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Abstract

This thesis is a study of packed-bed reactors with integrated heat exchangers with focus on

bifurcation analysis. A mathematical model of a packed-bed reactor is derived using the mo-

lar mass- and energy balance equations. This model is discretized using the method of lines

in order to make simulations of the steady state of the system. Furthermore disturbances are

added to the inlet conditions and it is shown through simulations that this causes moving hot

spots as a consequence of the convective instability of the system. An analysis of the param-

eters’ effect on the steady state is performed together with a bifurcation analysis that shows

that no bifurcations occurs in a given parameter space that covers many different processes

in the chemical industry.

The theory of a heat exchanger is presented and a model of a such is derived. This model

is integrated with the model of the packed-bed reactor in order to perform simulations and

bifurcation analysis. Simulations show that disturbances are amplified in the reactor and fed

back through the heat exchanger causing growing temperature waves. It turns out that these

waves stop growing and end up oscillating with a constant amplitude. This is confirmed by

bifurcation analysis that shows the occurrence of both Hopf- and limit point bifurcations. It

is shown that bifurcations only occur for changes in the Damköhler number, the dimension-

less adiabatic temperature rise, the flow factor and the dimensionless temperature approach.

Finally it is shown that a cooled reactor lowers the amount of bifurcations.
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Chapter 1

Introduction

Many important reactions in the chemical industry take place in packed-bed reactors, i.e.

tubular reactors filled with catalyst material. These reactors are typically connected to a

heat exchanger that is used to heat up the inlet gas with the energy of the outlet gas.

In packed-bed reactors, the convective transport of heat and matter occur at different veloci-

ties and cause convective instability that can result in an amplification of process disturbances1

on the inlet temperature. This causes travelling temperature waves which are not desirable

as they, if the temperatures are high enough, might pose a safety hazard if the reactor over-

heats. It can also be a costly affair if the high temperatures deactivate the catalyst, which

then need to be replaced. When the reactor is integrated with a heat exchanger, the amplified

disturbances will be fed back to the inlet of the reactor and cause a snowball effect of growing

temperatures which make the situation even worse. Therefore a bifurcation analysis will be

performed to see which parameter ranges should be avoided to keep the system stable and

avoid travelling temperature waves.

The analysis consists of two phases. The first phase of this report only deals with the packed-

bed reactor while the second part connects the model of the reactor to a model of a heat

exchanger.

To analyse the reactor it is assumed that the gas phase reactions are of the type

A −→ B, ∆H < 0,
1The disturbances can be causes by e.g. failure of an electrical pre-heater or failure of a flow valve that

suddenly opens or closes.

1



2 CHAPTER 1. INTRODUCTION

i.e. standard exothermic reactions. It will furthermore be assumed that there is no radial

dispersion, which means that it is sufficient to deal with a one-dimensional model. This model

will be derived and turned into dimensionless form in chapter 2. It turns out to have the form

∂y1
∂τ

= −Da exp (γ (1− 1/y2)) y1 + 1
Pem

∂2y1
∂x2 −

∂y1
∂x

,

Le
∂y2
∂τ

= βDa exp (γ (1− 1/y2)) y1 + 1
Peh

∂2y2
∂x2 −

∂y2
∂x
−Hw (y2 − y2w)

(1.1)

with appropriate initial and boundary conditions. y1 is the dimensionless concentration and y2

is the dimensionless temperature while Da, γ, Le, β, Pem and Peh are different parameters.

A literature study is performed to provide a picture of what can be expected when the

model is analysed. This analysis takes places in the following chapters. At first the model

is implemented in MatLab. This is done using the method of lines discretization. Different

simulations are then made to show how the concentration and temperature profiles develop

over time and how the system behaves when a process disturbance is added to the inlet

conditions.

A lot of different dimensionless parameters are introduced as the model is derived and to

provide some insight to these, a study of the parameter effects is made. Here, the parameters

are changed independently of each other to see what effect each of the parameters have on

the steady state.

The bifurcation analysis of the packed-bed reactor model is done in chapter 6. The different

parameters in the model are alternately used as the independent variable to check whether any

bifurcations occur when the parameters are changed. The bifurcation analysis is performed

using the MatLab-package MatCont.

In the second phase of the report, a model of a heat exchanger is derived and integrated with

the packed-bed reactor model. This heat exchanger model is a lot simpler than the model of

the reactor as it only consists of algebraic equations. It has the form

λ1 = λ3 −∆λapp,

λ2 = αλ0 + (1− α)λ1,

where λ0 is the dimensionless inlet temperature to the system, λ1 is the dimensionless outlet

temperature of the heat exchanger, λ2 is the dimensionless temperature of the inlet gas to

the reactor and λ3 is the dimensionless temperature of the outlet gas of the reactor. Two

new parameters, ∆λapp and α are also introduced. ∆λapp is the dimensionless temperature
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approach and α is the amount of gas that by-passes the heat exchanger. This parameter is

consequently used to control the inlet temperature of the gas to the reactor and will therefore

play a crucial role in terms of stability issues.

This is then implemented in MatLab and simulations of the system behaviour are made to

see how the complete system reacts to process disturbances. Simulations are also done for

different values of α and ∆λapp to see how they affect the concentration and temperature

profiles.

Finally, bifurcation analysis is performed on the complete system model. The analysis will

focus on the new parameters, α and ∆λapp and the parameters that effected the packed-bed

reactor model the most.



Chapter 2

The Packed-Bed Reactor Model

Before any analysis can be done, the model of the concentration and temperature dynamics

in a packed-bed reactor needs to be derived. It is assumed that the reactor has the shape

of a cylinder and hence, to derive the model equations, a cylinder-shaped control volume

is considered, see figure 2.1. The endpoints of this volume lie at z and z + ∆z and the

volume therefore has length ∆z. The lateral area is S, which means that the total volume is

∆V = ∆zS. As this is a packed-bed reactor, the gas volume itself is εB∆V and the catalyst

volume is (1− εB)∆V . εB is the bed porosity, defined as

εB = VV
VT

,

where VV is the void space and VT is the total volume. This means that this number denotes

the fraction of the control volume which is not catalyst material, i.e. void.

Figure 2.1: The reactor and the control volume.

In the following sections the model equations describing the concentration and temperature

4



5 CHAPTER 2. THE PACKED-BED REACTOR MODEL

dynamics will be derived. The starting point of this derivation will be the mass- and energy-

balance equations.

2.1 The Molar Mass Balance Equation

The general non-stationary molar mass balance equation of the reactant, A, is considered

first. This is, according to [2], given by

Min +Mgen −Mout = Macc, (2.1)

where Min is the total molar mass of reactant flowing into the control volume, Mgen is the

total molar mass of reactant generated in the control volume, Mout is the total molar mass of

reactant flowing out of the control volume and Macc is the total molar mass of reactant that

has been accumulated in the control volume from time t to t+ ∆t.

What goes into the control volume at z during the time ∆t is the concentration of reactant,

c, times the time, ∆t, times the flow rate. The flow rate is given by vzS, where vz is the gas

velocity. This is however not all. The molar mass can also be transported by movements on

the molecular level and Min will therefore also include a dispersion term. This means that

Min = −D∂c

∂z

∣∣∣∣
z

S∆t+ c
∣∣
z
vzS∆t. (2.2)

The first term is due to dispersion and is given by Fick’s law, see [14]. Here D plays the role

of the dispersion coefficient.

The general reaction that occurs in the packed-bed reactor is first-order exothermic and can

be written as

A −→ B, ∆H < 0,

where A is the reactant, B is the product of the reaction and ∆H is the change in enthalpy.

Enthalpy is a measure of the total energy in the system. The reaction rate of A is

RA = k0e
−Ea/RT cn,

where k0 is a rate constant, Ea is the activation energy, R is the gas constant, T is the

temperature and n is the order of the reaction. As this is assumed to be a first-order reaction,
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n = 1 and the reaction rate can therefore be written as

RA = k0e
−Ea/RT c.

The rate of disappearance is then, by convention, given as

−RA = −k0e
−Ea/RT c.

The reaction only proceeds on the surface of the catalyst. The catalyst itself has a micro

pore structure meaning that the surface of the catalyst is very large. This means that the

catalyst volume is a good measure for the volume in which the reaction proceeds. Assuming

that the control volume has been chosen so small that the concentration is spatially uniform

throughout the control volume, the mass generated can then, according to [1], be written as

Mgen = −RA(1− εB)∆V∆t

= −k0e
−Ea/RT c(1− εB)S∆z∆t. (2.3)

Using the same arguments as for Min, the total mass that exits the control volume can be

written as

Mout = −D∂c

∂z

∣∣∣∣
z+∆z

S∆t+ c|z+∆zvzS∆t. (2.4)

Finally, the accumulated mass will be discussed. This is the mass of A in the control volume

at time t+ ∆t minus the mass of A at time t. This means that

Macc = mA|t+∆t −mA|t

= εB∆V (c|t+∆t − c|t)

= εBS∆z (c|t+∆t − c|t) (2.5)

as c = mA/εB∆V .

Inserting (2.2)-(2.5) into (2.1) yields

εBS∆z (c|t+∆t − c|t)

= −D∂c

∂z

∣∣∣∣
z

S∆t+ c
∣∣
z
vzS∆t− k0e

−Ea/RT c(1− εB)S∆z∆t+D
∂c

∂z

∣∣∣∣
z+∆z

S∆t− c|z+∆zvzS∆t.

Rearranging and collecting terms yields
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εBS∆z (c|t+∆t − c|t) = DS∆t
(
∂c

∂z

∣∣∣∣
z+∆z

− ∂c

∂z

∣∣∣∣
z

)

− vzS∆t
(
c|z+∆z − c

∣∣
z

)
− k0e

−Ea/RT c(1− εB)S∆z∆t ⇔

εB (c|t+∆t − c|t) = D

∆z∆t
(
∂c

∂z

∣∣∣∣
z+∆z

− ∂c

∂z

∣∣∣∣
z

)

− vz
∆z∆t

(
c|z+∆z − c

∣∣
z

)
− k0e

−Ea/RT c(1− εB)∆t ⇔

εB
c|t+∆t − c|t

∆t = D


∂c
∂z

∣∣∣∣
z+∆z

− ∂c
∂z

∣∣∣∣
z

∆z

− vz
(
c|z+∆z − c

∣∣
z

∆z

)
− k0(1− εB)e−Ea/RT c.

By letting ∆z → 0, ∆t→ 0 and then using the definition of the derivative, one obtains

εB
∂c

∂t
= D

∂2c

∂z2 − vz
∂c

∂z
− (1− εB)k0ce

−Ea/RT , (2.6)

which is the packed-bed reactor model equation for the concentration dynamics.

2.2 The Energy Balance Equation

Next, the equation for the temperature dynamics will be derived. This will be based on

the non-stationary energy balance equation that, according to [2], is analogous to the mass

balance from before. This means that

Ein + Egen − Eout = Eacc, (2.7)

where Ein is the amount of energy entering the control volume, Egen is the energy generated

in the control volume, Eout is the energy leaving the control volume and Eacc is the energy

accumulated in the control volume from time t to t+ ∆t.

For the heat flow into the control volume there are two things to take into account. First,

the heat related to mass flow and second, the heat related to thermal movements. The mass

that enters because of the flow is m = vzSρg∆t, where ρg is the density of the gas. Using the

relationship between mass and heat, the total energy that enters because of the flow is

Q1 = CpgmT |z

= CpgvzSρg∆tT |z,
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where Cpg is the heat capacity of the gas and T is the temperature.

