
A Voxel-Based Platform for Game
Development

Thor Helms

Kongens Lyngby 2013
M.Sc.-2013-107

DTU Compute
Technical University of Denmark
Matematiktorvet, building 303B, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@compute.dtu.dk
www.compute.dtu.dk M.Sc.-2013-107

Summary (English)

The goal of the thesis is to create a game development platform for voxel based
games, capable of creating games with a first person view. To this end, a
conceptual game model has been created, which is used to define a game. A
simple language has been created to define games consisting of a landscape, some
game objects, and behavior for some game objects, along with a scanner/parser
for this language, which outputs a conceptual game model. To transform the
voxel models into graphics and display them in the game development platform
Unity, a small voxel library has been created, which can output polygon models
for a voxel model. Infinite landscapes are created using Simplex/Perlin noise.
Behaviors are implemented via behavior trees (for games), but is still lacking
an interpreter.

ii

Summary (Danish)

Målet for denne afhandling er at lave en platform til udvikling af spil baseret på
voxel grafik, der er i stand til at lave spil med et første persons billede af spillet.
For at gøre dette er der lavet en konceptuel model af denne type spil, hvilket kan
bruges til at definere et spil. Der er blevet lavet et simpelt programmeringssprog
til at definere et spil i form af et landskab, nogle spil genstande og en adfærd
til visse spil genstande, samt en skanner/oversætter til sproget, der giver en
konceptuel spil model. For at lave en grafisk repræsentation af en voxel model
er der blevet lavet et lille voxel bibliotek, som udregner en polygon-baseret
model fra voxel data, og kan vise det i spiludviklingsværktøjet Unity. Uendeligt
store landskaber kan laves via Simplex/Perlin støj. Adfærd er implementeret via
adfærds træer (behavior trees) til spil, men i dette projekt er der ikke lavet en
fortolker til disse.

iv

Preface

This thesis was prepared at the department of DTU Compute at the Technical
University of Denmark in fulfillment of the requirements for acquiring an M.Sc.
in Informatics, and accounts for 35 of the 120 ECTS needed.

The counsellor for the project is Michael Reichhardt Hansen, with some initial
support from Phan Anh Dung.

The student for this project is Thor Helms, student number s061377 at DTU.

Lyngby, 11-September-2013

Thor Helms

vi

Acknowledgements

I would like to thank my counsellor Michael Reichhardt Hansen for the extensive
support and guidance he has provided during my thesis, and Phan Anh Dung for
the support he provided during the initial process of the project. Furthermore
I would like to thank Rabie Jradi for being my sparring partner during the
project, and for helping me put the finishing touches on the report.

On a personal level I would like to greatly thank my girlfriend Freja for her
tremendous amount of patience and support. I would also like to thank my
roommates Lauge and Sanne for having patience with me.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Goal . 1
1.2 Scope . 2
1.3 Structure of the Thesis . 2
1.4 Notation . 3
1.5 Related Work . 3

2 Requirement Specification 5
2.1 Case Study: Carl of Sheeponia 5
2.2 Basic Concepts . 6

2.2.1 Game Objects . 6
2.2.2 Landscape . 7
2.2.3 Visual Objects . 8
2.2.4 What is a game? . 9
2.2.5 Levels in a Game . 10
2.2.6 Behavior Trees . 10

2.3 Game Development Requirements 12

3 System Architecture 15

x CONTENTS

4 Rendering Voxel Models 17
4.1 Position . 17
4.2 Mesh . 18
4.3 Voxel . 19
4.4 Chunk . 20

5 Conceptual Game Model 23
5.1 Game Objects . 23

5.1.1 Items . 24
5.1.2 Non Player Characters . 24
5.1.3 Player Characters . 24

5.2 Landscape . 25
5.2.1 Height Maps . 25
5.2.2 Volume Maps . 25
5.2.3 Landscape Procedure . 26

5.3 Levels . 26
5.4 Behavior Trees . 27
5.5 Game Definition . 27

6 Game Definition Language 29
6.1 Generic Parts of the Parser . 29
6.2 Items . 30
6.3 Non Player Characters . 31
6.4 Player Characters . 32
6.5 Height Maps . 33
6.6 Volume Maps . 34
6.7 Landscapes . 34
6.8 Levels . 36
6.9 Behavior Trees . 36
6.10 Expressions . 38
6.11 Game Definition . 38

7 Constructing the Game Model 41
7.1 Visual Voxel Object . 41
7.2 Creating Game Objects . 43
7.3 Evaluate a Landscape Definition 44
7.4 Formal Game Model . 45
7.5 State Definition . 47
7.6 Player Definition . 48
7.7 Winning and Losing Conditions 50

CONTENTS xi

8 Tests 51
8.1 System tests . 51

8.1.1 Landscape creation . 51
8.1.2 Game object creation . 52
8.1.3 Mesh creation . 52

8.2 Other Tests Needed . 52

9 Results 55
9.1 Landscapes . 56

10 Discussion 59
10.1 Future Work . 61

A Glossary 63

B External Sources 65
B.1 Wireframe Character . 65
B.2 Voxel Character . 65
B.3 Minecraft Landscape . 66
B.4 Simplex/Perlin Noise . 66

C Source Code 67
C.1 Game Definition Language . 67

C.1.1 Carl of Sheeponia . 67
C.1.2 Landscape Examples . 80

C.2 Scanner/Parser . 82
C.2.1 Lexer definition . 82
C.2.2 Parser Definition . 85

C.3 F# code . 92
C.3.1 GameDefinition.fs . 92
C.3.2 PlayerController.fs . 94
C.3.3 Base.fs . 95
C.3.4 Position.fs . 95
C.3.5 Mesh.fs . 97
C.3.6 Voxel.fs . 97
C.3.7 ProceduralGenerator.fs 101
C.3.8 Chunk.fs . 105
C.3.9 BehaviorTree.fs . 111
C.3.10 Prefab.fs . 116
C.3.11 State.fs . 119
C.3.12 CreateGame.fs . 124
C.3.13 CreateGameClass.fs . 131

Bibliography 133

xii CONTENTS

Chapter 1

Introduction

The game development process is a complicated process, which usually require
large amounts of both creativity and technical skills. This makes it very dif-
ficult, if not impossible, for many people to realize their ideas for computer
games, even if they have the creativity required to make amazing games. How-
ever, voxel based games, in particular Minecraft [3], allows anyone to let their
creativity loose in 3D by having a construction-metaphor resembling that of
real life, similar to building with Lego bricks. But as with Lego bricks, once a
voxel construction has been completed, its purpose becomes merely an object
of admiration, and its lifetime will likely come to an end. This is the motivation
behind this project.

1.1 Goal

The goal of this project is to create a system that can be used to create voxel
based games, with a particular focus on first person games with a single player.
In both the game development platform and the games created with it, it should
be possible to modify the world in detail.

2 Introduction

Game Definition Language

Scanner/Parser
��

Conceptual Game Model

Initialize Game
��

Game State

Game Rules

QQ

Figure 1.1: Overview of the system architecture of the game development plat-
form.

1.2 Scope

Making a game development platform is a huge task, and thus not every aspect
can be covered in a project of this size. Some focus will be given to a theoretical
model of games and analyzing what it takes to create the different parts of a
theoretical game. Regarding visual effects, the focus here is on transforming
voxel models to polygon models, and letting another engine display the polygon
models, with no focus on aspects such as animations, physical calculations and
sound effects. Regarding the rules of a game, the focus is kept on how to define
them using known techniques, and not how to implement these techniques.

1.3 Structure of the Thesis

The process for developing games followed in this project is outlined in figure
1.1. The first process is to create a game definition in a language invented here
for the purpose, namely the game definition language. This is the only step
that the game developer has to follow. The game definition is then transformed
to an internal representation, the conceptual model, via a scanner and parser.
Finally, in order to actually play the game, a formal game and the initial state
are created, which is iterated until the game has ended.

Chapter 2 gives an introduction of the basic concepts used in this project. Chap-
ter 3 gives a brief overview of the structure of the solution, to guide the under-
standing when reading the report. Chapter 4 describes a voxel library that has
been created to visualize voxel models in Unity. Chapter 5 defines the con-

1.4 Notation 3

ceptual model. Chapter 6 gives some examples of the created game definition
language as well as defines the complete parser for the language. Chapter 7
partially describes the process of converting from the conceptual model into an
actual game, and defines the types used during execution of a game. Finally,
chapter 8 gives a brief overview of how to test a project as this, chapter 9 out-
lines the results of the project, and chapter 10 discusses the project and gives
some recommendations as to future work of the project.

1.4 Notation

There are three programming languages used in this report. The first is that of
the game definition language. This is highlighted as seen below.

Game De f i n i t i o n Language l ooks l i k e t h i s

The second language is the definition of the parser, which is used as input to
FSYacc to create a parser in F#. The parser definitions are highlighted as seen
below.

Parser−d e f i n i t i o n l ooks l i k e t h i s

The final language used is F#, which is also used as the pseudo code in this
report. This is highlighted as seen below.

F# code l ooks l i k e t h i s

Throughout the project, the commercial game development platform Unity has
been used as a platform.

1.5 Related Work

The main inspiration of this project is the game Minecraft, which itself is in-
spired by the game Infiniminer [4]. These two games have a data structure
and visual appearance based on voxels, displayed as cubes. There are other
ways of displaying voxels, for instance by using the Marching Cubes [5] or the
TransvoxelTM[6][7] algorithms, which both make a more smooth surface than
cubes.

4 Introduction

An implementation of the Simplex/Perlin noise algorithms [8] [9] is used in this
project, the source of which can be found in appendix B.4. Simplex/Perlin noise
has found application in many games, Minecraft included.

The concept of behavior trees [10] has already been used in games, for instance
in Spore [11] [12]. The term behavior trees is also used in classical software
engineering, but bears little resemblance with the behavior trees used in games.
The theory used in this project is explained in more detail in section 2.2.6.

Attempts to establish what a game exactly is has been done most recently by
Jesper Juul [1] and Katie Salen & Eric Zimmerman [2], and multiple others
before them. The definition of a game used in this project is given by Salen &
Zimmerman, as they deal with a more formal view of what a game is, contrary
to defining games from abstract terms such as fun and player effort.

As mentioned, this project makes use of the game development platform Unity
[13]. This is of course far from the only game development platform on the
market.

Chapter 2

Requirement Specification

In this chapter follows a purposely vague definition of a game dubbed Carl of
Sheeponia; a game brought to existence for demonstration purposes. This is
followed by an analysis of the basic concepts in that type of game, followed at
last by a requirement specification for a game development platform for that
type of game.

2.1 Case Study: Carl of Sheeponia

The mountainous region of Sheeponia is the home of tremendous amount of
sheep. And as always, with sheep come the wolf, preying on the lonely sheep or
weak individuals from sheep herds.

Sheep tend to stay in large herds of sheep, and are cautious when humans are
present. Their main food is grass, which is abundant in the valleys of Sheeponia.
They fear wolves, except when the amount of sheep greatly outnumber the
amount of wolves, in which case the sheep will return aggressive attitudes from
the wolves. In all other cases, the sheep will flee when faced with aggression
from one or more wolves.

6 Requirement Specification

The wolves of Sheeponia can be fearsome creatures, that may stalk its prey for
long periods, until it feels confident it can kill it. When faced with an aggressive
opponent, wolves will return the aggression. They prey on lonely or weak sheep,
and on occasion humans. Wolfs tend to hunt when in packs, but is also often
seen alone.

Our hero, Carl, is a human, who finds him self in the wilderness of Sheeponia,
armed with a rifle and a sword. The goal of Carl is simply to survive.

2.2 Basic Concepts

Based on the above example of a game, this section will introduce some concepts
used throughout the report, which are used to describe an abstract game.

The virtual world that the game takes place in, e.g. Sheeponia, can be split into
two categories: The landscape, and game objects, with the landscape being the
mountainous regions etc. of Sheeponia, i.e. a large area which is largely static,
and game objects being Carl, his rifle and his sword, the sheep, and wolfs.

2.2.1 Game Objects

Game objects can be split into two categories: Inanimate objects (items), and
creatures, where the difference is whether or not they can interact with the
world by their own initiative, i.e. they have a behavior. Player characters can
be viewed as creatures, and thus creatures can be split into two categories:
Player characters and non-player characters (NPCs).

Items As mentioned above, items are inanimate, and can thus be identified
merely by their visual characteristics, or appearance, and some metaphys-
ical attributes. The items present in the Carl of Sheeponia definition given
in section 2.1 are the rifle and sword that Carl possesses.

Non Player Character (NPC) NPCs are identified as items, i.e. with a
visual appearance and some metaphysical attributes, and additionally with
a behavior.

Unlike that of a player character, the behavior of an NPC is completely
autonomous, acting according to its surroundings.

2.2 Basic Concepts 7

Player Character While player characters are similar to NPCs, they are also
slightly more advanced. In Carl of Sheeponia, Carl has two weapons, which
he must be able to store somewhere. For this reason, player characters
have an inventory of items, besides the characteristics of an NPC.

Furthermore, because a player character is controlled by a human, who
must be able to see the game from some perspective, a player character
also have a camera-definition, which defines from which perspective the
human player sees the game.

The behavior of player characters is what defines how the player character
should react to the input given by the human player.

2.2.2 Landscape

It is assumed that games will only have one landscape. The landscape is identi-
fied by being relatively static and volumetrically the majority of game content,
whereas objects are far more dynamic and can be interacted with by the player.
While a game as Minecraft allows the player to change the landscape by adding
and removing cubic voxels, this is still restrained within the grid structure of
the voxel data structure, whereas for instance a rifle can take up any location
and have any rotation within cavities in the world.

Creating a landscape by hand can be a tedious task due to the size of the
landscape, and a repetitious landscape is usually not desired in games. Some
games have procedurally generated landscapes, often using Perlin or Simplex
noise, which can both create a randomized multidimensional noise that can
mimic natural structures. The use of procedurally generated landscapes can
greatly reduce the complexity of creating large landscapes that still seem natural.
An example of a voxel based landscape created in this manner, from the game
Minecraft, can be seen in figure 2.1.

When defining a procedural landscape, certain operations should be possible.
Below I give a list some attributes, along with a semantic for them.

Height map A height map defines a y-value at each (x, z) coordinate, and
creates a surface which can be used to distinguish between two different
landscapes: One below the surface, and one above it.

Area map An area map uses a height map to distinguish between different
(x, z) areas. For instance, if a flat map of the earth was used as a height
map, an area map could define the different countries. An area map can
contain multiple y-ranges, each containing their own landscape.

8 Requirement Specification

Figure 2.1: Procedurally generated landscape from the game Minecraft.
Source in appendix B.3.

Volume map This is similar to a height map or an area map, except that it
is 3-dimensional noise. This means that each (x, y, z)-coordinate has a
numerical value in some range. Like an area map, a volume map may con-
tain multiple landscapes defined within a certain range of the previously
mentioned numerical value.

2.2.3 Visual Objects

Game objects and the landscape also need to be visualized as 3D objects. The
most commonly used representation for 3D objects in games is that of polygon
based objects, an example of which can be seen in figure 2.2a. These consist
of one or more polygon meshes and typically one or more textures, which are
2D images laid on top of the polygons. Polygon based objects can provide for
realistic looking objects even with a relatively low polygon count.

Another way of representing 3D objects is that of voxel based graphics, which in
recent years has been made vastly popular through the game Minecraft [3]. In
it, everything consists of voxels rendered as cubes, similar to that of figure 2.2b.
However, the cubes are rendered as polygons, as a contrast to the much more
computationally heavy ray-casting method [14], which is infeasible on todays
polygon-optimized hardware.

Besides from creating cubic polygon models from voxels, more smoothed polygon
models can also be created via the Marching Cubes [5] and TransvoxelTM[6][7]
algorithms. However, both techniques make it more difficult to visually distin-
guish where one voxel ends and another begins.

2.2 Basic Concepts 9

(a) Polygon based character. (b) Voxel based character.

Figure 2.2: Two different types of 3D graphics. Source in appendix B.1 and
B.2 respectively.

A difference between polygon based representation and voxel based represen-
tation of 3D models is that polygons only describe the surface of an object,
whereas voxels describe the entire volume. This means that manipulation of
voxel models require less complex algorithms, and that many physical proper-
ties such as weight and deformation can be simulated with ease. Furthermore,
manually changing a voxel based object or landscape has proven very easy to
do for an untrained user.

2.2.4 What is a game?

The following definition of a game, by Salen and Zimmerman [2], can be used to
determine what a game is and consists of: “A game is a system in which players
engage in an artificial conflict, defined by rules, that results in a quantifiable
outcome.” Thus we can see that a game consists of four parts: Some players,
an artificial conflict, some rules and an outcome.

The artificial conflict takes place over time, and at any single point in time,
the artificial conflict is in some state, which depends on the state of the various
game objects at that point in time.

The rules of a game is possibly the most important aspect of a game, that a

10 Requirement Specification

game developer should to be able to change. In a game as Carl of Sheeponia,
the behavior of the sheep, wolfs and Carl are what the game developer should
be able to change. A technique that can be used to define behavior is that of
behavior trees. These have successfully been used in several games.

Other aspects of game rules may be assumed given, such as physical calculations
and rendering of the graphics.

2.2.5 Levels in a Game

While there isn’t in Carl of Sheeponia, other games may have a notion of different
levels within that game. An extension to Carl of Sheeponia where the notion
of levels might be needed, would be if Carl could travel to the moon. Then
the area of Sheeponia would be one level, and the area of the moon would be
another.

As with game objects, a game may have some metaphysical attributes. These
should be manifested in the levels, as they may change from level to level.

An assumption here is that all levels in a game share the same game object def-
initions, behaviors, rules and landscape definitions, and the distinction between
the different levels is what landscape and game objects they actually use, along
with the metaphysical attributes.

2.2.6 Behavior Trees

The behavior of game objects, including the player character, is in this project
created via behavior trees, a technique already used successfully in multiple
games.

Behavior trees are in their simplest form trees. It contains a number of different
types of nodes. One of the reasons to use behavior trees is that their graphical
nature (they are typically edited in a graphical editor) allows for designers, in
contrast to programmers, to define the behavior of the NPCs.

A behavior tree, and thus the different nodes, can have one of three return states
when evaluated: Success, fail and running. The semantics of the success and
fail states are similar to a boolean value, while the semantic of the running state
is that it is yet to complete and should thus be queried again. For example, if

2.2 Basic Concepts 11

a sheep should walk for 10 seconds, then until the 10 seconds has passed, the
walk action will return with a running state.

What type of nodes a behavior tree consists of differs a bit from source to source,
probably because it is a tool and not a theory, but below are some common node
types and their semantics.

Sequence Semantically similar to an and -list, in that it contains multiple child
nodes and will evaluate them in a serial manner until one fails, in which
case the sequence node fails. If all child nodes succeed, the sequence will
likewise succeed. If a child node returns with the running state, the se-
quence node will also return the running state, and the next time the
sequence node is queried it will continue with the child node that returned
with the running state.

Selector Similar to the sequence node, but negated, and thus semantically
similar to an or -list. Evaluates child nodes in a serial manner until one
succeeds, in which case the selector node succeeds. Like the sequence
node, at most one child node can be in the running state at a time.

Parallel The parallel node contains multiple child nodes. There is no definition
of the order or the manner, as long as all child nodes are evaluated even
if one is in the running state. This means that the evaluation can be
serial as with the sequence and selector nodes. Unlike the sequence and
selector nodes, any number of child nodes of the parallel node can be in
the running state at a time.

The semantics for when a parallel node succeeds or fails is a little unclear,
so I apply the semantics that the parallel node either succeeds or fails if
some pre-specified number of child nodes succeeds or fails, and until this
happens it keeps running and evaluates its child nodes.

Decorator This is not actually a specific node, but a class of nodes. Decorator
nodes have exactly one child node, and are used to change the behavior
of the subtree that is its child node. Decorator nodes can for instance
change the returned state of its child or restrict how often its child node
is evaluated. There is no specific set of decorator nodes to be included in
an implementation, and no matter the set it should optimally be possible
for the game developer to extent the set of decorator nodes.

Link Reference to another behavior tree. This ensures that it is possible
to make modular trees, where multiple different behaviors share sub-
behaviors. Upon evaluation, the link node will return the same value
as the referenced behavior tree.

12 Requirement Specification

Condition Contains a boolean expression. If the boolean expression evaluates
to true, the condition node returns successfully, and if it fails, so does the
condition node.

Action The action node evaluates a function-call, which must return with the
same state as a behavior tree, i.e. success, fail or running, which is also
the returned state of the action node.

Note that I earlier stated that behavior trees are trees. I will now reveal that
this is slightly untrue, given the nature of the link node. While it is true that
a behavior tree is a tree when ignoring the link node, the link node actually
transforms it into a directed and possibly cyclic graph. In any implementation,
care must be taken to ensure that the behavior trees are acyclic directed graphs.

The semantics for the different return states are clear when dealing with nodes
in a tree, but they are not completely clear when speaking of the return state
for an entire tree. Therefore I have chosen to define a semantic that relates to
the quantifiable outcome of a game, namely that if a behavior tree for a player
returns with the state success, then the game has been won for that player, and
if it returns with the state fail, then the game has been lost. For an NPC, the
semantics is that if its behavior tree returns in a different state than running,
then that NPC will be removed from the game.

While the action and condition nodes are similar to some extent, an additional
semantical difference between them can be defined, lending an observation from
functional programming: Conditions may not have side effects, while actions
may. This is an optional semantical addition to the behavior tree semantics.

In figure 2.3 can be seen an example of a partial behavior tree. The root is
a parallel node, containing a node defining the winning condition and a node
defining the losing condition, and a node containing some actions that has to
be performed at all times.

2.3 Game Development Requirements

As the output of this project should be a platform for developing games, it
should enable the user (game developer) of this product to have a great degree
of freedom. With greater degree of freedom also comes lack of focus, so to retain
the focus on developing games, the requirements will be based on a platform
that can create games within the genre First Person Shooter, in which the view
of the game is similar to the view of a person in real life, i.e. first person.

2.3 Game Development Requirements 13

Parallel
1, 1

Decorator
Wait For Success

Decorator
Wait For Failure

Decorator
Infinite Loop

Condition
Player.Attr

("Health") > 0

Condition
Player.Attr
("HasWon")

Parallel
-1, -1

Sequence ...

Condition
Player.Input. But-
tonDown("Jump")

Condition
Player.Character.
IsGrounded()

Action
Player.MoveY
(Player.Attr

("Jump Speed"))

Figure 2.3: A partial sample of a behavior tree from Carl of Sheeponia.

14 Requirement Specification

1. The game should take place in a simulated 3-dimensional world.

2. Simulation of a physical environment, including gravity, should be taken
as granted.

3. It should be possible to freely form a landscape in which the game takes
place.

4. It should be possible for the player of a game to alter the landscape.

5. It should be possible to freely shape the objects and creatures of the game.

6. It should be possible to freely determine the behavior of the creatures in
the game.

7. It should be possible to freely design and implement the game mechanics.

8. It should be possible to freely make the rules for when a game has ended.

9. It should be possible to freely create the initial state of the game.

10. Progression of the game, from one state to the next state, should happen
automatically based on the rules, game mechanics and winning/losing con-
ditions input by the game developer.

Chapter 3

System Architecture

Before presenting the different aspects of the implementation in this project, a
system overview will be given in this short chapter.

The system is roughly divided into four libraries, each consisting of multiple
modules. The most basic library is the voxel library, which describe a data
structure for voxel graphics, and provides methods for rendering voxel graphics
through Unity.

Next follows a conceptual game model, which defines abstract syntax in which
a game can be defined. A scanner/parser combination can transform a script in
a custom made language, into the model defined in the conceptual game model.

Finally there is a formal game model, which defines how a game behaves when
executed.

An overview of the system and the relations between the different libraries can
be seen in figure 3.1.

16 System Architecture

Voxel Library

Position
Mesh
Voxel
Chunk

Conceptual
Game Model
Game Objects
Landscape

Behavior Tree

Formal
Game Model
Game Model

State
Player Controller
Create Game

Scanner/Parser

Lexer
Parser

Figure 3.1: Overview of the different modules created in this project.

Chapter 4

Rendering Voxel Models

To avoid having to visualize each individual voxel, and avoid having to poten-
tially reconstruct large areas of the world after minor changes, the voxel data
structure is divided into chunks. A chunk is hyper-rectangular dense collection
of voxels, implemented as a 3-dimensional array along with the offset of the
chunk.

