

i

A Web Service for
Annotation of Documents

Master’s Thesis

Henrik Bartholdt Sønder

Kongens Lyngby 2013

M.Sc. 2013-109

ii

DTU Compute,

Technical University of Denmark

Matematiktorvet, Building 303B

DK-2800 Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@compute.dtu.dk

www.compute.dtu.dk

iii

Abstract

This master’s thesis describes the design and implementation of a web-

based service for viewing and annotating documents. The main purpose of

the system is to allow authenticated users to view, comment and annotate

documents, to support the discussion of reports, papers and theses. The

vision for the system is to provide the necessary utilities and be as cost-

effective about it as possible, in the inevitable process of future

maintenance and develop of new features. The main priority of the project

is therefore not to develop a fully functional production-ready system, but

rather to design a system that is able to most effectively provide the

necessary features in a manner which also compliments a well-designed

system with a high quality of code. To properly assess the quality of code in

the system, a model to support this assessment in the context of the

system vision is developed. The model puts an emphasis on ensuring the

maintainability and adaptability of the solution, and this is used to guide

and support the design considerations throughout development of the

system.

The result is a highly maintainable and extensible design, where all system-

critical choices are based on thorough analysis and included in the thesis to

support the assessment of their precision. The design and implementation

of each system-critical component is covered with an emphasis on

explaining the important design considerations made during development.

Testability of the system is an important factor as well, and the testability

of the final design will be discussed and exemplified using mock objects as

well as supportive “system under test” builder objects for a highly

configurable test environment. A thorough assessment of the security of

the system is featured as well, testing the system against the top ten most

critical flaws in web application security, as provided by the OWASP

organization.

I believe the design of the system satisfies the necessary criteria for

success, and the emphasis on cost-effective maintenance and further

development should ensure the future success of this system. To

definitively conclude this is difficult at best, but the contents of this thesis

should provide an adequate assessment on the success of my efforts.

iv

Preface

This master’s thesis ”A Web Service for Annotation of Documents” was

conducted in the period from 22nd of February 2013 to 13th of September

2013 at the Department of Applied Mathematics and Computer Science,

Technical University of Denmark. The work corresponds to 35 ETCS points.

The project was conducted under the supervision of Associate professor

Christian W. Probst to whom I owe great thanks for excellent guidance and

interest in my project. Additionally, I would like to thank my loving family

and friends for supporting me when really needed.

Henrik Bartholdt Sønder, s072655

Technical University of Denmark
 13

th
 of September 2013

v

Table of Contents

Abstract ... iii

Preface ... iv

1 Introduction .. 1

2 Requirements ... 2

2.1 Users ... 2

2.2 Annotations .. 2

2.3 Non-Functional Requirements ... 2

3 Analysis ... 3

3.1 System-Critical Areas .. 3

3.2 Annotating Documents... 4

3.3 Rendering Documents .. 8

3.4 Document Management ..13

3.5 Assessing the Quality of Software ..15

3.6 Conclusion ..24

4 Design: The Client ...26

4.1 JavaScript ..26

4.2 The Documents Page ..28

4.3 Extending the Viewer: Supporting Tools ..36

4.4 Extending the Viewer: Rendering Annotations43

4.5 Conclusion ..46

5 Design: The Server ..47

5.1 The MVC4 Framework ..49

5.2 Solution Structure...50

5.3 Data Access Layer ...52

5.4 Domain Logic Layer ..57

5.5 Data Storage Options ...67

vi

5.6 Supporting PDF Documents ... 68

5.7 Conclusion .. 76

6 Security Analysis .. 77

6.1 SQL Injection (A1) ... 78

6.2 Improper Authentication and Redirects (A2+A10) 79

6.3 Cross-Site Scripting (A3) ... 80

6.4 Security Misconfiguration (A5+A9) .. 84

6.5 Sensitive Data Exposure (A6) ... 85

6.6 Improper Access Control (A4+A7) .. 87

6.7 Cross-Site Request Forgery (A8) .. 89

7 Test ... 91

7.1 Mocks ... 91

7.2 Configuring the System under Test .. 92

7.3 Testing .. 95

8 Conclusion .. 99

9 References ... 100

10 List of Figures ... 101

 Introduction

1

1 Introduction

This thesis covers the development of a web service for annotation of

documents. The development of the system was proposed by Associate

Professor Christian W. Probst from the Technical University of Denmark,

answering my request of potential topics for a master’s thesis in the

subject of software development.

The main purpose of the system is to allow authenticated users to view,

comment and annotate documents, to support the discussion of reports,

papers and theses. The initial set of functional requirements is quite

simple, but some requirements do present technological difficulties.

In particular, the process of rendering and storing annotations should be

carefully considered. It is apparent that the system should be developed

with consideration for possible future developments as well, and some

suggestions for more advanced features have already been received. One

such feature is the detection of hand-drawn annotations on real paper,

meaning that the system should support the process of detecting hand-

drawn annotations by analysing shapes in an image of a scanned piece of

paper. While this is surely an interesting feature to develop, the primary

focus has been kept towards ensuring a well-designed system.

In regards to the design of the system, it will be essential to ensure the

potential for a cost-effective approach to the future maintenance of the

system. The only utility of the system so far is to support annotation of

documents, and if the system has high maintenance costs, as well as low

utility, the fact that it is non-profit as well could easily result in its

discontinuation. The main priority of the project is therefore not to

develop a fully functional production-ready system, but rather to design a

system that is able to most effectively provide the necessary features in a

manner which also compliments a well-designed system with a high quality

of code.

Requirements

2

2 Requirements

This section covers the simple list of functional requirements for the

system. The primary focus of the project is to ensure proper development

of the non-functional requirements. A proper definition for what these few

terms actually mean for the solution requires a more thorough analysis

though, so for now this tiny list is the actual system requirements.

2.1 Users

 Users can register with a DTU email address

o Such users have upload privileges per default.

 Users can register with an open authentication method

o Such users have no upload privileges, initially.

 Users can share their own documents with other individual users.

2.2 Annotations

 Users can annotate documents using text comments and simple

graphics.

 Users can reply to annotations with text annotations, essentially

supporting discussions for each annotation.

 Users can upload documents.

o Uploaded documents will be stored online.

o Uploaded documents will have to detect and support existing

annotations, and convert them if needed.

 Users can add all annotations from an existing local pdf file to an

existing online document.

o Users will be able to upload a pdf file, extract annotations from

it and have the annotations added to an existing online

document.

2.3 Non-Functional Requirements

 Cost-effective Maintenance

 Extensibility

 Adaptability

Henrik Bartholdt Sønder Analysis

3

3 Analysis

This section will cover the analysis made during the early stages of

development, where the primary concerns are to investigate and research

the areas that are most critical to the success of this development.

The first section of this chapter will present and briefly discuss these

critical areas and their purpose in this project, and these areas will provide

the general structure of the rest of the analysis, as these areas are

analyzed in detail in their separate sections.

The sections of this chapter will constitute an analysis of the viable

solutions for annotating, rendering and managing documents, as well as

discuss the assessment of quality of software in the system.

3.1 System-Critical Areas

This section covers an analysis of the most critical features of the

application, to assist in planning the design and development of system

accordingly. The areas are either essential components or more abstract

requirements that should be thoroughly investigated. It will be a key

priority to develop or at least conceptually prove areas related to

functional requirements and system utility. Areas related to non-functional

requirements will have to be properly assessed and quantified to provide

some degree of measure for their successful development. A thorough

investigation of these critical areas should help assess, and hopefully also

ensure, the future success of this system.

The critical areas listed below will initially be developed or at least

conceptually proven, and the most optimal solution to each area will be

carefully considered.

 Adding annotations to documents

o Creating and editing annotations

o Synchronizing changes for multiple users

 Viewing documents and annotations

o Updating the view when users annotate

o Updating the view when collaborators annotate

Analysis

4

 Managing documents and annotation data

o Organization of documents and annotations

o Access control and availability

 User experience

o Intuitive design

o Responsive interface

o No-lag, asynchronous methods

This may initially function as a list of things to conceptually prove, but it

should not be viewed as such; simply providing these critical features is not

the goal of this project. The goal of this project is to research and develop a

system able to most effectively provide these features in a manner which

compliments a well-designed system with a high quality of code. As such,

an analysis of how the quality of code should be assessed and how the

system should be designed towards this goal will have to be provided as

well.

3.2 Annotating Documents

This section covers one of the first analyses made: investigating the

capabilities of existing software solutions and the different approaches

used to successfully annotate documents. During the research of existing

systems for document annotation, two main approaches were observed,

and these will be analyzed in the context of the requirements of this

system. The analysis ends in a very one-sided decision towards one

approach, which will likely be obvious throughout the analysis. The analysis

of the alternative option was kept even so, as several subtle strengths of

the winning option were not as easily described without a second-best

option of which to compare.

3.2.1 Existing Solutions

Software solutions for annotating various types of documents already

exist, and they generally take one of two different approaches: One

approach supports annotation by editing the document itself, while

another approach annotates documents by applying document

independent annotations on top of a read-only document. These two

categories of solutions will now be referred to as document-dependent

and document-independent, respectively.

Henrik Bartholdt Sønder Analysis

5

To name a few successful applications in the document-independent

category there is “A.nnotate”1, “Crocodoc”2 and “Mendeley”3. Mendeley is

originally a reference manager for research papers, but it does support a

few features for annotating documents and as such fits the description of

an annotation application as well. The approach used by these tools do not

require editing of the document itself, as they support annotation by

annotating on top of other documents using independent annotations. As

such, these annotations are naturally not stored in the document itself,

and will have to be provided through some others means, such as a

separate file or a web service connected to the client. The client

application will then be responsible for displaying the annotations correctly

on top of the document, along with other features. The fact that this

approach does not require editing of the document is what distinguishes it

from the document-dependent approach, and the document can

effectively remain read-only. Most of these document-independent tools

will be able to merge their annotations into a document at some point in

time though, to be able to provide a user with an annotated document, but

it is important to note that this approach does not require the application

to actively edit the document each time an annotation is created or edited.

To name a few solutions in the document-dependent category there is the

“PDF Annotator”4 and the perhaps more commonly known “Adobe

Acrobat”5 PDF editor. These tools will easily annotate a document in many

different ways and their features extend far beyond just annotating. The

reason I refer to them as document-dependent is because they support

annotation of documents by creating and editing annotations inside the

document itself. This necessitates changes in the document itself every

time an annotation is added or editing, and it also makes the solutions

inherently dependent on the PDF format for any kind of editing or

annotation. It is also worth noting that there are few, if any, online web

applications using this approach for document annotation. This also seems

natural though, that editing a PDF document might commonly be a job for

1
 A.nnotate: http://a.nnotate.com/

2
 Crocodoc: https://crocodoc.com/

3
 Mendeley: http://www.mendeley.com/

4
 PDF Annotator: http://www.grahl-software.com/en/pdfannotator/

5
 Adobe Acrobat: http://www.adobe.com/products/acrobat.html

Analysis

6

a desktop application, as this is common for most applications dealing with

a lot of file manipulation.

3.2.2 The Document-Independent Approach

An initial assessment of the document-independent approach suggests

that it has a lot of advantages. Several of the existing solutions are not only

web-based, but also browser-based, meaning this approach allows for

solutions that are provided entirely through a website, without installing

any desktop application or browser plugins. The data required for all the

annotations will have to be stored separately though, but since we are

providing the solution as a web service to synchronize data anyway, this is

not a problem at all – Quite the contrary actually. This separation between

a read-only document and the collaboratively updated annotations will

likely simplify the synchronization process a lot, especially in regards to

continuously redrawing annotation updates. If we are not changing the

document and simply adding an annotation of top of it, it should be

possible to update this change by redrawing the annotations separately. In

regards to viewing the document we are free to either use a plugin or

convert the PDF to some other format - We just need to display a read-only

document, and display the annotations on top. Being free to choose any

method of displaying a PDF document should also further increase the

probability of finding a good solution for updating the view correctly.

Having annotations stored separately also gives an entirely different level

of extensibility to the system: it could choose to present these annotations

in alternative ways, customize the access controls for viewing them or

even allow for account- or system-wide search on annotation content.

It is already apparent that the document-independent approach has some

very attractive properties, but we will take a look at the other approach as

well.

3.2.3 The Document-Dependent Approach

It is clear that taking a document-dependent approach has a number of

immediate disadvantages in the context of our application requirements.

Annotating documents by editing the document itself introduces a lot of

potential errors which are avoided entirely if the documents are kept read-

only. Direct editing of the document might be preferred if the solution

Henrik Bartholdt Sønder Analysis

7

required that the rendering of these annotations had to be exactly correct,

but exact rendering is not much of a concern for these requirements.

Editing a PDF document directly through a website might be possible, but a

desktop application would probably be a better option. This approach is

already awfully complicated compared to the alternative document-

independent approach, especially when the options for synchronization

are considered in the context of multiple directly manipulated PDF

document files. Yikes.

3.2.4 Synchronizing Annotation Data

Having multiple clients annotate the same document at the same time

presents a number of challenges beyond that of simply adding the

annotations themselves. The solution has to ensure the integrity of the

document at all times, and some degree of version control will have to be

applied to ensure this. This will commonly be accomplished by locking

sections of the document as users add or edit them, to ensure that others

do not attempt to edit the same sections at the same time. Even with this

in place there will likely still be race conditions to take care of, such as two

users trying to edit the same section of a document at the exact same

time.

An important factor in the difficulty of handling version control and race

conditions for a source of data is how well structured that source of data is

in regards to adding and editing data. For instance, it is most often not that

difficult to ensure the integrity of data stored on an SQL server and its rows

of data, as we can easily ensure that fields for ‘LastModifiedDateTime’ are

validated and checked against the current time each time we attempt to

update an entity. A data store with a data entry for each annotation would

provide a nice degree of granularity, where any action create, edit or

delete would only affect a single annotation entity. This degree of version

control would not be difficult to support, and it would also reduce the

possible scenarios for race conditions to the ones where two users actually

edit the same annotation at the same time. This would likely be the way to

go if we were to support document-independent annotations.

With this in mind, ensuring the data integrity of document-dependent

annotations would be another matter entirely. We do not have the same

Analysis

8

fine degree of granularity in PDF documents, and adding, deleting or

editing an annotation directly in the document would have ripple effects

throughout the document; we would have to add or edit entries in the

body element as well as the cross-reference table and trailer elements. We

can also choose to use incremental updates and simply append any

changes to the end of the PDF file, meaning that we would append another

body, cross-reference table and trailer element to the end of the file every

time an annotation was added, changed or deleted. This has the added

benefit of providing a clear history of document annotations, as well as the

disadvantage of having to download this history just to view the document.

Then again, if annotations are rarely edited or deleted, this will not be a

significant disadvantage in itself.

3.2.5 Conclusion

The existing solutions for annotating documents use one of two

approaches; they are either dedicated PDF editors with tools for all kinds

of PDF manipulation, or dedicated annotation-tools able to annotate

documents more or less independent of the document file itself. The

choice of which approach to embrace is very one-sided even at this early

point in the analysis, as the advantages of the document-independent

approach are overwhelming given the requirements of this solution.

3.3 Rendering Documents

This section covers an analysis of the available options for rendering and

displaying documents and annotations. The methods to consider will be

listed below and the following sections of the report will feature an

analysis of each of the methods in their separate sections.

After an initial research of available methods for rendering PDF

documents, the main methods to be considered are the following four:

 Using a browser plugin designed specifically for PDF files.

o E.g. Adobe Acrobat Reader.

 Using Flash, a browser plugin.

 Using Adobe AIR, a browser plugin.

 Using HTML5.

 By converting to Images

Henrik Bartholdt Sønder Analysis

9

In regards to rendering annotations, it should be possible to do so using an

HTML overlay on top of the PDF viewer, and this should be possible for all

the above methods as well. Flash and Adobe Air might benefit from having

annotations rendered through their methods of rendering though.

3.3.1 Rendering using a PDF Browser Plugin

The first attempts at a proof of concept implementation using a PDF

browser plugin was successful, in that a PDF document was loaded and

displayed in a so called iframe element in HTML. This was done very easily,

using only the following section of code on a web page:

<iframe src="http://samplepdf.com/sample.pdf"

width="800px" height="600px" >

One fairly big problem encountered in this method of rendering is that the

plugin used to render the PDF in the iframe will be decided by the client

browser. Each browser handles PDF documents differently and even if one

could manage to support a number of major browsers, a user might still

run into problems by using a supported browser but have some

unsupported PDF plugin installed. There are security concerns for this

method of rendering as well, as plugins using native code introduce a

whole new category of possible vulnerabilities to the system. In order to

keep security up to date, regular updates to the plugin would also to be

taken into consideration, and continuous updates to the plugin likely

require occasional maintenance.

An HTML overlay was also implemented on top of the PDF plugin

displaying the PDF, e.g. on top of the iframe. The PDF plugin attempts to

force itself on top of everything, but this could be circumvented. The

successful HTML proved that it would be possible to draw annotations on

top of the PDF plugin, and this is essential because if this was not possible

the rendering of annotations would likely have to be done through the PDF

plugin. Relying on the PDF plugin for manipulation of annotations or

developing a custom solution to support this are both options I barely even

want to consider – At least not without thoroughly investigating other

options. The next step here would be to test if a decent integration

between PDF plugin and annotations was possible and show that mouse

events could be handled properly along with synchronous scrolling of both

Analysis

10

the document in the viewer and the annotations overlay. However, even

though this minor proof of concept implementation could be considered

successful there are already many potential maintenance issues on the

horizon. As such, other methods for rendering were investigated before

heading any further along this path.

3.3.2 Rendering using HTML5

Rendering using HTML5 is done by rendering the document as a set of

HTML elements. The process of creating and styling HTML elements to

correspond exactly with the intended layout of the PDF document has

been developed and polished for a while now, and without referring to any

actual analysis I’d say the conversions have a high level of accuracy that

should be satisfying for this solution. Given that this method of rendering is

based exclusively on HTML, and possibly JavaScript, this option should also

be easily available to any platform supporting HTML5.

Rendering using HTML has several immediate benefits in this solution, the

first being that it should integrate rather easily with an HTML overlay for

rendering annotations. Additionally the rendering using HTML uses HTML

elements throughout the document and a proper classification of these

elements could provide a high level of information about the contents of

the document at any given time. The combination of the two

aforementioned benefits even makes it possible to attach event handlers

directly to the HTML elements of the read-only document and have them

directly interact with the annotation overlay.

A disadvantage of rendering a PDF document using HTML is that the data

processing and rendering process is a lot to handle for the average browser

at run-time, especially given the fact that JavaScript’s dynamic nature

results in quite inefficiently compiled procedures. As a result this type of

rendering has commonly not been efficient enough for real-time rendering

but has been restricted to pre-rendering of documents, meaning that the

document is converted into HTML through a one-time conversion process.

However, the potential processing capabilities of JavaScript have increased

in the last few years, and the development of just-in-time type

specialization for dynamic languages (Gal) in particular has improved the

computational speed of a broad set of instructions by several magnitudes.

Henrik Bartholdt Sønder Analysis

11

This has led to the development of PDF.js: a PDF viewer built entirely in

JavaScript. PDF.js is a community driven experiment supported by Mozilla

Labs, and the experiment could be considered successful as PDF.js has

been the default integrated PDF viewer in Firefox since version 19,

February 19 2013. Another noteworthy benefit of PDF.js is the inherent

security benefits of rendering without the use of native code. This makes

the rendering process a lot less vulnerable to exploits compared to the

method using rendering through a PDF plugin.