The energy that passes a plane, z, per time- and area-unit is, according to [14], defined by

Fourier’s law of heat conduction as

qy = −k∂T
∂z

∣∣∣∣
z

,

where k is the coefficient of thermal conductivity. This means that the heat entering the

control volume during the time ∆t will be

Q2 = −k∂T
∂z

∣∣∣∣
z

S∆t.

Hence, the total amount of energy entering is

Ein = Q1 +Q2

= CpgvzSρg∆tT |z − k
∂T

∂z

∣∣∣∣
z

S∆t. (2.8)

The energy generated is related to the generated mass by the change in enthalpy. As the

system is exothermic the change in enthalpy is −∆H, which means that the total energy

generated is

Egen = (−∆H) (1− εB) ck0e
−Ea/RTS∆z∆t. (2.9)

Even though there is no concentration dispersion in the radial direction there is still some

heat transfer between the reaction mixture and the reactor wall. The rate of this heat transfer

can be written as

qw = UwAw (T − Tw) ,

where Uw is the overall heat transfer coefficient. This is the reciprocal of the sum of the

resistances to the heat transfer in the form of a film that covers the reactor wall and, eventually,

dirt. Aw is the heat transfer surface area of the wall and Tw is the temperature of the wall.

The bed is in the shape of a cylinder so the surface area of the control volume is

Aw = πdB∆z,

where dB is the diameter of the bed. This means that

qw = UwπdB∆z (T − Tw) .
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By using the same arguments as for Ein the total energy leaving the control volume is

Eout = CpfvzSρg∆tT |z+∆z − k
∂T

∂z

∣∣∣∣
z+∆z

S∆t+ UwπdB∆z (T − Tw) ∆t. (2.10)

The energy accumulated is

Eacc = Q|t+∆t −Q|t

= Cpm (T |t+∆t − T |t)

= CpρS∆z (T |t+∆t − T |t) ,

where Cp, m, and ρ are the heat capacity, mass and density of all the substance in the control

volume respectively. By using the bed porosity to distinguish between the gas and the solid

catalyst this can be written as

Eacc = S∆z (εBρgCpg + (1− εB) ρsCps) (T |t+∆t − T |t) , (2.11)

where ρ is density, Cp is heat capacity and the subscripts g and s denotes gas and solid cat-

alyst respectively.

Inserting (2.8)-(2.11) into (2.7) yields

S∆z (εBρgCpg + (1− εB) ρsCps) (T |t+∆t − T |t) = CpfvzSρg∆tT |z − k
∂T

∂z

∣∣∣∣
z

S∆t

+ (−∆H) (1− εB) ck0e
−Ea/RTS∆z∆t− CpfvzSρg∆tT |z+∆z

+ k
∂T

∂z

∣∣∣∣
z+∆z

S∆t− UwπdB∆z (T − Tw) ∆t.

Collecting terms and dividing by S∆z on both sides makes the equation

(εBρgCpg + (1− εB) ρsCps) (T |t+∆t − T |t) = k∆t
∆z

(
∂T

∂z

∣∣∣∣
z+∆z

− ∂T

∂z

∣∣∣∣
z

)

− Cpgvzρg∆t
∆z (T |z+∆z − T |z) + (−∆H) (1− εB) ck0e

−Ea/RT∆t− UwπdB∆t
S

(T − Tw) ⇔

(εBρgCpg + (1− εB) ρsCps)
T |t+∆t − T |t

∆t = k

∂T
∂z

∣∣∣∣
z+∆z

− ∂T
∂z

∣∣∣∣
z

∆z

− Cpgρgvz
T |z+∆z − T |z

∆z + (−∆H) (1− εB) ck0e
−Ea/RT − UwπdB

S
(T − Tw) .

By letting ∆z → 0, ∆t → 0 and using the definition of the derivative and the fact that
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S = πd2
B/4 this becomes

(εBρgCpg + (1− εB) ρsCps)
∂T

∂t
= k

∂2T

∂z2 − Cpgρgvz
∂T

∂t

+ (−∆H) (1− εB) ck0e
−Ea/RT − Uw

4
dB

(T − Tw) ,
(2.12)

which is the model equation for the temperature of the reaction mixture.

2.3 Initial and Boundary Conditions

The final step in completing the model is to determine the initial- and boundary conditions.

2.3.1 Initial Conditions

The initial concentration of the reactant is 0 as there is no reactant in the bed at time zero.

The initial temperature is T0. This means that the initial conditions are

c(z, 0) = 0 ∧ T (z, 0) = T0. (2.13)

2.3.2 Boundary Conditions

To the immediate left of the inlet boundary, where the gas enters the reactor, there is plug

flow, i.e. no dispersion. To the immediate right of this boundary there is dispersion, see figure

2.2.

Figure 2.2: Cross section of the reactor model. The figure is found in [1] and Da plays

the role of the dispersion coefficient.
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This means that the flow of mass at the immediate left of the inlet boundary is

Fm
(
0−, t

)
= vzSc

(
0−, t

)
and at the immediate right of the inlet boundary, the flow of mass is

Fm
(
0+, t

)
= −DS ∂c

∂z

∣∣∣∣
z=0+

+ vzSc
(
0+, t

)
.

Putting these expressions equal to each other yields

vzSCA
(
0−, t

)
= −DS ∂c

∂z

∣∣∣∣
z=0+

+ vzSc
(
0+, t

)
⇔

D
∂c

∂z

∣∣∣∣
z=0+

+ vz
(
c
(
0−, t

)
− c

(
0+, t

))
= 0. (2.14)

The flow of heat to the immediate left of the inlet boundary is

Fh
(
0−, t

)
= vzSCpgρgT

(
0−, t

)
,

while it, at the immediate right of the inlet boundary, is

Fh
(
0+, t

)
= −kS ∂T

∂z

∣∣∣∣
z=0+

+ vzSCpgρgT
(
0+, t

)
.

These expressions are put equal to each other and yield

vzSCpgρgT
(
0−, t

)
= −kS ∂T

∂z

∣∣∣∣
z=0+

+ vzSCpgρgT
(
0+, t

)
⇔

k
∂T

∂z

∣∣∣∣
z=0+

+ vzCpgρg
(
T
(
0−, t

)
− T

(
0+, t

))
= 0. (2.15)

It is assumed that no reaction occurs at the second boundary. This means that the concen-

tration and the temperature do not change, i.e. that they have no gradient. Therefore the

boundary conditions at the second boundary are

∂c

∂z

∣∣∣∣
z=L

= 0 ∧ ∂T

∂z

∣∣∣∣
z=L

= 0. (2.16)

The boundary conditions (2.14)-(2.16) are known as the Danckwerts boundary conditions,

see [10] and [13].

The complete reactor model is then (2.6) and (2.12) with the initial conditions (2.13) and

the boundary conditions (2.14)-(2.16). This model will in the following section be made

dimensionless.
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2.4 Dimensionless Variables

In order to make the equations dimensionless, some dimensionless variables need to be defined.

The dimensionless concentration of reactant is defined as

y1 = c

c0
,

the dimensionless temperature is defined as

y2 = T

T0
,

the dimensionless length is defined as

x = z

L

and the dimensionless time is defined as

τ = tvz
εBL

.

First, equation (2.6) will be addressed. From the definition of y1 it follows that

∂c

∂z
= ∂(c0y1)

∂z
= c0

∂y1
∂z

.

By using the chain rule, this can be written as

∂c

∂z
= c0

∂y1
∂x

∂x

∂z
,

which reduces to
∂c

∂z
= c0
L

∂y1
∂x

(2.17)

because of the definition of x. In the same way it can be found that

∂2c

∂z2 = c0
L2

∂2y1
∂x2 (2.18)

and
∂c

∂t
= c0vz
εBL

∂y1
∂τ

. (2.19)

Inserting the definition of the dependent variables together with (2.17)-(2.19) into (2.6) yields

c0vz
L

∂y1
∂τ

= Dc0
L2

∂2y1
∂x2 −

vzc0
L

∂y1
∂x
− (1− εB)c0y1k0e

−Ea/RT0y2 ⇔

∂y1
∂τ

= D

vzL

∂2y1
∂x2 −

∂y1
∂x
− (1− εB)Lk0

vz
y1e
−Ea/RT0y2 .
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The dimensionless activation energy is now defined as

γ = Ea
RT0

and the Peclet number for mass is, according to [1], defined as

Pem = vzL

D
.

This is, by definition, the ratio of the rate of transport by convection to the rate of transport

by dispersion. Inserting these definitions into the model equation yields

∂y1
∂τ

= 1
Pem

∂2y1
∂x2 −

∂y1
∂x
− (1− εB)Lk0

vz
y1e
−γ/y2 ⇔

∂y1
∂τ

= 1
Pem

∂2y1
∂x2 −

∂y1
∂x
− (1− εB)Lk0

vz
e−γy1e

γ(1−1/y2).

The Damköhler number is defined as the reaction rate to the rate of transport by convection

at the entrance of the reactor, i.e.

Da = (1− εB)Lk0
vz

e−γ .

Inserting this in the above makes the packed-bed reactor model equation for the concentration

dynamics in dimensionless form

∂y1
∂τ

= 1
Pem

∂2y1
∂x2 −

∂y1
∂x
−Day1e

γ(1−1/y2). (2.20)

The equation (2.12) will now be addressed. Just as before it can be shown that

∂T

∂z
= T0

L

∂y2
∂x

,
∂2T

∂z2 = T0
L2

∂2y2
∂x2 ,

∂T

∂t
= T0vz
εBL

∂y2
∂τ

because of the definition of τ and T . Inserting this in (2.12) yields

(εBρgCpg + (1− εB) ρsCps)
T0vz
εBL

∂y2
∂τ

= k
T0
L2

∂2y2
∂x2 − Cpgρgvz

T0
L

∂y2
∂x

+ (−∆H) (1− εB) ck0e
−Ea/RT − Uw

4
dB

(T − Tw) .

By defining the dimensionless wall temperature as

y2w = Tw
T0
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this equation can be rewritten as

(εBρgCpg + (1− εB) ρsCps)
εBρgCpg

T0vz
L

∂y2
∂τ

= kT0
L2ρgCpg

∂2y2
∂x2 −

vzT0
L

∂y2
∂x

+ (−∆H) (1− εB) c0y1k0
ρgCpg

e−Ea/RT0y2 − Uw
4

dBρgCpg
(y2T0 − y2wT0) ⇔

(εBρgCpg + (1− εB) ρsCps)
εBρgCpg

∂y2
∂τ

= k

LρgCpgvz

∂2y2
∂x2 −

∂y2
∂x

+ (−∆H) (1− εB) c0y1k0L

ρgCpgT0vz
e−Ea/RT0y2 − Uw

4L
dBρgCpgvz

(y2 − y2w) . (2.21)

Just as for mass there is a Peclet number for heat defined by

Peh = LvzρgCpg
k

,

which is the ratio of the rate of transport of heat by convection to the rate of transport of

heat by dispersion. The Lewis number, Le, is defined as the ratio of the thermal transport

time constant to the material transport time constant. This means that

Le = (εBρgCpg + (1− εB) ρsCps)
εBρgCpg

. (2.22)

Inserting these numbers in equation (2.21) together with the definition of the dimensionless

activation energy yields

Le
∂y2
∂τ

= 1
Peh

∂2y2
∂x2 −

∂y2
∂x

+ (−∆H) (1− εB) c0y1k0L

ρgCpgT0vz
e−γ/y2 − 4LUw

dBρgCpgvz
(y2 − y2w) ⇔

Le
∂y2
∂τ

= 1
Peh

∂2y2
∂x2 −

∂y2
∂x

+Day1
(−∆H) c0
ρgCpgT0

eγ(1−1/y2) − 4LUw
dBρgCpgvz

(y2 − y2w) .