A landscape consists of a number of non-overlapping chunks of the same size,
ordered in a hyper-rectangular 3-dimensional array, and the appearance of a
game object can be described as a single chunk of some size. Doing this, and
considering the different chunks of a landscape to be independent, allows for the
visualization procedure to only have to consider single chunks.

This chapter describes an implemented voxel library, consisting of four modules.

4.1 Position

As the voxel library deals with 3-dimensional data, a Position type has been
created, denoting a position in 3D space, which can be seen below.

type Pos i t i on = f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2

18 Rendering Voxel Models

When dealing with axis aligned cubes, as voxel representations sometimes (and
in this project) are, the six faces can be described as being either the positive
or negative x-, y- or z-side. This is captured by the Direction type below.

type D i r e c t i on =
| XPos | XNeg | YPos | YNeg | ZPos | ZNeg

Some basic operations are supported on the Position and Direction types, for
which the signatures can be seen below.

va l Pos i t ionBinop :
(’ a −> ’b −> ’ c) −> ’ a ∗ ’ a ∗ ’ a −>
’b ∗ ’ b ∗ ’ b −> ’ c ∗ ’ c ∗ ’ c

va l PositionUnop :
(’ a −> ’b) −> ’ a ∗ ’ a ∗ ’ a −> ’b ∗ ’ b ∗ ’ b

va l Distance : Po s i t i on −> Pos i t i on −> f l o a t 3 2
va l I n c r e a s ePo s i t i o n InD i r e c t i on1 :

D i r e c t i on −> Pos i t i on −> Pos i t i on
va l I n c r e a s ePo s i t i o n InD i r e c t i on2 :

D i r e c t i on −> Pos i t i on −> Pos i t i on

The two functions PositionBinop and PositionUnop can be used to perform
simple operations on one or two positions, such as addition or type conversion.
The Distance function simply calculates the euclidian distance between two
positions.

The two functions IncreasePositionInDirection1 and IncreasePositionInDirec-
tion2 will, for a given direction, increase a given position in one of the other
two directions. As an example, the position (x, y, z) = (a, b, c) will for the
directions XPos and XNeg will return either (a, b+ 1, c) or (a, b, c+ 1).

The complete source code for the Position module can be seen in appendix
C.3.4.

4.2 Mesh

As mentioned in section 2.2.3, voxels can be visualized as polygon models. This
is the basis for visualization used in this project. To match the data structure
used by Unity for visualization, the voxel models have to be transformed into a
list of polygon meshes, each list containing only polygons of a single color, and
each mesh must consist of a list of vertices and a list of triangles, where the list

4.3 Voxel 19

of triangles is a list of integers of length 3n, where n is the number of triangles
in the list. This is captured by the Mesh type below.

type ’ a Mesh =
(UnityEngine . Vector3 l i s t) ∗ (i n t l i s t) ∗ (’ a)

The Mesh module contains a function to combine two lists of meshes, such that
meshes with the same color in the two lists will be concatenated to a single list.
The signature for this function can be seen below.

va l CombineMeshes :
(’ a ∗ ’ a −> bool) −> ’ a Mesh l i s t −>
’ a Mesh l i s t −> ’ a Mesh l i s t

The full source code for the Mesh module can be seen in appendix C.3.5.

4.3 Voxel

As the amount of voxels may sometimes be in the millions, a single voxel is
implemented here with a 16 bit (unsigned) integer, as seen below. By using a
primitive type, it is guaranteed that there is no overhead, as there may be for
other types.

type Voxel = uint16

With this implementation, the position of a voxel is not explicitly stored with
the representation for the voxel.

In the 16 bits used to represent a voxel, the last 12 bits represent the red, green
and blue colors respectively, each represented with 4 bits. Only one of the first
four bits are used, and it is used to mark a solid as solid, i.e. that it exists.

The Voxel module contains multiple functions to perform operations on/with
voxels. The signature for the most important functions can be seen below.

va l Voxe l I sVol id : Voxel −> bool
va l VoxelFromString : s t r i n g −> Voxel
va l VoxelToMesh :

D i r e c t i on −> Pos i t i on −> Voxel −> Voxel Mesh

The function VoxelIsSolid looks at the relevant bit in a voxel representation to
determine whether or not it is solid.

20 Rendering Voxel Models

The function VoxelFromString expects a string matching the regular expression
#̂[0 − 9a − fA − F]{3, 3}$, for example #F0F which denotes a voxel with
maximum red and blue, and no green. Voxels created with this function will
always be solid.

VoxelToMesh transforms a single voxel to a mesh for the face identified by the
given direction, by creating the two triangles that face consists of.

The source code for the Voxel module can be seen in appendix C.3.6.

4.4 Chunk

As mentioned earlier, the data for a voxel model, be it a landscape or a game
object, is divided into one or more chunks. The implementation of the chunk
type can be seen below.

type ChunkData = Voxel [, ,]
type Chunk = ChunkData ∗ Pos i t i on

The Chunk module contains multiple functions for calculating on/with chunks,
the signature of the most important which can be seen below.

va l ChunkdataFromString :
i n t −> in t −> in t −> (char −> Voxel opt ion) −>
Str ing −> ChunkData

va l ChunkToMesh :
D i r e c t i on −> Chunk −> Voxel Mesh l i s t

va l DisplayMeshes :
UnityEngine . GameObject −> Chunk −>
UnityEngine . Mater ia l −> Unit

The function ChunkdataFromString creates a chunk of some given dimensions
(the first three arguments), with the data from a string using a given function to
convert a single character to a voxel. For example, converting 0 to a non-solid
voxel and 1 to a solid voxel of some color, the string ‘01011111’ could denote a
2× 2× 2 chunk with 6 solid voxels.

ChunkToMesh converts a chunk to a list of meshes, creating only the meshes
that face a given direction. In order to minimize the size of the created polygon
meshes, a few techniques have been applied. First of all, neighboring voxels of
the same color are created as larger triangles covering all the voxels in rectangles.

4.4 Chunk 21

Figure 4.1: Example of a chunk converted to polygon meshes.

Secondly, voxels that can’t be seen are not visualized. An example of a chunk
mesh created in this way can be seen in figure 4.1, where it can be seen that the
meshes span rectangles of similarly colored voxels.

ChunkToMesh is implemented as a greedy algorithm. It iterates over all posi-
tions in the chunk, and for each position it attempts to greedily create a mesh
if the voxel at that position is visible and no mesh has been previously created
for that position. For a position for which a mesh needs to be created, the mesh
is maximized with a preference towards square or close to square meshes. A
neighboring voxel can be included if it is a voxel of the same color for which
no mesh has been created, or if it can’t be seen because it is blocked by a solid
voxel.

The function DisplayMeshes takes a chunk and creates the meshes for it in
all six directions, and assigns the calculated meshes to a Unity game object
(GameObject), allowing it to be rendered by Unity’s engine.

The source code for the Chunk module can be seen in appendix C.3.8.

22 Rendering Voxel Models

Chapter 5

Conceptual Game Model

Building on the basic concepts from section 2.2, this chapter gives a formal
definition of these concepts.

5.1 Game Objects

As mentioned, all three types of game objects (items, NPCs and player char-
acters) have an appearance and some attributes. Both of these can be thought
of as being a list of variables. The value of variables are here formalized as
being one of five primitive values: Integers, floats, strings, boolean values, or
3-dimensional positions. This can be formalized as such:

type Pr imit iveValue =
| PrimInt o f i n t
| PrimFloat o f f l o a t 3 2
| PrimStr o f s t r i n g
| PrimBool o f bool
| Pr imPosit ion o f f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2

The source code for the game objects listed below can be seen in appendix
C.3.10.

24 Conceptual Game Model

5.1.1 Items

Using the above definition of primitive values, items can be formalized as a
mapping from a variable name to its value, for both its appearance and its
attributes, as seen below.

type ItemDef =
{
Appearance : Map<st r ing , Pr imit iveValue >;
Attr : Map<st r i ng , Pr imit iveValue >;
}

5.1.2 Non Player Characters

The definition of an NPC is very similar to that of an item, except that an
NPC has a behavior, in this case in the form of a behavior tree. Assuming the
behavior tree is defined elsewhere with a name as key, an NPC can be modeled
as seen below.

type NpcDef =
{
Appearance : Map<st r ing , Pr imit iveValue >;
Attr : Map<st r i ng , Pr imit iveValue >;
BehaviorTree : s t r i n g ;
}

5.1.3 Player Characters

The player character is in many ways similar to an NPC, except that it has
a description of how the point of view of the game should be for the human
player, in the form of a camera description, as well as an inventory. Items in
the inventory has a name, and assuming that the items are defined elsewhere
and can be accessed via the item name, the inventory can be modeled as a map
from the inventory-name to the item-name. Below is a formal definition of a
player character.

type PlayerDef =
{
Appearance : Map<st r ing , Pr imit iveValue >;
Attr : Map<st r i ng , Pr imit iveValue >;

5.2 Landscape 25

BehaviorTree : s t r i n g ;
Camera : Map<st r i ng , Primit iveValue >;
Inventory : Map<st r ing , s t r i ng >;
}

5.2 Landscape

Defining a landscape can be accomplished in myriads of ways. Here I will focus
on a procedural definition of potentially infinite landscapes, using 2D and 3D
noise, which is formally defined in the following sections.

5.2.1 Height Maps

A height map is essentially a 2D noise map, using x- and z-coordinates to cal-
culate a y-coordinate. Four basic types of a height map are laid out below.

type Heightmap =
| Noise2D o f f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2
| Plane o f f l o a t 3 2
| Add2D o f Heightmap l i s t
| Offset2D o f Pos i t i on ∗ Heightmap
| HMRef o f s t r i n g

The first type is a noise map with two parameters for the horizontal size of the
noise, and a third parameter for the vertical height of the noise. The second type
is a plane, which defines a height map of constant height in all (x, z) positions.

The third type of height map is a sum of multiple height maps. The fourth
type is an offset of a height map, which offsets a height map by a 3-dimensional
vector. The last type of height map is a reference to another height map, under
the assumption that there is some environment containing height maps.

5.2.2 Volume Maps

Volume maps are in most senses similar to height maps, except that the noise
takes an extra parameter, corresponding to the extra dimension in the noise.

26 Conceptual Game Model

Furthermore, a volume map can’t have a plane, the same as a height map can.
Below is a formal definition of a volume map.

type Volumemap =
| Noise3D o f f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2
| Add3D o f Volumemap l i s t
| Offset3D o f Pos i t i on ∗ Volumemap
| VMRef o f s t r i n g

With the noise, the first three parameters define the sizes of the noise along each
axis, while the fourth parameter defines the weight of that particular volume
map.

5.2.3 Landscape Procedure

Besides the operations described in section 2.2.2, it should be possible to define
a landscape consisting solely of game objects or voxels, and it should be possible
give a reference to landscapes or voxels defined elsewhere. A formal description
of a landscape can be seen below.

type LandscapeDef =
| Heightmap o f Heightmap ∗ LandscapeDef ∗ LandscapeDef
| AreaMap o f Heightmap ∗ (Range l i s t) ∗ LandscapeDef
| VolumeMap o f Volumemap ∗ (Range l i s t) ∗ LandscapeDef
| LandscapeRef o f s t r i n g
| Gameobject o f s t r i n g ∗ s t r i n g
| VoxelVal o f Voxel
| VoxelRef o f s t r i n g

and Range = f l o a t 3 2 ∗ f l o a t 3 2 ∗ LandscapeDef

5.3 Levels

A level should have a name of the landscape in which the level takes place,
as well as the position at which the player starts and some attributes. The
attributes of a level have the same form as those of game objects. A formal
description of a level can be seen below.

type LevelDef =
{
Landscape : s t r i n g ;

5.4 Behavior Trees 27

PlayerSpawnPoint : Po s i t i on ;
Attr : Map<st r i ng , Pr imit iveValue >;
}

5.4 Behavior Trees

Following the semantical description of a behavior tree in section 2.2.6, a formal
model of a behavior tree can be built as seen below.

type BehaviorTree =
| Sequence o f BehaviorTree l i s t
| S e l e c t o r o f BehaviorTree l i s t
| P a r a l l e l o f i n t ∗ i n t ∗ (BehaviorTree l i s t)
| Decorator o f ActionExpr ∗ BehaviorTree
| Link o f s t r i n g
| Condit ion o f Expr
| Action o f ActionExpr

The behavior tree model must encompass, not just the behavior tree nodes
described in section 2.2.6, but also the expressions inherent in the decorator,
condition and action nodes as seen above. These are however left out of this
project, the reason for which is discussed in section 10.1.

The source code for the behavior trees, and a preliminary definition of expres-
sions, can be seen in appendix C.3.9.

5.5 Game Definition

Using the definitions from earlier in this chapter, a game definition can be seen
below.

type GameDef =
{
Leve l s : Map<st r i ng , LevelDef >;
Player : PlayerDef ;
Items : Map<st r i ng , ItemDef >;
Npcs : Map<st r i ng , NpcDef>;
BehaviorTrees : Map<st r ing , BehaviorTree >;
Voxels : Map<st r i ng , Voxel >;

28 Conceptual Game Model

Heightmaps : Map<st r ing , Heightmap>;
Volumemaps : Map<st r i ng , Volumemap>;
Landscapes : Map<st r ing , Landscape >;
}

Note that there is only one player, and all items, NPCs, levels, behavior trees
and various aspects of the landscape have a unique name within each type.
This means that there can both be an NPC with the name ‘Sheep’, as well as a
behavior tree with the name ‘Sheep’.

The source for the game definition above, as well as the level definition (and
game object definitions) can be seen in appendix C.3.10.

Chapter 6

Game Definition Language

In this chapter, I give some examples of a language that can be used to create
the conceptual game model described in chapter 5, along with a parser for this
language. The language is referred to as the game definition language.

The complete source for the parser can be seen in appendix C.2.2, and the source
for a lexer for this language can be seen in appendix C.2.1. The examples of
a game definition language used throughout this chapter is from a definition of
the game Carl of Sheeponia, and can be seen in its entirety in appendix C.1.1.

6.1 Generic Parts of the Parser

The parser contains some generic parts, which are used by the other definitions.
These generic are described without examples in this section.

A position, being a 3-dimensional coordinate, can be parsed via the following
parse rule.

Po s i t i on :
LPARAN Num COMMA Num COMMA Num RPARAN
{ ($2 , $4 , $6) }

30 Game Definition Language

Descriptions, such as the appearance and attributes of an item, are given by a
list of definitions. This is embodied in a named list, for which a parse rule can
be seen below.

NamedList :
| { [] }
| STRING EQ Primit iveValue NamedList

{ ($1 , $3) : : $4 }

The rule above uses the construction of primitive values. A parse rule for these
can be seen below.

Pr imit iveValue :
| INT { PrimInt $1 }
| FLOAT { PrimFloat $1 }
| STRING { PrimStr $1 }
| TRUE { PrimBool t rue }
| FALSE { PrimBool f a l s e }
| Po s i t i on { PrimPosit ion $1 }

In some (but not all) cases, there should be no distinction between an integer
and a float, which is embodied by the following parse rule.

Num:
| INT { $1 |> f l o a t 3 2 }
| FLOAT { $1 }

6.2 Items

An example of a definition of an item, namely a sword, can be seen below.
It contains two parts, one describing the appearance, and one describing the
metaphysical attributes.

Item Sword = (
Appearance = (

"Width" = 1
"Height " = 8
"Depth" = 3
"Color " = "#B83"
"Chunk" = "010 010 111 010 010 010 010 010"
"Center " = (0 . 5 , 1 . 5 , 1 . 0)
" Sca l e " = 0 .2)

6.3 Non Player Characters 31

Attr = (
"Weapon Type" = "Melee"
"Attack Strength " = 15))

Starting from the first set of parentheses, the item can be parsed via the following
parse rule:

ItemDef :
APPEARANCE EQ LPARAN NamedList RPARAN
ATTR EQ LPARAN NamedList RPARAN
{ {

Appearance = Map. o f L i s t $4 ;
Attr = Map. o f L i s t $9 ;

} }

6.3 Non Player Characters

As mentioned earlier, an NPC is similar to an item, except it has some behavior,
in this case in the form of a behavior tree. Excluding the appearance and
attribute definition, which has been seen in section 6.2, an NPC can be defined
as seen below, where the behavior tree is defined as a pointer to an otherwise
defined behavior tree.

NPC Sheep = (
Appearance = (. . .)
Attr = (. . .)
BehaviorTree = SheepBehavior)

An NPC can be parsed with the following parse rule.

NpcDef :
APPEARANCE EQ LPARAN NamedList RPARAN
ATTR EQ LPARAN NamedList RPARAN
BEHAVTREE EQ ID
{ {

Appearance = Map. o f L i s t $4 ;
Attr = Map. o f L i s t $9 ;
BehaviorTree = $13 ;

} }

32 Game Definition Language

6.4 Player Characters

The definition of a player character resembles that of an NPC, with the addition
of a camera and inventory definition. The camera is defined in the same manner
as the appearance and attributes, while the inventory resembles the behavior
tree definition in list form. An example of a player definition can be seen below.

Player = (
Appearance = (. . .)
Attr = (. . .)
BehaviorTree = PlayerBehavior
Camera = (

"Center " = (0 ,−1 ,0)
"Facing" = "Forward")

Inventory = (
"Weapon" = MeleeWeapon))

The player definition above can be parsed via the following parse rule.

PlayerDef :
APPEARANCE EQ LPARAN NamedList RPARAN
ATTR EQ LPARAN NamedList RPARAN
BEHAVTREE EQ ID
CAMERA EQ LPARAN NamedList RPARAN
INVENTORY EQ LPARAN ItemList RPARAN
{ {

Appearance = Map. o f L i s t $4 ;
Attr = Map. o f L i s t $9 ;
BehaviorTree = $13 ;
Camera = Map. o f L i s t $17 ;
Inventory = Map. o f L i s t $22 ;

} }

The player’s inventory is defined as a list of item references. A parse rule for
this can be seen below.

I temList :
| { [] }
| STRING EQ ID ItemList

{ ($1 , $3) : : $4 }

6.5 Height Maps 33

6.5 Height Maps

An example of a height map in the game definition language can be seen below.
It consists of four parts of three different types, namely an offset, an add and
two noise definitions.

Heightmap Underground = Of f s e t (0 ,−10 ,0) Add (
Noise (128 ,25)
Noise (16 ,7)

)

Height maps can be parsed via the following parse rule.

Heightmap :
| NOISE LPARAN Num COMMA Num RPARAN

{ Noise2D ($3 , $3 , $5) }
| NOISE LPARAN Num COMMA Num COMMA
Num RPARAN
{ Noise2D ($3 , $5 , $7) }

| PLANE Num
{ Plane $2 }

| ADD LPARAN HeightmapList RPARAN
{ Add2D $3 }

| OFFSET Pos i t i on Heightmap
{ Offset2D ($2 , $3) }

| HEIGHTMAP LPARAN ID RPARAN
{ HMRef $3 }

The parse rule for the add type of a height map takes a list of height maps.
Semantically it doesn’t make sense to calculate the sum of zero height maps, so
the height map list is defined as a non-empty list. A parse rule for this can be
seen below.

HeightmapList :
| Heightmap

{ [$1] }
| Heightmap HeightmapList

{ $1 : : $2 }

34 Game Definition Language

6.6 Volume Maps

Below can be seen an example of a volume map in the game definition language.

Volumemap C l i f f s = Add (
Noise (32 ,3)
Noise (8 , 3)
Noise (2 , 1)

)

Volume maps can be parsed via the following parse rule. As expected, the parse
rule for a volume map closely matches that of a height map.

Volumemap :
| NOISE LPARAN Num COMMA Num RPARAN

{ Noise3D ($3 , $3 , $3 , $5) }
| NOISE LPARAN Num COMMA Num COMMA
Num COMMA Num RPARAN
{ Noise3D ($3 , $5 , $7 , $9) }

| ADD LPARAN VolumemapList RPARAN
{ Add3D $3 }

| OFFSET Pos i t i on Volumemap
{ Offset3D ($2 , $3) }

| VOLUMEMAP LPARAN ID RPARAN
{ VMRef $3 }

As with height maps, the rule for addition of multiple volume maps requires a
non empty list of volume maps. This can be parsed via the following parse rule.

VolumemapList :
| Volumemap

{ [$1] }
| Volumemap VolumemapList

{ $1 : : $2 }

6.7 Landscapes

An example of a landscape in the game definition language can be seen below.
Note that this landscape has a reference to the height map given as an example
in section 6.5 and volume map given as an example in section 6.6.

6.7 Landscapes 35

Landscape Sheeponia = Heightmap (
Heightmap (Underground)
Volumemap(

Volumemap(C l i f f s)
(−100 ,1 , Voxel (Dirt))
AirVoxel)

Landscape (Grass))

Landscapes can be parsed via the following three parse rule. Note that the
game object rule from the conceptual model given in section 5.2.3 are explicitly
defined here as being able to yield items and NPCs only. In addition, a keyword
for a non-existing voxel is added, namely airvoxel.

Landscape :
| HEIGHTMAP LPARAN Heightmap

Landscape Landscape RPARAN
{ Heightmap ($3 , $4 , $5) }

| AREAMAP LPARAN Heightmap
RangeList Landscape RPARAN
{ AreaMap($3 , $4 , $5) }

| VOLUMEMAP LPARAN Volumemap
RangeList Landscape RPARAN
{ VolumeMap($3 , $4 , $5) }

| LANDSCAPE LPARAN ID RPARAN
{ LandscapeRef $3 }

| NPC LPARAN ID RPARAN
{ Gameobject ("Npc" , $3) }

| ITEM LPARAN ID RPARAN
{ Gameobject (" Item " , $3) }

| STRING
{ VoxelVal (VoxelFromString $1) }

| AIRVOXEL
{ VoxelVal a i rVoxe l }

| VOXEL LPARAN ID RPARAN
{ VoxelRef $3 }

The area map and volume map rules above make use of a range list. This is
assumed to be a non-empty list. Two parse rules defining non-empty range lists
and ranges can be seen below.

RangeList :
| Range { [$1] }
| Range RangeList

{ $1 : : $2 }

36 Game Definition Language

Range :
LPARAN Num COMMA Num COMMA
Landscape RPARAN
{ ($2 , $4 , $6) }

6.8 Levels

An example of a level in the game definition language can be seen below. It has
a reference to the landscape defined in section 6.7.

Leve l CarlOfSheeponia = (
Landscape = Sheeponia
PlayerSpawnPoint = (0 , 5 , 0)
Attr = ())

Levels can be parsed via the following parse rule.

LevelDef :
LANDSCAPE EQ ID
PLAYERSPAWNPOINT EQ Pos i t i on
ATTR EQ LPARAN NamedList RPARAN
{ {

Landscape = $3 ;
PlayerSpawnPoint = $6 ;
Attr = Map. o f L i s t $10 ;

} }

6.9 Behavior Trees

A partial definition of a behavior tree for a player, given in the game definition
language, can be seen below. Note that, relating to the semantics for the return
state of a behavior tree of a player as given in section 2.2.6, the first two decorator
nodes define the losing and winning condition for the player.

BehaviorTree PlayerBehavior =
Pa r a l l e l (1 , 1) (

Decorator (WaitForFai lure ())
Condit ion (Player . Attr (" Health ") > 0)

6.9 Behavior Trees 37

Decorator (WaitForSuccess ())
Condit ion (Player . Attr ("HasWon"))

Decorator (I n f i n i t eLoop ())
P a r a l l e l (−1,−1) (

Sequence (
Condit ion (Player . Input . ButtonDown("Jump"))
Condit ion (Player . Character . IsGrounded ())
Action Player .MoveY (Player . Attr ("Jump Speed "))

)
. . .

)
. . .

)

Behavior trees can be parsed via the following parse rule, with the expression
(Expr) and action-expression (ActionExpr) rules described in section 6.10.

BehaviorTree :
| SEQUENCE LPARAN BehaviorTreeList RPARAN

{ Sequence $3 }
| SELECTOR LPARAN BehaviorTreeList RPARAN

{ Se l e c t o r $3 }
| PARALLEL LPARAN INT COMMA INT RPARAN
LPARAN BehaviorTreeList RPARAN
{ Pa r a l l e l ($3 , $5 , $8) }

| DECORATOR LPARAN ActionExpr RPARAN
BehaviorTree
{ Decorator ($3 , $5) }

| LINK ID
{ Link $2 }

| CONDITION LPARAN Expr RPARAN
{ Condit ion $3 }

| ACTION ActionExpr
{ Action $2 }

A, possibly empty, list of behavior trees can be parse via the following parse
rule.