To summarize, it would be possible to render documents in HTML, either

by converting documents once to serve an HTML document directly or by

rendering the PDF document as HTML through PDF.js. It would also make

the rendering process itself fairly secure, as no native code is necessary,

and provide a high level of available across all platforms with HTML5.

3.3.3 Rendering using Images

Rendering using images is done by pre-rendering the document as a set of

images. This has the advantage of keeping the process of displaying the

document very simple and consistent across all platforms. The document

will no longer be able to feature vector based graphics, and the process of

rendering might have to be customizable in regards to quality and

resolution to be able to satisfy the needs of a broad range of users.

A fairly big disadvantage of rendering a document as a set of images is the

lack of support for kind of object recognition or interaction in the rendered

document. This means the rendered document will not be able to support

any kind of text search or selection, and other PDF features such as

positional links or hyperlinks will likewise not be supported. Some existing

solutions do use rendering through images though, and they work around

this lack of support for text selection and search by providing a layer of text

on top of the rendered image; as the document is pre-rendered they

render both an image and a text overlay along with it, to be able to provide

text selection and search.

In conclusion, rendering using images is a viable option. However, it would

be essential to provide support for text selection and perhaps other

document elements through an overlay as described in the analysis, as this

is necessary to overcome most of the disadvantages of this rendering

Analysis

12

process. Similar to the rendering process using HTML, the rendering

process using images should itself be fairly secure and provide a high level

of availability across many platforms.

3.3.4 Rendering using Flash and/or Adobe AIR

The option of rending using Flash, perhaps assisted by Adobe AIR, is in the

same category as the PDF plugin option in regards to the inherent

disadvantages of a using 3rd party plugins. This requires installation of

additional software, and exposes the application to an additional set of

security vulnerabilities and maintenance costs. From a personal

perspective it also requires that I learn at least the basics of a new scripting

language, ActionScript, and I have no interest in that.

Without going into too much detail this option provides about the same

benefits and disadvantages as the PDF plugin option. Using Flash for

rendering might have been considered an interesting alternative to the

option of rendering using a PDF plugin, but they are both at a disadvantage

compared to both Image and HTML rendering. As such, it was quickly

apparent that this option was not very promising, and little effort was

made into investigating it further.

3.3.5 Conclusion

The chosen method of rendering is HTML5. The following few paragraphs

states the decisions made based on this analysis and summarizes the facts

those decisions were based on. The two options for rendering using either

a PDF plugin or Flash were tested and analyzed, and a minor prototype was

completed for the PDF plugin. These two options have many similarities,

but they have both been discarded in favor of rendering through either

HTML or Images. This is done primarily based on the disadvantages related

to security, maintenance and the requirement of one or more browser

plugins.

The two options for rendering using either HTML or images have many

similarities as well. Rendering using images is a promising option, but

HTML is the method better overall. Rendering using images inherently

removes all information about the content of the document, such as text,

images and other objects, as the process converts each page into a single

image. To provide this information, rendering using images would require

Henrik Bartholdt Sønder Analysis

13

the development of an additional information-layer to display text and

other object indicators on top of images. Rendering using images does not

support vector based graphics.

HTML rendering inherently provides a lot of information about the content

of the document through the resulting structure of HTML elements which

can even be classified to provide additional object-specific information.

HTML rendering will provide what is required of the viewer immediately,

without any additional developments necessary. HTML rendering supports

vector based graphics where applicable and fonts are displayed in crisp

quality even at high levels of zoom. Rendering using HTML also provides a

choice for rendering either in run-time or as a one-time conversion process

when a document is uploaded.

3.4 Document Management

The requirements does not cover how the documents should be

presented, but simply presenting a list of the documents the user has

access to is probably not a great long-term solution. As the number of

documents per user increases the need for some kind of document

organization system will soon arise.

The decision regarding what would be the best set of methods for

organizing documents in this solution was postponed to wait for additional

input in regards to the future of this project. The analysis of the options for

organizing documents will still be included though, concluding that the

optimal structure for organizing documents in this solution depends a lot

on how accessible and searchable these annotated documents should be.

There are several well-known and proven techniques when it comes to

organizing documents or articles, and the methods we are going to analyze

are organization by folders and categorization by tags. The first thing we

notice in researching the subject is that we need to consider whether we

want to provide organization, categorization, or both.

Organization based on folders

The folder structure is the fundamental structure of most files system,

where the documents are organized in any number of folders and sub-

Analysis

14

folders. This design emphasizes a hierarchical structure where a document

is contained in a single folder, and this puts a limit on the system in regards

to categorization, as using folders as categories means that a document

can be categorized by only a single category. The folder structure does

allow for sub-folders though, effectively introducing the concept of sub-

categories for documents, but it is still limited by that fact that a document

can only have a single folder-based category. In conclusion this design is

great in regards to organization, but lacks behind when it comes to

categorization.

Categorization based on tags

Tags are a non-hierarchical keywords or terms assigned to any kind of

object or set of data to describe and categorize the contents of that object.

A real-world example of this would be Twitter, where hash tags are used to

categorize messages so that users are able to filter the massive amount of

messages based on the tags describing the content of the messages. This

method of organization would categorize documents by tagging a

document with any number of tags, where each tag effectively functions a

category. This is a very flexible approach in regards to categorization, as it

allows for a document to be included in an arbitrary number of categories.

Compared to the simple and personal folder structure, organization using

tags is in general less structured and more chaotic. The chaos could be

limited by providing a list of categories to choose from, but ensuring a

useful list will require continuous re-evaluation. The one great strength of

this approach is the potential for an open and searchable library of

documents, and whether or not this is wanted should be the deciding

factor of this approach. While tags could be used as the primary method

for organizing documents, it is also well suited as an additional tool to

improve search ability in documents, while still providing a simple folder

structure for personal organization needs.

A question to consider alongside with the choice of organizational

structure is the scope of the structure: Should it be personal or not?

Folders, groups and tags could be strictly personal, and some users would

doubtless prefer this and be able to have full control over the tags on their

documents and the structure of groups and folders. There are however

obvious administrative advantages in being able to share folders or groups,

Henrik Bartholdt Sønder Analysis

15

and thereby make them not strictly personal, as this gives users the ability

to effortlessly share entire collections of documents.

3.4.1 Conclusion

A folder structure provides a simple and well-known structure for

document organization. The structure will provide sufficient organizational

utilities for most users, and allows for some level of categorization as well.

The structure could be accompanied by the structure of tags as well, in an

effort to provide greater support for categorization and search.

Tags provide a high degree of categorization, and should definitely be

considered if the system should support any kind of open and easily

accessible platform for document access. Designing towards an open

platform will have an enormous influence on the system, in particular in

regards to many aspects of performance, and careful consideration should

be made if this kind of system is of any interest.

The scope of the organizational structure should be considered as well. If

this is considered a user centric system, a folder structure for each user

might be the best solution. If this is considered a university-centric system,

a single system-wide folder structure for all users might be the best

solution. The folder structure could be based on some set of metrics, such

as the year published along with the department from which it originated.

3.5 Assessing the Quality of Software

The quality of the software in this system is a top priority, and this section

will provide a common ground for which to discuss the topic of software

quality in the following design sections of the report. This section will first

present and explain the current characterization of software quality, and

then discuss how this model was developed.

Designing towards a goal of maintaining a high level of code quality will

help ensure the future success of the application, but what code quality

attributes do we need to focus on?

3.5.1 Characterization of Software Quality Attributes

The software solution designed and delivered in this thesis is a working

prototype at best, and the quality of code must be considered throughout

Analysis

16

the design process to ensure that the future development and delivery of

the system is successful.

After careful consideration, the model to use for quality assessment of

software attributes was designed to assess the quality of code in regards to

the following three questions:

 Ability to cost-effectively maintain and develop the system.

 Ability to adapt as a result of outside influences.

 Ability to provide the necessary utility, in the best possible way.

The three questions above are the basis for the three perspectives

developed, and the perspectives are referred to as Maintainability,

Adaptability and Utility, respectively. The details of the perspectives are

listed below, and this constitutes the final model used for assessment of

software quality:

Maintainability

This perspective identifies quality factors that influence the ability to

maintain the system. This definition of maintainability also includes the

ability to cost efficiently develop additional smaller improvement and

features over time. The most critical quality factors are:

 Flexibility, the ability to make changes as dictated by the business.

 Simplicity / Understandability, the ease of understanding the

system.

 Extensibility, the ability to continuously extend the system.

 Testability, the ability to cost-effectively test the system.

Adaptability

This perspective identifies quality factors that influence the ability to adapt

the system to new environments. This includes adaption to critical changes

as a result of outside influences such as the introduction of new and

superior technologies. The most critical quality factors are:

 Reusability, the ease of using existing software components in a

different context.

 Interoperability, the extent, or ease, to which software

components work together.

Henrik Bartholdt Sønder Analysis

17

Functionality / Utility

This perspective identifies quality factors that influence the ability to

provide its features in a way that gives the user a satisfying user

experience. The most critical quality factors are:

 Utility, the extent of which the system provides necessary features.

 Usability, ease of use.

 Reliability, the extent to which the system fails.

 Integrity, protection from unauthorized access.

Having presented the model, the last part of this section will briefly cover

how the perspectives are used to guide the development of this project.

Having these few perspectives to consider during development has proven

an effective tool in analysing the design and development of the system

along the way.

Adaptability is considered additionally important in the early stages of

development, in order to be as adaptable as possible when the system is

most prone to change. Adaptability should always be a concern, and the

design section features an assessment of component adaptability for each

of the system-critical components developed.

Maintainability could be considered less of a current concern in these

early stages, whereas the important thing in this perspective is that the

current design decisions ensure the future maintainability of the system.

Lower maintenance costs will increase the potential for further

development of the system, and will at the very least provide some level of

insurance that the system will not die a cruel death at the hands of too

high maintenance costs. As such, any design decisions will be carefully

considered in order to ensure a high level of maintainability that is well

designed for future developments as well. The most critical areas of the

system in terms of maintainability will feature thorough discussions of the

system design and its effect on maintainability.

Utility, or functionality, is not a prominent concern for the currently

implemented system, but it is of course very important to ensure that

future development will be able to provide all the necessary features. The

prototype developments covered in this report will therefore feature

Analysis

18

critical assessments of the future capabilities of the components they

develop. Utility is not as well covered in the following design sections, but

this is mostly a result of low requirements in terms of utility, such as

performance and reliability which are not much of a concern. One

important aspect of utility is the usability or user experience, and several

of the client components have been developed with usability as a top

priority. The design section will also feature several examples of the more

technical requirements for user experience, the effects of which will be

covered in the design section as well as the security section – Some of the

technical requirements for providing a good user experience did result in

additional security concerns.

3.5.2 Discussion

Designing towards a goal of maintaining a high level of code quality in the

future will help ensure the future success of the application, but what code

quality attributes do we need to focus on?

When it comes to software quality, the different aspects of it are

commonly discussed in many different categories, such as robustness,

efficiency and responsiveness. There are also many existing models of

which to classify software quality, most of them modeled to best support

their type of system. While many categorizations are quite similar, some

amount of overlap and inconsistency in the meaning and scope of these

categorizations undoubtedly occur between them. For the purpose of the

following design section it would therefore be beneficial to discuss the

meaning of the concept of software quality beforehand, to best ensure the

existence of a common ground for this topic. This discussion states the

critical aspects of software quality in the context of this system, and

explains the absence of consideration for some less important aspects in

the following design discussions. Before states the most critical areas, let

us start the discussion by presenting a few different models for software

quality, and discuss them in the context of this system.

To begin with, the FURPS model is presented below. This model was

developed by Hewlett-Packard more than 30 years ago and it is designed

to classify large, enterprise software solutions. We will not be discussing

this model in much detail, but simply note its structure along with the fact

Henrik Bartholdt Sønder Analysis

19

that each of these main categories contain between 5 and 10 additional

sub-categories for a total of almost 30. Naturally, a FURPS+ model has

been developed as well, with additional categories.

Classifying software quality using FURPS (Grady & Casswell):

 Functionality

o Feature set, Capabilities, Generality, Security

 Usability

o Human factors, Aesthetics, Consistency, Documentation

 Reliability

o Frequency/severity of failure, Recoverability, Predictability,

Accuracy, Mean time to failure

 Performance

o Speed, Efficiency, Resource consumption, Throughput,

Response time

 Supportability

o Testability, Extensibility, Adaptability, Maintainability,

Compatibility, Configurability, Serviceability, Installability,

Localizability, Portability

Classifying software quality according to this model could be beneficial at

some point, but the categories are unnecessarily detailed at this point in

development. Simpler models exist, that would serve the system better.

To exemplify, it is beneficial that the analysis makes a brief point about the

benefits of the fact that our browser based application requires no

installation of any plugins. However, it does improve the understandability

of the discussion to be discussing this benefit in terms of it providing “a

high level of installability, which benefits the level of supportability of the

system”. While it is not useful for this system, such terms would surely

benefit more complex systems, where installability could be quantified to a

meaningful unit of measure and used to set goals for the software in

regards to this aspect.

To provide a contrast to the very granular categorization of the FURPS

model, the list below features a much simpler model for software quality

assessment.

Analysis

20

 Product Level Quality

o Flexibility

o Simplicity

o Utility

 Code Level Quality

o Modularity

o Extensibility

o Maintainability

This model is used by Drupal6, an open source content management

platform powering millions of websites around the world. I personally like

this model a lot, in the context of the Drupal development, and I believe

they have done a good job in this regard. The model is useful in assessing

the important aspects of the quality of software in the system, but the fact

that it is simple as well makes it a lot more useful as a guideline for further

development. It should be clear that the FURPS model severely ruins its

ability to act as any sort of guideline for further development, simply

because it defines categories for just about any possible aspects of the

system. In conclusion it would be preferable to either find or develop a

fairly simple model that is simple enough to act as a guideline for further

development, but still detailed enough to be useful in assessing the most

critical areas of the system.

In the effort to develop such a model, let us take a look at another well-

known model, commonly referred to as McCall’s model (McCall, Richards,

& Walters, 1977); shown below in Figure 1. The model is presented with a

high level of detail for each characterization, but the details are not

important for this discussion. The important thing to note in this model is

its emphasis on separating the quality attributes into three main

perspectives: Revision, Transition and Operations.

6 https://drupal.org/

Henrik Bartholdt Sønder Analysis

21

McCall’s Model for Classification of Software Quality – 1977

McCall identified three main perspectives for characterizing the quality
attributes of a software product:

 Product revision (ability to change).

 Product transition (adaptability to new environments).

 Product operations (basic operational characteristics).
Product revision
The product revision perspective identifies quality factors that influence
the ability to change the software product, these factors are:-

 Maintainability, the ability to find and fix a defect.

 Flexibility, the ability to make changes required as dictated by the
business.

 Testability, the ability to validate the software requirements.
Product transition
The product transition perspective identifies quality factors that influence
the ability to adapt the software to new environments:-

 Portability, the ability to transfer the software from one
environment to another.

 Reusability, the ease of using existing software components in a
different context.

 Interoperability, the extent, or ease, to which software
components work together.

Product operations
The product operations perspective identifies quality factors that influence
the extent to which the software fulfils its specification:-

 Correctness, the functionality matches the specification.

 Reliability, the extent to which the system fails.

 Efficiency, system resource (including cpu, disk, memory, network)
usage.

 Integrity, protection from unauthorized access.

 Usability, ease of use.
Figure 1: McCall's model for classifying software quality.

Compared to the FURPS model, this model takes the first four categories

(Functionality, Usability, Reliability, Performance) and categorizes them all

as part of the product operations perspective. The remaining category,

Supportability, is then split into two perspectives: product revision and

transition. It should be clear that McCall’s model has less emphasis on the

functional aspects of the system, and more emphasis on the non-

Analysis

22

functional aspects such as maintenance and how well the system adapts to

change. Out of these two models, FURPS and McCall’s, I would much

prefer to use McCall’s model in any discussions or assessments of the

quality of software. To best explain why, let me first state a few personal

opinions in regards to the development of the system.

In the early stages of system development the design and technology

choices made are more likely than ever to meet unexpected, system-

critical issues that cannot be easily circumvented. There are several such

cases in this project alone, as several technologies for PDF rendering and

data storage has been prototyped and later discarded. This could

necessitate changes to the core design of components or require the

introduction of alternative technologies, and the initial system design

would do well to take this into consideration. An assessment of the

system’s ability to adapt to such changes would focus entirely on the

product transition perspective in the McCall model. It is clear that the

McCall model supports this assessment quite well, and compared to the

FURPS model it sure has its advantages. A similar assessment in the FURPS

model would focus on the Supportability section of the FURPS model, but

this section contains at least ten sub-categories for supportability, many of

which are not that relevant for the assessment of a product’s ability to

transition or adapt.

In conclusion, the concept of the product transition perspective of McCall’s

model supports a type of assessment that is central to the system: An

assessment of the system’s ability to transition or adapt to new

environments. In comparison, using the FURPS model for this type of

assessment would not provide any benefit; the model does not define any

categorization useful for the assessment of product transition or

adaptability of the system.

The two other perspectives of McCall’s model provide support for two

other useful assessments as well. Each of the three perspectives supports

an assessment of the system, in the context of three quite intuitively asked

questions:

 Revision: It the system easy to maintain?

 Transition: Is the system able to adapt to unexpected changes?

Henrik Bartholdt Sønder Analysis

23

 Operation: Is the system good at what it does?

It provides an adequate answer to these questions as well, by listing three

to five aspects of software quality that should be considered. Asking the

question “Is the system easy to maintain?” is quite another matter in the

FURPS model, as that would be answered by checking the “Supportability”

section which includes:

“Testability, Extensibility, Adaptability, Maintainability, Compatibility,

Configurability, Serviceability, Installability, Localizability, Portability”

Following this analysis it was decided that McCall’s model was a good

foundational model to build upon, and the concept of assessing the

software in the three perspectives of McCall was adapted as well.

3.5.3 Conclusion

The primary conclusion to this section, as well as the discussion, is the

resulting characterization of quality attributes developed, which is

presented in the introduction of this section. Besides the resulting

characterization, several different models for the categorization and

assessment of software quality attributes were discussed and compared. It

was argued that the general structure of McCall had many benefits and the

benefit of having a simplistic model was explained as well. A model for

assessment of software quality attributes was designed specifically to

support the development of the system. The model emphasises three

perspectives of the system: Maintainability, Adaptability and Utility. The

three perspectives of the model support assessments of the quality of the

code in the system, in regards to the three chosen focus areas:

 Ability to cost-effectively maintain and develop the system.

 Ability to adapt as a result of outside influences.

 Ability to provide the necessary utility, in the best possible way.

The quality of software characterization developed is primarily based on

McCall’s three perspectives of Product Revision, Product Transition and

Product Operations. The naming of these perspectives was changed to

Maintainability, Adaptability and Utility respectively. The sub-categories of

quality attributes for each perspective was changed slightly to better fit

Analysis

24

this development, as the first sub-section of this chapter show, but the

core idea behind the three perspectives was kept largely the same.