By defining the dimensionless adiabatic temperature rise as

β = (−∆H)c0
ρgCpgT0

and the dimensionless overall heat transfer coefficient as

Hw = 4LUw
dBρgCpgvz

the equation can be written as

Le
∂y2
∂τ

= 1
Peh

∂2y2
∂x2 −

∂y2
∂x

+ βDay1e
γ(1−1/y2) −Hw (y2 − y2w) .

This is the packed-bed reactor model equation for the temperature dynamics in dimensionless

form.
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2.4.1 Dimensionless Initial Conditions

Inserting the definition of the dimensionless concentration into the initial condition for the

concentration yields

c0y1(x, 0) = 0 ⇔

y1(x, 0) = 0. (2.23)

In the same way it can be found that

T0y2(x, 0) = T0 ⇔

y2(x, 0) = 1. (2.24)

2.4.2 Dimensionless Boundary Conditions

To derive the dimensionless boundary condition for the concentration at the inlet boundary,

(2.17) is inserted in (2.14). This makes the condition

D
c0
L

∂y1
∂x

∣∣∣∣
z=0+

+ vz
(
c
(
0−, t

)
− c

(
0+, t

))
= 0 ⇔

∂y1
∂x

∣∣∣∣
z=0+

+ vzL

D

(
y1
(
0−, t

)
− y1

(
0+, t

))
= 0.

Inserting Pem = vzL/D makes the boundary condition

∂y1
∂x

∣∣∣∣
z=0+

+ Pem
(
y1
(
0−, t

)
− y1

(
0+, t

))
= 0.

In the same way, (2.15) can be rewritten as

k
T0
L

∂y2
∂x

∣∣∣∣
z=0+

+ vzCpgρg
(
T
(
0−, t

)
− T

(
0+, t

))
= 0 ⇔

∂y2
∂x

∣∣∣∣
z=0+

+ vzCpgρgL

k

(
y2
(
0−, t

)
− y2

(
0+, t

))
= 0 ⇔

∂y2
∂x

∣∣∣∣
z=0+

+ Peh
(
y2
(
0−, t

)
− y2

(
0+, t

))
= 0.

Finally the boundary conditions for the second boundary will be addressed. The condition

for the concentration is
∂c

∂z

∣∣∣∣
z=L

= 0 ⇔

c0
L

∂y1
∂x

∣∣∣∣
x=1

= 0 ⇔

∂y1
∂x

∣∣∣∣
x=1

= 0,
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while the condition for the temperature is

∂T

∂z

∣∣∣∣
z=L

= 0 ⇔

T0
L

∂y2
∂x

∣∣∣∣
x=1

= 0 ⇔

∂y2
∂x

∣∣∣∣
x=1

= 0.

2.5 The Model Equations

To sum up, the dimensionless equations describing the concentration- and temperature dy-

namics in a packed-bed reactor are

∂y1
∂τ

= −Da exp (γ (1− 1/y2)) y1 + 1
Pem

∂2y1
∂x2 −

∂y1
∂x

, (2.25)

Le
∂y2
∂τ

= βDa exp (γ (1− 1/y2)) y1 + 1
Peh

∂2y2
∂x2 −

∂y2
∂x
−Hw (y2 − y2w) (2.26)

with the initial conditions

y1 (x, 0) = 0 ∧ y2 (x, 0) = 1. (2.27)

The boundary conditions at the inlet boundary are

∂y1
∂x

∣∣∣∣
x=0

+ Pem
(
y1
(
0−, t

)
− y1

(
0+, t

))
= 0, (2.28)

∂y2
∂x

∣∣∣∣
x=0

+ Peh
(
y2
(
0−, t

)
− y2

(
0+, t

))
= 0, (2.29)

while the boundary conditions at the outlet boundary are

∂y1
∂x

∣∣∣∣
x=1

= 0, (2.30)

∂y2
∂x

∣∣∣∣
x=1

= 0. (2.31)



Chapter 3

Literature Study

To obtain an overview of what research has already been done on the subject, a literature

study is performed, starting with an examination of what kind of instabilities one can expect

when dealing with packed-bed reactors.

According to [4] and [7], an activator is a variable with a tendency to grow, while an inhibitor

is a variable that counteracts this tendency. The activator could for example be the heat

released in an exothermic reaction, while the inhibitor could be the depletion of reactant in

an exothermic reaction. When both these variables are present in a system, this system is

called an activator-inhibitor system. If the inhibitor variable balances local fluctuations of

the activator, the steady state of the system will remain stable, see figure 3.1a.

On the other hand, if the activator and inhibitor move at different speeds, these waves be-

come phase-shifted, see figure 3.1b. This means that the activator is no longer limited by the

inhibitor and will start to grow. This is known as differential-flow instability as it is caused

by differential flows. This phenomenon has been verified experimentally in [6].

A packed-bed reactor indeed is an activator-inhibitor system and the activator is heat re-

leased in an exothermic reaction. If this activator starts to grow it causes travelling waves of

temperature that move through the reactor. These travelling temperature waves have differ-

ent names in the literature but will, like in [8], be referred to as moving hot spots in this report.

According to [4], the character of differential-flow instability can be either absolute or convec-

tive. If a small perturbation makes the system leave its steady state and create a new steady

state or dynamic mode, the initial steady state is said to be absolutely unstable.

17
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(a) Differential flow is off. (b) Differential flow is on.

Figure 3.1: Stability properties of the steady state of an activator-inhibitor system.

The figures are from [4].

On the other hand, if the perturbation is amplified and carried downstream before it is even-

tually washed out, the system is said to be convectively unstable.

The standard reaction in a packed-bed reactor can be described by equation (1.1). The right

hand side of the second equation is scaled by the inverse of the Lewis number, Le−1. This

also includes the term with the first spatial derivative, which means that the velocity of heat

flow is Le−1, while the velocity of matter flow is 1. According to [8], Le > 1 for packed-bed

reactors and the velocity of matter flow is therefore greater than the velocity of heat flow.

It is these differences in velocities, caused by Le, that are the reasons for differential-flow

instability, and hence moving hot spots. Physically it is the reactor packing that acts as a

thermal reservoir and slows down the transport of heat compared to that of matter, according

to [7].

One can show that this instability actually exists by solving the system numerically. This was

done in [4] and [8] with the Danckwerts boundary conditions, which were originally presented

in [10]. The calculated steady state for both concentration and temperature can be seen as
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the thick lines in figure 3.2 for the parameter values

Pem = 3000, P eh = 1000, Le = 3, β = 0.5, Da = 0.135, γ = 22.

These steady states will be reproduced in chapter 4.

Figure 3.2: Waves of concentration and temperature, evolving from a (a) positive and

(b) negative perturbation of the reactor inlet temperature. The perturbation is a single

positive or negative half-period of a harmonic oscillation with frequency ν = 1.2 and

amplitude a = 0.01. The parameters have the values Pem = 3000, P eh = 1000, Le =

3, β = 0.5, Da = 0.135, γ = 22. The figure is from [4].

The plot also shows three other lines. These are snapshots of the concentration and tem-

perature profiles at different times after a small perturbation has been applied to the inlet

temperature. The thin solid lines correspond to t = 2, the dotted lines to t = 2.5, while the

dash-dotted lines correspond to t = 2.9. In the left figure, a positive perturbation creates a

temperature wave, which then generates a negative wave of concentration. The higher velocity

of matter flow then generates a phase-shift between the two waves and this results in moving

hot spots. Note that the temperature wave is negative compared to the steady state when it

reaches the end of the reactor. This is a phenomenon known as wrong-way behaviour. In the

right figure, a negative perturbation on the inlet temperature also gives rise to a moving hot

spot. When this reaches the end of the reactor, the wave is positive compared to the steady
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state so this is another example of wrong-way behaviour.

It is assumed in [4] that there is no heat transfer between the reaction mixture and the reactor

wall, i.e. that y2w = y2.

The question of uniqueness of the solution is addressed in [5]. It is described that, for the

solution to be unique in the general case with uneven Peclet numbers for mass and heat, it is

sufficient to have high values of the Peclet numbers or small values of the Damköhler number.

On the other hand, higher values of the dimensionless adiabatic temperature rise and the

dimensionless activation energy enlarge the region of multiplicity, although more than three

steady states are only possible for the non-adiabatic case.

A discussion of how to discretize the system is also contained in [5]. Different methods are

discussed and the method of orthogonal spline collocation is recommended. Finite difference

methods are actually ruled out as they require a lot of mesh points for stiff problems. It

should be noted that [5] was published in 1982, where memory issues and computational time

were greater challenges than today. Therefore, finite difference will be used in this report

as it is a lot simpler to implement than orthogonal spline collocation and does no longer

cause problems with memory and computational time. An actual bifurcation analysis is also

performed in [5] with respect to the Damköhler number. All of the results will not be shown

here, but a bifurcation diagram for the concentration can be seen in figure 3.3. The diagram

shows two limit point bifurcations, which are denoted turning points in both the article and

the diagram. There are no units on the axis so it is not possible to tell exactly where these

bifurcations occur. The diagram is created with the parameter values

Pem = 320, P eh = 100, β = 0.994, γ = 16.9, y2w = 1.57, Hw = 0.72. (3.1)

It is also explained which methods are used to obtain these diagrams but this will not be

handled here as it is not relevant to this report. For additional techniques for bifurcation

analysis and classification of steady states, see [9].
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Figure 3.3: Concentration for varyingDa. The parameters have the values Pem = 320, P eh =

100, β = 0.994, γ = 16.9, y2w = 1.57, Hw = 0.72. The figure is from [5].



Chapter 4

Model Discretization and Validation

In order to be able to do any analysis of the model, it has to be discretized and implemented in

MatLab. To do this, the method of lines discretization will be used. This is a semi-discrete

finite difference method as it only discretizes the equations in space but not in time. The

output of this method is a system of ordinary differential equations (ODE’s), which can then

be solved using the MatLab function ode15s, that is designed to solve stiff problems. To

begin with, the discretization will be done without the term describing heat transfer between

the reaction mixture and the reactor wall, i.e. it is assumed that y2w = y2. This is done so

that it is possible to compare the results to the ones from [4]. The heat transfer term will

then be added afterwards.

4.1 Model Discretization without Heat Transfer

At first, the equation (2.25) will be discretized. The first order derivative ∂Y j
1 /∂x will be

replaced by the approximation

DxY
j

1 = −1
2h

(
Y j+1

1 − Y j−1
1

)
,

where Y j
1 is the function value y1(xj), where xj = jh. Here, j is the grid point number and

h = 1/(m + 1) is the mesh width. m is the number of grid points and Dx is the derivative

operator. The second order derivative will be replaced by the approximation

D2
xY

j
1 = 1

h2

(
Y j−1

1 − 2Y j
1 + Y j+1

1

)
.