BehaviorTreeList :
| { [] }
| BehaviorTree BehaviorTreeList

{ $1 : : $2 }

38 Game Definition Language

6.10 Expressions

As mentioned in section 5.4, expressions are left out of this project, but a pre-
liminary parser, based on the preliminary conceptual model for expressions seen
in appendix C.3.9, can be seen in the parser definition in appendix C.2.2.

6.11 Game Definition

Building on the definitions earlier in this chapter, the definition of a complete
game can be parsed via the following parse rule. Note that all objects but
the player has an associated name (ID), and the addition of a voxel rule. The
DefaultGame object in the last line of the definition below is an empty game
definition record, used as a starting point.

GameDefinit ion :
| LEVEL ID EQ LPARAN LevelDef RPARAN GameDefinit ion

{ l e t v = $7 ;
{v with Leve l s = v . Leve l s .Add($2 , $5)} }

| PLAYER EQ LPARAN PlayerDef RPARAN GameDefinit ion
{ l e t v = $6 ;

{v with Player = $4} }
| ITEM ID EQ LPARAN ItemDef RPARAN GameDefinit ion

{ l e t v = $7 ;
{v with Items = v . Items .Add($2 , $5)} }

| NPC ID EQ LPARAN NpcDef RPARAN GameDefinit ion
{ l e t v = $7 ;

{v with Npcs = v . Npcs .Add($2 , $5)} }
| BEHAVTREE ID EQ BehaviorTree GameDefinit ion

{ l e t v = $5 ;
l e t bts = v . BehaviorTrees .Add($2 , $4)
{v with BehaviorTrees = bts } }

| VOXEL ID EQ STRING GameDefinit ion
{ l e t v = $5 ;

l e t voxe l = VoxelFromString $4
{v with Voxels = v . Voxels .Add($2 , voxe l)} }

| HEIGHTMAP ID EQ Heightmap GameDefinit ion
{ l e t v = $5 ;

{v with Heightmaps = v . Heightmaps .Add($2 , $4)} }
| VOLUMEMAP ID EQ Volumemap GameDefinit ion

{ l e t v = $5 ;

6.11 Game Definition 39

{v with Volumemaps = v . Volumemaps .Add($2 , $4)} }
| LANDSCAPE ID EQ Landscape GameDefinit ion

{ l e t v = $5 ;
{v with Landscapes = v . Landscapes .Add($2 , $4)} }

| EOF
{ DefaultGame }

40 Game Definition Language

Chapter 7

Constructing the Game
Model

Now that most of the process of developing a game has been discussed, all that
needs to be discussed is how to actually create a game from the different object
definitions. What a game formally is and consists of, is presented in this chapter.

A few general purpose functions has been created, which can be seen in appendix
C.3.3. A module that binds together the concepts from this chapter and creates
a game from it can be seen in appendix C.3.12, and a class that allows Unity to
make use of it can be seen in appendix C.3.13.

7.1 Visual Voxel Object

As described in chapter 4, the appearance of the landscape and game objects
are represented internally as one or more chunks, and transformed to a mesh
and added to a Unity game object (GameObject). To maintain a connection
between the internal representation and Unity’s rendering, a type called Visu-
alVoxelObject is used, which can be seen below.

type VisualVoxelObject =
UnityEngine . GameObject ∗ Chunk ∗ f l o a t 3 2

42 Constructing the Game Model

The first part of the tuple is a game object as represented by Unity. The second
part is the voxel data in the form of a chunk, and the third part is the scale of
the voxel model, where the landscape always has a scale of 1.

Given an appearance definition of type Map<string, PrimitiveValue>, a Vi-
sualVoxelObject can be created with the following algorithm, which looks for
certain keywords in the given appearance definition:

l e t CreateVisua lObject (appearence : Map<_,_>) goT i t l e =
l e t s c a l e =

match appearence . TryFind " Sca l e " with
| Some (PrimFloat f) when f > 0 .0 f −> f
| Some (PrimInt i) when i > 0 −> f l o a t 3 2 i
| _ −> 1.0 f

l e t chunkstr =
match appearence . TryFind "Chunk" with
| Some (PrimStr s) −> s
| _ −> ""

l e t v ox e l c o l o r =
match appearence . TryFind "Color " with
| Some (PrimStr s) −> s
| _ −> "#0 f f "

l e t char tovoxe l c =
match c with
| ’1 ’ −> Some (VoxelFromString vox e l c o l o r)
| ’ 0 ’ −> Some a i rVoxe l
| _ −> None

l e t getdim s =
match appearence . TryFind s with
| Some (PrimInt i) when i > 1−> i
| _ −> 1

l e t (w, h , d) =
(getdim "Width" , getdim "Height " , getdim "Depth ")

l e t chunkdata =
ChunkdataFromString w h d char tovoxe l chunkstr

l e t cente rpos : Po s i t i on =
match appearence . TryFind "Center " with
| Some (PrimPosit ion (x , y , z)) −> (x , y , z)

| _ −>
(f l o a t 3 2 w / 2 .0 f ,

f l o a t 3 2 h / 2 .0 f ,
f l o a t 3 2 d / 2 .0 f)

(new UnityEngine . GameObject (goT i t l e) ,
(chunkdata , cente rpos) ,

7.2 Creating Game Objects 43

s c a l e)

Notice that this algorithm doesn’t visualize the voxel model. However, given
the ChunkToMesh algorithm described in section 4.4, visualizing a voxel model
is merely a matter of creating the meshes and assigning them to the Unity game
object model.

The argument goTitle in the above algorithm is a string, which will be the name
of the game object in Unity.

7.2 Creating Game Objects

As both items and NPCs can be considered to be simplified versions of a player
character, I will here demonstrate how to create a player character only, with
creation of items and NPCs following similar but simpler procedure.

To instantiate a player character object, a player definition as defined in section
5.1.3 is needed, and can be transformed to the following model:

type Player =
{
appearence : VisualVoxelObject ;
a t t r : Map<st r ing , Pr imit iveValue >;
behaviorTree : BehaviorTree ;
behav iorTreeStatus : BehaviorTreeStatus ;
inventory : Map<st r ing , Item>;
}

How to create the appearance is discussed in section 7.1. Due to the immutabil-
ity of the Map type, the attributes can be assigned directly. The same with
the behavior tree. The inventory can be readily created, given the assumption
that items can be readily created. The BehaviorTreeStatus type is related to
the evaluation of a behavior tree, and is discussed more in section ??.

The full source code for the player character, NPC and item representations can
be seen in appendix C.3.11, along with algorithms to instantiate them from the
definitions given in section 5.1.

44 Constructing the Game Model

7.3 Evaluate a Landscape Definition

Evaluating a height map, a volume map or a landscape is relatively straight
forward. I will give an example of each of these below, and the full source code
for all three can be seen in appendix C.3.7. In all three cases, it is possible to
have a reference to another height map, volume map, landscape, a voxel or a
game object of some type. Therefore they make use of a record with functions
to retrieve the referenced values from some environment, as defined below:

type ’ a LandscapeEnv =
{
GetHeightmap : s t r i n g −> Heightmap opt ion ;
GetVolumemap : s t r i n g −> Volumemap opt ion
GetLandscape : s t r i n g −> Landscape opt ion ;
GetVoxel : s t r i n g −> Voxel opt ion ;
GetObject : s t r i n g −> s t r i n g −> ’ a ;
}

Evaluation of the height maps and volume maps require some noise function,
which here is a Simplex-Perlin implementation from an external source listed in
appendix B.4, as seen below.

l e t i n t e r n a l NoiseGen =
new Graphics . Tools . Noise . Pr imi t ive . S implexPer l in ()

Evaluating a height map for some (x, z) coordinate yields a y-value for those
coordinates. A small sample of the implementation can be seen below.

l e t r e c EvaluateHeightmap landscapeenv x z hm =
match hm with
| Noise2D (sx , sz , weight) when

sx <> 0.0 f && sz <> 0.0 f && weight <> 0.0 f −>
NoiseGen . GetValue (x / sx , z / sz) ∗ weight

. . .

Evaluating a volume map for some (x, y, z) coordinate yields a numerical value
for that coordinate. A small sample of the implementation can be seen below.

l e t r e c EvaluateVolumemap landscapeenv pos vm =
match vm with
. . .
| Add3D vms −>

Li s t .map
(EvaluateVolumemap landscapeenv pos) vms

7.4 Formal Game Model 45

|> L i s t . f o l d (fun a b −> a + b) 0 .0 f
. . .

Evaluating a landscape yields a value of the type LandscapeResult, which can
be seen below. This is used because the landscape procedure should not only
be able to create a voxel landscape, but also some form of game objects within
the landscape.

type ’ a LandscapeResult =
| VoxelValue o f Voxel
| Object o f ’ a

A sample of the algorithm for evaluating a landscape can be seen below.

l e t r e c EvaluateLandscape landscapeenv landscape
((x , y , z) as pos) =

l e t eva l l and = EvaluateLandscape landscapeenv
match landscape with
| Heightmap (hm, landbelow , landabove) −>

l e t hmy = EvaluateHeightmap landscapeenv x z hm
l e t landscape ’ =

i f hmy > y
then landbelow
e l s e landabove

eva l l and landscape ’ pos
. . .

7.4 Formal Game Model

Here follows an attempt at making a formal definition of what a game is, using
the definition by Salen and Zimmerman mentioned in section 2.2.4.

The outcome can for each player only ever be won, lost or tied. Each of these
outcomes may be applied to each individual player, which then signifies the end
of the game for that player. This matches the quantifiable outcome from Salen
& Zimmerman’s definition, and conveniently also matches the three possible
end-states of for instance a soccer match. Thus the outcome can be defined as
follows:

type Result =
| Won

46 Constructing the Game Model

| Lost
| Tie

type Outcome<’s , ’p> =
’ s −> ’p −> Result opt ion

The semantics is that, in some state, the game is over for some player if the
outcome-function returns a value different from None, and the quantifiable out-
come can then be read from the returned value. In the case of Carl of Sheeponia,
the game is lost when the player’s health reaches zero, but can never be won
nor tied.

The rules can in general be put into one of three categories: Rules that apply to
a single player in a certain state, rules that apply to all players, and rules that
apply to just the state and no players. This can be formally defined as follows:

type Rule<’s , ’p> =
| PerPlayerRule o f (’ s −> ’p −> ’ s)
| Al lPlayerRule o f (’ s −> (’ p l i s t) −> ’ s)
| StateRule o f (’ s −> ’ s)

Note that in this case AllPlayerRule encompasses the other two rules, but for
convenience for the game developer, all three rules are defined. The rules are
evaluated as follows:

l e t EvaluateRule p l aye r s s t a t e r u l e =
match ru l e with
| PerPlayerRule f −>

Li s t . f o l d f s t a t e p l aye r s
| Al lPlayerRule f −>

f s t a t e p l aye r s
| StateRule f −>

f s t a t e

Note that the PerPlayerRule may, in cases of multiple players, give some players
an advantage to exploit in that PerPlayerRule is always evaluated in a serial
fashion in the same order. If a rule is expected to be performed in parallel for
all players at the same time, AllPlayerRule should be used, which can either
calculate the rule in parallel and handle conflicts, or calculate the rule in serial
and hide this with for instance a randomization of the order.

Realizing that the state of a game changes throughout the entire execution of
the game, and using the above definitions, a game can be defined as below.

7.5 State Definition 47

type Game<’s , ’p> =
’p l i s t ∗ (Rule<’s , ’p> l i s t) ∗ Outcome<’s , ’p>

Using this definition, the process of going from one state to the next can be
calculated as follows:

l e t GameStep ((p layers , ru l e s , outcome) : Game<_,_>) s t a t e =
l e t GameNotEnded p laye r =

outcome s t a t e p laye r = None
l e t a c t i v e p l a y e r s =

L i s t . f i l t e r GameNotEnded p l aye r s
l e t EvalRule s t a t e r u l e =

EvaluateRule a c t i v e p l a y e r s s t a t e r u l e
match a c t i v e p l a y e r s with
| [] −> (state , f a l s e)
| _ −> (L i s t . f o l d EvalRule s t a t e ru l e s , t rue)

Note that there is a specific order of the rules, which can be exploited to give a
priority to some rules.

The source code for this definition of a game can be seen in appendix C.3.1.

7.5 State Definition

Now that a formal definition of a game has been given, and most, if not all,
individual parts of the game and the development of it has been discussed, the
game state can be defined.

Recall that the evaluation of a landscape may return either a voxel or some
form of an object. Using the concepts for game objects used in this project, the
two types of objects that can be created in the landscape are items and NPCs,
which is captured by the ItemNpc type below.

type ItemNpc =
| ItemRes o f ItemDef
| NpcRes o f NpcDef

The landscape of a game should be able to be partially exchanged when the
player moves around, and thus the landscape should consist of multiple chunks.
These are stored in a hyper-rectangular 3-dimensional array of VisualVoxelOb-
jects. Besides that, the minimum (x, y, z) coordinate of the list of chunks, or the

48 Constructing the Game Model

offset of the landscape, is stored, and a list of chunks that need to be recreated,
either because the view has changed or because the chunk data has changed, as
well as the dimensions of each chunk and the amount of chunks in the landscape.
Furthermore a function to create a voxel (or game object) at a given position is
stored. All together, these form the landscape in a game state, as seen below.

type Landscape =
{
chunks : (VisualVoxelObject opt ion) [, ,] ;
l ands capeOf f s e t : Po s i t i on ;
re freshChunks : Pos i t i on l i s t ;
voxe lCreator : Po s i t i on −> ItemNpc LandscapeResult ;
chunkDimensions : i n t ∗ i n t ∗ i n t ;
chunkAmount : i n t ∗ i n t ∗ i n t ;
}

Apart form the Landscape type above, the state of a game is merely a list of
items, a list of NPCs, a single player character and some attributes, as defined
below.

type State =
{
landscape : Landscape ;
i tems : Item l i s t ;
npcs : Npc l i s t ;
p l aye r : Player ;
a t t r : Map<st r ing , Pr imit iveValue >;
}

7.6 Player Definition

As can be seen in the evaluation of a game in section 7.4, while the state may
change over time, the player(s) remain constant. As such, the player of a formal
game is here defined as a mapping between the human-computer interface and
the game, as can be seen below.

type InputButton =
| Key o f UnityEngine . KeyCode
| MouseButton o f i n t

type Input =
| Button o f s t r i n g ∗ InputButton
| Axis o f s t r i n g ∗ s t r i n g

7.6 Player Definition 49

type P laye rCont ro l l e r = Input l i s t

From this can be seen that input may have one of two forms: Either a button
or an axis. Information about a button, for instance whether it is currently
pressed, may at any time return either true or false, while an axis will yield a
number between -1 and 1 depending on the state. For instance, can a 1-axis
joystick be at any position between its two extreme positions.

Getting information about a button can happen via the following algorithm.

l e t PlayerButton keyf mousef c o n t r o l l e r name =
l e t buttonPressed (input : Input) : bool =

match input with
| Button (name ’ , inputbutton) when name ’ = name −>

match inputbutton with
| Key(kc) −>

keyf kc
| MouseButton (n) −>

mousef n
| _ −>

f a l s e
L i s t . e x i s t s buttonPressed c o n t r o l l e r

The above algorithm requires two functions as parameters. Below are three
examples of this with Unity specific functions.

l e t PlayerButtonPressed =
PlayerButton (UnityEngine . Input . GetKey)

(UnityEngine . Input . GetMouseButton)
l e t PlayerButtonDown =

PlayerButton (UnityEngine . Input .GetKeyDown)
(UnityEngine . Input . GetMouseButtonDown)

l e t PlayerButtonUp =
PlayerButton (UnityEngine . Input . GetKeyUp)

(UnityEngine . Input . GetMouseButtonUp)

The state of an axis can be fetched via the following algorithm, taking a Play-
erController and an axis-name as parameters.

l e t PlayerAxis c o n t r o l l e r name =
l e t f i n d a x i s input =

match input with
| Axis (name ’ , _) −>

name ’ = name

50 Constructing the Game Model

| _ −> f a l s e
match L i s t . tryFind f i n d a x i s c o n t r o l l e r with
| Some(input) −>

match input with
| Axis (_, name ’) −>

UnityEngine . Input . GetAxis (name ’)
| _ −>

0.0 f
| _ −>

0.0 f

The source code for the player controller can be seen in appendix C.3.2.

7.7 Winning and Losing Conditions

As mentioned in section 2.2.6, the winning and losing conditions are here based
on the result of the behavior tree for the player. Thus the outcome for a game
can be defined as below.

l e t OutcomeFunction : Outcome<State , P laye rCont ro l l e r> =
fun (s t a t e : State) _ −>

match s t a t e . p laye r . behav iorTreeStatus with
| BTSuccess −> Some Won
| BTFail −> Some Lost
| _ −> None

Chapter 8

Tests

At least two specific types of tests need to be accomplished on a project such
as this: System tests, evaluating the system as a whole, and functional tests,
evaluating the individual parts. This chapter will discuss a few examples of how
these tests could be constructed.

8.1 System tests

System tests of a game development platform takes the form of taking a game
definition as input, and should as output give a game following the given defi-
nition. In this project, this falls within three areas: Landscapes, game objects
and behavior trees.

8.1.1 Landscape creation

The first thing to be tested here is whether a landscape definition is evaluated
as expected. In figure 8.1 can be seen a landscape generated from the Carl of
Sheeponia definition as given in appendix C.1.1. Based on multiple landscapes

52 Tests

Figure 8.1: A section of the landscape of Carl of Sheeponia.

inspected through Unity’s ability to inspect a game, the landscape procedure
seems to work as intended.

8.1.2 Game object creation

In the landscape generated above can also be seen some sheep and wolfs. Taking
a closer look at a wolf, as seen in figure 8.2, reveals that this seems to be rendered
as it should.

8.1.3 Mesh creation

By making use of some of Unity’s features, the game can be paused and inspected
in more detail. In figure 8.3 can be seen the meshes of the wolf as seen above.
This reveals that the number of polygons is minimized, as expected.

8.2 Other Tests Needed

Other than system tests, there should be some automated tests that verify the
individual parts of the platform, for instance by creating the polygon mesh for a
specific chunk and count the amount of created polygons. Unfortunately, none

8.2 Other Tests Needed 53

Figure 8.2: A wolf from Carl of Sheeponia.

Figure 8.3: Example of the polygons a wolf consists of.

54 Tests

such tests has been created in this project. However, two important parts to be
tested via automated tests is the scanner/parser of the game definition language,
and the evaluation of behavior trees/expressions.

Chapter 9

Results

In this project, a game definition language has been created, which divides a
game into common parts, specifically game objects consisting of items, NPCs
and player characters, landscapes built using height and volume maps, and
behavior of NPCs and player characters defined via behavior trees.

For transforming an instance of the game definition language into a game, a
scanner/parser has been created which transforms it into a conceptual model
of a game. From this conceptual model, a game can be created and formed
into a formal game following the definition given in section 7.4. The rules of
the created game can be modified by modifying the behavior of the NPCs and
player characters in the game. A state and a player controller for the formal
game model has been created. A partial transformation from a conceptual game
model to a formal game model has been created.

The implementation of scripting behavior via behavior trees has shown that
there is an unfulfilled need to be able to also define the actions, decorators and
possibly more functions.

56 Results

9.1 Landscapes

Along with a definition of a landscape, an evaluation of a landscape has been
created, as well as a voxel library for displaying the landscape. An example of
an incremental creation of a landscape is discussed in this section.

A natural starting point for creating a landscape is that of a plane, as can be
seen below. The result of this can be seen in figure 9.1a.

Landscape Result1 = Heightmap (
Plane 0 .0
"#930"
AirVoxel

)

Adding some large hills to the landscape can be done by replacing the plane
with a noise-function as below. The result of this can be seen in figure 9.1b.

Landscape Result2 = Heightmap (
Noise (32 ,5)
"#930"
AirVoxel

)

Instead of large hills, small hills can be created by tweaking the parameters for
the noise-function, as below. The result of this can be seen in figure 9.1c.

Landscape Result3 = Heightmap (
Noise (4 , 1)
"#930"
AirVoxel

)

Creating a more natural landscape, with a combination of the two previous
noise-functions, can be done by adding them together as can be seen below.
The result of this can be seen in figure 9.1d.

Landscape Result4 = Heightmap (
Add(

Noise (32 ,5)
Noise (4 , 1)

)
"#930"
AirVoxel

9.1 Landscapes 57

(a) Flat landscape. (b) Large hills.

(c) Small hills.
(d) Small and large hills com-

bined.

Figure 9.1: Examples of height map landscapes.

)

Building on the landscape in figure 9.1b, the landscape can be divided into areas
(like countries) as below, the result of which can be seen in figure 9.2a.

Landscape Result5 = Heightmap (
Noise (32 ,5)
Areamap(

Noise (8 , 5)
(−1000,−3,"#0 f f ")
(0 ,2 ,"# f 0 f ")
"#930"

)
AirVoxel

)

So far, the landscapes have been created by using height maps only. By using
volume maps as well, 3-dimensional structures such as caverns can be created.

58 Results

(a) Area map. (b) Area and volume map.

Figure 9.2: Examples of landscapes with area and volume maps.

An example of this can be seen below, and the result of this is displayed in figure
9.2b.

Landscape Result6 = Heightmap (
Noise (32 ,5)
Volumemap(

Noise (16 ,5)
(−1000 ,0 , AirVoxel)
Areamap(

Noise (8 , 5)
(−1000,−3,"#0 f f ")
(0 ,2 ,"# f 0 f ")
"#930"

)
)
AirVoxel

)

All of the examples from this section can also be found in appendix C.1.2.

Chapter 10

Discussion

The created game definition language is tailored to games, unlike most other
programming languages, and while it doesn’t do it yet, it is intended to cover all
aspects of game development. However, it is not intended that all development
should happen through scripting, as aspects such as 3-dimensional models can
only be scripted to a very limited degree. Instead the idea is to create graphical
editors, for which the output is in the format of the game definition language.
This gives a few advantages, most notably it allows for fast prototyping of simple
elements through scripting, and more advanced elements through specialized
editors. And hopefully (this has not been tested) it will allow games developed
with this language to be seamlessly used in version control software such as Git,
SVN and CVS.

While the created game definition language is targeted towards first person
games with a single player, only few elements in the language is tailored for
this, and as such it should be easily extensible to other genres and multiple
players. However, with multiple players on multiple computers, the underlaying
architecture would have to be changed to support a client/server structure. This
itself brings other problems, such as where to calculate the computations of game
logic: On the server or on the client. Calculating them on the server only puts
a lot of strain on the server, and calculating them on the clients only enables
clients to cheat with the calculations and give the cheating users an advantage.
This could potentially be mitigated by performing the calculations on the client,

60 Discussion

and have the server make random checks of the calculations performed by the
clients.

Some definitions of what a game is or consists of, talk about more abstract terms
such as fun and challenges. While these definitions can help understand what
a game is, and help make a game, they are not very useful for creating a game
development platform. For this, only a definition that can be formalized can be
used, such as the one by Salen & Zimmerman which is used in this report.

Creating a landscape with the game definition language is very simple, once the
semantics of the language are understood. Landscapes created in this manner
are infinite, and unless specifically defined to not be, they will be continuos.
Further more, the use of Simplex/Perlin noise has been used in many other
projects to create textures, landscapes and more, that seem natural.

The implementation of behavior trees has shown that behavior trees can indeed
be used in scripting, provided that it is still possible to create functions in an
imperative or similar language. Some aspects are still lacking in this implemen-
tation though, primarily adding semantics to sub-trees in the behavior trees, for
instance via specifically constructed comments.

The classification of game objects into items, NPCs and player characters may
make the game development process simpler, as the game developer doesn’t
have to worry about what classes of objects should appear in his or her game,
but this also reduces the flexibility of the solution.

While one of the arguments for creating a voxel based game development plat-
form was the ability for the game developer to easily modify the landscape
manually, this has not been implemented in this project. However, this ability
has been demonstrated in other projects, in particular in the game Minecraft, in
which many impressive structures has been created by the users. Furthermore
it can be argued that there is a lack of voxel based game development platforms
on the market.

The goal as described in section 1.1 hasn’t been completely reached, as it is not
possible to create a working game, but the essential components of creating a
game has been identified, and some of them implemented. The primary task
left is to implement an interpreter for the behavior trees, which in itself is no
small task.

10.1 Future Work 61

10.1 Future Work

All in all, it is a very large project to create a game development platform, and
it has been far from finished here. Therefore this section give some remarks
on some of the most important areas for further development, besides finishing
what has already been started.

As mentioned, it should be possible for the game developer to create functions.
For this end, it would probably be a good idea to use an existing language.
A candidate could be LUA, which is a scripting language already in use in
many games, and thus would reduce the entry barrier to this game development
platform for some game developers.

