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Summary

This thesis presents a procedure for controlling an industrial process using Model
Predictive Control (MPC).

The first part of the thesis introduces the basic ideas of model predictive control
and the mathematical theory on which the procedure is based. In particular,
it is investigated how a linear model of the process to be controlled can be
identified from input-output data of the process. Furthermore, it is discussed
how a simulation model of the industrial process can be modeled.

Disturbance rejection and offset free control are important concepts in industrial
control. To achieve offset free control in the face of unknown disturbances
and/or plant-model mismatch, integrators are added to the identified linear
model. Three different approaches to adding these integrators are presented.

Based on the identified linear model extended with integrators an unconstrained
MPC is formulated and subsequently transformed into a convex quadratic opti-
mization problem. This optimization problem can be solved explicitly and the
resulting optimal control law is linear.

The linear controller is combined with the linear process model forming a closed-
loop state-space model. For the purpose of tuning the developed MPC, an
optimization based tuning approach was studied. To set up this optimization
problem different performance measures for the closed-loop control system have
been analyzed. One of the key elements of the optimization is the addition
of a non-linear constraint, which is used to ensure robustness of the resulting
controller.
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In the second part of the thesis a case study has been conducted for a modified
4-tank process, this process has been used as a representative of an industrial
process. The process exhibits some of the typical behavior of an industrial
process such as strong interaction and non-minimum phase behavior.

The first part of the case study identifies a linear model of the modified 4-tank
system from input-output data. Since no real industrial process has been avail-
able for this project, the input-output data were obtained by simulation using
a first-principles non-linear model of the process. Secondly, tuning parameters
were obtained from the optimization based tuning approach.

Finally, closed-loop simulations have been carried out using the tuning param-
eters obtained by the optimization problem. In these simulations the first-
principles non-linear model for the modified 4-tank process was used as the
plant.

In general it was seen that the optimization approach produced some reasonably
good tuning parameters for the modified 4-tank process. Furthermore, in closed-
loop simulation it was illustrated that the closed-loop performance obtained was
satisfactory with respect to both tracking and disturbance rejection even under
a high level of noise in the system.
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Chapter 1

Introduction

This thesis considers the topic of industrial Model Predictive Control (MPC).
The term industrial model predictive control refers to the procedure of control-
ling an industrial process using MPC.

Model predictive control, also known as receding horizon control, refers to con-
trol strategies in which a model of the process to be controlled (the plant) is used
to predict the future dynamic behavior of the plant. Based on these predictions
an optimal control problem is set up, in order to optimize the future dynamic
output of the plant.

MPC is one of the most advanced control approaches and has had a substantial
impact during the past 30 years on the control industry, especially for processes
with constraints. One of the main reasons for this, is that the MPC strategy
allows for explicit inclusion of constraints in its formulation. This allows the
controlled output of the process to be moved closer to constraints and hereby
obtaining more desirable outputs and as a consequence, possibly higher profits
[Mac02].

The strategy was originally developed to be used in the control of power pro-
duction and in the petroleum industry [QB03]. However, today it has emerged
to be successfully used and implemented in a wide range of other applications,
including processes in the automotive industry and medical applications such
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as an artificial pancreas.

The processes encountered in different industrial applications usually have very
different characteristics. The main characteristics are the time scales on which
processes take place and the dimension of the systems describing the processes.
The processes encountered in the petroleum industry are usually slow processes
with time constants ranging from minutes to hours [Zhu06]. However, the di-
mensions of these processes are typically large, i.e. a large number of both
manipulated and controlled variables. When a process is slow, it is only neces-
sary to sample the process infrequently to capture the dynamic behavior. This
implies that the time available to solve the optimal control problem is large with
respect to the numerical optimization solvers used today.

In the automotive industry the opposite situation is usually the case. The time
constants are very small, in the range of milliseconds [Was10]. However, here
the dimensions of the processes are typically small.

In this thesis mainly the slower processes are in focus, and it is therefore assumed
that the time available to solve the optimal control problem is sufficient.

Another reason for the popularity of MPC is its intuitive way of addressing
the control problem and the resulting structure. The MPC is built up from a
number of building blocks. The main building blocks are

• A model of the process.

• An objective function describing the desired performance of the controller.
The typical objective function includes the reference tracking error and the
control action.

• A set of constraints, which the controller needs to work within.

• An optimization algorithm, used to compute the optimal control inputs
that minimize the objective function subject to the given constraints.

• A state estimator, used for state feedback.

• A disturbance model, to obtain offset free control.

The basic idea of MPC is to compute an optimal control sequence such that the
controlled outputs of the plant follow a predefined reference trajectory.
At each sampling time k, a measurement yk of the output of the plant is ob-
tained. From this measurement, the current state xk of the plant is estimated.
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Then a finite horizon optimal control problem is solved over a prediction hori-
zon N , using the current estimated state x̂k|k of the process as the initial state.
The solution of the optimal control problem yields a sequence of optimal con-
trol inputs {u∗k+j|k}

N−1
j=0 over the prediction horizon. The first control input in

the optimal control sequence is then applied to the plant at sample instant k.
At the next sample k + 1 the prediction horizon is shifted one sample and the
optimization procedure is repeated, with a new plant measurement. Figure 1.1
illustrates the basic principle of model predictive control.

Figure 1.1: Basic principle of model predictive control.

1.1 Thesis Objectives

The aim of this thesis is to develop a procedure for control of industrial processes
using linear MPC. As outlined in the introduction, the MPC is built up from
a number of building blocks. The main objectives of the thesis is to analyze,
develop and implement these building blocks and furthermore to combine the
building blocks into a complete control methodology.

In order to achieve the main objectives of the thesis several topics in control
theory need to be studied and sub-objectives need to be accomplished.
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First of all a linear model of the industrial process to be controlled has to be
obtained, for this reason different system identification methods will be con-
sidered. Secondly, different disturbance models should be investigated in order
to obtain offset free control. Based on the identified linear model combined
with a disturbance model, a state estimator should be employed and the MPC
designed.

A closed-loop description for the unconstrained MPC should be derived and
its properties analyzed. For the purpose of tuning the designed MPC different
performance measures for the closed-loop will be investigated. Subsequently
these measures are used to formulate an optimization based tuning approach.

To verify, test and illustrate the developed procedure a case study will be con-
ducted. All the building blocks will be implemented in Matlab.

1.2 Thesis Structure and Overview

This section gives an overview of the content of the thesis and presents its
structure. The thesis is organized as follows:

Chapter 2: Simulation Models and System Identification. This chap-
ter presents some approaches to formulating simulation models for industrial
processes and considers how to obtain linear models by system identification for
the use in linear MPC.

Chapter 3: Disturbance Modeling. Here different disturbance models to
ensure offset free control for the MPC are presented and analyzed.

Chapter 4: State Estimation. Introduces the concept of state estimation.
A stationary Kalman filter is presented, for the estimation of the state of the
linear model used by the MPC.

Chapter 5: Model Predictive Control. An MPC is set up based on the
Kalman filter model and the MPC regulation problem is transformed into a
convex quadratic optimization problem. For the unconstrained MPC the convex
quadratic optimization problem is solved explicitly and an optimal linear control
law is derived. For constrained MPC different cases are stated.
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Chapter 6: Closed-loop Analysis. In this chapter a state-space model for
the closed-loop is derived. Furthermore, the closed-loop is analyzed with respect
to stochastic and sensitivity properties.

Chapter 7: Tuning. This chapter presents different performance measures
for the closed-loop control system. The measures are divided into three cate-
gories and subsequently analyzed and discussed. In this chapter an optimization
based tuning approach is also formulated.

Chapter 8-11: Case Study. In these chapters a case study is presented.
The case study illustrates how the developed procedure can be used to control
an industrial process.

Chapter 12-13: Conclusion and Future Work. In these chapter the over-
all conclusions of the project are made and key findings are summarized. Lastly,
some considerations regrading future work are given.
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Chapter 2

Simulation Models and
System Identification

The purpose of this chapter is to present how industrial processes can be mod-
eled mathematically in order to obtain accurate models for simulation of the
processes. Secondly, the chapter will consider how linear models of industrial
processes can be obtained by system identification, for the use in MPC.

The chapter is organized as follows. In the first section non-linear process models
are considered. The second section addresses how linear models can be obtained
by linearization of non-linear process models. Finally, it is considered how a
linear model can be identified from plant input-output data.

2.1 Introduction

Many industrial processes behave, in reality, in some complicated non-linear
fashion. This implies that the task of obtaining models for such processes can
be difficult, very time consuming and not economically feasible.

However, it is in general of interest to have accurate models for simulation
of industrial processes. The main reason for this, in connection with process
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control, is that accurate simulation models can be used as representatives of
real life industrial processes. Furthermore, the simulation models can be used
to test the performance of the designed model predictive controllers.

One of the main building blocks of a model predictive controller is a model
of the process to be controlled. According to [Zhu06], between 70 − 80% of
the time used when implementing an MPC system in the industry, is spent on
model development. This underlines the importance of the modeling aspect in
connection with MPC.

The purpose of controlling an industrial process is typically to keep the con-
trolled variables of the process within some desired operation range. Despite
the fact that the industrial process behaves non-linear in the entire range of the
process, the behavior within the desired operation range can often be accurately
described by a linear model. This is what the MPC takes advantage of.

2.2 Non-Linear Process Models (Simulation Mod-
els)

For some processes, a non-linear simulation model of the plant can be derived
by first-principles. This means that the equations governing the process are
obtained from the underlying physical laws of the process. However, for very
complicated processes this approach might be infeasible due to mathematical
difficulties but also economical considerations. The processes that can be mod-
eled in this way can often be described by implicit equations of the form [Mac02]

F (x(t), ẋ(t),u(t),d(t)) = 0 (2.1)
y(t) = g(x(t)) (2.2)
z(t) = h(x(t)) (2.3)

where x(t) is the state of the process, ẋ(t) is the derivative of the state, that is
the time evolution of the state. u(t) and d(t) denote the control input and the
disturbance to the process, respectively. Here F (·) denotes some general implicit
functional relation. Furthermore, y(t) and z(t) denote the measurement and
output of the process, respectively.

Some of these models allow for an explicit description. The resulting model can
often be described by a set of first-order non-linear differential equations as
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ẋ(t) = f(x(t),u(t),d(t)) (2.4)
y(t) = g(x(t)) (2.5)
z(t) = h(x(t)) (2.6)

where f(·) is some non-linear (vector) function describing the evolution of the
process state and y(t) and z(t) denote the measurement and output of the
process, respectively. Furthermore g(·) and h(·) are functions that relate the
process state to the measurement and the output. It is assumed that these
functions only depend on the process state.

Both the description in (2.1)-(2.3) and the model (2.4)-(2.6) are determinis-
tic systems. To represent more realistic models, also the situation where an
uncertain initial state, process noise, and measurement noise are present, can
be considered. In this case (2.4) is reformulated as a Stochastic Differential
Equation (SDE) by

dx(t) = f(x(t),u(t),d(t))dt+ σ(x(t),u(t),d(t))dw(t) (2.7)

where the diffusion term is a standard Wiener process (Brownian motion)

dw(t) ∼ Niid(0, Idt) (2.8)

The initial state is assumed to be normally distributed

x(t0) ∼ N (x̄0,P 0) (2.9)

where x̄0 is the expected initial state and P 0 is the associated initial covariance.
When the process is modeled as an SDE, both the state and output of the
system are sequences of random variables (stochastic processes). The output of
the system is, in the stochastic case, also expressed as a function relation of the
state

z(t) = h(x(t)) (2.10)

The measurement of the system is modeled as the output corrupted by mea-
surement noise
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y(tk) = z(tk) + v(tk) (2.11)

where the measurement noise is assumed to be Gaussian white noise v(tk) ∼
Niid(0,R). It should be emphasized that the measurement is obtained in
discrete-time, indicated by tk. The sample instances are given by

tk = t0 + kTs, k = 0, 1, 2, . . . (2.12)

where Ts is the sample time.
The theory of stochastic differential equations is outside the scope of this thesis
and only the basic formulation will be considered. The reader is referred to
[Øks00] for further details.

For this thesis, no real life industrial process is available. Therefore the real pro-
cesses will be represented by a modified version of (2.4)-(2.6). The modification
will be considered in the case study.

Remark 1 It should be emphasized that no matter how the real process is
modeled, the model will always only provide an approximation to the real process.

2.3 Linear Process Models (Controller Models)

In order to control an industrial process by linear MPC, a linear model of the pro-
cess is needed. This model can be obtained mainly by two general approaches.
The approaches are

• Linearization of a non-linear process model

• System identification from plant input-output data

It should be stressed that linearization of a non-linear process model requires
that the parameters of the model have been identified (in addition to the fact
that a non-linear process model has been derived). This is in general not a
trivial task to conduct and this is also one of the reasons why linearization is
rarely used in practice.
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2.3.1 Linearization of a non-linear process model

In the situation where a non-linear process model is available, a linear model can
be obtained by linearization of the non-linear model, around a steady state. This
approach can be applied to both (2.4)-(2.6) and (2.7)-(2.11). In the following,
the linearization approach will be illustrated for (2.4)-(2.6).

Given u(t) = us and d(t) = ds, the steady state xs of (2.4) can be determined
by solving the equation

f(xs,us,ds) = 0 (2.13)

From the steady state, the steady state measurement and output can be com-
puted as

ys = g(xs) (2.14)
zs = h(xs) (2.15)

Next a first-order Taylor expansion is performed on f , around the point (xs,us,ds)

f(x(t),u(t),d(t)) ≈ f(xs,us,ds) +
(
∂f(xs,us,ds)

∂x

)
(x(t)− xs) (2.16)

+
(
∂f(xs,us,ds)

∂u

)
(u(t)− us)

+
(
∂f(xs,us,ds)

∂d

)
(d(t)− ds)

Denoting the deviation variables by

X(t) = x(t)− xs (2.17)
U(t) = u(t)− us (2.18)
D(t) = d(t)− ds (2.19)

and the Jacobian matrices by

Ac =
∂f(xs,us,ds)

∂x
(2.20)

Bc =
∂f(xs,us,ds)

∂u
(2.21)

Ec =
∂f(xs,us,ds)

∂d
(2.22)
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the first-order Taylor expansion can be expressed as

f(x(t),u(t),d(t)) ≈ AcX(t) +BcU(t) +EcD(t) (2.23)

The time derivative of the deviation state X(t) is

Ẋ(t) =
d

dt
X(t) =

d

dt
(x(t)− xs) =

dx(t)
dt
− dxs

dt
=
dx(t)
dt
− 0 = ẋ(t) (2.24)

The same steps can be conducted for the measurement and the output. Denoting
the deviation variables by

Y (t) = y(t)− ys (2.25)
Z(t) = z(t)− zs (2.26)

the measurement and the output can be expressed as

y(t) = g(x(t)) ≈ g(xs) +
(
∂g(xs)
∂x

)
(x(t)− xs)

= ys +CcX(t) (2.27)

and

z(t) = h(x(t)) ≈ h(xs) +
(
∂h(xs)
∂x

)
(x(t)− xs)

= zs +CczX(t) (2.28)

The continuous-time linearized model can finally be expressed as

Ẋ(t) = AcX(t) +BcU(t) +EcD(t) (2.29)
Y (t) = CcX(t) (2.30)
Z(t) = CczX(t) (2.31)

The non-linear model is linearized at a steady state. At the steady state the
linearized model is an approximation of the non-linear model in the neighbor-
hood of the steady state. The linearized model expresses this neighborhood in
terms of the deviation variables.
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2.3.2 System Identification from Plant Input-Output Data

In many applications a non-linear model of the process is not available and the
linearization approach can therefore not be used.

The second approach is concerned with system identification from observed data.
The general system identification procedure mainly consists of the following
building blocks [Lju99]

• Experimental design.

• A set of input-output data.

• A set of models, defining the model structure.

• A method for estimating the parameters of the model, based on the data.

• Validation of the model.

In this approach, tests are conducted directly on the actual process. In these
tests, known input signals are used to excite the process and the resulting out-
puts of the process are measured and recorded. This results in a set of input-
output data of the true process. The idea is then that a linear model of the
process can be obtained using different techniques from the field of system iden-
tification, on the input-output data. There exist many different techniques and
there is extensive literature on the topic of system identification. The reader is
referred to [Lju99] for further details.

Some commonly used input signals [Mac02], [Pou07] are

• Step signals of different magnitudes.

• Sine waves of different amplitudes and frequencies.

• Pseudo-Random or Pseudo-Random Binary Signals (PRBS).

In connection with MPC especially input-output model structures such as auto
regressive models with exogenous inputs (ARX) and auto regressive moving
average models with exogenous inputs (ARMAX) are of interest. One of the
reasons for this is that these input-output models may be realized as state-space
models in innovation form [JHR11], which fit the framework of MPC well.
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The state-space model in innovation form is given by

xk+1 = Axk +Buk +Kεk (2.32)
yk = Cxk + εk (2.33)

where εk ∼ Niid(0,Rε).

2.3.2.1 System Identification using Step Tests

An identification method commonly used to obtain a linear model of a process,
is the step test [Zhu01]. In this method, a step change is introduced in the
manipulated variable (MV) of the real process and the response of the controlled
variable (CV) is recorded and visualized.

For MIMO systems, a step change is introduced in one of the manipulated
variables while the rest are kept constant and the responses of all the controlled
variables are recorded. The procedure is conducted systematically for all the
manipulated variables. The reason for only changing one MV at that time is,
to ensure that the results are uncorrelated.

The step test should ideally be started from some steady state of the process, rep-
resenting the desired operation point (range) for the process. The step should
furthermore be applied for a sufficiently long time, until some clear step re-
sponses are seen and the process has reached a new steady state.

Since the behavior of the real process is generally non-linear, the size of the step
should be chosen carefully in order to both observe a clear response and not
violate any constraints of the process and/or not upset the process operation
excessively.

The input-output data obtained from the step tests are then fitted to an appro-
priate model structure. The standard model structures used are either first-order
plus dead time (FOPDT) models given by

Gij(s) =
Kij

τijs+ 1
e−θijs (2.34)

or second-order plus dead time (SOPDT) models given by
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Gij(s) =
Kij

(τ (1)
ij s+ 1)(τ (2)

ij s+ 1)
e−θijs (2.35)

where i = 1, 2, . . . , ny and j = 1, 2, . . . , nu denotes the number of MVs and CVs,
respectively. For both types of models Kij is the gain, τij is the time constant
and θij is the delay.

The resulting input-output model can then be expressed as

Y (s) = G(s)U(s) (2.36)

where Y (s) = [Y1(s) Y2(s) . . . Yny
(s)]T , U(s) = [U1(s) U2(s) . . . Unu

(s)]T

and

G(s) =


G11(s) G12(s) . . . G1nu(s)
G21(s) G22(s) . . . G2nu

(s)
...

...
. . .

...
Gny1(s) Gny2(s) . . . Gnynu

(s)

 (2.37)

The input-output model may subsequently be realized as a discrete-time deter-
ministic state-space model given by

xk+1 = Axk +Buk (2.38)
yk = Cxk +Duk (2.39)

This is in practice done using the Matlab function mimoctf2dss [Jør04], which
provides a minimal realization of (2.36). The realization is conducted by com-
puting the impulse response of the transfer function and doing a balanced real-
ization from the Hankel matrix of the impulse response matrices.

2.4 Summary

In this chapter different models for the simulation of industrial processes have
been presented. Both a purely deterministic and a stochastic formulation was
considered. The chapter has also illustrated how linear models of industrial
processes can be obtained by system identification for the use in MPC. In par-
ticular, it was presented how step tests can be conducted and used for system
identification of first and second-order input-output models.
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Chapter 3

Disturbance Modeling

The main purpose of this chapter is to describe different disturbance models in
order to achieve offset free control for model predictive controllers.

The situation where an unmeasured step disturbance is present in the plant, will
result in an offset when the process is controlled by an MPC which is based on
a model where the disturbances are not included [PR03]. Therefore the model
used by the controller is augmented with a disturbance model.

The chapter is organized as follows. In the first part of the chapter the set-
tings and assumptions for the disturbance modeling set up are introduced. The
following parts of the chapter describe the different disturbance models.
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3.1 Introduction

It is assumed that the model of the plant used by the controller can be described
by the discrete-time linear stochastic state-space model given by

xk+1 = Axk +Buk +Gwk (3.1)
yk = Cxk + vk (3.2)
zk = Czxk (3.3)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the control input, yk ∈ Rny is
the measurement, zk ∈ Rnz is the output and wk ∈ Rnw , vk ∈ Rny are process
and measurement noise, respectively.

The dimensions of the corresponding matrices are A ∈ Rnx×nx , B ∈ Rnx×nu ,
G ∈ Rnx×nw , C ∈ Rny×nx and Cz ∈ Rnz×nx . Here the pair (A,C) is assumed
to be detectable and the pair (A,B) assumed to be stabilizable.

The process noise and measurement noise are assumed to be identically inde-
pendently normally distributed (iid) as[

wk

vk

]
∼ Niid

([
0
0

]
,

[
Q S

ST R

])
(3.4)

where Q is the covariance matrix of wk and R is the covariance matrix of vk.
Furthermore, S is the cross-covariance between the process noise wk and the
measurement noise vk.

It is assumed that the number of measured outputs ny is equal to the number
of controlled outputs nz and furthermore that the set of measured outputs are
the same as the controlled outputs (C = Cz).

3.2 Deterministic-Stochastic Model

The modeling of an unmeasured disturbance using a deterministic-stochastic
model is done, by first setting up a deterministic model describing the dynamic
behavior of the system to be controlled. Secondly a stochastic model describing
the unmeasured disturbance is constructed and then these are combined.

The deterministic model is, in general, given by

xdk+1 = Adx
d
k +Bduk (3.5)

ydk = Cdx
d
k (3.6)
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where Ad, Bd and Cd are assumed to be known matrices (obtained by lin-
earization of a non-linear plant, estimated using identification procedures or as
a realization of a transfer function). Here the d indicates deterministic.

In this setup each disturbance is modeled as a first-order ARMA-process

εi,k =
1− αiq−1

1− q−1
ei,k, i = 1, 2, . . . , ny (3.7)

where ei,k ∼ Niid(0, σ2
e). This corresponds to a combination of white and in-

tegrated white noise [HPJJ12]. Here ny refers to the number of controlled
measurements, for which offset free control is desired.

An ARMA-process can be realized as a discrete-time state-space, in observer
canonical form, as

xsk+1 = xsk +Ksek (3.8)
ysk = xsk + ek (3.9)

where

Ks =

1− α1 0 0

0
. . . 0

0 0 1− αny

 (3.10)

Here the s indicates stochastic. Now, since both the deterministic and the
stochastic models are linear, they can be combined into a single model as follows.
Let the state vector of the combined model be defined as

xk =
[
xdk
xsk

]
(3.11)

and the measurement of the combined model be

yk = ydk + ysk (3.12)

The combined model can be expressed as

xk+1 = Axk +Buk +Kek (3.13)
yk = Cxk + ek (3.14)

where

A =
[
Ad 0
0 I

]
, B =

[
Bd

0

]
, K =

[
0
Ks

]
, C =

[
Cd I

]
(3.15)
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and ek ∼ Niid(0,Qe). It is noted that the combined state-space model in
(3.13)-(3.14) is in innovation form [HPJJ12].

Using this model, the state and disturbance are then estimated from the plant
measurement yk by means of a steady-state Kalman filter, which takes a par-
ticularly simple form for a state-space model in innovation form [Pou07].

3.3 MISO ARX Model

A MIMO (multiple-input multiple-output) model can be represented as ny
(number of outputs) MISO (multiple-input single-output) models. Each MISO
system relates all the inputs of the MIMO model to a single output.

The idea is to first model each output as a MISO ARX model

Ai(q−1)yi,k =
nu∑
j=1

Bij(q−1)ui,k + εi,k, i = 1, 2, . . . , ny (3.16)

where

Ai(q−1) = 1 + ai,1q
−1 + ai,2q

−2 + · · ·+ ai,nq
−n (3.17)

Bij(q−1) = bij,1q
−1 + bij,2q

−2 + · · ·+ bij,nq
−n (3.18)

are polynomials in the backshift operator of order n and εi,k ∼ Niid(0, σ2
ε).

Secondly, the noise model is extended such that offset free control is achieved,
in the case where an unmeasured step disturbance enters the system.

In this setup (like in the deterministic-stochastic model setup) the disturbance
is modeled as a first-order ARMA-process

εi,k =
1− αiq−1

1− q−1
ei,k, i = 1, 2, . . . , ny (3.19)

where αi is a tuning parameter of the disturbance model and is in the interval
αi ∈ [0; 1].

When αi = 0, (3.19) becomes

εi,k =
1

1− q−1
ei,k (3.20)

This corresponds to modeling the noise as integrated white noise. Furthermore
this case tries to approximate the disturbance in one step that is as fast as
possible.
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When αi = 1, (3.19) becomes

εi,k =
1− q−1

1− q−1
ei,k = ei,k (3.21)

which corresponds to no extension of the disturbance model and results in the
original MISO ARX model. In this case it is not possible to achieve offset free
control, since this description cannot reject a non-zero constant [HPJJ12].

The above cases constitute the limits of the disturbance model, which means
that either the disturbance is not rejected at all or it is rejected as fast as possible
at the expense of increased variance of the approximation.

The extended noise model (3.19) is then substituted into the MISO ARX de-
scription in (3.16)

Ai(q−1)yi,k =
nu∑
j=1

Bij(q−1)ui,k + εi,k (3.22)

=
nu∑
j=1

Bij(q−1)ui,k +
1− αiq−1

1− q−1
ei,k (3.23)

This model can be rewritten as

Āi(q−1)yi,k =
nu∑
j=1

B̄ij(q−1)ui,k + C̄i(q−1)ei,k (3.24)

where the polynomials Āi(q−1), B̄ij(q−1) and C̄i(q−1) are

Āi(q−1) = (1− q−1)Ai(q−1) (3.25)

B̄ij(q−1) = (1− q−1)Bij(q−1) (3.26)

C̄i(q−1) = 1− αiq−1 (3.27)

and i = 1, 2, . . . , ny.

The model in (3.24) can be realized as the state-space model

xk+1 = Axk +Buk +Kek (3.28)
yk = Cxk + ek (3.29)

in observer canonical form with

A =


−āi,1 1 0 . . . 0
−āi,2 0 1 . . . 0
...

...
...

...
−āi,n−1 0 0 . . . 1
−āi,n 0 0 . . . 0

 , B =
[
B̄Ti1 B̄Ti2 . . . B̄Tinu

]
(3.30)
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K =


αi − āi,1
−āi,2
...

−āi,n

 , C =
[
1 0 . . . 0

]
(3.31)

and ek ∼ Niid(0, σ2
e). Each output yi,k will result in a state-space model

description (3.28)-(3.29). A state-space model describing all the outputs i =
1, 2, . . . , ny, can be obtained by combining the individual models.

3.4 Unstructured Disturbance Model

In the unstructured disturbance model, the unmeasured disturbance is modeled
as integrated white noise, that is

dk+1 = dk + ξk (3.32)

where dk ∈ Rnd and ξk ∼ Niid(0,Qξ).

The model of the disturbance is then combined with the original model (3.1)-
(3.3) with additional matrices, describing how the disturbance enters the state
and the measurement. Let Bd ∈ Rnx×nd denote the matrix describing how the
disturbance enters the state and Cd ∈ Rnx×nd through the measurement.

Combining the model in (3.1)-(3.2) and the disturbance description in (3.32),
an augmented model is obtained. The augmented model is given by [RRQ09][

xk+1

dk+1

]
=
[
A Bd

0 I

] [
xk
dk

]
+
[
B
0

]
uk +

[
G 0
0 I

] [
wk

ξk

]
(3.33)

yk =
[
C Cd

] [xk
dk

]
+ vk (3.34)

where the noise now can be described bywk

vk
ξk

 ∼ Niid(
0

0
0

 ,
Q S 0
ST R 0
0 0 Qξ

) (3.35)

In order to ensure offset free control using the augmented model, the matrices
Bd and Cd have to satisfy some conditions related to detectability, the condi-
tions are given in [PR03]. The number of disturbances nd has to be chosen as
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nd = ny to ensure zero offset in all the controlled outputs [PR03].

In general the structure of the matrices Bd and Cd is unknown, since the dis-
turbance is unknown. However, a common choice is to assume some simple
structure of the disturbance [RRQ09].

Let
Bd = B, Cd = 0 (3.36)

then the disturbance is modeled as an input disturbance. While letting

Bd = 0, Cd = I (3.37)

models the disturbance as being an output disturbance. The matrices can also
be chosen such that the disturbance dk is modeled as a combination of input
and output disturbances.

Using the augmented model, the state and the disturbance are then estimated
from the plant measurements yk by means of a steady-state Kalman filter. The
steady-state Kalman filter is described in Chapter 4.

3.5 Summary

In this chapter the concept of disturbance modeling and rejection has been in-
troduced. To reject the disturbance and obtain offset free control, three classic
disturbance models have been presented. Each of the models have been de-
scribed and analyzed.
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Chapter 4

State Estimation

The purpose of this chapter is to introduce the concept of state estimation and
furthermore to develop the filter and predictor for the model used by the MPC.
State estimation is central to MPC, since the estimator incorporates feedback
into the model predictive controller.
The chapter is organized as follows. The first section introduces the subject
of state estimation. In the second and third sections the Kalman filter and the
stationary Kalman filter for stochastic LTI state-space models will be considered.

