeieiciiireeee e e e e senrrerre e e e e e seseneanaeeas 22
Figure 8: Create CampPaign.. ..., 23
Figure 9: Upload artifact. ... 24
Figure 10: Upload remarksooecciiiiieiec et e e e e e e e e e e e nnraeae s 25
Figure 11: Inspection Process With FITcoo i 27
Figure 12: Campaign Creation ProCeSSccovviiiiiiiiiiieee e 28
Figure 13: Role assignments file parsing proCess......cccovueeeiriiieeeeiiieeeessieeeeecieee e 29
Figure 14: FIT information model OVErVIEWcccviieiieiieiiicciieeecceee e 30
Figure 15: FIT information model detailscoovcvieeiiiiiiie e 31
Figure 16: FIT information model data types......ccccvueveveiiieiiiiiiieeceee e 32
Figure 17: Active Record Example (Fowler, 2003)ccccueeeiiiiiieiiiiieee e ceiree e 34
Figure 18: MVC Interaction (FOWIer, 2003)cccieeereeeeieiiiirreeeeeeeeeeeenrreeeeeeeeeeeenrneneees 34
Figure 19 Model DEPENUENCYccccuvrrieeieeeeeieiirreeee e e e e eeectreeee e e e e eeseanrrereeesessennnrnneeees 36
Figure 20: Chat loNg-POlliNgcooviiiieeiee et e e e s nraaeeeas 41
Figure 21: Inspection list SKETCHuvviviiiiiieie e 42
Figure 22: Current inspection SKEtChcoovvcirieeiiii e, 43
Figure 23: Remarks table SKETChuuveviiiiiiieeee e e 43
Figure 24: Panel with actions hidden (left) and displayed on mouse hover (right)..... 44
Figure 25: Inspection VIEeW PrototyPeooeeieciie it 44
Figure 26: Status bar PrototyPe ... 45
Figure 27: Remarks table and artifact overview during the implemented of the
[T e X e 1Yo 1S PP UP R PPPPPPRt 45
Figure 28: Artifact Action Panel rendered by default (left) and when download action
I g Lo X V2T =To W U T={ o o ISP 46
Figure 29: Inspection final desSigN........ceeeei i 46
Figure 30: Model final deSi Nuuuiiiiiee e 49

74

Figure 31: Controllers hierarchy.......cceeeeeieooieciieeeiee e 51

Figure 32: Views and @SSEt USABE.....uuuiieieieiiieieiireieeeeesecceiineeeeeseeessnnnrnneeeesessesnnsnnnees 53
Figure 33: Chat message protection from mass assignment misuse..........ccccecvveeennns 55
Figure 34: HTML code with authenticity token of send chat message form............... 55

Figure 35: XSS vulnerability test, the left part is conducted by Attila Sukosd, where
the right one is done by Alexander Egorov. Alert message is not displayed, since the

attack Was NOt SUCCESSTUL ..eeiuiiiiieieeee e 56
Figure 36: FIT deployment on HEroKuU........oooeeiiiiiiee i 57
Figure 37: The application creation on Heroku........cccoeeiiiiieieiiieccceeeee e, 58
Figure 38: Git remote repository list of FIT applicationcccceevviviieiiiiiniiiiiieeees 58
Figure 39: The application deployment on HErokucccceevevieeiiiiieeeiiiiiens e 58
Figure 40: Heroku open command to start FIT application in web browser 58
Figure 41: List Of RS SEMS ..eeiiiiiiiiei ittt e e e s e e 59
Figure 42: User profile before change (left) and after (right)ccccoveeeviiiieiniiennns 60
Figure 43: INSPeCtionS liST.....uuiiiiiiiiee e e e 60
Figure 44: Inspection Participants Pageccccvviiii, 61
Figure 45: Author perspective on the inSpection pProcessccccevcveeeeiiciereeeciveeeennns 61
Figure 46: Moderator perspective on the inspection Pagecccecveeeevvieeececiieeeenns 62
Figure 47: INSPeCtion €dit.......ceiiiceieeiiiiiiie et e e s e e 62
Figure 48: Create and upload pages combined.........ccccocuveeiiiiiiiiiiiiiee e 63
Figure 49: Inspection view on mobile device......cccvvieiieiccinieeeieieeeeee e, 63
Figure 50: Inspection with staffing problems............coovviveiiiveeiei e, 64
Figure 51: Missed deadlingS........ccccuvreeieee et eeeerrree e e e e e e e snraaaeees 64
Figure 52: Change DeadliNg........cceeiiiieiee et e e e e 65
Figure 53: Select Wrong Deadlingcevee ettt 65
Figure 54: Loading time for inspection Page......ccccceeeeiecceiiiieee e, 66
Figure 55: Loading time for upload remarks........ccccceeee e, 66
Figure 56: Loading time for create campaign with role assignments file..................... 67
Figure 57: Error notification on role duplicate......ccccceeeecciiiiiieiei i, 68
Figure 58: Remark upload performancecccueeeeeeee et 68

75

D List of Tables

Table 1: Software defects from the user's perspective (McDonald, Musson, & Smith,

P40 07 PSPPSR PSPPSRI 8
Table 2: INSPECION ROIES....cciiiii e e aee e 10
Table 3: Inspection process and rate of progress (Fagan M. E., 1976)cccvveeennee 12
Table 4: Roles and responsibilities in the inspection process (Storrle, QA3 Inspection
Process GUIAE, 2012)uuuieeiieiieiiiiiiiiieeeeeeeeeieireee e e e eesesbbrareeeeeeessessssraereeesessessssraeneees 16
Table 5: FIT-1 database user table (Petrolyte, 2011).......ccceeviieeeeiiieee e 17
Table 6: Previous system drawbacks..........ooccceviiiiieeiiiccceee e 18
Table 7: USE CaSE OVEIVIEWcoiiiiiiiiiiiiiieiiie ettt 21
Table 8: Create Campaign USE CaSE....cuuiiiiieicciiiiiiiee e e e ceciirrre e e e e e e seearreee e e e e e s e snsaeneeas 24
Table 9: Upload artifact USE CASEccccuiieiiiiiiee ettt e e 24
Table 10: Upload remarks USE CASE.....uuuieeiiiicceriiireeeeeeeecttereee e e e s esennraeneeeeeesennnsnnnees 25
Table 11: FIT USQAZE SCENAIIO wuvviiieriieeeiieeeeeciete e e sieee e e sire e e s eite e e e s sraeeeesasaeeeessaneeeanns 26
Table 12: Controller responsibilitiescocciieieiiiiie e 35

Table 13: Comparison of custom field implementation techniques in Rails model 38

Table 14: Chat update technologies compariSON.......ccccveeeieiiierieriieee e 39
Table 15: Methods with SQL injection vulnerability and prevention measures.......... 54
Table 16: Heroku terminology OVEIVIEWuiiiiiiiiei e e 57
Table 17: Role assignments spreadsheet eXxamplecccceevecieeeiiicieee e 67
TaDIE 18: DEIIVEIY ..ottt e e e e e e e e e e eeseaberaereeeeeesennnrsaeeens 72
TabIE 19: GlOSSAIY ..ceeeiirreeeiee ettt eece et e e e e e ee b be e e e e e e e eeseatnraereeeeeesennnrseeeees 73

76