22
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These approximations have been derived in [3]. The first equation (j = 1) involves the

function value at x = 0, i.e. Y 0
1 , and the last equation (j = m) involves the function value

at x = 1, i.e. Y m+1
1 . As the function values at the boundaries are not given they need to

be approximated. The derivative at the inlet boundary can be approximated to second order

using the approximation

DxY
0

1 = 1
h

(3
2Y

0
1 − 2Y 1

1 + 1
2Y

2
1

)
derived in [3]. Inserting this approximation in (2.28) yields

1
h

(3
2Y

0
1 − 2Y1 + 1

2Y
2

1

)
+ Pemy1

(
0−, t

)
− PemY 0

1 = 0 ⇔

Y 0
1 = 2Pemhy1 (0−, t)− 4Y 1

1 + Y 2
1

2Pemh− 3 .

The derivative at the exit boundary is approximated by

DxY
m+1

1 = 1
h

(3
2Y

m+1
1 − 2Y m

1 + 1
2Y

m−1
1

)
.

Inserting this in (2.30) and solving for Y m+1
1 makes the approximation to the function value

at the exit boundary

Y m+1
1 = 1

3
(
4Y m

1 − Y m−1
1

)
.

Using this approach, the equation (2.25) can be written as

Y ′1 = (A1 +B1 + C1)Y1 +G1, (4.1)

where A1 is a diagonal matrix with −Da exp(γ(1− 1/Y j
2 )) in the jth diagonal element and

B1 = 1
Pem

1
h2



−2 1

1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2


, C1 = − 1

2h



0 1

−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1

−1 0


.

Finally

Y1 =



Y 1
1

Y 2
1
...

Y m−1
1

Y m
1


, G1 =



(
1

Pem

1
h2 + 1

2h

)
Y 0

1

0
...

0(
1

Pem

1
h2 − 1

2h

)
Y m+1

1


.
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As A1, B1, C1 ∈ Rm×m and Y1, G1 ∈ Rm, this is a system of m ODE’s.

The equation (2.26) is discretized in an equivalent way and can be written as

Y ′2 = 1
Le

(A2Y1 + (B2 + C2)Y2 +G2) , (4.2)

where A2 is a diagonal matrix with Daβ exp(γ(1− 1/Y j
2 )) in the jth diagonal element and

B2 = 1
Peh

1
h2



−2 1

1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2


.

Furthermore C2 = C1 and

G2 =



(
1

Peh

1
h2 + 1

2h

)
Y 0

2

0
...

0(
1

Peh

1
h2 − 1

2h

)
Y m+1

2 .


,

while Y2 is built up in the same way as Y1. This is also a system of m ODE’s which means

that 2m ODE’s need to be solved in order to simulate the entire system.

The MatLab implementation of the system can be seen in appendix A.1. The MatLab

script that actually solves this system can be found in appendix A.2. This script simulates

the system for different times and the resulting dimensionless concentration and temperature

profiles can be seen in figure 4.1a and 4.2a respectively. All of the simulations in this chapter

have been done with the parameter values

Pem = 3000, P eh = 1000, Le = 3, β = 0.5, Da = 0.135, γ = 22.

The dimensionless concentration profiles in figure 4.1a show that, for times τ = 2 and τ = 3,

some of the reactant is actually leaving the reactor. This is usually not the case as the reaction

normally has the form

A −→ B,
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meaning that all of the reactant is used in the reaction and only B will exit the reactor. The

reason for this behaviour is the low Damköhler number, Da = 0.135, which corresponds to

a low kinetic reaction rate or a low residence time, i.e. high gas velocity. The script also

produces three-dimensional plots with both time and length as the independent variables.

These can be seen in figure 4.1b and 4.2b. Here one can see the development of the profiles

over time and that the system reaches a steady state around τ = 4.

(a) (b)

Figure 4.1: Simulations of the dimensionless concentration. (a) shows the dimensionless

concentration as a function of length for different times and (b) shows the dimensionless

concentration as a function of both length and time.

To validate that the implementation is correct, this simulated steady state will be compared to

the simulation of the steady state presented in [4], which can be seen in figure 3.2. The data has

been retrieved from the article using the program Engauge Digitizer [11], then interpolated

using MatLab’s interp1 function and finally plotted together with the simulated steady

states for both dimensionless concentration and temperature. This can be seen in figure 4.3

and 4.4 respectively. The same steady states seem to have been found, which means that the

discrtization must be correct. This is also confirmed by the residual plots in figure 4.3 and

4.4.

Some small irregularities are observed here though, but these are most likely caused by dif-

ferences in the numerical method. It is not specified which numerical method is used in [4]

but it is most likely not the same as the one used in this report. Hence, it will be assumed
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(a) (b)

Figure 4.2: Simulations of the dimensionless temperature. (a) shows the dimensionless

temperature as a function of length for different times and (b) shows the dimensionless

temperature as a function of both length and time.

(a) (b)

Figure 4.3: Comparison of the simulation of the steady state of dimensionless concen-

tration to the steady state from [4]. (a) The two steady states plotted together. (b)

The residual plot.

that the discretization is correct.
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(a) (b)

Figure 4.4: Comparison of the simulation of the steady state of dimensionless temper-

ature to the steady state from [4]. (a) The two steady states plotted together. (b) The

residual plot.

4.2 Model Discretization with Heat Transfer

The term that describes the heat transfer between the reaction mixture and the reactor wall

is now added. The system of equations describing the concentration dynamics stays the same,

while the system for the temperature takes the form

Y ′2 = 1
Le

(A2Y1 + (B2 + C2 +H2)Y2 +G2 +W2) , (4.3)

where

H2 =


−Hw

. . .

−Hw

 and W2 =


Hwy2w

...

Hwy2w

 .
The complete implementation of the system can be seen in appendix A.3. Simulations of

the concentration and temperature are then done. The results can be seen in figure 4.5 and

4.6. The dimensionless heat transfer coefficient is set to Hw = 0.5 and the dimensionless

wall temperature is set to y2w = 1. Comparing figure 4.6 and figure 4.2 show that the outlet

temperature in the steady state is lower when heat transfer is assumed. This is because

the wall temperature is relatively low and this then lowers the temperature of the reaction

mixture in the reactor.
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(a) (b)

Figure 4.5: Simulations of the model with heat transfer between the reaction mixture

and the reactor wall. The dimensionless wall temperature is y2w = 1. (a) shows

the development in dimensionless concentration over time and (b) shows dimensionless

concentration profiles for different times.

(a) (b)

Figure 4.6: Simulations of the model with heat transfer between the reaction mixture

and the reactor wall. The dimensionless wall temperature is y2w = 1. (a) shows the

dimensionless temperature development over time and (b) shows dimensionless temper-

ature profiles for different times.



Chapter 5

Model Analysis

When the model has been implemented in MatLab, the system can be analysed further. It

will be investigated how the system reacts to process disturbances as this is a real threat that

can cause great problems. Furthermore an analysis of the effect of the many parameters will

be done.

5.1 Convective Instability

In the previous chapter, the plots were created under the assumption that the concentration-

and temperature of the gas at the inlet boundary were c = c0 and T = T0 respectively. This

then made y1 (0−, t) = c/c0 = 1 and y2 (0−, t) = T/T0 = 1 and this was used as arguments

for the function in appendix A.1. It is now investigated how the system reacts to process

disturbances in the form of a step change of −5% in the inlet temperature. This is done

using the script from appendix A.4. Here the steady state from before is found and used as

an initial condition and then the step change is added after some time. This means that the

value of y2 (0−, t) is changed from 1 to 0.95. The model is then simulated until the system

reaches a new steady state. The resulting temperature distribution can be seen in figure 5.1.

This figure shows that a moving hot spot occurs after the step change has been applied, which

means that the system shows convectively unstable behaviour as expected. The hot spot has

a maximum temperature of y2max(x, t) = 1.8, while the maximum temperature of the steady

state is y2ss = 1.5. This means that a 5% decrease in the inlet temperature yields a 20%

increase in the outlet temperature! This is an example of wrong-way behaviour as explained

29
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Figure 5.1: The dimensionless temperature as a function of length and time. The

parameter values are Pem = 3000, P eh = 1000, Le = 3, β = 0.5, Da = 0.135, γ = 22.

Figure 5.2: The dimensionless temperature as a function of length and time. The

parameter values are Pem = 3000, P eh = 1000, Le = 3, β = 0.5, Da = 1, γ = 22.
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in chapter 3. After the temperature wave is washed out, the reaction suddenly extinguishes.

This is because of the very low value of the Damköhler number, Da = 0.135. Normally in the

chemical industry, catalysts would not operate under such conditions so the reaction would

normally not extinguish like this. With a higher Damköhler number, e.g. Da = 1, the reac-

tion does not extinguish after the hot spot has occurred, see figure 5.2.

The simulations show that the packed-bed reactor works as an amplifier of process distur-

bances. This is a limited problem for the packed-bed reactor itself but it can pose a big

problem when integrated with a heat exchanger, see chapter 7.

5.2 Parameter Effects

This section will investigate the effects of the different parameters in the packed-bed reactor

model. The theoretical implications of changes in the parameter values will be presented

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.3: Dimensionless concentration- and temperature steady states for the param-

eter values (5.1).

and compared to results from simulations of the steady state. To do these simulations, the

parameters will initially have the values

Da = 4, Le = 40, γ = 11, β = 0.25, P em = 1000, P eh = 1000 (5.1)
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and then they will be changed one at a time to see how each change affects the steady state

of the system. The steady state of the system with these parameters can be seen in figure 5.1.

The ranges of the parameters that will be investigated can be seen in table 5.1. These ranges

have been chosen so that they are representative for many different processes in the chemical

industry. For the first 6 parameters, the simulations will be done under the assumption that

there is no heat transfer between the reaction mixture and the reactor wall.

Parameter Minimum Value Maximum Value

Da 0.1 50

Le 20 100

γ 10 40

β 0.1 0.5

Peh 10 1000

Pem 10 1000

Table 5.1: The parameter space.

5.2.1 The Damköhler Number, Da

In section 2.4, the Damköhler number was defined as the kinetic reaction rate to the rate of

transport by convection at the entrance of the reactor, i.e.

Da = (1− εB)Lk0
vz

e−γ . (5.2)

Another way of defining the Damköhler number is as the kinetic reaction rate times the

residence time. The reaction rate is defined as k′0 = k0e
−γ , while the residence time is

τr = (1− εB)L/vz. This is an expression of the average amount of time a particle spends in

the reactor. The Damköhler number can then be written as

Da = k′0τr.

Both these representations of the Damköhler number show that a higher reaction rate results

in a higher Damköhler number. This means that the reaction will happen faster for high

values of the Damköhler number.
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To illustrate this, a simulation of the steady state is made. The Damköhler number is varied

from one to 50, while all other parameter values are held constant. These steady state profiles

can be seen in figure 5.4 and they confirm that the reaction happens faster for high values

of Da. For Da = 50, the reaction happens very fast and the concentration of the reactant

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.4: Dimensionless concentration- and temperature profiles of the steady state

for varying values of Da.

quickly drops to zero, while the concentration only drops to zero at the end of the reactor

for Da = 1, see figure 5.4a. The temperature rises equivalently as reactions happen faster at

high temperatures, see figure 5.4b.

5.2.2 The Lewis Number, Le

The Lewis number was previously defined as the ratio of the thermal transport time constant

to the material transport time constant, i.e.

Le = (εBρgCpg + (1− εB) ρsCps)
εBρgCpg

.