4.1 Introduction

For most industrial processes and their corresponding linear models, the process
state xk is unknown and cannot be measured directly. Therefore the process
state needs to be estimated, this is done from process measurements which are
somehow related to the state. It is important to have an estimate of the process
state as it is used in the MPC to predict the future dynamic behavior of the
system.

It is assumed that the model of the plant used by the controller can be described
by a discrete-time linear stochastic state-space model given by
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xk+1 = Axk +Buk +Gwk (4.1)
yk = Cxk + vk (4.2)

where xk is the state, uk is the control input and yk is the measurement of the
system. Furthermore, wk is process noise and vk is measurement noise.

The process and measurement noise are assumed to be identically independently
normally distributed (iid) as

[
wk

vk

]
∼ Niid

([
0
0

]
,

[
Q S

ST R

])
(4.3)

where Q is the covariance matrix of wk and R is the covariance matrix of vk.
Furthermore, S is the cross-covariance between the process noise wk and the
measurement noise vk.

The covariance matrices Q, R, and the cross-covariance matrix S are positive
definite and symmetric.
In the case where the process noise and the measurement noise are uncorrelated,
the cross-covariance is S = ST = 0. This is the most common situation,
however, there exist systems where this is not true. This is the case for state-
space models in innovation form, for these models there is a perfect correlation
between the process and measurement noise.

The initial state of the system is unknown, but it is assumed that its distribution
is known and given by

x0 ∼ N (x̄0,P 0) (4.4)

and is independent of process and measurement noise.

It is in this chapter assumed that the control inputs uk, k = 1, 2, . . . are deter-
ministic and known.
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4.2 Kalman Filtering

In the discrete-time interval [0, N ] the measurements yk, k = 0, 1, . . . , N are
recorded. Let YN denote the set of measurements from discrete-time k = 0 to
discrete-time k = N

YN = {y0,y1, . . . ,yN} (4.5)

The state estimation problem is concerned with obtaining an estimate x̂k|k of
the state xk, based on the set of measurement data Yk available at time k.

To obtain the state estimate x̂k|k, the Kalman filter is used. The Kalman filter
is a recursive approach to state estimation due to R.E Kalman [Kal60]. The
Kalman filter seeks to minimize the sum of squared errors between the true
state xk and estimated state x̂k|k. The filter is said to be optimal under the
following assumptions: the estimation model is identical to the true system, the
process and measurement noise is white and the covariances of the noise sources
are known exactly.

The Kalman filter for the discrete-time stochastic state-space is given by two
sets of recursions, a time update (also referred to as the one-step prediction)
and a data update (the filter).

The prediction recursion corresponds to the computation of conditional expec-
tations of the state xk+1 and associated covariances, given the data set Yk

x̂k+1|k = E{xk+1|Yk} (4.6)

P k+1|k = V ar{xk+1|Yk} (4.7)

The filter recursion corresponds to the computation of conditional expectations
[JHR11, Pou07] of the state xk and the process-noise wk, given the data set Yk

x̂k|k = E{xk|Yk} (4.8)

ŵk|k = E{wk|Yk} (4.9)
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and associated covariances of the state estimate

P k|k = V ar{xk|Yk} (4.10)

4.3 The Discrete-Time Kalman Filter

The recursions of the Kalman filter for the discrete-time stochastic state-space
(4.1)-(4.2), are given by [Jør04]

Filter

Re,k = CP k|k−1C
T +R (4.11)

Kfx,k = P k|k−1C
TR−1

e,k (4.12)

Kfw,k = SR−1
e,k (4.13)

ek = yk −Cx̂k|k−1 (4.14)
x̂k|k = x̂k|k−1 +Kfx,kek (4.15)
ŵk|k = Kfw,kek (4.16)

P k|k = P k|k−1 −Kfx,kRe,kK
T
fx,k (4.17)

Qk|k = Q−Kfw,kRe,kK
T
fw,k (4.18)

One-Step Prediction (Time Update)

x̂k+1|k = Ax̂k|k +Buk +Gŵk|k (4.19)

P k+1|k = AP k|kA
T +GQk|kG

T −AKfx,kS
TGT −GSKT

fx,kA
T (4.20)

The recursions are started at sample k = 0, where the initial covariance and
state estimate are given by

P 0|−1 = P 0 (4.21)
x̂0|−1 = x̄0 (4.22)



4.4 The Stationary Kalman Filter 31

By substitution of the filtered state covariance (4.17) and filtered process noise
covariance (4.18) into (4.20), the recursion for the one-step predicted state co-
variance can be formulated as

P k+1|k = A

[
P k|k−1 −Kfx,kRe,kK

T
fx,k

]
AT +G

[
Q−Kfw,kRe,kK

T
fw,k

]
GT

−AKfx,kS
TGT −GSKT

fx,kA
T

4.4 The Stationary Kalman Filter

The stationary Kalman filter is obtained in the case where the covariance matrix
P k|k−1 associated with the one-step state prediction becomes stationary. This
can mathematically be formulated as

P = P k+1|k = P k|k−1, k →∞ (4.23)

The conditions under which the covariance matrix becomes stationary are given
in [Jør04].

In this case the recursion for the covariance matrix becomes

P = APAT +GQGT − (APCT +GS)(CPCT +R)−1(APCT +GS)T

(4.24)

which is known as the Discrete Algebraic Riccati Equation (DARE). The equa-
tion can be solved using the built-in Matlab function dare.

In the stationary case, the filter gains for the state and process-noise are given
by

Re = CPCT +R (4.25)

Kfx = PCTR−1
e (4.26)

Kfw = SR−1
e (4.27)

with the associated filtered covariance matrices

P f = P −KfxReK
T
fx (4.28)

Qf = Q−KfwReK
T
fw (4.29)

Since the filter gains are stationary, they can be computed offline reducing the
computational complexity of estimating the current state xk.
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The filter and time update for the stationary Kalman filter are given by

ek = yk −Cx̂k|k−1 (4.30)
x̂k|k = x̂k|k−1 +Kfxek (4.31)
ŵk|k = Kfwek (4.32)

and

x̂k+1|k = Ax̂k|k +Buk +Gŵk|k (4.33)

It should be noted that the stationary covariance matrix P obtained by solving
the Riccati equation in (4.24), depends on the true noise covariance matrices
Q, R and S. However, it is not always the case that these are actually known.

Furthermore, it should also be noted that the Kalman filter depends on the
matrices of the system in (4.1)-(4.2). However, since the system might need to be
augmented in order to achieve offset free control, the model matrices are allowed
to be different. The model matrices for this case are denoted (Â, B̂, Ĝ, Ĉ).

4.4.1 Predictions Using The Stationary Kalman Filter

In order to predict the future dynamic behavior of the controlled process, the
filtered state estimate x̂k|k is used as initial point for the future predictions.
The one-step prediction is given by (4.33), where the filtered process-noise is
included. To predict the state of the entire prediction horizon, it is first noticed
that the process-noise estimate ŵk+j|k = 0 for j > 0. This is the case due to
the fact that wk and vk are only correlated for the current k. Consequently the
(j + 1)-step state prediction may be computed by

x̂k+1+j|k = Ax̂k+j|k +Buk+j|k, j = 1, 2, . . . (4.34)

4.4.2 Work Flow of the Stationary Kalman Filter

The recursions of the stationary Kalman filter are started at sample k = 0,
where the initial state estimate and covariance are given by

x̂0|−1 = x̄0 (4.35)
P = P 0 (4.36)
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At each sample k = 0, 1, 2, . . . a new measurement yk of the system becomes
available to the state estimator, from this the innovation ek is computed. The
innovation is the error between the actual measurement yk and the, by the state
estimator, predicted measurement ŷk|k−1

ek = yk − ŷk|k−1, k = 0, 1, . . . (4.37)

The predicted measurement ŷk|k−1, is a prediction of the actual measurement
yk at sample k, computed at sample k− 1 and based on the measurement data
set Yk−1. The predicted measurement is given by

ŷk|k−1 = Cx̂k|k−1, k = 0, 1, . . . (4.38)

The predicted measurement ŷk|k−1 is based on the one-step state prediction
x̂k|k−1. The one-step state prediction x̂k|k−1, is a prediction of the (true) state
xk at sample k, computed at sample k− 1 and based on the measurement data
set Yk−1.

Using the innovation ek and one-step state prediction x̂k|k−1, the filtered state
estimate is computed by

x̂k|k = x̂k|k−1 +Kfxek (4.39)

and the filtered process-noise estimate by

ŵk|k = Kfwek (4.40)

The Kalman filter is then prepared for the next process measurement by com-
puting one-step prediction of the state. The one-step state prediction is given
by

x̂k+1|k = Ax̂k|k +Buk +Gŵk|k (4.41)

4.5 Summary

In this chapter the basic idea of state estimation has been presented. It has
been shown how an estimate of the process state can be obtained by use of the
stationary Kalman filter. Also the assumption on the formulation of the filter
with regard to optimality has been considered. Furthermore, it has been shown
how the state estimate can be used to predict the future states of the process.
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Chapter 5

Model Predictive Control

The main purpose of this chapter is to introduce the basic theory and formula-
tion of model predictive control.

The chapter is organized as follows. The first part of the chapter introduces
the state-space model that the MPC will be based on. The second part of the
chapter deals with the formulation of the unconstrained MPC based on the
state-space model, and illustrates how the MPC regulation problem can be for-
mulated as a quadratic optimization problem.
For the unconstrained MPC the associated quadratic optimization problem can
be solved explicitly. The third part derives a state-space model for the uncon-
strained controller.
The last part of the chapter considers the formulation of different constrained
model predictive controllers and the quadratic optimization problems resulting
from the constrained MPC regulation problems.
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5.1 Introduction

The model of the plant used to predict the future dynamic evolution of the
controlled system, is in this chapter assumed to be described by

x̂k+1|k = Ax̂k|k +Buk|k +Gŵk|k (5.1)
ŷk+1|k = Cx̂k+1|k (5.2)

x̂k+1+j|k = Ax̂k+j|k +Buk+j|k, j = 1, 2, . . . , N − 1 (5.3)
ŷk+1+j|k = Cx̂k+1+j|k, j = 1, 2, . . . , N − 1 (5.4)

which is the Kalman filter model for the system model in (4.1)-(4.2), along with
the corresponding (j + 1)-step predictor, of the states x̂k+1+j|k and measure-
ments ŷk+1+j|k.

In the following sections, the model in (5.1)-(5.4) is used to develop uncon-
strained and constrained receding horizon optimal controllers.

5.2 Unconstrained MPC for State-Space Models

In this section, the basic setup of the unconstrained MPC, based on the state-
space model (5.1)-(5.4) is treated.

First the MPC objective function is defined. This can be done in different ways
depending on the purpose of controlling the process. A common requirement in
the industrial process industry, is to have the controlled output of the process
track a reference specified by the control operator. This is described by the
tracking error, which is the difference between the predicted controlled output
ŷk+1+j|k and the reference rk+1+j|k. Furthermore, in order not to use excessive
control action a regularization term is also commonly added to the objective
function. This is also the objective considered in this thesis.

Many processes are MIMO systems which means that the predicted measure-
ment and control input usually are vectors, and therefore some norm is used
to quantify the tracking error and the control action. Using the squared norm
indicates that positive and negative deviation from the reference are equally un-
desirable and furthermore by weighting the norm, the individual elements can
be treated differently. The objective function is defined as

φ =
1
2

N−1∑
j=0

∥∥∥ŷk+1+j|k − rk+1+j|k
∥∥∥2

Qy

+
∥∥∆uk+j|k

∥∥2

Su
(5.5)
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where the weighted norm is defined by

‖x‖2Q = xTQx (5.6)

The objective function expresses the sum of the weighted squared norm of differ-
ence between the measurement prediction ŷk+1+j|k and the corresponding set-
point rk+1+j|k and the weighted squared norm of the rate movement ∆uk+j|k for
j = 0, 1, . . . , N − 1. The objective function is subjected to the model dynamics
described by (5.1)-(5.4).

The MPC problem can be expressed as

min
{uk+j|k}N−1

j=0

φ =
1
2

N−1∑
j=0

∥∥∥ŷk+1+j|k − rk+1+j|k
∥∥∥2

Qy

+
∥∥∆uk+j|k

∥∥2

Su
(5.7)

s.t. x̂k+1|k = Ax̂k|k +Buk|k +Gŵk|k (5.8)
ŷk+1|k = Cx̂k+1|k (5.9)

x̂k+1+j|k = Ax̂k+j|k +Buk+j|k, j = 1, 2, . . . , N − 1 (5.10)
ŷk+1+j|k = Cx̂k+1+j|k, j = 1, 2, . . . , N − 1 (5.11)

where N is the prediction horizon and Qy, Su are weight matrices associated
with the reference tracking and the input rate movement, respectively. These
matrices are user-specified and can be regarded as tuning parameters for the
MPC. How these weight matrices should be chosen is not obvious and different
choices lead to different closed-loop performances. The tuning of the MPC will
be considered in Chapter 7.

The structure of the weight matrices is of importance. From a theoretical point
of view, the MPC objective function constitutes a weighted least-squares prob-
lem. This can give some indications on how the structure of the weight matrices
should be chosen. In this thesis the weight matrices are assumed to be positive
definite diagonal matrices.

In general the sum of the two terms in the objective function could be different.
In this case the length of the reference tracking is referred to as the prediction
horizon and the one on the control as the control horizon. In this thesis, this
case is not considered and the two horizons are equal.

The MPC regulation problem can be transformed into a convex Quadratic Pro-
gram (QP) by performing state elimination in (5.8)-(5.11). The states can be
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expressed as

x̂k+1+j|k = Aj+1x̂k|k +
j∑
i=0

Aj−iBuk+i|k +AjGŵk|k (5.12)

by successive substitution in (5.8) and (5.10). Under the assumption that the
predicted measurements ŷk+1+j|k are computed by ŷk+1+j|k = Cx̂k+1+j|k, it
follows from (5.12) that ŷk+1+j|k can be written as

ŷk+1+j|k = Cx̂k+1+j|k

= C

(
Aj+1x̂k|k +

j∑
i=0

Aj−iBuk+i|k +AjGŵk|k

)

= CAj+1x̂k|k +
j∑
i=0

CAj−iBuk+i|k +CAjGŵk|k (5.13)

Using vector notation (5.13) can be expressed (for j = 0, 1, . . . , N − 1) as


ŷk+1|k
ŷk+2|k
ŷk+3|k

...
ŷk+N |k

 = Φxx̂k|k + Φwŵk|k + Γ


uk|k
uk+1|k
uk+2|k

...
uk+N−1|k

 (5.14)

where Φx, Φw, Γ are given by

Φx =


CA

CA2

CA3

...
CAN

 , Φw =


CG
CAG

CA2G
...

CAN−1G

 , Γ =


H1 0 . . . 0
H2 H1 . . . 0
H3 H2 . . . 0
...

...
...

HN HN−1 . . . H1


The elements Hi of the matrix Γ are given by

Hi = CAi−1B, i = 1, 2, . . . , N. (5.15)

These are known as the impulse response coefficients (Markov parameters) of
the system.
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Defining

Y k =


ŷk+1|k
ŷk+2|k
ŷk+3|k

...
ŷk+N |k

 , Rk =


rk+1|k
rk+2|k
rk+3|k

...
rk+N |k

 , Uk =


uk|k
uk+1|k
uk+2|k

...
uk+N−1|k

 (5.16)

and

∆Uk =


∆uk|k

∆uk+1|k
∆uk+2|k

...
∆uk+N−1|k

 (5.17)

the measurement predictions can be expressed as

Y k = bk + ΓUk (5.18)

where bk is
bk = Φxx̂k|k + Φwŵk|k (5.19)

The input movement rate can be expressed as

∆Uk =


∆uk|k

∆uk+1|k
∆uk+2|k

...
∆uk+N−1|k

 =


uk|k − uk−1|k
uk+1|k − uk|k
uk+2|k − uk+1|k

...
uk+N−1|k − uk+N−2|k

 (5.20)

using that ∆uk+j|k = uk+j|k−uk+j−1|k. The expression for the input movement
rate (5.20) can be reformulated as

∆Uk = ΨUk − I0uk−1|k (5.21)

where Ψ and I0 are

Ψ =


I
−I I

−I I
. . . . . .

−I I

 , I0 =


I
0
0
...
0

 (5.22)

In (5.21), uk−1|k is the control input associated with sample k − 1 considered
at the current sample k. This corresponds to the control input determined at
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sample k−1 and is therefore known at the current sample k. In order to simplify
notation, this will be denoted by uk−1.

Let

Q =


Qy

Qy

. . .
Qy

 , S =


Su

Su
. . .

Su

 (5.23)

be the weight matrices associated with the prediction horizon N , corresponding
to the dimensions of (5.18) and (5.21), respectively.

The objective function (5.7) can be expressed as

φ =
1
2
‖Y k −Rk‖2Q +

1
2
‖∆Uk‖2S

=
1
2
‖bk + ΓUk −Rk‖2Q +

1
2
‖ΨUk − I0uk−1‖2S

=
1
2

[ΓUk + bk −Rk]TQ[ΓUk + bk −Rk]

+
1
2

[ΨUk − I0uk−1]TS[ΨUk − I0uk−1]

=
1
2

[UT
kΓT + bTk −R

T
k ]Q[ΓUk + bk −Rk]

+
1
2

[UT
kΨT − uTk−1I

T
0 ]S[ΨUk − I0uk−1]

=
1
2
UT
kHUk + gTkUk + ρk (5.24)

where H, gk, ρk are

H = ΓTQΓ + ΨTSΨ (5.25)

gk = ΓTQ(bk −Rk)−ΨTSI0uk−1 (5.26)

ρk =
1
2
‖bk −Rk‖2Q +

1
2
‖I0uk−1‖2S (5.27)

Consequently, by state elimination the MPC regulation problem can be ex-
pressed as the following unconstrained convex QP

min
Uk

φ =
1
2
UT
kHUk + gTkUk + ρk (5.28)
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Provided the weights matrices Qy and Su in (5.7) are chosen such that H is
positive definite, the QP is convex and has a unique solution, which is given by
[JHR11]

Uk = −H−1gk = L̄xx̂k|k + L̄wŵk|k + L̄RRk + L̄uuk−1 (5.29)

where

L̄x = −H−1ΓTQΦx (5.30)

L̄w = −H−1ΓTQΦw (5.31)

L̄R = H−1ΓTQ (5.32)

L̄u = H−1ΨTSI0 (5.33)

The requirement on H ensures convexity of the QP and is guaranteed if the
weight matrices Qy and Su are positive definite.

In the receding horizon MPC approach, only the first control input uk|k is
implemented on the plant in each sample. The first control input uk|k can be
expressed as

uk = uk|k = IT0Uk = Lxx̂k|k +Lwŵk|k +LRRk +Luuk−1 (5.34)

where

Lx = IT0 L̄x = −IT0H
−1ΓTQΦx (5.35)

Lw = IT0 L̄w = −IT0H
−1ΓTQΦw (5.36)

LR = IT0 L̄R = IT0H
−1ΓTQ (5.37)

Lu = IT0 L̄u = IT0H
−1ΨTSI0 (5.38)

In practice (Lx,Lw,LR,Lu) are not computed explicitly by inversion ofH, but
by a Cholesky factorization.

Remark 2 It should be noted that the state elimination approach used in this
section, is best suited for stable systems. That is, for systems where the eigen-
values of the system matrix A is strictly inside the unit disc, eig(A) < 1. This
is the case due to the structure of the matrices in (5.14), which can result in
very small and large elements and hereby cause numerical instability [Mac02].

Remark 3 For most industrial processes it is reasonable to assume that the
processes to be controlled are stable. For the case where the process is unstable,
it is assumed that the process has been stabilized by some appropriate controller
prior to the implementation of MPC. This could for example be done by design-
ing a stabilizing state-feedback (LQG) controller uk = Lx̂k|k [Mac02].
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5.2.1 Controller State-Space for the Unconstrained MPC

In this section the expressions for the optimal control input and the stationary
Kalman filter for the controller model, are combined and formulated in state-
space form resulting in a controller state-space.

The optimal control input for the unconstrained MPC is given by

uk = uk|k = Lxx̂k|k +Lwŵk|k +LRRk +Luuk−1 (5.39)

and the stationary Kalman filter for the controller model is given by

ek = yk − Ĉx̂k|k−1 (5.40)
x̂k|k = x̂k|k−1 +Kfxek (5.41)
ŵk|k = Kfwek (5.42)

and

x̂k+1|k = Âx̂k|k + B̂uk + Ĝŵk|k (5.43)

where the filter gains Kfx and Kfw are given in Chapter 4.

First the optimal control input (5.39) is substituted into the one-step prediction
of the Kalman filter (5.43)

x̂k+1|k = Âx̂k|k + B̂uk + Ĝŵk|k

= Âx̂k|k + B̂
[
Lxx̂k|k +Lwŵk|k +LRRk +Luuk−1

]
+Ĝŵk|k (5.44)

Next the filtered state (5.41) and the filtered process-noise (5.42) are substituted
into the above expression, giving

x̂k+1|k = Â

[
x̂k|k−1 +Kfxek

]
+ĜKfwek

+ B̂
[
Lx

[
x̂k|k−1 +Kfxek

]
+LwKfwek +LRRk +Luuk−1

]
(5.45)

Now the innovation (5.40) is inserted

x̂k+1|k = Â

[
x̂k|k−1 +Kfx(yk − Ĉx̂k|k−1)

]
(5.46)

+ B̂Lx

[
x̂k|k−1 +Kfx(yk − Ĉx̂k|k−1)

]
+ B̂LwKfw(yk − Ĉx̂k|k−1) + B̂LRRk + B̂Luuk−1

+ ĜKfw(yk − Ĉx̂k|k−1)
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By expanding terms in (5.46) the following is obtained

x̂k+1|k = Âx̂k|k−1 + ÂKfxyk − ÂKfxĈx̂k|k−1 + B̂Lxx̂k|k−1 (5.47)

+ B̂LxKfxyk − B̂LxKfxĈx̂k|k−1 + B̂LwKfwyk

− B̂LwKfwĈx̂k|k−1 + B̂LRRk + B̂Luuk−1 + ĜKfwyk

− ĜKfwĈx̂k|k−1

Defining

Λ = LxKfx +LwKfw (5.48)

Λ̂ = ÂKfx + ĜKfw + B̂Λ (5.49)

the expression in (5.47) can be simplified and written as

x̂k+1|k =
[
Â+ B̂Lx − Λ̂Ĉ B̂Lu

] [x̂k|k−1

uk−1

]
+ Λ̂yk + B̂LRRk (5.50)

The optimal control input for the unconstrained MPC, can also be written in
terms of the one-step prediction and the previous optimal control input. This is
done by conducting the equivalent substitutions as done above. The expression
for the optimal control input is given by

uk = Lxx̂k|k +Lwŵk|k +LRRk +Luuk−1

= Lx[x̂k|k−1 +Kfxek] +LwKfwek +LRRk +Luuk−1

= Lx[x̂k|k−1 +Kfx(yk − Ĉx̂k|k−1)] +LwKfw(yk − Ĉx̂k|k−1)
+LRRk +Luuk−1

= Lxx̂k|k−1 + [LxKfx +LwKfw](yk − Ĉx̂k|k−1) (5.51)
+LRRk +Luuk−1

Using equations (5.48) and (5.49) the expression for the optimal control input
in (5.51) can be written as

uk =
[
Lx −ΛĈ Lu

] [x̂k|k−1

uk−1

]
+ Λyk +LRRk (5.52)

Now (5.50) and (5.52) can be combined to one equation describing the evolution
of the one-step prediction and optimal control input. The combined equation is
given by[

x̂k+1|k
uk

]
=
[
Â+ B̂Lx − Λ̂Ĉ B̂Lu
Lx −ΛĈ Lu

] [
x̂k|k−1

uk−1

]
+
[
Λ̂
Λ

]
yk +

[
B̂LR
LR

]
Rk

(5.53)
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Define the controller state as

xck =
[
x̂k|k−1

uk−1

]
(5.54)

then the evolution of the controller model can be written in state-space form as

xck+1 = Acx
c
k +Bcyyk +BcrRk (5.55)

uk = Ccx
c
k +Dcyyk +DcrRk (5.56)

where

Ac =
[
Â+ B̂Lx − Λ̂Ĉ B̂Lu
Lx −ΛĈ Lu

]
, Bcy =

[
Λ̂
Λ

]
, Bcr =

[
B̂LR
LR

]
(5.57)

and

Cc =
[
Lx −ΛĈ Lu

]
, Dcy = Λ, Dcr = LR (5.58)

5.3 Unconstrained MPC for State-Space Models
in Innovation Form

The formulation of the unconstrained MPC controller and the controller state-
space considered in the previous section, can also be formulated for state-space
models in innovation form

xk+1 = Axk +Buk +Kεk (5.59)
yk = Cxk + εk (5.60)

where εk ∼ Niid(0,Rε).

Remark 4 The model in innovation form (5.59)-(5.60) is a special case of the
linear model (4.1)-(4.2). (5.59)-(5.60) may be expressed in the form (4.1)-(4.2)
with G = K, wk = vk = εk [JHR11].

The results for the model in innovation form, are derived in the same way as
done in the previous section. Furthermore, the results are very similar and are
therefore not derived. The results for the model in innovation form can be found
in [JHR11].
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5.4 Constrained MPC

In many cases the system to be controlled is not unconstrained. It might be the
case that the control input of the system is limited to some interval and/or the
rate of which the control input can be changed is bounded. There exist different
constraints, they are usually classified as input, output and state constraints.
In this section some constrained MPC formulations are considered.

When constraints are present, the optimization problem becomes more compli-
cated and implies that there exists no closed form expression for the optimal
control input.

5.4.1 MPC with Bound Constraints

When control input constraints are present, the MPC regulation problem can
be formulated as

min
{uk+j|k}N−1

j=0

φ =
1
2

N−1∑
j=0

∥∥∥ŷk+1+j|k − rk+1+j|k
∥∥∥2

Qy

+
∥∥∆uk+j|k

∥∥2

Su
(5.61)

s.t. x̂k+1|k = Ax̂k|k +Buk|k +Gŵk|k (5.62)
ŷk+1|k = Cx̂k+1|k (5.63)

x̂k+1+j|k = Ax̂k+j|k +Buk+j|k, j = 1, 2, . . . , N − 1 (5.64)
ŷk+1+j|k = Cx̂k+1+j|k, j = 1, 2, . . . , N − 1 (5.65)

umin ≤ uk+j|k ≤ umax, j = 0, 1, . . . , N − 1 (5.66)

This formulation is almost identical with the unconstrained case. Since there
are no modifications to the objective function and the equality constraints, the
MPC regulation problem can again be expressed as a convex QP. But due to
the control input constraints this cannot be solved explicitly.

The constraints on the control inputs

umin ≤ uk+j|k ≤ umax, j = 0, 1, . . . , N − 1 (5.67)
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can be written as 
umin
umin
...

umin

 ≤


uk|k
uk+1|k

...
uk+N−1|k

 ≤

umax
umax

...
umax

 (5.68)

and furthermore as
Umin ≤ Uk ≤ Umax (5.69)

The MPC regulation problem may be expressed as the convex QP

min
Uk

φ =
1
2
UT
kHUk + gTkUk + ρk (5.70)

s.t. Umin ≤ Uk ≤ Umax (5.71)

In a quadratic program the constant ρk has no influence on the minimum, so it
can be left out when solving the QP.

5.4.2 MPC with Bound and Input Rate Movement Con-
straints

In the MPC formulation also input rate movement bounds can be added. This
leads to the following formulation of the MPC regulation problem

min
{uk+j|k}N−1

j=0

φ =
1
2

N−1∑
j=0

∥∥∥ŷk+1+j|k − rk+1+j|k
∥∥∥2

Qy

+
∥∥∆uk+j|k

∥∥2

Su
(5.72)

s.t. x̂k+1|k = Ax̂k|k +Buk|k +Gŵk|k (5.73)
ŷk+1|k = Cx̂k+1|k (5.74)

x̂k+1+j|k = Ax̂k+j|k +Buk+j|k, j = 1, 2, . . . , N − 1 (5.75)
ŷk+1+j|k = Cx̂k+1+j|k, j = 1, 2, . . . , N − 1 (5.76)

umin ≤ uk+j|k ≤ umax, j = 0, 1, . . . , N − 1 (5.77)
∆umin ≤ ∆uk+j|k ≤ ∆umax, j = 0, 1, . . . , N − 1 (5.78)

The constraints on the input rate movement

∆umin ≤ ∆uk+j|k ≤ ∆umax, j = 0, 1, . . . , N − 1 (5.79)
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can be written as 
∆umin
∆umin

...
∆umin

 ≤


∆uk|k
∆uk+1|k

...
∆uk+N−1|k

 ≤


∆umax
∆umax

...
∆umax

 (5.80)

and furthermore

∆Umin ≤ ∆Uk ≤ ∆Umax

Inserting the expression for ∆Uk given in (5.21) gives

∆Umin ≤ ∆Uk ≤ ∆Umax ⇐⇒ (5.81)
∆Umin + I0uk−1 ≤ ΨUk ≤ ∆Umax + I0uk−1 (5.82)

Denote these bounds by

bl,k = ∆Umin + I0uk−1, bu,k = ∆Umax + I0uk−1 (5.83)

The MPC regulation problem may now be expressed as the convex QP

min
Uk

φ =
1
2
UT
kHUk + gTkUk + ρk (5.84)

s.t. Umin ≤ Uk ≤ Umax (5.85)
bl,k ≤ ΨUk ≤ bu,k (5.86)

Remark 5 It should be noted that if all constraints remain inactive, the op-
timal solution U∗k for the constrained MPC will be equal to the optimal solution
for unconstrained MPC.