3.6 Conclusion

A selection of system-critical areas to analyze is developed initially, and

this selection provides the basic structure for the rest of the analysis. The

selection of critical areas developed in this stage is one of the primary

concerns of this report, and the areas related to functional requirements

are to be developed or at least conceptually proven. The areas related to

non-functional requirements will be subject to critical assessment during

development, and methods to best measure these qualities and develop

the system accordingly was analyzed and developed to support this. Simply

providing solutions to the critical areas is not the goal, and the areas

covered will be subject to thorough research and consideration throughout

the development of this application. This should ensure the development

of a system that is able to most effectively support these critical areas, in a

manner which compliments a well-designed system with a high quality of

code.

In order to provide a high quality of code in the system, a method and

model supporting assessments of the quality of software in the system was

analyzed and developed. The model supports assessment of the system in

three different perspectives: Maintainability, Adaptability, Utility. The

perspectives provide an effective and consistent assessment the system

and effectively act a guideline for development of non-functional

requirements throughout the design and development process.

Viable solutions to the critical areas of the system are analyzed and the

most optimal solutions are discussed, argued and chosen for further

development. It was decided that annotations were best supported using a

document-independent approach, where the annotations for documents is

stored separately from the document. This has immediate inherent

benefits in regards to synchronization, in particular considering the not-

well-designed-for-editing nature of the PDF format.

Using a document-independent approach, it was decided that the solution

would benefit from separate rendering of annotations as well. HTML is as a

Henrik Bartholdt Sønder Analysis

25

good initial option for rendering annotations, as it would support most

rendering methods. As such, it was chosen to ensure a high level of

adaptability.

To support rendering of documents, HTML5 was chosen as the best option.

To assist in this process a library for rendering PDF files in HTML5 at run-

time, PDF.js, was the initial choice for rendering the document. It was also

decided that the option for exchanging this viewer should be carefully

considered, as the rendering method using one-time HTML conversion of

documents was considered almost on-par with run-time rendering of

HTML5.

Design: The Client

26

4 Design: The Client

This section will cover the layout of the client-side of the solution and

explain cover the set of components most critical to the client. The

components developed will be covered and their purpose in the solution

will be explained as well as their design intent and implementation.

The following list presents a brief view of the client as seen from the user’s

perspective, in that these are the three main pages used by the client in

the most common use-cases of the application.

 Main Website

o Login and site navigation.

o Registration and account management.

o Could also provide:

 Related news on the front page.

 A help page with instructions.

 Documents Page

o List documents

o Manage documents

o Open documents in the viewer

 Document Viewer Page

o Renders PDF documents using PDF.js.

o Renders annotations separately, or through PDF.js.

o Provides tools for managing annotations.

The following sections will each feature a discussion of the components

developed, where the three main components are the documents page as

well as the two extensions made to the viewer. The topic of JavaScript and

its effect on the solution will briefly be covered first though, in the

following section.

4.1 JavaScript

This section features a brief discussion of JavaScript in general and how it

currently influences the system. JavaScript is an essential part of this

solution, as it is used extensively throughout the client. The structure and

Henrik Bartholdt Sønder Design: The Client

27

quality of the scripts developed will have an impact on the system as

whole, especially in regards to further development and maintainability.

I have almost no prior experience in JavaScript besides a couple of minor

implementations purely done out of necessity. These implementations

were done primarily using the well-proven method of copy-pasting

JavaScript made by smart people from the internet immediately followed

by praying, where praying may very likely have been the deciding factor in

my success.

With that said, I did spend a lot of time researching the JavaScript of the

PDF.js development, which I am fairly convinced should be considered an

example of very well-designed and structured JavaScript. I have learned a

lot along the way, and that might be apparent in the scripts, as this has

likely resulted in some overall design-differences or inconsistencies along

the way. The design-patterns used may also be different between

components, where I believe I have used closures and other common

JavaScript patterns in a couple of different ways throughout the system. I

am fairly sure this does not pose any concern at all, and that most of this

could be refactored fairly quickly, and not require complete

redevelopment of any components. Still, it should be noted that some of

the scripts may include the potential conundrums for any experienced

JavaScript developer. I apologize for this – Rest assured it was not done

intentionally.

A primary concern in regards to my JavaScript code in general, is the

potential for oversights that might result in poor memory management.

This is rarely a problem in web pages, given their stateless nature and

frequent memory resets, but the viewer page is uncommon in that regard.

The viewer in particular will be open for long periods of time, contrary to

most web pages, and poor memory management could have serious

impact in regards to performance, reliability and utility in general. In

conclusion, special care should be taken in the future to ensure proper

memory management in the JavaScript code, in particular because my

experience in preventing this in JavaScript is lacking.

Design: The Server

28

4.2 The Documents Page

This section will cover the development of the documents page, allowing a

user to view a list of documents. This is an essential part of the system,

providing the user with many features for managing the list of documents

in the system as well as providing entry into the viewer by opening

documents.

4.2.1 Purpose

The main purpose of the application is to allow users to upload and

annotate documents. As such, a very essential feature of this application is

to allow a user to upload documents and view a list of uploaded

documents as well, and that is the purpose of this documents page. This

list of available documents is one of the first things a user wants to see

when he logs in, and its primary responsibility is to allow a user to open

documents in the viewer, to begin reading and annotating a document.

In an effort to provide a good user experience in the application, the list of

documents in the documents page has been assigned a set of secondary

responsibilities as well. It currently allows a user to delete and share

documents as well, and a few options for additional features have been

discussed as well.

To conclude this section, the purpose of the documents page is to provide

a single page for all things related to document management.

4.2.2 Requirements

The functional requirements for this page are few, and quite simple:

 Allow a user to upload documents.

 Present a list of documents the authenticated user has access to.

 Allow a user to delete a document.

 Allow a user to share a document.

The non-functional requirements are another matter entirely, as a design

with a “good user experience” is requested. Another non-functional

requirement is a request to design towards a well-structured and

maintainable solution that is not difficult to extend with a few additional

features in the future.

Henrik Bartholdt Sønder Design: The Client

29

4.2.3 Design Considerations

In order to provide at least some support for document organization we

have introduced the concept of document lists. This means that the client

receives and displays a list of document lists instead of just a list of all

documents, which makes it possible to group documents in separate and

even overlapping lists. An example of this is displayed in Figure 2 below,

where a “Recently Viewed” list is displayed along with the list of all

documents.

Figure 2: The documents page, providing tools for managing documents.

This concept of document lists is currently only present in the UI scripts of

the client as well as the web API responsible for providing the list of

documents details, and the “Recently Viewed” list was added simply by

having the web API return an extra list with a few document details inside

of it. The concept of document lists does not extend beyond the scripts

and the web API yet though, and as such it is not possible to manage these

lists e.g. by allowing a user to create a list, add documents to it and then

store this information in the database. The choice of how to best design

and provide this organization service is still kept up for consideration, and

as soon as the back-end data structure is decided upon and provided for

the client should be ready for it. The current concept of lists in the client

should be easily adapted whether the structure is based on lists or folders;

Design: The Server

30

the implemented concept of document lists could very easily be extended

to allow nested lists, and as such support a folder-based structure for

document organization.

4.2.4 Implementation

The components used to support the documents page is a single web page,

along with three main JavaScript components in three separate files. The

JavaScript components will be covered first, and they define a data context

component, as well as a model and a view model. The inclusion of a model

as well as a view model definition was done because the documents page

uses a 3rd party JavaScript library, Knockout.js, to support the Model-View-

ViewModel design pattern.

The concept of a view model is to provide an object specifically designed

for presenting a domain or model object. This allows for view-specific data

objects, which effectively provides a level of abstraction between the

presentation logic and the domain model. This abstraction might not be

strictly necessary in this JavaScript development, and were I to implement

this again I might not be too concerned about developing a structure for

the models themselves. With that said, the view models themselves are

very helpful in creating a well-structured and intuitive presentation layer.

The presentation layer is only further enhanced by Knockout.js, as this has

proven a great tool for providing proper integration with the HTML layer of

the page.

To begin presenting some code, all the JavaScript components will be first

in line. It will take a while before Knockout.js and its integration-neatness is

explained, as this will be done along with the HTML page at the very end of

this section. To best present the structure of a view model to begin with,

Figure 3 below shows the general structure of the view model responsible

for presenting the entire documents page.

DocumentList.ViewModel = (function DocumentListViewClosure() {
function DocumentListView(ko, dataContext) {
 var self = this;
 this.documentLists = ko.observableArray();
 this.error = ko.observable();
 this.getDocuments = function ()...
 this.showDocumentList = function (documentList)...
 // Share document dialog

Henrik Bartholdt Sønder Design: The Client

31

 this.documentToShare = ko.observable();
 this.shareDocumentModel = function ()...
 this.shareDocumentDialog = function (document) ...
 this.shareDocument = function (formElement) ...
 // Upload document dialog
 this.documentToUpload = ko.observable();
 this.documentUploadViewModel = function () {
 this.id = ko.observable();
 this.title = ko.observable();
 this.fileName = ko.observable();
 this.file = ko.observable();
 this.uploadDocument = function (formElement)...
 this.close = function ()...
 }
 this.uploadDocumentDialog = function () {
 var viewModel = new this.documentUploadViewModel();
 this.documentToUpload(viewModel);
 $('#uploadDialog').dialog('open');
 }
}
return DocumentListView;
})();
Figure 3: The ListViewModel of the Documents Page.

I have omitted most of the code from the view model of Figure 3 to best

present the overall structure of the view model, but a few methods remain

to show how the view model includes several other view models as well.

One of the remaining methods is the documentUploadViewModel method,

which provides an object to use when presenting the dialog to upload

documents. Besides providing variables necessary for the upload process,

it also assists by providing a few methods for submitting the upload

request and closing the dialog. An essential part of the list view model is

naturally to present the list of documents, and to provide this the view

model needs to request some data, so let us take a look at the data context

component.

The data context component is responsible for providing the set of

necessary data access methods for the documents page, and the general

structure of this component is shown below in Figure 4.

DocumentList.dataContext = (function () {
 function getDocumentLists(list, errorObservable)..
 function createDocumentItem(data)..
 function createDocumentList(data)..
 function shareDocument(formData, documentToShare)..
 function removeDocument(documentItem)..

Design: The Server

32

 function saveNewDocument(formData, documentItem) {
 clearErrorMessage(formData);
 return ajaxUploadRequest(documentItemUrl(), formData)
 .done(function (result) {
 documentItem.id = result.id;
 alert("Document Uploaded! (ID:" + result.id + ")");
 })
 .fail(function () {
 documentItem.errorMessage("Error adding document.");
 });
 }

 // Private
 function clearErrorMessage(entity)..
 function ajaxRequest(type, url, data, dataType)..
 function ajaxUploadRequest(url, data)..
 // Routes
 function documentListUrl(id) {
 return "/api/DocumentList/" + (id ? "?id="+ id : ""); }
 function documentItemUrl(id) {
 return "/api/Document/" + (id ? "?id=" + id : ""); }
})();
Figure 4: The data context components for document data.

The selection of methods for sharing and removing documents are self-

explanatory, and the contents of the saveNewDocument has been kept to

show how the asynchronous Ajax calls handles call-backs. The fact that the

data context class contains the code for what happens on call-backs is not

the most optimal solution though. Having the data context classes accept

parameters for call-back functions instead would be the more flexible

solution, and it would provide a better separation of concern. This would

make the data context class responsible for running the correct call-back

method, instead of it being responsible for some presentation specific set

of events. So, that should be considered for any further development.

Having covered the view model and the data context, Figure 5 below

shows the necessary code for initializing the documents page.

document.addEventListener('DOMContentLoaded', function (evt) {
 var dataContext = DocumentList.dataContext;
 DocumentList.InitializeModel(ko, dataContext);
 var listView = new DocumentList.ViewModel(ko, dataContext);
 ko.applyBindings(listView);
 listView.getDocuments();
});
Figure 5: Initializing the documents page.

Henrik Bartholdt Sønder Design: The Client

33

The InitializeModel method made during initialization is responsible for

injecting the model into the data context. The model consists of just a

couple of functions for creating document model objects, with little

responsibility except for the variables they contain. As mentioned earlier,

having a model might not even be strictly necessary in this design.

The last component to cover is the web page responsible for presenting all

we have covered so far, and Figure 6 shows the section of the page

responsible for presenting the list of documents.

<section id="lists" data-bind="foreach: documentLists,
 visible: documentLists().length > 0">
 <article class="documentList">
 <header>
 <h2 data-bind="text: title"></h2>
 </header>
 <ul data-bind="foreach: documents">
 <li data-bind="click: openDocument">
 <h3 data-bind="text: title"></h3>
 <button data-bind="click: $root.shareDocumentDialog,
 clickBubble:false">Share</button>
 <button data-bind="click: $parent.removeDocument,

clickBubble:false">Delete</button>

 <span class="addedDate" data-bind="datetimetext:

addedDate">
 <p class="error" data-bind="visible: errorMessage,
 text: errorMessage"></p>

 <p class="error" data-bind="visible: errorMessage,
 text: errorMessage"></p>
 </article>
</section>
Figure 6: The combined HMTL and Knockout.js code, for presenting the list of documents.

As the figure shows, there are a lot of data-bind properties, and these are

used by Knockout.js to integrate the HTML page with the underlying

JavaScript model. Note that the first line features a data-bind stating

“foreach: documentLists”, while line 7 has a similar one for “foreach:

documents”. This is how the list of documents list is created, by going

through each list of documents and then through each document in that

Design: The Server

34

list. The insides of the “foreach: documents” data-bind in line 7 features a

few different data-binds itself, which are worth explaining:

 Click: openDocument

 Click: $root.shareDocumentDialog

 Click: $parent.removeDocument

These data-binds will activate a method when the data-bound HTML object

is clicked, which is nothing special, but the fact the data-binds support

methods for $root and $parent makes it very easy to build well-structured

presentation layers. The $root and $parent methods makes it easy to call

methods of other JavaScript objects, based on the underlying view model

structure defined in JavaScript. The model supporting this underlying

structure is shown below in Figure 7, showing the structure of a document

item and a document list. I hope it is clear now that the underlying data

context of each document in the list is a document item, and that the

openDocument method of the document item class is accessed using the

“click: openDocument” data-binding. Similar to this, the

$parent.removeDocument data-bind refers to the parent item of

document item, which would be a document list item, and this list item

contains the method to remove an item from the list. Finally, the

$root.shareDocumentDialog data-bind refers to the root view model,

which is the DocumentListViewModel described earlier.

function documentItem(data) {
 self.id = data.id;
 self.title = ko.observable(data.title);
 self.fileName = data.fileName;
 self.addedDate = data.addedDate;
 self.errorMessage = ko.observable();
 self.openDocument = function ()...
 };

 function documentList(data) {
 self.id = data.id;
 self.title = ko.observable(data.title || "<Unnamed List>");
 self.documents = ko.observableArray(
 importDocuments(data.documents));
 self.errorMessage = ko.observable();

 self.removeDocument = function (document)...
 };
Figure 7: The model for documents and document lists.

Henrik Bartholdt Sønder Design: The Client

35

For a more thorough explanation of this underlying model, this last

paragraph explains how the data context of HTML elements changes as a

result of data-bind iterations. Using Knockout.js, each HTML element has a

data context element it references, and it will attempt to use this data

context if any data-bind events are activated, such as the click event. The

data context of the main page is the view model covered earlier, the

DocumentListViewModel. It was defined as the data context by the

method call “ko.applyBindings(listView)” when initializing the page, as

shown previously in Figure 5. The same data context will be used by many

HTML elements, but each time a data-bind such as “foreach” is called, the

data context of the resulting HTML elements will be that of the object

iterated. This means that the HTML elements generated by each iteration

in the “foreach: document” will be assigned the data context of that single

document item. Similarly, the HTML elements generated by each iteration

in the “foreach: documentLists” will be assigned the data context of each

of the document lists items inside the array “documentLists”.

4.2.5 Conclusion

A web page was developed allowing users to view a list of their currently

accessible documents. The page also allows the user to upload documents,

and it supports other features related to document management as well.

The purpose of the page was to provide a single page for all things related

to document management, and it does so successfully. The underlying

models and scripts supporting the page are well-structured and should be

fairly easy to understand and further develop. Several methods for

improving the user experience were demonstrated, and have been used

effectively in an effort to enable the page to handle all current

management requirements on a single page while still keeping an intuitive

design.

If the implementation simply tracked when a user last accessed a

document, the current implementation could also support for a list of

recently viewed documents, which would likely be an appreciated feature.

Design: The Server

36

4.3 Extending the Viewer: Supporting Tools

This section covers the design and implementation of the toolset

developed and explains the purpose of the components involved. The

design intent behind the toolset will also be explained along with how it is

designed in regards to further development.

4.3.1 Purpose

The purpose of this extension will be to provide a basic framework for a set

of tools to create and edit annotations. As stated in the analysis, the

development of this toolset is one of the critical areas of this system, as it

is critical to determine that it is possible to develop a satisfactory

framework for a set of editing tools for this viewer.

The initial development of tools will have little emphasis on providing a

wide selection of tools, and only a single tool is built so far. Instead, the

primary focus is to develop a proper framework to support the future

development of annotation tools, and the framework should be designed

to assist the process of developing and integrating the set of tools to come.

The framework will be responsible for providing methods for tools to draw

on top of the document, to be able to provide the visual aid necessary to

support a good user experience when using the tools. It will also be

responsible for managing a set of available tools, as well as options for

changing the tool, as is common in most editors.

4.3.2 Design Considerations

An intuitive way to add or edit items in a document is to interact with the

document displayed on the screen and this method is commonly used by

editors of all sorts, especially when manipulating documents or images.

This is also the preferred way of manipulating documents in this system,

and to accomplish this the framework should provide a semi-transparent

overlay canvas on top of the document when a tool is activated, effectively

allowing a user to draw on top of the document.

A suitable element for the overlay canvas would be an actual canvas

element, which is an element in HTML5, made for containment and

rendering of graphics. This should allow the tools to provide a great deal of

Henrik Bartholdt Sønder Design: The Client

37

visual aid when manipulating annotations, and it easily supports HTML

objects as well, effectively allowing tools to draw buttons or other

intuitively useful visual aids. Providing this canvas still necessitates a bit of

math before annotations can correctly be added to the document though.

This is necessary because it is simply most convenient to have the overlay

canvas cover the whole “View” area of the viewer, meaning it covers the

page, the space in-between pages and the surrounding background as well.

As such, the coordinates of objects drawn on the canvas are all relative to

the canvas itself and has no relation to the rendered document and its

pages. In order to insert annotations and other objects into the document

at the correct scale and position it is therefore necessary to convert the

size and coordinates of the objects relative to the canvas into a

corresponding set of size and coordinates relative to the active document

page.

To correctly convert the canvas coordinates to page coordinates in the

document it is essential to be able to define where the target page of the

document is located relative to the canvas. There are several ways to go

about this problem and the currently implemented solution makes the

framework responsible for gathering the necessary data whenever one of

its tools is activated. The current implementation is neither the most

efficient nor intelligent solution, but it is ok for a prototype and it succeeds

in gathering the necessary data, as Figure 8 attempts to show; an

explanation follows below.

Design: The Server

38

Figure 8: Converting canvas coordinates. Red line defines the area of both the viewer and
the canvas overlay (On top of each other).

The red area shows the area that is common to both the viewer and the

canvas, and the green line denotes the vector from the page to the viewer

while the purple line denotes the vector from the selection rectangle to

the canvas. Given these two vectors the blue vector can now be calculated,

and as such we are able to place new annotations correctly on the page. In

order to handle rectangles and zoom levels we also need to know the size

of a page and its current level of scale, and when we begin scrolling down

we of course need to take the current scroll position into account as well.