In this project, only single player games can be created. It is prudent to mitigate
this for obvious reasons.

Besides creating a WYSIWYG editor for editing the 3D-models used, it should
also be possible to create composite voxel models, i.e. a single object consisting
of multiple voxel models, each which can be freely rotated and positioned ac-
cording to the other. The various models of a single object could be joined by
hinges, which would enable animations of the objects.

The current state of creating landscapes is simple yet powerful, but adding
a few tools may make it even more powerful. Specifically should be added
multiplication of multiple height maps or volume maps, using a height map to
create a gradient in volume maps, and adding voxel models to the landscape
(as a part of the landscape, not as game objects) after the landscape has been
created, which would enable trees and cities to be a part of the landscape.

A very important addition is to be able to serialize and deserialize the state of
a game, such that a game may be stopped and resumed at any time the human
player wishes. Currently, the game has to be played from start to end in one
sitting.

It should be possible to add sounds to the game. Adding sounds would be
required to be as external resources, as it is not expected that it is possible to
create sounds from scratch via scripts.

62 Discussion

Appendix A

Glossary

FSLex Transforms a definition of a lexer into F#. Part of the F# PowerPack.

FSYacc Transforms a definition of a parser into F#. Part of the F# Power-
Pack.

Polygon A single triangle located in 3-dimensional space.

Polygon count A metric used for optimizing the speed at which games can
run, by determining how many polygons some model consists of.

Polygon mesh A collection of polygons that forms one or more surfaces.

Voxel Contraction of volumetric pixel. A point in a 3-dimensional grid with an
associated value.

WYSIWYG What You See Is What You Get - a class of graphical editors,
where the output is the same or very close to the same as seen in the
editor.

64 Glossary

Appendix B

External Sources

This appendix contains the sources of images from external sources, and a library
used in the code.

B.1 Wireframe Character

Image from an external source. Per 26/8/2013:
http://www.rocketbox-libraries.com/index.php/characters/complete-characters/
cc-sportive-03-f.html
http://www.rocketbox-libraries.com/media/catalog/product/cache/1/image/
5e06319eda06f020e43594a9c230972d/s/p/sportive03_f_lods_wire0000.jpg

B.2 Voxel Character

Image from an external source. Per 26/8/2013:
https://picroma.com/cubeworld
https://picroma.com/images/Avatar.jpg

http://www.rocketbox-libraries.com/index.php/characters/complete-characters/cc-sportive-03-f.html
http://www.rocketbox-libraries.com/index.php/characters/complete-characters/cc-sportive-03-f.html
http://www.rocketbox-libraries.com/media/catalog/product/cache/1/image/5e06319eda06f020e43594a9c230972d/s/p/sportive03_f_lods_wire0000.jpg
http://www.rocketbox-libraries.com/media/catalog/product/cache/1/image/5e06319eda06f020e43594a9c230972d/s/p/sportive03_f_lods_wire0000.jpg
https://picroma.com/cubeworld
https://picroma.com/images/Avatar.jpg

66 External Sources

B.3 Minecraft Landscape

Image from an external source. Per 28/8/2013:
http://gamesminecraft.org/landscape/
http://gamesminecraft.org/games/img/landscape-minecraft-2560x1600-wallpaper.jpg

B.4 Simplex/Perlin Noise

The noise-library used in this project comes from an external source, namely
LibNoise for .NET : http://libnoisedotnet.codeplex.com/. This is a .NET port
of another library, namely libnoise: http://sourceforge.net/projects/libnoise/.

http://gamesminecraft.org/landscape/
http://gamesminecraft.org/games/img/landscape-minecraft-2560x1600-wallpaper.jpg
http://libnoisedotnet.codeplex.com/
http://sourceforge.net/projects/libnoise/

Appendix C

Source Code

This appendix contains the source code for the created game development plat-
form, including examples.

C.1 Game Definition Language

In this section are two examples of the game definition language created in this
project.

C.1.1 Carl of Sheeponia

1 Item Sword =
2 (
3 Appearance =
4 (
5 "Width" = 1
6 "Height " = 8
7 "Depth" = 3
8 "Color " = "#B83"

68 Source Code

9 "Chunk" = "010 010 111 010 010 010 010 010"
10 "Center " = (0 . 5 , 1 . 5 , 1 . 0)
11 " Sca l e " = 0 .2
12)
13 Attr =
14 (
15 "Weapon Type" = "Melee"
16 "Attack Distance " = 2 .5
17 "Attack Strength " = 15
18 "Attack Speed" = 1 .2
19)
20)
21
22 Item R i f l e =
23 (
24 Appearance =
25 (
26 "Width" = 1
27 "Height " = 3
28 "Depth" = 8
29 "Color " = "#ABA"
30 "Chunk" = "001 001 101 011 001 110 001 001"
31 "Center " = (0 . 5 , 5 . 5 , 1 . 0)
32 " Sca l e " = 0 .2
33)
34 Attr =
35 (
36 "Weapon Type" = "Melee"
37 "Attack Distance " = 200
38 "Attack Strength " = 40
39 "Attack Speed" = 1 .4
40 " Bu l l e t s In Magazine" = 5
41 "Max Bu l l e t s In Magazine" = 5
42 "Reload Speed" = 2 .1
43)
44)
45
46 Player =
47 (
48 Appearance =
49 (
50 "Width" = 5
51 "Height " = 10
52 "Depth" = 3

C.1 Game Definition Language 69

53 "Color " = "#934"
54 "Chunk" = "01010 00000 00000 01110 01110 01110

00000 00000 00100 00000 01010 01010 01010
01110 11111 11111 00100 01110 01110 01110
00000 00000 00000 01110 01110 01110 00000
00000 01110 01110"

55 " Sca l e " = 0 .2
56)
57 Attr =
58 (
59 "Health " = 100
60 " Bu l l e t s Le f t " = 50
61 "Weapon Switch Time" = 1
62 "HasWon" = f a l s e
63 "Jump Speed" = 1
64 "Turn Speed" = 1
65 "Move Speed" = 1
66 " S t r a f e Speed" = 1
67 "Look Speed" = 1
68)
69 BehaviorTree = PlayerBehavior
70 Camera =
71 (
72 "Center " = (0 ,−1 ,0)
73 "Facing" = "Forward"
74)
75 Inventory =
76 (
77 "Weapon" = Sword
78 "RangedWeapon" = R i f l e
79)
80)
81
82 NPC Sheep =
83 (
84 Appearance =
85 (
86 "Width" = 5
87 "Height " = 8
88 "Depth" = 10
89 "Color " = "#DFF"
90 "Chunk" = "00000 00000 00000 00000 00000 00100

00000 00000 00000 00000 00000 00000 00100
01110 00100 00000 00000 00000 00000 00000

70 Source Code

01110 01110 01110 01010 00000 00000 01110
11111 11111 01110 01110 00000 01010 01010
11111 11111 11111 11111 00000 00000 00000
00000 11111 11111 11111 11111 00000 00000
00000 00000 11111 11111 11111 11111 00000
00000 01010 01010 11111 11111 11111 11111
00000 00000 00000 00000 01110 11111 11111
01110 00000 00000 00000 00000 00000 00000
00100 00000 00000 00000"

91 " Sca l e " = 0 .2
92)
93 Attr =
94 (
95 "Health " = 40
96 "Far Safe Distance " = 40
97 "Close Safe Distance " = 10
98 "Turn Speed" = 1
99 "Eat Time" = 2
100 "Move Speed" = 1
101 "Run Speed" = 2
102 "Food" = "#8D6"
103 "Jump Speed" = 2
104 "Die Time" = 25
105 " Safe Amount" = 5
106 "Run Time" = 3
107)
108 BehaviorTree = SheepBehavior
109)
110
111 NPC Wolf =
112 (
113 Appearance =
114 (
115 "Width" = 4
116 "Height " = 6
117 "Depth" = 11
118 "Color " = "#555"
119 "Chunk" = "0000 0000 0110 0110 0000 0000 0000

0000 0110 0110 0000 0000 1000 0001 1111 1111
0110 0000 0001 1000 1111 1111 1111 1001 0000
0000 1111 1111 1111 0000 0000 0000 1111 1111
1111 0000 1000 0001 1111 1111 1111 0000

0001 1000 1111 1111 1111 0000 0000 0000 0110
0110 0000 0000 0000 0000 0000 0010 0000 0000

C.1 Game Definition Language 71

0000 0000 0110 0010 0000 0000"
120 " Sca l e " = 0 .2
121)
122 Attr =
123 (
124 "Health " = 70
125 "Run Speed" = 2 .5
126 "Move Speed" = 0 .8
127 "Turn Speed" = 0 .9
128 "Jump Speed" = 1 .5
129 "Wolf Hunt Distance " = 30
130 "Attack Distance " = 2
131 "Attack Strength " = 25
132 "Run Time" = 2
133 "Sheep Hunt Distance " = 50
134 "Eat Time" = 15
135 "Health Bonus For Eating " = 50
136 "Attack Health Deplet ion " = 5
137 "Pack S i z e Needed To Hunt" = 3
138)
139 BehaviorTree = WolfBehavior
140)
141
142
143 Heightmap GrassColor = Add (
144 Noise (32 ,2)
145 Noise (8 , 1)
146 Noise (2 , 1)
147)
148
149 Landscape GrassColor = AreaMap (
150 Heightmap (GrassColor)
151 (−5 , −2, "#090")
152 (−1 , 1 , "#3d3")
153 (2 , 5 , "#0a0 ")
154 "#0f0 "
155)
156
157 Voxel Dirt = "#855"
158
159 Heightmap Underground = Of f s e t (0 ,−10 ,0) Add (
160 Noise (128 ,25)
161 Noise (16 ,7)
162)

72 Source Code

163
164 Heightmap Grass = Of f s e t (−13 ,0 ,19) Add (
165 Noise (64 ,7)
166 Noise (32 ,2)
167 Noise (4 , 0 . 8)
168)
169
170 Heightmap NPCs = Add (
171 Noise (128 ,5)
172 Noise (64 ,1)
173)
174
175 Volumemap NPCs = Add (
176 Noise (32 ,1)
177 Noise (16 ,1)
178 Noise (4 , 1)
179 Noise (1 , 2)
180)
181
182 Landscape Wolf = Heightmap (
183 Of f s e t (0 , 1 , 0) Heightmap (Grass)
184 Volumemap (
185 Volumemap(NPCs)
186 (3 , 5 ,NPC(Wolf))
187 AirVoxel
188)
189 AirVoxel
190)
191
192 Landscape Sheep = Heightmap (
193 Of f s e t (0 , 1 , 0) Heightmap (Grass)
194 Volumemap (
195 Volumemap(NPCs)
196 (2 , 5 ,NPC(Sheep))
197 AirVoxel
198)
199 AirVoxel
200)
201
202 Volumemap C l i f f s = Add (
203 Noise (32 ,3)
204 Noise (8 , 3)
205 Noise (2 , 1)
206)

C.1 Game Definition Language 73

207
208 Landscape Grass = Heightmap (
209 Heightmap (Grass)
210 Landscape (GrassColor)
211 AreaMap (
212 Heightmap (NPCs)
213 (−2.5 , −1, Landscape (Wolf))
214 (2 , 1000 , Landscape (Sheep))
215 AirVoxel
216)
217)
218
219 Landscape Sheeponia = Heightmap (
220 Heightmap (Underground)
221 Volumemap(
222 Volumemap(C l i f f s)
223 (−100 ,1 , Voxel (Dirt))
224 AirVoxel
225)
226 Landscape (Grass)
227)
228
229 Level CarlOfSheeponia = (
230 Landscape = Sheeponia
231 PlayerSpawnPoint = (0 , 5 , 0)
232 Attr = ()
233)
234
235
236 BehaviorTree PlayerReload =
237 Decorator (LockResource ("Weapon")) Sequence (
238 Condit ion (Player . Inventory ("Weapon") . Attr ("

Weapon Type") = "Ranged")
239 Condit ion (Player . Inventory ("Weapon") . Attr ("

Bu l l e t s In Magazine ") < Player . Inventory ("
Weapon") . Attr ("Max Bu l l e t s In Magazine "))

240 Condit ion (Player . Attr (" Bu l l e t s Le f t ") > 0)
241 Action Wait (Player . Inventory ("Weapon") . Attr ("

Reload Speed "))
242 Action Player . Attr .Add(" Bu l l e t s Le f t " , Player .

Inventory ("Weapon") . Attr (" Bu l l e t s In Magazine
"))

243 Action Player . Inventory ("Weapon") . Attr . Set ("
Bu l l e t s In Magazine " , min (Player . Inventory ("

74 Source Code

Weapon") . Attr ("Max Bu l l e t s In Magazine ") ,
Player . Attr (" Bu l l e t s Le f t ")))

244 Action Player . Attr .Add (" Bu l l e t s Le f t " , − Player .
Inventory ("Weapon") . Attr (" Bu l l e t s In Magazine
"))

245)
246
247 BehaviorTree PlayerAttack =
248 Decorator (LockResource ("Weapon")) Sequence (
249 S e l e c t o r (
250 Condit ion (Player . Inventory ("Weapon") . Attr ("

Weapon Type") = "Melee ")
251 Condit ion (Player . Inventory ("Weapon") . Attr ("

Bu l l e t s In Magazine ") > 0)
252)
253 Action Player . Attack (Player . Inventory ("Weapon") .

Attr (" Attack Distance ") , Player . Inventory ("
Weapon") . Attr (" Attack Strength "))

254 Action Wait (Player . Inventory ("Weapon") . Attr ("
Attack Speed "))

255 S e l e c t o r (
256 Condit ion (Player . Inventory ("Weapon") . Attr ("

Weapon Type") = "Melee ")
257 Action Player . Inventory ("Weapon") . Attr .Add ("

Bu l l e t s In Magazine " , −1)
258)
259)
260
261 BehaviorTree PlayerRangedWeapon =
262 Decorator (LockResource ("Weapon")) Sequence (
263 Action Wait (Player . Attr ("Weapon Switch Time"))
264 Action Unrea l i z e (Player . Inventory ("Weapon"))
265 Action Player . Inventory . Set ("Weapon" , Player .

Inventory ("Ranged Weapon"))
266 Action Player . Rea l i z e (Player . Inventory ("Weapon")

)
267)
268
269 BehaviorTree PlayerMeleeWeapon =
270 Decorator (LockResource ("Weapon")) Sequence (
271 Action Wait (Player . Attr ("Weapon Switch Time"))
272 Action Unrea l i z e (Player . Inventory ("Weapon"))
273 Action Player . Inventory . Set ("Weapon" , Player .

Inventory ("Melee Weapon"))

C.1 Game Definition Language 75

274 Action Player . Rea l i z e (Player . Inventory ("Weapon"))
275)
276
277 BehaviorTree PlayerBehavior =
278 Pa r a l l e l (1 , 1) (
279 Decorator (WaitForFai lure ()) Condit ion (Player .

Attr (" Health ") > 0)
280 Decorator (WaitForSuccess ()) Condit ion (Player .

Attr ("HasWon"))
281 Decorator (I n f i n i t eLoop ()) P a r a l l e l (−1,−1) (
282 Sequence (
283 Condit ion (Player . Input . ButtonDown("Jump

"))
284 Condit ion (Player . Character . IsGrounded ())
285 Action Player .MoveY (Player . Attr ("Jump

Speed "))
286)
287
288 Action Player . Camera . RotateZ (Player . Attr ("

Look Speed ") ∗ Player . Input . Axis ("Look "))
289 Action Player . RotateY (Player . Attr ("Turn

Speed ") ∗ Player . Input . Axis ("Turn"))
290 Action Player .MoveX (Player . Attr ("Move Speed

") ∗ Player . Input . Axis ("Forward "))
291 Action Player .MoveZ (Player . Attr (" S t r a f e

Speed ") ∗ Player . Input . Axis (" S t r a f e "))
292)
293
294 Decorator (I n f i n i t eLoop ()) P a r a l l e l (−1,−1) (
295 Sequence (
296 Condit ion (Player . Input . Button (" Attack "))
297 Link PlayerAttack
298)
299
300 Sequence (
301 Condit ion (Player . Input . Button (" Reload "))
302 Link PlayerReload
303)
304
305 Sequence (
306 Condit ion (Player . Input . Button ("Ranged

Weapon"))
307 Condit ion (Player . Inventory ("Weapon") .

Attr ("Weapon Type") = "Melee ")

76 Source Code

308 Link PlayerRangedWeapon
309)
310
311 Sequence (
312 Condit ion (Player . Input . Button ("Melee

Weapon"))
313 Condit ion (Player . Inventory ("Weapon") .

Attr ("Weapon Type") = "Ranged")
314 Link PlayerMeleeWeapon
315)
316)
317)
318
319
320
321 BehaviorTree SheepFee lSafe =
322 Decorator (MinTimeBetween (2)) Sequence (
323 Condit ion (NPC. FindNearest ("Wolf ") . Distance () >

NPC. Attr (" Close Safe Distance "))
324 S e l e c t o r (
325 Condit ion (NPC. FindNearest ("Wolf ") . Distance ()

> NPC. Attr (" Far Safe Distance "))
326 Condit ion (3 ∗ NPC. CountWithin ("Wolf " , NPC.

Attr (" Far Safe Distance ")) < NPC.
CountWithin (" Sheep " , NPC. Attr (" Far Safe
Distance ")))

327)
328)
329
330 BehaviorTree SheepBehavior =
331 Sequence (
332 S e l e c t o r (
333 Pa r a l l e l (−1 ,1) (
334 Decorator (WaitForFai lure ()) Condit ion (

NPC. Attr (" Health ") > 0)
335 Decorator (I n f i n i t eLoop ()) S e l e c t o r (
336 Pa r a l l e l (−1 ,1) (
337 Decorator (WaitForFai lure ()) Link

SheepFee lSafe
338 Decorator (I n f i n i t eLoop ())

Sequence (
339 Action NPC. RotateYForTime (

Random(−1 ,1) ∗ NPC. Attr ("
Turn Speed ") / 2 , Random(

C.1 Game Definition Language 77

NPC. Attr ("Eat Time") / 2 ,
NPC. Attr ("Eat Time")))

340 Decorator (RunForTime(Random(
NPC. Attr ("Eat Time") , 2 ∗
NPC. Attr ("Eat Time"))))
Action NPC.MoveX (NPC. Attr
("Move Speed "))

341 Condit ion (NPC. Character .
IsGrounded ())

342 Condit ion (NPC. Attr ("Food") =
NPC. Character . GroundType
())

343 Action Wait (Random(NPC. Attr
("Eat Time") , 2 ∗ NPC. Attr
("Eat Time")))

344)
345)
346
347 Decorator (FailWhenDone ()) P a r a l l e l

(1 ,−1) (
348 Decorator (WaitForSuccess ()) Link

SheepFee lSafe
349 Decorator (I n f i n i t eLoop ()) Action

NPC.MoveX (NPC. Attr ("Run
Speed "))

350 Decorator (I n f i n i t eLoop ()) Action
NPC. RotateYForTime (Random
(−1 ,1) ∗ NPC. Attr ("Turn Speed
") , Random(NPC. Attr ("Run Time
") , NPC. Attr ("Run Time") ∗ 2))

351 Decorator (I n f i n i t eLoop ())
Decorator (MinTimeBetween (
Random(1 ,2))) Sequence (

352 Condit ion (NPC. Character .
IsGrounded ())

353 Action NPC.MoveY (NPC. Attr ("
Jump Speed "))

354)
355)
356
357 Pa r a l l e l (1 ,−1) (
358 Decorator (WaitForSuccess ())

Condit ion (NPC. CountWithin ("
Sheep " , NPC. Attr (" Close Safe

78 Source Code

Distance ")) >= NPC. Attr (" Safe
Amount"))

359 Decorator (I n f i n i t eLoop ())
Sequence (

360 Action NPC. RotateYTowards (
NPC. Attr ("Turn Speed ") ,
NPC. Nearest (" Sheep "))

361 Decorator (RunForTime(NPC.
Attr ("Eat Time"))) Action
NPC.MoveX ((NPC. Attr ("Move
Speed ") + NPC. Attr ("Run

Speed ")) / 2)
362)
363)
364)
365)
366)
367 Decorator (ReverseResult ()) Action Wait (NPC. Attr

("Die Time"))
368)
369
370 BehaviorTree WolfBehavior =
371 Pa r a l l e l (−1 ,1) (
372 Decorator (WaitForFai lure ()) Condit ion (NPC. Attr

(" Health ") > 0)
373 Decorator (I n f i n i t eLoop ()) S e l e c t o r (
374
375 Decorator (WaitForFai lure ()) Sequence (
376 Condit ion (NPC. Nearest ("Wolf ") . Distance ()

> NPC. Attr ("Wolf Hunt Distance "))
377 Action NPC. RotateYTowards (NPC. Attr ("Turn

Speed ") , NPC. Nearest ("Wolf "))
378 Decorator (RunForTime(Random(NPC. Attr ("

Run Time") , NPC. Attr ("Run Time") ∗ 2))
) Action NPC.MoveX ((NPC. Attr ("Move
Speed ") + NPC. Attr ("Run Speed ")) / 2)

379)
380
381 Decorator (WaitForFai lure ()) Sequence (
382 Condit ion (NPC. Nearest (" Sheep ") > NPC.

Attr (" Sheep Hunt Distance "))
383 Action NPC. RotateYTowards (NPC. Attr ("Turn

Speed ") , NPC. Nearest (" Sheep "))

C.1 Game Definition Language 79

384 Decorator (RunForTime(Random(NPC. Attr ("
Run Time") , NPC. Attr ("Run Time") ∗ 2))
) Action NPC.MoveX (NPC. Attr ("Move
Speed "))

385)
386
387 Condit ion (NPC. CountWithin ("Wolf " , NPC. Attr ("

Wolf Hunt Distance ")) < NPC. Attr ("Pack
S i z e Needed To Hunt"))

388
389 Decorator (ReverseResult ()) P a r a l l e l (1 , 1) (
390 Decorator (WaitForSuccess ()) Sequence (
391 Condit ion (NPC. Nearest (" Sheep ") .

Distance () < NPC. Attr (" Attack
Distance "))

392 Condit ion (NPC. Nearest (" Sheep ") . Attr
(" Health ") <= 0)

393)
394 Decorator (WaitForFai lure ()) Condit ion (

NPC. Nearest (" Sheep ") . Distance () < NPC.
Attr ("Wolf Hunt Distance "))

395 Decorator (I n f i n i t eLoop ()) Sequence (
396 Action NPC.MoveX (NPC. Attr ("Run Speed

"))
397 Decorator (MinTimeBetween (Random(2 , 5)

)) Sequence (
398 Condit ion (NPC. Character .

IsGrounded ())
399 Action NPC.MoveY (NPC. Attr ("Jump

Speed "))
400)
401)
402 Decorator (I n f i n i t eLoop ()) Sequence (
403 Condit ion (NPC. Nearest ("Wolf ") .

Distance () <= NPC. Attr (" Attack
Distance "))

404 Action NPC. Attack (NPC. Attr (" Attack
Distance ") , NPC. Attr (" Attack
Strength "))

405 Action NPC. Attr .Add (" Health " , − NPC.
Attr (" Attack Health Deplet ion "))

406)
407)
408

80 Source Code

409 Action Wait (NPC. Attr ("Eat Time"))
410 Action NPC. Attr .Add (" Health " , NPC. Attr ("

Health Bonus For Eating "))
411
412)
413)

C.1.2 Landscape Examples

1 Landscape Result1 = Heightmap (
2 Plane 0 .0
3 "#930"
4 AirVoxel
5)
6
7 Level Result1 = (
8 Landscape = ResultOneLand
9 PlayerSpawnPoint = (0 , 0 , 0)
10 Attr = ()
11)
12
13 Landscape Result2 = Heightmap (
14 Noise (32 ,5)
15 "#930"
16 AirVoxel
17)
18
19 Level Result2 = (
20 Landscape = Result2
21 PlayerSpawnPoint = (0 , 0 , 0)
22 Attr = ()
23)
24
25 Landscape Result3 = Heightmap (
26 Noise (4 , 1)
27 "#930"
28 AirVoxel
29)
30
31 Level Result3 = (
32 Landscape = Result3
33 PlayerSpawnPoint = (0 , 0 , 0)

C.1 Game Definition Language 81

34 Attr = ()
35)
36
37 Landscape Result4 = Heightmap (
38 Add(
39 Noise (32 ,5)
40 Noise (4 , 1)
41)
42 "#930"
43 AirVoxel
44)
45
46 Level Result4 = (
47 Landscape = Result4
48 PlayerSpawnPoint = (0 , 0 , 0)
49 Attr = ()
50)
51
52 Landscape Result5 = Heightmap (
53 Noise (32 ,5)
54 Areamap(
55 Noise (8 , 5)
56 (−1000,−3,"#0 f f ")
57 (0 ,2 ,"# f 0 f ")
58 "#930"
59)
60 AirVoxel
61)
62
63 Level Result5 = (
64 Landscape = Result5
65 PlayerSpawnPoint = (0 , 0 , 0)
66 Attr = ()
67)
68
69 Landscape Result6 = Heightmap (
70 Noise (32 ,5)
71 Volumemap(
72 Noise (16 ,5)
73 (−1000 ,0 , AirVoxel)
74 Areamap(
75 Noise (8 , 5)
76 (−1000,−3,"#0 f f ")
77 (0 ,2 ,"# f 0 f ")

82 Source Code

78 "#930"
79)
80)
81 AirVoxel
82)
83
84 Level Result6 = (
85 Landscape = Result6
86 PlayerSpawnPoint = (0 , 0 , 0)
87 Attr = ()
88)
89
90
91 Player =
92 (
93 Appearance =
94 (
95 "Width" = 1
96 "Height " = 1
97 "Depth" = 1
98 "Color " = "#934"
99 "Chunk" = "1"
100 " Sca l e " = 0 .5
101)
102 Attr = ()
103 BehaviorTree = PlayerBehavior
104 Camera = ()
105 Inventory = ()
106)
107
108 BehaviorTree PlayerBehavior = Action Move ()

C.2 Scanner/Parser

In this section are the lexer and parser definitions, which are input to FSLex
and FSYacc respectively, from the F# PowerPack.