5.5 Summary

In this chapter the basic MPC formulation has been presented and the main
components, such as prediction horizon, control horizon and weight matrices,
of the setup have been discussed. Furthermore, the optimal control law for the
unconstrained MPC was derived explicitly and combined with the Kalman filter
to form a controller state-space.

It was also considered how to formulate MPC controllers with constraints on
the control input and on the input rate movement.
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Chapter 6

Closed-Loop Analysis

The purpose of this chapter is to derive a closed-loop description for the control
system, i.e. the process and the controller, for the unconstrained MPC derived in
Chapter 5. Subsequently the properties of the closed-loop system are analyzed.

The chapter is organized as follows. The first part of the chapter derives the
closed-loop system. In the second part of the chapter the covariance matrices
associated with the closed-loop are derived. The third part deals with the
transfer function describing the process model and the controller model. Finally
the general notion of sensitivity is introduced and the sensitivity functions of
the closed-loop MPC system are derived.

6.1 Closed-Loop State-Space Description

In this section the controller state-space derived in Section 5.2.1 is combined
with a linear process model of system to be controlled. For this purpose the
considered plant is assumed to be a stochastic linear time invariant state-space
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system given by

xk+1 = Axk +Buk +Edk +Gwk (6.1)
zk = Cxk (6.2)
yk = Cxk + vk (6.3)

Recall that the controller state-space is given by

xck+1 = Acx
c
k +Bcyyk +BcrRk (6.4)

uk = Ccx
c
k +Dcyyk +DcrRk (6.5)

Since both the controller state-space and the process model are linear, they can
be combined and expressed as a closed-loop linear state-space. In the following
the closed-loop description will be derived.

The control input (6.5) is first substituted into the process state equation (6.1)

xk+1 = Axk +Buk +Edk +Gwk

= Axk +B
[
Ccx

c
k +Dcyyk +DcrRk

]
+Edk +Gwk (6.6)

Insert the plant measurement (6.3) to obtain

xk+1 = Axk +B
[
Ccx

c
k +Dcy(Cxk + vk) +DcrRk

]
+Edk +Gwk

= (A+BDcyC)xk +BCcx
c
k +BDcyvk +BDcrRk +Edk +Gwk

(6.7)

The process state equation is hereby described in terms of the controller states.
A similar expression can be obtained for the controller state, as follows. The
controller state is given by

xck+1 = Acx
c
k +Bcyyk +BcrRk

= Acx
c
k +Bcy(Cxk + vk) +BcrRk

= Acx
c
k +BcyCxk +Bcyvk +BcrRk (6.8)

Insert the plant measurement (6.3) into the expression for the control input
(6.5) results in

uk = Ccx
c
k +Dcyyk +DcrRk

= Ccx
c
k +Dcy(Cxk + vk) +DcrRk

= Ccx
c
k +DcyCxk +Dcyvk +DcrRk (6.9)



6.2 Covariance 51

By defining the closed-loop state as

xclk =
[
xk
xck

]
(6.10)

a closed-loop state-space can now be formulated.

The resulting closed-loop state-space description for the combined system is
given by

xclk+1 = Aclx
cl
k +Bwclwk +Bvclvk +BrclRk +Bdcldk (6.11)

zk = Czclx
cl
k (6.12)

yk = Cyclx
cl
k + vk (6.13)

uk = Cuclx
cl
k +Dcyvk +DcrRk (6.14)

where

Acl =
[
A+BDcyC BCc

BcyC Ac

]
, Bwcl =

[
G
0

]
, Bvcl =

[
BDcy

Bcy

]
(6.15)

Brcl =
[
BDcr

Bcr

]
, Bdcl =

[
E
0

]
(6.16)

and

Cycl =
[
C 0

]
, Czcl =

[
C 0

]
, Cucl =

[
DcyC Cc

]
(6.17)

6.2 Covariance

The closed-loop description of the unconstrained MPC, can be used to determine
the closed-loop covariance matrices for the input, measurement and the output.
To this end, first the closed-loop state covariance matrix needs to be computed.

Let Rx,k denote the covariance matrix of the closed-loop state xclk . Now the
variance of the closed-loop state equation in (6.11) is computed.

Rx,k+1 = V ar{xclk+1}
= V ar{Aclx

cl
k +Bwclwk +Bvclvk +BrclRk +Bdcldk}

= V ar{Aclx
cl
k +Bwclwk +Bvclvk} (6.18)
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Since the referenceRk and the disturbance dk are deterministic quantities, these
do not have influence on the variance and can be left out.

V ar{Aclx
cl
k +Bwclwk +Bvclvk}

= Cov{Aclx
cl
k +Bwclwk +Bvclvk,Aclx

cl
k +Bwclwk +Bvclvk}

= Cov{Aclx
cl
k ,Aclx

cl
k }+ Cov{Aclx

cl
k ,Bwclwk}+ Cov{Aclx

cl
k ,Bvclvk}

+ Cov{Bwclwk,Aclx
cl
k }+ Cov{Bwclwk,Bwclwk}+ Cov{Bwclwk,Bvclvk}

+ Cov{Bvclvk,Aclx
cl
k }+ Cov{Bvclvk,Bwclwk}+ Cov{Bvclvk,Bvclvk}

= AclCov{xclk ,xclk }A
T
cl +AclCov{xclk ,wk}BT

wcl +AclCov{xclk ,vk}B
T
vcl

+BwclCov{wk,x
cl
k }A

T
cl +BwclCov{wk,wk}BT

wcl +BwclCov{wk,vk}BT
vcl

+BvclCov{vk,xclk }A
T
cl +BvclCov{vk,wk}BT

wcl +BvclCov{vk,vk}BT
vcl

It is assumed that the closed-loop state xclk and the process-noise wk are un-
correlated and the same for xclk and the measurement noise vk. Due to the
possible correlation of the process-noise wk and the measurement noise vk, no
assumptions are imposed on these.

The equation can now be expressed as

Rx,k+1 = AclRx,kA
T
cl +BwclQB

T
wcl +BvclRB

T
vcl +BwclSB

T
vcl (6.19)

+BvclS
TBT

wcl

For the case where the process-noise wk and the measurement noise vk are
uncorrelated, the equation simplifies to

Rx,k+1 = AclRx,kA
T
cl +BwclQB

T
wcl +BvclRB

T
vcl (6.20)

Now provided that all eigenvalues of Acl are strictly inside the unit disk, the
closed-loop system is asymptotically stable. This implies that the covariance
matrix of the state Rx,k becomes stationary as k → ∞ with limit Rx [Pou07].
The equation for the covariance of the closed-loop state is given by

Rx = AclRxA
T
cl +BwclQB

T
wcl +BvclRB

T
vcl (6.21)
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This equation is known as the discrete-time Lyapunov equation. Note that
when Bwcl, Bvcl, Q and R are known matrices, this is a matrix equation in the
closed-loop steady state covariance Rx. The equation can be solved using the
built-in Matlab function dlyap.

Next the closed-loop steady state covariance matrix of the measurement yk, can
be computed as

Ry = V ar{yk}
= V ar{Cyclx

cl
k + vk}

= V ar{Cyclx
cl
k }+ V ar{vk}+ Cov{Cyclx

cl
k ,vk}+ Cov{vk,Cyclx

cl
k }

= CyclV ar{xclk }C
T
ycl + V ar{vk}+CyclCov{xclk ,vk}+ Cov{vk,xclk }C

T
ycl

= CyclRxC
T
ycl +R (6.22)

The closed-loop steady state covariance matrix of the control input uk is

Ru = V ar{uk} (6.23)

= V ar{Cuclx
cl
k +Dcyvk +DcrRk}

= V ar{Cuclx
cl
k +Dcyvk}

= CuclV ar{xclk }C
T
ucl +DcyV ar{vk}DT

cy + Cov{Cuclx
cl
k ,Dcyvk}

+ Cov{Cuclx
cl
k ,Dcyvk}T

= CuclRxC
T
ucl +DcyRD

T
cy (6.24)

Last, the closed-loop steady state covariance matrix of the output zk is com-
puted. The covariance matrix of the output is

Rz = V ar{zk} = V ar{Czclx
cl
k } (6.25)

= CzclRxC
T
zcl (6.26)

6.3 Transfer Functions

In this section the linear process model, the controller model and the closed-loop
system are described as input-output models in the z domain using discrete-time
transfer functions.
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This is done by transforming the equations using the (unilateral) Z-transform
defined by

F (z) = Z{fk} :=
∞∑
k=0

z−kfk (6.27)

where fk denotes the discrete-time domain function. The Z-transform is a
linear operator and has many interesting properties. The reader is referred to
[Pou07] for more details.

6.3.1 Transfer function of the Process Model

The input-output function for the linear process model in (6.1)-(6.3), is com-
puted as follows. Let the Z-transform of the current state, control input, dis-
turbance and process-noise be given by

Z{xk} = X(z) (6.28)
Z{uk} = U(z) (6.29)
Z{dk} = D(z) (6.30)
Z{wk} = W (z) (6.31)

and of the next state

Z{xk+1} = zX(z)− zx0 (6.32)

The state equation of the process model can now be written as

Z{xk+1} = Z{Axk +Buk +Edk +Gwk}
zX(z)− zx0 = AX(z) +BU(z) +ED(z) +GW (z)

zX(z)−AX(z) = zx0 +BU(z) +ED(z) +GW (z)
(zI −A)X(z) = zx0 +BU(z) +ED(z) +GW (z) (6.33)

Isolating X(z) in (6.33) gives

X(z) = (zI −A)−1[zx0 +BU(z) +ED(z) +GW (z)] (6.34)

Next the Z-transform of the measurement equation is given by

Y (z) = CX(z) + V (z) (6.35)
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Inserting the expression for X(z) gives

Y (z) = CX(z) + V (z)

= C(zI −A)−1[zx0 +BU(z) +ED(z) +GW (z)] + V (z) (6.36)

Assuming that the initial state is x0 = 0, the input-output function for the
process model measurement can be written as

Y (z) = Gyu(z)U(z) +Gyd(z)D(z) +Gyw(z)W (z) + V (z) (6.37)

with discrete-time transfer functions

Gyu(z) = C(zI −A)−1B (6.38)

Gyd(z) = C(zI −A)−1E (6.39)

Gyw(z) = C(zI −A)−1G (6.40)

Last the Z-transform of the output equation is given by

Z(z) = CX(z) (6.41)

Inserting the expression for X(z) gives

Z(z) = CX(z) (6.42)

= C(zI −A)−1[zx0 +BU(z) +ED(z) +GW (z)] (6.43)

Now the the input-output function for the process model output can be written
as

Z(z) = Gzu(z)U(z) +Gzd(z)D(z) +Gzw(z)W (z) (6.44)

with discrete-time transfer functions

Gzu(z) = C(zI −A)−1B (6.45)

Gzd(z) = C(zI −A)−1E (6.46)

Gzw(z) = C(zI −A)−1G (6.47)

6.3.2 Transfer Function of the Controller Model

The state-space description of the controller is given by
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xck+1 = Acx
c
k +Bcyyk +BcrRk (6.48)

uk = Ccx
c
k +Dcyyk +DcrRk (6.49)

The Z-transformation of the controller state equation (6.48) is

zXc(z)−AcXc(z) = zxc0 +BcyY (z) +BcrR(z)
(zI −Ac)Xc(z) = zxc0 +BcyY (z) +BcrR(z)

Xc(z) = (zI −Ac)−1[zxc0 +BcyY (z) +BcrR(z)] (6.50)

Transformation of the (6.49) and inserting Xc(z) gives

U(z) = CcXc(z) +DcyY (z) +DcrR(z)

= Cc(zI −Ac)−1[BcyY (z) +BcrR(z)] +DcyY (z) +DcrR(z)

= Cc(zI −Ac)−1BcyY (z) +Cc(zI −Ac)−1BcrR(z) (6.51)
+DcyY (z) +DcrR(z)

The controller can now (in the z domain) be described by

U(z) = Cuy(z)Y (z) +Cur(z)R(z) (6.52)

with discrete-time transfer functions

Cuy(z) = Cc(zI −Ac)−1Bcy +Dcy (6.53)

Cur(z) = Cc(zI −Ac)−1Bcr +Dcr (6.54)

6.3.3 Transfer Function of the Closed-Loop

The input-output function for the closed-loop system of the unconstrained MPC,
can in a similar manner be derived. Z-transforming the closed-loop state equa-
tion gives

Xcl(z) = (zI −Acl)−1zxcl0 + (zI −Acl)−1BwclW (z) + (zI −Acl)−1BvclV (z)

+ (zI −Acl)−1BrclR(z) + (zI −Acl)−1BdclD(z) (6.55)
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Assuming that the closed-loop initial state is xcl0 = 0 and inserting Xcl(z) in
the Z-transformed measurement equation

Y (z) = CyclXcl(z) + V (z)

= Cycl(zI −Acl)−1BwclW (z) + [Cycl(zI −Acl)−1Bvcl + I]V (z)

+Cycl(zI −Acl)−1BrclR(z) +Cycl(zI −Acl)−1BdclD(z) (6.56)

The measured output of the closed-loop system can (in the z domain) be de-
scribed by

Y (z) = Gyw(z)W (z) +Gyv(z)V (z) +Gyr(z)R(z) +Gyd(z)D(z) (6.57)

where

Gyw(z) = Cycl(zI −Acl)−1Bwcl (6.58)

Gyv(z) = Cycl(zI −Acl)−1Bvcl + I (6.59)

Gyr(z) = Cycl(zI −Acl)−1Brcl (6.60)

Gyd(z) = Cycl(zI −Acl)−1Bdcl (6.61)

6.4 Sensitivity

In this section the sensitivity functions for the closed-loop unconstrained MPC
are derived. The sensitivity function and the complementary sensitivity func-
tion in general describe the influence of external inputs on the the closed-loop
behavior.

In order to introduce the concept of sensitivity, a classic one degree-of-freedom
feedback SISO control system is first considered [SP01]. The system is illustrated
in figure 6.1.
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Figure 6.1: One degree-of-freedom feedback control system. The controller is
described by C(z) and the process by G(z).

Figure 6.1 shows that the output of the process is influenced by an output
disturbance D(z) and furthermore that the measured output Y (z) is corrupted
by measurement noise V (z). The controlled output of the process is given by

Z(z) = G(z)U(z) +D(z)
= G(z)C(z)E(z) +D(z)
= G(z)C(z)[R(z)− Y (z)] +D(z)
= G(z)C(z)[R(z)− (Z(z) + V (z))] +D(z)
= G(z)C(z)R(z)−G(z)C(z)Z(z)−G(z)C(z)V (z) +D(z) (6.62)

Isolating Z(z) gives

Z(z) =
G(z)C(z)

(1 +G(z)C(z))
R(z)− G(z)C(z)

(1 +G(z)C(z))
V (z) +

1
(1 +G(z)C(z))

D(z)

= T (z)R(z)− T (z)V (z) + S(z)D(z) (6.63)

It is seen that the controlled output of the system can be written in terms of
the external inputs (the reference R(z), measurement noise V (z) and the output
disturbance D(z)) and the transfer functions

S(z) =
1

1 +G(z)C(z)
(6.64)

and

T (z) =
G(z)C(z)

1 +G(z)C(z)
(6.65)
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S(z) is referred to as the sensitivity function and is the closed-loop transfer func-
tion from the output disturbances to the controlled output. Furthermore, T (z)
is referred to as the complimentary sensitivity function and is the closed-loop
transfer function from the reference (and measurement noise) to the controlled
output.

For the MIMO system case, the sensitivity functions generalize to

S(z) = [I +G(z)C(z)]−1 (6.66)

and

T (z) = [I +G(z)C(z)]−1G(z)C(z) (6.67)

where the S(z) and T (z) are now matrices.

6.4.1 Sensitivity of the Unconstrained MPC

The above sensitivity functions are not valid for an MPC controller formula-
tion, since the MPC is a two degree-of-freedom controller. The MPC has an
unsymmetrical treatment of the reference signal R(z) and the measured output
Y (z).

Recall from Section 6.3.2, that the unconstrained MPC control law can by ex-
pressed as

U(z) = Cuy(z)Y (z) +Cur(z)R(z) (6.68)

with discrete-time transfer functions

Cuy(z) = Cc(zI −Ac)−1Bcy +Dcy (6.69)

Cur(z) = Cc(zI −Ac)−1Bcr +Dcr (6.70)
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Figure 6.2: Two degree-of-freedom feedback control system representing the
closed-loop unconstrained MPC.

Furthermore, the controlled output of the linear process model can be expressed
as

Z(z) = Gzu(z)U(z) +Gzd(z)D(z) +Gzw(z)W (z) (6.71)

Figure 6.2 illustrates the feedback loop for the unconstrained MPC control law
in closed-loop with the linear process model. The process is influenced by an
output disturbance D(z), which enters through the transfer function Gzd(z).
Furthermore, the process is affected by process noiseW (z), which is propagated
to the output by the transfer function Gzw(z). Finally, the measured output
Y (z) is corrupted by measurement noise V (z).

Since the measured output Y (z) is used by the controller, it is of particular
interest to have the sensitivity functions that relate the external inputs to the
measured output. The measured output can be expressed from the controlled
output by

Y (z) = Z(z) + V (z)
= Gzu(z)U(z) +Gzd(z)D(z) +Gzw(z)W (z) + V (z) (6.72)
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Inserting the expression for the controller (6.68) into (6.72) gives

Y (z) = Gzu(z)U(z) +Gzd(z)D(z) +Gzw(z)W (z) + V (z)
= Gzu(z)[Cuy(z)Y (z) +Cur(z)R(z)] +Gzd(z)D(z)

+Gzw(z)W (z) + V (z)
= Gzu(z)Cuy(z)Y (z) +Gzu(z)Cur(z)R(z) +Gzd(z)D(z) (6.73)

+Gzw(z)W (z) + V (z)

Isolating Y (z) results in the following expression for the measured output

Y (z) = [I −Gzu(z)Cuy(z)]−1[Gzu(z)Cur(z)R(z) +Gzd(z)D(z) (6.74)
+Gzw(z)W (z) + V (z)]

The sensitivity functions for the closed-loop unconstrained MPC can be identi-
fied as

S(z) = [I −Gzu(z)Cuy(z)]−1 (6.75)

and

T (z) = [I −Gzu(z)Cuy(z)]−1Gzu(z)Gur(z) (6.76)
= S(z)Gzu(z)Gur(z) (6.77)

The measured output can be expressed in terms of the sensitivity functions T (z)
and S(z) as

Y (z) = T (z)R(z) + S(z)Gzd(z)D(z) + S(z)Gzw(z)W (z) + S(z)V (z)
= T (z)R(z) + S(z)[Gzd(z)D(z) +Gzw(z)W (z) + V (z)] (6.78)

It is seen that the sensitivity function S(z) is the closed-loop transfer function
from both the output disturbances, the process noise and measurement noise to
the measured output.

The closed-loop MPC is expressed in terms of the associated state-space formu-
lation for the controller and the linear process model. It is of interest to also
express the sensitivity function in terms of the closed-loop state-space descrip-
tion. This can be done by comparing the expressions obtained above to the
expression obtained directly from the closed-loop description done in Section
6.3.3.

The sensitivity functions can be expressed as

S(z) = Cycl(zI −Acl)−1Bvcl + I (6.79)

and

T (z) = Cycl(zI −Acl)−1Brcl (6.80)
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6.5 Summary

In this chapter a closed-loop description of the unconstrained MPC for the
linear process model has been derived. From the closed-loop description the
closed-loop steady-state covariance matrices for the state, control input, mea-
surement and controlled output were computed. For the linear process model,
the controller state-space and the closed-loop state-space model, z−transformed
expressions have been computed.

Finally, a sensitivity analysis of the closed-loop description has been conducted
and the sensitivity functions have been expressed in terms of the closed-loop
state-space matrices.



Chapter 7

Tuning

The purpose of this chapter is to investigate tuning of model predictive con-
trollers.

The chapter is organized as follows. The first part of the chapter considers
different measures for assessing performance of the closed-loop control system.
The performance measures are related to the deterministic, stochastic and sensi-
tivity properties of the control system. The second part of the chapter considers
the formulation of an optimization based tuning approach.

7.1 Introduction

One of the main purposes of controlling an industrial process is to make the
controlled output of the process follow some predefined reference trajectory.
In any industrial application this will always be done under the presence of
model uncertainty, different noise sources and disturbances, which complicate
the objective.

In order to obtain the best possible control of the process, the controller needs to
be tuned. This means to determine the most suitable set of tuning parameters
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for the control system. However, what the best possible control is, can depend
on what type of process is controlled and is therefore somewhat subjective.

A strategy to quantified the quality of a controller is to setup different perfor-
mance measures for the control system and subsequently evaluate these per-
formance measures for different scenarios according to the tasks of the control
system.

The general considerations to take into account when tuning a controller, are
listed below.

• Disturbance rejection

• Reference tracking

– Step change in reference

• Robust performance

– Sensitivity to disturbances

– Sensitivity to process and measurement noise

– Sensitivity to plant-model mismatch

7.2 Performance Measures

In this section different performance measures for the closed-loop system are
considered. The closed-loop performance measures are divided into three cate-
gories: Deterministic measures, stochastic measures and sensitivity/robustness
measures.

7.2.1 Deterministic Measures

Two classic ways to assess the performance of a controller are the controllers
ability to track changes in the reference and to reject disturbances on the con-
trolled outputs. There are different ways of quantifying the controllers ability
to do this.

One such measure is the settling time for the controlled output, which describes
the time from the disturbance (or the change in reference) enters the system,
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until the time when the controlled output is back at the reference level (or
has reached the new reference level). This measure does, however, not provide
any information about the deviation between the controlled output and the
reference.

Another class of measures is integrated error measures. In these measures the
error between the reference rk and the controlled output yk is computed in some
form. The most common measures are the integrated absolute error (IAE) and
the integrated squared error (ISE). These measures do on the other hand, not
include any information of the duration time of a reference step or a disturbance.

A measure that combines information of the error and duration time, is the time-
weighted integrated (absolute or squared) error. In this measure the individual
errors are weighted with the current time. In effect this penalizes deviations for
long time periods heavily and will, when the measure is minimized, result in
controllers that more rapidly eliminate disturbances.

In this project only the integrated error measures are considered.

The integrated absolute error (IAE) is given by

Ji =
nf−1∑
k=0

|yi,k − ri,k| (7.1)

where i = 1, 2, . . . , ny and nf is the number of samples in the simulation.

The IAE measure computes the absolute difference between measurement yi,k
and the corresponding reference ri,k at samples k = 0, 1, . . . , nf under the pres-
ence of either a step disturbance or a step change in the reference. The IAE
corresponds to the numerical (Euler) integral of the error.

The integrated squared error (ISE) is given by

Ji =
nf−1∑
k=0

(yi,k − ri,k)2 (7.2)

In the ISE measure the error between measurement yi,k and the corresponding
reference ri,k is squared. For the point of view of minimization of the measure
this implies that large deviations are penalized more than smaller ones.

The measures are evaluated by simulation of the closed-loop system (6.11)-(6.14)
for specified reference and disturbance scenarios, {rk}

nf−1
k=0 and {dk}

nf−1
k=0 . The

measures are only evaluated for the deterministic part of the closed-loop system,
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that is for the case wherewk = 0 and vk = 0. This is done to be able to asses the
performance of the controller only due to deterministic changes and such that
it does not depend on a specific realization of noise. Furthermore, the system
is started in steady state xcl0 = 0, such that only deviation due to disturbances
or reference changes are considered.

For MIMO systems, a step disturbance or a reference change on one controlled
output generally affects all the other controlled outputs of the system. This
does, however, depend to some extent on the specific system and the controller.
Based on this behavior it is therefore necessary to compute the desired measure
for all combinations of measurements yi,k and step disturbances dj,k and all
combinations of measurements yi,k and reference steps rj,k individually. Hereby
obtaining the effect of a specific disturbance or reference step on all the con-
trolled outputs.

The components of the measure can subsequently be organized in a matrix or
all the individual terms can be summed.

7.2.2 Stochastic Measures

For the closed-loop unconstrained MPC description derived in Chapter 6, the
closed-loop covariance matrices can be regarded as stochastic measures. The
matrices quantify the steady-state variance and covariance of the measured out-
puts, controlled output and control input due to the exogenous stochastic noise
signals vk and wk.

The closed-loop covariance matrices associated with the measured outputs, con-
trolled outputs and control inputs can be used to asses the controllers perfor-
mance under the presence of noise. For a specified set of tuning parameters an
associated set of closed-loop covariance matrices is obtained.

For a SISO system these are all scalar quantities and are easy to compare indi-
vidually and furthermore for different choices of tuning parameters. However,
for the MIMO system case, these are matrices and can therefore not directly
be compared. To be able to compare the covariance matrices, different scalar
measures of the size of a matrix are presented.

The measures used in this project comes from the field of optimal design of
experiments [MH97]. The measures are referred to as the

• A-criterion
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• D-criterion

• E-criterion

and are described in the following.

The A-criterion is given by the average trace of the covariance matrix

1
n
tr(R) (7.3)

where tr denotes the trace, defined by the sum of the diagonal elements of the
matrix and n is the dimension of the covariance matrix R. From an optimiza-
tion point of view, this criterion seeks to minimize the average variance of the
covariance matrix and does not take the covariance terms into consideration.

The D-criterion is given by the determinant of the covariance matrix

Det(R) (7.4)

where Det denotes the determinant. From an optimization point of view, the
D-criterion can be interpreted as the volume of the confidence ellipsoid.

The E-criterion is given by the maximum eigenvalue of the covariance matrix

λmax(R) (7.5)

where λmax denotes the maximum eigenvalue. This criterion corresponds to
reducing the major axis of the confidence ellipsoid of the covariance matrix R
and hereby minimizing the largest variance of the system [MH97].

In general, from a performance/tuning point of view, both the variance of the
control input and the outputs should be as low as possible. However, it is well
known from the classical Minimal variance controller [Pou07] that reducing
the variance of the controlled output to the minimal, comes at the expense of
increased control input variance. Therefore the variance should be a compromise
between the two.

7.2.3 Sensitivity Measures

The term robustness in general refers to a controllers ability to uphold an ac-
ceptable performance under uncertainty. A controller is said to be robust if
the control performance does not change much if the controller is applied to a
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system which is different from the one used in the synthesis of the controller.
For most industrial application the model of the process used to design the con-
troller is different from the actual process. This is especially critical to MPC,
since the controller design relies heavily on the observer model.

In classical control theory, robustness of closed-loop control systems is ensured
by requiring sufficiently large gain and phase margins. This is in practice done
by visual inspection of open-loop Bode plots.

According to [SP01] the maximum sensitivity MS , which corresponds to the
maximum magnitude of the sensitivity function S(z) in the frequency domain

MS = max
ω

∣∣S(ejωTs)
∣∣ (7.6)

can be used to quantify robustness and performance for closed-loop SISO control
systems. Furthermore, the gain and phase margins are related to the maximum
peak of the sensitivity function S(z) by

GM ≥ MS

MS − 1
, PM ≥ 2arcsin

(
1

2MS

)
≥ 1
MS

(7.7)

This implies that the maximum sensitivityMS can be used to ensure acceptable
gain and phase margins simultaneously.

For MIMO systems the sensitivity function S(z) is a matrix, describing the
sensitivity for each controlled (or measured) output due to disturbances and/or
measurement noise. For these systems the notion of system direction is im-
portant. That the system has a direction mainly describes the system’s gain
for different input directions. The system might have directions where it is
very sensitive to noise and others where it is insensitive. This complicates the
description of maximum sensitivity of MIMO systems.

The singular values of the frequency response matrix S(ejωTs) for the sensitiv-
ity function can be interpreted as gains of the system for different frequencies
ω [SP01]. Furthermore, the maximum gain, for any input direction, can be
expressed as the maximum singular value for a given frequency ω.

According to [DS81], the maximum of the maximal singular values of the fre-
quency response for the sensitivity function is a good measure of the worst case
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sensitivity of a MIMO system. This is commonly denoted as the H∞ norm of
the sensitivity function S(z) and is defined as

MS = ‖S(z)‖∞ = max
ω

σ̄(S(ejωTs)) (7.8)

where σ̄(·) denotes the maximum singular value and Ts is the sample time. The
singular values of S(ejωTs) for each frequency ω can be obtained by a singular
value decomposition (SVD).