To best support the tools in this regard, it would be very beneficial for the

framework to provide one or several methods to properly convert

coordinates from canvas to document coordinates, and vice versa.

It should also be considered if the coordinates used for the document and

its annotations should be defined as percentages of the page height and

width, or if some other measurement is more desirable. Using percentage

measurements would be a universally applicable unit of measure for any

document, but there might be advantages in used other, perhaps more

exact, units of measurement.

In regards to maintainability, the development of both the framework and

any new tools will want to ensure that any direct interaction between the

viewer and any tool is carefully considered. Dependencies towards the

viewer should preferably be supported by the framework alone, to keep

tools more easily maintained. Enforcing the convention that integration of

tools happens through the framework alone will ensure that the tools are

dependent on the framework, and not the viewer. This will ensure that

most adaptability concerns occur between the framework and the viewer

exclusively, and this should enable developers to more efficiently be able

to debug and detect integration errors. It should also ensure that such

integration errors will have to be taken care of only once, in the

framework, and not multiple times in multiple tools – some of which the

error might not have been reported yet. This will be increasingly beneficial

as the number of tools increases.

Henrik Bartholdt Sønder Design: The Client

39

In regards to adaptability, this extension could work for any viewer that is

able to support an HMTL5 overlay with Javascript. In order to correctly fit

objects to document pages the extension also needs to have access to the

location and size of the document page relative to the canvas, including its

currently level of zoom and scroll position. Both of the aforementioned

requirements can be met with any of the PDF rendering methods covered

in the analysis, and they are easily supported in the two most promising

methods: Rendering through either HTML5 or images. As such, it would be

beneficial to implement the framework with an emphasis on keeping the

essential points of integration with the viewer to a minimum.

4.3.3 Implementation

The current implementation consists of two main classes called

AnnotationTools and SelectionTool, which is referred to as the framework

and the selection tool, respectively, throughout this section. The former is

responsible for providing a framework for the set of tools to support, while

the latter is a tool itself: a tool for selecting a point or an area on the

document.

Before covering the implementation, let us present a quick demonstration

of what it looks like when the components are actually in use. Figure 9

below shows how an active selection tool has activated the overlay canvas

provided by the framework, which the tool then uses to draw a selection-

rectangle around a section of text.

Figure 9: Left image shows the default view. Right image shows the view with the tools
canvas overlay, with an active rectangle selection and a context menu above it.

Figure 9 also reveals that the selection tool uses the canvas to draw a

context-menu above the selection-rectangle as well, featuring a single

button for creating an annotation. Being able to create context menus on

the canvas along with the methods for drawing basic shapes should allow

the tools to be a lot more flexible. For instance, the selection-tool in use

here could be used to create new annotation rectangles sized according to

the selection-box, simply by adding that options to a context menu. Having

Design: The Server

40

explained and exemplified the basics of the toolset, let us take a closer

look at the implementation.

The design intent of the framework is provide a set of basic methods that

most tools will need, such as the methods for creating and removing the

overlay canvas used for drawing on top of documents. When the overlay

canvas is activated by a tool, the framework is responsible for propagating

mouse events from the overlay canvas through to the currently active tool.

Having provided a canvas along with continuous mouse events from it, the

last missing piece is now a way to draw on the overlay canvas as well. The

framework naturally takes care of this as well, by exposing the drawing

context of the canvas which gives the active tool access to methods for

drawing a number of different geometrical shapes. The framework class

contains a few other features as well, such as managing the set of available

tools, but the core set of methods it exposes are the ones that allow tools

to easily activate the overlay canvas and draw on it.

Figure 10 below shows the main methods of the main framework class

along with the event listener function for initializing the AnnotationTools

class and adding an instance of the SelectionTool class to its set of available

tools.

document.addEventListener('DOMContentLoaded', function (evt) {
 var annTools = new AnnotationTools();
 var selectionTool = new SelectionTool(annTools);
 annTools.addTool(selectionTool, "selectionTool");
 annTools.init();
 }, false);

var AnnotationTools = (function AnnotationToolsClosure() {
 function AnnotationTools() {
 // Some variables omitted
 this.getCanvas = function ()...
 this.getViewerContainer = function ()...
 this.get2dContext = function ()...
 this.getViewPort = function ()...
 this.init = function ()...
 this.addTool = function (func, funcName)...
 this.createToolsCanvas = function ()...
 this.removeToolsCanvas = function ()...
 function mouseEventHandler(event)...
 }
 return AnnotationTools;

Henrik Bartholdt Sønder Design: The Client

41

})();
Figure 10: The AnnotationTools class, providing a framework for other editor tools.

The .addEventListener() method in the top of Figure 10 shows how the

selection tool is added to the AnnotationTools class, and it is the intent

that any additional tools developed should be added and ready for use as

simple as that. This covers the basics of the framework, and having

developed this set of basics methods for tools along with a virtual toolbox

should make it easier to develop the necessary tools for this application.

Having covered the basics of the framework, let us move on to the

selection tool and see how a tool is integrated with the supporting

methods of the framework.

The selection tool is the first implementation of a tool designed to interact

with the set of supportive methods provided by the framework. To interact

with the framework there are a few essential methods that a tool must

implement, as they will be expected and invoked by the framework. These

methods are the tryActivate method along with methods for receiving

three types of mouse events: mousedown, mousemove and mouseup.

Figure 11 below shows the methods of the selection tool class, and based

on the method names it should be fairly easy to see that the purpose of

this tool is to draw a context menu along with either a selection rectangle

or a selection point.

var SelectionTool = (function SelectionToolClosure() {
 function SelectionTool(annTools) {
 // Some variables omitted
 this.getCanvas = annTools.getCanvas;
 this.get2dContext = annTools.get2dContext;

 this.tryActivate = function (event)...
 this.deactivate = function ()...
 this.mousedown = function (event)...
 this.mousemove = function (event)...
 this.mouseup = function (event)...
 this.drawContextMenu = function (event)...
 this.clearContextMenu = function ()...
 this.drawSelectionPoint = function (event)...
 this.drawSelectionRect = function (event)...
 this.clearSelection = function ()...
 this.reset = function ()...
 this.onCreate = function ()...
 }

Design: The Server

42

 return SelectionTool;
})();
Figure 11: The SelectionTool class, enabling a user to select a point or an area on a
document.

As mentioned, one of the benefits of this integration is that the tool has no

dependencies or even any knowledge of anything except the framework,

so perhaps this integration should be explained further.

When a tool is created the constructor includes a reference to the

framework class, giving the tool all the necessary references it needs to

access the canvas and all the other supportive methods of the framework.

When a tool is the currently active tool of the framework, the framework

may attempt to activate it using the tryActivate method. If the tool allows

itself to be activated, it will announce so and will begin receiving mouse

event through its three mouse event methods. This is all the active input a

tool will receive, and all of the tool methods for drawing selections

rectangles and context menu are activated based on the incoming mouse

events. On a final note, the onCreate() method of the tool is a method

accessed by the context menu drawn by the tool itself. When a selection is

drawn by the user, the context menu is displayed as well, and this method

could then be called to create a new annotation. The current selection-

rectangle and the conversion methods of the framework could then be

used to calculate the document-relative coordinates of the selection-

rectangle and create an annotation at that exact position on the

document.

4.3.4 Conclusion

A framework was designed and developed to support the future

development of a set of tools for annotating documents. The framework

provides a set of methods deemed necessary for most tools as well as

integration with the overlay canvas used to provide visual aid for the tools

to most effectively accomplish their intended purpose. A selection tool was

developed and integrated successfully with the framework class, and both

the development and integration of the selection tool was intuitive and

should be easy to understand in future developments.

Additionally, the framework successfully decouples the dependencies of

tools from the rest of the application. This should ensure that maintenance

Henrik Bartholdt Sønder Design: The Client

43

of the tools framework and its tools is kept at a minimum, and that any

changes or improvements to the viewer should affect the framework

exclusively and not the tools themselves. As such, the framework might

need occasional maintenance, but proper maintenance of the framework

alone should ensure that the tools work as well.

On a final note, the choice of what unit of measurement to use for the

position of annotations in the document has neither been further

researched yet, nor finally decided.

4.4 Extending the Viewer: Rendering Annotations

This section covers the extension developed for the rendering annotations,

and will discuss the components involved and why they were developed in

the first place. Finally a section will be dedicated to discussing how these

extensions affect the adaptability and the future development of this

solution.

4.4.1 Purpose

The purpose of this extension is to separately download and render

annotations, instead of having them merged into the document and then

rendered by PDF.js along with the document itself. There are several

immediate benefits to this design, both in terms of adaptability and

maintainability. The first big benefit in terms of adaptability is that this will

make it possible to exchange PDF.js as our method of rendering. Since we

did go for a read-only document on the client side, we could choose to

convert PDF documents into HTML5 server-side and then serve HTML

directly instead of rendering it client-side through PDF.js. Given this

extension, this option is now a very viable choice and it would not require

that much to integrate it.

Besides the benefit of adaptability, this extension will also make it possible

to provide a custom implementation of annotations separately from the

existing implementation PDF.js. This is quite important as PDF.js is made

primarily as a viewer, and as such it does not provide any functionality

towards creating or editing annotations, or manipulating any other part of

the document for that matter. This is of course makes it well suited for our

read-only requirements in regards to documents, but when it comes to

Design: The Server

44

annotations the solution would benefit a lot from a set of well-designed

tools for creating and editing annotations, and the viewer just does not

provide that. A solution for separately downloading and rendering

annotations will allow for a viewer-independent development of

annotation rendering and editing. This should lower the maintenance costs

of the combined viewer and annotation solution as a whole, as it will be

easier to maintain the annotation solution while keeping the 3rd party

viewer up to date if they are well separated.

4.4.2 Implementation

The two main components in this extension are called the ListView and the

AnnotationsCache. The ListView is responsible for displaying a list of

annotations in the right side-bar, while the annotations cache provides

methods for asynchronously retrieving annotations, either by downloading

them or retrieving them from its cache.

The annotations cache is a wrapper for the data context class, responsible

for handling the download of annotations more efficiently than the basic

data context class. It currently uses a concept of promises which is a rather

simple class responsible for asynchronous retrieval of data. When

retrieving annotation data from the cache the object returned is actually a

promise, and the retrieval of annotations will be followed by an

asynchronous .then() method to be activated when the promise is

resolved. This is quite similar to the ajax post and get methods used

throughout the application, where asynchronous methods for ‘done’ or

‘fail’ are included as callback methods to the asynchronous request. After

having requested a promise, the promise will be resolved as soon as the

data cache has the data available. While a cache might not be necessary

for providing the simple annotations we have at this point in time, it will

likely be necessary for large documents with many annotations. However,

if the data requirements for annotations should increase at some point in

the future, e.g. if the solution is to support image annotations using any

user-provided image, having a layer responsible for data management,

such as this cache, could even be essential.

The ListView is responsible for displaying a list of annotations separately

from the document viewer, and this list is currently found in a side-bar to

Henrik Bartholdt Sønder Design: The Client

45

the right of the viewer. At first glance this could be considered a feature

introduced simply for convenience, but the fact that we want to support

replies and/or discussions for each for annotation almost necessitates a list

of annotations like this.

When it comes to options for displaying annotations there are many to

choose from, and this solution attempts to display annotations passively,

without user interaction, while at the same time not obstructing the

document itself. The annotations themselves are displayed in the

document without any text content displayed, and then the text content of

all annotations is displayed in the right side-bar, when it is active.

The current implementation does actively display annotation text as well

though, as it displays the text of an annotation if the user points at an

annotation with the cursor. If we were to display whole discussions directly

on the viewer in the same way it would need to be done with some kind of

annotation-expand button, so a user could expand an annotation to view

the attached replies to it. Enabling a user to expand an annotation still

requires a user to interact with the document in order to read the

discussion, so while expanding might be a nice feature to add at some

point, some sort of passive display of annotations, such as the list view

extension, is to be preferred.

4.4.3 Conclusion

As discussed in the section covering the purpose of this extension,

separating the rendering of annotations from the PDF viewer itself has

benefits in regards to adaptability, in that we can more easily exchange the

current PDF viewer for just about any of the alternatives discussed in the

analysis. Rendering annotations will naturally be a very essential aspect of

this solution, and the current implementation of this extension should

make for a good starting foundation. The current implementation is well

separated from the PDF viewer with only a few lines of code needed for

integration, and the asynchronous data access methods of the cache

developed should provide a smooth experience, even as the amount of

data required for rendering annotations increases.

Design: The Server

46

4.5 Conclusion

A single page for all things related to document management was

developed. The beauty of the page might be lacking, but the page

implements and exemplifies the technological necessities of a smooth user

interface. Scripts are well-structured, maintainable and adaptable, and

should provide a good foundation for development of additional features.

A documents viewer was implemented, and the viewer is primarily based

on the 3rd party viewer PDF.js. PDF.js renders a PDF using HTML5

exclusively – No native code involved, less security concerns. The viewer

could easily be exchanged with one-time html conversion instead, with

little effort needed to re-integration tools and custom rendering of

annotations. This exchange has always been an interesting option for the

viewer, and this has been considered throughout development in an effort

to keep the view adaptable enough to support such an exchange.

The viewer has been extended to provide a basic framework to support

tools and another extension was developed to support rendering of

annotations separately from the rendering of the document. Despite little-

to-no experience in JavaScript, the scripts are considered fairly well-

structured and maintainable. Both extensions were developed with great

emphasis on the future maintainability and adaptability of components,

and both should provide good foundations for future development.

Ensuring a good user experience throughout the system will require proper

attention to the visual design of the page, but the technological necessities

for providing a responsive user interface have been successfully developed

and exemplified.

Henrik Bartholdt Sønder Design: The Server

47

5 Design: The Server

This section will cover the design and implementation of the server side of

the solution. The components developed will be covered and their purpose

in the solution will be explained as well as their design intent and

implementation. The design of the server will feature thorough discussions

of the most influential design considerations made, such as the design of

the domain layer and the data access layer.

The following list presents a brief overview of the topics to be discussed in

this section, along with a few details regarding the contents of each topic.

Following the list, the current code metrics will be presented to give an

indication of how the current design fares so far.

 Main Web Server

o Serves web pages.

o Handles routing for pages and web API.

o Provides a web service API for a set of data access endpoints.

 Authentication and Authorization

o Provides simple forms authentication.

o Provides OAuth using Facebook ID.

o Custom SQL service handles document permissions.

 Solution Structure

o Common library manages dependencies.

o Provides common data objects and interfaces.

 Data Access Layer

o Separates data access dependencies from the domain logic.

 Domain Logic Layer

o Handles domain logic and authorization.

o Uses repositories for data access.

o Only dependent on interfaces defined in the common library.

o As a result, service classes are well designed for unit tests.

 Data Storage

o Blob storage for files.

o Table storage for annotations.

o SQL storage for relational data.

Design: The Server

48

 PDF Support

o Custom PDF Editor provides a few necessary features.

o Extracts and removes annotations from documents.

o Merges annotations into documents.

One of the primary concerns in the development of the server architecture

and design has been the development of a highly maintainable system, and

this will be a main topic in the design discussions throughout this chapter.

Developing towards a high level of maintainability is perhaps the most

important topic of this chapter, and I have chosen to begin the chapter by

presenting a measure of success in this regard. The code metrics of the

final solution is shown below in Figure 12, and the maintainability index is

quite satisfying across the board. The maintainability index is officially

assessed as such:

“A green rating is between 20 and 100 and indicates that the code has

good maintainability. A yellow rating is between 10 and 19 and indicates

that the code is moderately maintainable. A red rating is a rating between

0 and 9 and indicates low maintainability.”7

Figure 12: Code metrics of the final solution. (Maintainability, Cyclomatic Complexity,
Depth of Inheritance, Class Coupling, Lines of Code)

7
 Code Metrics Values: http://msdn.microsoft.com/en-us/library/bb385914.aspx

Henrik Bartholdt Sønder Design: The Server

49

5.1 The MVC4 Framework

Using a web application framework is a great way to get a lot of features

for new your web application using very little effort. As such it is well

worth considering using one and in our case there are few reasons not to.

The framework of choice will be the ASP .NET MVC4 framework (MVC4).

The MVC4 framework has gotten a lot of popularity in the last few years,

primarily in the crowd of .NET developers, as it enables a .NET developer

with little-to-no experience in html and JavaScript to get started

developing a website rather effortlessly, at least compared to other

options.

Most of the required features related to authentication are provided by

the MVC4 framework right out of the box. This covers user registration,

login and a few administrative features such as changing the password of

your account. Some of these features are not that well implemented

though, and some adjustments will likely be required to improve the

maintainability and testability of the solution in general.

A noteworthy benefit of MVC4 is that it is well structured and quite

adaptable, with nice separation of concern in part due to its

implementation of the model-view-controller pattern. This fits well with

our preference for adaptability in this early stage of development, and it

would not be too difficult to develop the rest of this solution to not be too

dependent on this particular web application framework.

It also support the dependency inversion principle used throughout the

design, by providing a framework for dependency injection. Depedency

injection is supported through Unity, and a section of the code for

registering types for dependency injection is shown below in Figure 13.

// Repositories
container.RegisterType<IAnnotationRepository, AnnotationRepository>();
container.RegisterType<IDocumentDetailsRepository,
DocumentDetailsRepository>();
container.RegisterType<IDocumentRepository, DocumentRepository>();

container.RegisterType<DocumentRepository>(
 new InjectionConstructor(typeof(CloudBlobClient),
 AzureConstants.Blobs.Documents));

Design: The Server

50

container.RegisterType<AzureTable<AnnotationTableEntity>>(
 new InjectionConstructor(typeof(CloudStorageAccount),
 AzureConstants.Tables.Annotations));
// Services
container.RegisterType<IAuthenticationService, AuthenticationService>();
container.RegisterType<IDocumentService, DocumentService>();
container.RegisterType<IAnnotationService, AnnotationService>();
Figure 13: Dependency injection bootstrapper.

The MVC framework also provides support for easy bundling of scripts and

style sheets, as shown below in Figure 14. Bundling scripts and style sheets

can be used to effortlessly combine and minimize both scripts and style

sheets. This has great effect on the speed of serving web pages, and can

easily reduce the amount of requests in a typical get request to only a

fraction.

public static void RegisterBundles(BundleCollection bundles)
{
 bundles.Add(new ScriptBundle("~/bundles/documents").Include(
 "~/Scripts/App/documents*"));
 bundles.Add(new ScriptBundle("~/bundles/annotations").Include(
 "~/Scripts/App/annotations*"));
 bundles.Add(new ScriptBundle("~/bundles/pdfjs").Include(
 "~/Scripts/Pdfjs/compatibility.js",
 "~/Scripts/Pdfjs/debugger.js",
 "~/Scripts/Pdfjs/l10n.js",
 "~/Scripts/Pdfjs/pdf.js",
 "~/Scripts/Pdfjs/viewer.js",
 "~/Scripts/App/pdfjs.extensions.js"));
}
Figure 14: Registering script and style sheet bundles.

And that concludes the most noteworthy benefits of the MVC framework.