C.2.1 Lexer definition

C.2 Scanner/Parser 83

1 {
2 open System
3 open Game . BTGparser
4 open Microso f t . FSharp . Text . Lexing
5
6 l e t keywords =
7 [
8 "BehaviorTree " , BEHAVTREE;
9 "Player " , PLAYER;
10 "Item " , ITEM;
11 "Npc" , NPC;
12 "NPC" , NPC;
13 "Leve l " , LEVEL;
14 "Voxel " , VOXEL;
15 " Inventory " , INVENTORY;
16 "Heightmap " , HEIGHTMAP;
17 "HeightMap" , HEIGHTMAP;
18 "Volumemap" , VOLUMEMAP;
19 "VolumeMap" , VOLUMEMAP;
20 "AreaMap" , AREAMAP;
21 "Areamap" , AREAMAP;
22 "Plane " , PLANE;
23 "Landscape " , LANDSCAPE;
24 "Sequence " , SEQUENCE;
25 " Pa r a l l e l " , PARALLEL;
26 " S e l e c t o r " , SELECTOR;
27 "Decorator " , DECORATOR;
28 "Action " , ACTION;
29 "Condit ion " , CONDITION;
30 "Link " , LINK;
31 "Of f s e t " , OFFSET;
32 "Add" , ADD;
33 "Noise " , NOISE ;
34 "AirVoxel " , AIRVOXEL;
35 "Airvoxe l " , AIRVOXEL;
36 "PlayerSpawnPoint " , PLAYERSPAWNPOINT;
37 "Playerspawnpoint " , PLAYERSPAWNPOINT;
38 "Attr " , ATTR;
39 "Appearance " , APPEARANCE;
40 "Camera" , CAMERA;
41 " true " , TRUE;
42 " f a l s e " , FALSE;
43 "Trim" , TRIM;

84 Source Code

44 "Sqrt " , SQRT;
45 "Abs" , ABSOLUTE;
46 "Contains " , CONTAINS;
47 "Max" , MAX;
48 "Min" , MIN;
49 "&", AND;
50 "and" , AND;
51 " | " , OR;
52 " or " , OR;
53] |> Map. o f L i s t
54
55 l e t ops =
56 [
57 "=", EQ;
58 "<", LT;
59 "<=", LE;
60 ">", GT;
61 ">=", GE;
62 "+", PLUS;
63 "−", MINUS;
64 "∗" , MULTIPLY;
65 "/" , DIVIDE ;
66 "(" , LPARAN;
67 ") " , RPARAN;
68 " ," , COMMA;
69 " ; " , SEMI ;
70 " . " , DOT;
71 " ! " , LOGICNEG;
72] |> Map. o f L i s t
73 }
74
75 l e t char = [’ a ’− ’ z ’ ’A’− ’Z ’]
76 l e t d i g i t = [’ 0 ’ − ’ 9 ’]
77 l e t i n t = ’− ’? d i g i t+
78 l e t f l o a t = ’− ’? d i g i t+ ’ . ’ d i g i t+
79 l e t i d e n t i f i e r = char (char | d i g i t | [’ − ’ ’_’]) ∗
80 l e t s t r i n g = ’\" ’ (char | d i g i t | [’ − ’ ’_’ ’ . ’ ’ , ’ ’ ; ’

’ : ’ ’# ’ ’ ’ ’ ! ’ ’ / ’ ’ \ \ ’])+ ’\" ’
81 l e t whitespace = [’ ’ ’\ t ’]
82 l e t newl ine = "\n\ r " | ’\n ’ | ’\ r ’
83 l e t operator = ">" | ">=" | "<" | "<=" | "=" | "+" |

"−" | "∗" | "/" | "{" | "}" | "(" | ") " | " ," | " ; " |
" . " | " ! "

84

C.2 Scanner/Parser 85

85 ru l e t oken i z e = parse
86 | whitespace { token i z e l exbu f }
87 | newl ine { l exbu f . EndPos <− l e xbu f . EndPos . NextLine

; t oken i z e l exbu f ; }
88 | i n t { INT(Int32 . Parse (LexBuffer<_>.

LexemeString l exbu f)) }
89 | f l o a t { FLOAT(Double . Parse (LexBuffer<_>.

LexemeString l exbu f) |> f l o a t 3 2) }
90 | operator { ops . [LexBuffer<_>.LexemeString l exbu f]

}
91 | i d e n t i f i e r { match keywords . TryFind (LexBuffer<_>.

LexemeString l exbu f) with
92 | Some(token) −> token
93 | None −> ID(LexBuffer<_>.LexemeString

l exbu f) }
94 | s t r i n g { l e t s = LexBuffer<_>.LexemeString

l exbu f ;
95 STRING(s . Subst r ing (1 , s . Length−2)) }
96 | e o f { EOF }
97 | _ { f a i l w i t h f "Unrecognized input : ’%s ’ " (

LexBuffer<_>.LexemeString l exbu f) }

C.2.2 Parser Definition

1 %{
2 open Game . Base
3 open Game . Voxel . Voxel
4 open Game . Voxel . ProceduralGenerator
5 open Game . BehaviorTree
6 open Game . Prefab
7 %}
8
9 %token <st r i ng> ID
10 %token <s t r i ng> STRING
11 %token <int> INT
12 %token <f l oa t32> FLOAT
13
14 %token BEHAVTREE PLAYER ITEM NPC LEVEL VOXEL LANDSCAPE

INVENTORY
15 %token SEQUENCE PARALLEL SELECTOR DECORATOR ACTION

CONDITION LINK
16 %token OFFSET ADD NOISE HEIGHTMAP VOLUMEMAP AREAMAP PLANE

86 Source Code

17 %token ATTR APPEARANCE CAMERA
18 %token AIRVOXEL
19 %token PLAYERSPAWNPOINT
20 %token LPARAN RPARAN
21 %token COMMA SEMI DOT
22 %token TRUE FALSE
23 %token LOGICNEG TRIM SQRT ABSOLUTE
24 %token EQ LT LE GT GE
25 %token MULTIPLY DIVIDE CONTAINS
26 %token PLUS MINUS
27 %token MAX MIN AND OR
28 %token EOF
29
30 // s t a r t
31 %s t a r t GameDefinit ion
32 %type <GameDef> GameDefinit ion
33
34 %%
35
36 GameDefinit ion :
37 | LEVEL ID EQ LPARAN LevelDef RPARAN GameDefinit ion
38 { l e t v = $7 ;
39 {v with Leve l s = v . Leve l s .Add($2 , $5) } }
40 | PLAYER EQ LPARAN PlayerDef RPARAN GameDefinit ion
41 { l e t v = $6 ;
42 {v with Player = $4} }
43 | ITEM ID EQ LPARAN ItemDef RPARAN GameDefinit ion
44 { l e t v = $7 ;
45 {v with Items = v . Items .Add($2 , $5) } }
46 | NPC ID EQ LPARAN NpcDef RPARAN GameDefinit ion
47 { l e t v = $7 ;
48 {v with Npcs = v . Npcs .Add($2 , $5) } }
49 | BEHAVTREE ID EQ BehaviorTree GameDefinit ion
50 { l e t v = $5 ;
51 l e t bts = v . BehaviorTrees .Add($2 , $4)
52 {v with BehaviorTrees = bts } }
53 | VOXEL ID EQ STRING GameDefinit ion
54 { l e t v = $5 ;
55 l e t voxe l = VoxelFromString $4
56 {v with Voxels = v . Voxels .Add($2 , voxe l) } }
57 | HEIGHTMAP ID EQ Heightmap GameDefinit ion
58 { l e t v = $5 ;
59 {v with Heightmaps = v . Heightmaps .Add($2 , $4) } }
60 | VOLUMEMAP ID EQ Volumemap GameDefinit ion

C.2 Scanner/Parser 87

61 { l e t v = $5 ;
62 {v with Volumemaps = v . Volumemaps .Add($2 , $4) } }
63 | LANDSCAPE ID EQ Landscape GameDefinit ion
64 { l e t v = $5 ;
65 {v with Landscapes = v . Landscapes .Add($2 , $4) } }
66 | EOF
67 { DefaultGame }
68
69 LevelDef :
70 LANDSCAPE EQ ID
71 PLAYERSPAWNPOINT EQ Pos i t i on
72 ATTR EQ LPARAN NamedList RPARAN
73 { {
74 Landscape = $3 ;
75 PlayerSpawnPoint = $6 ;
76 Attr = Map. o f L i s t $10 ;
77 } }
78
79 Pos i t i on :
80 LPARAN Num COMMA Num COMMA Num RPARAN
81 { ($2 , $4 , $6) }
82
83 ItemList :
84 | { [] }
85 | STRING EQ ID ItemList
86 { ($1 , $3) : : $4 }
87
88 NamedList :
89 | { [] }
90 | STRING EQ Primit iveValue NamedList
91 { ($1 , $3) : : $4 }
92
93 Pr imit iveValue :
94 | INT { PrimInt $1 }
95 | FLOAT { PrimFloat $1 }
96 | STRING { PrimStr $1 }
97 | TRUE { PrimBool t rue }
98 | FALSE { PrimBool f a l s e }
99 | Pos i t i on { PrimPosit ion $1 }
100
101 ItemDef :
102 APPEARANCE EQ LPARAN NamedList RPARAN
103 ATTR EQ LPARAN NamedList RPARAN
104 { {

88 Source Code

105 Appearance = Map. o f L i s t $4 ;
106 Attr = Map. o f L i s t $9 ;
107 } }
108
109 NpcDef :
110 APPEARANCE EQ LPARAN NamedList RPARAN
111 ATTR EQ LPARAN NamedList RPARAN
112 BEHAVTREE EQ ID
113 { {
114 Appearance = Map. o f L i s t $4 ;
115 Attr = Map. o f L i s t $9 ;
116 BehaviorTree = $13 ;
117 } }
118
119 PlayerDef :
120 APPEARANCE EQ LPARAN NamedList RPARAN
121 ATTR EQ LPARAN NamedList RPARAN
122 BEHAVTREE EQ ID
123 CAMERA EQ LPARAN NamedList RPARAN
124 INVENTORY EQ LPARAN ItemList RPARAN
125 { {
126 Appearance = Map. o f L i s t $4 ;
127 Attr = Map. o f L i s t $9 ;
128 BehaviorTree = $13 ;
129 Camera = Map. o f L i s t $17 ;
130 Inventory = Map. o f L i s t $22 ;
131 } }
132
133 BehaviorTree :
134 | SEQUENCE LPARAN BehaviorTreeList RPARAN
135 { Sequence $3 }
136 | SELECTOR LPARAN BehaviorTreeList RPARAN
137 { S e l e c t o r $3 }
138 | PARALLEL LPARAN INT COMMA INT RPARAN
139 LPARAN BehaviorTreeList RPARAN
140 { Pa r a l l e l ($3 , $5 , $8) }
141 | DECORATOR LPARAN ActionExpr RPARAN
142 BehaviorTree
143 { Decorator ($3 , $5) }
144 | LINK ID
145 { Link $2 }
146 | CONDITION LPARAN Expr RPARAN
147 { Condit ion $3 }
148 | ACTION ActionExpr

C.2 Scanner/Parser 89

149 { Action $2 }
150
151 BehaviorTreeList :
152 | { [] }
153 | BehaviorTree BehaviorTreeList
154 { $1 : : $2 }
155
156 Term :
157 | STRING
158 { St r ing $1 }
159 | INT
160 { Num (f l o a t 3 2 $1) }
161 | FLOAT
162 { Num $1 }
163 | TRUE
164 { Bool t rue }
165 | FALSE
166 { Bool f a l s e }
167 | ActionExpr
168 { Act $1 }
169 | LPARAN Expr RPARAN
170 { $2 }
171 | UnOp Term
172 { UnaryOp($1 , $2) }
173 | NaryOp LPARAN ExprList RPARAN
174 { NaryOp($1 , $3) }
175
176 Expr :
177 | Term { $1 }
178 | Term BinOp Expr
179 { BinaryOp ($1 , $2 , $3) }
180
181 ExprList :
182 | Expr COMMA ExprList
183 { $1 : : $3 }
184 | Expr
185 { [$1] }
186 | { [] }
187
188 ActionRef :
189 | ActionId
190 { ObjectRef $1 }
191 | ActionId LPARAN ExprList RPARAN
192 { InvokeAction ($1 , $3) }

90 Source Code

193
194 ActionExpr :
195 | ActionRef DOT ActionExpr
196 { MemberRef ($1 , $3) }
197 | ActionId LPARAN ExprList RPARAN
198 { InvokeAction ($1 , $3) }
199
200 ActionId :
201 | ATTR { "Attr " }
202 | PLAYER { "Player " }
203 | NPC { "Npc" }
204 | ITEM { "Item" }
205 | INVENTORY { " Inventory " }
206 | CAMERA { "Camera" }
207 | APPEARANCE { "Appearance" }
208 | ADD { "Add" }
209 | ID { $1 }
210
211 UnOp:
212 | MINUS { NumNeg }
213 | LOGICNEG { LogicNeg }
214 | TRIM { Trim }
215 | SQRT { Sqrt }
216 | ABSOLUTE { Absolute }
217
218 BinOp :
219 | EQ { Eq }
220 | LT { Less }
221 | LE { LessEq }
222 | GT { Greater }
223 | GE { GreaterEq }
224 | PLUS { Plus }
225 | MINUS { Subtract }
226 | MULTIPLY { Mult ip ly }
227 | DIVIDE { Divide }
228 | CONTAINS { StrContains }
229
230 NaryOp :
231 | MAX { Max }
232 | MIN { Min }
233 | AND { And }
234 | OR { Or }
235
236 Num:

C.2 Scanner/Parser 91

237 | INT { $1 |> f l o a t 3 2 }
238 | FLOAT { $1 }
239
240 Landscape :
241 | HEIGHTMAP LPARAN Heightmap
242 Landscape Landscape RPARAN
243 { Heightmap ($3 , $4 , $5) }
244 | AREAMAP LPARAN Heightmap
245 RangeList Landscape RPARAN
246 { AreaMap($3 , $4 , $5) }
247 | VOLUMEMAP LPARAN Volumemap
248 RangeList Landscape RPARAN
249 { VolumeMap($3 , $4 , $5) }
250 | LANDSCAPE LPARAN ID RPARAN
251 { LandscapeRef $3 }
252 | NPC LPARAN ID RPARAN
253 { Gameobject ("Npc" , $3) }
254 | ITEM LPARAN ID RPARAN
255 { Gameobject (" Item " , $3) }
256 | STRING
257 { VoxelVal (VoxelFromString $1) }
258 | AIRVOXEL
259 { VoxelVal a i rVoxe l }
260 | VOXEL LPARAN ID RPARAN
261 { VoxelRef $3 }
262
263 RangeList :
264 | Range { [$1] }
265 | Range RangeList
266 { $1 : : $2 }
267
268 Range :
269 LPARAN Num COMMA Num COMMA
270 Landscape RPARAN
271 { ($2 , $4 , $6) }
272
273 Heightmap :
274 | NOISE LPARAN Num COMMA Num RPARAN
275 { Noise2D ($3 , $3 , $5) }
276 | NOISE LPARAN Num COMMA Num COMMA
277 Num RPARAN
278 { Noise2D ($3 , $5 , $7) }
279 | PLANE Num
280 { Plane $2 }

92 Source Code

281 | ADD LPARAN HeightmapList RPARAN
282 { Add2D $3 }
283 | OFFSET Pos i t i on Heightmap
284 { Offset2D ($2 , $3) }
285 | HEIGHTMAP LPARAN ID RPARAN
286 { HMRef $3 }
287
288 HeightmapList :
289 | Heightmap
290 { [$1] }
291 | Heightmap HeightmapList
292 { $1 : : $2 }
293
294 Volumemap :
295 | NOISE LPARAN Num COMMA Num RPARAN
296 { Noise3D ($3 , $3 , $3 , $5) }
297 | NOISE LPARAN Num COMMA Num COMMA
298 Num COMMA Num RPARAN
299 { Noise3D ($3 , $5 , $7 , $9) }
300 | ADD LPARAN VolumemapList RPARAN
301 { Add3D $3 }
302 | OFFSET Pos i t i on Volumemap
303 { Offset3D ($2 , $3) }
304 | VOLUMEMAP LPARAN ID RPARAN
305 { VMRef $3 }
306
307 VolumemapList :
308 | Volumemap
309 { [$1] }
310 | Volumemap VolumemapList
311 { $1 : : $2 }
312
313 %%

C.3 F# code

In this section are the source code created in the project.

C.3.1 GameDefinition.fs

C.3 F# code 93

1 module Game . GameDefinit ion
2
3
4 type Result =
5 | Won
6 | Lost
7 | Tie
8
9 type Outcome<’ s tate , ’ p layer> = ’ s t a t e −> ’ p laye r −>

Result opt ion
10
11 type Rule<’ s tate , ’ p layer> =
12 | PerPlayerRule o f (’ s t a t e −> ’ p laye r −> ’ s t a t e)
13 | Al lP layerRule o f (’ s t a t e −> (’ p laye r l i s t) −> ’

s t a t e)
14 | StateRule o f (’ s t a t e −> ’ s t a t e)
15
16 type Game<’ s tate , ’ p layer> = ’ p laye r l i s t ∗ (Rule<’ s tate ,

’ p layer> l i s t) ∗ Outcome<’ s tate , ’ p layer>
17
18
19 l e t EvaluateRule p l aye r s s t a t e r u l e =
20 match ru l e with
21 | PerPlayerRule f −>
22 L i s t . f o l d f s t a t e p l aye r s
23 | Al lP layerRule f −>
24 f s t a t e p l aye r s
25 | StateRule f −>
26 f s t a t e
27
28 l e t GameStep ((p layer s , ru l e s , outcome) : Game<_,_>)

s t a t e =
29 l e t GameNotEnded p laye r = outcome s t a t e p laye r = None
30 l e t a c t i v e p l a y e r s = L i s t . f i l t e r GameNotEnded p l aye r s
31 l e t EvalRule s t a t e r u l e = EvaluateRule a c t i v e p l a y e r s

s t a t e r u l e
32 match a c t i v e p l a y e r s with
33 | [] −> (state , f a l s e)
34 | _ −> (L i s t . f o l d EvalRule s t a t e ru l e s , t rue)

94 Source Code

C.3.2 PlayerController.fs

1 module Game . P laye rCont ro l l e r
2
3
4 type InputButton =
5 | Key o f UnityEngine . KeyCode
6 | MouseButton o f i n t
7
8 type Input =
9 | Button o f s t r i n g ∗ InputButton
10 | Axis o f s t r i n g ∗ s t r i n g
11
12 type P laye rCont ro l l e r = Input l i s t
13
14 l e t PlayerButton keyf mousef c o n t r o l l e r name =
15 l e t buttonPressed (input : Input) : bool =
16 match input with
17 | Button (name ’ , inputbutton) when name ’ = name −>
18 match inputbutton with
19 | Key(kc) −>
20 keyf kc
21 | MouseButton (n) −>
22 mousef n
23 | _ −>
24 f a l s e
25 L i s t . e x i s t s buttonPressed c o n t r o l l e r
26
27 l e t PlayerButtonPressed =
28 PlayerButton (UnityEngine . Input . GetKey)
29 (UnityEngine . Input . GetMouseButton)
30 l e t PlayerButtonDown =
31 PlayerButton (UnityEngine . Input .GetKeyDown)
32 (UnityEngine . Input . GetMouseButtonDown)
33 l e t PlayerButtonUp =
34 PlayerButton (UnityEngine . Input . GetKeyUp)
35 (UnityEngine . Input . GetMouseButtonUp)
36
37 l e t PlayerAxis c o n t r o l l e r name =
38 l e t f i n d a x i s input =
39 match input with
40 | Axis (name ’ , _) −>
41 name ’ = name
42 | _ −> f a l s e

C.3 F# code 95

43 match L i s t . tryFind f i n d a x i s c o n t r o l l e r with
44 | Some(input) −>
45 match input with
46 | Axis (_, name ’) −>
47 UnityEngine . Input . GetAxis (name ’)
48 | _ −>
49 0 .0 f
50 | _ −>
51 0 .0 f

C.3.3 Base.fs

1 module Game . Base
2
3
4 l e t PositiveMod num m =
5 l e t v = num % m
6 i f v < 0 then v + m e l s e v
7
8 l e t r e c ListFoldMap f s t a t e l =
9 match l with
10 | [] −> ([] , s t a t e)
11 | hd : : t l −>
12 l e t (hd ’ , s t a t e 1) = f hd s t a t e
13 l e t (t l ’ , s t a t e 2) = ListFoldMap f s t a t e 1 t l
14 (hd ’ : : t l ’ , s t a t e 2)
15
16 l e t L i s t S p l i t n l =
17 l e t r e c L i s t Sp l i t ’ n l 1 l 2 =
18 match (n , l 2) with
19 | (0 ,_) −> (L i s t . rev l1 , l 2)
20 | (_, []) −> (L i s t . rev l1 , [])
21 | (_, hd : : t l) −> L i s t Sp l i t ’ (n−1) (hd : : l 1) t l
22 L i s t Sp l i t ’ n [] l

C.3.4 Position.fs

1 module Game . Voxel . Po s i t i on
2

96 Source Code

3
4 type Pos i t i on = f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2
5
6 type Di r e c t i on =
7 | XPos
8 | XNeg
9 | YPos
10 | YNeg
11 | ZPos
12 | ZNeg
13 member t h i s . t oS t r i ng () =
14 match t h i s with
15 | XPos −> "X+"
16 | XNeg −> "X−"
17 | YPos −> "Y+"
18 | YNeg −> "Y−"
19 | ZPos −> "Z+"
20 | ZNeg −> "Z−"
21
22 l e t Pos i t ionBinop f (x , y , z) (x ’ , y ’ , z ’) = (f x x ’ , f y y ’ ,

f z z ’)
23
24 l e t PositionUnop f (x , y , z) = (f x , f y , f z)
25
26 l e t Distance ((x , y , z) : Po s i t i on) ((x ’ , y ’ , z ’) : Po s i t i on)

=
27 l e t sq a = a ∗ a
28 sq r t (sq (x+x ’) + sq (y+y ’) + sq (z+z ’))
29
30 l e t Pos it ionToVector ((x , y , z) : Po s i t i on) =
31 new UnityEngine . Vector3 (x , y , z)
32 l e t VectorToPosit ion (v : UnityEngine . Vector3) : Po s i t i on

=
33 (v . x , v . y , v . z)
34
35 l e t I n c r e a s ePo s i t i o n InD i r e c t i on1 d i r (x , y , z) =
36 match d i r with
37 | XPos
38 | XNeg −> (x , y+1.0 f , z)
39 | YPos
40 | YNeg −> (x+1.0 f , y , z)
41 | ZPos
42 | ZNeg −> (x+1.0 f , y , z)
43