7.3 The Tuning Problem

The tuning of a model predictive controller for a (ny×nu) MIMO system consists
of determining the ny diagonal elements of the reference weight matrix Qy and
the nu diagonal elements of the control input weight matrix Su in the objective
function:

min
{uk+j|k}N−1

j=0

φ =
1
2

N−1∑
j=0

∥∥∥ŷk+1+j|k − rk+1+j|k
∥∥∥2

Qy

+
∥∥∆uk+j|k

∥∥2

Su

Furthermore, the nd parameters of the disturbance model, should also be deter-
mined.

In general the prediction horizon N is also regarded as a tuning parameter.
However, it is assumed that the prediction horizon is chosen sufficiently long,
such that an infinite horizon controller is approximated and hereby eliminating
this parameter from the tuning problem.

7.3.1 Optimization based Tuning

In order to determine the tuning parameters a constrained optimization problem
is formulated. The objective function of the optimization problem is related to
the performance measures for the closed-loop control system presented in Section
7.2.

To ensure robustness of the resulting control system, an upper bound MS,max

is defined for the maximum peak of the sensitivity function (7.8). Furthermore,
bounds are defined on the tuning parameters.
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The constrained optimization problem can be stated as

min
x

J(x) (7.9)

s.t. MS(x) ≤MS,max (7.10)
xmin ≤ x ≤ xmax (7.11)

where J(x) represents a specific performance measure and x is a vector contain-
ing the tuning parameters. The tuning parameters are organized in the vector
as x = [α1, . . . , αnd

, s1, . . . , snu , q1, . . . , qny ]T .

It should be noted that this optimization problem is non-linear, due to the
constraint (7.10). This type of constrained optimization problem is also referred
to as a Non-Linear Program (NLP).

Stating the tuning of the MPC as a constrained optimization problem has both
advantages and disadvantages. The main advantage is that all the tuning pa-
rameters can be determined simultaneously and that only solutions that result
in sufficiently robust controllers are obtained. The primary disadvantage is that
the optimization problem cannot in general be expected to be convex. This im-
plies that a global minimum of the optimization problem can’t be guaranteed.

7.3.2 Tuning Algorithm

The optimization problem is solved using the built-in Matlab solver fmincon.
To use this solver two functions have to be provided: a function for the evalua-
tion of the objective function J(x) and a function which evaluates the constraint
MS(x). Furthermore, the solver also requires a starting point x0.

The evaluation function of the objective function and the function computing
the maximum sensitivity are both computed based on simulation results of the
closed-loop state-space model.

The algorithm for the computation of the closed-loop state-space model is based
on the deterministic-stochastic model described in Section 3.2. The determinis-
tic part of the model is obtained from the system identification step and subse-
quently combined with the stochastic part.

Based on the deterministic-stochastic model an unconstrained MPC is designed
and the explicit control law is derived. The explicit control law is then combined
with the Kalman filter recursions for the controller model, into a controller state-
space. Finally, the controller state-space is combined with the process model to
form the closed-loop state-space model.
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Using the closed-loop state-space model, scenario simulation can be conducted
and the sensitivity function can be set up and evaluated. The evaluation func-
tions are implemented in the two function objfun and confun as seen in Algo-
rithm 1.

fmincon allows the user to specify the internal solver algorithm. For the Mat-
lab version (R2009b Mac) used for this thesis the available algorithms are an
active set or an interior point algorithm. These are specified in the field options.
In options, different solver termination conditions can also be specified. These
includes the maximum number of iterations and function evaluations allowed,
minimum step size for the variable x and tolerance for the minimum change in
the objective function. All options have default values and can be changed if
necessary.

Algorithm 1 illustrates in pseudo code how fmincon is used to solve the opti-
mization problem .

Algorithm 1 Tuning Algorithm
Defining plant and model:
plant = (Ap, Bp, Cp)
model = (A,B,C, Ts, N)
sys = [plant; model]
Setting bounds on tuning parameters:
lb = xmin
ub = xmax
Computing solution:
x = fmincon(@(x)objfun(sys, x), x0, lb, ub, @(x)confun(sys, x), options);

All Matlab functions used in the tuning approach and in the thesis in general
are included in Appendix A.

7.4 Tuning based on Identified Models

In this thesis it is assumed that the transfer function from input to output
Ĝ(s) is available from system identification, while the transfer functions from
disturbance to output and from process noise to output are not available. This
assumption in principle implies that scenario simulation can be conducted for
reference scenarios only.
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It is furthermore assumed that the distributions of the process and measure-
ment noise are unknown. This implies that the closed-loop covariance matrices
cannot be computed and subsequently that the optimization problem can’t be
based on objective functions related to the stochastic properties of the closed-
loop system.
The objectives considered for the tuning procedure are the deterministic mea-
sures.

In the following two alternative approaches for the formulation of the closed-
loop system are considered. The approaches incorporate the assumptions stated
above.

7.4.1 Approach I

In this approach the identified model is used for the controller design and a
perturbation of this model is used for the plant and furthermore to formulate
the deterministic part of the closed-loop system.

To have offset free control for the resulting tuning, unknown disturbances are
emulated by plant-model mismatch. The plant-model mismatch is obtained
using the identified model and the perturbation of this model for the plant.

The perturbation is conducted by modifying the gains, time constants or delays
of the identified model. It is crucial to use a modified plant model in order
to ensure offset free controllers are generated from the optimization problem.
Using the correct model would result in a situation where the output predictions
match the plant model and hereby eliminate the need for integration [OJ13].

The perturbed model representing the plant is realized as a discrete-time state-
space model

xk+1 = Apxk +Bpuk (7.12)
yk = Cpxk (7.13)

and subsequently used to formulate the closed-loop system.

Using this approach to conduct scenario simulation, it is necessary that the
controller is equipped with integrators to provide offset free control, since the
plant-model mismatch has been introduced.

Using this approach the objective function of the optimization problem is based
on the reference scenario simulation only. However, due to the plant-model
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mismatch offsets are now present and integrators will have to compensate for
these offsets, hereby incorporating disturbances in the simulation.

7.4.2 Approach II

In some situations the identified model might be very accurate despite the fact
that it has been identified under noisy conditions. In such a case it is of interest
to use the identified model both in the synthesis of the controller and as the
process model used in the closed-loop formulation.

To ensure offset free control for the resulting tuning using this approach, input
and output disturbances are added to the process model. This is done, as in
approach I, to create a plant-model mismatch. Due to the fact that the true
disturbance(s) are unknown, pure input and output disturbances are used. The
reason being that these only require knowledge of the identified part of the
process model, to be simulated.

These disturbances might not represent the true disturbances well, but they will
ensure that the output predictions do not match the process model and that
the optimization problem results in parameters which ensure offset free control.

The linear state-space model used to represent the plant is in this case given by

xk+1 = Axk +B(uk + ūk) (7.14)
yk = Cxk + ȳk (7.15)

where (A,B,C) are the matrices of the identified model and ūk, ȳk are step
input and output disturbances, respectively.

In this approach, it is also necessary that the controller is equipped with inte-
grators to provide offset free control.

Using this approach the optimization can be based on both reference scenario
and disturbance scenario simulation.

7.5 Summary

In this chapter the importance of tuning was introduced. To quantify the per-
formance of a control system different performance measures have been pre-
sented and discussed. These have furthermore been used to formulate a tuning
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approach which is based on constrained optimization. In the optimization prob-
lem a bound on the maximum sensitivity was formulated to ensure robustness
of the resulting control system. Finally, two approaches to conduct the tuning
based on deterministic identified models were presented.



Part II

Application





Chapter 8

Case Study - Introduction

The second part of the thesis presents a case study. In this case study a tank
process is considered and will be used to illustrate the theory studied in the first
part of the thesis.

The first chapter introduces the tank process and presents a first principle non-
linear model governing the process. Furthermore, the objective of regulating
the process is presented and the different variables of the process are classified.

In the second chapter a linear model of the tank process is obtained by system
identification using input-output data from the process. The identification is
conducted for two cases: a case without process- and measurement noise and a
case where noise is present.

The last chapter combines the identified linear model with a disturbance model
in order to obtain offset free control. Furthermore, this chapter designs the MPC
based on the combined model. The chapter also considers the tuning of the
designed MPC. Finally, the designed model predictive controller with specified
tuning parameters is tested in closed-loop simulations with the non-linear tank
process.
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Chapter 9

Case Study - The Modified
4-tank System

In this chapter, the modified 4-tank system is presented. The modified 4-tank
system is a modification of the 4-tank system considered in [Joh97], [JN98],
[JHWH99] and [Joh00]. The main modification in comparison to the original
4-tank system is the addition of two unknown disturbances entering the top
tanks (tank 3 and tank 4 in Figure 9.1).

9.1 Process Description

The modified 4-tank system is an interconnected tank system consisting of 4
water tanks, 2 pumps and a reservoir. A process diagram of the system is
shown in Figure 9.1.
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Tank 2

Tank 3 Tank 4

Tank 1

F1 F2

q1,in q2,in
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q1 q2

q3
q4

m3 m4

m1 m2

F3 F4

Figure 9.1: Process diagram of the modified 4-tank process.

The flow rates F1 and F2 are associated to water stream 1 and 2. For stream 1
the fraction γ1 of the flow goes into tank 1 while the remaining fraction 1− γ1

flows into tank 3. Similarly, the fraction γ2 of stream 2 flows into tank 2 while
the remaining fraction 1 − γ2 flows into tank 3. The outflow from tank 3 goes
flows into tank 1, and the outflow from tank 4 flows into tank 2.

The modification is the addition of stream 3 and stream 4 with the respective
flow rates, F3 and F4. In this thesis, these flow rates are disturbances that are
unknown to the controller.

9.2 Process Model

The equations governing the modified 4-tank system are given by a set of ordi-
nary differential equations (ODEs). The equations are obtained by performing
a mass balance on each tank and are given by [Jør12]
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dm1(t)
dt

= ρq1,in(t) + ρq3(t)− ρq1(t) (9.1)

dm2(t)
dt

= ρq2,in(t) + ρq4(t)− ρq2(t) (9.2)

dm3(t)
dt

= ρF3(t) + ρq3,in(t)− ρq3(t) (9.3)

dm4(t)
dt

= ρF4(t) + ρq4,in(t)− ρq4(t) (9.4)

with initial conditions

mi(t0) = mi,0, i = 1, 2, 3, 4 (9.5)

and where

q1,in(t) = γ1F1(t) (9.6)
q2,in(t) = γ2F2(t) (9.7)
q3,in(t) = (1− γ2)F2(t) (9.8)
q4,in(t) = (1− γ1)F1(t) (9.9)

are the inflows into the individual tanks. Here γ1 and γ2 are flow distribution
constants for valves 1 and 2. Furthermore, F1(t) and F2(t) are the input flow
rates (volume per time) coming from the two pumps.

The outflow from each tank is given by

qi(t) = ai
√

2ghi(t), i = 1, 2, 3, 4 (9.10)

where ai is the area of outlet pipe i, g is the gravitational force and hi(t) is the
water height (level) in tank i. The water height hi(t) in each tank is described
by

hi(t) =
1
ρAi

mi(t), i = 1, 2, 3, 4 (9.11)

where Ai is the cross sectional area of tank i and ρ is the density of water. The
mass of the water in each tank (as a function of time) is denoted by mi(t).

The terms F3(t) and F4(t) are flow rates describing the flows entering tanks
3 and tank 4, these flows enter the system as disturbances. This means that
these are not controlled by the operator of the system. The disturbances can
be either deterministic or stochastic (or a combination).

It is noted that the modified 4-tank system is a non-linear process, due to the
non-linear relationship in (9.10).
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Equations (9.1)-(9.11) constitute the process model of the modified 4-tank sys-
tem. For this process the manipulated variables (MVs) are the two pump flow
rates F1(t) and F2(t) and the controlled variables (CVs) are for this case study
the levels in tank 1 and tank 2, that is h1(t) and h2(t). Furthermore, the
disturbance variables (DVs) are the two additional flow rates F3(t) and F4(t).

The model of the process can be expressed as a system of first-order ordinary
differential equations

ẋ(t) = f(x(t),u(t),d(t)) (9.12)
y(t) = g(x(t)) (9.13)
z(t) = h(x(t)) (9.14)

with initial condition
x(t0) = x0 (9.15)

and vectors defined by

x(t) =


m1(t)
m2(t)
m3(t)
m4(t)

 , u(t) =
[
F1(t)
F2(t)

]
, d(t) =

[
F3(t)
F4(t)

]
(9.16)

y(t) =
[
h1(t)
h2(t)

]
, z(t) =

[
h1(t)
h2(t)

]
(9.17)

Equation (9.12) is referred to as the process equation, while equations (9.13)-
(9.14) are referred to as the measurement equation and the output equation,
respectively.

The parameters of the modified 4-tank system are listed in Table 9.1. These
parameters are the same as used in [Jør12].

Table 9.1: Parameters for the modified 4-tank system.

Description Symbol Value Unit
Pipe cross sectional area ai 1.2272 cm2

Tank cross sectional area Ai 380.1327 cm2

Acceleration of gravity g 981 cm/s2
Density of water ρ 1.00 g/cm3

Valve distribution constant γ1 0.45
Valve distribution constant γ2 0.40

The valve distribution constants could be varied, however, in this case study
these are assumed to be fixed.
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9.3 Simulation of the Modified 4-Tank Process

For the purpose of simulating the modified 4-tank process the continuous-time
process model is transformed into a discrete-time process model.

The state can at discrete times tk be expressed as

x(tk) = xk

Assuming that the manipulated variables and the disturbance variables are con-
stant in each sample interval

u(t) = uk, tk ≤ t < tk+1

d(t) = dk, tk ≤ t < tk+1

where the sample times are given by tk = t0 + kTs and Ts is the sample time.
The state at the next discrete time x(tk+1) = xk+1 can be expressed as

xk+1 = F (xk,uk,dk) (9.18)

where

F (xk,uk,dk) = xk +
∫ tk+1

tk

f(x(t),uk,dk)dt (9.19)

and measurement and output can be expressed as

yk = g(xk) (9.20)
zk = h(xk) (9.21)

9.3.1 Stochastic Simulation Model

The model (9.18)-(9.21) is a deterministic system. For the purpose of repre-
senting the process more realistically, the process model is extended to include
process- and measurement noise.

In this project the disturbance is modeled as having a deterministic and a
stochastic component. The deterministic component, denoted by ddetk , repre-
sents the mean value of the flow rates F3(t) and F4(t) for the flows entering tanks
3 and tank 4 and may change stepwise. The stochastic component represents
a random variation of the mean and is assumed to be Gaussian white-noise.
The stochastic component is considered the process-noise in this case study and
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is denoted by wk. Furthermore, it is assumed to be constant in each sample
interval.

The discrete-time disturbance used for simulation of the process is given by

dk = ddetk +wk (9.22)

where
wk ∼ Niid(0,Q) (9.23)

Furthermore, the disturbance is modeled as only being able to enter the tanks,
that is the disturbance should not be able to remove water from the tanks. This
requirement implies that the process-noise wk should not make ddetk negative
and can be ensured by choosing the covariance matrix accordingly.

The measurements of the water levels (heights) in tanks 1 and 2 are assumed
to be influenced by measurement noise. The measurement noise is assumed to
be Gaussian white-noise. The measurements are given by

yk = g(xk) + vk (9.24)

where
vk ∼ Niid(0,R) (9.25)

The discrete-time simulation model for the modified 4-tank process may be
expressed as

xk+1 = F (xk,uk,dk) (9.26)
zk = h(xk) (9.27)
yk = zk + vk (9.28)

where

F (xk,uk,dk) = xk +
∫ tk+1

tk

f(x(t),uk,dk)dt (9.29)

wk ∼ Niid(0,Q) (9.30)
vk ∼ Niid(0,R) (9.31)

9.4 Control Objective

The objective of controlling the modified 4-tank system is to regulate the water
heights hi(t) in tank 1 and tank 2, to water height references ri(t). For the
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situation where F3(t) and F4(t) are unmeasured disturbances entering tanks 3
and 4.

In the discrete-time setting, this corresponds to regulating the measured output
yk to the reference vector rk.
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Chapter 10

Case Study - System
Identification

In this chapter a linear model for the modified 4-tank process is identified from
input-output data. In order to obtain the input-output data, step tests are
conducted on the modified 4-tank process.

10.1 Step Tests

For the purpose of generating the process data the non-linear modified 4-tank
process model (9.26)-(9.29) is used to represent the true process. It is assumed
that the process model is completely unknown (a black box model) for the
purpose of identification. The reason for this assumption is to make the identi-
fication procedure as real as possible to achieve what would be encountered in
real industrial applications.
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y

Process


u


z


Figure 10.1: Black box model representation of the process.

Figure 10.1 illustrates the black box assumption. z represents the true output of
the process. However, this is not what is actually measured due to measurement
noise. y is the measured output of the process.

The input-output data are generated by conducting individual steps in the ma-
nipulated variables and subsequently recording the measured output y(tk) = yk
of the process.

The manipulated variables are piecewise constant in each sample interval

u(t) = uk, tk ≤ t < tk+1

The sample instances are defined by tk = t0 + kTs where t0 is the start time
and Ts is the sample time.

10.1.1 Test 1 - No Process and Measurement Noise

The first set of step tests are conducted without the presences of process- and
measurement noise. This is mainly done to clearly illustrate the identification
procedure and to have an ideally identified model to compare to models obtained
under the presence of process- and measurement noise.

The process is simulated for 3000 seconds starting at t0 = 0 and the output
of the process is measured with the sample-time Ts = 4 [s]. The resulting
number of sampled measurements is Nsim = 750. For the first 1000 seconds
both manipulated variables are kept constant at

u1 = 300 [cm3/s]

u2 = 300 [cm3/s]

At time t = 1000 seconds a step change of 45 [cm3/s] is introduced in u1, while
u2 remains constant. The response of the two measured variables y1 and y2 is
recorded and presented with the manipulated variables in Figure 10.2.
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Figure 10.2: Step test data for a step change in u1.

Figure 10.2 illustrates the response of the process. It is observed that when the
step change in u1 occurs at t = 1000, the measured outputs respond instanta-
neously. This illustrates that there is no time delay present between the input
u1 and the outputs y1 and y2. The figure furthermore shows that both outputs
clearly respond to the step change in u1.

The procedure is then repeated for a step change in u2, while u1 is kept constant.
At time t = 1000 seconds, a step change of 45 [cm3/s] is introduced in u2.
The response of the two measured variables is recorded and presented with the
manipulated variables in Figure 10.3.
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Figure 10.3: Step test data for a step change in u2.

Figure 10.3 illustrates the response of the process. It is observed that when the
step change in u2 occurs at t = 1000, the measured outputs respond instanta-
neously. This illustrates that there is no time delay present between the input
u2 and the outputs y1 and y2. The figure furthermore shows that both outputs
also clearly respond to the step change in u2.

Prior to the step change the outputs are steady at the level yi,s, i = 1, 2, which
is the steady state output corresponding to the constant inputs. When the step
change is introduced at time t = 1000 the output responds, and after a transient
period reaches a new steady state output level. The output data recorded from
t = 1000 constitute the step response data.

The input-output data obtained from the two step tests are next transformed
to unit step response data. This corresponds to the response of the process to
a unit step when the process is at steady state. This is done by subtracting the
initial steady-state output data from the output response data and dividing by
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the size of the step in the input

yi − yis
∆uj

(10.1)

where i = 1, 2 is the index of the output and j = 1, 2 is the index of the stepped
input. The unit step response data corresponding to the step tests conducted
above are reported in Figure 10.4.
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Figure 10.4: Unit step response data.

The unit step response data are then fitted to the analytical expression for the
unit step response of a first-order plus dead time system and for a second-order
plus dead time system. This is done using non-linear least-squares estimation.

The parameter estimates obtained from the least-squares estimation are pre-
sented in Table 10.1 and Table 10.2. Figure 10.5 illustrates the unit step re-
sponse data along with the estimated unit step response based on the FOPDT
and SOPDT models.
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Figure 10.5: Estimated unit step response based on the FOPDT and SOPDT
models.

Figure 10.5 shows as expected that the estimated unit step responses are very
similar to the data, since no process- and measurement noise is present. It is
seen that there is a perfect fit between the data and the estimates for Ĝ11(s)
and Ĝ22(s) and that this is the case for both the FOPDT and SOPDT models.
This illustrates that these are in fact first-order models. For Ĝ21(s) and Ĝ12(s)
estimated based on the FOPDT structure it is seen there is a small difference
from the data and furthermore that this is not the case for the SOPDT. This
illustrates that these are in fact second-order models.

Table 10.1: Estimated parameters for the first-order plus dead time models
based on the unit step response data.

K̂ij τ̂ij θ̂ij
Ĝ11(s) 0.1203 102.9214 0
Ĝ12(s) 0.1633 182.0347 0
Ĝ21(s) 0.1379 168.6652 0
Ĝ22(s) 0.0985 94.7909 0



10.1 Step Tests 93

Table 10.2: Estimated parameters for the second-order plus dead time models
based on the unit step response data.

K̂ij τ̂
(1)
ij τ̂

(2)
ij θ̂ij

Ĝ11(s) 0.1203 4.4934e-05 101.7178 0
Ĝ12(s) 0.1619 60.9551 112.0959 0
Ĝ21(s) 0.1368 57.1322 103.5558 0
Ĝ22(s) 0.0985 1.4511e-05 94.0700 0

10.1.2 Test 2 - Process and Measurement Noise

The second set of step tests are conducted in the presence of process- and mea-
surement noise. In the tests the covariance matrices for the process- and mea-
surement noise are given by

Q =
[
202 0
0 202

]
, R =

[
0.52 0

0 0.52

]

There is not cross correlation between the process noise and the measurement
noise. Both the two process noise components and the two measurement noise
components are independent.

The information of the noise characteristics and the presence of the disturbance
is not used in the actual system identification.

The process is again simulated for 3000 seconds starting at t0 = 0 and the
output of the process is measured with the sample-time Ts = 4 [s]. Similarly,
the resulting number of sampled measurements is Nsim = 750. For the first
1000 seconds both manipulated variables are kept constant at

u1 = 300 [cm3/s]

u2 = 300 [cm3/s]

At time t = 1000 seconds a step change of 45 [cm3/s] is introduced in u1, while
u2 remains constant. The response of the two measured variables y1 and y2 is
recorded and presented with the manipulated variables in Figure 10.6.
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Figure 10.6: Step test data for a step change in u1, in the presence of process-
and measurement noise.

Figure 10.6 illustrates the response of the process to a step change in u1, in the
presence of process- and measurement noise. It is observed that when the step
change in u1 occurs at t = 1000, both the measured outputs still respond in a
relatively clear way. However, it is seen that before the step change occurs the
process is varying significantly and the presence of noise makes it much harder
to identify the steady state output levels.

Figure 10.7 illustrates the response of the process to a step change in u2, in the
presence of process- and measurement noise.
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Figure 10.7: Step test data for a step change in u2, in the presence of process-
and measurement noise.

Figure 10.7 illustrates similar behavior to a step in u1. Since the two step tests
are conducted separately the noise contributions are different for the two cases.
In this step test y1 behaves very nicely and a clear trend of the response is seen.
On the other hand, the response of y2 is much affected by the presence of the
noise.

In both Figure 10.6 and Figure 10.7 there are no indications of delays being
present from the inputs to the outputs.

In order to get an estimate of the steady state output levels, the sample mean of
output data recorded from t0 = 0 to t = 1000 is computed. This is then used to
transform the input-output data obtained from the two step tests to unit step
response data, as done in the case without noise. The unit step response data
are reported in Figure 10.8.
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Figure 10.8: Unit step response data obtained in the presence of process- and
measurement noise.

The unit step response data are then fitted to the analytical expression for the
unit step response of a first-order plus dead time system and for a second-order
plus dead time system. This is again done using non-linear least-squares esti-
mation. The parameter estimates obtained from the least-squares estimation
are presented in Table 10.3 and Table 10.4.

Table 10.3: Estimated parameters for the first-order plus dead time models
based on the unit step response data.

K̂ij τ̂ij θ̂ij
Ĝ11(s) 0.0822 140.2627 0
Ĝ12(s) 0.1258 231.0847 0
Ĝ21(s) 0.1523 216.4180 0
Ĝ22(s) 0.1110 137.5618 0
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Table 10.4: Estimated parameters for the second-order plus dead time models
based on the unit step response data.

K̂ij τ̂
(1)
ij τ̂

(2)
ij θ̂ij

Ĝ11(s) 0.0818 25.3224 108.7843 0
Ĝ12(s) 0.1238 104.5181 104.4942 0
Ĝ21(s) 0.1520 7.6230 206.9884 0
Ĝ22(s) 0.1091 9.3216e-06 96.1746 0

Figure 10.9 illustrates the unit step response data along with the estimated unit
step response based on the FOPDT and SOPDT models.
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Figure 10.9: Estimated unit step response based on the FOPDT and SOPDT
models.

Figure 10.9 illustrates the unit step response data and the estimated unit step
responses of the FOPDT and SOPDT models. It is seen that the estimates of the
FOPDT and SOPDT models are almost indistinguishable from each other. This
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observation indicates that it is not possible, based on the estimated responses,
to conclude whether first or second order models are most suitable.

In this case study the correct model structures are known, however, this would
in general not be the case for industrial applications and this knowledge will
therefore not be utilized.

The identified linear input-output model for the modified 4-tank process is given
by [

Y1(s)
Y2(s)

]
=
[
Ĝ11(s) Ĝ12(s)
Ĝ21(s) Ĝ22(s)

] [
U1(s)
U2(s)

]
(10.2)

where the transfer functions Ĝ11(s), Ĝ12(s), Ĝ21(s) and Ĝ22(s) are given in
Table 10.3 for the case where all transfer functions are modeled as first order
systems and Table 10.4 for the case where all transfer functions are modeled as
second order systems.

It should be noted that this identified model is a purely deterministic model
and that no models of the noise and/or the disturbances have been identified.

10.2 Summary

In this chapter a linear model for the modified 4-tank system has been obtained
by system identification. The identification was based on step tests conducted
using the non-linear simulation model for the process. Both a first-order and
second-order input-output model were obtained.



Chapter 11

Case Study - Numerical
Results

The main purpose of this chapter is to illustrate the optimization based tuning
approach on the identified models for the modified 4-tank system. Furthermore,
based on the obtained sets of tuning parameters to conduct closed-loop simula-
tion using the non-linear process model for the modified 4-tank system as the
plant model.

11.1 Tuning based on Optimization

In this section, the tuning of the MPC based on the identified models is consid-
ered. The tuning will be conducted mainly based on the first-order identified
model. However, for the purpose of comparison also some tuning tests will be
conducted for the second-order identified model.

For all tuning tests the prediction horizon for the MPC is selected to N = 500.
The choice provides a good approximation to an infinite horizon controller for
the entire range of tuning parameters. The designed controllers are all based on
the deterministic-stochastic model.



100 Case Study - Numerical Results

For the modified 4-tank system the tuning parameters to be determined are the
diagonal elements q1, q2, s1 and s2 of tuning weights Qy and Su along with
the disturbance model parameters of the deterministic-stochastic model α1 and
α2. This means that the optimization problem contains 6 tuning variables to
be determined.

For the evaluation of MS a vector of frequencies in the range 10−4 ≤ ω ≤ π/Ts
with a 1000 linearly spaced frequencies is used for all the test. This provides a
consistent estimate for the maximum sensitivity peak for all the cases considered.

The results are organized as follows. In the first part of the section tuning is
conducted based on the first-order identified model. The second part of the
section conducts the tuning based on the second-order identified model.

11.1.1 Tuning based on first-order identified model

This section considers the tuning based on the first-order identified model. The
tuning will be conducted for both the approaches described in Section 7.4.
The first part of this section conducts the tuning based on approach I.

Approach I In approach I the plant-model mismatch is conducted by mod-
ifying the identified model. This modification is done for the model gains K̂ij

and time constants τ̂ij separately and is obtained by multiplying all the gains
or time constants by the same deviation factor δ. The tuning can subsequently
be conducted for different levels of deviation.
In this approach only reference scenario simulations are conducted. The ref-
erence scenarios used are generated by introducing a step in the individual
references for the two outputs.

In the first tuning test the optimization problem is solved for different choices
of the maximum sensitivity bound MS,max. In this way it is investigated what
sensitivity level gives reasonable tuning parameters for the controllers based on
the first-order identified model.

The test is conducted based on a gain deviation scenario, where all gains of the
plant model are 90 % of the nominal values of the identified first-order model.
That is δ = 0.9.
The reference step used to conduct the reference scenario is rk = [1 1]T and
the objective of the optimization J is the sum of the IAE associated with the
individual reference scenarios.
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The result of the optimizations has been produced using one fixed starting point
for all values of the maximum sensitivity boundMS,max. The starting point used
is given by x0 = [0.7 0.7 100 100 1 1]. The algorithm utilized by fmincon is
the interior-point algorithm. In this test the default options for the solver is
used.

The tuning parameters generated by solution of the optimization problem based
on the first-order identified model are listed in Table 11.1.