5.2 Solution Structure

In the interest of keeping the server-side solution as adaptable as possible

in these early stages of development, the solution structure is designed

with a heavy emphasis on dependency management. In these early stages

of development it makes a lot of sense though, as it gives us a bit more

freedom to play around, change components and test alternative

technology choices without having to handle a series of ripple effects

throughout the solution. It is important to keep in mind that the solution

structure is a result of an iterative design process, and the structure

presented here is a result of all the design considerations to be discussed

in this chapter.

Henrik Bartholdt Sønder Design: The Server

51

Figure 15 below shows the solution structures, as defined in a layer

diagram in Visual Studio (“VS”). The top-right numbers in each layer shows

the number of projects in that layer, and VS provides methods to validate

this layer model against the dependencies/references used in the included

projects.

Figure 15: Solution structure emphasizing dependency management.

The blue layers are layers with only a single project, meaning we could just

as well think of blue layers as actual projects. The white “Data Access”

layer denotes all the data access projects of which there are currently two.

The red “layers” have no function in this layer diagram in regards to

validation and they are not really layers at all; they denote either a class or

a set of classes and they simply serve to improve the immediate

understanding of the diagram by specifying the most important high-level

elements of each layer.

The intent of the design is fairly straightforward in that we provide a set of

data objects and interface definitions in the common library to be used

when implementing components with 3rd party dependencies. This ensures

that we can fairly effortlessly prototype multiple different 3rd party

technologies by implementing the technology in components based on the

interfaces defined for them in the common library and simply choose

which component-implementation we would like to use at any given time.

Design: The Server

52

This layer of separation means that we can exchange components fairly

effortlessly, even at runtime if we wish, and still be fairly confident that

this will not break any other components or tests dependent on those

components.

5.3 Data Access Layer

This section covers the design of the data access layer and discusses the

choices made during development as well as the thoughts behind them. A

primary concern in the system is to keep a strict separation between data

access and domain logic, as this has several benefits to the system design

in general. This has led to the development of series of conventions,

restrictions and responsibilities split among the main classes of these two

application layers, and this section will cover the design intent behind the

data access layer and its primary set of classes: the repositories.

5.3.1 Responsibility and Purpose

The primary responsibility of data access components developed in this

layer is to support the domain layer of the application, and the

components will have to be designed with this in mind. The data access

components must therefore be able to provide data access to the domain

services while ensuring that the domain services are still kept de-coupled

from any outside influences.

The actual purpose of the data access layer is much more than simply

providing data access though. The design of the data access layer can have

a great influence on the quality of code in the system as a whole, especially

in regards to the overall maintainability and adaptability of the solution. In

general the data access layer is a volatile layer that is easily affected by

outside influences, and it is important to consider the possible implications

of improper design at this level.

To conclude, the responsibility of the data access classes is to provide

direct database access. The purpose of the data access layer itself is to

provide data access throughout the application, in a way that encourages

code re-use and ensures a high level of maintainability in the application. A

Henrik Bartholdt Sønder Design: The Server

53

high level of adaptability for data access components is preferred, as this

will simplify the process of making changes and optimizations to the data

access components.

5.3.2 Using Object-Relational Mappers

The processes of accessing a database can be simplified immensely by

using a data access framework or an object-relational mapper such as the

Entity Framework, which provides a set of classes and helpful methods to

reduce the amount of data-access code a developer would otherwise

needs to write. The following statement answers the question “What is

Entity Framework?” as stated on an official Entity Framework site:

“Entity Framework (EF) is an object-relational mapper that enables .NET

developers to work with relational data using domain-specific objects. It

eliminates the need for most of the data-access code that developers

usually need to write.”8

Not having to write most of the usual data access code greatly speeds up

the development of data access components, but in some cases it also

cripples both the maintainability and adaptability of a system immensely.

This is especially true for frameworks attempting to support the entire data

access process from the structure of data in the database, to the data

access and domain layers, and all the way to the process of displaying the

data on the screen. Entity Framework is one such framework; it is able to

easily support this whole process, and it is able to do so with barely any

help from the developer.

This solution uses the Entity Framework, but in order to not cripple the

solution as mentioned, the data access components of Entity Framework

are responsible for, and restricted to, direct database access only. The

components responsible for direct database access through Entity

Framework are referred to as repositories. Repositories are entirely de-

coupled from the rest of the application, accessed only through interfaces

defined in the common library of the solution. This ensures that any

framework dependencies along with any of the internal structures used for

data access are kept separated from domain logic.

8 http://msdn.microsoft.com/en-us/data/ef.aspx

Design: The Server

54

5.3.3 Design Considerations

The primary responsibility of data access layer is to provide data access,

and that is perhaps the only functional requirement of the data access

layer. There are a lot of other aspects to consider when designing

components for the data access layer though, as data access is a very

essential part of most software systems. The design of this layer will

heavily influence the system in regards to most aspects of software quality,

and the data access components should be designed with this in mind.

Ensuring a high level of adaptability is especially critical in the early stages

of development, as this allows for cost-efficient prototyping and testing of

different storage methods. To ensure adaptability, the model developed

for assessing the quality of software in this system identifies reusability

and interoperability as critical factors. To best ensure that the data access

components are reusable, each component or class should be responsible

for handling just a single, logical subset of methods for handling data in the

application. In this case it might be beneficial to restrict the repository to a

single entity of data, meaning that one such logical subset of methods

could be a few methods for the storage and retrieval of documents, and

documents alone; this component should not include methods related to

document details as well, or its annotations, or its permissions. Keeping

the data access components simple and focused on a small set of methods

for a single type of data should ensure that the components are relatively

well-designed in terms of re-usability.

To ensure a decent level of interoperability it is absolutely essential that

the components provide a proper abstraction layer which other

components can depend upon and use for integration. This will allow other

components to utilize data access components by depending on the

abstraction of these data access components, instead of the actual

implementation of the components. This makes it possible to seamlessly

exchange the implementation of a data access component with another

one, as long as they provide methods for the same abstraction. This level

of abstraction is particularly important because it is the intended purpose

of the data access components to provide data access for the domain

layer. Some components could perhaps use data access components

without proper abstraction layers, but the components in the static and

Henrik Bartholdt Sønder Design: The Server

55

fixed nature of a domain layer should not submit to such outside

influences.

Besides the already discussed benefits, this abstraction layer also has the

benefit of de-coupling the dependencies of the data access components

from the rest of the application. This does wonders for both the

maintainability and testability of the domain logic responsible for data

access, as any data access technology changes will have no impact on the

domain logic and all the tests related to it. This is a great level of insurance

for a developer as well, as this decoupling makes it a simple task to change

and optimize the data access methods of repositories or even the database

itself, without having to worry about ripple effects in any layer other than

that of the repositories. This would not have been possible if an object

relational mapper had been used as the source of both the database and

domain objects, and this is exactly why we do not want to the ability of

Entity Framework to “work with relational data using domain-specific

objects”. We do appreciate the part about eliminating most of the

necessary data access code though.

5.3.4 Implementation

Repositories are the classes closest to the actual database, at least if we

just consider our own classes and not that of the data access technology of

choice.

As discussed in the design section of this component, a repository is

responsible for handling the data access of a small logical subset of data in

the application, such as the storage and retrieval of documents. To

exemplify this, Figure 16 shows an interface definition for the document

repository:

public interface IDocumentRepository
{
 Stream GetDocument(Guid documentId);
 void AddDocument(Guid documentId, Stream document);
 void DeleteDocument(Guid documentId);
}
Figure 16: The interface definition for the document repository.

As the interface definition shows, the methods exposed are kept quite

simple and dependencies are avoided as much as possible. To illustrate

Design: The Server

56

how dependencies are avoided the use of Stream classes for input and

output of documents makes the document repository quite flexible in

regards to the type of document the system is able to support. Earlier

prototype development might get away with exposing dependencies such

as using a PdfSharp Document class for input and output instead of the

Stream class, but as the solution matures dependencies should be handled

more carefully and refactored if necessary.

The current implementation of the document repository uses an “Azure

Cloud Blob” to store documents in the cloud, but since this interface wraps

and abstracts the document repository class, the dependencies of the

implemented class is confined within the class itself. This means we can

easily add to or change our storage providers by implementing another

document repository class, e.g. for local file system storage, and as such

this makes our repository-dependent classes more adaptable.

This might seem like an odd time to conclude the implementation of the

data access layer, but I will do so for the sake of adding dramatic effect.

The important and system-critical aspects of the data access layer have

been explained, and an essential part of this design is the fact that the

system knows nothing of the data access layer except for a few repository

interfaces. If these interfaces have been properly designed as to not

require changes in the future, the data access layer has served its purpose

well. The implementation of any repository classes will not be covered in

this section, but some data storage methods are covered in chapter 5.5:

Data Storage Options.

5.3.5 Conclusion

The data access layer was discussed in terms of requirements and design,

along with the influence this has on the system. The most important

aspects of the design is its emphasis on ensuring that data access

components retain a high level of adaptability and re-usability while also

ensuring that domain services are highly decoupled from outside

influences, to keep them as static and fixed as possible.

Keeping the responsibility of each repository restricted to small subsets of

data while keeping them all simple and focused solely on data access has

Henrik Bartholdt Sønder Design: The Server

57

made them easy to re-use for multiple purposes. Several of the simple

repository methods are currently used by multiple different service classes.

Creating repository classes to handle direct database access keeps a nice

separation of concern between the domain layer and the data access

technology of choice. This makes it possible to optimize or completely

change sections of database access code seamlessly, without

compromising the domain logic or the tests validating it in any way. This

has already been beneficial to the development of this project, as I have

both exchanged and/or optimized different sections of the data access

code several times now, with very little to no effort made in regards to

integration of the changes made.

The design makes good use of most of the SOLID principles and the design

benefits greatly from it, which should indicate at least some level

maintainability and adaptability. The single responsibility principle is a key

player in keeping the responsibilities of components well separated, and

the interface segregation principle is used to great extend as well, as we

choose to implement only a small logical subset of data access features for

each repository. Of course, as we depend upon interfaces for

dependencies throughout this design, the dependency inversion principle

is applied as well.

5.4 Domain Logic Layer

This section covers the domain logic of the system, and explains the design

and conventions applied to this layer of the application. The design of the

domain logic layer has great influence on the quality of code throughout

the application, and it benefits the system immensely in terms of

adaptability and maintainability.

This section will first state the functional responsibilities of the domain

layer components as well as the purpose of the domain layer itself.

Following this will be a lengthy discussion of the design considerations,

where I will explain the division of application critical responsibilities

among the surrounding layers as well as the conventions made in this

regard. The design section will help clarify the design decisions made in

this process, especially in regard to the quality of code in the application. It

Design: The Server

58

will be a focus of the design section to pinpoint what was done to achieve

certain quality-of-code benefits and how the design helps encourage or

enforce these benefits, as well as how this will affect the future

development of the system.

5.4.1 Responsibility and Purpose

The domain logic layer is responsible for enforcing the rules of the domain

throughout the system, and it does so with a great deal of support from

the data access layer. The data access layer of this system includes a

number of simple repository classes responsible for data access, as

explained in section 5.3: Data Access Layer.

The domain services are designed to be responsible for data access as well,

but whereas the repositories are design for simple database access, the

domain services are designed to handle data access according to domain

logic. Initially domain services might sound like better versions of

repositories, but they each serve their purpose and domain service classes

are very much dependent on repositories. Domain services are not allowed

to access data themselves, and are therefore required to access data

through repositories, and through repositories only. As such, the

responsibility of a service class is to enforce domain logic using repositories

for data access. This effectively adds another application layer to the data

access layer: a layer where data access is handled according to domain to

logic.

The purpose of the domain layer is to keep domain logic easily testable and

maintainable. The domain layer should be one of the most static and fixed

layers in the application, susceptible to outside influences when the rules

of the domain or business changes. One of the primary concerns of this

layer should be to ensure a high level of decoupling between the domain

logic and any potential outside influences, to ensure a static and fixed

domain.

5.4.2 Design Considerations

This section covers a few different topics considered during the design of

the domain layer and its service classes. Most topics are related to domain

driven design and will cover a discussion of its use in the system along with

a few areas where this kind of design is not a great fit for the system. Lastly

Henrik Bartholdt Sønder Design: The Server

59

this section will discuss a part of the design where the use of domain

language and its activities could benefit the understandability of the

system in regards to authorization.

5.4.2.1 Domain Models and Services

A common approach when building a domain logic layer is to build a series

of domain models and services and have them interact and change

according to domain logic. The current domain layer contains very little

need for object interaction or state and as such an actual domain model

has little use, at least in the current state of the system; there is simply not

anything to model, as very little needs to be changed or verified between

the server and the presentation layer. The development of more feature-

rich annotations might change this, e.g. to more effectively support

annotations with more advanced behavior. An example that might warrant

a domain model could be the support for annotations designed for marking

problems, where annotations would support the ability to request answers

and solutions to problems as well as methods for marking a satisfying

answer. This structure could easily be complex enough to warrant a proper

model, especially in an open environment where efforts, such as answering

and solving problems, are often rewarded with some amount of virtual

credit or symbol of status.

Despite having little use of a domain model in the current requirements,

there are still many operational aspects in the domain logic, e.g. rules for

what happen when users upload, share or delete documents. Since the

current domain logic is mostly operational, it will primarily be handled by

domain services.

5.4.2.2 Enforcing the Use of Domain Language

The domain services are naturally closely tied to the domain, and most of

their methods will be named according to what their activity is referred to

in the domain language. What a data access class might refer to as “Adding

permissions for a user to read and annotate a document”, a service class

might instead refer to as “Sharing a document”. This comes natural as the

service class implements domain logic while a data access class

implements more in terms of the database, and this should make the

solution easier to understand – At least if you are aware of it. If “Sharing a

Design: The Server

60

document” is what the system does according to the domain logic, then

this should be reflected in the implementation of the domain logic as well.

Just the convention of having these domain specific services implement

methods directly related to domain activities has several immediate

benefits. To begin with, the service methods are implemented based

entirely on the rules of each separate domain activity. This should make

the implementation of them easy to understand in the context of the

domain rules. It also gives a very clear definition for where this logic should

be enforced, and clearly defined responsibilities are usually a plus for the

design of system. Maintainability should be improved by the fact that

errors related to the domain logic should be very easy to locate, as all the

rules for any one domain activity are clearly defined in one place.

5.4.2.3 Domain Language and Activity-based Authorization

The current implementation of service classes makes them responsible for

both authentication and authorization, according to domain logic. In the

case of authentication, the responsibility merely defines that services are

responsible for retrieving the user id of the current user. This should

ensure that all service calls are correctly authenticated and that the

authentication process is not circumvented by poorly designed parameters

allowing a user to pose as another user using simple parameter

manipulation. The design of having services provide authentication and

authorization while repositories are simple data access classes is a

convention used throughout the application. This will hopefully make it

easy for a developer to know when to use the different classes for data

access, and how to separate domain logic from database-centric data

access.

Authorization is still a design in progress though, for the sake of

adaptability, and while the current solutions supports the necessary

authorization features, the services might not be the ones responsible for

enforcing this logic in the future. The preferred degree of authorization in

this solution is authorization based on activities, e.g. authorizing actions

based on whether or not a user is allow to access “DeleteDocument(id)”.

Because of this, the domain services will likely be involved in this process,

as the access rules are often closely tied to the domain specific methods.

Henrik Bartholdt Sønder Design: The Server

61

The current implementation authorizes a user in a single line of code in the

beginning of each restricted domain service method. The fact that it is so

simple makes it easy to change at a later date if an actual authorization

layer is desired. The implementation can easily be modified to be applied

as a method attribute instead. Whether or not method attributes are

desired for authorization enforcement should be decided based on the

effect this would have on testability of authorization in general.

5.4.2.4 Conclusion

Keeping the service classes solely responsible for handling domain logic

ensures that domain logic is well separated from any outside influences,

and this is further ensured if the domain logic does not have any 3rd party

dependencies. The domain layer should not have to be changed for any

reason except when the rules of the domain need to be adjusted - Even

domain/business logic evolves sometimes.

A static, fixed domain layer makes the domain logic very affordable to test,

as the tests should be equally static. This should encourage thorough

testing of the domain-layer and improve the maintainability of the solution

in general. The design of the service layer and repository layer makes the

implementation of domain logic in service classes easy to read and

understand, at least in the currently implemented tests, which is yet

another benefit to both the testability and maintainability of the domain

layer and the solution as a whole.

This design should lead to a set of highly de-coupled domain services,

exclusively responsible for enforcing domain logic. Ensuring that the

domain classes are exclusively dependent on well-designed abstractions

should be strictly enforced, especially in regards to the repositories.

Whether or not authorization should be a part of the domain is often

considered a grey area, with reasonable arguments made for both cases,

and the domain services should be kept adaptable to decisions in this

regard, as the method for authorization has not been finally decided.

5.4.3 Implementation

The relationship between the repositories as simple data access tools and

services as tools to enforce domain logic is the most important aspect of

Design: The Server

62

the domain layer. To best explain this relationship the next couple of

figures will exemplify the relationship between two such classes.

The repository for document permissions shown in Figure 17 provides no

authentication and it is easy to deduct that this method is able to check the

permissions of any user, not just the user currently logged on, as the

HasPermissions methods includes a userId parameter.

public interface IDocumentPermissionsRepository
{
 bool HasPermissions(int userId, Guid documentId,
 DocumentPermissions permissions);
 void AddPermissions(int targetUserId, int grantedByUserId,
 Guid documentId, DocumentPermissions
permissions);
 // Omitted some interface methods for clarity
}
Figure 17: Simple data access methods of a repository.

The same goes for the AddPermissions method, in which the

grantedByUserId parameter is available even though domain logic requires

that the “grantedByUserId”, when adding permissions, is that of the

currently authenticated user. The simplicity of the data access class and its

emphasis on direct data access, without regards for the domain rules,

makes it a great, re-useable tool for domain classes that should be easy to

understand as well. The single method for adding permissions in the

repository is used by domain classes to handle permissions when adding,

sharing or deleting documents, and future development should only

increase this number of uses.

Having shown the simple data access class, Figure 18 shows an example of

how these classes are used to provide authentication and data access

according to domain logic. The document authorization service class

featured in this figure is one of the services that utilize the aforementioned

document permissions repository.

public class DocumentAuthorizationService :
IDocumentAuthorizationService
{
 private readonly IAuthenticationService _authenticationService;
 private readonly IDocumentPermissionsRepository
_permissionsRepository;

Henrik Bartholdt Sønder Design: The Server

63

 public bool AuthorizeUser(Guid documentId,
 DocumentPermissions
requiredPermissions)
 {
 var currentUserId = _authentication.CurrentUserId;
 var hasPermissions =
_permissions.HasPermissions(currentUserId,
 documentId,
requiredPermissions);
 if(!hasPermissions)
 throw new UnauthorizedAccessException(
 "User does not have the required Document
Permissions: " +
 requiredPermissions.ToString());
 return hasPermissions;
 }
 public void ShareDocument(Guid documentId, int userToShareToId)
 {
 AuthorizeUser(documentId, DocumentPermissions.Owner);
 var currentUserId = _authenticationService.CurrentUserId;
 _permissionsRepository.AddPermissions(userToShareToId,
 currentUserId, documentId, DocumentPermissions.Shared);

 }
 // Some methods omitted for clarity.
}
Figure 18: Using simple repository methods to implement domain specific methods.