C.3 F# code 97

44 l e t I n c r e a s ePo s i t i o n InD i r e c t i on2 d i r (x , y , z) =
45 match d i r with
46 | XPos
47 | XNeg −> (x , y , z+1.0 f)
48 | YPos
49 | YNeg −> (x , y , z+1.0 f)
50 | ZPos
51 | ZNeg −> (x , y+1.0 f , z)

C.3.5 Mesh.fs

1 module Game . Voxel .Mesh
2
3
4 type ’ a Mesh = (UnityEngine . Vector3 l i s t) ∗ (i n t l i s t) ∗

(’ a)
5
6
7 l e t r e c i n t e r n a l AddMesh compareOp ((vs , ts , voxe l) as

mesh : ’ a Mesh) (meshes : ’ a Mesh l i s t) : ’ a Mesh l i s t
=

8 match meshes with
9 | [] −> [mesh]
10 | (vs2 , ts2 , voxe l2) : : t when compareOp(voxel , voxe l2)

= true −>
11 (vs2 @ vs , t s2 @ (L i s t .map (fun t −> t + L i s t .

l ength vs2) t s) , voxe l) : : t
12 | h : : t −> h : : (AddMesh compareOp mesh t)
13
14 l e t CombineMeshes compareOp mesh l i s t 1 mesh l i s t 2 : ’ a Mesh

l i s t =
15 L i s t . f o l d (fun meshes mesh −> AddMesh compareOp mesh

meshes) mesh l i s t 1 mesh l i s t 2

C.3.6 Voxel.fs

1 module Game . Voxel . Voxel
2
3 open Game . Base

98 Source Code

4 open Game . Voxel .Mesh
5 open Game . Voxel . Po s i t i on
6 open System . Text . RegularExpress ions
7
8 // Voxel : ISL?RRRRGGGGBBBB
9 // I : Indexed value
10 // i f 0 , the remaining 15 b i t s determine a s imple

co l o r ed block / a i r
11 // i f 1 , the remaining 15 b i t s determine an indexed

block
12 // S : I s t h i s a s o l i d block ? Only r e l e van t f o r I = 0
13 // L : Does t h i s b lock emit l i g h t ? Only r e l e van t f o r I = 0

& S = 1 , i . e . s o l i d b locks
14 // RRRRGGGGBBBB: 4 b i t s f o r each o f red / green / blue
15
16 (∗
17
18 Types o f voxe l s needed :
19 − So l i d cube (has c o l o r and maybe ’ health ’)
20 − Light−emit t ing s o l i d cube (has c o l o r and maybe ’ health

’) (c o l o r a l s o determines i n t e n s i t y)
21 − Baked l i g h t i n g (has c o l o r) (c o l o r a l s o determines

i n t e n s i t y) (normal a i r inc luded in t h i s)
22 − Liquid (has c o l o r and l e v e l)
23 − Light−emit t ing l i q u i d (has c o l o r and l e v e l) (c o l o r a l s o

determines i n t e n s i t y)
24 − Indexed value (maybe has 6 b i t s r e s e rved f o r ’ connected

to ’)
25
26 ∗)
27
28 type Voxel = uint16 // "us" a f f i x , f o r i n s t anc e 16us
29
30 l e t i n t e r n a l VoxelToRgb (voxe l : Voxel) =
31 (voxe l >>> 8 &&& 15us , voxe l >>> 4 &&& 15us , voxe l

&&& 15us)
32
33 l e t i n t e r n a l VoxelToRgbFloat voxe l =
34 l e t ColorToFloat c =
35 (f l o a t 3 2 c) / 15 .0 f
36 VoxelToRgb voxe l |> fun (r , g , b) −> (ColorToFloat r ,

ColorToFloat g , ColorToFloat b)
37

C.3 F# code 99

38 l e t i n t e r n a l RgbToVoxel (r : uint16 , g : uint16 , b :
u int16) : Voxel =

39 l e t (r ’ , g ’ , b ’) = (r &&& 15us , g &&& 15us , b &&& 15
us)

40 (r ’ <<< 8) + (g ’ <<< 4) + b ’
41
42 l e t i n t e r n a l FloatToColor f =
43 f ∗ 15 .0 f |> round |> uint16
44
45 l e t i n t e r n a l MakeSolid v =
46 v | | | (1 us <<< 14)
47
48 l e t Voxe l I sSo l i d v =
49 v &&& (1 us <<< 14) <> 0us
50
51 l e t ColorToVoxel (c : UnityEngine . Color) =
52 l e t FloatToColor f = f ∗ 15 .0 f |> round |> uint16
53 RgbToVoxel (FloatToColor c . r , FloatToColor c . g ,

FloatToColor c . b) |> MakeSolid
54
55 l e t VoxelToColor (v : Voxel) =
56 l e t (r , g , b) = VoxelToRgbFloat v
57 new UnityEngine . Color (r , g , b)
58
59 l e t a i rVoxe l = RgbToVoxel (8 us , 8us , 8us)
60
61 l e t VoxelFromString (s : s t r i n g) : Voxel =
62 l e t CharToUint16 c =
63 i f ’ 0 ’ <= c && c <= ’9 ’
64 then (uint16 c) − (u int16 ’ 0 ’)
65 e l s e i f ’ a ’ <= c && c <= ’ f ’
66 then (uint16 c) + 10us − (u int16 ’ a ’)
67 e l s e i f ’A’ <= c && c <= ’F’
68 then (uint16 c) + 10us − (u int16 ’A’)
69 e l s e 0us
70 i f Regex . IsMatch (s , "^#[0−9a−fA−F]{3 ,3} $ ")
71 then
72 l e t r = CharToUint16 s . [1]
73 l e t g = CharToUint16 s . [2]
74 l e t b = CharToUint16 s . [3]
75 p r i n t f n "Creat ing voxe l from s t r i n g : %s −> (%d,%d

,%d) " s r g b
76 RgbToVoxel (r , g , b) |> MakeSolid
77 e l s e

100 Source Code

78 f a i l w i t h (s p r i n t f "Given s t r i n g does not d e f i n e a
voxe l . Must be ’# ’ f o l l owed by 6 hex , i . e .

’#009d2F ’ . \ nWas given : %s " s)
79
80 l e t VoxelToString (v : Voxel) : s t r i n g =
81 l e t (r , g , b) = VoxelToRgb v
82 l e t numToHex n =
83 match n with
84 | 10us −> "A"
85 | 11us −> "B"
86 | 12us −> "C"
87 | 13us −> "D"
88 | 14us −> "E"
89 | 15us −> "F"
90 | _ −>
91 i f 0us <= n && n <= 9us
92 then s t r i n g n
93 e l s e " . "
94 l e t co lo rToSt r ing c = (numToHex (c % 16us))
95 "#" + (co lo rToSt r ing r) + (co lo rToStr ing g) + (

co lo rToStr ing b)
96
97 (∗
98
99 v111
100 // |\\
101 // | \\
102 // | \\
103 // | \\
104 // | \\
105 v011 | | \ v101/\ / | | v110
106 | | \ \ / \// | |
107 | | \\ / //\ | |
108 | | \\ // \ | |
109 | | / \\// \ | |
110 v001 \\ | | v010 // v100
111 \\ | | //
112 \\ | | //
113 \\ | | //
114 \\ |//
115 v000
116
117 y
118 |

C.3 F# code 101

119 z | x
120 \ | /
121 \ | /
122 \ | /
123 \ |/
124
125 ∗)
126
127 l e t i n t e r n a l v000 : Pos i t i on = (−0.5 f , −0.5 f , −0.5 f)
128 l e t i n t e r n a l v001 : Pos i t i on = (−0.5 f , −0.5 f , 0 . 5 f)
129 l e t i n t e r n a l v010 : Pos i t i on = (−0.5 f , 0 . 5 f , −0.5 f)
130 l e t i n t e r n a l v011 : Pos i t i on = (−0.5 f , 0 . 5 f , 0 . 5 f)
131 l e t i n t e r n a l v100 : Pos i t i on = (0 .5 f , −0.5 f , −0.5 f)
132 l e t i n t e r n a l v101 : Pos i t i on = (0 .5 f , −0.5 f , 0 . 5 f)
133 l e t i n t e r n a l v110 : Pos i t i on = (0 .5 f , 0 . 5 f , −0.5 f)
134 l e t i n t e r n a l v111 : Pos i t i on = (0 .5 f , 0 . 5 f , 0 . 5 f)
135
136 l e t VoxelToMesh d i r (pos : Po s i t i on) voxe l : Voxel Mesh =
137 l e t o f f s e tVe r t e x (v : Pos i t i on) =
138 Pos i t ionBinop (+) pos v |> Posit ionToVector
139 match d i r with
140 | XPos −>
141 ([v100 ; v101 ; v110 ; v111] |> L i s t .map

o f f s e tVe r t ex , [0 ; 2 ; 3 ; 0 ; 3 ; 1] , voxe l)
142 | XNeg −>
143 ([v000 ; v001 ; v010 ; v011] |> L i s t .map

o f f s e tVe r t ex , [0 ; 1 ; 3 ; 0 ; 3 ; 2] , voxe l)
144 | YPos −>
145 ([v010 ; v011 ; v110 ; v111] |> L i s t .map

o f f s e tVe r t ex , [0 ; 1 ; 3 ; 0 ; 3 ; 2] , voxe l)
146 | YNeg −>
147 ([v000 ; v001 ; v100 ; v101] |> L i s t .map

o f f s e tVe r t ex , [0 ; 2 ; 3 ; 0 ; 3 ; 1] , voxe l)
148 | ZPos −>
149 ([v001 ; v011 ; v101 ; v111] |> L i s t .map

o f f s e tVe r t ex , [0 ; 2 ; 3 ; 0 ; 3 ; 1] , voxe l)
150 | ZNeg −>
151 ([v000 ; v010 ; v100 ; v110] |> L i s t .map

o f f s e tVe r t ex , [0 ; 1 ; 3 ; 0 ; 3 ; 2] , voxe l)

C.3.7 ProceduralGenerator.fs

102 Source Code

1 module Game . Voxel . ProceduralGenerator
2
3 open Game . Base
4 open Game . Voxel . Po s i t i on
5 open Game . Voxel . Voxel
6
7
8 type Heightmap =
9 | Noise2D o f f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2 // hor−s c a l e

∗ ver−s c a l e
10 | Plane o f f l o a t 3 2
11 | Add2D of Heightmap l i s t
12 | Offset2D o f Pos i t i on ∗ Heightmap
13 | HMRef o f s t r i n g // Reference to another height−map
14
15 type Volumemap =
16 | Noise3D o f f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2 //

x , y , z s ca l e , weight
17 | Add3D of Volumemap l i s t
18 | Offset3D o f Pos i t i on ∗ Volumemap
19 | VMRef o f s t r i n g
20
21 type LandscapeDef =
22 | Heightmap o f Heightmap ∗ LandscapeDef ∗

LandscapeDef
23 | AreaMap o f Heightmap ∗ (Range l i s t) ∗ LandscapeDef
24 | VolumeMap o f Volumemap ∗ (Range l i s t) ∗

LandscapeDef
25 | LandscapeRef o f s t r i n g
26 | Gameobject o f s t r i n g ∗ s t r i n g
27 | VoxelVal o f Voxel
28 | VoxelRef o f s t r i n g
29 and Range = f l o a t 3 2 ∗ f l o a t 3 2 ∗ LandscapeDef
30
31 type ’ a LandscapeResult =
32 | VoxelValue o f Voxel
33 | Object o f ’ a
34
35 type ’ a LandscapeEnv =
36 {
37 GetHeightmap : s t r i n g −> Heightmap opt ion ;
38 GetVolumemap : s t r i n g −> Volumemap opt ion
39 GetLandscape : s t r i n g −> LandscapeDef opt ion ;

C.3 F# code 103

40 GetVoxel : s t r i n g −> Voxel opt ion ;
41 GetObject : s t r i n g −> s t r i n g −> ’ a ;
42 }
43
44 l e t i n t e r n a l NoiseGen =
45 new Graphics . Tools . Noise . Pr imi t ive . S implexPer l in ()
46
47 l e t r e c EvaluateHeightmap (landscapeenv : _ LandscapeEnv)

x z hm =
48 match hm with
49 | Noise2D (sx , sz , weight) when
50 sx <> 0.0 f && sz <> 0.0 f && weight <> 0.0 f −>
51 NoiseGen . GetValue (x / sx , z / sz) ∗ weight
52 | Plane v −> v
53 | Add2D(hms) −>
54 L i s t .map (EvaluateHeightmap landscapeenv x z) hms

|> L i s t . f o l d (fun a b −> a + b) 0 .0 f
55 | Offset2D ((x ’ , y ’ , z ’) ,hm) −>
56 (EvaluateHeightmap landscapeenv (x+x ’) (z+z ’) hm)

+ y ’
57 | HMRef(s) −>
58 match (landscapeenv . GetHeightmap s) with
59 | None −> 0.0 f // ERROR
60 | Some hm −> EvaluateHeightmap landscapeenv x z

hm
61 | _ −> 0.0 f // ERROR
62
63 l e t r e c EvaluateVolumemap (landscapeenv : _ LandscapeEnv)

((x , y , z) as pos) vm =
64 match vm with
65 | Noise3D (sx , sy , sz , weight) −>
66 i f sx <> 0.0 f && sy <> 0.0 f && sz <> 0.0 f
67 then NoiseGen . GetValue (x / sx , y / sy , z / sz) ∗

weight
68 e l s e 0 .0 f
69 | Add3D vms −>
70 L i s t .map
71 (EvaluateVolumemap landscapeenv pos) vms
72 |> L i s t . f o l d (fun a b −> a + b) 0 .0 f
73 | Offset3D (pos ’ , volumemap ’) −>
74 EvaluateVolumemap landscapeenv (Pos i t ionBinop (+)

pos pos ’) volumemap ’
75 | VMRef name −>
76 match landscapeenv . GetVolumemap name with

104 Source Code

77 | Some volumemap ’ −> EvaluateVolumemap
landscapeenv pos volumemap ’

78 | _ −> 0.0 f
79
80 l e t r e c EvaluateLandscape (landscapeenv : _ LandscapeEnv)

landscape ((x , y , z) as pos) =
81 l e t eva l l and = EvaluateLandscape landscapeenv
82 match landscape with
83 | Heightmap (hm, landbelow , landabove) −>
84 l e t hmy = EvaluateHeightmap landscapeenv x z hm
85 l e t landscape ’ =
86 i f hmy > y
87 then landbelow
88 e l s e landabove
89 eva l l and landscape ’ pos
90 | AreaMap (heightmap , ranges , d e f au l t l and s cape) −>
91 l e t hmy = EvaluateHeightmap landscapeenv x z

heightmap
92 match L i s t . tryFind (fun (min ,max ,_) −> min <= hmy

&& hmy <= max) ranges with
93 | None −> eva l l and de f au l t l and s cape pos
94 | Some (_,_, landscape ’) −> eva l l and landscape ’

pos
95 | VolumeMap (volumemap , ranges , d e f au l t l and s cape) −>
96 l e t vmv = EvaluateVolumemap landscapeenv pos

volumemap
97 match L i s t . tryFind (fun (min ,max ,_) −> min <= vmv

&& vmv <= max) ranges with
98 | None −> eva l l and de f au l t l and s cape pos
99 | Some (_,_, landscape ’) −> eva l l and landscape ’

pos
100 | LandscapeRef (name) −>
101 match landscapeenv . GetLandscape name with
102 | Some landscape ’ −> eva l l and landscape ’ pos
103 | _ −> VoxelValue a i rVoxe l
104 | Gameobject (typename , name) −>
105 match landscapeenv . GetObject typename name with
106 | Some o −> Object o
107 | _ −> VoxelValue a i rVoxe l
108 | VoxelVal (voxe l) −>
109 VoxelValue voxe l
110 | VoxelRef (name) −>
111 match landscapeenv . GetVoxel name with
112 | Some voxe l −> VoxelValue voxe l

C.3 F# code 105

113 | _ −> VoxelValue a i rVoxe l

C.3.8 Chunk.fs

1 module Game . Voxel . Chunk
2
3 open Game . Base
4 open Game . Voxel . Po s i t i on
5 open Game . Voxel .Mesh
6 open Game . Voxel . Voxel
7
8
9 type ChunkData = Voxel [, ,]
10 type Chunk = ChunkData ∗ Pos i t i on
11
12
13
14 (∗ l e t CreateChunk chunkSize (voxe lGenerator : Po s i t i on −>

Voxel) chunkCoordinate : Chunk =
15 l e t coord = pos i t i onFac to r chunkSize chunkCoordinate
16 l e t i = chunkSize |> in t
17 l e t data =
18 fun x y z −> voxelGenerator (posit ionAdd coord (

f l o a t 3 2 x , f l o a t 3 2 y , f l o a t 3 2 z))
19 |> Array3D . i n i t <Voxel> i i i
20 (data , coord)
21 ∗)
22
23 l e t ChunkdataFromString width he ight depth char tovoxe l (s

: s t r i n g) : ChunkData =
24 l e t chunkdata = Array3D . c r e a t e width he ight depth

a i rVoxe l
25 l e t chars = s . ToCharArray ()
26 Array . f o l d (fun i c −>
27 match char tovoxe l c with
28 | Some voxe l when i < width ∗ he ight ∗ depth −>
29 chunkdata . [i % width , (i / width) % height , (

i / (width ∗ he ight)) % depth] <− voxe l
30 i + 1
31 | _ −> i
32) 0 chars |> ignore
33 chunkdata

106 Source Code

34
35 l e t ChunkPositionFromVoxelPosition chunkdims : Pos i t i on

−> Pos i t i on =
36 PositionUnop f l o a t 3 2 chunkdims
37 |> Pos i t ionBinop (fun a b −> b / a |> f l o o r)
38
39 // Given dimensions o f a chunk−array and a chunk−

coord inate , t h i s f unc t i on w i l l c a l c u l a t e
40 // the po s i t i o n in the chunk−array o f the g iven po s i t i o n
41 l e t ChunkArrayPosition chunkAmount (pos : Po s i t i on) :

Po s i t i on =
42 PositionUnop (fun a −> f l o o r a |> in t) pos
43 |> Pos i t ionBinop (fun a b −> PositiveMod b a)

chunkAmount
44 |> PositionUnop f l o a t 3 2
45
46 l e t WorldDim chunks ize chunkamount : Pos i t i on =
47 Pos i t ionBinop (∗) chunks ize chunkamount |>

PositionUnop f l o a t 3 2
48
49 l e t LandscapeOffset chunks ize chunkamount cente rpos =
50 cente rpos
51 |> Pos i t ionBinop (+) (WorldDim chunks ize chunkamount

|> PositionUnop (fun a −> a ∗ −0.5 f))
52 |> ChunkPositionFromVoxelPosition chunks ize
53 |> Pos i t ionBinop (∗) (PositionUnop f l o a t 3 2

chunks ize)
54
55 l e t i n t e r n a l WithinChunk (x , y , z) (chunkdata : ChunkData)

=
56 x >= 0.0 f && y >= 0.0 f && z >= 0.0 f
57 && in t x < chunkdata . GetLength (0)
58 && in t y < chunkdata . GetLength (1)
59 && in t z < chunkdata . GetLength (2)
60
61 l e t i n t e r n a l Neighbour d i r (chunkdata : ChunkData) (pos :

Po s i t i on) =
62 l e t o f f s e t =
63 match d i r with
64 | XPos −> (1 , 0 , 0)
65 | XNeg −> (−1 ,0 ,0)
66 | YPos −> (0 , 1 , 0)
67 | YNeg −> (0 ,−1 ,0)
68 | ZPos −> (0 , 0 , 1)

C.3 F# code 107

69 | ZNeg −> (0 ,0 ,−1)
70 l e t ne ighborpos = PositionUnop f l o a t 3 2 o f f s e t |>

Pos i t ionBinop (+) pos
71 i f WithinChunk neighborpos chunkdata
72 then
73 l e t (x , y , z) = PositionUnop in t ne ighborpos
74 Some (chunkdata . [x , y , z])
75 e l s e None
76
77 l e t i n t e r n a l ShouldDraw voxe l neighbour =
78 match neighbour with
79 | None −>
80 Voxe l I sSo l i d voxe l
81 | Some neighbourVoxel −>
82 not (Voxe l I sSo l i d neighbourVoxel) && Voxe l I sSo l i d

voxe l
83
84 l e t r e c updateCreatedMeshArray inc1 inc2 (

meshAlreadyCreated : _ [, ,]) pos1 pos2 pos12 ((x , y , z)
as pos) =

85 meshAlreadyCreated . [i n t x , i n t y , i n t z] <− t rue
86 i f pos = pos12
87 then ()
88 e l i f pos = pos2
89 then updateCreatedMeshArray inc1 inc2

meshAlreadyCreated (inc1 pos1) (inc1 pos2) pos12 (
inc1 pos1)

90 e l s e updateCreatedMeshArray inc1 inc2
meshAlreadyCreated pos1 pos2 pos12 (inc2 pos)

91
92 l e t r e c al lGood inc d i r voxe l (chunkdata : ChunkData) (

meshAlreadyCreated : _ [, ,]) ((x , y , z) as pos1 :
Pos i t i on) ((x2 , y2 , z2) as pos2 : Pos i t i on) =

93 i f pos1 <> pos2 && x >= x2 && y >= y2 && z >= z2
94 then
95 true
96 e l s e
97 l e t t h i s v ox e l = chunkdata . [i n t x , i n t y , i n t z]
98 l e t ne ighbourvoxe l = Neighbour d i r chunkdata pos1
99 l e t s o l i dne i ghbour =
100 match ne ighbourvoxe l with
101 | Some v when (Voxe l I sSo l i d v) −>
102 true
103 | _ −>

108 Source Code

104 f a l s e
105 i f (ShouldDraw th i s v ox e l ne ighbourvoxe l &&

th i s v ox e l = voxe l && not (meshAlreadyCreated . [
i n t x , i n t y , i n t z])) | | s o l i dne i ghbour

106 then al lGood inc d i r voxe l chunkdata
meshAlreadyCreated (inc pos1) pos2

107 e l s e f a l s e
108
109 l e t createGreedyMeshOnLayer inc1 inc2 d i r (chunkdata :

ChunkData) meshAlreadyCreated ((x , y , z) as pos) =
110 l e t voxe l = chunkdata . [i n t x , i n t y , i n t z]
111 l e t r e c greedyMesh pos1 pos2 pos12 caninc1 caninc2

turn1 =
112 (∗
113 On plane :
114
115 (x , y , z) X−−−−−−−X pos1
116 | |
117 | |
118 | | −> Dir e c t i on 1
119 | |
120 | |
121 pos2 X−−−−−−−X pos12
122
123 |
124 v
125 Di r e c t i on 2
126
127 ∗)
128 match caninc1 , caninc2 , turn1 with
129 | f a l s e , f a l s e ,_ −>
130 (pos1 , pos2 , pos12)
131 | true , true , t rue
132 | true , f a l s e ,_ −>
133 // Increment coo rd ina t e s in d i r e c t i o n 1
134 l e t p1 = inc1 pos1
135 l e t p12 = inc1 pos12
136 i f WithinChunk p12 chunkdata && allGood inc2

d i r voxe l chunkdata meshAlreadyCreated p1
p12

137 then greedyMesh p1 pos2 p12 caninc1 caninc2 (
not turn1)

138 e l s e greedyMesh pos1 pos2 pos12 f a l s e caninc2
(not turn1)

C.3 F# code 109

139 | true , true , f a l s e
140 | f a l s e , true ,_ −>
141 // Increment coo rd ina t e s in d i r e c t i o n 2
142 l e t p2 = inc2 pos2
143 l e t p12 = inc2 pos12
144 i f WithinChunk p12 chunkdata && allGood inc1

d i r voxe l chunkdata meshAlreadyCreated p2
p12

145 then greedyMesh pos1 p2 p12 caninc1 caninc2 (
not turn1)

146 e l s e greedyMesh pos1 pos2 pos12 caninc1 f a l s e
(not turn1)

147 greedyMesh pos pos pos t rue t rue t rue
148
149 l e t r e c createMeshes inc1 inc2 d i r (chunkdata : ChunkData

) (meshAlreadyCreated : _ [, ,]) ((x , y , z) as pos :
Po s i t i on) meshes =

150 i f i n t x >= chunkdata . GetLength (0)
151 then createMeshes inc1 inc2 d i r chunkdata

meshAlreadyCreated (0 . 0 f , y+1.0 f , z) meshes
152 e l i f i n t y >= chunkdata . GetLength (1)
153 then createMeshes inc1 inc2 d i r chunkdata

meshAlreadyCreated (x , 0 . 0 f , z+1.0 f) meshes
154 e l i f i n t z >= chunkdata . GetLength (2)
155 then meshes
156 e l i f meshAlreadyCreated . [i n t x , i n t y , i n t z] | | not

(ShouldDraw chunkdata . [i n t x , i n t y , i n t z] (
Neighbour d i r chunkdata pos))

157 then createMeshes inc1 inc2 d i r chunkdata
meshAlreadyCreated (x+1.0 f , y , z) meshes

158 e l s e
159 l e t voxe l = chunkdata . [i n t x , i n t y , i n t z]
160 l e t (pos1 , pos2 , pos12) = createGreedyMeshOnLayer

inc1 inc2 d i r chunkdata meshAlreadyCreated (x
, y , z)

161 l e t (v e r t i c e s , t r i a n g l e s ,_) = VoxelToMesh d i r (0 . 0
f , 0 . 0 f , 0 . 0 f) voxe l

162 l e t addVector3Pos (v : UnityEngine . Vector3 , (x , y ,
z) : Po s i t i on) =

163 new UnityEngine . Vector3 (v . x + f l o a t 3 2 x , v . y
+ f l o a t 3 2 y , v . z + f l o a t 3 2 z)

164 l e t newver t i c e s =
165 L i s t . z ip v e r t i c e s [(x , y , z) ; pos2 ; pos1 ; pos12]
166 |> L i s t .map addVector3Pos

110 Source Code

167 l e t ((x1 , y1 , z1) , (x12 , y12 , z12)) = (pos1 , pos12)
168 updateCreatedMeshArray inc1 inc2

meshAlreadyCreated (x , y , z) pos2 pos12 (x , y , z)
169 createMeshes inc1 inc2 d i r chunkdata

meshAlreadyCreated (x+1.0 f , y , z) (AddMesh (
fun (a , b) −> a = b) (newvert i ces , t r i a n g l e s ,
voxe l) meshes)

170
171 l e t ChunkToMesh d i r ((chunkdata ,_) : Chunk) : Voxel Mesh

l i s t =
172 l e t (xdim , ydim , zdim) = (chunkdata . GetLength (0) ,

chunkdata . GetLength (1) , chunkdata . GetLength (2))
173 l e t meshAlreadyCreated = Array3D . c r e a t e xdim ydim

zdim f a l s e
174 l e t inc1 = Inc r e a s ePo s i t i on InD i r e c t i on1 d i r
175 l e t inc2 = Inc r e a s ePo s i t i on InD i r e c t i on2 d i r
176 createMeshes inc1 inc2 d i r chunkdata

meshAlreadyCreated (0 . 0 f , 0 . 0 f , 0 . 0 f) []
177
178 l e t DisplayMeshes (go : UnityEngine . GameObject) (chunk :

Chunk) (mate r i a l : UnityEngine . Mater ia l) =
179 l e t meshes =
180 [XPos ; XNeg ; YPos ; YNeg ; ZPos ; ZNeg]
181 |> L i s t .map (fun d i r −> ChunkToMesh d i r chunk)
182 |> L i s t . f o l d (CombineMeshes (fun (v1 , v2) −> v1 =

v2)) []
183 l e t CreateMesh ((ver , t r i , voxe l) : Voxel Mesh) =
184 l e t go2 = new UnityEngine . GameObject (" Voxel : " +

(VoxelToString voxe l))
185 go2 . trans form . parent <− go . trans form
186 go2 . trans form . l o c a l P o s i t i o n <− new UnityEngine .