MS,max α1, α2 s1, s2 q1, q2 δ J
1.10 6.1 · 10−8 109.1 0.0616 0.9 1129.9

3.4 · 10−8 116.8 0.0656
1.15 3.4 · 10−9 110.8 0.3495 0.9 664.9

2.0 · 10−9 102.8 0.3629
1.20 5.0 · 10−5 37.9 1.3395 0.9 377.4

3.9 · 10−5 166.8 1.3876
1.25 6.9 · 10−5 116.8 361.2 0.9 285.1

1.2 · 10−4 2.4 · 104 382.6
1.30 6.5 · 10−7 128.7 36.6 0.9 130.6

0.9980 0.0011 90.5
1.50 5.5 · 10−6 44.0 3.0 · 105 0.9 79.1

1.2 · 10−5 3.1 · 105 3.1 · 105

Table 11.1: Tuning parameters and associated objective function values ob-
tained by optimization based on gain deviation scenario with
δ = 0.9 for different values of the maximum sensitivity bound
MS,max.

From Table 11.1 it is seen that the tuning parameters obtained for all cases
expect for one case have α1, α2 ≈ 0, corresponding to full integration. In the
exception case, MS,max = 1.30, the first output y1 has full integration α1 ≈ 0
while the second output y2 has almost no integration α2 ≈ 1. However, the
integrator is not completely disabled so offset free control can be achieved for
this case.

It is observed that for MS,max = 1.25, MS,max = 1.30 and MS,max = 1.50 the
ratio between the tuning parameters s1 and s2 is very large. This will in practice
imply that one actuator is changing the control signal very aggressively while
the other is only changed very slowly. Combined with the fact that q1 and q2 are
relatively large, these parameter sets will most likely result in controllers that
are useless in practice. The behavior will be investigated later in this chapter,
when closed-loop simulations are conducted.
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Tests have also been conducted for MS,max > 1.50. In these tests similar be-
havior is observed. In some cases s1 < s2 and others s2 < s1 while q1 and q1
are always the same order of magnitude and relatively large.

As expected the objective function J increases when the sensitivity bound
MS,max is decreased. In particular it is seen that J increases very fast when the
value of the bound gets close to 1.

The solutions obtained for MS,max ≤ 1.25 seem to provide reasonable and in-
tuitive tuning parameters. That is relatively high values for the input rate
movement weights s1 and s2 and lower values for the reference tracking weights
q1 and q2.

The results in Table 11.1 are obtained based on the IAE of the individual refer-
ence scenarios. Similar tuning parameters are obtained when using the ISE to
asses the scenarios.

In order to investigate the effect of the size of the deviation, next a tuning test
based on a gain deviation scenario where δ = 0.5 is conducted. This test is done
only for three levels of the sensitivity bound MS,max. The tuning parameters
generated by solution of the optimization problem for this case are listed in
Table 11.2.

MS,max α1, α2 s1, s2 q1, q2 δ J
1.10 5.1 · 10−7 129.1 0.6587 0.5 760.0

3.0 · 10−7 121.3 0.6888
1.15 0.0040 4.2491 4.5824 0.5 443.0

0.0031 204.0406 4.6849
1.20 4.5 · 10−7 3.8 · 10−4 21.6650 0.5 295.7

3.8 · 10−7 177.9 22.4084

Table 11.2: Tuning parameters and associated objective function values ob-
tained by optimization based on gain deviation scenario with
δ = 0.5 for different values of the maximum sensitivity bound
MS,max.

From Table 11.2 it is seen that the solution obtained for MS,max = 1.20 is very
different compared to the solution found in Table 11.1. This solution shares
the same characteristics as the solutions obtained for higher values of MS,max.
When MS,max is lowered it is again seen that much more reasonable tuning
parameters are obtained. This behavior suggests that the higher the deviation
is chosen the more sensitive the closed-loop becomes. As a consequence a lower
bound MS,max is needed to obtain acceptable tuning parameters.
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It is also seen that the objective function J for all cases is smaller when compared
to the respective cases in Table 11.1. This can be contributed to the deviation
level.

Last, a test is conducted based on a time constant deviation scenario, where
all the time constants of the plant model are 90 % of the nominal values of the
identified first-order model. The tuning parameters generated by solution of the
optimization problem for this case are listed in Table 11.3.

MS,max α1, α2 s1, s2 q1, q2 δ J
1.10 9.6 · 10−9 102.1 0.0573 0.9 1120.5

5.5 · 10−9 107.4 0.0573
1.20 4.9 · 10−5 54.8 1.3047 0.9 357.4

3.7 · 10−5 149.5 1.3523
1.30 2.2 · 10−5 83.0 18.7335 0.9 96.0

1.0000 0.002 48.4741

Table 11.3: Tuning parameters and associated objective function values ob-
tained by optimization based on time constant deviation scenario
with δ = 0.9 for different values of the maximum sensitivity bound
MS,max.

From Table 11.3 it is seen that the solutions obtained for MS,max = 1.10 and
MS,max = 1.20 are very similar compared to the solution found in Table 11.1.
This indicates that the time constant deviation and the gain deviation have
similar effect on the optimization problem. It is furthermore seen thatMS,max =
1.30 results in a situation where one of the integrators is turned off. The inactive
integrator makes this tuning unable to suppress disturbances and ensure offset
free control. This case also suffers from the behavior seen previously related to
the input weights.

The tests conducted based on Approach I illustrate that the obtained tuning
parameters to a large extend depend on the level of deviation and that it is not
obvious exactly how this level should be chosen. However, it is seen for all the
cases studied that it is possible to obtain reasonable tuning parameters. The
tests suggest that the system based on the first-order identified model is very
sensitive and consequently MS,max should be chosen very low.

The next part of this section tests the tuning procedure based on approach II.
Mainly the same tuning tests as conducted above will be carried out. This is
done such that the two approaches can be compared.
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Approach II In approach II the optimization is based on a combination of
an input disturbance scenario, an output disturbance scenario and a reference
scenario. Each of these scenarios is conducted by introducing a step with a
specified magnitude in the associated input to the closed-loop system.

The objective J of the optimization is the sum of the IAE associated with the
individual scenarios. These are denoted by Ju, Jy and Jr.

In the first tuning test the optimization problem is solved for different choices
of the maximum sensitivity bound MS,max. In this test the step for the input
disturbance is ūk = [1 1]T , the step in the output disturbance is ȳk = [0.1 0.1]T

and the reference step is rk = [0.1 0.1]T . In terms of scaling this choice seems to
provide a good balance between the three components of the objective function.
That is each component has the same order of magnitude.

The result of the optimizations has also been produced using one fixed starting
point for all values of the maximum sensitivity bound MS,max. The starting
point used is also in this test given by x0 = [0.7 0.7 100 100 1 1]. Also for this
test the default option values are used.

The tuning parameters generated by solution of the optimization problem based
on the first-order identified model are listed in Table 11.4.

MS,max α1, α2 s1, s2 q1, q2 Ju Jy Jr J
1.10 3.7 · 10−8 102.1 0.0428 217.2 351.2 336.3 904.7

2.3 · 10−8 99.7 0.0432
1.15 2.0 · 10−8 107.3 0.2181 111.2 166.5 127.5 405.1

1.3 · 10−8 99.0 0.2221
1.20 6.9 · 10−5 62.1 0.9891 53.7 69.2 41.7 164.6

4.7 · 10−5 143.7 1.0073
1.25 5.9 · 10−5 6.9811 2.0463 33.5 50.9 30.4 114.8

3.4 · 10−5 198.7575 1.9726
1.50 4.0 · 10−4 0.0001 47.145 9.0 21.2 9.9 40.1

4.0 · 10−4 170.333 52.223
1.70 0.9013 1.0 · 10−6 381.7822 4.0 6.0 0.2 10.2

2.1 · 10−5 1.0 · 10−6 341.9258

Table 11.4: Tuning parameters and associated objective function values ob-
tained by optimization for different values of the maximum sensi-
tivity bound MS,max.

Table 11.4 presents the tuning parameters obtained by optimization forMS,max =
{1.10, 1.15, 1.20, 1.25, 1.50, 1.70}. The table shows that for this approach the
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tunings for all cases, except MS,max = 1.7, have α1, α2 ≈ 0 corresponding to
full integration. This behavior is what was also observed for Approach I.

It is observed that when the maximum sensitivity MS,max is chosen larger than
MS,max ≥ 1.25, the tuning parameter s1 is determined to be very small in com-
parison to s2 or both parameters are very small. This again corresponds to a
situation where the first control input can vary rapidly while the second con-
trol input can only change very slowly as previously observed. This behavior
indicates that the closed-loop system based on the first-order identified model
is very sensitive and a small bound is necessary to obtain useful tuning pa-
rameters. A possible explanation for this behavior could be that the first-order
model is too simple and cannot in an appropriate fashion minimize the objective
when the sensitivity bound is allowed to be relatively high. The tuning parame-
ters obtained for MS,max = {1.10, 1.15, 1.20, (1.25)} all appear to be reasonable
choices. The objective function J clearly illustrates the tradeoff between these
sets of tuning parameter with both respect to reference tracking and disturbance
rejection.

Overall it is seen that the two considered approaches behave in a similar fashion
when applied for the first-order identified model.
The results in Table 11.4 are obtained based on the IAE of the individual sce-
narios. Similar tuning parameters are obtained when using the ISE.

To investigate the effect of the scaling of the terms in the objective function
additional tests have been conducted. In these tests the ratios between the size
of input and output disturbance steps and the reference step have been varied.
The main conclusion of these tests is that the scaling only has little effect on the
obtained tuning parameters and that similar behavior to the previous results is
observed.

Based on the fact that almost all the sets of tuning parameters obtained by the
optimization result in full integration, it was tested which tuning parameters
are obtained if the disturbance model parameters α1 and α2 are fixed in the
optimization problem. This appeared to cause problems for the solver and often
resulted in no feasible solution when α1 and α2 was fixed between 0.6 − 0.999.
For lower values the resulting tunings were similar to the ones seen so far.

11.1.1.1 Summary

This section have illustrated the optimization based tuning approach on the first-
order identified model. The tuning parameters obtained for MS,max ≥ 1.3 show
large differences for the two input rate weights s1 and s2 allowing one actuator
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to use excessive control action. For these cases q1 and q2 attain relative high
values and consequently result in controllers that are too aggressive and most
likely are useless in practice. The tuning parameters obtained for MS,max < 1.3
appear to result in reasonable controllers.

11.1.2 Tuning based on second-order identified model

This section considers the tuning based on the second-order identified model.
The tuning will be conducted based on both Approach I and Approach II.

In the tests the optimization problem is solved for different choices of the max-
imum sensitivity bound MS,max. In this way it is investigated what sensitivity
level gives reasonable tuning parameters for the controllers based on the second-
order identified model. These tests will be the basis for the comparison to the
results obtained based on the first-order identified model.

Approach I The tuning parameters generated by solution of the optimization
problem based on tuning Approach I are listed in Table 11.5.

MS,max α1, α2 s1, s2 q1, q2 δ J
1.10 6.1 · 10−8 109.1 0.0616 0.9 1129.9

3.4 · 10−8 116.8 0.0656
1.15 3.4 · 10−9 110.8 0.3495 0.9 664.9

2.0 · 10−9 102.8 0.3629
1.20 5.0 · 10−5 37.9 1.3395 0.9 377.4

3.9 · 10−5 166.8 1.3876
1.25 6.9 · 10−5 116.8 361.2 0.9 285.1

1.2 · 10−4 2.4 · 104 382.6
1.30 6.5 · 10−7 128.7 36.6 0.9 130.6

0.9980 0.0011 90.5
1.50 5.5 · 10−6 44.0 3.0 · 105 0.9 79.1

1.2 · 10−5 3.1 · 105 3.1 · 105

Table 11.5: Tuning parameters and associated objective function values ob-
tained by optimization based on gain deviation scenario with
δ = 0.9 for different values of the maximum sensitivity bound
MS,max.
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Approach II The tuning parameters generated by solution of the optimiza-
tion problem based on the second-order identified model are listed in Table
11.6.

MS,max α1, α2 s1, s2 q1, q2 Ju Jy Jr J
1.10 4.0 · 10−8 105.2840 0.0431 218.4 356.0 341.3 915.7

2.8 · 10−8 108.2985 0.0449
1.15 2.2 · 10−8 95.0781 0.1553 128.7 201.4 163.1 493.3

1.6 · 10−8 104.5402 0.1656
1.20 3.8 · 10−6 90.9645 0.5512 69.2 93.0 57.2 219.3

2.5 · 10−6 109.8823 0.6247
1.25 0.0001 26.4586 1.0393 49.7 67.5 38.6 155.8

0.0001 169.8823 1.0852
1.30 0.0001 8.1340 1.7094 38.0 55.5 30.8 124.3

0.0001 191.5077 1.7438
1.40 0.0002 0.2895 3.8313 23.4 41.5 21.7 86.5

0.0001 197.1328 4.4009
1.50 0.0003 0.0025 8.1583 17.1 33.7 15.3 66.1

0.0002 184.1745 9.3094
1.70 0.0074 248.5293 81.6342 10.3 19.5 8.4 38.2

0.0041 9.8 · 10−5 101.7485
2.00 0.0638 1.0 · 10−6 251.7017 8.6 15.4 0.2 24.2

0.0201 1.0 · 10−6 309.3501

Table 11.6: Tuning parameters and associated objective function values ob-
tained by optimization for different values of the maximum sensi-
tivity bound MS,max.

From Table 11.5 and Table 11.6 it is seen that the solutions obtained based
on the second-order model for both tuning approaches have much the same
characteristics as the solutions obtained based on the first-order model. This
indicates that the behavior experienced in the previous test does not stem from
the fact that the optimization is based on the first-order model but rather is a
general feature of the process.

11.1.2.1 Summary

This section has illustrated the optimization based tuning approach on the
second-order identified model. The tuning parameters obtained for MS,max <
1.4 appear to result in reasonable controllers.
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11.2 Closed-Loop Simulations

In this section closed-loop simulations for the modified 4-tank process are con-
ducted.

The closed-loop simulations are conducted using the tuning parameters obtained
by the optimization procedure in the previous section. The simulations are
done in order to illustrate the importance of proper tuning of industrial control
systems.

In the simulations the non-linear modified 4-tank process model (9.26)-(9.29)
is used to represent the plant. The covariance matrices for the process- and
measurement noise used in the simulation are given by

Q =
[
202 0
0 202

]
, R =

[
0.52 0

0 0.52

]
The process is sampled using a sample time Ts = 4 [s]. The prediction hori-
zon used in the simulations is N = 500, corresponding to a prediction of the
future dynamic behavior of the process for 2000 [s]. It has been chosen to be
long to approximate an infinite horizon controller, hereby reducing the effect of
differences between open-loop and closed-loop solutions.

In the simulations the nominal value for the deterministic part of the disturbance
is ddetk = [70 70]T . It should be noted that these are the same conditions which
the identified models were obtained under. This corresponds to what would be
considered normal operation conditions in the case study.

In the simulations a simulation profile where the process is in a steady state is
used. The initial water level (height) in Tank 1 is 50.2 cm and the water level
in Tank 2 is 42.7 cm.

11.2.1 Simulations based on first-order identified model

As already mentioned, it is not evident that all the tuning parameters obtained
in the previous section result in satisfactory behavior of the control system. To
investigate what level of sensitivity results in acceptable behavior, simulations
are conducted for different values of MS,max.

The first simulation is conducted based on the results in Table 11.1. A simulation
based on the tuning parameters obtained forMS,max = 1.25 andMS,max = 1.30
is presented in Figure 11.1.
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In the simulation the reference for the water level in Tank 1 is at t = 170 [min]
increased to 58 cm, while the reference for Tank 2 is unchanged. Furthermore,
at t = 35 [min] a step change in the deterministic part of the disturbance into
Tank 2 is introduced with a relative change of +40 [cm3/s].
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Figure 11.1: Closed-loop simulation based on first-order identified model with
tuning parameters obtained using MS,max = 1.25 and MS,max =
1.30.

The simulation in Figure 11.1 shows that these tunings provide good reference
tracking for both outputs, despite the disturbance and the high level of process
and measurement noise. It is seen that the disturbance rejection for y2 is most
efficient for MS,max = 1.25, but at the same time that y1 reacts quite strongly
as well.

Furthermore, it is clearly seen that the variance of the control signal u2 for
MS,max = 1.30 is very high and that this set of tuning parameters is not ac-
ceptable and useless in practice. The parameters obtained for MS,max = 1.25
seem to provide an acceptable performance.
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Next it is investigated what performance is obtained when the sensitivity bound
is reduced. To illustrate this, a test is conducted for MS,max = 1.20 and
MS,max = 1.15 using the same simulation scenario as used above. The sim-
ulation is presented in Figure 11.2.
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Figure 11.2: Closed-loop simulation based on first-order identified model with
tuning parameters obtained using MS,max = 1.15 and MS,max =
1.20.

From the simulation in Figure 11.2 it is seen that these sets of tuning parame-
ters provide a marginally better and smooth overall reference tracking for both
outputs compared to the previous simulation. However, it is seen that these
tunings both react more slowly to the reference step. A nice feature related to
these tunings is that both outputs are relatively insensitive to the high level of
process noise.

The disturbance rejection is similar for both sets of tuning parameters, but
MS,max = 1.20 provides a slightly faster rejection without causing any side
effects.
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A very important fact about these tunings is that the variances on the control
inputs are very small. In particular it is seen that the variance of the control sig-
nal u2 is reduced substantially for both tunings in comparison to the case where
MS,max = 1.30. This nicely illustrates the benefits of lowering the sensitivity
bound.

It will now be investigated if the performance can be increased even more
by further reducing the sensitivity bound. This simulation is conducted for
MS,max = 1.20 and the lowest sensitivity bound MS,max = 1.15. The simula-
tion for these sets of tuning parameters is presented in Figure 11.3.
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Figure 11.3: Closed-loop simulation based on first-order identified model with
tuning parameters obtained using MS,max = 1.10 and MS,max =
1.20.

The simulation in Figure 11.3 very clearly illustrates the trade-off between dis-
turbance rejection and sensitivity of the system. It is seen that the disturbance
introduced in y2 at t = 35 [min] is rejected very slowly for MS,max = 1.10 and
that this has a substantial impact in the simulation.
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When compared to the tuning obtained for MS,max = 1.20 it is seen that this
tuning is in a sense too robust and probably not that useful in practice due to
its overall performance.

From this simulation it can be concluded that there is no practical benefit in
selecting MS,max = 1.10 as this heavily increases the disturbance rejection time
and does not offer a better tracking for the system. Based on the simulations
conducted so far the best trade-off between low input variance and disturbance
rejections seems to be obtained for a tuning using MS,max = 1.20 or MS,max =
1.15.

The simulations conducted so far are all based on the tuning parameters in Table
11.1 obtained using tuning Approach I. Since the tuning parameters obtained
for other deviation scenarios are very similar, simulations will not be illustrated
for the tuning parameters in Table 11.2 and Table 11.3. It should however be
noted that similar performance and behavior are observed for such simulations.

Next simulation based on the results in Table 11.4 is considered. That is the
tuning parameters obtained using tuning Approach II.

As already stated, the tuning parameters obtained based on Approach II are
very similar to that of Approach I. Based on simulation studies it was seen that
the tuning parameters resulted in similar closed-loop performance. Therefore
only one simulation is presented for this approach. The simulation is conducted
for MS,max = 1.25 and MS,max = 1.50 and is reported in Figure 11.4.
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Figure 11.4: Closed-loop simulation based on first-order identified model with
tuning parameters obtained using MS,max = 1.25 and MS,max =
1.50.

The simulation in Figure 11.4 shows that the tuning for MS,max = 1.25 pro-
vides good reference tracking for both outputs, despite the disturbance and the
high level of process and measurement noise. For MS,max = 1.50 this is not
the case. It is seen that especially y1 is heavily affected by the high level of
process and measurement noise and as a result oscillates around the reference.
The disturbance rejection for y2 is surprisingly very efficiently rejected for both
tunings.

Furthermore, it is clearly seen that the variance of the control signal u1 for
MS,max = 1.50 is very high and that this set of tuning parameters is not ac-
ceptable and useless in practice. It is noted that this is the opposite situation
of what was seen in Figure 11.1. The parameters obtained for MS,max = 1.25
seem to provide an overall acceptable performance.
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11.2.2 Simulations based on second-order identified model

In this section simulations based on the second-order identified model will be
conducted. Based on the tuning parameters obtained in Section 11.1.2 it is
expected that the closed-loop performance based on the second-order identified
model to a large extend will be similar to what was observed for the first-order
model. The simulation will be conducted based on the results in Table 11.6
obtained using tuning Approach II.

The first simulation is conducted based on the tuning parameters obtained for
MS,max = 1.30 and MS,max = 1.40 and is presented in Figure 11.5.
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Figure 11.5: Closed-loop simulation based on second-order identified model
with tuning parameters obtained using MS,max = 1.30 and
MS,max = 1.40.

The simulation in Figure 11.5 shows that for the second-order model reasonable
tuning parameters are obtained for both MS,max = 1.30 and MS,max = 1.40,
as opposed to the first-order model where this level of sensitivity resulted in
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useless controllers. This indicates that the closed-loop system based on the
second-order identified model is less sensitive. It is seen that both the reference
tracking and the disturbance rejection for these tunings are slightly better than
what was seen for the first-order model for even lower levels of MS,max.

In Figure 11.6 a simulation using the tuning parameters obtained for MS,max =
1.10 and MS,max = 1.25 is shown.
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Figure 11.6: Closed-loop simulation based on second-order identified model
with tuning parameters obtained using MS,max = 1.10 and
MS,max = 1.25.

The simulation in Figure 11.6 clearly illustrates the trade-off between distur-
bance rejection and sensitivity of the system for the second-order model. It is
seen that the disturbance introduced in y2 at t = 35 [min] is rejected even more
slowly than was seen in the case for the first-order model and that this has a
very strong influence in the simulation. The level of robustness is simply too
low and the performance obtained is not acceptable and completely useless in
practice.
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Based on the simulations conducted for the second-order model, the best trade-
off between low input variance and disturbance rejections seems to be obtained
for a tuning using MS,max = 1.25 or MS,max = 1.30.

11.2.3 Comparison

In this section the closed-loop performance obtained using the first-order and
the second-order identified models are compared. The comparison is based on
the tuning parameters obtained using Approach II for both models. In this way
the performance can be compared strictly based on MS,max.

The comparison is based on the first-order model controller withMS,max = 1.25
and the second-order model controller with MS,max = 1.40. The simulation is
shown in Figure 11.7.
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Figure 11.7: Closed-loop simulation based on first-order model controller (C1)
withMS,max = 1.25 and second-order model controller (C2) with
MS,max = 1.40.
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The simulation in Figure 11.7 shows that despite the fact that the controller
based on the second-order model is less robust, almost the same closed-loop
performance is obtained. This is interesting and indicates that the controller
based on the second-order model is more flexible and less sensitive.

A direct comparison for the two model with the same MS,max value is probably
a more suitable test to determine if there is any real advantage in using a second-
order over a first-order model in the controller design.

This comparison is based on the first-order model and the second-order model
controller both with MS,max = 1.25. The simulation is shown in Figure 11.8.
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Figure 11.8: Closed-loop simulation based on first-order model controller (C1)
withMS,max = 1.25 and second-order model controller (C2) with
MS,max = 1.25.

The simulation in Figure 11.8 shows the closed-loop performance for the two
controllers are almost the same for MS,max = 1.25. This illustrates there is
no real advantage in using a second-order over a first-order model if the ob-
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tained performances is considered acceptable. In this case the performance is
acceptable especially from the point of view of the high level of noise in the
system.
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Chapter 12

Conclusion

An industrial MPC approach has been considered in this thesis. The approach
included the identification of a linear model for the process to be used in the
MPC and the setup of the MPC based on the identified model extended with
a disturbance model, such that offset free control is ensured. In addition, an
optimization based tuning procedure for the MPC has been developed.

In the first part of the thesis the theoretical background was developed and
analyzed. This part constitutes a large part of the thesis and many different
topics have been studied.

A central part has been to set up the MPC. It has been shown here that
the unconstrained MPC regulation problem can be transformed into a convex
quadratic program (QP). Based on the QP an explicit expression for the optimal
control has been derived. Since the expressions for the optimal control and the
state estimator for the controller model are linear it was possible to express the
controller as a linear state-space model.

The key concept for the tuning of the MPC has been to formulate a closed-loop
state-space description for the process and the controller state-space model. In
the formulation of the closed-loop system two different plant models were used
in order to base the tuning problem only on the deterministic linear model
obtained by system identification.
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Furthermore, for the closed-loop state-space system sensitivity functions have
been derived. The sensitivity function was used as a measure of robustness and
in the formulation of the optimization problem to obtain the tuning parameters
of the MPC.

The optimization problem is based on an objective function related to scenario
simulation results obtained using the closed-loop system. The scenarios used are
deterministic reference and disturbance scenarios. The tuning parameters are
obtained by minimization of the absolute integrated error (IAE) or integrated
squared error (ISE) for the individual scenarios.

The designed controllers used in the tuning approach were all based on the
deterministic-stochastic model.

To illustrate the developed MPC approach, a case study for the modified 4-tank
process was conducted. The process has been used as a representative of real life
industrial processes, since it shares some of the general features encountered in
industry. In the case study system identification based on step tests was carried
out and a linear model for the process obtained. From the identification, it can
be concluded that models capturing the general behavior of the process can be
determined, even in cases where a high level of noise is present. In particular a
first-order and second-order continuous-time transfer model was identified.

The optimization problem has been used to tune the MPC based on both the
first-order and the second-order identified models. From the numerical tests it
can overall be concluded that the optimization based tuning approach has and
can produce some reasonably good tuning parameters for the modified 4-tank
process, even under a high level of noise in the system.

The optimization algorithm has mainly been tested using the interior point
algorithm with default options for one fixed starting point in all conducted tests.
All tests have resulted in feasible solutions. A key element to this behavior was
the use of a fixed number of frequencies in the evaluation of MS(x).

For high values of the sensitivity boundMS,max it can be concluded that useless
tuning parameters were in general found. The tunings resulted in too much
stress on the actuators and only modest reference tracking. For MS,max ≤ 1.25
acceptable tuning parameters were determined for the first-order models, while
MS,max ≤ 1.40 in general provided acceptable tunings for the second-order
model.

It can be concluded that there is no real advantage in using a second-order over
a first-order model in the controller design for this process and that it mainly
comes down to the tuning parameters. This conclusion is based on the fact that



123

the second-order model has more parameters to be identified but does not offer
significantly better performance.

In general the two tuning approaches have produced similar results and it is
hard to conclude if one is better. The tests conducted based on Approach I
have illustrated that the obtained tuning parameters to a large extend depend
on the level of deviation and that it is not obvious exactly how this level should
be chosen. Approach II has shown that the obtained tuning parameters depend
little on the size of the step disturbances used in the simulation scenarios. It
is suggested by the obtained results that the size of the step disturbances in
general can be chosen as unit steps. However, whether both input and output
disturbance scenarios should be included in the objective is hard to conclude.

From the tests it can also be concluded that it does not have any significant
influence on the obtained tuning parameters whether the IAE or the ISE is used
to asses the simulation scenarios in the objective function.

Almost all the tuning tests resulted in full integration (α1, α2 ≈ 0). An explana-
tion for this behavior, has not be found despite the fact that a number of tests
have been conducted to investigate this.
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Chapter 13

Discussion and Future Work

The optimization based tuning approach has shown potential, however, there
are a number of aspects which should be studied in further detail. It should
be investigated further why the tuning procedure for most cases result in full
integration. This could be due to the deterministic-stochastic model used in the
controller design or related to the structure of the process.

The optimization problem based on Approach II is very appealing since it uses
only the identified model and user defined disturbances for the optimization.
This makes it very useful in industrial application where very little is known
about the true disturbances. This approach should be the main focus of future
research.

To investigate the optimality of the optimization problem it would be interest-
ing to develop an efficient (if possible) parameter sweep approach for MIMO
systems for comparison. This would allow us to determine, which of the studied
optimization approaches have the best overall performance.

Another interesting future study would be to conduct a comparison study be-
tween a tuning approach based on deterministic-stochastic model and the MISO
ARX model. This study would help to illustrate to pros and cons of the two
approaches to offset free control.
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A natural extension of the work conducted in the thesis, would be to investigate
how the tuning approach will perform on systems with more inputs and outputs.
Furthermore, so would it be to test the entire MPC procedure on a real small
scale industrial process.
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Appendix A

Matlab code

In this appendix all the Matlab code implemented in thesis is included. The
code is organized as follows.