To begin with, note that neither of the two methods in the service class

accepts any parameters for a user ID, as opposed to the methods of the

permissions repository. The user ID is provided by an authentication

service and used as input in the following call to the permission repository,

and as such the service handles that part of the domain logic. This gives a

layer of insurance that authentication is handled properly, and that a user

will not be able to circumvent authentication by simple methods such as

parameter manipulation. The only way to sneak an incorrect user id into

this code would be to compromise the authentication service, so this

should be considered when investigating the security of the system. The

service also provides authorization, an example of which can be seen in the

ShareDocument method in Figure 18, as the method performs a check to

ensure that the currently authenticated user has “Owner” permissions

before being allowed to share a document. On a final note for Figure 18,

note that the methods of the service class have names that are closely tied

to the domain logic of the application, such as the ShareDocument

method.

Design: The Server

64

public class DocumentAuthorizationService :
IDocumentAuthorizationService
{
 private readonly IAuthenticationService _authentication;
 private readonly IDocumentPermissionsRepository _permissions;

 public DocumentAuthorizationService(
 IAuthenticationService authenticationService,
 IDocumentPermissionsRepository permissionsRepository)
 {
 if (authenticationService == null)
 throw new
ArgumentNullException("authenticationService");
 if (permissionsRepository == null)
 throw new
ArgumentNullException("permissionsRepository");
 _authentication = authenticationService;
 _permissions = permissionsRepository;
 }
}
Figure 19: Dependency Inversion

Before concluding the implementation I will first exemplify how a complex

domain action is implemented according to the design discussed so far, to

show how testable and readable the resulting code turns out to be. To do

this I will cover the handful of tasks it actually takes to upload a document

in this application, and explain how this complex method is built. The

process of uploading a document is not that simple, and even if the client

side of things is ignored it is still quite a long to-do list, as the method

needs to take care of the following:

 Upload document details, including the ID of the user

 Extract annotations from the document

 Upload annotations

 Remove annotations from the document prior to upload

 Upload the document

 Add permissions for the user to use the document

Now this might sounds like a lot to handle for a single method, especially if

we take the single responsibility principle into account. However, given the

combination of the simple data access repositories along with the services

mainly being responsible for handling repositories according to domain

logic, the result is actually quite neat. The code in Figure 20 below shows

Henrik Bartholdt Sønder Design: The Server

65

the service method for uploading a document: the AddDocument method

of the DocumentService class.

public Guid AddDocument(Stream documentStream, string fileName,
string title)
{
 // Create and store document details.
 var currentUserId = _authenticationService.CurrentUserId;
 var documentId = Guid.NewGuid();
 var addedDate = DateTime.Now;
 var documentDetails = new DocumentDetailsDto(documentId,
title, fileName,
 currentUserId,
addedDate);
 _documentDetailsRepository.AddDetails(documentDetails);

 // Extract annotations from document and store them.
 var annotationDtos =
_pdfEditor.GetAnnotationsFromDocument(documentStream);
 var textAnnotations =
_pdfEditor.FilterTextAnnotations(annotationDtos);
 _annotationsRepository.AddAnnotations(documentId,
textAnnotations);

 // Remove annotations from document and store document.
 var newDocumentStream =
_pdfEditor.RemoveAnnotationsFromDocument(documentStream);
 _documentsRepository.AddDocument(documentId,
newDocumentStream);
 newDocumentStream.Close();

 // Add owner permissions to document.
 _permissionsRepository.AddPermissions(currentUserId,
currentUserId, documentId,
 DocumentPermissions.Owner |
 DocumentPermissions.Read |
 DocumentPermissions.Annotate);
 return documentId;
}
Figure 20: The AddDocument method of the DocumentService class.

The bold texts highlights services and repositories used for data access,

and besides that the method is also dependent on the document

manipulation methods of the IPdfEditor interface. I will admit that the

amount of service and repository dependencies in this method could at

least potentially indicate a code smell, and that the single responsibility

principle might be stretched a bit in this method. However, it is not a

Design: The Server

66

complicated method to understand; on the contrary it is very well readable

even without the comments and it should even be easy to understand the

domain logic the code enforces, just by reading the code. It is also an easily

testable method and I will show how this is done, bit by bit, in the chapter

covering tests, chapter 7.

5.4.4 Conclusion

This design creates a domain logic layer with the primary purpose of

separating the dependencies and general volatility of data access classes

from the static and fixed nature of the classes in the domain layer.

Similar to the data access layer, the design makes good use of most of the

SOLID principles, which should indicate at least some level maintainability

and adaptability. The single responsibility principle is a key player in

keeping the responsibilities of components well separated, and the

interface segregation principle is used to great extend as well, as we

choose to implement only a small logical subset of data access features for

each repository. Of course, as we depend upon interfaces for

dependencies throughout this design, the dependency inversion principle

is applied as well, and a dependency injection framework manages the

creation of these classes as well.

The most important aspects of the design is its emphasis on ensuring that

repositories retain a high level of adaptability and re-usability while also

ensuring that domain services are highly decoupled from outside

influences, to keep them as static and fixed as possible. This ensures that

the domain level should not require changes for any reason except when

the rules of the domain need to be adjusted. This should also encourage

thorough domain-level testing and improve the maintainability of the

solution. The design of the domain layer makes the implementation of

domain logic in service classes easy to read and understand, and this

should further improve both the testability and maintainability of the

domain layer and the solution as a whole. Finally, services currently

enforce authorization themselves, but the implementation supporting this

is kept highly adaptable.

Henrik Bartholdt Sønder Design: The Server

67

5.5 Data Storage Options

This section covers the topic of data storage in which several different

storage techniques are used. The requirements for data storage varies a lot

depending on the data and how it is used and accessed in the system, and

we will cover how different sets of data is stored in this solution, and

explain the reasoning behind the choices made along the way. The solution

uses the Microsoft Azure cloud for storage exclusively as this was a simple

way to get access to these different types of data storage, but precautions

have been taken towards minimizing our dependency on this one provider

and we will cover these precautions as well.

The storage of document files which utilize a type of storage called a

“blob” in the azure cloud. Secondly we have the document annotations

which are stored in a simple key-value store; a storage method referred to

as “table storage” in the azure service. And lastly we have data entities

such as users, permissions and document details which are all related to

other data entities; these are naturally well suited for a relational database

structure, such as an SQL server.

Blob Storage for Files

Blob storage is optimized for storing large amounts of unstructured data,

and is commonly used for streaming video or serving images or documents

directly to a browser.

Key-Value Storage for Annotations

A simple key-value store is used for storing annotations. There are no

requirements for any relational comparisons between annotations, so a

relational storage is not necessary.

SQL Storage for Relational Data

Relational databases are often the storage method of choice when it

comes to storing user profiles, as the need for managing relationships

between users and specific sets of data often arises.

Design: The Server

68

5.6 Supporting PDF Documents

PDF is perhaps the most widely supported format for displaying

documents. The fact that it is widely supported makes it a very valuable

and arguably essential format to support, at least for a document-centric

system such as this. Supporting the Portable Document Format (PDF)

format for input and output of documents necessitates that the system is

able to manipulate PDF documents in a few specific ways. This section

covers the requirements for proper integration of the PDF format, as well

as how the system manages to provide these requirements.

5.6.1 Purpose

As mentioned in the introduction, PDF is a widely supported format and

this makes it a very valuable and arguably essential format to support. It

may very likely be the only format necessary to support, as almost any

other document format can be converted into a PDF document with very

little effort. In fact most popular document editors support this conversion

to PDF by default, meaning that most users with a document in just about

any format is just a click away from a document in PDF format. As such,

providing support for PDF effectively provides support for a wide selection

of other formats as well, and that is exactly the purpose of supporting PDF

documents.

5.6.2 Functional Requirements

To support input and output of documents in PDF format, the system must

be able to manipulate a PDF document in a few specific ways. PDF

documents are inherently not well designed in regards to editing the

document, so to assist in this process a 3rd party PDF library was used:

PdfSharp. This chosen library was one of only a handful of C#

implementations, and was chosen simply because it was most convenient;

a brief analysis did conclude that it met the necessary requirements

though.

Uploading a document requires that the system is able to read annotations

from the document. This allows the system to convert the annotations to

the system-specific format and store them separately in the database, in

order to present them later. Uploading a document also requires that all

annotations are removed from the document prior to upload, as the

Henrik Bartholdt Sønder Design: The Server

69

viewer needs to display a clean document without any PDF annotations.

When a document is displayed, the annotations previously extracted from

the document and stored in the database will be rendered separately in

the viewer, on top of the clean document.

The system only requires one additional method at this point, and that is

to be able to merge annotations into document. This is necessary when the

system needs to serve a document to the user that includes the separately

stored annotations, if a user wants both the document and the

annotations in PDF format.

To summarize, these are the methods required to support the PDF format

for each of the two given scenarios:

To receive documents, the system must be able to:

 Read annotations from the document.

 Remove annotations from the document.

To serve documents, the system must be able to:

 Merge annotations into the document.

5.6.3 Design Considerations

A quick analysis of the functional requirements concludes that the system

needs to be able to convert annotation data from the format of the system

into PDF format, and vice versa. To assist in this process a 3rd party library

for processing PDF documents is used, as this provides the most essential

document processing capabilities with very little effort.

Conversion from the format of PdfSharp to the system format is a simple

process. All the property elements of PdfSharp are able to convert their

internal data into the equivalent string in a PDF document, meaning that

any property such as a Date or a Rectangle can be converted into a string

that corresponds to that property in the PDF format. Using these

conversion methods the PdfSharp properties are easily converted into

strings and used to populate data of the system-specific annotation

structure.

Converting from the system format to the format of PdfSharp is another

matter entirely though. To convert annotation data into PdfSharp

Design: The Server

70

proprietary annotations it is necessary to build the annotations manually,

and this requires setting a number of necessary properties such as name,

title, rectangle and so on. This process is complicated by the fact that the

property types of PdfSharp are very similar to those of the PDF format, and

those properties naturally need to be of the correct type. Some type

conversions are naturally necessary and also expected, but even mistaking

a String type property with a Name type property can lead to display errors

in the document.

This process is of course further complicated by the choice made earlier in

development: that the data structure used for storing annotation data in

the system is different to that of the PDF format. I still believe this decision

is the better alternative though, as the system should benefit from having

its own custom annotation structure. Not being dependent on the PDF

format and not having to support all aspects of it should be beneficial to

the system as a whole. Being dependent on the PDF format could also

introduce dependencies towards one or more proprietary PDF properties.

Taking care of support for PDF properties in the conversion process

exclusively would also constitute an intuitive and well-defined set of

responsibilities in this regard.

To conclude the discussion so far, the conversion process both to and from

system format should be carefully considered. The data structure of

annotations should be designed to support our own interpretation of what

annotations should be capable of, but the conversion processes have to be

considered as well in order to properly support both import and export in

PDF format. There are also a few considerations to be made in regards to

the development of conversion methods:

 The conversion process from PDF to system format is quite simple.

o This should be easy to implement as well as change

entirely at a later time – Very little code is required.

 The conversion process from system format to PDF is complicated.

o This component should be developed with emphasis on a

high level of maintainability and extensibility.

Henrik Bartholdt Sønder Design: The Server

71

5.6.4 Implementation

This section will cover the components developed to provide support for

the PDF format. As stated in the requirements section, only a few specific

methods are required to support PDF documents in this system, and the

interface defining the three necessary methods is presented in Figure 21

below.

public interface IPdfEditor
{
 List<AnnotationDto> GetAnnotationsFromDocument(Stream documentStream);
 Stream RemoveAnnotationsFromDocument(Stream documentStream);
 Stream AddAnnotationsToDocument(Stream documentStream,
 IEnumerable<AnnotationDto> annotations);
}
Figure 21: The IPdfEditor interface, exposing methods for manipulating PDF documents.

This interface decouples all dependencies related to PDF manipulation

from the rest of the application, according to the design of solution

structure. This ensures that no dependencies related to the PDF format

leak into the application, and it also makes for an intuitive integration

point for supporting any additional document format. If any additional

document formats were to be supported in the future, this could be

accomplished by simply implementing another IPdfEditor-based

component specifically for the new document format.

Most of the implementation of the IPdfEditor interface will not be covered

in detail, as there are few noteworthy design considerations or benefits in

the implementation itself. The process of creating annotations in PDF

format has been well-designed though, and this should benefit the system

overall and in particular in regards to extensibility. As mentioned in

previous discussions, creating an annotation in PdfSharp requires the

creation of an annotation class along with a series of property classes for

that annotation. The property classes have to be of the correct type, which

are similar to the types available in the PDF format. The PDF format has an

official set of definitions for the naming of properties, e.g. a property with

the key “/Subtype” must be of type Name, the property of key “/Contents”

must be of type String and a property with the key “/Rect” must be of type

Rectangle. The correct type to convert to when converting to PDF format is

therefore defined by the key or name of the property. This is the main

method used to decide how to convert system properties into PDF

Design: The Server

72

properties, as I have no method of detecting the correct type to convert to

besides adhering to the standards of the PDF format. The

PdfAnnotationBuilder class shown in Figure 22 provides a builder class or a

factory to support this process, and it is quite well-designed in terms of

extensibility and further development, if I may say so.

public class PdfAnnotationBuilder
{
 public Dictionary<string, PropertyConverterBase>
PropertyConverters
 { get; set; }

 public PdfAnnotation CreatePdfAnnotation(
 Dictionary<string, string>
properties)
 {
 var annotation = new PdfTextAnnotation();
 AddPropertiesToPdfAnnotation(annotation, properties);
 return annotation;
 }

 public PdfAnnotation AddPropertiesToPdfAnnotation(
 PdfAnnotation annotation, Dictionary<string, string>
properties)
 {
 foreach (var property in properties)
 {
 var key = property.Key;
 var value = property.Value;
 if(PropertyConverters.ContainsKey(key))
 {
 var propertyConverter = PropertyConverters[key];
 propertyConverter.AddProperty(annotation, key,
value);
 }
 }
 return annotation;
 }
}
Figure 22: A builder class for converting annotations into PDF format.

The important thing to note in this class is the dictionary of property

converters at the very top of the class. This contains a number of property

converters able to convert the string data of the system format into the

correct property type in the PDF format. Future developments may want

to provide support for converting objects into PDF format, instead of just

strings, but in the current system it is much simpler to have strings as the

main source of data.

Henrik Bartholdt Sønder Design: The Server

73

To provide a property converter for each different property type, an

abstraction is necessary, and this is provided by the

PropertyConverterBase class, presented in Figure 23.

public abstract class PropertyConverterBase
{
 public bool ThrowOnFormatException { get; set; }
 public abstract void AddProperty(PdfAnnotation annotation,
 string key, string value);
 // Several supportive methods have been omitted.
}
Figure 23: The base class for property converters.

The base class provides the necessary abstraction in regards to the

AddProperty method, and besides that a few methods for easily handling

exceptions is included as well. The intuitive approach is to avoid exceptions

in the conversion layer entirely, but if a method to enable them is easily

supported, it could be useful to have exception enabled for testing

purposes.

Figure 24 below features one of the property converters, the one

responsible for converting a rectangle string such as this “[20,20,40,40]”

into a proper PdfSharp rectangle.

public class RectanglePropertyConverter : PropertyConverterBase
{
 public override void AddProperty(PdfAnnotation annotation,
 string key, string value)
 {
 PdfRectangle rect = GetRectangle(value);
 if (rect == null)
 ThrowFormatException(key, value, "Rectangle");
 annotation.Elements.SetRectangle(key, rect);
 }

 public static PdfRectangle GetRectangle(string rectString)
 {
 var trimmed = rectString.TrimEnd(']').TrimStart('[');
 var points = trimmed.Split(' ');

 var values = new List<double>();
 foreach (var str in points)
 // Simple math omitted.
 }
}
Figure 24: The property converter for converting a date.

Design: The Server

74

It should be clear that the GetRectangle() method converts a rectangle

string into a PDF rectangle and the AddProperty method then adds this

rectangle to the list of elements in the PdfAnnotation object.

The development of this set of property converters has one great benefit,

and that is the fact that this design allows for a great deal of code re-use.

This is easily illustrated when the annotation builder class is initialized, as

shown in Figure 25. The property converters are mapped to each of the

properties they are responsible for converting.

var nameConverter = new NamePropertyConverter();
PropertyConverters.Add(PdfAnnotation.Keys.Subtype, nameConverter);
PropertyConverters.Add(PdfAnnotation.Keys.Type, nameConverter);
PropertyConverters.Add("/Name", nameConverter);

var dateConverter = new DateTimePropertyConverter();
PropertyConverters.Add(PdfAnnotation.Keys.M, dateConverter);
PropertyConverters.Add("/CreationDate", dateConverter);
Figure 25: Mapping property converters to keys.

The property converters currently support seven of the most essential

property types, and are used to convert 15 different properties. As

additional features are increased and more PDF properties are used, few

additional converters should be necessary, while the additional properties

will be easily support by the existing property converters.

5.6.5 Future Development

A minor section discussing the future development is included, because

there are a few things to keep in mind in this regard.

The data structure for annotations in the system is not yet complete, and

should be designed iterative and with the system itself as the primary

concern. Any introduction of data formatted according to the PDF format

should be carefully considered and not done simply to correspond with the

PDF format. With that said, choosing a similar structure when it makes

sense to do so is not discouraged at all; it does make integration easier and

if the structure is used by other vendors it is likely not a bad design.

The annotation converters should be considered essential components in

the development of new annotation features. In order to support anything

new, changes or at least additions to the data structure of annotations will

Henrik Bartholdt Sønder Design: The Server

75

likely be required, and this affects the converters. It is essential that the

data structure of any new annotation features can be properly integrated

in both the viewer and the conversion process, and the conversions

necessary to support both import and export of any new annotation

artefacts should be considered early in such developments. Prior to

development of new features, existing solutions with similar features

should be researched, as the structure used by other popular vendors in

the PDF editor business might need to be supported – We might even learn

a thing or two as well.

The current implementation using PdfSharp has a minor problem in its

current state though; it cannot handle documents with positional-links in

them, such as links in the index allowing a user to click the headline in the

index to have the document re-positioned to the position of that headline

further down in the document. There is a simple fix for this problem

though, that involves using another 3rd party library, iTextSharp, to provide

this functionality.

5.6.6 Conclusion

Support for PDF documents was successfully integrated and the system is

able to manipulate PDF documents as required. The system supports

conversion of annotations from system format to PDF format, and vice

versa. The conversion process has been well designed in terms of

extensibility in particular, and the maintainability of the conversion layer

should be relatively high. The 3rd party framework assisting the processing

of PDF documents should assist in providing the necessary features to

further extend the conversion process.

The adaptability of the system is ensured by the fact that the PDF

dependent components are decoupled from the rest of the system, and

other format should easily be supported by implementing the few simple

features of the IPdfEditor. The IPdfEditor should actually be renamed to

IDocumentEditor, because it is obviously not related to the PDF format or

the PDF library in any way.

The PDF format could be further decoupled from the internal data of

annotations, as some notions such as the string for rectangles remain, but

Design: The Server

76

this should happen iteratively as the structure for annotation data evolves

to best support the system.

5.7 Conclusion

The server provides for all its functional requirements, and is in general a

well-structured system. The solution keeps a high level of code quality

across all components, and the maintainability index scores of the code

metrics indicate a very maintainable server-side. Dependencies are also

very well de-coupled throughout the system, which improves the overall

adaptability of all components.