This number is usually used to describe fluid flows with both heat- and mass transfer by

convection. As described in chapter 3, the velocity of matter flow will always be greater than

the velocity of heat flow as the second model equation is scaled by Le−1, which is always

smaller than 1. Decreasing Le towards one will then increase the scale factor, Le−1, and

make the temperature grow faster. As a consequence, the concentration will drop faster for
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small values of Le. To verify this, simulations of the concentration- and temperature profiles

are done. Changes in the Lewis number will have no effect on the steady state of the system

as it only appears on the left-hand side of equation (2.26) and the simulations will therefore

be done for time τ = 3 instead. This is the only parameter that will not be analysed in the

steady state. The profiles can be seen in figure 5.5 and they confirm the expected behaviour.

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.5: Dimensionless concentration- and temperature profiles at time τ = 3 for

varying values of Le.

5.2.3 The Dimensionless Activation Energy, γ

The dimensionless activation energy is defined as

γ = Ea
RT0

.

Unlike all the other parameters, one cannot obtain a correct picture of the effect of γ just by

changing it and keeping the other parameters constant. This is because γ is also a part of the

definition of Da, see (5.2). Therefore the value of Da is set to 4/e−γ∗ , where γ∗ is the initial

value of γ. Furthermore the factor e−γ∗ is multiplied to the exponential term in the system

equations. Thereafter γ is changed as usual. The result can be seen in figure 5.6. From this

figure it can be seen that the reaction happens slower for high values of γ. This is because

more energy is needed for the reaction to take place in this situation.
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(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.6: Dimensionless concentration- and temperature profiles of the steady state

for varying values of γ.

5.2.4 The Dimensionless Adiabatic Temperature Rise, β

The dimensionless adiabatic temperature rise is defined as

β = (−∆H)c0
ρgCpgT0

,

which means that β rises with the change in reaction enthalpy. Because the reaction is

exothermic, the change is negative. The larger the factor −∆H, the more energy is released

and hence the temperature will rise. This can be confirmed by examining figure 5.7. As

expected, the temperature of the reactant rises with β, see figure 5.7b. The corresponding

concentration then drops faster as reactions happen faster at high temperatures, see figure

5.7a.

5.2.5 The Peclet Number for Heat, Peh

The Peclet number for heat was previously defined as the ratio of the rate of transport of

heat by convection to the rate of transport of heat by dispersion. The rate of dispersion

will therefore get higher for Peh → 0. This should create more even temperature profiles

throughout the reactor as the heat gets mixed better for low values of Peh. This behaviour

is really hard to realize as it is not possible to find the steady state for Peh <∼ 250. The



36 CHAPTER 5. MODEL ANALYSIS

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.7: Dimensionless concentration- and temperature profiles of the steady state

for varying values of β.

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.8: Dimensionless concentration- and temperature profiles of the steady state

for varying values of Peh.

solution simply diverges for low values of Peh, most likely because of the method of lines

discretization. This does however not pose a problem as most industrial reactors operate

with Peh ∼ 103. With these high values of Peh the dispersion effect is very little so it is hard

to see any changes in the profiles, see figure 5.8. By zooming in on the area around x = 0,
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see figure 5.9, one can see that the profiles are actually getting more even as the curves rise

a bit for lower values of Peh.

Figure 5.9: Dimensionless temperature profiles of the steady state near the inlet for

varying values of Peh.

5.2.6 The Peclet Number for Mass, Pem

Similarly to Peh, the Peclet number for mass is defined with mass instead of heat. This means

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.10: Dimensionless concentration- and temperature profiles of the steady state

for varying values of Pem.
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that low values of Pem are induced by a high dispersion rate, which makes the concentration

profiles more even throughout the reactor. Again, it is not possible to find the steady state

for Pem <∼ 250 with this discretization scheme and it is therefore only possible to see very

small changes in the profiles. The profiles can be seen in figure 5.10.

5.2.7 The Dimensionless Overall Heat Transfer Coefficient

In the following it is assumed that there is heat transfer between the reaction mixture and the

reactor wall, i.e. that y2 6= y2w. This means that the term including the dimensionless overall

heat transfer coefficient now plays a role. The dimensionless heat transfer coefficient was

defined as the reciprocal of the sum of the resistances to the heat transfer. The resistance to

heat transfer is primarily in the form of a film near the reactor wall. The thermal conductivity

of this film is therefore crucial to the effect of heat transfer. If it is high, the resistance

becomes smaller and the dimensionless overall heat transfer coefficient then becomes higher.

This means that heat is easily transferred between the reaction mixture and the reactor wall

for high values of Hw and that the film works as isolation for low values of Hw. This can be

confirmed by figure 5.11, which shows the steady state profiles of the concentration and the

temperature for different values of Hw. In this figure the dimensionless wall temperature is

chosen as y2w = 1. Here it is seen that the steady states of the concentration- and temperature

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.11: Dimensionless concentration- and temperature profiles of the steady state

for varying values of Hw.
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profiles become more affected by the wall temperature when Hw →∞ and that these profiles

approach the steady states from figure 4.5a and 4.6a when Hw → 0. The reason that outlet

temperatures drops for high values of Hw is that y2w = 1. This is a relatively low temperature

compared to the outlet temperature and this then cools the reaction mixture down.

5.2.8 The Dimensionless Wall Temperature

As the wall is heated up, i.e. when y2w grows, the reaction mixture will get warmer and

this will then make the concentration of the reactant drop faster towards zero. This can be

verified by figure 5.12, which shows the steady state profiles of the concentration and the

temperature for different values of y2w. The dimensionless overall heat transfer coefficient is

chosen as Hw = 0.5.

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 5.12: Dimensionless concentration- and temperature profiles of the steady state

for varying values of y2w.



Chapter 6

Bifurcation Analysis of the Reactor

Model

In this chapter, bifurcation analysis will be performed on the packed-bed reactor model in

order to obtain more knowledge of the system. This includes learning which parameters affect

the steady state most and to see if any bifurcations are present in the given parameter space.

The analysis is done on the model without heat transfer to the reactor wall as this has very

little effect on the bifurcation diagrams.

6.1 Bifurcation Theory

A dynamical system can in general be written in the form

ẋ1 = f1 (x1, . . . , xn, µ)
... (6.1)

ẋn = fn (x1, . . . , xn, µ) ,

where n ∈ N is the dimension of the system, f1, . . . , fn are given functions and µ ∈ Rm is a

vector of parameters. Note that this is also the case for systems of ODE’s with order higher

than one. These can always be written in the form (6.1) by introducing new variables.

As parameters are varied, qualitative changes in the dynamics can occur. This can be in the

form of change in stability of fixed points or creation or destruction of fixed points. These

qualitative changes in the dynamics are called bifurcations. The parameter values for which

40
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these changes happen are called bifurcation points.

These changes in dynamics are conventionally illustrated in bifurcation diagrams, where the

fixed points can be seen as a function of an active parameter.

To determine whether a fixed point is stable or not for a given parameter value one can either

examine the vector field of the system or the eigenvalues of the Jacobian, J , of the system.

For a nonlinear system, a fixed point, xs, is unstable if J(xs) has an eigenvalue with positive

real part and xs is stable if all of the eigenvalues have negative real part, see [17].

When a fixed point is stable, there are two ways it can loose its stability. First, a real

eigenvalue can cross the imaginary axis from left to right. This gives rise to a limit point

bifurcation. These can occur when two different steady states, one stable and one unstable,

coexist for some value of the parameter. When the parameter value is varied, the two states

move towards each other and finally collide. When this happens it is said that a limit point

bifurcation has occurred. If the parameter is varied further in the same direction, the steady

states mutually annihilate.

Second, two complex conjugate eigenvalues can cross the imaginary axis simultaneously from

left to right, which gives rise to a Hopf bifurcation that causes oscillations of the solution.

Hopf bifurcations can come in both super- and subcritical varieties.

Suppose that a disturbance is washed out through exponentially damped oscillations for some

value of a parameter κ. If the oscillations start to grow when the parameter reaches some

value κc, the system has undergone a supercritical Hopf bifurcation. Often, this results in

small-amplitude oscillations around the former steady state. In the phase plane this can be

seen as a stable spiral that changes to an unstable spiral surrounded by a limit cycle when κ

crosses a critical parameter value κc. The behaviour of the subcritical Hopf bifurcation will

not be presented here as it is not relevant to this report. For an elaboration of the different

kinds of bifurcations, consult [16].

Even though the analysis of the eigenvalues can tell when a Hopf bifurcation occurs it cannot

tell if the bifurcation is supercritical or subcritical. A complex pair of eigenvalues cross the

imaginary axis in both cases. To determine the variety of the bifurcation one has to resort to

other methods, as for instance computing and analysing the phase portrait.

The eigenvalues of the system do not only determine if, when and which bifurcations occur
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but also how the solution looks. A linear system

ẋ = Ax, (6.2)

where A ∈ Rp×p and x, ẋ ∈ Rp has p eigenvalues, µ = a+ ib, and p eigenvectors, v, for which

it holds that

Av = µv.

For each real eigenvalue with a corresponding real eigenvector the system has the solution

x = eµtv

and for each complex pair of eigenvalues, with corresponding eigenvectors, the system has the

solutions

x = Re
(
eµtv

)
= eat (cos (bt)Re (v)− sin (bt) Im (v))

and

x = Im
(
eµtv

)
= eat (sin (bt)Re (v) + cos (bt) Im (v))

according to [17]. The complete solution to the system is then a linear combination of the

p found solutions with real coefficients. If the eigenvalues and eigenvectors are complex, the

solution is a linear combination of terms of the type eat cos (bt) and ebt sin (bt). This means

that if all of the eigenvalues have negative real part, the solution will consist of terms of

exponentially damped oscillations and the fixed point will therefore be stable. On the other

hand, if one eigenvalue has a positive real part, it will contribute to exponentially growing

oscillations and the fixed point will therefore be unstable. Finally, the imaginary part deter-

mines the angular frequency of the oscillation.

This is although only directly applicable to linear systems but a nonlinear system will be-

have like its corresponding linear system in a small area around the fixed point, i.e. when

disturbances are small enough.

6.2 MatCont

For models like the packed-bed reactor model, one needs to do bifurcation analysis through

the use of some mathematical software. Several different pieces of bifurcation analysis soft-

ware exist, like for instance Auto, Concent and MatCont. In this report MatCont will
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be used, primarily because it is the only software that is compatible with the standard Mat-

Lab representation of ODE’s. MatCont is open source software, available at [12].

The first thing to do, when doing bifurcation analysis in MatCont, is to create a system file.

This file contains the system definition and the initial conditions. The initial condition should

be an approximative equilibrium solution to the system. Once this system file is created one

has to choose initial values of the parameters, which MatCont then will use to make its own

simulation of the equilibrium solution. This will then work as the actual initial condition for

the bifurcation analysis that is then performed. The output is a bifurcation diagram and a

list of the locations of the detected bifurcations.

The algorithms in MatCont are based on predictor-corrector methods. The details will not

be presented here but one can consult the MatCont manual, [15], for an elaborate explana-

tion on the algorithms.

6.3 Analysis

In this section, the actual bifurcation analysis of the packed-bed reactor model will be per-

formed. The parameters will initially have the values given by (5.1) and then they will be

varied in the parameter space given by table 5.1 to see if any bifurcations occur in this space.