• Setup and simulation files for the non-linear modified 4-tank system

• MPC setup files

– Unconstrained

– Constrained

• Tuning files

– Approach I

– Approach II

• System identification files
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A.1 Setup and Simulation Files for the Modified
4-Tank System

1 function xdot = ModifiedFourTankSystem(t,x,u,d,p)
2 % MODIFIEDFOURTANKSYSTEM Model dx/dt = f(t,x,u,d,p) for modified
3 % 4−tank System
4 %
5 % This function implements a differential equation model for the
6 % modified 4−tank system.
7

8

9 m = x; % Mass of liquid in each tank [g]
10 F = u; % Flow rates in pumps [cm3/s]
11 D = d; % Disturbance flow rates [cm3/s]
12 a = p(1:4,1); % Pipe cross sectional areas [cm2]
13 A = p(5:8,1); % Tank cross sectional areas [cm2]
14 gamma = p(9:10,1); % Valve positions [−]
15 g = p(11,1); % Acceleration of gravity [cm/s2]
16 rho = p(12,1); % Density of water [g/cm3]
17

18 % Inflows
19 qin = zeros(4,1);
20 qin(1,1) = gamma(1)*F(1); % Inflow from valve 1 to tank 1 [cm3/s]
21 qin(2,1) = gamma(2)*F(2); % Inflow from valve 2 to tank 2 [cm3/s]
22 qin(3,1) = (1−gamma(2))*F(2);% Inflow from valve 2 to tank 3 [cm3/s]
23 qin(4,1) = (1−gamma(1))*F(1);% Inflow from valve 1 to tank 4 [cm3/s]
24

25 % Outflows
26 h = m./(rho*A); % Liquid level in each tank [cm]
27 qout = a.*sqrt(2*g*h); % Outflow from each tank [cm3/s]
28

29 % Differential equations
30 xdot = zeros(4,1);
31 xdot(1,1) = rho*(qin(1,1)+qout(3,1)−qout(1,1));% Mass balance Tank 1
32 xdot(2,1) = rho*(qin(2,1)+qout(4,1)−qout(2,1));% Mass balance Tank 2
33 xdot(3,1) = rho*(D(1)+qin(3,1)−qout(3,1)); % Mass balance Tank 3
34 xdot(4,1) = rho*(D(2)+qin(4,1)−qout(4,1)); % Mass balance Tank 4

1 function y = ModifiedFourTankSystemSensor(x,p)
2

3 % measurement of tank 1 and tank 2 only !
4 rho = p(12,1);
5 A = p(5:6,1);
6

7 y = x(1:2)./(rho*A);

1 function xdot = ModifiedFourTankSystemWrap(x,u,d,p)
2 xdot = ModifiedFourTankSystem(0,x,u,d,p);
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1 function xknew = nonlinearstate(xk,uk,dk,wk,Ts,p)
2 % Computes new state of the non−linear modified 4−tank system
3 %
4 % Inputs:
5 % xk − Current non−linear state
6 % uk − Current control input
7 % dk − Disturbance
8 % wk − Process noise
9 % Ts − Sample−time

10 % p − Parameter vector for the modified 4−tank system
11 %
12 % Output:
13 % xknew − Next non−linear state
14

15 [Tk,Xk] = ode15s(@ModifiedFourTankSystem,[0 Ts],xk,[],uk,(dk+wk),p);
16 xknew = Xk(end,:)';

1 function yk = nonlinearmeasurement(xk,vk,p)
2 % Computes measurement of the non−linear modified
3 % 4−tank system with measurement noise
4 %
5 % Inputs:
6 % xk − Current non−linear state
7 % vk − Measurement noise
8 % p − Parameter vector for the modified 4−tank system
9 %

10 % Output:
11 % yk − Measurement of the modified 4−tank system
12

13

14 yk = ModifiedFourTankSystemSensor(xk,p) + vk;

1 function [A B E C xs ys p] = getlinearizedModified4TankSystem...
2 (us,ds,gamma1,gamma2,xs0)
3 % linearizes the non−linear model of modified 4−tank system
4 % around a steady state
5 %
6 % Inputs:
7 % us − Steady control input vector
8 % ds − Steady disturbance input vector
9 % gamma1 − Flow distribution constant valve 1

10 % gamma2 − Flow distribution constant valve 2
11 % xs0 − initial guess for steady state
12 %
13 % Outputs:
14 % A − Continuous−time state matrix
15 % B − Continuous−time input matrix
16 % E − Continuous−time disturbance matrix
17 % C − Continuous−time measurement matrix
18 % xs − steady state vector
19 % ys − steady measurement vector
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20 % p − parameter vector
21

22

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Parameters for the modified 4−tank system
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 a1 = 1.2272; %[cm2] Area of outlet pipe 1
28 a2 = 1.2272; %[cm2] Area of outlet pipe 2
29 a3 = 1.2272; %[cm2] Area of outlet pipe 3
30 a4 = 1.2272; %[cm2] Area of outlet pipe 4
31 ap = [a1; a2; a3; a4]; %[cm2] Pipe cross sectional areas
32

33 A1 = 380.1327; %[cm2] Cross sectional area of tank 1
34 A2 = 380.1327; %[cm2] Cross sectional area of tank 2
35 A3 = 380.1327; %[cm2] Cross sectional area of tank 3
36 A4 = 380.1327; %[cm2] Cross sectional area of tank 4
37 At = [A1; A2; A3; A4]; %[cm2] Tank cross sectional areas
38

39 g = 981; %[cm/s2] The acceleration of gravity
40 rho = 1.00; %[g/cm3] Density of water
41

42 if nargout > 5
43 p = [ap; At; gamma1; gamma2; g; rho];
44 end
45

46 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 % Steady State and measurement
48 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49

50 if nargin ≤ 4
51 xs0 = [5000; 5000; 5000; 5000]; % [g] Initial guess on xs
52 end
53

54 xs = fsolve(@ModifiedFourTankSystemWrap,xs0,[],us,ds,p);
55 ys = ModifiedFourTankSystemSensor(xs,p);
56

57 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 % Continuous−time linearized model
59 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60

61 hs = xs./(rho*At);
62 T = (At./ap).*sqrt(2*hs/g);
63

64 A = [−1/T(1) 0 1/T(3) 0;
65 0 −1/T(2) 0 1/T(4);
66 0 0 −1/T(3) 0;
67 0 0 0 −1/T(4)];
68

69 B = [rho*gamma1 0;0 rho*gamma2; 0 rho*(1−gamma2); rho*(1−gamma1) 0];
70 E = [0 0; 0 0; rho 0; 0 rho];
71

72 Ctemp = diag(1./(rho*At));
73 C = Ctemp(1:2,:);
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1 function p = getnonlinearsystemparameters(gamma1,gamma2)
2

3 a1 = 1.2272; %[cm2] Area of outlet pipe 1
4 a2 = 1.2272; %[cm2] Area of outlet pipe 2
5 a3 = 1.2272; %[cm2] Area of outlet pipe 3
6 a4 = 1.2272; %[cm2] Area of outlet pipe 4
7 ap = [a1; a2; a3; a4]; %[cm2] Pipe cross sectional areas
8

9 A1 = 380.1327; %[cm2] Cross sectional area of tank 1
10 A2 = 380.1327; %[cm2] Cross sectional area of tank 2
11 A3 = 380.1327; %[cm2] Cross sectional area of tank 3
12 A4 = 380.1327; %[cm2] Cross sectional area of tank 4
13 At = [A1; A2; A3; A4]; %[cm2] Tank cross sectional areas
14

15 g = 981; %[cm/s2] The acceleration of gravity
16 rho = 1.00; %[g/cm3] Density of water
17

18 p = [ap; At; gamma1; gamma2; g; rho];

1 function [u y z] = ClosedloopSimulationUnconstrainedNonlinear3 ...
2 (Nsim,Systemnonlinear,Controller,x0,d,v,w,r)
3 % Computes the closed−loop control inputs, measurements and
4 % controlled outputs for the unconstrained MPC problem with
5 % non−linear plant, given an initial plant state x0 and
6 % simulation scenario (d,v,w,r)
7 %
8 % Inputs:
9 % Nsim − Number of simulation steps

10 % System − Struct holding plant/system
11 % Controller − Struct holding controller model
12 % x0 − Initial state for plant
13 % d − Disturbance scenario
14 % v − Measurement noise scenario
15 % w − Process noise scenario
16 % r − Reference scenario
17 %
18 % Outputs:
19 % u − closed−loop control inputs
20 % y − closed−loop measurements
21 % z − closed−loop controlled outputs
22

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Non−linear plant parameters
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 p = Systemnonlinear.p;
28 Ts = Systemnonlinear.Ts;
29

30 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 % Controller model
32 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33
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34 % control model
35 Ad = Controller.Abar;
36 Bd = Controller.Bbar;
37 Cd = Controller.Cbar;
38 Kd = Controller.Kbar;
39

40 % controller gains
41 Lx = Controller.Lx;
42 Le = Controller.Le;
43 LR = Controller.LR;
44 Lu = Controller.Lu;
45

46 %
47 N = Controller.N;
48

49 % size of controller model
50 ny = size(Cd,1);
51 nu = size(Bd,2);
52

53

54 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 % Initialization
56 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
57

58 % initial state for the plant
59 xk = x0;
60

61 % initial control input u_{0|−1}
62 %ukm1 = zeros(nu,1);
63

64 % steady initial control input
65 ukm1 = 300*ones(nu,1);
66

67 % initial state estimate xhat_{0|−1}
68 %xhatkkm1 = zeros(nx,1);
69

70 % steady initial state
71 xhatkkm1 = 1.0e+03*[−1.4085 −0.0691 −0.0770 0.1981 ...
72 −0.0122 −0.0363]';
73

74 % preallocation
75 y = zeros(ny,Nsim);
76 z = zeros(ny,Nsim);
77 u = zeros(nu,Nsim);
78

79 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 % Closed−loop simulation
81 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82

83 for k = 1:Nsim
84

85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86 %%%%%%%%%%% PLANT %%%%%%%%%%%%%
87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88
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89 % NON−LINEAR PLANT
90

91 % plant measurement in physical variables
92 yk = nonlinearmeasurement(xk,v(:,k),p);
93

94 % plant output in physical variables
95 zk = nonlinearmeasurement(xk,0*v(:,k),p);
96

97

98 y(:,k) = yk;
99 z(:,k) = zk;

100

101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
102 %%%%%%%%%%% CONTROLLER %%%%%%%%%%%%
103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
104

105 % select the set−points for the current MPC horizon
106 Rtemp = r(:,k:(k+N)−1);
107 Rk = Rtemp(:);
108

109 % compute optimal control input in physical variables
110 [uhatkk xhatkp1k] = MPCcomputeUnconstrainedInnovation ...
111 (xhatkkm1,ukm1,yk,Rk,Lx,Le,LR,Lu,Ad,Bd,Cd,Kd);
112

113 u(:,k) = uhatkk;
114

115

116 % Updating
117

118 % update state estimate
119 xhatkkm1 = xhatkp1k;
120

121 % update control input
122 ukm1 = uhatkk;
123

124

125 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
126 %%%%%%%%%%% PLANT %%%%%%%%%%%%%%
127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
128

129 % NON−LINEAR PLANT
130

131 % state update in physical variables
132 xk = nonlinearstate(xk,u(:,k),d(:,k),w(:,k),Ts,p);
133

134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
135 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
136 end

1 function [u y z] = ClosedloopSimulationUnconstrainedNonlinear4 ...
2 (Nsim,Systemnonlinear,Controller,x0,d,v,w,r)
3 % Computes the closed−loop control inputs, measurements and
4 % controlled outputs for the unconstrained MPC problem with



136 Matlab code

5 % non−linear plant, given an initial plant state x0 and
6 % simulation scenario (d,v,w,r)
7 %
8 % Inputs:
9 % Nsim − Number of simulation steps

10 % System − Struct holding plant/system
11 % Controller − Struct holding controller model
12 % x0 − Initial state for plant/system
13 % d − Disturbance scenario
14 % v − Measurement noise scenario
15 % w − Process noise scenario
16 % r − Reference scenario
17 %
18 % Outputs:
19 % u − closed−loop control inputs
20 % y − closed−loop measurements
21 % z − closed−loop controlled outputs
22

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Plant non−linear
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 p = Systemnonlinear.p;
28 Ts = Systemnonlinear.Ts;
29

30 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 % Controller model
32 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33

34 % control model
35 Ad = Controller.Abar;
36 Bd = Controller.Bbar;
37 Cd = Controller.Cbar;
38 Kd = Controller.Kbar;
39

40 % controller gains
41 Lx = Controller.Lx;
42 Le = Controller.Le;
43 LR = Controller.LR;
44 Lu = Controller.Lu;
45

46 %
47 N = Controller.N;
48

49 % size of controller model
50 ny = size(Cd,1);
51 nu = size(Bd,2);
52 nx = size(Ad,1);
53

54

55

56 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
57 % Initialization
58 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59
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60 % initial state for the plant
61 xk = x0;
62

63 % initial control input u_{0|−1}
64 %ukm1 = zeros(nu,1);
65

66 % steady initial control input
67 ukm1 = 300*ones(nu,1);
68

69 % initial state estimate xhat_{0|−1}
70 %xhatkkm1 = zeros(nx,1);
71

72 % steady initial state
73 xhatkkm1 = 1.0e+03 * [ −1.3488 0.0228 −0.1901 −0.0879 ...
74 −0.0458 0.0284 0.0027 −0.0115 −0.0357]';
75

76

77 % preallocation
78 y = zeros(ny,Nsim);
79 z = zeros(ny,Nsim);
80 u = zeros(nu,Nsim);
81

82 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 % Closed−loop simulation
84 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
85

86 for k = 1:Nsim
87

88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89 %%%%%%%%%%% PLANT %%%%%%%%%%
90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91

92 % NON−LINEAR PLANT
93

94 % plant measurement in physical variables
95 yk = nonlinearmeasurement(xk,v(:,k),p);
96

97 % plant output in physical variables
98 zk = nonlinearmeasurement(xk,0*v(:,k),p);
99

100

101 y(:,k) = yk;
102 z(:,k) = zk;
103

104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105 %%%%%%%%%%% CONTROLLER %%%%%%%%%%
106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107

108 % select the set−points for the current MPC horizon
109 Rtemp = r(:,k:(k+N)−1);
110 Rk = Rtemp(:);
111

112 % compute optimal control input in physical variables
113 [uhatkk xhatkp1k] = MPCcomputeUnconstrainedInnovation ...
114 (xhatkkm1,ukm1,yk,Rk,Lx,Le,LR,Lu,Ad,Bd,Cd,Kd);
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115

116 u(:,k) = uhatkk;
117

118

119 % Updating
120

121 % update state estimate
122 xhatkkm1 = xhatkp1k;
123

124 % update control input
125 ukm1 = uhatkk;
126

127

128 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
129 %%%%%%%%%%% PLANT %%%%%%%%%%%%
130 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
131

132 % NON−LINEAR PLANT
133

134 % state update in physical variables
135 xk = nonlinearstate(xk,u(:,k),d(:,k),w(:,k),Ts,p);
136

137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
138 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
139 end

1 clear all
2 close all
3 clc
4

5 addpath('Realization')
6

7 % Closed−loop simulation of modified 4−tank system
8 % based on first order identified model − Unconstrained case
9 %

10 % Plant model: Non−linear modified 4−tank system
11 % Controller model: Deterministic−Stochastic model
12

13

14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % parameters
16 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17

18 % sample−time [s]
19 Ts = 4;
20

21 % time of simulation in minutes
22 Tf = 500;
23

24 % Prediction horizon
25 N = 500;
26

27
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28

29 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 % steady state for simulation
31

32 gamma1 = 0.45; % Flow distribution constant. Valve 1
33 gamma2 = 0.40; % Flow distribution constant. Valve 2
34

35 us = [300;300];
36 ds = [70;70];
37

38 [Axx Bxx Exx Cxx xs ys] = ...
39 getlinearizedModified4TankSystem(us,ds,gamma1,gamma2);
40

41 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42

43

44 % set tuning parameters
45

46 % MSmax = 1.20;
47 x1 = [6.9023e−05 4.7833e−05 62.1234 143.7291 0.9891 1.0073];
48

49 % MSmax = 1.15;
50 x2 = [2.0499e−08 1.2682e−08 107.3115 98.9778 0.2181 0.2221];
51

52 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 % Simulation details
54 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55

56 % disturbance
57 d1 = 0;
58 d2 = 40 ;
59

60

61 % sample of disturbance start
62 d1time = 76;
63 d2time = 551;
64

65

66 % sample−time [min]
67 Tstep = Ts/60;
68

69 % time interval
70 T = 0:Tstep:Tf;
71

72 % number of simulation steps
73 Nsim = length(T);
74

75

76 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 % Noise
78 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
79

80 % noise variance
81 sigma2w = (20)^2;
82 sigma2v = (0.5)^2;
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83

84 % covariance matrices
85 Qw = sigma2w*eye(2,2);
86 Rv = sigma2v*eye(2,2);
87

88 Swv = zeros(2,2);
89

90 % combined covariance matrix
91 Z = [Qw Swv; Swv Rv];
92

93 LZ = chol(Z,'lower');
94 wv = LZ*randn(4,Nsim+N);
95

96 w = wv(1:2,:); % process noise
97 v = wv(3:4,:); % measurement noise
98

99

100

101 % tuning 1
102 alpha1 = x1(1);
103 alpha2 = x1(2);
104

105 s1 = x1(3);
106 s2 = x1(4);
107

108 q1 = x1(5);
109 q2 = x1(6);
110

111 % tuning2
112 alpha11 = x2(1);
113 alpha21 = x2(2);
114

115 s11 = x2(3);
116 s21 = x2(4);
117

118 q11 = x2(5);
119 q21 = x2(6);
120

121 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 % Non−linear modified 4−tank plant
123 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
124

125 p = getnonlinearsystemparameters(gamma1,gamma2);
126

127 SystemNonlinear.p = p;
128 SystemNonlinear.Ts = Ts;
129

130 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 % Controller
132 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
133

134 % first−order identified model
135 % (identified under process and measurement noise)
136 % Continuous−time transfer functions
137
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138

139 % G11
140 num11 = 0.0822;
141 den11 = [140.2627 1.0000];
142

143 % G12
144 num12 = 0.1258;
145 den12 = [231.0847 1.0000];
146

147 % G21
148 num21 = 0.1523;
149 den21 = [216.4180 1.0000];
150

151 % G22
152 num22 = 0.1110;
153 den22 = [137.5618 1.0000];
154

155

156 % set up state−space realization of identified model
157

158 num = cell(2,2); den = cell(2,2); tau = zeros(2,2);
159

160 num{1,1} = num11; num{1,2} = num12;
161 num{2,1} = num21; num{2,2} = num22;
162

163 den{1,1} = den11; den{1,2} = den12;
164 den{2,1} = den21; den{2,2} = den22;
165

166

167 Nmax = 100;
168 tol = 1e−8;
169

170 [A,B,C,D,sH] = mimoctf2dss(num,den,tau,Ts,Nmax,tol);
171

172

173

174 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175 % Controller model − deterministic−stochastic model
176 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
177

178 % size of system state
179 nxmodel = size(A,1);
180

181

182 % disturbance model
183 As = eye(2,2);
184 Ks = [(1−alpha1) 0; 0 (1−alpha2)];
185 Cs = eye(2,2);
186

187 % combined model
188 Abar = [A zeros(nxmodel,2); zeros(2,nxmodel) As];
189 Bbar = [B; zeros(2,2)];
190 Kbar = [zeros(nxmodel,2); Ks];
191 Cbar = [C Cs];
192
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193 % controller struct
194 Controller.Abar = Abar;
195 Controller.Bbar = Bbar;
196 Controller.Cbar = Cbar;
197 Controller.Kbar = Kbar;
198

199

200 % size of controller model
201 ny = size(Cbar,1);
202 nu = size(Bbar,2);
203

204

205 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
206 % Controller model 1 − deterministic−stochastic model
207 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
208

209 % disturbance model
210 As1 = eye(2,2);
211 Ks1 = [(1−alpha11) 0; 0 (1−alpha21)];
212 Cs1 = eye(2,2);
213

214 % combined model
215 Abar1 = [A zeros(nxmodel,2); zeros(2,nxmodel) As1];
216 Bbar1 = [B; zeros(2,2)];
217 Kbar1 = [zeros(nxmodel,2); Ks1];
218 Cbar1 = [C Cs1];
219

220 % controller struct
221 Controller1.Abar = Abar1;
222 Controller1.Bbar = Bbar1;
223 Controller1.Cbar = Cbar1;
224 Controller1.Kbar = Kbar1;
225

226

227 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
228 % Reference
229 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
230

231 % reference height in tank 1
232 refh1 = ys(1);
233

234 % reference height in tank 2
235 refh2 = ys(2);
236

237 % reference vector
238 ref = [refh1;refh2];
239

240 r = repmat(ref,1,(Nsim+N));
241

242 % step in reference
243 r(1,2551:end) = ys(1) + (58 − ys(1));
244

245

246 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
247 % Disturbance
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248 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
249

250 d3 = ds(1)*ones(1,Nsim+N);
251 d4 = ds(2)*ones(1,Nsim+N);
252

253 % step in tank 3
254 d3(d1time:end) = ds(1) + d1;
255

256 % step in tank 4
257 d4(d2time:end) = ds(2) + d2;
258

259 d = [d3;d4];
260

261 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
262 % Weights for controller
263 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
264

265 % weight matrix Q (reference)
266 Q = eye(ny,ny);
267 Q(1,1) = q1;
268 Q(2,2) = q2;
269

270 % weight matrix S (control input)
271 S = eye(nu,nu);
272 S(1,1) = s1;
273 S(2,2) = s2;
274

275 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
276 % Controller gains − deterministic−stochastic model
277 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
278

279 % design matrices
280 [phix phie gammau H varphi I0 Qcal Scal] = ...
281 MPCDesign(N,Abar,Bbar,Cbar,Kbar,Q,S);
282

283 % gain matrices for explicit MPC solution
284 [Lx Le LR Lu] = MPCDesignUnconstrained ...
285 (H,phix,phie,gammau,varphi,I0,Qcal,Scal);
286

287

288 % controller gains
289 Controller.Lx = Lx;
290 Controller.Le = Le;
291 Controller.LR = LR;
292 Controller.Lu = Lu;
293

294 Controller.N = N;
295

296

297 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
298 % Weights of controller 1
299 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
300

301 % weight matrix Q (reference)
302 Q1 = eye(ny,ny);
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303 Q1(1,1) = q11;
304 Q1(2,2) = q21;
305

306 % weight matrix S (control input)
307 S1 = eye(nu,nu);
308 S1(1,1) = s11;
309 S1(2,2) = s21;
310

311 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
312 % Controller gains 1 − deterministic−stochastic model
313 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
314

315 % design matrices
316 [phix1 phie1 gammau1 H1 varphi1 I01 Qcal1 Scal1] = ...
317 MPCDesign(N,Abar1,Bbar1,Cbar1,Kbar1,Q1,S1);
318

319 % gain matrices for explicit MPC solution
320 [Lx1 Le1 LR1 Lu1] = MPCDesignUnconstrained ...
321 (H1,phix1,phie1,gammau1,varphi1,I01,Qcal1,Scal1);
322

323 % controller gains
324 Controller1.Lx = Lx1;
325 Controller1.Le = Le1;
326 Controller1.LR = LR1;
327 Controller1.Lu = Lu1;
328

329 Controller1.N = N;
330

331 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
332 % Closed−loop simulations
333 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
334

335 % initial state
336 x0 = xs;
337

338

339 % closed−loop simulation with nonlinear plant
340

341 % for tuning 1
342 [uk yk zk] = ClosedloopSimulationUnconstrainedNonlinear3 ...
343 (Nsim,SystemNonlinear,Controller,x0,d,v,w,r);
344

345 % for tuning 2
346 [uk1 yk1 zk1] = ClosedloopSimulationUnconstrainedNonlinear3 ...
347 (Nsim,SystemNonlinear,Controller1,x0,d,v,w,r);
348

349 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
350 % Closed−loop plots
351 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
352

353 figure
354 plot(T,yk(1,:),T,yk1(1,:),T,r(1,1:Nsim),'−−k','LineWidth',3)
355 ylim([40 65])
356 xlabel('Time [min]','FontSize',20);
357 ylabel('y_1 [cm]','FontSize',20);
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358

359 set(gca,'FontSize',20);
360 legend('C_1 (M_{S,max} = 1.50)','C_2 (M_{S,max} = 1.25)','r_1',4);
361

362 figure
363 stairs(T,[uk(1,:)' uk1(1,:)'],'LineWidth',3)
364 xlabel('Time [min]','FontSize',20);
365 ylabel('u_1 [cm^3/s]','FontSize',20);
366 set(gca,'FontSize',20);
367 ylim([0 350])
368

369 figure
370 plot(T,yk(2,:),T,yk1(2,:),T,r(2,1:Nsim),'−−k','LineWidth',3)
371 ylim([30 60])
372 xlabel('Time [min]','FontSize',20);
373 ylabel('y_2 [cm]','FontSize',20);
374 set(gca,'FontSize',20);
375 legend('C_1 (M_{S,max} = 1.50)','C_2 (M_{S,max} = 1.25)','r_2',1);
376

377 figure
378 stairs(T,[uk(2,:)' uk1(2,:)'],'LineWidth',3)
379 xlabel('Time [min]','FontSize',20);
380 ylabel('u_2 [cm^3/s]','FontSize',20);
381 set(gca,'FontSize',20);

1 clear all
2 close all
3 clc
4

5 addpath('Realization')
6

7 % Closed−loop simulation of modified 4−tank system
8 % based on second order identified model − Unconstrained case
9

10 % Plant model: Non−linear modified 4−tank system
11 % Controller model: Deterministic−Stochastic model
12

13

14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 % parameters
16 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17

18 % sample−time [s]
19 Ts = 4;
20

21 % time of simulation in minutes
22 Tf = 500;
23

24 % Prediction horizon
25 N = 500;
26

27 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 % steady state for simulation
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29 us = [300;300];
30 ds = [70;70];
31

32 gamma1 = 0.45; % Flow distribution constant. Valve 1
33 gamma2 = 0.40; % Flow distribution constant. Valve 2
34

35 [Axx Bxx Exx Cxx xs ys] = getlinearizedModified4TankSystem ...
36 (us,ds,gamma1,gamma2);
37

38 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39

40

41 %MSmax = 1.25;
42 x1 = [0.0001 0.0001 26.4586 169.6454 1.0393 1.0852];
43

44 %MSmax = 1.10;
45 x2 = [4.0062e−08 2.7689e−08 105.2840 108.2985 0.0431 0.0449];
46

47

48 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 % Simulation details
50 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51

52 % disturbance
53 d1 = 0;
54 d2 = 40;
55

56 % sample of disturbance start
57 d1time = 551;
58 d2time = 551;
59

60 % sample−time [min]
61 Tstep = Ts/60;
62

63 % time interval
64 T = 0:Tstep:Tf;
65

66 Nsim = length(T);
67

68

69 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 % Noise
71 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72

73 % noise variance
74 sigma2w = (20)^2;
75 sigma2v = (0.5)^2;
76

77 % covariance matrices
78 Qw = sigma2w*eye(2,2);
79 Rv = sigma2v*eye(2,2);
80

81 Swv = zeros(2,2);
82

83 % combined covariance matrix



A.1 Setup and Simulation Files for the Modified 4-Tank System 147

84 Z = [Qw Swv; Swv Rv];
85

86 LZ = chol(Z,'lower');
87 wv = LZ*randn(4,Nsim+N);
88

89 w = wv(1:2,:); % process noise
90 v = wv(3:4,:); % measurement noise
91

92

93

94 % tuning 1
95 alpha1 = x1(1);
96 alpha2 = x1(2);
97

98 s1 = x1(3);
99 s2 = x1(4);

100

101 q1 = x1(5);
102 q2 = x1(6);
103

104

105 % tuning2
106 alpha11 = x2(1);
107 alpha21 = x2(2);
108

109 s11 = x2(3);
110 s21 = x2(4);
111

112 q11 = x2(5);
113 q21 = x2(6);
114

115

116

117 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
118 % Non−linear modified 4−tank plant
119 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
120

121 p = getnonlinearsystemparameters(gamma1,gamma2);
122

123 SystemNonlinear.p = p;
124 SystemNonlinear.Ts = Ts;
125

126

127 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
128 % Controller
129 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130

131 % second−order identified model
132 % (under process and measurement noise)
133 % Continuous−time transfer functions
134

135 % G11
136 num11 = 0.0818;
137 den11 = conv([25.3224 1],[108.7843 1]);
138
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139 % G12
140 num12 = 0.1238;
141 den12 = conv([104.5181 1],[104.4942 1]);
142

143 % G21
144 num21 = 0.1520;
145 den21 = conv([7.6230 1],[206.9884 1]);
146

147 % G22
148 num22 = 0.1091;
149 den22 = conv([9.3216e−6 1],[96.1746 1]);
150

151

152 % set up state−space realization of identified model
153

154 num=cell(2,2); den=cell(2,2); tau = zeros(2,2);
155

156 num{1,1}=num11; num{1,2}=num12;
157 num{2,1}=num21; num{2,2}=num22;
158

159 den{1,1}=den11; den{1,2}=den12;
160 den{2,1}=den21; den{2,2}=den22;
161

162

163 Nmax = 100;
164 tol = 1e−8;
165

166 [A,B,C,D,sH] = mimoctf2dss(num,den,tau,Ts,Nmax,tol);
167

168

169 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
170 % Controller model − deterministic−stochastic model
171 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
172

173 nxmodel = size(A,1);
174

175 % disturbance model
176 As = eye(2,2);
177 Ks = [(1−alpha1) 0; 0 (1−alpha2)];
178 Cs = eye(2,2);
179

180 % combined model
181 Abar = [A zeros(nxmodel,2); zeros(2,nxmodel) As];
182 Bbar = [B; zeros(2,2)];
183 Kbar = [zeros(nxmodel,2); Ks];
184 Cbar = [C Cs];
185

186 % controller struct
187 Controller.Abar = Abar;
188 Controller.Bbar = Bbar;
189 Controller.Cbar = Cbar;
190 Controller.Kbar = Kbar;
191