The domain logic is kept well de-coupled from any outside influences, and

it should be able to remain as static and fixed as possible. Changes in

domain logic rules will naturally still require changes, but the fact that the

layer has no dependencies makes it easy to change in this regard. It is

important to note that the layer is fixed and static only by choice, and that

it is easily adaptable to any necessary changes. The relationship developed

between domain services and data access repositories is quite successful,

and provides several critically important benefits for both layers. The

repositories are allowed to maintain a high level of adaptability, and the

integrity of the domain level is still ensured. The implementation of some

data access repositories has already been changed several times, with no

effect on the domain layer in any way.

Authentication and Authorization are kept adaptable to change, even

without affecting domain classes, access control or tests. Data storage

supports a few different types of storage, which should help ensure

optimal storage options for current and future requirements. PDF

Manipulation tools are well-designed in regards to further development,

and the PDF format is kept largely separated from the system. Support for

new document formats should be seamlessly integrated, and the PdfSharp

implementation can be exchanged is necessary in case a good 3rd party tool

becomes available instead.

Henrik Bartholdt Sønder Security Analysis

77

6 Security Analysis

This section will cover an analysis of the solution in regards to security. The

analysis will focus on the top ten most critical web application security

flaws as stated in the list provided by the Open Web Application Security

Project (OWASP). OWASP is a non-profit, vendor-independent IT security

organization formed in 2001, and is well-known for its top ten list of most

critical web application security flaws.

“The OWASP Top Ten provides a powerful awareness document for web
application security. The OWASP Top Ten represents a broad consensus
about what the most critical web application security flaws are. Project
members include a variety of security experts from around the world who
have shared their expertise to produce this list.”9

To begin with, here are the top ten most critical security flaws in web

applications:

 A1 Injection

 A2 Broken Authentication and Session Management

 A3 Cross-Site Scripting (XSS)

 A4 Insecure Direct Object References

 A5 Security Misconfiguration

 A6 Sensitive Data Exposure

 A7 Missing Function Level Access Control

 A8 Cross-Site Request Forgery (CSRF)

 A9 Using Components with Known Vulnerabilities

 A10 Un-validated Redirects and Forwards

The security of the solution is analysed in regards to these security flaws,

and most of the flaws will be discussed in detail in their separate sub-

sections below. Some flaws in the top ten are quite similar though, at least

in the context of this solution, and the following six flaws will therefore be

discussed together in only three different subsections:

9 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Security Analysis

78

A2 and A10 are not significantly relevant to the solution in its current state,

but both of them relate to the MVC framework and will be discussed

together in section 6.2: Improper Authentication and Redirects (A2+A10).

A4 and A7 are similar in that they are both covered in the topic of

improper access control, and will as such be covered together in section

6.6: Improper Access Control (A4+A7).

A5 and A9 are also related, and touch the topics of security configurations

and updates; these will be discussed together in section 6.4: Security

Misconfiguration (A5+A9).

The rest of the vulnerabilities will be discussed in their separate sections,

and each section will include a verdict in the end to conclude the analysis

of each separate vulnerability.

6.1 SQL Injection (A1)

SQL Injection occurs when an intruder is able to inject an SQL command

into an input parameter and trick the server into interpreting the input

parameter as an actual SQL command. This effectively allows an intruder

to run commands on the server, which is a serious vulnerability to say the

least, as an attacker with enough knowledge of the database will be able to

run commands on any set of data. Being exposed to just a single SQL

injection vulnerability could allow an intruder to drop entire tables or do

something more subtle like gain access to another user’s account and

personal data.

Whether an intruder wants to delete entire database tables or do

something more subtle like gaining access to another user’s account or

personal data, being exposed to just a single SQL injection vulnerability

could allow for this to happen.

The current implementation uses an SQL database for some of the storage

requirements, and as such SQL injection vulnerabilities should be

considered. These vulnerabilities can be protected against by sanitizing

input, either by validating input prior to running queries or by using

parameterized queries to ensure that no input is interpreted as anything

but text.

Henrik Bartholdt Sønder Security Analysis

79

The current implementation uses Entity Framework as the framework for

data access to relational data, and as such all SQL queries are built by the

framework. The framework uses parameterized queries for all the basic

data access methods it provides, meaning that any potentially malicious

input will be interpreted as text and harmlessly stored in the database

without question. This offers an effective layer of protection against

injection vulnerabilities, and the fact that potentially malicious input is

stored as text in the database is not a concern – If it becomes a concern at

some point, input validation could be used to reject the input entirely.

6.1.1 Verdict

The solution is considered well-protected against SQL injection attacks as

long as the data access framework is used correctly. If any custom data

access features are made that directly builds or manipulates a SQL query

string, special care should be taken to ensure the integrity of that query.

6.2 Improper Authentication and Redirects (A2+A10)

One of the primary recommendations against this set of vulnerabilities is to

have a single set of strong authentication and session management tools. I

have chosen not to put a lot of effort into researching how well the default

MVC framework performs in this regard, and little-to-no effort has been

made towards improving this area of the solution. This is in part because

the choice of which method or framework to use for authentication and

authorization in general have not yet been settled.

6.2.1 Verdict

Little effort has been made into researching this topic, but the current

solution does pose some concerns regarding unencrypted connections and

the management of sessions ID’s. These areas should be thoroughly

investigated at some point, to ensure the solution is secure. Besides these

concerns the solution handles many other possible vulnerability indicators

in this area, such as providing a secure storage for passwords and not

exposing session ID in the URL. A10 vulnerabilities concerning un-validated

redirects and forwards are taken care of by the extensive use of routing in

the MVC framework. The solution is considered protected against redirects

to other sites when the routing methods of MVC are used, as they will not

allow for cross-site redirects. With that said, I am not completely confident

Security Analysis

80

that it is not possible for a developer of this solution to mistakenly

implement a redirect that could enable an intruder to circumvent this

protection.

As is common to several other vulnerabilities, the protection against the

vulnerabilities discussed in this section will not be able to ensure any

degree of protection if the site is vulnerable to XSS.

6.3 Cross-Site Scripting (A3)

This section will feature a thorough analysis of Cross-Site Scripting (XSS), as

this is one of the most critical vulnerabilities to protect against. The

solution happens to be a potential target for several different categories of

XSS, and as such this vulnerability receives some extra attention to

properly explain where and why this is the case. This section will first cover

a few different categories of XSS and then discuss how the solution fares

against them.

XSS exploits are possible when an intruder is able to inject a script into the

client of another user and trick that client into running that script. There

are several variations of XSS using different attack vectors and there are

two important distinctions to be made in this regard. One is whether or

not the attack is persistent; persistent being when the malicious script is

stored on the server and then served by the server to any number of other

users. Another is whether or not the attack is reflected; reflected being

when the attack interacts with the server in some way, e.g. when a server

receives malicious input and sends it back again. The non-persistent and

non-reflected vulnerabilities are entirely client-side vulnerabilities, as the

vulnerability itself does not interact with the server. The protection will

therefore have to be done on the client exclusively, as the server will not

be able to help prevent or even detect such attacks. In reflected attacks

the server is involved, which gives another set of options for detecting and

preventing the attacks. In persistent attacks the malicious input is being

stored on the server and the options for detecting and preventing attacks

are the same as that of reflected attack.

Henrik Bartholdt Sønder Security Analysis

81

6.3.1 Persistent XSS

XSS vulnerabilities are persistent if they are able to store a script or some

other type of malicious input on the webserver. If this malicious data

happens to be retrieved from the database and used by the server in the

process of rendering of webpages, then the script could be served by the

server itself. In the worst case scenario the persistent input is not only

served back to the user making the attack, but served to many other users

as well, effectively turning the server into an attack vector for whoever put

the script there. Truthfully, there might be even worse worst-case

scenarios, and the scary thing about this type of vulnerability is its

potential for turning servers into attack vectors and going viral by itself.

A simple example of a persistent XSS vulnerability could be if a user Alice
changes her username to “Alice <script>Alert(‘I put a script on your
site!’)</script>”. In this case the attack will likely popup a JavaScript Alert
each time the server presents her name to her or anyone else for that
matter, as this would make the server serve the script as well. Alice would
not even see the <script /> part, as this would be interpreted as a script.
Figure 26: A persistent XSS vulnerability.

6.3.2 Non-persistent XSS

This section will cover the non-persistent attacks, both reflected and non-

reflected. Non-persistent and reflected attacks are probably the least

dangerous and/or tricky attacks, as they do not have the scary viral abilities

of the stored attacks nor the stealth of the client-based attacks. As soon as

they go into the category of non-reflected they get a bit trickier to deal

with though, as the server will not be involved and as such it is gets a bit

more difficult to detect and guard against these attacks.

A prime example of a reflected vulnerability is through an input parameter
for a search, where a search for something malicious is sent to the server,
but not stored, and when the server replies to the user it will state
something along the lines of “Your search for: Kittens <script>…</script>
returned 100.000 results“.
Figure 27: A non-persistent, reflected vulnerability.

The thing about non-persistent and reflected attacks is that it is not that

common to have input parameters sent to the server, not stored, and then

returned. However, it is a lot more common to have input parameters sent

to the server and at the same time immediately used in the client as well,

Security Analysis

82

especially in pages using Ajax and asynchronous calls in general. This

occurs due to the fact that asynchronous requests often act upon user

actions immediately and then await confirmation from the server to

acknowledge that the action was indeed successful.

To exemplify a non-reflected attack, the current solution immediately
creates a new document item in the list of documents when a document is
uploaded. This is done to give the user immediate feedback and provide a
smooth user experience. When the document has been uploaded
successfully the server then responds and the document item in the list can
be used to open a document. However, before the server responds the
client creates the document item and displays the title and filename of the
uploaded document, and if any of those contain any malicious input the
client will simply run the script and the server will not be able to react in
time.
Figure 28: A non-persistent, non-reflected attack.

This type of vulnerability inherits attributes from both reflected and non-

reflected XSS; the server is involved and as such it is reflected, but the

client will immediately display the input, without waiting for response from

the server, and as such that part of the attack is considered non-reflected.

The server will therefore not be able to assist in detecting or sanitizing the

malicious input before the client is exposed to it, so client-side protection

is essential.

In conclusion, the smooth user experience supported by using

asynchronous methods has the disadvantage of changing some potential

reflected XSS vulnerabilities into non-reflected vulnerabilities as well. The

smooth user experience will therefore have to be accompanied by some

client-side protection against XSS, as server-side sanitation will not be

sufficient to handle the combined reflected and non-reflected XSS

vulnerabilities.

6.3.3 Discussion

This section will discuss how the system fares against XSS vulnerabilities

and explain why this is a high-priority vulnerability to protect against.

When it comes to XSS vulnerabilities there are two intuitive ways to guard

against them. One is to prevent malicious input from being stored and

subsequently reflected by the server, and to do this input needs to be

Henrik Bartholdt Sønder Security Analysis

83

sanitized to not allow scripts. Another is to prevent any input from being

interpreted as scripts on the client, and to accomplish this all text variables

needs to be html encoded when displayed in the client.

In regards to html encoding the system is well-covered and this is currently

the primary layer of protection keeping the system safe from XSS attacks –

Without html encoding there would be XSS vulnerabilities all over the

place, because the solution severely lacks input sanitation. Html encoding

is currently handled almost exclusively by a 3rd party library, Knockout.js,

which is included primarily to assist in developing well-structured

JavaScript components using the Model-View-ViewModel (MVVM)

pattern. Besides the text in the PDF document, just about every bit of text

displayed on the website is html encoded by the Knockout.js library, and as

such all the scripts that are not caught by input sanitation are simply

displayed as text.

The fact that the solution is not vulnerable to XSS because we html encode

everything is of course great, but as mentioned the lack of input sanitation

should be a concern. Even though the solution could be considered well-

protected at this point, as the malicious input is not being interpreted as

scripts anywhere, the solution would be a lot better protected if it did not

store malicious input on the server. While storing SQL injection inputs was

not a great concern, storing and serving malicious scripts should be a

concern, as they will continue to challenge the client-side protection

against them as long as they are stored and served. Having such data

stored is just an XSS vulnerability waiting to happen, and the fact that users

can inject scripts into document titles and then freely share these

documents to other users means that a persistent script could easily turn

the server into an attack vector, e.g. if the text of a document title

suddenly gets displayed somewhere without being html encoded.

The MVC framework providing the base of the web server actually

supports input sanitation and by default refuses to accept query

parameters with malicious input:

“System.Web.HttpRequestValidationException: A potentially dangerous

Request.QueryString value was detected from the client”

Security Analysis

84

The reason most of the input parameters are not sanitized even though

MVC attempts to sanitize input is because MVC does not check Json data

by default, and most of the data sent to the server is in Json format. An

extra layer of protection could be provided by using proper input

sanitation and validation of Json input, and this should definitely be looking

into at some point. Having this extra layer would prevent scripts from

being stored on the server, effectively providing two layers of protection

against one of the most critical vulnerabilities: Cross-Site Scripting. As

explained in some of the other analysis sections, XSS vulnerabilities can

easily make it possible to circumvent the protection for several other

vulnerabilities, which naturally makes XSS a high-priority vulnerability to

protect against.

6.3.4 Verdict

XSS is perhaps the most important vulnerability to protect against,

especially given the high number of potential areas this solution could be

exposed to XSS. The solution is currently well-protected against XSS

attacks, but this is based primarily on a single layer of protection: html

encoding. Given the implications of XSS vulnerabilities it is highly

recommended that the protection against XSS is further enhanced by

adding another layer of security: input sanitation. Input sanitation is

currently active for query parameters only and as such does not include

the Json data received by the server; Json data constitutes most of the

incoming data.

6.4 Security Misconfiguration (A5+A9)

This brief analysis covers the two list entries A5 “Security

Misconfiguration” and A9 “Using Components with Known Vulnerabilities”,

as they are quite similar in the context of this system. On a side note A9

was actually part of A5 in previous list from 2010; the 2013 list introduced

A9 as separate entry and yet it immediately made the top ten. This is yet

another reason to keep the solution well-structured and easily

maintainable, as keeping 3rd party components up to date could be a

serious security concern.

Henrik Bartholdt Sønder Security Analysis

85

6.4.1 Verdict

Both of these security concerns are difficult to assess in a prototype

environment such as this. It would not be very productive to go through

the details of security configurations and making sure all components are

up-to-date and safe to use, and as such the current solution is likely

severely misconfigured.

It is highly recommended that proper security configurations for the

system are investigated and validated prior to deployment. The current

solution is not well configured in regards to security, and there are a

number of additional configurations and safety measures that should be

investigated and taken care of prior to deployment of this system.

6.5 Sensitive Data Exposure (A6)

Sensitive data exposure deals with the protection of critically sensitive data

such as credit card information, passwords and other personal data that

could be damaging to the user if it was to be exposed. The current

requirement specification makes no mention of any particular security

requirements in regard to document or annotation data. The solution

might need to ensure some degree of confidentiality for more or less

sensitive documents at some point in the future, but in the current state of

the solution there are no sensitive data to worry about, except of course

for the list of user passwords.

The list of user passwords should not be taken lightly though, especially

due to the fact that the application encourages or even forces users to

register and authenticate with their DTU mail account. This would

effectively make the list a set of email and password combinations, and in

these situations it is very likely that some users have others accounts with

the exact same email-password combination. As such this information

should be considered sensitive, and precautions should be taken to secure

the information so that is it not exposed in the event of a security breach.

It is important to note that this solution will be used on a university

campus, and as such there will likely be more than a few people in the

vicinity with the skills to exploit simple vulnerabilities. The fact that the

application will likely be accessed through a wireless network connection

Security Analysis

86

most of the time should further encourage an attention to detail in regards

to security. To ensure the integrity of user accounts and passwords on the

wireless network it will be necessary to provide some kind of secure

connection, at least when negotiating user authentication.

When storing passwords it is important to ensure that they are stored with

algorithms specifically designed for password protection; securing

passwords can be a tricky process and with improper protection they can

be surprisingly easy to guess using brute force. This task is currently taken

care of by the MVC framework, and the default implementation of the

MVC framework salts the password and then hashes it using the SHA-1

hash algorithm. At the very moment of writing this part of analysis, I realize

that this is almost embarrassingly inadequate10 – The SHA-1 hash algorithm

is not even designed for password protection. I have to admit that I did not

know the default password protection did not even use an actual password

protection algorithm before writing this section of the report – I guess the

devil really is in the details.

The password protection method will definitely have to include a proper

password protection algorithm, and it is possible to support this using a 3rd

party security library11 and a single line of code to add the algorithm to the

cryptography configuration of the MVC framework.

6.5.1 Verdict

The current solution does not contain any sensitive data to protect, except

for user passwords. To ensure the integrity of passwords when connected

through a wireless network, it will likely be necessary to provide an

encrypted connection, at the very least during user authentication. To

ensure the integrity of passwords in the event of a server breach, the

passwords are now protected by proper password protection algorithms,

and the solution currently supports protection through either of the

following two algorithms: PBKDF2 or bcrypt. Both of these algorithms are

computationally expensive and they are also adaptive in that regard,

10

 http://www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html
11 https://github.com/skradel/Zetetic.Security

Henrik Bartholdt Sønder Security Analysis

87

meaning they can be adjusted to be increasingly expensive,

computationally, to ensure they remain consistently resistant to brute

force attacks as computational power increases.

6.6 Improper Access Control (A4+A7)

A7 vulnerabilities cover any sort of failure to provide access control for any

given function, while A4 vulnerabilities cover the more specific topic of

authorization bypasses through manipulation of insecure object

parameters.

Common to both of these vulnerabilities is that they allow an intruder to

circumvent the access control for a given function in the application. This

type of vulnerability could occur if a web application attempts to validate a

set of data client-side and then neglects to provide similar server-side

validation, or if the server-side checks are entirely dependent on

information which could potentially be manipulated and provided by the

user. The latter of these two examples is exactly when A4 would occur;

authorization bypass though insecure parameters.

To exemplify both of these, consider a web service method retrieving a
document, which would likely accept a single parameter: the document id.
The client application presents a list of documents the user has to access,
and by using the client and playing nice, the user is not able to click his way
into an unauthorized document. However, if no server-side validation is
done when retrieving a document, an intruder would be able to simply
change the document id parameter of the request and receive a document
he or she should not have access to.
Figure 29: A vulnerable service, as a result of improper access control.-

6.6.1 Discussion

To begin with a slightly personal note, the vulnerabilities of A4 and A7 are

not technical vulnerabilities on the same level as most of the other

vulnerabilities of the OWASP Top Ten. They are a result of forgotten or

mismanaged access control, not due to technical vulnerabilities but more

so due to poor design or a lack of proper system maintenance, with

developers struggling to find their way around a difficult-to-manage

system. On the other hand, most of the other top ten vulnerabilities are

more or less technical vulnerabilities that most developers, lacking any

Security Analysis

88

prior knowledge to that particular vulnerability, could easily fall victim to.

The fact that A4 and A7 vulnerabilities do not have quite the same “Oh,

interesting!” feel of the other top ten vulnerabilities do not make them any

less of a security risk though, so they should of course be discussed,

analysed and prepared for just as well. The primary layer of protection

against these vulnerabilities is a well-structured and easily understandable

system design along with a set of tests and methods to validate that

nothing is missing, so while the vulnerabilities themselves might not be

interesting, developing protection against them sure is.

On the topic of easily understandable design, a good rule of thumb is to

always enforce server-side validation. In fact, providing client-side

validation in a web-application should be considered a user experience

related feature in most cases, as the server will most likely not be able to

trust the client-side result anyway. Validating a set of data instantly client-

side makes for a great user experience, but rest assured that set of data

will need to be validated server-side as well to ensure any kind of integrity.