The MatCont system file used to perform this analysis can be seen in appendix A.5, while

the script that actually creates the bifurcation diagrams can be seen in appendix A.6. Note

that this script only performs the analysis with Da as the active parameter, but it can easily

be adjusted to perform the analysis for any of the parameters. Bifurcation diagrams will be

created for two different places in the reactor. First, they will be created for the spots in the

reactor, where the concentration- and temperature fronts occur, i.e. where the profiles have

the steepest gradient and second, for the end point of the reactor.

As previously mentioned Le has no effect on the steady state and a bifurcation analysis will

therefore be indifferent. Instead, the analysis will start with Da.
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6.3.1 The Damköhler Number, Da

Bifurcation diagrams for Da can be seen in figure 6.1 and 6.2 for the concentration and

temperature respectively. The figures are in good correspondence with figure 5.4. The value

(a) (b)

Figure 6.1: Bifurcation diagram of the dimensionless concentration at (a) the front and

(b) the endpoint. Da is the active parameter.

(a) (b)

Figure 6.2: Bifurcation diagram of the dimensionless temperature at (a) the front and

(b) the endpoint. Da is the active parameter.

of the concentration in the first point is approximately 1 for Da = 0, while this value drops

for higher values of Da. The temperature on the other hand grows for higher values of Da.
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By examining the eigenvalues, it is found that they all have negative real part meaning that

the steady states are stable. In the rest of this chapter, the analysis of the eigenvalues will

not be mentioned so if nothing else is noted, it is because the steady states are stable.

6.3.2 The Dimensionless Activation Energy, γ

The bifurcation diagrams for γ can be seen in figure 6.3 and 6.4. No bifurcations were found

here, but changes in γ affect the steady state as described earlier, i.e. by making the reaction

occur at a slower rate for high values of γ. Once again, the diagrams are made for both the

concentration- and temperature fronts and the end point of the reactor. It will be done this

way for the rest of the section.

(a) (b)

Figure 6.3: Bifurcation diagram of the dimensionless concentration at (a) the front and

(b) the endpoint. γ is the active parameter.

6.3.3 The Dimensionless Adiabatic Temperature Rise, β

The bifurcation diagrams for β can be seen in figure 6.5 and 6.6. Again no bifurcations

are found, but the diagrams confirm the results found in section 5.2.4 regarding parameter

dependency. Figure 6.5b and 6.6b show that the temperature in the end point rises with

β, while the concentration falls accordingly. Figure 6.5a and 6.6a show that the front gets

steeper for high values of β and this confirms the picture seen in figure 5.7.
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(a) (b)

Figure 6.4: Bifurcation diagram of the dimensionless temperature at (a) the front and

(b) the endpoint. γ is the active parameter.

(a) (b)

Figure 6.5: Bifurcation diagram of the dimensionless concentration at (a) the front and

(b) the endpoint. β is the active parameter.

6.3.4 The Peclet Number for Heat, Peh

The bifurcation diagrams for Peh can be seen in figure 6.7 and 6.8. From the y-axis it is clear

that the changes in the steady states are quite small. This is because the values of Peh are

so big that the effects of dispersion are quite small and the steady states will therefore look

alike. This is confirmed by figure 5.8. When Peh → 0 the dispersion effects get bigger and

this can be confirmed by figure 6.7a and 6.8a, which show that the fronts rise a bit making
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(a) (b)

Figure 6.6: Bifurcation diagram of the dimensionless temperature at (a) the front and

(b) the endpoint. β is the active parameter.

(a) (b)

Figure 6.7: Bifurcation diagram of the dimensionless concentration at (a) the front and

(b) the endpoint. Peh is the active parameter.

the temperature profiles more even.

6.3.5 The Peclet Number for Mass, Pem

The final parameter is Pem and the bifurcation diagrams can be seen in figure 6.9 and 6.10.

Both these figures confirm the behaviour seen in figure 5.10. No bifurcations were found here

either.
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(a) (b)

Figure 6.8: Bifurcation diagram of the dimensionless temperature at (a) the front and

(b) the endpoint. Peh is the active parameter.

(a) (b)

Figure 6.9: Bifurcation diagram of the dimensionless concentration at (a) the front and

(b) the endpoint. Pem is the active parameter.

6.3.6 Summary of Results

The bifurcation analysis of the packed-bed reactor model showed that no bifurcations occur

in the given parameter space. In [5], some bifurcations are found using this model but these

are all consequences of parameter values lying outside the given parameter space. Most of

the bifurcations are found for very low values of the Peclet numbers, i.e. Pem = Peh < 5.

Such low values actually make the system act like a continuous-stirred tank reactor, which
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(a) (b)

Figure 6.10: Bifurcation diagram of the dimensionless temperature at (a) the front and

(b) the endpoint. Pem is the active parameter.

is usually modelled as having no spatial variations in concentration and temperature, see [1].

This is not interesting for this project as industrial packed-bed reactors usually operate with

Peclet numbers around 103. If any bifurcations actually would have occurred with parameter

values inside the given space, they would probably also have been included in [5].

Bifurcation diagrams with heat transfer between the reactor wall and the reaction mixture

were also done but they showed no bifurcations either so they are therefore not included.



Chapter 7

The Heat Exchanger Model

The model that has been analysed so far has only described a packed-bed reactor. In this

chapter, this model will be extended with a model of a heat exchanger. This new model will

then be simulated to see how the steady state looks and how the system reacts when it is

subject to process disturbances. First, it will be described what a heat exchanger actually is.

7.1 Theory

A heat exchanger is a device that is used to transfer heat from one substance to another

without mixing the two substances. The flow arrangements of heat exchangers can be different

from one exchanger to another. A co-current shell and tube heat exchanger consists of a bunch

of tubes that are placed inside a shell. The two substances then enter at the same side, one

through the tubes and one through the shell over the tubes. They then travel to the other

side while exchanging heat on the way, see figure 7.1.

Figure 7.1: A co-current shell and tube heat exchanger.

By using the gas from the outlet of the reactor as the hot substance and the inlet gas to the

50
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system as the cold, the inlet gas can be heated up to an appropriate level before entering the

reactor.

How the temperatures of the substances change in the heat exchanger can be seen in figure 7.2.

T3 is the inlet temperature to the heat exchanger, i.e. the outlet temperature of the reactor

and T0 is the inlet temperature to the heat exchanger. ∆Tapp is the difference between the inlet

Figure 7.2: Development of the temperatures of the gases as a function of length of the

heat exchanger.

temperature of the warm gas and the outlet temperature of the cold gas. This temperature

difference is called the temperature approach and the value will typically be between 10 ◦C

and 30 ◦C. By assuming a constant temperature approach, the outlet temperature of the heat

exchanger is

T1 = T3 −∆Tapp. (7.1)

It is not all of the gas with temperature T0 that should enter the heat exchanger. To be able

to control the temperature of the inlet gas to the reactor, a fraction of the gas, α, should

actually not go into the heat exchanger. α is usually called the flow fraction and can be

adjusted during the process. This means that only a fraction, (1 − α), of the gas enters the

heat exchanger. After getting heated up in the heat exchanger, this amount of gas is mixed

with the fraction that by-passed the heat exchanger before entering the reactor. This means

that the temperature of the inlet gas to the reactor will be

T2 = αT0 + (1− α)T1. (7.2)
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To get a picture of the complete set-up, see figure 7.3. F0 denotes the gas that enters the

system and F1 is the gas leaving the reactor.

Figure 7.3: The complete set-up. The rectangle represents the packed-bed reactor and

the circle represents the heat exchanger.

7.2 Dimensionless Variables

To make the equations congruent with the model for the packed-bed reactor, they have to be

turned into dimensionless form. As in chapter 2, this is done relative to T0. This means that

the dimensionless inlet temperature to the system is

λ0 = T0
T0
, (7.3)

the dimensionless outlet temperature of the heat exchanger is

λ1 = T1
T0
, (7.4)

the dimensionless temperature of the inlet gas to the reactor is

λ2 = T2
T0
, (7.5)
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while the dimensionless temperature of the outlet gas from the reactor is

λ3 = T3
T0
. (7.6)

Finally the dimensionless temperature approach is

∆λapp = ∆Tapp
T0

. (7.7)

Solving for T1, T3 and ∆Tapp in (7.4), (7.6) and (7.7) and inserting the found expressions into

(7.1) yield

λ1T0 = λ3T0 −∆λappT0 ⇔ (7.8)

λ1 = λ3 −∆λapp. (7.9)

In the same way it can be found that

λ2T0 = αT0 + (1− α)λ1T0 ⇔ (7.10)

λ2 = αλ0 + (1− α)λ1. (7.11)

This means that the complete model for the temperatures in the heat exchanger is

λ1 = λ3 −∆λapp, (7.12)

λ2 = αλ0 + (1− α)λ1. (7.13)

Together with (2.25)-(2.31), these equations then constitute the complete model.

7.3 Steady State of the Complete Model

The MatLab implementation of the complete model can be found in appendix A.7. Simu-

lations are now made to see the concentration and temperature development over time and

they can be seen in figure 7.4 and 7.5.
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(a) (b)

Figure 7.4: Dimensionless concentration simulations of the complete model. (a) shows

dimensionless concentration profiles for different times and (b) shows the development

in dimensionless concentration as a function of time and length. The parameters have

the values Pem = 1000, P eh = 1000, Le = 40, β = 0.25, Da = 4, γ = 11, Hw =

0.5, y2w = 1, α = 0.9, ∆λapp = 0.1.

(a) (b)

Figure 7.5: Dimensionless temperature simulations of the complete model. (a) shows

dimensionless temperature profiles for different times and (b) shows the development in

dimensionless temperature as a function of time and length. The parameters have the

values Pem = 1000, P eh = 1000, Le = 40, β = 0.25, Da = 4, γ = 11, Hw = 0.5, y2w =

1, α = 0.9, ∆λapp = 0.1.
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7.4 Parameter Effects

Like it was done in chapter 5.2, it will now be investigated how the steady state is affected

by changes in the new parameters α and ∆λapp. Hw = 0.5 and y2w = 1 while the rest of the

parameters have the values given by (5.1).

7.4.1 The Flow Factor, α

The flow fraction, α, is defined as the fraction of the flow that is by-passing the heat exchanger.

Therefore the temperature of the reaction mixture in the reactor should grow as the flow

factor decreases because more of the inlet flow is heated up this way. This behaviour can be

confirmed by figure 7.6, which shows the steady state of the system for different values of α.

(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 7.6: Dimensionless concentration and dimensionless temperature profiles of the

steady state for varying values of α.

7.4.2 The Dimensionless Temperature Approach, ∆λapp

The steady state of the system for different values of ∆λapp can be seen in figure 7.7. As

∆λapp increases, the temperature of the reaction mixture falls. This is because large values

of ∆λapp yield lower values of λ1 and therefore lower values of the inlet temperature to the

reactor.
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(a) The dimensionless concentration. (b) The dimensionless temperature.

Figure 7.7: Dimensionless concentration and dimensionless temperature profiles of the

steady state for varying values of ∆λapp.

7.5 Convective Instability and the Snowball Effect

To investigate the convective instability of the system with an integrated heat exchanger, the

same approach as in section 5.1 is taken. This means that the steady state is found and the

value of λ0 is changed from 1 to 0.95 after some time, i.e. a step disturbance of −5% is added

to the dimensionless inlet temperature of the system. The model is then simulated for more

time. A plot of the temperature as a function of time and length of the reactor can be seen

in figure 7.8. Due to the convective instability and wrong-way behaviour of the packed-bed

reactor, the negative disturbance to the inlet temperature is amplified as described in section

5.1. Because of the heat exchanger, this amplified disturbance is fed back to the reactor

where it is amplified again and so on. This causes a snowball effect illustrated by growing

oscillations in temperature. These oscillations do not continue to grow though. In figure 7.9,

the simulation has been run for even longer time, i.e. until τ = 200. Here it can be seen that

the outlet temperature actually reaches a maximum value of around y2out = 1.75 and that

the temperature of the whole distribution reaches a maximum value of around y2max = 1.8.