192 % size of controller model
193 ny = size(Cbar,1);
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194 nu = size(Bbar,2);
195

196 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
197 % Controller model 1 − deterministic−stochastic model
198 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
199

200 % disturbance model
201 As1 = eye(2,2);
202 Ks1 = [(1−alpha11) 0; 0 (1−alpha21)];
203 Cs1 = eye(2,2);
204

205 % combined model
206 Abar1 = [A zeros(nxmodel,2); zeros(2,nxmodel) As1];
207 Bbar1 = [B; zeros(2,2)];
208 Kbar1 = [zeros(nxmodel,2); Ks1];
209 Cbar1 = [C Cs1];
210

211 % controller struct
212 Controller1.Abar = Abar1;
213 Controller1.Bbar = Bbar1;
214 Controller1.Cbar = Cbar1;
215 Controller1.Kbar = Kbar1;
216

217

218 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
219 % Reference
220 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
221

222 % reference height in tank 1
223 refh1 = ys(1);
224

225 % reference height in tank 2
226 refh2 = ys(2);
227

228 % reference vector
229 ref = [refh1;refh2];
230

231 r = repmat(ref,1,(Nsim+N));
232

233 % reference step
234 r(1,2551:end) = ys(1) + (58 − ys(1));
235

236 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
237 % Disturbance
238 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
239

240 d3 = ds(1)*ones(1,Nsim+N);
241 d4 = ds(2)*ones(1,Nsim+N);
242

243 % step in tank 3
244 d3(d1time:end) = ds(1) + d1;
245

246 % step in tank 4
247 d4(d2time:end) = ds(2) + d2;
248
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249 d = [d3;d4];
250

251 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
252 % Weights
253 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
254

255 % weight matrix Q (reference)
256 Q = eye(ny,ny);
257 Q(1,1) = q1;
258 Q(2,2) = q2;
259

260 % weight matrix S (control input)
261 S = eye(nu,nu);
262 S(1,1) = s1;
263 S(2,2) = s2;
264

265

266 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
267 % Controller gains − deterministic−stochastic model
268 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
269

270 % design matrices
271 [phix phie gammau H varphi I0 Qcal Scal] = ...
272 MPCDesign(N,Abar,Bbar,Cbar,Kbar,Q,S);
273

274 % gain matrices for explicit MPC solution
275 [Lx Le LR Lu] = MPCDesignUnconstrained ...
276 (H,phix,phie,gammau,varphi,I0,Qcal,Scal);
277

278 % controller gains
279 Controller.Lx = Lx;
280 Controller.Le = Le;
281 Controller.LR = LR;
282 Controller.Lu = Lu;
283

284 Controller.N = N;
285

286

287 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
288 % Weights of controller 1
289 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
290

291 % weight matrix Q (reference)
292 Q1 = eye(ny,ny);
293 Q1(1,1) = q11;
294 Q1(2,2) = q21;
295

296 % weight matrix S (control input)
297 S1 = eye(nu,nu);
298 S1(1,1) = s11;
299 S1(2,2) = s21;
300

301 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
302 % Controller gains − deterministic−stochastic model
303 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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304

305 % design matrices
306 [phix1 phie1 gammau1 H1 varphi1 I01 Qcal1 Scal1] = ...
307 MPCDesign(N,Abar1,Bbar1,Cbar1,Kbar1,Q1,S1);
308

309 % gain matrices for explicit MPC solution
310 [Lx1 Le1 LR1 Lu1] = MPCDesignUnconstrained ...
311 (H1,phix1,phie1,gammau1,varphi1,I01,Qcal1,Scal1);
312

313 % controller gains
314 Controller1.Lx = Lx1;
315 Controller1.Le = Le1;
316 Controller1.LR = LR1;
317 Controller1.Lu = Lu1;
318

319 Controller1.N = N;
320

321

322 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
323 % Closed−loop simulations
324 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
325

326 % initial state
327 x0 = xs;
328

329 % closed−loop simulation with nonlinear plant
330

331 % for tuning 1
332 [uk yk zk] = ClosedloopSimulationUnconstrainedNonlinear4 ...
333 (Nsim,SystemNonlinear,Controller,x0,d,v,w,r);
334

335 % for tuning 2
336 [uk1 yk1 zk1] = ClosedloopSimulationUnconstrainedNonlinear4 ...
337 (Nsim,SystemNonlinear,Controller1,x0,d,v,w,r);
338

339 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
340 % Closed−loop plots
341 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
342

343 figure
344 plot(T,yk(1,:),T,yk1(1,:),T,r(1,1:Nsim),'−−k','LineWidth',3)
345 ylim([40 65])
346 xlabel('Time [min]','FontSize',20);
347 ylabel('y_1 [cm]','FontSize',20);
348 set(gca,'FontSize',20);
349 legend('C_1 (M_{S,max} = 1.25)','C_2 (M_{S,max} = 1.10)','r_1',4);
350

351 figure
352 stairs(T,[uk(1,:)' uk1(1,:)'],'LineWidth',3)
353 xlabel('Time [min]','FontSize',20);
354 ylabel('u_1 [cm^3/s]','FontSize',20);
355 set(gca,'FontSize',20);
356 ylim([0 350])
357

358 figure
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359 plot(T,yk(2,:),T,yk1(2,:),T,r(2,1:Nsim),'−−k','LineWidth',3)
360 ylim([30 60])
361 xlabel('Time [min]','FontSize',20);
362 ylabel('y_2 [cm]','FontSize',20);
363 set(gca,'FontSize',20);
364 legend('C_1 (M_{S,max} = 1.25)','C_2 (M_{S,max} = 1.10)','r_2',1);
365

366 figure
367 stairs(T,[uk(2,:)' uk1(2,:)'],'LineWidth',3)
368 xlabel('Time [min]','FontSize',20);
369 ylabel('u_2 [cm^3/s]','FontSize',20);
370 set(gca,'FontSize',20);

A.2 MPC Setup Files

1 function [phix gammau] = phigammampc(A,B,C,N)
2 % setup matrices phix and gammau for the function
3 % MPCDesign
4

5 % INPUTS:
6 % A − discrete−time system matrix
7 % B − discrete−time control input matrix
8 % C − discrete−time measurement matrix
9 % N − prediction horizon

10

11 % Outputs:
12 % phix − MPC design matrix − dimension (N*ny) x (nx)
13 % gammau − MPC design matrix − dimension (N*ny) x (N*nu)
14

15

16 % dimensions
17 nx = size(A,1);
18 nu = size(B,2);
19 ny = size(C,1);
20

21 % preallocation
22 phix = zeros(N*ny,nx);
23 gammau = zeros(N*ny,N*nu);
24

25 % counters
26 k1 = 1;
27 k2 = ny;
28

29 % temporary
30 T = C;
31

32 % assemble phix and first block column of gammau
33 for i = 1:N
34 gammau(k1:k2,1:nu) = T*B;
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35

36 T = T*A;
37

38 phix(k1:k2,1:nx) = T;
39

40 k1 = k1 + ny;
41 k2 = k2 + ny;
42 end
43

44 % counters
45 c1 = nu+1;
46 c2 = 2*nu;
47

48 r1 = ny+1;
49 r2 = ny;
50

51 % assemble remaining block columns of gammau
52 for j = 1:N−1
53 gammau(r1:end,c1:c2) = gammau(1:end−r2,1:nu);
54

55 c1 = c1 + nu;
56 c2 = c2 + nu;
57

58 r1 = r1 + ny;
59 r2 = r2 + ny;
60 end

1 function [phix phie gammau H varphi I0 Qcal Scal] = ...
2 MPCDesign(N,A,B,C,K,Q,S)
3 % Design MPC Design the matrices for the MPC setup
4

5 % INPUTS:
6 % A − discrete−time system matrix
7 % B − discrete−time control input matrix
8 % C − discrete−time measurement matrix
9 % K − discrete−time innovation matrix

10

11 % N − prediction horizon
12 % Q − weight matrix on reference tracking
13 % S − weight matrix on control input rate movement
14

15

16 % dimension of control input u_k and controlled output y_k
17 nu = size(B,2);
18 ny = size(C,1);
19

20 % weight matrix on reference tracking
21 Qcal = kron(eye(N,N),Q);
22

23 % weight matrix on input rate movement
24 Scal = kron(eye(N,N),S);
25

26 % setup phix and gammau
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27 [phix gammau] = phigammampc(A,B,C,N);
28

29 % setup phie
30 temp = [C;phix];
31 temp = temp(1:N*ny,1:end);
32 phie = temp*K;
33

34 % setup varphi
35 varphistencil = diag(−1*ones(N−1,1),−1) + eye(N);
36 varphi = kron(varphistencil,eye(nu));
37

38 % setup I0
39 I0 = eye(N*nu,nu);
40

41 % setup H
42 H = (gammau'*Qcal*gammau + varphi'*Scal*varphi);

1 function [Lx Le LR Lu] = MPCDesignUnconstrained ...
2 (H,phix,phie,gammau,varphi,I0,Qcal,Scal)
3 % MPCDesignUnconstrained
4 % Computes the gain matrices for the unconstrained MPC
5 % with controller model in innovation form
6

7 % Inputs:
8 % H − Hessian matrix for unconstrained MPC QP
9 % phix − MPC design matrix

10 % phie − MPC design matrix
11 % gammau − MPC design matrix
12 % varphi − MPC design matrix
13 % I0 − MPC design matrix
14 % Qcal − Weight matrix on reference
15 % Scal − Weight matrix on control input
16

17 % Outputs:
18 % Lx − Gain matrix for state estimate
19 % Le − Gain matrix for innovation
20 % LR − Gain matrix for reference
21 % Lu − Gain matrix for on previous control input
22

23

24 % Cholesky factorization of H matrix
25 [R,p] = chol(H);
26

27 if p > 0
28 error('H is not positive definite')
29 end
30

31 I0t = I0';
32

33 % temporary variables
34 temp = gammau'*Qcal;
35

36 Lx0 = temp*phix;
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37 Le0 = temp*phie;
38 LR0 = −temp;
39 Lu0 = −varphi'*Scal*I0;
40

41 % solve linear systems to obtain gains for the
42 %optimal control input Uk for the whole MPC horizon
43 Lx1 = −(R\(R'\Lx0));
44 Le1 = −(R\(R'\Le0));
45 LR1 = −(R\(R'\LR0));
46 Lu1 = −(R\(R'\Lu0));
47

48 % gains for the optimal control input uk
49 Lx = I0t*Lx1;
50 Le = I0t*Le1;
51 LR = I0t*LR1;
52 Lu = I0t*Lu1;

1 function [uhatkk xhatkp1k] = MPCcomputeUnconstrainedInnovation ...
2 (xhatkkm1,ukm1,yk,Rk,Lx,Le,LR,Lu,A,B,C,K)
3 % MPCcomputeunconstrained
4 % Compute optimal control input uk for the unconstrained MPC problem
5 % with controller model in innovation form
6 %
7 % Inputs:
8 % xhatkkm1 − One−step state prediction
9 % ukm1 − previous control input

10 % yk − Plant measurement
11 % Rk − Reference of the current MPC horizon
12 % Lx, Le, LR, Lu − Gain matrices
13 % A, B, C, K − Controller model matrices
14 %
15 % Outputs:
16 % uhatkk − Optimal control input
17 % xhatkp1k − Updated one−step state prediction
18

19

20 % innovation
21 ek = yk − C*xhatkkm1;
22

23 % optimal control input
24 uhatkk = Lx*xhatkkm1 + Le*ek + LR*Rk + Lu*ukm1;
25

26 % one−step state prediction
27 xhatkp1k = A*xhatkkm1 + B*uhatkk + K*ek;

1 function [Umin Umax dUmin dUmax] = MPCDesignConstraints ...
2 (N,umin,umax,dumin,dumax)
3 % Setup hard constraints on control inputs and control
4 % input rate movement for the constrained MPC problem
5

6 % Inputs:
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7 % umin − lower bound on control input
8 % umax − upper bound on control input
9 % dumin − lower bound on control input rate movement

10 % dumax − upper bound on control input rate movement
11 % N − prediction horizon
12

13 % Outputs:
14 % Umin − lower bound on control input
15 % for MPC horizon − N
16 %
17 % Umax − upper bound on control input
18 % for MPC horizon − N
19 %
20 % dUmin − lower bound on control input rate movement
21 % for MPC horizon − N
22 %
23 % dUmax − upper bound on control input rate movement
24 % for MPC horizon − N
25

26 % dimensions of outputs (N*nu) x 1
27

28

29 % hard constraints on control inputs
30 Umin = repmat(umin,N,1);
31 Umax = repmat(umax,N,1);
32

33 % hard constraints on control input rate movement
34 dUmin = repmat(dumin,N,1);
35 dUmax = repmat(dumax,N,1);

1 function [uhatkk xhatkp1k info U] = MPCcomputeConstrainedInnovation...
2 (xhatkkm1,ukm1,yk,Rk,A,B,C,K,phix,phie,varphi,...
3 Umin,Umax,dUmin,dUmax,I0,H,Uinit,Z1,Z2)
4 % MPCcomputeConstrainedInnovation
5 % Computes optimal control input uk for the constrained
6 % MPC problem with controller model in innovation form
7 %
8 % Inputs:
9 % yk − Plant measurement

10 % xhatkkm1 − One−step state prediction
11 % A − Measurement matrix
12 % B − Measurement matrix
13 % C − Measurement matrix
14 % K − Measurement matrix
15 % Rk − Reference vector for current MPC horizon
16 % phix − MPC design matrix
17 % phie − MPC design matrix
18 % varphi − MPC design matrix
19 % Umin − lower bound on control inputs
20 % Umax − upper bound on control inputs
21 % dUmin − lower bound on control input rate movement
22 % dUmax − upper bound on control input rate movement
23 % I0 − MPC design matrix
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24 % H − MPC design matrix
25 % Z1 − MPC design matrix
26 % Z2 − MPC design matrix
27 % Uinit − initial guess on U for QP solver
28

29 % Outputs:
30 % uhatkk − Optimal control input
31 % xhatkp1k − Updated one−step state prediction
32 % info − QP convergence information
33 % U − Optimal control inputs over the
34 % MPC prediction horizon
35

36 % innovation
37 ek = yk − C*xhatkkm1;
38

39 % g in the objective function is updated
40 bk = phix*xhatkkm1 + phie*ek;
41

42 g = Z1*(bk − Rk) − Z2*ukm1;
43

44 % constraints for the control input rate movement are updated
45 bl = dUmin + I0*ukm1;
46 bu = dUmax + I0*ukm1;
47

48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 %%%%%%%%%%% QPsolver %%%%%%%%%%%%%%%%%%%%%%%
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51

52 [U,info] = qpsolver(H,g,Umin,Umax,varphi,bl,bu,Uinit);
53

54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56

57 % size of control input
58 sizeu = size(ukm1);
59

60 % optimal control input
61 uhatkk = U(1:sizeu(1),1);
62

63 % one−step state prediction
64 xhatkp1k = A*xhatkkm1 + B*uhatkk + K*ek;

1 function [x,fval,exitflag,output,lambda] = ...
2 qpsolver(H,g,l,u,A,bl,bu,xinit)
3

4 Abar = [A;−A];
5 bbar = [bu;−bl];
6

7 options = optimset('Algorithm','interior−point','MaxIter',500);
8

9 [x,fval,exitflag,output,lambda] = ...
10 quadprog(H,g,Abar,bbar,[],[],l,u,xinit,options);
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A.3 Tuning Files

1 clear all
2 close all
3 clc
4

5 addpath('Realization')
6

7 % TUNING APPROACH 1
8

9 % Test file for tuning procedure of modified 4−tank system
10 % based on tuning approach 1 for first−order identified
11 % model
12

13

14 % sample−time [s]
15 Ts = 4;
16

17 % Prediction horizon
18 N = 500;
19

20

21 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 % Linear plant model: identified model + deviation
23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24

25 % deviation
26 dev = 0.90;
27

28

29 % G11
30 num11p = 0.0822*dev;
31 den11p = [140.2627 1.0000];
32

33 % G12
34 num12p = 0.1258*dev;
35 den12p = [231.0847 1.0000];
36

37 % G21
38 num21p = 0.1523*dev;
39 den21p = [216.4180 1.0000];
40

41 % G22
42 num22p = 0.1110*dev;
43 den22p = [137.5618 1.0000];
44

45

46 % set up state−space realization of plant model
47

48 nump = cell(2,2); denp = cell(2,2); taup = zeros(2,2);
49

50 nump{1,1}=num11p; nump{1,2}=num12p;
51 nump{2,1}=num21p; nump{2,2}=num22p;
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52

53 denp{1,1}=den11p; denp{1,2}=den12p;
54 denp{2,1}=den21p; denp{2,2}=den22p;
55

56

57 Nmax = 100; tol = 1e−8;
58

59 [Ap,Bp,Cp,Dp,sHp] = mimoctf2dss(nump,denp,taup,Ts,Nmax,tol);
60

61

62

63 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
64 % Controller model: identified first−order model
65 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
66

67 % first−order identified model
68 % (identified under process and measurement noise)
69

70

71 % G11
72 num11 = 0.0822;
73 den11 = [140.2627 1.0000];
74

75 % G12
76 num12 = 0.1258;
77 den12 = [231.0847 1.0000];
78

79 % G21
80 num21 = 0.1523;
81 den21 = [216.4180 1.0000];
82

83 % G22
84 num22 = 0.1110;
85 den22 = [137.5618 1.0000];
86

87

88 % set up state−space realization of controller model
89

90 num=cell(2,2); den=cell(2,2); tau = zeros(2,2);
91

92 num{1,1}=num11; num{1,2}=num12;
93 num{2,1}=num21; num{2,2}=num22;
94

95 den{1,1}=den11; den{1,2}=den12;
96 den{2,1}=den21; den{2,2}=den22;
97

98

99 [A,B,C,D,sH] = mimoctf2dss(num,den,tau,Ts,Nmax,tol);
100

101

102

103 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 % Solver and solver parameters
105 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106
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107

108 % sensitivity bound
109 MSmax = 1.10;
110

111 % solver settings
112 options = optimset('Algorithm','interior−point','display' ...
113 ,'iter','MaxFunEvals',2200);
114

115 % bounds on tuning parameters
116 lb = [0*ones(2,1); 0*ones(2,1); 0*ones(2,1)];
117 ub = [1*ones(2,1); 1e6*ones(2,1); 1e6*ones(2,1)];
118

119 % start point
120 x0 = [0.7*ones(2,1); 100*ones(2,1); 1*ones(2,1)];
121

122

123 % compute solution
124 x = fmincon(@(x)ObjectiveFun1(x,Ap,Bp,Cp,A,B,C,N,Ts),x0,[],[],[],[],...
125 lb,ub,@(x)ConFun1(x,Ap,Bp,Cp,A,B,C,N,MSmax,Ts),options);

1 function J = ObjectiveFun1(x,Ap,Bp,Cp,A,B,C,N,Ts)
2 % ObjectiveFun1
3 % Evaluates objective function for tuning optimization problem
4 % for tuning approach 1
5

6

7 % number of measurements
8 ny =size(C,1);
9

10 % number of control inputs
11 nu =size(B,2);
12

13 % disturbance model parameters
14 alpha = x(1:ny);
15

16 % weight matrix Su
17 S = diag(x(ny+1:ny+nu));
18

19 % weight matrix Qy
20 Q = diag(x(ny+nu+1:end));
21

22

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Parameters
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 % time of simulation in minutes
28 Tf = 80;
29

30 % sample−time [min]
31 Tstep = Ts/60;
32 T = 0:Tstep:Tf;
33 Nsim = length(T);
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34

35 rstep = 1;
36 rtime = 601;
37

38

39 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 % Controller model − deterministic−stochastic model
41 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42

43 % size of identified model state
44 nx = size(A,1);
45

46 % disturbance model
47 As = eye(ny,ny);
48 Ks = diag(ones(ny,1)−alpha);
49 Cs = eye(ny,ny);
50

51 % combined model
52 Abar = [A zeros(nx,ny); zeros(ny,nx) As];
53 Bbar = [B; zeros(ny,nu)];
54 Kbar = [zeros(nx,ny); Ks];
55 Cbar = [C Cs];
56

57

58 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 % Controller gains − deterministic−stochastic model
60 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61

62 % design matrices for controller
63 [phix phie gammau H varphi I0 Qcal Scal] = ...
64 MPCDesign(N,Abar,Bbar,Cbar,Kbar,Q,S);
65

66 % gain matrices for explicit MPC solution
67 [Lx Le LR Lu] = MPCDesignUnconstrained ...
68 (H,phix,phie,gammau,varphi,I0,Qcal,Scal);
69

70 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 % Controller state−space
72 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73

74 Ac = [((Abar − Kbar*Cbar) + Bbar*(Lx − Le*Cbar)) Bbar*Lu;
75 Lx − Le*Cbar Lu];
76

77 Bcy = [Kbar + Bbar*Le; Le];
78 Bcr = [Bbar*LR; LR];
79

80 Cc = [Lx−Le*Cbar Lu];
81

82 Dcy = Le;
83 Dcr = LR;
84

85

86 % state size of controller state−space
87 nxc = size(Ac,1);
88
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89 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
90 % Closed−loop systen
91 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
92

93 Acl = [Ap + Bp*Dcy*Cp Bp*Cc; Bcy*Cp Ac];
94

95 %Bdcl = [Ep; zeros(8,2)];
96 %Bwcl = [Gp; zeros(8,2)];
97

98 %Bvcl = [Bp*Dcy;Bcy];
99 Brcl = [Bp*Dcr;Bcr];

100

101 Ccl = [Cp zeros(2,nxc)];
102 %Cucl = [Dcy*Cp Cc];
103

104 %Dvcl = Dcy;
105 %Drcl = Dcr;
106

107

108

109

110 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
111 % Integrated Absolute Error
112 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
113

114

115 % reference
116 r = zeros(2,Nsim+N);
117

118

119 % IAE for reference scenario 1
120 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
121

122

123 r1 = r;
124 r1(1,rtime:end) = rstep;
125

126

127 % initial state
128 xkclr1 = zeros(size(Acl,1),1);
129

130 for j = 1:Nsim
131 Rtempr1 = r1(:,j:(j+N)−1);
132 Rkr1 = Rtempr1(:);
133

134 xkclr1next = Acl*xkclr1 + Brcl*Rkr1;
135 yr1(:,j) = Ccl*xkclr1;
136

137 xkclr1 = xkclr1next;
138 end
139

140

141 % tank 1, step in reference 1
142 e11r = yr1(1,:) − r1(1,1:Nsim);
143
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144 % tank 2, step in reference 1
145 e21r = yr1(2,:) − r1(2,1:Nsim);
146

147

148 % IAE
149 Jr11 = sum(abs(e11r));
150 Jr21 = sum(abs(e21r));
151

152

153 % IAE for reference scenario 2
154 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
155

156 r2 = r;
157 r2(2,rtime:end) = rstep;
158

159

160 % initial state
161 xkclr2 = zeros(size(Acl,1),1);
162

163 for j = 1:Nsim
164 Rtempr2 = r2(:,j:(j+N)−1);
165 Rkr2 = Rtempr2(:);
166

167

168 xkclr2next = Acl*xkclr2 + Brcl*Rkr2;
169 yr2(:,j) = Ccl*xkclr2;
170

171 xkclr2 = xkclr2next;
172 end
173

174

175 % tank 1, step in reference 2
176 e12r = yr2(1,:) − r2(1,1:Nsim);
177

178 % tank 2, step in reference 2
179 e22r = yr2(2,:) − r2(2,1:Nsim);
180

181

182 % IAE
183 Jr12 = sum(abs(e12r));
184 Jr22 = sum(abs(e22r));
185

186

187 % Objective function
188 J = Jr11 + Jr21 + Jr12 + Jr22;

1 function [c,ceq] = ConFun1(x,Ap,Bp,Cp,A,B,C,N,MSmax,Ts)
2 % ConFun1
3 % Evaluates constraint for tuning optimization problem
4 % for tuning approach 1
5

6

7 % number of measurements
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8 ny =size(C,1);
9

10 % number of control inputs
11 nu =size(B,2);
12

13 % disturbance model parameters
14 alpha = x(1:ny);
15

16 % weight matrix Su
17 S = diag(x(ny+1:ny+nu));
18

19 % weight matrix Qy
20 Q = diag(x(ny+nu+1:end));
21

22

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Controller model − deterministic−stochastic model
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 % size of identified model state
28 nx = size(A,1);
29

30 % disturbance model
31 As = eye(ny,ny);
32 Ks = diag(ones(ny,1)−alpha);
33 Cs = eye(ny,ny);
34

35 % combined model
36 Abar = [A zeros(nx,ny); zeros(ny,nx) As];
37 Bbar = [B; zeros(ny,nu)];
38 Kbar = [zeros(nx,ny); Ks];
39 Cbar = [C Cs];
40

41 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 % Controller gains − deterministic−stochastic model
43 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44

45 % design matrices
46 [phix phie gammau H varphi I0 Qcal Scal] = ...
47 MPCDesign(N,Abar,Bbar,Cbar,Kbar,Q,S);
48

49 % gain matrices for explicit MPC solution
50 [Lx Le LR Lu] = MPCDesignUnconstrained ...
51 (H,phix,phie,gammau,varphi,I0,Qcal,Scal);
52

53

54 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 % Controller in state−space form
56 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
57

58

59 Ac = [((Abar − Kbar*Cbar) + Bbar*(Lx − Le*Cbar)) Bbar*Lu;
60 Lx − Le*Cbar Lu];
61

62 Bcy = [Kbar + Bbar*Le; Le];
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63 Bcr = [Bbar*LR; LR];
64

65 Cc = [Lx−Le*Cbar Lu];
66

67 Dcy = Le;
68 Dcr = LR;
69

70

71 nxc = size(Ac,1);
72

73 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 % Closed−loop state−space: Controller + Linear plant
75 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76

77

78

79 Acl = [Ap + Bp*Dcy*Cp Bp*Cc; Bcy*Cp Ac];
80

81 %Bwcl = [Gp; zeros(8,2)]; % unknown
82 %Bdcl = [Ep; zeros(8,2)]; % unknown
83

84 Bvcl = [Bp*Dcy;Bcy];
85 %Brcl = [Bp*Dcr;Bcr];
86

87 Ccl = [Cp zeros(2,nxc)];
88 %Cucl = [Dcy*Cp Cc];
89

90 %Dvcl = Dcy;
91 %Drcl = Dcr;
92

93

94 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95 % Sensitivity
96 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
97

98 w = 0:0.0001:(pi/Ts);
99 sv = sigma(ss(Acl,Bvcl,Ccl,eye(ny),Ts),w);

100

101 MS = max(max(sv))
102

103 % constraints
104 c = MS − MSmax;
105 ceq = [];

1 clear all
2 close all
3 clc
4

5 addpath('Realization')
6

7 % TUNING APPROACH 2
8

9 % Test file for tuning procedure of modified 4−tank system



166 Matlab code

10 % based on tuning approach 2 for first−order or second−order
11 % identified model
12

13

14 % sample−time [s]
15 Ts = 4;
16

17 % Prediction horizon
18 N = 500;
19

20

21 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 % Identified model
23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24

25 % 1)
26 % first−order identified model
27 % (identified under process and measurement noise)
28

29 % G11
30 num11 = 0.0822;
31 den11 = [140.2627 1.0000];
32

33 % G12
34 num12 = 0.1258;
35 den12 = [231.0847 1.0000];
36

37 % G21
38 num21 = 0.1523;
39 den21 = [216.4180 1.0000];
40

41 % G22
42 num22 = 0.1110;
43 den22 = [137.5618 1.0000];
44

45 % 2)
46 % second−order identified model
47 % (identified under process and measurement noise)
48

49

50 % % G11
51 % num11 = 0.0818;
52 % den11 = conv([25.3224 1],[108.7843 1]);
53 %
54 % % G12
55 % num12 = 0.1238;
56 % den12 = conv([104.5181 1],[104.4942 1]);
57 %
58 % % G21
59 % num21 = 0.1520;
60 % den21 = conv([7.6230 1],[206.9884 1]);
61 %
62 % % G22
63 % num22 = 0.1091;
64 % den22 = conv([9.3216e−6 1],[96.1746 1]);
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65

66

67 % set up state−space realization of identified model
68

69 num = cell(2,2); den = cell(2,2); tau = zeros(2,2);
70

71 num{1,1}=num11; num{1,2}=num12;
72 num{2,1}=num21; num{2,2}=num22;
73

74 den{1,1}=den11; den{1,2}=den12;
75 den{2,1}=den21; den{2,2}=den22;
76

77

78 Nmax=100; tol=1e−8;
79

80 [A,B,C,D,sH] = mimoctf2dss(num,den,tau,Ts,Nmax,tol);
81

82

83

84

85 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 % Solver and solver parameters
87 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88

89

90 % sensitivity bound
91 MSmax = 1.20;
92

93

94 % solver settings
95 options = optimset('Algorithm','interior−point','display' ...
96 ,'iter','MaxFunEvals',2200);
97

98

99 % bounds on tuning parameters
100 lb = [zeros(2,1); 0*ones(2,1); 0*ones(2,1)];
101 ub = [ ones(2,1); 1e6*ones(2,1); 1e6*ones(2,1)];
102