Vector3 (0 . 0 f , 0 . 0 f , 0 . 0 f)
187 l e t me s h f i l t e r = go2 . AddComponent<UnityEngine .

MeshFilter >()
188 l e t meshrenderer = go2 . AddComponent<UnityEngine .

MeshRenderer >()
189 l e t mesh = me sh f i l t e r . mesh
190 mesh . v e r t i c e s <− ver |> L i s t . toArray
191 mesh . t r i a n g l e s <− t r i |> L i s t . toArray
192 mesh . uv <− Array . c r e a t e (L i s t . l ength ver) (new

UnityEngine . Vector2 (0 . 0 f , 0 . 0 f))
193 mesh . RecalculateBounds ()
194 mesh . RecalculateNormals ()

C.3 F# code 111

195 meshrenderer . mate r i a l <− new UnityEngine . Mater ia l
(mate r i a l)

196 meshrenderer . mate r i a l . c o l o r <− VoxelToColor voxe l
197 L i s t . i t e r CreateMesh meshes

C.3.9 BehaviorTree.fs

1 module Game . BehaviorTree
2
3
4 //open Game . Base
5
6
7 type UnOp =
8 | NumNeg
9 | LogicNeg
10 | Trim
11 | Sqrt
12 | Absolute
13
14 type BinOp =
15 | Eq
16 | Less
17 | LessEq
18 | Greater
19 | GreaterEq
20 | Plus
21 | Subtract
22 | Mult ip ly
23 | Divide
24 | StrContains
25
26 type NaryOp =
27 | Max
28 | Min
29 | And
30 | Or
31
32 type Expr =
33 | UnaryOp o f UnOp ∗ Expr
34 | BinaryOp o f Expr ∗ BinOp ∗ Expr
35 | NaryOp o f NaryOp ∗ (Expr l i s t)

112 Source Code

36 | S t r ing o f s t r i n g
37 | Num of f l o a t 3 2
38 | Bool o f bool
39 | Act o f ActionExpr
40 and ActionExpr =
41 | ObjectRef o f s t r i n g
42 | MemberRef o f ActionExpr ∗ ActionExpr
43 | InvokeAction o f s t r i n g ∗ (Expr l i s t)
44
45 type BehaviorTree =
46 | Sequence o f BehaviorTree l i s t
47 | S e l e c t o r o f BehaviorTree l i s t
48 | P a r a l l e l o f i n t ∗ i n t ∗ (BehaviorTree l i s t)
49 | Decorator o f ActionExpr ∗ BehaviorTree
50 | Link o f s t r i n g
51 | Condit ion o f Expr
52 | Action o f ActionExpr
53
54 type BehaviorTreeStatus =
55 | BTSuccess
56 | BTFail
57 | BTRunning o f BehaviorTreeStatus l i s t
58
59 (∗
60 l e t r e c EvalExpr eva l a c t i onexp r (e : Expr) context =
61 match e with
62 | UnaryOp(op , e) −>
63 l e t (exp ’ , context ’) = EvalExpr eva l a c t i onexp r e

context
64 (EvalUnop op exp ’ , context ’)
65 | BinaryOp (e1 , op , e2) −>
66 l e t (e1 ’ , context1) = EvalExpr eva l a c t i onexp r e1

context
67 l e t (e2 ’ , context2) = EvalExpr eva l a c t i onexp r e2

context1
68 (EvalBinop op e1 ’ e2 ’ , context2)
69 | NaryOp(op , es) −>
70 l e t r ec foldmap f s t a t e l =
71 match l with
72 | [] −> ([] , s t a t e)
73 | hd : : t l −>
74 l e t (hd ’ , s t a t e 1) = f hd s t a t e
75 l e t (t l ’ , s t a t e 2) = foldmap f s t a t e 1 t l
76 (hd ’ : : t l ’ , s t a t e 2)

C.3 F# code 113

77 l e t (es ’ , context ’) = foldmap (EvalExpr
eva l a c t i onexpr) context es

78 (EvalNaryop op es ’ , context ’)
79 | Act a −>
80 eva l a c t i onexp r a context
81 | v −> (v , context)
82 and EvalUnop op e =
83 match (op , e) with
84 | (NumNeg, Num n) −> Num (−n)
85 | (LogicNeg , Bool b) −> Bool (not b)
86 | (Trim , St r ing s) −> Str ing (s . Trim ())
87 | (Sqrt , Num n) when n >= 0.0 f −> Num (sq r t n)
88 | (Absolute , Num n) −> Num (abs n)
89 | _ −> Bool f a l s e // ERROR
90 and EvalBinop op e1 e2 =
91 match (op , e1 , e2) with
92 | (Eq , S t r ing v1 , S t r ing v2) −> Bool (v1 = v2)
93 | (Eq , Num v1 , Num v2) −> Bool (v1 = v2)
94 | (Eq , Bool v1 , Bool v2) −> Bool (v1 = v2)
95 | (Less , S t r ing v1 , S t r ing v2) −> Bool (v1 < v2)
96 | (Less , Num v1 , Num v2) −> Bool (v1 < v2)
97 | (LessEq , S t r ing v1 , S t r ing v2) −> Bool (v1 <= v2)
98 | (LessEq , Num v1 , Num v2) −> Bool (v1 <= v2)
99 | (Greater , S t r ing v1 , S t r ing v2) −> Bool (v1 > v2)
100 | (Greater , Num v1 , Num v2) −> Bool (v1 > v2)
101 | (GreaterEq , S t r ing v1 , S t r ing v2) −> Bool (v1 >= v2

)
102 | (GreaterEq , Num v1 , Num v2) −> Bool (v1 >= v2)
103 | (Plus , S t r ing v1 , S t r ing v2) −> Str ing (v1 + v2)
104 | (Plus , Num v1 , Num v2) −> Num (v1 + v2)
105 | (Subtract , Num v1 , Num v2) −> Num (v1 − v2)
106 | (Multiply , Num v1 , Num v2) −> Num (v1 ∗ v2)
107 | (Divide , Num v1 , Num v2) when v2 <> 0.0 f −> Num (v1

/ v2)
108 | (StrContains , S t r ing v1 , S t r ing v2) −> Bool (v1 .

Contains v2)
109 | _ −> Bool f a l s e // ERROR
110 and EvalNaryop op e l s =
111 match e l s with
112 | [e] −> e
113 | e1 : : t l −>
114 l e t e2 = EvalNaryop op t l
115 match (op , e1 , e2) with

114 Source Code

116 | (Max, Num v1 , Num v2) −> Num (i f v1 > v2 then
v1 e l s e v2)

117 | (Min , Num v1 , Num v2) −> Num (i f v1 < v2 then
v1 e l s e v2)

118 | (And , Bool v1 , Bool v2) −> Bool (v1 && v2)
119 | (Or , Bool v1 , Bool v2) −> Bool (v1 | | v2)
120 | _ −> Bool f a l s e // ERROR
121 | _ −> Bool f a l s e // Empty l i s t
122
123 // Need : Status f o r prev ious c a l c u l a t i o n s , s t r i n g −>

BehaviorTree , ActionExpr −> BTResult , Expr −> bool
124 l e t r e c EvaluateBehaviorTree eva la eva lae eva ld fb (

context : ’ a) (bt : BehaviorTree) (bts :
BehaviorTreeStatus) : (BehaviorTreeStatus ∗ ’ a) =

125 l e t e va l r e c = EvaluateBehaviorTree eva la eva lae eva ld
fb

126 match bt with
127 | Sequence (b t l i s t) −>
128 match (bts , b t l i s t , BTIn i t i a l) with
129 | (BTIn i t ia l , [] ,_) −>
130 (BTSuccess , context)
131 | (BTRunning (Ser ia lNode (0 , bts ’)) , hd : : t l ,_)
132 | (BTIn i t ia l , hd : : t l , bts ’) −>
133 match eva l r e c context hd bts ’ with
134 | (BTSuccess , context ’) −> eva l r e c context ’ (

Sequence t l) BTIn i t i a l
135 | (BTRunning (Ser ia lNode (n , bts2)) , context ’)

−> (BTRunning (Ser ia lNode (n+1, bts2)) ,
context ’)

136 | (_, context ’) −> (BTFail , context ’)
137 | (BTRunning (Ser ia lNode (n , bts ’)) ,_ : : t l ,_) when n

<= b t l i s t . Length −>
138 match eva l r e c context (Sequence t l) (

BTRunning(Ser ia lNode (n−1,bts ’))) with
139 | (BTRunning(Ser ia lNode (n ’ , bts2)) , context ’)

−> (BTRunning(Ser ia lNode (n ’+1 , bts2)) ,
context ’)

140 | v −> v
141 | _ −> (BTFail , context)
142 | S e l e c t o r (b t l i s t) −>
143 match (bts , b t l i s t , BTIn i t i a l) with
144 | (BTIn i t ia l , [] ,_) −>
145 (BTFail , context)
146 | (BTRunning (Ser ia lNode (0 , bts ’)) , hd : : t l ,_)

C.3 F# code 115

147 | (BTIn i t ia l , hd : : t l , bts ’) −>
148 match eva l r e c context hd bts ’ with
149 | (BTSuccess , context ’) −> (BTSuccess , context

’)
150 | (BTFail , context ’) −> eva l r e c context ’ (

S e l e c t o r t l) BTIn i t i a l
151 | (BTRunning (Ser ia lNode (n , bts2)) , context ’)

−> (BTRunning (Ser ia lNode (n+1, bts2)) ,
context ’)

152 | (_, context ’) −> (BTFail , context ’)
153 | (BTRunning (Ser ia lNode (n , bts ’)) ,_ : : t l ,_) when n

<= b t l i s t . Length −>
154 match eva l r e c context (S e l e c t o r t l) (

BTRunning(Ser ia lNode (n−1,bts ’))) with
155 | (BTRunning(Ser ia lNode (n ’ , bts2)) , context ’)

−> (BTRunning(Ser ia lNode (n ’+1 , bts2)) ,
context ’)

156 | v −> v
157 | _ −> (BTFail , context)
158 | P a r a l l e l (0 ,_,_) −> (BTSuccess , context)
159 | P a r a l l e l (_, 0 ,_) −> (BTFail , context)
160 | P a r a l l e l (succ , f a i l , b t l i s t) −>
161 match bts with
162 | BTIn i t i a l −>
163 l e t b t s s = BTRunning(Para l l e lNode (L i s t .

r e p l i c a t e (L i s t . l ength b t l i s t) BTIn i t i a l))
164 eva l r e c context bt bt s s
165 | BTRunning(Para l l e lNode (b t s s)) when L i s t . l ength

bt s s = L i s t . l ength b t l i s t −>
166 match (b t l i s t , btss , succ , succ −1, f a i l , f a i l −1)

with
167 | (_: : b t t l , (BTSuccess as v) : : b t s t l ,_, succ ,

f a i l ,_)
168 | (_: : b t t l , (BTFail as v) : : b t s t l , succ ,_,_, f a i l

) −>
169 l e t (bts ’ , context ’) = eva l r e c context (

P a r a l l e l (succ , f a i l , b t t l)) (BTRunning(
Para l l e lNode b t s t l))

170 match bts ’ with
171 | BTRunning(Para l l e lNode bt s s) −> (

BTRunning(Para l l e lNode (v : : b t s s)) ,
context ’)

172 | v −> (v , context ’)
173 | (bt : : b t t l , bts : : b t s t l ,_,_,_,_) −>

116 Source Code

174 l e t (bts ’ , context ’) = eva l r e c context bt
bts

175 match bts ’ with
176 | BTSuccess
177 | BTFail −> eva l r e c context ’ (P a r a l l e l (

succ , f a i l , b t l i s t)) (BTRunning(
Para l l e lNode (bts ’ : : b t s t l)))

178 | _ −>
179 match eva l r e c context ’ (P a r a l l e l (succ

, f a i l , b t t l)) (BTRunning(
Para l l e lNode (b t s t l))) with

180 | (BTRunning(Para l l e lNode b t s t l ’) ,
context2) −> (BTRunning(
Para l l e lNode (bts ’ : : b t s t l ’)) ,
context2)

181 | v −> v
182 | _ −> (BTRunning(Para l l e lNode []) , context)
183 | _ −> (BTFail , context)
184 | Decorator (acexp , bt) −>
185 l e t eva lb t context = eva l r e c context bt
186 evald eva la eva lb t acexp context
187 | Link (name) −>
188 l e t bts ’ =
189 match bts with
190 | BTRunning (SoloNode bt) −> bt
191 | _ −> BTIn i t i a l
192 match fb name with
193 | Some bt −> eva l r e c context bt bts ’
194 | _ −> (BTFail , context)
195 | Condit ion (exp) −>
196 l e t (exp ’ , context ’) = EvalExpr eva la exp context
197 match exp ’ with
198 | S t r ing s when s <> "" −> (BTSuccess , context ’)
199 | Num n when n > 0 .0 f −> (BTSuccess , context ’)
200 | Bool t rue −> (BTSuccess , context ’)
201 | _ −> (BTFail , context ’)
202 | Action (acexp) −>
203 eva lae eva la acexp context
204 ∗)

C.3.10 Prefab.fs

C.3 F# code 117

1 module Game . Prefab
2
3
4 open Game . Base
5 open Game . Voxel . Po s i t i on
6 open Game . Voxel . Voxel
7 open Game . Voxel . ProceduralGenerator
8 open Game . BehaviorTree
9
10
11 type Pr imit iveValue =
12 | PrimInt o f i n t
13 | PrimFloat o f f l o a t 3 2
14 | PrimStr o f s t r i n g
15 | PrimBool o f bool
16 | Pr imPosit ion o f f l o a t 3 2 ∗ f l o a t 3 2 ∗ f l o a t 3 2
17
18 type LevelDef =
19 {
20 Landscape : s t r i n g ;
21 PlayerSpawnPoint : Po s i t i on ;
22 Attr : Map<st r ing , Pr imit iveValue >;
23 }
24
25 type ItemDef =
26 {
27 Appearance : Map<st r i ng , Primit iveValue >;
28 Attr : Map<st r ing , Pr imit iveValue >;
29 }
30
31 type NpcDef =
32 {
33 Appearance : Map<st r i ng , Primit iveValue >;
34 Attr : Map<st r ing , Pr imit iveValue >;
35 BehaviorTree : s t r i n g ;
36 }
37
38 type PlayerDef =
39 {
40 Appearance : Map<st r i ng , Primit iveValue >;
41 Attr : Map<st r ing , Pr imit iveValue >;
42 BehaviorTree : s t r i n g ;
43 Camera : Map<st r ing , Primit iveValue >;

118 Source Code

44 Inventory : Map<st r i ng , s t r i ng >;
45 }
46
47 type BTType =
48 | BTPlayer
49 | BTNpc
50
51 type GameDef =
52 {
53 Leve l s : Map<st r i ng , LevelDef >;
54 Player : PlayerDef ;
55 Items : Map<st r ing , ItemDef >;
56 Npcs : Map<st r ing , NpcDef>;
57
58 BehaviorTrees : Map<st r i ng , BehaviorTree >;
59
60 Voxels : Map<st r ing , Voxel >;
61 Heightmaps : Map<st r i ng , Heightmap>;
62 Volumemaps : Map<st r ing , Volumemap>;
63 Landscapes : Map<st r ing , LandscapeDef >;
64 }
65
66 l e t De fau l tP layer =
67 {
68 Appearance = Map. empty ;
69 Attr = Map. empty ;
70 BehaviorTree = "" ;
71 Camera = Map. empty ;
72 Inventory = Map. empty ;
73 }
74
75 l e t DefaultGame =
76 {
77 Leve l s = Map. empty ;
78 Items = Map. empty ;
79 Npcs = Map. empty ;
80 Player = Defau l tP layer ;
81 BehaviorTrees = Map. empty ;
82 Heightmaps = Map. empty ;
83 Volumemaps = Map. empty ;
84 Landscapes = Map. empty ;
85 Voxels = Map. empty ;
86 }

C.3 F# code 119

C.3.11 State.fs

1 module Game . State
2
3
4 open System . Co l l e c t i o n s . Generic
5 open Game . Base
6 open Game . Voxel . Po s i t i on
7 open Game . Voxel . Voxel
8 open Game . Voxel . ProceduralGenerator
9 open Game . Voxel . Chunk
10 open Game . BehaviorTree
11 open Game . Prefab
12
13 type VisualVoxelObject = UnityEngine . GameObject ∗ Chunk ∗

f l o a t 3 2
14
15 type Item =
16 {
17 appearence : VisualVoxelObject ;
18 a t t r : Map<st r ing , Primit iveValue >;
19 }
20
21 type Npc =
22 {
23 appearence : VisualVoxelObject ;
24 a t t r : Map<st r ing , Primit iveValue >;
25 behaviorTree : BehaviorTree ;
26 behaviorTreeStatus : BehaviorTreeStatus ;
27 }
28
29 type Player =
30 {
31 appearence : VisualVoxelObject ;
32 a t t r : Map<st r ing , Primit iveValue >;
33 behaviorTree : BehaviorTree ;
34 behaviorTreeStatus : BehaviorTreeStatus ;
35 inventory : Map<st r i ng , Item>;
36 }
37
38 type ItemNpc =
39 | ItemRes o f ItemDef
40 | NpcRes o f NpcDef
41

120 Source Code

42 type Landscape =
43 {
44 chunks : (VisualVoxelObject opt ion) [, ,] ;
45 l andscapeOf f s e t : Po s i t i on ;
46 re freshChunks : Pos i t i on l i s t ;
47 voxe lCreator : Po s i t i on −> ItemNpc LandscapeResult ;
48 chunkDimensions : i n t ∗ i n t ∗ i n t ;
49 chunkAmount : i n t ∗ i n t ∗ i n t ;
50 }
51
52 type State =
53 {
54 landscape : Landscape ;
55 items : Item l i s t ;
56 npcs : Npc l i s t ;
57 p laye r : Player ;
58 a t t r : Map<st r ing , Primit iveValue >;
59 }
60
61
62 l e t CreateVisua lObject (appearence : Map<_,_>) goT i t l e :

VisualVoxelObject =
63 l e t s c a l e =
64 match appearence . TryFind " Sca l e " with
65 | Some (PrimFloat f) when f > 0 .0 f −> f
66 | Some (PrimInt i) when i > 0 −> f l o a t 3 2 i
67 | _ −> 1.0 f
68 l e t chunkstr =
69 match appearence . TryFind "Chunk" with
70 | Some (PrimStr s) −> s
71 | _ −> ""
72 l e t v ox e l c o l o r =
73 match appearence . TryFind "Color " with
74 | Some (PrimStr s) −> s
75 | _ −> "#0 f f "
76 l e t char tovoxe l c =
77 match c with
78 | ’1 ’ −> Some (VoxelFromString vox e l c o l o r)
79 | ’0 ’ −> Some a i rVoxe l
80 | _ −> None
81 l e t getdim s =
82 match appearence . TryFind s with
83 | Some (PrimInt i) when i > 1−> i
84 | _ −> 1

C.3 F# code 121

85 l e t (w, h , d) =
86 (getdim "Width" , getdim "Height " , getdim "Depth ")
87 l e t chunkdata =
88 ChunkdataFromString w h d char tovoxe l chunkstr
89 l e t cente rpos : Po s i t i on =
90 match appearence . TryFind "Center " with
91 | Some (PrimPosit ion (x , y , z)) −> (x , y , z)
92 | _ −>
93 (f l o a t 3 2 w / 2 .0 f ,
94 f l o a t 3 2 h / 2 .0 f ,
95 f l o a t 3 2 d / 2 .0 f)
96 (new UnityEngine . GameObject (goT i t l e) ,
97 (chunkdata , cente rpos) ,
98 s c a l e)
99
100 l e t ShowVisualObject ((go , chunk , s c a l e) :

VisualVoxelObject) (p : Pos i t i on) mate r i a l parent =
101 // Remove a l l c h i l d r en o f go
102 whi l e go . trans form . chi ldCount > 0 do
103 UnityEngine . Object . Destroy (go . trans form . GetChild

(0) . gameObject)
104 DisplayMeshes go chunk mate r i a l
105 go . trans form . l o c a l S c a l e <− new UnityEngine . Vector3 (

s ca l e , s ca l e , s c a l e)
106 match parent with
107 | None −> go . trans form . po s i t i o n <− Posit ionToVector p
108 | Some trans form −>
109 go . trans form . parent <− trans form
110 go . trans form . l o c a l P o s i t i o n <− Posit ionToVector p
111 ()
112
113 l e t SetupCharacte rContro l l e r ((go , (chunkdata ,_) , s c a l e) as

v i sob : VisualVoxelObject) =
114 l e t cc =
115 match go . GetComponent<UnityEngine .

Characte rContro l l e r >() with
116 | nu l l −> go . AddComponent<UnityEngine .