It is hard to tell if the solution is periodic or approaches a new steady state from this figure

though. Figure 7.10, on the other hand, shows the temperature in the middle of the reactor

as a function of time together with the phase portrait for the middle of the reactor. Figure

7.10a shows that the solution is still oscillating even for τ = 200 and figure 7.10b shows
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Figure 7.8: The dimensionless temperature as a function of length and time for the sys-

tem with an integrated heat exchanger. The parameter values are Pem = 1000, P eh =

1000, Le = 3, β = 0.25, Da = 1, γ = 11, α = 0.75, ∆λapp = 0.1.

that the solution approaches a limit cycle. This means that a periodic solution has actually

been found. This will be discussed further in the following chapter. Including the terms

describing heat transfer between the reaction mixture and the reactor wall also has a big

influence on the snowball effect. The temperature distribution then looks like figure 7.11.

After the disturbance has been applied, a moving hot spot occurs but instead of giving rise

to oscillations with growing amplitude, the oscillations have decaying amplitudes until they

are washed out. This means that a cold reactor wall can neutralize the snowball effect.
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Figure 7.9: The dimensionless temperature as a function of length and time for the

system with an integrated heat exchanger. The simulation is run until τ = 200. The

parameter values are Pem = 1000, P eh = 1000, Le = 3, β = 0.25, Da = 1, γ = 11, α =

0.75, ∆λapp = 0.1.

(a) (b)

Figure 7.10: (a) shows the dimensionless temperature in the middle of the reactor as a

function of time and (b) shows the phase portrait for the middle of the reactor.
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Figure 7.11: The dimensionless temperature as a function of length and time for the

system with an integrated heat exchanger and heat transfer to the reactor wall. The

parameter values are Pem = 1000, P eh = 1000, Le = 3, β = 0.25, Da = 1, γ = 11, α =

0.75, ∆λapp = 0.1, Hw = 0.5, y2w = 1.



Chapter 8

Bifurcation Analysis of the

Complete Model

In this chapter, bifurcation analysis will be performed on the complete system model, i.e. the

model of the packed-bed reactor combined with the model of the heat exchanger. Initially

this will be done under the assumption that there is no heat transfer between the reactor wall

and the reaction mixture. In the last part of the chapter, bifurcation analysis will be done on

the system when this assumption is not used. The results will then be compared.

Just like in chapter 6, the parameters that are not analysed will have the values (5.1).

Not all of the parameters will be subjects to bifurcation analysis as it was previously shown

that they did not affect the steady state much. The focus will be on Da, β and the newly

introduced parameters α and ∆λapp. Analysis of the other parameters will also be done but

the diagrams will not be presented. The values of any bifurcation points that might occur for

the other parameters will be presented in section 8.3.

8.1 Model without Heat Transfer to the Reactor Wall

At first it will be assumed that there is no heat transfer between the reactor wall and the

reaction mixture. The analysis will start with Da.
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(a) (b)

Figure 8.1: Bifurcation diagram of the dimensionless concentration at (a) the middle of

the reactor and (b) the endpoint. Da is the active parameter, ∆λapp = 0.1 and α = 0.5.

(a) (b)

Figure 8.2: Bifurcation diagram of the dimensionless temperature at (a) the middle of

the reactor and (b) the endpoint. Da is the active parameter, ∆λapp = 0.1 and α = 0.5.

8.1.1 The Damköhler Number, Da

To do this analysis, ∆λapp is set to 0.1, while α will be varied so that one can see both the

effect of changes in Da and in α. At first, α will have the value 0.5. The bifurcation diagram

for the concentration and the temperature can be seen in figure 8.1 and 8.2 respectively. Note

that the figures show diagrams for both the middle of the reactor and the outlet. Furthermore,

the figures only show the bifurcation diagrams for values of Da below ∼ 0.7. This is because
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nothing interesting happens for higher values of Da. Here, two limit point bifurcations have

arisen at Da1 = 0.24 and Da2 = 0.32. This means that three different steady states coexist

between Da1 and Da2. Examination of the eigenvalues show that they all have negative real

part before the bifurcation point Da2 and that one real eigenvalue is zero at the bifurcation

point. This means that the steady states between the two bifurcation points are unstable,

while the bigger branches are stable.

Suppose now that the system starts in the stable steady state with Da = 0.1. Da is then

slowly increased until it reaches the bifurcation point Da2. The system then jumps to the

steady state on the other stable branch, hence avoiding the unstable area. Increasing Da will

just make the system follow the new stable branch but if one wants to return to the original

stable branch, Da has to be decreased slowly to the value of Da1, where the system then

jumps back to the original stable branch. This phenomenon is called hysteresis.

Furthermore, it turns out that a complex conjugate pair of eigenvalues has zero real part

at the point Da3 = 0.4. A plot of the eigenvalues for a value of Da = 0.39 and a value of

Da = 0.4 can be seen in figure 8.3. Zooming in on the critical eigenvalues, i.e. the eigenvalues

with real part closest to zero, yield the plot from figure 8.4. This shows that a complex

pair of eigenvalues actually has zero real part for Da = 0.4. According to section 6.1, a Hopf

bifurcation has actually occurred, which was not detected by MatCont. The eigenvalues will

therefore be analysed in this way in the rest of this report to make sure that all bifurcations

are found.

To summarize, the lower branches in figure 8.1 and 8.2 are stable, the steady states between

Da2 and Da1 are unstable and the high branch is stable between Da1 and Da3, where a Hopf

bifurcation occurs.

The analysis of Da is also done with a value of the flow factor of α = 0.25. The bifurcation

diagrams can be seen in figure 8.5 and 8.6. Here, limit point bifurcations occur at Da1 = 0.06

and Da2 = 2.34. Like before, by checking the eigenvalues, it can be seen that there is an area

of unstable steady states between these two values of Da. For α = 0.5 this area is quite small

but because of the lower value of α, more heat is entering the reactor and it can be concluded

that this heat is expanding the area of unstable steady states.

By comparing figure 8.6b and 8.2b it can also be concluded that the outlet temperature gets

higher for lower values of α.
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(a) (b)

Figure 8.3: (a) The eigenvalues right before the bifurcation point, Da3, and (b) at the

bifurcation point, Da3.

(a) (b)

Figure 8.4: (a) Zoom of the eigenvalues right before the bifurcation point, Da3, and

(b) at the bifurcation point, Da3.

Finally bifurcation analysis for Da is also done with the parameter values

Pem = 1000, P eh = 1000, Le = 3, β = 0.25, γ = 11, α = 0.75, ∆λapp = 0.1,

which are the same as the ones used in figure 7.8. The bifurcation diagram for the outlet

temperature can be seen in figure 8.7. This diagram shows no bifurcations but a complex

conjugate pair of eigenvalues actually lie on the imaginary axis when Da = 0.4, meaning that
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(a) (b)

Figure 8.5: Bifurcation diagram of the dimensionless concentration at (a) the middle

of the reactor and (b) the endpoint. Da is the active parameter, ∆λapp = 0.1 and

α = 0.25.

(a) (b)

Figure 8.6: Bifurcation diagram of the dimensionless temperature at (a) the middle

of the reactor and (b) the endpoint. Da is the active parameter, ∆λapp = 0.1 and

α = 0.25.

a Hopf bifurcation takes place for this value, see figure 8.8. By examining figure 7.10b it seems

that this Hopf bifurcation is supercritical. This means that for Da = 1, the solution should

turn periodic when a disturbance is added to the system and this is exactly what happens in

figure 7.8. On the other hand, when Da < 0.4, the system is stable and a disturbance will
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therefore just be washed out.

Figure 8.7: The bifurcation diagram of the dimensionless outlet temperature. Da is

the active parameter. The other parameters have the values Pem = 1000, P eh =

1000, Le = 3, β = 0.25, γ = 11, α = 0.75, ∆λapp = 0.1.

Figure 8.8: The eigenvalues for Da = 0.4. The other parameters have the values

Pem = 1000, P eh = 1000, Le = 3, β = 0.25, γ = 11, α = 0.75, ∆λapp = 0.1.

8.1.2 The Dimensionless Temperature Approach, ∆λapp

The next parameter is the dimensionless temperature approach. Setting α = 0.5 gives rise to

the bifurcation diagrams seen in figure 8.9 and 8.10. Here limit point bifurcations are found
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at ∆λapp1 = 0.28 and ∆λapp2 = 0.40. Examination of the eigenvalues show that the steady

states between the two bifurcation points are unstable and that the two other branches are

stable. Furthermore the analysis of the eigenvalues show that a Hopf bifurcation occurs at

∆λapp = 0.13. The eigenvalues will not be shown here though.

(a) (b)

Figure 8.9: Bifurcation diagram of the dimensionless concentration at (a) the middle

of the reactor and (b) the endpoint. ∆λapp is the active parameter and α = 0.5.

(a) (b)

Figure 8.10: Bifurcation diagram of the dimensionless temperature at (a) the middle of

the reactor and (b) the endpoint. ∆λapp is the active parameter and α = 0.5.

Like in the previous section bifurcation analysis was also done for α = 0.25. The diagrams

will not be shown here as they are very similar to the diagrams for α = 0.5. The difference
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is that the area of unstable steady states becomes larger for α = 0.25. In fact this is the case

for all the parameters. The area of unstable steady states becomes larger for smaller values

of α. The analysis of the different parameters will therefore only be done for α = 0.5 in the

following.

8.1.3 The Flow Factor, α

To do the analysis of the flow factor, the dimensionless temperature approach is set to ∆λapp =

0.1. The bifurcation diagrams can be seen in figure 8.11 and 8.12. They show no bifurcations

but a Hopf bifurcation actually occurs here at α = 0.55. The steady state is stable for α > 0.55

and unstable for α ≤ 0.55. These results fit with the fact that less heat is transferred back to

the reactor when α increases.

(a) (b)

Figure 8.11: Bifurcation diagram of the dimensionless concentration at (a) the middle

of the reactor and (b) the endpoint. α is the active parameter and ∆λapp = 0.1.

8.1.4 The Dimensionless Adiabatic Temperature Rise, β

Finally, bifurcation analysis will be done for β. For α = 0.5 and ∆λapp = 0.1, the bifurcation

diagrams can be seen in figure 8.13 and 8.14. Even though the diagrams show no bifurcations,

the eigenvalues reveal that a Hopf bifurcation takes place at β = 0.18. The steady state is

stable for β < 0.18 and unstable for β ≥ 0.18.
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(a) (b)

Figure 8.12: Bifurcation diagram of the dimensionless temperature at (a) the middle of

the reactor and (b) the endpoint. α is the active parameter and ∆λapp = 0.1.

(a) (b)

Figure 8.13: Bifurcation diagram of the dimensionless concentration at (a) the middle

of the reactor and (b) the endpoint. β is the active parameter and α = 0.5.