103 % start point
104 x0 = [0.7*ones(2,1); 100*ones(2,1); 1*ones(2,1)];
105

106

107 % compute solution
108 x = fmincon(@(x)ObjectiveFun2(x,A,B,C,N),x0,[],[],[],[] ...
109 ,lb,ub,@(x)ConFun2(x,A,B,C,N,MSmax,Ts),options);

1 function J = ObjectiveFun2(x,A,B,C,N)
2 % ObjectiveFun2
3 % Evaluates objective function for tuning optimization problem
4 % for tuning approach 2
5

6

7 % number of measurements
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8 ny =size(C,1);
9

10 % number of control inputs
11 nu =size(B,2);
12

13 % disturbance model parameters
14 alpha = x(1:ny);
15

16 % weight matrix Su
17 S = diag(x(ny+1:ny+nu));
18

19 % weight matrix Qy
20 Q = diag(x(ny+nu+1:end));
21

22

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Parameters
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 % time of simulation in minutes
28 Tf = 200;
29

30 % sample−time [s]
31 Ts = 4;
32

33 % sample−time [min]
34 Tstep = Ts/60;
35 T = 0:Tstep:Tf;
36 Nsim = length(T);
37

38

39

40

41 rstep = 0.1;
42 rtime = 601;
43

44 ubartime = 601;
45 ubarstep = 1;
46

47 ybartime = 601;
48 ybarstep = 0.1;
49

50

51

52

53 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 % Controller model − deterministic−stochastic model
55 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56

57 % size of identified model state
58 nx = size(A,1);
59

60 % disturbance model
61 As = eye(ny,ny);
62 Ks = diag(ones(ny,1)−alpha);



A.3 Tuning Files 169

63 Cs = eye(ny,ny);
64

65 % combined model
66 Abar = [A zeros(nx,ny); zeros(ny,nx) As];
67 Bbar = [B; zeros(ny,nu)];
68 Kbar = [zeros(nx,ny); Ks];
69 Cbar = [C Cs];
70

71

72

73 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 % Controller gains − deterministic−stochastic model
75 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76

77 % design matrices for controller
78 [phix phie gammau H varphi I0 Qcal Scal] = ...
79 MPCDesign(N,Abar,Bbar,Cbar,Kbar,Q,S);
80

81 % gain matrices for explicit MPC solution
82 [Lx Le LR Lu] = MPCDesignUnconstrained ...
83 (H,phix,phie,gammau,varphi,I0,Qcal,Scal);
84

85

86 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 % Controller state−space
88 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89

90 Ac = [((Abar − Kbar*Cbar) + Bbar*(Lx − Le*Cbar)) Bbar*Lu;
91 Lx − Le*Cbar Lu];
92

93 Bcy = [Kbar + Bbar*Le; Le];
94 Bcr = [Bbar*LR; LR];
95

96 Cc = [Lx−Le*Cbar Lu];
97

98 Dcy = Le;
99 Dcr = LR;

100

101

102 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103 % Closed−loop systen
104 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105

106 Acl = [A + B*Dcy*C B*Cc; Bcy*C Ac];
107

108

109 sizeAcl = size(Acl,2);
110 sizeC = size(C,2);
111

112 sizediff = sizeAcl − sizeC;
113

114

115 %Bdcl = [Ep; zeros(8,2)];
116 %Bwcl = [Gp; zeros(8,2)];
117
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118 %Bvcl = [B*Dcy;Bcy];
119 Brcl = [B*Dcr;Bcr];
120

121 Ccl = [C zeros(2,sizediff)];
122 %Cucl = [Dcy*C Cc];
123

124 %Dvcl = Dcy;
125 %Drcl = Dcr;
126

127 %%%%%%%%%% TEST %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
128

129

130 % closed−loop input disturbance matrix
131 Bubarcl = [B; zeros(sizediff,2)];
132

133

134 % closed−loop output disturbance matrix
135 Bybarcl = [B*Dcy;Bcy];
136

137

138 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
139

140

141 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
142 % Integrated Absolute Error
143 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
144

145 % reference
146 r = zeros(2,Nsim+N);
147

148

149 % IAE for input disturbance scenario 1
150 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
151

152 % ubar
153 ubar = zeros(2,Nsim+N);
154

155 ubar1 = ubar;
156 ubar1(1,ubartime:end) = ubarstep;
157

158

159 % initial state
160 xkclubar1 = zeros(size(Acl,1),1);
161

162 for j = 1:Nsim
163 Rtemp = r(:,j:(j+N)−1);
164 Rk = Rtemp(:);
165

166 xkclubar1next = Acl*xkclubar1 + Brcl*Rk + Bubarcl*ubar1(:,j);
167 yubar1(:,j) = Ccl*xkclubar1;
168

169

170 xkclubar1 = xkclubar1next;
171 end
172
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173

174 % tank 1, step in reference 1
175 e11u = yubar1(1,:) − r(1,1:Nsim);
176

177 % tank 2, step in reference 1
178 e21u = yubar1(2,:) − r(2,1:Nsim);
179

180

181 % IAE
182 Ju11 = sum(abs(e11u));
183 Ju21 = sum(abs(e21u));
184

185

186 % IAE for input disturbance scenario 2
187 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
188

189 ubar2 = ubar;
190 ubar2(2,ubartime:end) = ubarstep;
191

192

193 % initial state
194 xkclubar2 = zeros(size(Acl,1),1);
195

196 for j = 1:Nsim
197 Rtemp = r(:,j:(j+N)−1);
198 Rk = Rtemp(:);
199

200 xkclubar2next = Acl*xkclubar2 + Brcl*Rk + Bubarcl*ubar2(:,j);
201 yubar2(:,j) = Ccl*xkclubar2;
202

203 xkclubar2 = xkclubar2next;
204 end
205

206

207 % tank 1, step in reference 1
208 e12u = yubar2(1,:) − r(1,1:Nsim);
209

210 % tank 2, step in reference 1
211 e22u = yubar2(2,:) − r(2,1:Nsim);
212

213 % IAE
214 Ju12 = sum(abs(e12u));
215 Ju22 = sum(abs(e22u));
216

217

218 Ju = Ju11 + Ju21 + Ju12 + Ju22;
219

220

221 % IAE for output disturbance scenario 1
222 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
223

224 % ybar
225 ybar = zeros(2,Nsim+N);
226

227
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228

229 ybar1 = ybar;
230 ybar1(1,ybartime:end) = ybarstep;
231

232

233 % initial state
234 xkclybar1 = zeros(size(Acl,1),1);
235

236 for j = 1:Nsim
237 Rtemp = r(:,j:(j+N)−1);
238 Rk = Rtemp(:);
239

240 xkclybar1next = Acl*xkclybar1 + Brcl*Rk + Bybarcl*ybar1(:,j);
241 yybar1(:,j) = Ccl*xkclybar1 + ybar1(:,j);
242

243 xkclybar1 = xkclybar1next;
244 end
245

246

247 % tank 1, step in reference 1
248 e11y = yybar1(1,:) − r(1,1:Nsim);
249

250 % tank 2, step in reference 1
251 e21y = yybar1(2,:) − r(2,1:Nsim);
252

253 % IAE
254 Jy11 = sum(abs(e11y));
255 Jy21 = sum(abs(e21y));
256

257

258 % IAE for output disturbance scenario 2
259 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
260

261

262 ybar2 = ybar;
263 ybar2(2,ybartime:end) = ybarstep;
264

265

266 % initial state
267 xkclybar2 = zeros(size(Acl,1),1);
268

269 for j = 1:Nsim
270 Rtemp = r(:,j:(j+N)−1);
271 Rk = Rtemp(:);
272

273 xkclybar2next = Acl*xkclybar2 + Brcl*Rk + Bybarcl*ybar2(:,j);
274 yybar2(:,j) = Ccl*xkclybar2 + ybar2(:,j);
275

276 xkclybar2 = xkclybar2next;
277 end
278

279

280 % tank 1, step in reference 1
281 e12y = yybar2(1,:) − r(1,1:Nsim);
282
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283 % tank 2, step in reference 1
284 e22y = yybar2(2,:) − r(2,1:Nsim);
285

286 % IAE
287 Jy12 = sum(abs(e12y));
288 Jy22 = sum(abs(e22y));
289

290

291 Jy = Jy11 + Jy21 + Jy12 + Jy22;
292

293

294 % IAE for reference scenario 1
295 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
296

297

298 r1 = r;
299 r1(1,rtime:end) = rstep;
300

301

302 % initial state
303 xkclr1 = zeros(size(Acl,1),1);
304

305 for j = 1:Nsim
306 Rtempr1 = r1(:,j:(j+N)−1);
307 Rkr1 = Rtempr1(:);
308

309 xkclr1next = Acl*xkclr1 + Brcl*Rkr1;
310 yr1(:,j) = Ccl*xkclr1;
311

312 xkclr1 = xkclr1next;
313 end
314

315

316 % tank 1, step in reference 1
317 e11r = yr1(1,:) − r1(1,1:Nsim);
318

319 % tank 2, step in reference 1
320 e21r = yr1(2,:) − r1(2,1:Nsim);
321

322 % IAE
323 Jr11 = sum(abs(e11r));
324 Jr21 = sum(abs(e21r));
325

326

327 % IAE for reference scenario 2
328 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
329

330 r2 = r;
331 r2(2,rtime:end) = rstep;
332

333

334 % initial state
335 xkclr2 = zeros(size(Acl,1),1);
336

337 for j = 1:Nsim
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338 Rtempr2 = r2(:,j:(j+N)−1);
339 Rkr2 = Rtempr2(:);
340

341 xkclr2next = Acl*xkclr2 + Brcl*Rkr2;
342 yr2(:,j) = Ccl*xkclr2;
343

344 xkclr2 = xkclr2next;
345 end
346

347

348 % tank 1, step in reference 2
349 e12r = yr2(1,:) − r2(1,1:Nsim);
350

351 % tank 2, step in reference 2
352 e22r = yr2(2,:) − r2(2,1:Nsim);
353

354 % IAE
355 Jr12 = sum(abs(e12r));
356 Jr22 = sum(abs(e22r));
357

358 Jr = Jr11 + Jr21 + Jr12 + Jr22;
359

360

361 % Objective function
362 J = Ju + Jy + Jr;

1 function [c,ceq] = ConFun2(x,A,B,C,N,MSmax,Ts)
2 % ConFun2
3 % Evaluates constraint for tuning optimization problem
4 % for tuning approach 2
5

6

7 % number of measurements
8 ny =size(C,1);
9

10 % number of control inputs
11 nu =size(B,2);
12

13 % disturbance model parameters
14 alpha = x(1:ny);
15

16 % weight matrix Su
17 S = diag(x(ny+1:ny+nu));
18

19 % weight matrix Qy
20 Q = diag(x(ny+nu+1:end));
21

22

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Controller model − deterministic−stochastic model
25 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26

27 % size of identified model state
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28 nx = size(A,1);
29

30 % disturbance model
31 As = eye(ny,ny);
32 Ks = diag(ones(ny,1)−alpha);
33 Cs = eye(ny,ny);
34

35 % combined model
36 Abar = [A zeros(nx,ny); zeros(ny,nx) As];
37 Bbar = [B; zeros(ny,nu)];
38 Kbar = [zeros(nx,ny); Ks];
39 Cbar = [C Cs];
40

41 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 % Controller gains − deterministic−stochastic model
43 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44

45 % design matrices
46 [phix phie gammau H varphi I0 Qcal Scal] = ...
47 MPCDesign(N,Abar,Bbar,Cbar,Kbar,Q,S);
48

49 % gain matrices for explicit MPC solution
50 [Lx Le LR Lu] = MPCDesignUnconstrained ...
51 (H,phix,phie,gammau,varphi,I0,Qcal,Scal);
52

53 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 % Controller in state−space form
55 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56

57

58 Ac = [((Abar − Kbar*Cbar) + Bbar*(Lx − Le*Cbar)) Bbar*Lu;
59 Lx − Le*Cbar Lu];
60

61 Bcy = [Kbar + Bbar*Le; Le];
62 Bcr = [Bbar*LR; LR];
63

64 Cc = [Lx−Le*Cbar Lu];
65

66 Dcy = Le;
67 Dcr = LR;
68

69

70

71

72 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
73 % Closed−loop state−space: Controller + Linear plant
74 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75

76 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 % Closed−loop systen
78 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
79

80 Acl = [A + B*Dcy*C B*Cc; Bcy*C Ac];
81

82
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83 sizeAcl = size(Acl,2);
84 sizeC = size(C,2);
85

86 sizediff = sizeAcl − sizeC;
87

88

89 %Bdcl = [Ep; zeros(8,2)];
90 %Bwcl = [Gp; zeros(8,2)];
91

92 Bvcl = [B*Dcy;Bcy];
93 %Brcl = [B*Dcr;Bcr];
94

95 Ccl = [C zeros(2,sizediff)];
96 %Cucl = [Dcy*C Cc];
97

98 %Dvcl = Dcy;
99 %Drcl = Dcr;

100

101 %%%%%%%%%% TEST %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
102

103

104 % closed−loop input disturbance matrix
105 %Bubarcl = [B; zeros(sizediff,2)];
106

107

108 % closed−loop output disturbance matrix
109 %Bybarcl = [B*Dcy;Bcy];
110

111

112 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
113

114

115 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116 % Sensitivity
117 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
118

119 w = 0:0.0001:(pi/Ts);
120 sv = sigma(ss(Acl,Bvcl,Ccl,eye(ny),Ts),w);
121

122 MS = max(max(sv))
123

124 % constraints
125 c = MS − MSmax;
126 ceq = [];

A.4 System Identification

1 close all
2 clear all
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3 clc
4

5 addpath('Realization')
6

7 % System identification Script for modified 4−tank system
8

9 % Setup non−linear model
10

11 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 % Parameters
13 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14

15 a1 = 1.2272; %[cm2] Area of outlet pipe 1
16 a2 = 1.2272; %[cm2] Area of outlet pipe 2
17 a3 = 1.2272; %[cm2] Area of outlet pipe 3
18 a4 = 1.2272; %[cm2] Area of outlet pipe 4
19

20 A1 = 380.1327; %[cm2] Cross sectional area of tank 1
21 A2 = 380.1327; %[cm2] Cross sectional area of tank 2
22 A3 = 380.1327; %[cm2] Cross sectional area of tank 3
23 A4 = 380.1327; %[cm2] Cross sectional area of tank 4
24

25 gamma1 = 0.45; % Flow distribution constant. Valve 1
26 gamma2 = 0.40; % Flow distribution constant. Valve 2
27

28 g = 981; %[cm/s2] The acceleration of gravity
29 rho = 1.00; %[g/cm3] Density of water
30

31 p = [a1; a2; a3; a4; A1; A2; A3; A4; gamma1; gamma2; g; rho];
32

33

34 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 % Simulation Setup
36 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37

38 t0 = 0.0; % [s] Initial time
39 tf = 50*60; % [s] Final time
40

41 Ts = 4; % [s] Sample Time
42

43 t = (t0:Ts:tf)'; % [s] Sample instants
44 N = length(t);
45

46 F1 = 300; % [cm3/s] Flow rate from pump 1
47 F2 = 300; % [cm3/s] Flow rate from pump 2
48

49

50 % steady state
51 us = [300;300]; % [cm3/s] Flow rates
52 ds = [70;70]; % [cm3/s] Flow rates
53

54 [Axx Bxx Exx Cxx xs ys] = ...
55 getlinearizedModified4TankSystem(us,ds,gamma1,gamma2);
56

57 % initial state
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58 x0 = xs;
59

60 stepindexu1 = 251;
61

62 u1 = F1*ones(1,N);
63 u1(stepindexu1:end) = 1.15*F1;
64 %u1(stepindexu1:end) = 0.85*F1;
65

66 u2 = F2*ones(1,N);
67

68 u = [u1;u2];
69

70 % Disturbance
71 d = 70*ones(2,N);
72

73 % Process Noise
74 Q = (20^2)*eye(2);
75 Lq = chol(Q,'lower');
76 w = Lq*randn(2,N);
77

78 % Measurement Noise
79 R = 0.5*eye(2);
80 Lr = chol(R,'lower');
81 v = Lr*randn(2,N);
82

83 % simulate data
84 y = nonlinearmodified4tanksystemSIM(x0,u,d,v,w,t,N,p);
85

86 % Plot simulated process data (non−linear process)
87 figure
88 subplot(221)
89 plot(t,y(1,:),'.r')
90 ylabel('$y_1 \enskip [cm]$','interpreter','latex','fonts',14)
91 grid on
92

93 subplot(223)
94 stairs(t,u1,'−b','LineWidth',2)
95 ylim([280 360])
96 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
97 ylabel('$u_1 \enskip [cm^3/s]$','interpreter','latex','fonts',14)
98 grid on
99

100 subplot(222)
101 plot(t,y(2,:),'.r')
102 ylabel('$y_2 \enskip [cm]$','interpreter','latex','fonts',14)
103 grid on
104

105 subplot(224)
106 stairs(t,u2,'−b','LineWidth',2)
107 ylim([280 360])
108 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
109 ylabel('$u_2 \enskip [cm^3/s]$','interpreter','latex','fonts',14)
110 grid on
111

112
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113 %%%%% step data for step in u1
114

115 tdata = t(stepindexu1:end);
116 u1data = u1(stepindexu1:end)';
117 y1data = y(1,stepindexu1:end)';
118 y2data = y(2,stepindexu1:end)';
119

120

121 %%%%%%% treated data
122

123

124 tsamples = length(tdata)*Ts − Ts;
125 tnew = 0:Ts:tsamples;
126

127 ∆u1 = u1data(1) − u1(250);
128

129 % data y1
130 y1ss = y(1,stepindexu1−5);
131 y1datanew = (y1data − y1ss*ones(size(y1data)))./∆u1;
132

133 % data y2
134 y2ss = y(2,stepindexu1−5);
135 y2datanew = (y2data − y2ss*ones(size(y2data)))./∆u1;
136

137

138 figure
139 plot(tnew,y1datanew,'.r','LineWidth',2)
140 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
141 ylabel('$\frac{y_1 − y_{s1}}{\Delta u_1}$',...
142 'interpreter','latex','fonts',14)
143 grid on
144

145 figure
146 plot(tnew,y2datanew,'.r','LineWidth',2)
147 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
148 ylabel('$\frac{y_2 − y_{s2}}{\Delta u_1}$',...
149 'interpreter','latex','fonts',14)
150 grid on
151

152

153 %%%%%% PARAMATER ESTIMATION
154

155

156 options = optimset('TolFun',1e−10,'MaxFunEvals',1000);
157

158 % first−order estimate
159 [y1u1,resnorm1] = lsqcurvefit(@myfun,[1;1],tnew ...
160 ,y1datanew',[],[],options);
161

162 [x2,resnorm2] = lsqcurvefit(@myfun,[1;1],tnew ...
163 ,y2datanew',[],[],options);
164

165 % second−order estimate
166 [model_y1u1,resnormy1u1] = lsqcurvefit ...
167 (@secondordermodel,[1;30;40],tnew,y1datanew',[],[],options);
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168

169 [model_y2u1,resnormy2u1] = lsqcurvefit ...
170 (@secondordermodel,[1;30;40],tnew,y2datanew',[],[],options);
171

172 y1fit = myfun(y1u1,tnew);
173 y2fit = myfun(x2,tnew);
174

175 y1u1fitSO = secondordermodel(model_y1u1,tnew);
176 y2u1fitSO = secondordermodel(model_y2u1,tnew);
177

178

179

180 % plot estimates
181

182 figure
183 plot(tnew,y1datanew,'.r',tnew,y1fit,'−−',tnew ...
184 ,y1u1fitSO,'−−','LineWidth',2)
185

186 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
187 title('$G_{11}(s)$','interpreter','latex','fonts',14)
188 grid on
189 h1 = legend('data','fopdt','sopdt');
190 set(h1,'interpreter','latex','fontsize',12);
191

192

193 figure
194 plot(tnew,y2datanew,'.r',tnew,y2fit,'−−',tnew ...
195 ,y2u1fitSO,'−−','LineWidth',2)
196

197 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
198 title('$\hat G_{21}(s)$','interpreter','latex','fonts',14)
199 grid on
200 h2 = legend('data','fopdt','sopdt');
201 set(h2,'interpreter','latex','fontsize',12);
202

203

204 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
205 % STEP IN U2
206 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
207

208 stepindexu2 = 251;
209

210

211 u12 = F1*ones(1,N);
212

213 u22 = F2*ones(1,N);
214 u22(stepindexu2:end) = 1.15*F2;
215

216

217 u2 = [u12;u22];
218 y2 = nonlinearmodified4tanksystemSIM(x0,u2,d,v,w,t,N,p);
219

220

221 % Plot simulated process data (non−linear process)
222 figure
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223

224 subplot(221)
225 plot(t,y2(1,:),'.r','LineWidth',2)
226 ylabel('$y_1 \enskip [cm]$','interpreter','latex','fonts',14)
227 grid on
228

229 subplot(223)
230 stairs(t,u12,'−b','LineWidth',2)
231 ylim([280 360])
232 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
233 ylabel('$u_1 \enskip [cm^3/s]$','interpreter','latex','fonts',14)
234 grid on
235

236 subplot(222)
237 plot(t,y2(2,:),'.r','LineWidth',2)
238 ylabel('$y_2 \enskip [cm]$','interpreter','latex','fonts',14)
239 grid on
240

241 subplot(224)
242 stairs(t,u22,'−b','LineWidth',2)
243 ylim([280 360])
244 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
245 ylabel('$u_2 \enskip [cm^3/s]$','interpreter','latex','fonts',14)
246 grid on
247

248 %%%%% step data
249

250 tdata = t(stepindexu2:end);
251 u2data = u22(stepindexu2:end)';
252 y12data = y2(1,stepindexu2:end)';
253 y22data = y2(2,stepindexu2:end)';
254

255 %%%%%%% treated data
256 tsamples2 = length(tdata)*Ts − Ts;
257 tnew2 = 0:Ts:tsamples2;
258

259 ∆u2 = u2data(1) − u2(stepindexu2−1);
260

261 y1ss2 = y2(1,stepindexu2−5);
262 y1datanew2 = (y12data − y1ss2*ones(size(y12data)))./∆u2;
263

264 y2ss2 = y2(2,stepindexu2−5);
265 y2datanew2 = (y22data − y2ss2*ones(size(y22data)))./∆u2;
266

267

268 % PARAMATER ESTIMATION
269

270

271 options = optimset('TolFun',1e−10,'MaxFunEvals',1000);
272

273 % first−order estimates
274 [x12,resnorm12] = lsqcurvefit(@myfun,[1;1] ...
275 ,tnew2,y1datanew2',[],[],options);
276

277 [x22,resnorm22] = lsqcurvefit(@myfun,[1;1]...
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278 ,tnew2,y2datanew2',[],[],options);
279

280 % second−order estimates
281 [model_y1u2,resnormy1u2] = lsqcurvefit(@secondordermodel ...
282 ,[1;30;40],tnew2,y1datanew2',[],[],options);
283 [model_y2u2,resnormy2u2] = lsqcurvefit(@secondordermodel ...
284 ,[1;30;40],tnew2,y2datanew2',[],[],options);
285

286 y1fit2 = myfun(x12,tnew2);
287 y2fit2 = myfun(x22,tnew2);
288

289 y1u2fitSO2 = secondordermodel(model_y1u2,tnew2);
290 y2u2fitSO2 = secondordermodel(model_y2u2,tnew2);
291

292

293 figure
294 plot(tnew2,y1datanew2,'.r',tnew2,y1fit2,'−−',tnew2 ...
295 ,y1u2fitSO2,'−−','LineWidth',2)
296

297 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
298 title('$G_{12}(s)$','interpreter','latex','fonts',14)
299 grid on
300 h1 = legend('data','fopdt','sopdt');
301 set(h1,'interpreter','latex','fontsize',12);
302

303

304 figure
305 plot(tnew2,y2datanew2,'.r',tnew2,y2fit2,'−−',tnew2 ...
306 ,y2u2fitSO2,'−−','LineWidth',2)
307

308 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
309 title('$G_{22}(s)$','interpreter','latex','fonts',14)
310 grid on
311 h2 = legend('data','fopdt','sopdt');
312 set(h2,'interpreter','latex','fontsize',12);
313

314 %−−−−−−−−−−−−−−− Continuos Time transfer functions
315

316 num11 = model_y1u1(1); % B11
317 den11 = conv([model_y1u1(2) 1],[model_y1u1(3) 1]); % A11
318 tau11 = 0;
319

320 num12 = model_y1u2(1); % B12
321 den12 = conv([model_y1u2(2) 1],[model_y1u2(3) 1]); % A12
322 tau12 = 0;
323

324 num21 = model_y2u1(1); % B21
325 den21 = conv([model_y2u1(2) 1],[model_y2u1(3) 1]); % A21
326 tau21 = 0;
327

328 num22 = model_y2u2(1); % B22
329 den22 = conv([model_y2u2(2) 1],[model_y2u2(3) 1]); % A22
330 tau22 = 0;
331

332 num=cell(2,2); den=cell(2,2); tau=zeros(2,2);
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333

334 num{1,1}=num11; num{1,2}=num12;
335 num{2,1}=num21; num{2,2}=num22;
336

337 den{1,1}=den11; den{1,2}=den12;
338 den{2,1}=den21; den{2,2}=den22;
339

340

341 Nmax=100; tol=1e−8;
342

343 [Ad1,Bd1,Cd1,Dd1,sH]=mimoctf2dss(num,den,tau,Ts,Nmax,tol);
344

345 figure
346

347 subplot(221)
348 hold on
349 plot(tnew,y1datanew,'.r') % ,'MarkerSize',10)
350 plot(tnew,y1fit,'−−',tnew,y1u1fitSO,'−−','LineWidth',2)
351 hold off
352 grid on
353 title('$\hat G_{11}(s)$','interpreter','latex','fonts',14)
354 h1 = legend('data','fopdt','sopdt','fontsize',10);
355 %set(h1,'interpreter','latex','fontsize',10);
356 box on
357

358 subplot(223)
359 plot(tnew,y2datanew,'.r',tnew,y2fit,'−−',tnew ...
360 ,y2u1fitSO,'−−','LineWidth',2)
361

362 grid on
363 title('$\hat G_{12}(s)$','interpreter','latex','fonts',14)
364 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
365

366

367 subplot(222)
368 plot(tnew2,y1datanew2,'.r',tnew2,y1fit2,'−−',tnew2 ...
369 ,y1u2fitSO2,'−−','LineWidth',2)
370

371 grid on
372 title('$\hat G_{21}(s)$','interpreter','latex','fonts',14)
373

374

375 subplot(224)
376 plot(tnew2,y2datanew2,'.r',tnew2,y2fit2,'−−',tnew2 ...
377 ,y2u2fitSO2,'−−','LineWidth',2)
378

379 grid on
380 title('$\hat G_{22}(s)$','interpreter','latex','fonts',14)
381 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
382

383

384

385 figure
386

387 subplot(221)
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388 plot(tnew,y1datanew,'.r')
389 ylabel('$\frac{y_1 − y_{1s}}{\Delta u_1}$',...
390 'interpreter','latex','fonts',14)
391

392 grid on
393

394 subplot(223)
395 plot(tnew,y2datanew,'.r')
396 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
397 ylabel('$\frac{y_1 − y_{1s}}{\Delta u_2}$' ...
398 ,'interpreter','latex','fonts',14)
399

400 grid on
401

402 subplot(222)
403 plot(tnew2,y1datanew2,'.r')
404 ylabel('$\frac{y_2 − y_{2s}}{\Delta u_1}$', ...
405 'interpreter','latex','fonts',14)
406

407 grid on
408

409 subplot(224)
410 plot(tnew2,y2datanew2,'.r')
411 xlabel('$time \enskip [s]$','interpreter','latex','fonts',14)
412 ylabel('$\frac{y_2 − y_{2s}}{\Delta u_2}$', ...
413 'interpreter','latex','fonts',14)
414

415 grid on

1 function y = nonlinearmodified4tanksystemSIM(x0,u,d,v,w,t,N,p)
2 % nonlinearmodified4tanksystemSIM
3 % Simulates the non−linear 4−tank system for generation of
4 % input−output for use in system identification
5

6 nx = 4; nu = 2; ny = 2; nz = 2;
7

8 x = zeros(nx,N);
9 y = zeros(ny,N);

10 z = zeros(nz,N);
11

12 X = zeros(0,nx);
13 T = zeros(0,1);
14

15 x(:,1) = x0;
16

17 for k = 1:N−1
18 y(:,k) = ModifiedFourTankSystemSensor(x(:,k),p)+v(:,k);
19 if any(d(:,k)+w(:,k)) < 0
20 'negative'
21 end
22 [Tk,Xk] = ode15s(@ModifiedFourTankSystem ...
23 ,[t(k) t(k+1)],x(:,k),[],u(:,k),(d(:,k)+w(:,k)),p);
24
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25 x(:,k+1) = Xk(end,:)';
26 T = [T; Tk];
27 X = [X; Xk];
28 end
29

30 k = N;
31 y(:,k) = ModifiedFourTankSystemSensor(x(:,k),p)+v(:,k);
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