Having stated that the primary layer of protection is a well-structured and

easily understandable system, let us take a look at exactly where in this

system this helps prevent A4 and A7: Improper access control. Proper

separation of concern is a concern in this system, and responsibilities are

well defined and intuitive, or at the very least, they should be easy to

remember. The domain services are the ones responsible for

authenticating and authorizing users according to domain logic.

As such, our rules for access control are enforced in these classes, and in

these classes only, and this design should make it rather simple to ensure

that the domain logic rules in regards to access control are enforced

correctly in all service classes. As the service classes are very much related

to the domain logic, it should be intuitive to check that the rules of the

domain are enforced correctly, and a thorough set of unit tests for these

service classes will provide further validation.

On a side note, the access control features of MVC could have handled

most of the access control requirements for this solution. This was decided

against though, in order to have this core responsibility well-separated and

restricted to the service classes only. The MVC framework does enforce

Henrik Bartholdt Sønder Security Analysis

89

some level of access control though, as it immediately denies any

unauthenticated user access to the web API exposed by the solution,

except of course for the method to log on.

6.6.2 Verdict

In conclusion, it is difficult to ensure that forgotten or mismanaged access

control does not occur, as it is mostly a result of human error. It is possible

to design a system that reduces that chance of such errors happening

though, and the design of the solution defines a clear set of responsibilities

in this regards, as domain services are responsible for enforcing access

control. The domain services are designed to be very well testable as well,

and it should not be very demanding to test and verify the well-separated

domain services sufficiently enough to prevent this vulnerability from

occurring.

6.7 Cross-Site Request Forgery (A8)

Cross-Site Request Forgery (CSRF) occurs when a site is able to successfully

execute a request on another site. The vulnerability is most effectively

exploited by specifically targeting users that are likely to be authenticated

on the desired site to attack.

An example attack features an intruder sending an email with a link to
some facebook page along with a link to a site the intruder has built or
made into an attack vector. In a lucky coincidence the user first visits the
facebook page and logs in, and subsequently visits the other site containing
a script that executes a cross-site request targeting facebook. Since the
user is now logged in to facebook, the cross-site request automatically
includes the user’s authentication information and because of this the
request will be successfully authenticated by facebook even though the
request was sent by a script on another domain. Facebook will believe the
user sent the request, and the user will have no idea an attack just
happened, besides the fact that his or her facebook page now features
cats. Everywhere.
Figure 30: A Cross-Site Request Forgery (CSRF) featuring cats.

There are many ways in which a server can attempt to detect CSRF attacks

by analysing the incoming request, but common to almost every one of

them is that the request can be forged well enough to avoid detection.

There is one commonly preferred method that works really well against

Security Analysis

90

CSRF though, and it uses the concept of validation tokens. To authenticate

requests based on validation tokens the server must construct and serve

an unpredictable token, commonly a string, to use when sending a request.

This token is usually generated along with the form element that submits

requests and the token is then returned again along with the request. This

allows the server to validate requests by checking the attached token, and

the protection lies in the fact that a request from another domain will not

be able to guess the correct token.

6.7.1 Verdict

Validation tokens are used for requests throughout the application, and

the solution should be easily secured against CSRF. There are currently no

tests to ensure that the one essential requirement is met: that service

endpoints demand validation tokens. In order to ensure protection against

CRSF in a production environment, the use of a method to ensure that this

requirement is met is highly recommended; this could be accomplished

either manually or through automatic tests.

On a final note, this is yet another vulnerability which cannot be effectively

prevented if the site is vulnerable to XSS.

Henrik Bartholdt Sønder Test

91

7 Test

The development and design of this system has had quite a lot of emphasis

on ensuring proper maintainability and testability of the domain logic

layer. It has been one of the critical areas of interest in the system, in an

attempt to ensure the cost-effectiveness of the future development of the

system. The maintainability and testability of the domain components have

been considered throughout the development of the system, and have

therefore been an important topic in most of the design considerations

discussed throughout the server design chapter. Since the system design

so heavily encourages proper testing of the domain layer and its

components, the proper testing of a single class of the domain layer will be

the focus points of this entire test chapter.

This section will first cover the concept of mocks, briefly, and then cover

the components developed to assist in configuring a system under test.

Following this will be a section covering the tests themselves, and the final

section will feature a conclusion for the test chapter.

The single class to cover throughout this section is the document service

class. Testing the document service class allows for the coverage of many

aspects of testing, including mocks, authentication and authorization, as

well as validation of proper data movement between internal

dependencies. Testing of the document service class also benefits from the

development of supportive classes to assist in configuring its many

dependencies, and this is covered as well. This should cover most of the

aspects of testing the tests and the supporting classes designed specifically

for the document service.

7.1 Mocks

Mocks are simulated objects that are able to mimic the behavior of real

objects in a controlled way. Mocks enable a developer to more easily test

classes, by exchanging any class dependency with a mock that does exactly

what is expected. This enables a simpler and more focused testing process,

as the testing process of a class can be de-coupled from the influences of

real dependencies, which will not always do exactly as expected.

Test

92

In order to properly test the domain logic, a proper set of mock objects are

needed to remove any outside influences entirely. The use of mock

objects, or simply mocks, is particularly important for the document

service class of the domain layer, as its method for adding a document has

a high number of abstract dependencies – A topic also discussed in the

design and implementation of this method, in sub-section 5.4.3 of the

Domain Logic Layer section.

7.2 Configuring the System under Test

When testing the document service class a set of mock objects are

essential, and these mocks will need to be configured according to the

purpose of the test. To be able to create many different tests, the service

will therefore have to be configured in many different ways to effectively

support each test without affecting other tests. Many different

configurations are therefore necessary to support proper test coverage, so

a document service builder class has been implemented to assist the

process of configuring mocks. This document service builder class will

simply be referred to as the builder for the purpose of this discussion, and

the document service class will be referred to as the service; the builder

builds and configures the service. The builder is responsible for injecting a

default configuration of mock objects into the document service class, as

well as providing a set of methods to support additional configuration of

mocks. This will simplify the build process of a testable service class, and

the additional methods for further configuration of mocks will provide

sufficient flexibility to configure the behavior of mocks according to the

requirements of the tests.

The code for the builder class is shown below in Figure 31, and the core

structure of the builder class is quite simple to explain. The builder

contains a mock for each of its dependencies, which effectively removes all

outside influences simple as that. To provide behavior for the set of

abstracted dependencies which are now reduced to mocks, a set of

variables are stored in the builder class to act as replacement return-values

for the mocks to use. The mocks are now able to be properly configured to

return certain values and objects when the service class attempts to call

Henrik Bartholdt Sønder Test

93

some of their methods. This explanation covers the core structure of the

builder, and the code for just this structure is shown below in Figure 31.

public class DocumentServiceBuilder
{
 public Mock<IPdfEditor> _pdfEditor = new Mock<IPdfEditor>();
 public Mock<IAuthenticationService> _authenticationService =
new..
 public Mock<IDocumentAuthorizationService>
_authorizationService..
 public Mock<IDocumentRepository> _documentsRepository = new..
 public Mock<IDocumentDetailsRepository> _detailsRepository =
new..
 public Mock<IDocumentPermissionsRepository>
_permissionsRepository
 public Mock<IAnnotationRepository> _annotationsRepository = new
..

 private Guid _documentId = Guid.NewGuid();
 private Stream _document;
 private Stream _annotatedDocument;
 private int _userId = 0;
 private List<DocumentDetailsDto> _details;
 private List<AnnotationDto> _annotations = new
List<AnnotationDto>
 {
 new AnnotationDto(),
 new AnnotationDto()
 };

 public DocumentService Build()
 {
 _documentsRepository
 .Setup(d => d.GetDocument(_documentId))
 .Returns(_document);
 _pdfEditor
 .Setup(pe => pe.FilterTextAnnotations(
 It.IsAny<List<AnnotationDto>>()))
 .Returns(_annotations);
 // 5 other default mock setup configurations omitted.
 return new DocumentService(
 _authenticationService.Object,
 _authorizationService.Object,
 _documentsRepository.Object,
 _detailsRepository.Object,
 _permissionsRepository.Object,
 _annotationsRepository.Object,
 _pdfEditor.Object);
 }
}
Figure 31: The core of the builder class. Additional methods are revealed in later figures.

Test

94

As seen in Figure 31, the builder contains a mock for each dependency

along with a set of variables to provide the necessary return values for

mocks to use. The bottom half of the figure contains the Build method,

which is responsible for providing the default mocks configurations before

it builds the service. The builder finally instantiates the service as seen in

the very bottom of the figure; the fact that the service follows the

dependency inversion principle makes this a simple process, as all the

mocked dependencies are simply injected the same way the actual

dependencies would be.

So far the core structure of the builder provides a default configuration of

mocks, and the default configuration should simply be built to provide the

simplest approach for the selection of tests to cover. As mentioned the

builder is also responsible for providing a set of methods to assist in

configuring the default behaviour of mocks, to allow for configurations that

more specifically target each test. A small selection of the methods

responsible for providing additional configuration options is shown below

in Figure 32.

public class DocumentServiceBuilder
{
 // Continued from previous figure
 public DocumentServiceBuilder WithAnnotations(
 List<AnnotationDto> annotations)
 {
 _annotations = annotations;
 return this;
 }
 public DocumentServiceBuilder WithReadPermissions() {
 _authorizationService
 .Setup(a => a.AuthorizeUser(_documentId,
 DocumentPermissions.Read))
 .Returns(true);
 return this;
 }
 public DocumentServiceBuilder WithUserId(int userId) {
 _userId = userId;
 _authenticationService
 .SetupGet(a => a.CurrentUserId)
 .Returns(userId);
 return this;
 }
}
Figure 32: Another section of the builder class, providing additional options for
configuration.

Henrik Bartholdt Sønder Test

95

The methods presented take care of configuration in slightly different

ways, and the WithUserId method both sets a variable in the builder and

configures the authentication service to use this variable. The

authentication service will therefore return the userId specified in the

builder, when the property for CurrentUserId is accessed. This allows for

easy configuration of access control tests, where the userId can be set

correctly, incorrectly or perhaps even result in an exception. The

WithReadPermissions method sets no variables, but simply configures the

authorization service mock to return true if/when the service attempts to

authorize the user and check for read permissions for the current

document id. The WithAnnotations, makes no setup adjustments, but

simply sets the value of a variable containing list of annotations. In this

case the configuration is already done by the default configuration, which

is shown in a previous figure: Figure 31. As defined by the default

configuration, the variable set by the WithAnnotations method determines

the value returned by the PdfEditor when extracting annotations from the

document. This is a good example of reducing the potential for outside

influences, as there is great potential for errors and exceptions in the

process of extracting annotations from a PDF document. However, the test

successfully prevents any such potential influences.

This is used by one version of the GetDocument method, where

annotations are stored separate in the database

7.3 Testing

Figure 33 shows a test validating one of the requirements of the

DeleteDocument method of the document service class. Note where the

builder is initialized and configured, and how easily readable the

configuration options are.

[TestMethod]
public void DeleteDocumentRemovesDocumentPermissions()
{
 var documentId = Guid.NewGuid();
 var userId = 222222;
 var inititalDocument = GenerateDocumentStream();
 var expectedPermissions = DocumentPermissions.All ^
 DocumentPermissions.Owner;
 var builder = new DocumentServiceBuilder()
 .UsingDocument(documentId, inititalDocument)

Test

96

 .WithOwnerPermissions()
 .WithUserId(userId);
 var service = builder.Build();

 service.DeleteDocument(documentId);

 builder._authorizationService
 .Verify(a => a.RemovePermissions(userId, documentId,
 expectedPermissions),
Times.Once);
}
Figure 33: Validating that the delete document method correctly removes document
permissions.

Based on the builder configurations made, it should be easily understood

that the current system under test is a service, and that the service is

configured to simulate an authenticated user with a specific user id.

Additionally, the user also has owner permissions for the currently used

document. Having properly configured the system under test, the test

proceeds to call the DeleteDocument method and then verifies that the

proper methods with the expected set of parameters. The Verify method is

a part of the Moq framework, and the mocks tracks the incoming methods

calls they receive in order to provide these verification methods. As such,

the test verifies that the RemovePermission call was made once, with the

correct parameters, and that is the single responsibility for this test.

There will commonly be many tests just to cover single methods, even for

a simple method such as DeleteDocument. Another important aspect that

increases the amount of tests is to handle cases for exceptions as well, or

in the following case, improper authorization. The test for validating that

the DeleteDocument method throws an exception when attempting to

authorize the user is shown below in Figure 34.

[TestMethod]
[ExpectedException(typeof(UnauthorizedAccessException))]
public void DeleteDocumentThrowsUnauthorizedAccess()
{
 var documentId = Guid.NewGuid();
 var inititalDocument = GenerateDocumentStream();

 var service = new DocumentServiceBuilder()
 .UsingDocument(documentId, inititalDocument)
 .Build();

 service.DeleteDocument(documentId);

Henrik Bartholdt Sønder Test

97

 Assert.Fail("Did not throw on invalid permissions");
}
Figure 34: Validating that an exception is thrown on improper authorization.

Again, it should be easy to read the builder configuration and see that the

service it not configured to authorize the user. The tests is set to expect an

exception, by using a method attribute as seen above the method

definition in Figure 34. If the exception is not throw, the test fails when

reaching the assert statement.

Being able to configure the exact return values of all internal dependencies

simplifies the process of validating that data is handled correctly. This is

exemplified in Figure 35, where the process of extracting and storing

annotations is validated.

[TestMethod]
public void AddDocumentExtractsAndAddsAnnotations()
{
 var userId = 2211;
 var document = GenerateDocumentStream();
 var annotations = new List<AnnotationDto>()
 {
 new AnnotationDto(),
 new AnnotationDto(),
 new AnnotationDto(),
 };
 var builder = new DocumentServiceBuilder()
 .UsingDocument(Guid.NewGuid(), document)
 .WithAnnotations(annotations)
 .WithUserId(userId);
 var service = builder.Build();

 service.AddDocument(document, "My FileName", "My title");

 builder._annotationsRepository.Verify(r =>
 r.AddAnnotations(It.IsAny<Guid>(), annotations),
Times.Once);
}

Figure 35: Verifying the process of extracting and storing annotations.

The test validates that the AddAnnotations method of the annotation

repository is called correctly, and that the annotations stored are the ones

received from the extraction method of the PDF editor. As explained

previously in Figure 32, the WithAnnotations call defines the list of

annotations returned from the PDF editor, when it extracts annotations

Test

98

from the document. Since the return value of the PDF editor is defined by

configuring the builder during setup, the test is able to very effortlessly

validate that the value used to call AddAnnotations is the correct value

received from the PDF editor’s extraction method. If the test had to

reliantly build a document with a set of annotations, and then have them

extracted, and then verify that those annotations match the ones in the

document, then the test method would be a lot more complicated and it

would be testing more than just the document service.

Henrik Bartholdt Sønder Conclusion

99

8 Conclusion

The goal of this project was to develop a foundation for a web-based

system for annotation of documents. The primary focus was to research

and design a system able to most effectively provide the necessary

features in a manner which compliments a well-designed system with a

high quality of code.

In the analysis, the most critical areas of the system were assessed and a

set of requirements necessary to ensure success in these areas was

defined. Potential solutions to these critical areas when then thoroughly

researched and tested in order to find the best set of solution to satisfy the

requirements stated. As a result of the analysis, a set of system-critical

components was chosen for further development and a model for how the

quality of code should be assessed throughout design considerations and

development was designed as well. This has proven critical in the design

and development of the system, and has had a great influence in the

resulting design.

The security of the system was tested against the top ten most critical

flaws in web application security, and system was able to properly prevent

most critical attacks. The analysis features a thorough discussion of the

system and how well it fares against these attacks, and also provides

recommendations towards future development and potential areas of

concern. This should provide a good foundation for maintaining a high

level of security throughout the system.

The testing section features a complete walkthrough of how a domain class

is properly tested, and should provide confidence that the domain layer

maintains a high level of testability. It should also help explain the

responsibilities and purpose of the classes developed to support the

testing process, and why they are necessary to support the highly

configurable test environment.

References

100

9 References

Boehm, B. W. (1976). Quantitative Evaluation of Software Quality. IEEE Computer

Society Press Los Alamitos, CA, USA.

Gal, A. e. (u.d.). Trace-based Just-in-Time Type Specialization for Dynamic. Hentet

fra ACM Digital Library: http://dl.acm.org/citation.cfm?id=1542528

Grady, R., & Casswell, D. (u.d.). Software Metrics: Establishing a Company-wide

Program. Prentice Hall. p. 159.

McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in Software Quality.

Volume I. Concepts and Definitions of Software Quality. General Electrics

Co.

Henrik Bartholdt Sønder List of Figures

101

10 List of Figures

Figure 1: McCall's model for classifying software quality. 21

Figure 2: The documents page, providing tools for managing documents. 29

Figure 3: The ListViewModel of the Documents Page. .. 31

Figure 4: The data context components for document data................................... 32

Figure 5: Initializing the documents page.. 32

Figure 6: The combined HMTL and Knockout.js code, for presenting the list of

documents. .. 33

Figure 7: The model for documents and document lists. .. 34

Figure 8: Converting canvas coordinates. Red line defines the area of both the

viewer and the canvas overlay (On top of each other). .. 38

Figure 9: Left image shows the default view. Right image shows the view with the

tools canvas overlay, with an active rectangle selection and a context menu above

it. .. 39

Figure 10: The AnnotationTools class, providing a framework for other editor tools.

 ... 41

Figure 11: The SelectionTool class, enabling a user to select a point or an area on a

document. ... 42

Figure 12: Code metrics of the final solution. (Maintainability, Cyclomatic

Complexity, Depth of Inheritance, Class Coupling, Lines of Code) 48

Figure 13: Dependency injection bootstrapper. .. 50

Figure 14: Registering script and style sheet bundles. .. 50

Figure 15: Solution structure emphasizing dependency management. 51

Figure 16: The interface definition for the document repository. 55

Figure 17: Simple data access methods of a repository. ... 62

Figure 18: Using simple repository methods to implement domain specific

methods... 63

Figure 19: Dependency Inversion .. 64

Figure 20: The AddDocument method of the DocumentService class. 65

Figure 21: The IPdfEditor interface, exposing methods for manipulating PDF

documents. .. 71

Figure 22: A builder class for converting annotations into PDF format. 72

Figure 23: The base class for property converters. ... 73

Figure 24: The property converter for converting a date. 73

Figure 25: Mapping property converters to keys. ... 74

Figure 26: A persistent XSS vulnerability. .. 81

Figure 27: A non-persistent, reflected vulnerability. ... 81

Figure 28: A non-persistent, non-reflected attack. ... 82

List of Figures

102

Figure 29: A vulnerable service, as a result of improper access control.- 87

Figure 30: A Cross-Site Request Forgery (CSRF) featuring cats. 89

Figure 31: The core of the builder class. Additional methods are revealed in later

figures. ... 93

Figure 32: Another section of the builder class, providing additional options for

configuration. .. 94

Figure 33: Validating that the delete document method correctly removes

document permissions. ... 96

Figure 34: Validating that an exception is thrown on improper authorization. 97

Figure 35: Verifying the process of extracting and storing annotations.................. 97