Characte rContro l l e r >()
117 | c −> c
118 cc . s l opeL imi t <− 90 .0 f
119 cc . s t epO f f s e t <− 1 .1 f
120 cc . he ight <− (f l o a t 3 2 (chunkdata . GetLength (1))) ∗

s c a l e

122 Source Code

121 cc . r ad iu s <− (f l o a t 3 2 (chunkdata . GetLength (0) +
chunkdata . GetLength (2))) ∗ s c a l e / 4 .0 f

122 v i sob
123
124 l e t CreateItem (i temdef : ItemDef) : Item =
125 {
126 appearence = CreateVisua lObject i temdef . Appearance "

Item " ;
127 a t t r = itemdef . Attr ;
128 }
129
130 l e t CreateNpc fb (npcdef : NpcDef) : Npc opt ion =
131 match fb npcdef . BehaviorTree with
132 | Some bt −>
133 Some {
134 appearence = CreateVisua lObject npcdef . Appearance

"Npc " ;
135 a t t r = npcdef . Attr ;
136 behaviorTree = bt ;
137 behaviorTreeStatus = BTRunning [] ;
138 }
139 | _ −> None
140
141 l e t CreatePlayer fb f i (p l ay e rde f : PlayerDef) p layerpos

: Player opt ion =
142 l e t get i tem name =
143 match f i name with
144 | None −> None
145 | Some item −> Some (CreateItem item)
146 l e t optionalAdd f map key value =
147 match f va lue with
148 | Some v −> Map. add key v map
149 | _ −> map
150 l e t o p t i o nF i l t e r f =
151 Map. f o l d (optionalAdd f) Map. empty
152 match fb p l aye rde f . BehaviorTree with
153 | Some bt −>
154 l e t (go ,_,_) as v i sob = CreateVisua lObject

p l ay e rde f . Appearance "Player "// |>
SetupCharacte rContro l l e r

155 go . trans form . Trans late (Pos it ionToVector
p layerpos)

156 Some {
157 appearence = vi sob ;

C.3 F# code 123

158 a t t r = p l aye rde f . Attr ;
159 behaviorTree = bt ;
160 behaviorTreeStatus = BTRunning [] ;
161 inventory = p laye rde f . Inventory |>

op t i o nF i l t e r get i tem
162 }
163 | _ −> None
164
165 l e t i n t e r n a l ChunkCreator landscapeenv landscape ((_, y ,_)

as pos) =
166 match landscape with
167 | None when y >= 0.0 f −> VoxelValue a i rVoxe l
168 | None −> VoxelFromString "#530" |> VoxelValue
169 | Some landscape ’ −>
170 EvaluateLandscape landscapeenv landscape ’ pos
171
172 l e t C r e a t e I n i t i a l S t a t e (gamedef : GameDef) chunks ize ((w,

h , d) as chunkamount) levelname : State opt ion =
173 match gamedef . Leve l s . TryFind levelname with
174 | Some l e v e l −>
175 l e t p laye r = gamedef . Player
176 l e t f o t =
177 match t with
178 | " Item" −>
179 fun s −>
180 match gamedef . Items . TryFind s with
181 | None −> None
182 | Some itemdef −> Some (ItemRes

i temdef)
183 | "Npc" −>
184 fun s −>
185 match gamedef . Npcs . TryFind s with
186 | None −> None
187 | Some npcdef −> Some (NpcRes npcdef)
188 | _ −> fun _ −> None
189 l e t s t a r tpo s = l e v e l . PlayerSpawnPoint
190 l e t l andscapeOf f s e t = LandscapeOffset chunks ize

chunkamount s t a r tpo s
191 l e t landscapeenv =
192 {
193 GetHeightmap = gamedef . Heightmaps . TryFind ;
194 GetVolumemap = gamedef . Volumemaps . TryFind ;
195 GetLandscape = gamedef . Landscapes . TryFind ;
196 GetVoxel = gamedef . Voxels . TryFind ;

124 Source Code

197 GetObject = fo ;
198 }
199 l e t landscape =
200 {
201 chunks = Array3D . c r e a t e w h d None ;
202 l andscapeOf f s e t = landscapeOf f s e t |>

Pos i t ionBinop (+) (PositionUnop (fun a −>
a ∗ 5 .0 f) (WorldDim chunks ize chunkamount)
) ;

203 re freshChunks = [] ;
204 voxe lCreator = ChunkCreator landscapeenv (

gamedef . Landscapes . TryFind l e v e l . Landscape
) ;

205 chunkDimensions = chunks ize ;
206 chunkAmount = chunkamount ;
207 }
208 match CreatePlayer gamedef . BehaviorTrees . TryFind

gamedef . Items . TryFind p laye r s t a r tpo s with
209 | None −> None
210 | Some p −>
211 l e t s t a t e =
212 {
213 landscape = landscape ;
214 npcs = [] ; // I n i t i a l l y empty , w i l l be

c rea ted with the landscape
215 p laye r = p ;
216 items = [] ; // I n i t i a l l y empty , w i l l be

c rea ted with the landscape
217 a t t r = l e v e l . Attr ;
218 }
219 Some s t a t e
220 | _ −> None

C.3.12 CreateGame.fs

1 module Game . CreateGame
2
3
4 open UnityEngine
5 open Game . GameDefinit ion
6 open Game . P laye rCont ro l l e r
7 open Game . Base

C.3 F# code 125

8 open Game . Voxel . Po s i t i on
9 open Game . Voxel . Voxel
10 open Game . Voxel . ProceduralGenerator
11 open Game . Voxel . Chunk
12 open Game . BehaviorTree
13 open Game . State
14 open Game . Prefab
15 open Game . BTGparser
16 open Game . BTGlexer
17
18
19 l e t i n t e r n a l readbtg s =
20 l e t l exbu f = Lexing . LexBuffer<_>.FromString s
21 try
22 Game . BTGparser . GameDefinit ion BTGlexer . t oken i z e

l exbu f
23 with e −>
24 l e t pos = lexbu f . EndPos
25 l e t l i n e = pos . Line + 1
26 l e t column = pos . Column
27 l e t message = e . Message
28 l e t lastToken = new System . St r ing (l exbu f . Lexeme)
29 Debug . Log (s p r i n t f "Parse f a i l e d at l i n e %d ,

column %d :" l i n e column)
30 Debug . Log (s p r i n t f "Last token : %s " lastToken)
31 f a i l w i t h "Parse e r r o r "
32 l e t i n t e r n a l r e a d f i l e f =
33 System . IO . F i l e . ReadAllText (f) |> readbtg
34
35
36 // Rules to be c rea ted :
37 // PlayerRule that execute s p layers ’ behavior t r e e s
38 (∗ l e t MovePlayer =
39 fun (s t a t e : State) (pc : P l aye rCont ro l l e r) −>
40 l e t p laye r = s t a t e . p laye r
41 l e t (bts , (s ta te ’ , (p layer ’ ,_))) = evalBt (s ta te , (

p layer , pc)) p laye r . behaviorTree p laye r .
behav iorTreeStatus

42 { s tate ’ with p laye r = {player ’ with
behaviorTreeStatus = bts }}

43
44 // StateRule that execute s npcs ’ behavior t r e e s
45 l e t MoveNpcs =
46 fun (s t a t e : State) −>

126 Source Code

47 l e t MoveNpc (s t a t e : State) name =
48 match s t a t e . npcs . TryFind name with
49 | None −> s ta t e
50 | Some npc −>
51 l e t (bts , (s ta te ’ , npc ’)) = evalBt (s ta te ,

npc) npc . behaviorTree npc .
behav iorTreeStatus

52 { s tate ’ with npcs = state ’ . npcs .Add (name
, npc ’) }

53 l e t npcnames =
54 Map. t oL i s t s t a t e . npcs
55 |> L i s t .map (fun (s ,_) −> s)
56 L i s t . f o l d MoveNpc s t a t e npcnames
57 ∗)
58
59 // StateRule that c en t e r s and updates the view o f p laye r
60 l e t CenterView =
61 fun (s t a t e : State) −>
62 l e t (go ,_,_) = s t a t e . p laye r . appearence
63 l e t newcenter = VectorToPosit ion go . trans form .

po s i t i o n
64 l e t l a nd s i z e = WorldDim s t a t e . landscape .

chunkDimensions s t a t e . landscape . chunkAmount
65 l e t o l d c en t e r = Pos i t ionBinop (+) s t a t e . landscape

. l andscapeOf f s e t (PositionUnop (fun a −> a ∗
0 .5 f) l a nd s i z e)

66 // I f p laye r i s a c e r t a i n d i s t anc e from the
cente r o f the view :

67 l e t (dx , dy , dz) = Pos i t ionBinop (fun a b −> a − b
|> abs) newcenter o l d c en t e r

68 l e t (dw, dh , dd) = s t a t e . landscape . chunkDimensions
|> PositionUnop f l o a t 3 2 |> PositionUnop (fun a
−> a ∗ 2 .0 f)

69 i f dx > dw | | dy > dh | | dz > dd
70 then
71 l e t getchunkpos =

ChunkPositionFromVoxelPosit ion s t a t e .
landscape . chunkDimensions

72 l e t getmax = Pos i t ionBinop (+) (PositionUnop
f l o a t 3 2 s t a t e . landscape . chunkAmount)

73 l e t oldmin = s t a t e . landscape . l andscapeOf f s e t
|> getchunkpos

74 l e t oldmax = getmax oldmin

C.3 F# code 127

75 l e t new lando f f s e t = LandscapeOffset s t a t e .
landscape . chunkDimensions s t a t e . landscape .
chunkAmount newcenter

76 l e t newmin = newlando f f s e t |> getchunkpos
77 l e t newmax = getmax newmin
78 l e t (x , y , z) = PositionUnop in t newmin
79 l e t (w, h , d) = s t a t e . landscape . chunkAmount
80 Debug . Log (s p r i n t f "Recenter ing \ n l a ndo f f s e t : %

O\ nnewlando f f s e t : %O\nnewcenter : %O\
n l and s i z e : %O\ no ldcente r : %O\nold min and
max : %O − %O\nnew min and max : %O − %O" (
s t a t e . landscape . l andscapeOf f s e t)
new lando f f s e t newcenter l a nd s i z e o l d c en t e r
oldmin oldmax newmin newmax)

81 l e t Within (xmin , ymin , zmin) (xmax , ymax , zmax)
(x , y , z) =

82 xmin <= x && x <= xmax && ymin <= y && y
<= ymax && zmin <= z && z <= zmax

83 // Ca lcu la te the p o s i t i o n s in the new view ,
but not in the old , and add these to the
l i s t o f chunks to be updated

84 l e t newchunks =
85 [
86 f o r i in x . . x+w−1 do
87 f o r j in y . . y+h−1 do
88 f o r k in z . . z+d−1 do
89 l e t pos = (f l o a t 3 2 i , f l o a t 3 2 j , f l o a t 3 2

k)
90 i f (Within newmin newmax pos) && not (

Within oldmin oldmax pos)
91 then y i e l d pos
92]
93 // F i l t e r p o s i t i o n s that are no longe r in the

view
94 l e t o ldupdates = L i s t . f i l t e r (Within newmin

newmax) s t a t e . landscape . re freshChunks
95 // Sort the l i s t o f p o s i t i o n s by d i s t ance to

the p laye r
96 l e t updates =
97 newchunks @ oldupdates
98 |> L i s t . sortBy (Distance newcenter)
99 { s t a t e with landscape = { s t a t e . landscape with

refreshChunks = updates ; l andscapeOf f s e t
= newlando f f s e t }}

128 Source Code

100 e l s e
101 s t a t e
102
103 l e t CreateChunk (gamedef : GameDef) mate r i a l (s t a t e :

State) (chunkpos : Po s i t i on) =
104 l e t (w, h , d) = s t a t e . landscape . chunkDimensions
105 l e t pos0 =
106 PositionUnop f l o a t 3 2 s t a t e . landscape .

chunkDimensions
107 |> Pos i t ionBinop (∗) chunkpos
108 l e t (chunkx , chunky , chunkz) =
109 ChunkArrayPosition s t a t e . landscape . chunkAmount

chunkpos
110 |> PositionUnop in t
111 l e t (go , chunk ,_) =
112 match s t a t e . landscape . chunks . [chunkx , chunky ,

chunkz] with
113 | None −>
114 l e t v i sob = (new GameObject (s p r i n t f "Chunk %O

" chunkpos) , (Array3D . c r e a t e w h d airVoxel
, pos0) , 1 . 0 f)

115 s t a t e . landscape . chunks . [chunkx , chunky , chunkz]
<− Some v i sob

116 v i sob
117 | Some v i sob −> visob
118 l e t (chunkdata ,_) = chunk
119 l e t chunkpos i t i ons =
120 [
121 f o r i in 0 . . (w−1) do
122 f o r j in 0 . . (h−1) do
123 f o r k in 0 . . (d−1) do
124 y i e l d (i , j , k)
125]
126 l e t c reateVoxe l vox e l c r e a t o r s t a t e (x , y , z) =
127 l e t pos =
128 PositionUnop f l o a t 3 2 (x , y , z)
129 |> Pos i t ionBinop (+) pos0
130 l e t v = s t a t e . landscape . voxe lCreator pos
131 //Debug . Log (s p r i n t f "Voxel @ %O −> %O" pos v)
132 match v with
133 | Object (ItemRes i temdef) −>
134 l e t item = CreateItem itemdef
135 // Show item

C.3 F# code 129

136 ShowVisualObject item . appearence pos
mate r i a l None

137 // Add c o l l i d e r to item
138 l e t (go , (chunkdata ,_) , s c a l e) = item .

appearence
139 l e t s i z e =
140 (0 , 1 , 2)
141 |> PositionUnop chunkdata . GetLength
142 |> PositionUnop (fun a −> f l o a t 3 2 a ∗

s c a l e)
143 l e t c o l l i d e r = go . AddComponent<

BoxCol l ider >()
144 c o l l i d e r . s i z e <− Posit ionToVector s i z e
145 go . AddComponent<Rigidbody >() |> ignore
146 // Add item to s t a t e
147 { s t a t e with items = item : : s t a t e . i tems } //

TODO − name o f item
148 | Object (NpcRes npcdef) −>
149 match CreateNpc gamedef . BehaviorTrees .

TryFind npcdef with
150 | None −> s ta t e
151 | Some npc −>
152 // Show npc
153 ShowVisualObject npc . appearence pos

mate r i a l None
154 // Set up charac t e r c o n t r o l l e r on npc
155 SetupCharacterContro l l e r npc .

appearence |> ignore
156 // Add npc to s t a t e
157 { s t a t e with npcs = npc : : s t a t e . npcs}

// TODO − name o f npc
158 | VoxelValue v −>
159 chunkdata . [x , y , z] <− v
160 s t a t e
161 l e t s ta te ’ = L i s t . f o l d (c reateVoxe l s t a t e . landscape .

voxe lCreator) s t a t e chunkpos i t i ons
162 ShowVisualObject (go , chunk , 1 . 0 f) pos0 mate r i a l None
163 // Add mesh c o l l i d e r to a l l c h i l d s o f go
164 i f go . trans form . chi ldCount > 0
165 then
166 f o r i in 0 . . (go . trans form . chi ldCount)−1 do
167 go . trans form . GetChild (i) . gameObject .

AddComponent<MeshColl ider >() |> ignore
168 s tate ’

130 Source Code

169
170 l e t DrawLandscape (gamedef : GameDef) mate r i a l s t a t e =
171 l e t (updatenow , update l a t e r) = L i s t S p l i t 4 s t a t e .

landscape . re freshChunks
172 l e t s ta te ’ = L i s t . f o l d (CreateChunk gamedef mate r i a l)

s t a t e updatenow
173 { s tate ’ with landscape = { state ’ . landscape with

refreshChunks = update l a t e r }}
174
175 l e t OutcomeFunction : Outcome<State , P laye rCont ro l l e r> =
176 fun (s t a t e : State) _ −>
177 match s t a t e . p layer . behaviorTreeStatus with
178 | BTSuccess −> Some Won
179 | BTFail −> Some Lost
180 | _ −> None
181
182 l e t De f au l tCon t r o l l e r : P l aye rCont ro l l e r =
183 [
184 Button ("Jump" , Key(KeyCode . Space)) ;
185 Button ("Jump" , MouseButton (1)) ;
186 Button (" Attack " , Key(KeyCode . L e f t S h i f t)) ;
187 Button (" Attack " , MouseButton (0)) ;
188 Button (" Reload " , Key(KeyCode .R)) ;
189 Button ("Ranged Weapon" , Key(KeyCode . Alpha2)) ;
190 Button ("Melee Weapon" , Key(KeyCode . Alpha1)) ;
191 Axis ("Forward " , " Ve r t i c a l ") ;
192 Axis (" S t r a f e " , " Hor i zonta l ") ;
193 Axis ("Look " , "Mouse Y") ;
194 Axis ("Turn" , "Mouse X")
195]
196
197 l e t CreateGameFromFile mate r i a l chunks ize chunkamount

f i l ename levelname : (Game<State , P laye rCont ro l l e r> ∗
State) opt ion =

198 try
199 l e t gamedef = r e a d f i l e f i l ename
200 l e t i n i t S t a t e = Cr e a t e I n i t i a l S t a t e gamedef

chunks ize chunkamount levelname
201 match i n i t S t a t e with
202 | Some s t a t e −>
203 l e t p l aye r s = [De f au l tCont ro l l e r] // Not

a c tua l l y used
204 l e t r u l e s = [StateRule CenterView ; StateRule

(DrawLandscape gamedef mate r i a l) ; (∗

C.3 F# code 131

PerPlayerRule MovePlayer ; StateRule
MoveNpcs ; ∗)]

205 Some ((p layers , ru l e s , OutcomeFunction) ,
s t a t e)

206 | _ −>
207 None
208 with e −>
209 Debug . Log "Error c r e a t i n g game"
210 None

C.3.13 CreateGameClass.fs

1 namespace Game
2
3 open UnityEngine
4 open Game . GameDefinit ion
5 open Game . P laye rCont ro l l e r
6 open Game . State
7 open Game . CreateGame
8
9 type CreateGameClass = c l a s s
10 i n h e r i t MonoBehaviour
11
12 va l mutable pub l i c GameFile : s t r i n g
13 va l mutable pub l i c LevelName : s t r i n g
14 va l mutable pub l i c ChunkSize : i n t
15 va l mutable pub l i c ChunkAmountHor : i n t
16 va l mutable pub l i c ChunkAmountVer : i n t
17 va l mutable pub l i c De fau l tMate r i a l : Mater ia l
18
19 va l mutable p r i va t e GameState : State opt ion
20 va l mutable p r i va t e Game : Game<State ,

P laye rCont ro l l e r> opt ion
21
22 member t h i s . S ta r t () =
23 l e t s i z e = (t h i s . ChunkSize , t h i s . ChunkSize , t h i s .

ChunkSize)
24 l e t amount = (t h i s . ChunkAmountHor , t h i s .

ChunkAmountVer , t h i s . ChunkAmountHor)
25 Debug . Log "Creat ing game . . . "
26 match CreateGameFromFile t h i s . De fau l tMate r i a l

s i z e amount t h i s . GameFile t h i s . LevelName with

132 Source Code

27 | Some (game , s t a t e) −>
28 Debug . Log "Game created "
29 t h i s . GameState <− Some s t a t e
30 t h i s .Game <− Some game
31 | _ −>
32 Debug . Log "Was unable to c r e a t e game"
33 t h i s . GameState <− None
34 t h i s .Game <− None
35
36 member t h i s . Update () =
37 match (t h i s . GameState , t h i s .Game) with
38 | (Some state , Some game) −>
39 l e t (s ta te ’ ,_) = GameStep game s t a t e
40 t h i s . GameState <− Some state ’
41 | _ −>
42 ()
43
44 end

Bibliography

[1] Jesper Juul, The Game, the Player, the World: Looking for a Heart of Game-
ness, In Level Up: Digital Games Research Conference Proceedings, edited
by Marinka Copier and Joost Raessens, 30-45. Utrecht University, 2003,
http://www.jesperjuul.net/text/gameplayerworld/

[2] Katie Salen & Eric Zimmerman, Rules of Play - Game Design Fundamentals,
MIT Press, Cambridge, 2003

[3] Mojang AB, Minecraft, video game, http://www.minecraft.net

[4] Zachtronics Industries, Infiniminer, video game, http://
thesiteformerlyknownas.zachtronicsindustries.com/?p=713

[5] William E. Lorensen, Harvey E. Cline, Marching Cubes: A high resolution
3D surface construction algorithm, Computer Graphics, Vol. 21, Nr. 4, July
1987

[6] The TransvoxelTMAlgorithm, http://www.terathon.com/voxels/

[7] Eric Lengyel, Transition Cells for Dynamic Multiresolution Marching Cubes
Journal of Graphics, GPU, and Game Tools. Vol. 15, No. 2 (2010), A K
Peters. DOI: 10.1080/2151237X.2011.563682

[8] Ken Perlin, Making Noise, Slides from GDCHardcore, 1999, http://www.
noisemachine.com/talk1/

[9] Ken Perlin, Noise hardware, Real-Time Shading SIGGRAPH Course Notes
(2001), Olano M., (Ed.).

http://www.jesperjuul.net/text/gameplayerworld/
http://www.minecraft.net
http://thesiteformerlyknownas.zachtronicsindustries.com/?p=713
http://thesiteformerlyknownas.zachtronicsindustries.com/?p=713
http://www.terathon.com/voxels/
http://www.noisemachine.com/talk1/
http://www.noisemachine.com/talk1/

134 BIBLIOGRAPHY

[10] Bjoern Knafla, Introduction to Behavior Trees, http://www.
altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/

[11] Maxis, Spore, 2008, video game, http://www.spore.com/

[12] Chris Hecker, My Liner Notes for Spore/Spore Behavior Tree
Docs, http://chrishecker.com/My_Liner_Notes_for_Spore/Spore_
Behavior_Tree_Docs

[13] Unity Technologies, Unity, game development platform, http://unity3d.
com/

[14] Scott D Roth, Ray Casting for Modeling Solids, Computer Graphics and
Image Processing 18 (2), February 1982

http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.spore.com/
http://chrishecker.com/My_Liner_Notes_for_Spore/Spore_Behavior_Tree_Docs
http://chrishecker.com/My_Liner_Notes_for_Spore/Spore_Behavior_Tree_Docs
http://unity3d.com/
http://unity3d.com/

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Goal
	1.2 Scope
	1.3 Structure of the Thesis
	1.4 Notation
	1.5 Related Work

	2 Requirement Specification
	2.1 Case Study: Carl of Sheeponia
	2.2 Basic Concepts
	2.2.1 Game Objects
	2.2.2 Landscape
	2.2.3 Visual Objects
	2.2.4 What is a game?
	2.2.5 Levels in a Game
	2.2.6 Behavior Trees

	2.3 Game Development Requirements

	3 System Architecture
	4 Rendering Voxel Models
	4.1 Position
	4.2 Mesh
	4.3 Voxel
	4.4 Chunk

	5 Conceptual Game Model
	5.1 Game Objects
	5.1.1 Items
	5.1.2 Non Player Characters
	5.1.3 Player Characters

	5.2 Landscape
	5.2.1 Height Maps
	5.2.2 Volume Maps
	5.2.3 Landscape Procedure

	5.3 Levels
	5.4 Behavior Trees
	5.5 Game Definition

	6 Game Definition Language
	6.1 Generic Parts of the Parser
	6.2 Items
	6.3 Non Player Characters
	6.4 Player Characters
	6.5 Height Maps
	6.6 Volume Maps
	6.7 Landscapes
	6.8 Levels
	6.9 Behavior Trees
	6.10 Expressions
	6.11 Game Definition

	7 Constructing the Game Model
	7.1 Visual Voxel Object
	7.2 Creating Game Objects
	7.3 Evaluate a Landscape Definition
	7.4 Formal Game Model
	7.5 State Definition
	7.6 Player Definition
	7.7 Winning and Losing Conditions

	8 Tests
	8.1 System tests
	8.1.1 Landscape creation
	8.1.2 Game object creation
	8.1.3 Mesh creation

	8.2 Other Tests Needed

	9 Results
	9.1 Landscapes

	10 Discussion
	10.1 Future Work

	A Glossary
	B External Sources
	B.1 Wireframe Character
	B.2 Voxel Character
	B.3 Minecraft Landscape
	B.4 Simplex/Perlin Noise

	C Source Code
	C.1 Game Definition Language
	C.1.1 Carl of Sheeponia
	C.1.2 Landscape Examples

	C.2 Scanner/Parser
	C.2.1 Lexer definition
	C.2.2 Parser Definition

	C.3 F# code
	C.3.1 GameDefinition.fs
	C.3.2 PlayerController.fs
	C.3.3 Base.fs
	C.3.4 Position.fs
	C.3.5 Mesh.fs
	C.3.6 Voxel.fs
	C.3.7 ProceduralGenerator.fs
	C.3.8 Chunk.fs
	C.3.9 BehaviorTree.fs
	C.3.10 Prefab.fs
	C.3.11 State.fs
	C.3.12 CreateGame.fs
	C.3.13 CreateGameClass.fs

	Bibliography