8.2 Model with Heat Transfer to the Reactor Wall

In this section it will be assumed that there is heat transfer between the reactor wall and

the reaction mixture and then bifurcation analysis will be performed for the parameters Da,

∆λapp and α. The dimensionless wall temperature is set to y2w = 1 and the dimensionless

heat transfer coefficient is set to Hw = 0.5 for the rest of this section.
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(a) (b)

Figure 8.14: Bifurcation diagram of the dimensionless temperature at (a) the middle of

the reactor and (b) the endpoint. β is the active parameter and α = 0.5.

8.2.1 The Damköhler Number, Da

The bifurcation diagrams for the Damköhler number can be seen in figure 8.15 and 8.16. As

opposed to when heat transfer to the reactor wall was not assumed these diagrams show no

limit point bifurcations. There is although a Hopf bifurcation at Da = 0.4.

(a) (b)

Figure 8.15: Bifurcation diagram of the dimensionless concentration at (a) the middle

of the reactor and (b) the endpoint. Da is the active parameter and α = 0.5. Heat

transfer between the reaction mixture and the reactor wall is assumed here.



70 CHAPTER 8. BIFURCATION ANALYSIS OF THE COMPLETE MODEL

(a) (b)

Figure 8.16: Bifurcation diagram of the dimensionless temperature at (a) the middle

of the reactor and (b) the endpoint. Da is the active parameter and α = 0.5. Heat

transfer between the reaction mixture and the reactor wall is assumed here.

8.2.2 The Dimensionless Temperature Approach, ∆λapp

The value of α is set to 0.5 and the bifurcation diagrams can be seen in figure 8.17 and 8.18.

Limit point bifurcations occur at ∆λapp1 = 0.44 and ∆λapp2 = 0.46. When comparing these

(a) (b)

Figure 8.17: Bifurcation diagram of the dimensionless concentration at (a) the middle

of the reactor and (b) the endpoint. ∆λapp is the active parameter and α = 0.5. Heat

transfer between the reaction mixture and the reactor wall is assumed here.
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(a) (b)

Figure 8.18: Bifurcation diagram of the dimensionless temperature at (a) the middle

of the reactor and (b) the endpoint. ∆λapp is the active parameter and α = 0.5. Heat

transfer between the reaction mixture and the reactor wall is assumed here.

figures to figure 8.9 and 8.10 it is clear that the unstable region becomes smaller when heat

transfer is assumed. Furthermore there are no Hopf bifurcations here.

8.2.3 The Flow Factor, α

(a) (b)

Figure 8.19: Bifurcation diagram of the dimensionless concentration at (a) the middle

of the reactor and (b) the endpoint. α is the active parameter and ∆λapp = 0.1. Heat

transfer between the reaction mixture and the reactor wall is assumed here.
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(a) (b)

Figure 8.20: Bifurcation diagram of the dimensionless temperature at (a) the middle

of the reactor and (b) the endpoint. α is the active parameter and ∆λapp = 0.1. Heat

transfer between the reaction mixture and the reactor wall is assumed here.

The bifurcation diagrams with α as the active parameter can be seen in figure 8.19 and 8.20.

They show no limit point bifurcations and an examination of the eigenvalues show that there

are no Hopf bifurcations as well.

8.3 Summary of Results

Besides the analysis of the parameters that was presented here, bifurcation analysis was also

done for the parameters γ, Pem and Peh. A complete summary of the occurrence of the

different bifurcation points can be seen in table 8.1. Note that this table only shows where

the bifurcations occur but not which steady states are stable.

This table shows that both limit points bifurcations and Hopf bifurcations occur for the

packed-bed reactor model with an integrated heat exchanger. These bifurcations occurred for

changes in the parameters Da, β, ∆λapp and α while changing the parameters γ, Pem and

Peh did not yield any bifurcations. The analysis of Da without heat transfer to the reactor

wall showed both limit point bifurcations and Hopf bifurcations and when there was heat

transfer, there were no longer any limit point bifurcations. The analysis of ∆λapp also showed

both kind of bifurcations but when the heat transfer assumption was used, there were no

longer any Hopf bifurcations. The analysis of α showed that there are no Hopf bifurcations
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y2w = y2 y2w 6= y2

Parameter \ Bifurcations LP1 LP2 Hopf LP1 LP2 Hopf

Da 0.24 0.32 0.31 - - 0.4

β - - 0.18 - - 0.19

γ - - - - - -

Pem - - - - - -

Peh - - - - - -

∆λapp 0.28 0.40 0.13 0.44 0.46 -

α - - 0.55 - - -

Table 8.1: Summary of the occurrence of bifurcations for α = 0.5 and ∆λapp = 0.1. -

means that the given bifurcation type does not occur when the parameter is changed.

when heat transfer to the reactor wall is assumed. In general, fewer bifurcations were found

when heat transfer is assumed, as the chosen wall temperature of y2w = 1 cools down the

reactor and makes it less likely for instabilities to occur.
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Discussion

It was shown in this report that there are many problematic areas when operating a packed-

bed reactor. Even when a heat exchanger is not integrated with the reactor, convective

instability can cause moving hot spots that can deactivate the catalyst and might even pose

a safety hazard. These moving hot spots do have a maximum value though and the system

will always return to a stable steady state. It was namely shown with bifurcation analysis

that no bifurcations will occur when changing any of the 6 parameters in the given parameter

space. Because all the steady states are stable it is relatively easy to operate and control the

packed-bed reactor.

It is although rarely the case that a packed-bed reactor is not integrated with a heat exchanger

to heat up the inlet gas in an efficient way and this makes the situation way more complex.

Because of the integration of the heat exchanger, the bifurcation analysis showed existence of

both limit point- and Hopf bifurcations. These are very undesirable as they cause hysteresis

and large-amplitude oscillations of temperature. The bifurcations occurred for the parameters

Da, β, α and ∆λapp. The first three of these parameters can usually be controlled by the

operator of the system so it is actually possible for the operator to avoid the regions of

instability by changing the parameter values. This can, for instance, be done by lowering the

gas velocity to increase the Damköhler number. If the bifurcations had occurred for another

parameter, say γ, that could not be controlled, the situation would be different. Then there

would be no way to avoid an unstable steady state of the system. Finally, another way to

avoid unstable steady states of the system is to use a cooled reactor as it is shown to decrease

the number of bifurcations and decrease the size of the areas of instability.
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Conclusion

The packed-bed reactor with an integrated heat exchanger was examined in this thesis. This

included bifurcation analysis and simulations of the systems behaviour when subject to dis-

turbances. At first the packed-bed reactor model without the heat exchanger was derived,

discretized and implemented in MatLab. Simulations then showed that the packed-bed reac-

tor works as an amplifier of disturbances because of the convective instability of the system.

The system does however wash out any disturbances in time, meaning that all of the steady

states were stable. Examination of the eigenvalues confirmed this and bifurcation analysis

showed no bifurcations in a given parameter space, which covers many different processes in

the chemical industry.

The heat exchanger was then modelled and integrated with the packed-bed reactor model.

Simulations of the complete model showed that amplified disturbances are fed back to the

reactor by the heat exchanger, where they are amplified again. This causes growing oscillations

of temperature which in time turn into periodic oscillations. The system has this behaviour

because Hopf bifurcations occur for some parameter values and give rise to these oscillations

when the heat exchanger is integrated in the model. Furthermore, the occurrence of limit

point bifurcations show that hysteresis can occur when certain parameters are varied. It is

shown that the occurrence of bifurcations only depend on Da, β, α and ∆λapp and as Da, β

and α usually can be controlled by the operator of the reactor, most of the critical parameter

values can be avoided altogether.

Finally it is concluded that there are fewer bifurcations and smaller areas of unstable steady
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states when heat transfer to the reactor wall is assumed. This means that a cooled reactor

would make the system more stable.



Chapter 11

Ideas for Future Work

It is clear that this report cannot cover all the aspects of bifurcation analysis of chemical

reactors. Several topics in both mathematics and chemistry are used to cover this subject

and some areas could be interesting to investigate further in another project.

For once, a different discretization scheme could be tried out. This could, for example, be

the orthogonal collocation method as recommended in [5]. This method has two advantages.

First, it would make it possible to analyse the effects of the Peclet numbers in the entire

parameter space and second, the method needs fewer grid points, which would save time

when doing simulations and bifurcation analysis with MatCont. This is although a very

complicated method compared to the method of lines.

Some features can also be added to the model of the system. First of all, it takes some time

for the gas to travel from the outlet of the heat exchanger to the inlet of the reactor and

this time delay can be modelled in different ways. Second, in this report it was assumed

that the heat exchanger has a constant temperature approach, ∆Tapp. This is a simple model

of the behaviour of a heat exchanger and using this model gives a good approximation of

the ranges in which bifurcations can be found. The approach temperature normally varies

though, depending on the temperatures of the inlet and outlet gas, so to get even more exact

results one could try to implement this in the model.

Finally one can experiment with control equations to find out how to regulate α during the

process to avoid regions of α that could cause instability.
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MatLab Code

In this appendix all of the MatLab code used in the report can be found.

A.1 The Packed-Bed Reactor Model

The MatLab implementation of the packed-bed reactor model without heat transfer between

the reaction mixture and the reactor wall is seen below.

1 function dy = SystemModel(~,y,par,Y10,Y20)

2 % This function implements a differential equation model for a packed−bed

3 % reactor without heat tranfer between the reaction mixture and the reactor

4 % wall.

5 % Input y is a vector of function values.

6 % par is a vector containing the parameter values.

7 % Y10 is the inlet concentration.

8 % Y20 is the inlet temperature.

9 % Output dy is a vector containing the derivatives of y.

10 % Programmer Jan Langdeel Pedersen, 2013.

11

12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 % Initialization

14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 Le = par(1);

16 Da = par(2);

17 beta = par(3);
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18 gamma = par(4);

19 Pem = par(5);

20 Peh = par(6);

21 N = par(7);

22 h = 1/(N+1);

23

24 y1 = y(1:N);

25 y2 = y(N+1:2*N);

26

27 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

28 % y1

29 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 A1 = diag(−Da*exp(gamma*(1−1./y2)),0);

31

32 B1 = (1/Pem)*(1/h^2)*(diag(−2*ones(N,1),0)+diag(ones(N−1,1),1)...

33 +diag(ones(N−1,1),−1));

34

35 C1 = −1/(2*h)*(diag(ones(N−1,1),1)+diag(−ones(N−1,1),−1));

36

37 % Robin BC at B1

38 y10 = (2*Pem*Y10*h−4*y1(1)+y1(2))/(2*Pem*h−3);

39

40 % Neumann BC at B2

41 y1N1 = 1/3*(4*y1(N)−y1(N−1));

42

43 % The approximated function values at the endpoints

44 G1 = zeros(N,1);

45 G1(1) = (1/Pem)*1/h^2*y10+1/(2*h)*y10;

46 G1(end) = (1/Pem)*1/h^2*y1N1−1/(2*h)*y1N1;

47

48 % The system of ODE's for y1

49 dy1 = (A1+B1+C1)*y1+G1;

50

51 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

52 % y2

53 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

54 A2 = −beta*A1;

55
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56 B2 = Pem/Peh*B1;

57

58 C2 = C1;

59

60 % Robin BC at B1

61 y20 = (2*Peh*Y20*h−4*y2(1)+y2(2))/(2*Peh*h−3);

62

63 % Neumann BC at B2

64 y2N1 = 1/3*(4*y2(N)−y2(N−1));

65

66 % The approximated function values at the endpoints

67 G2 = zeros(N,1);

68 G2(1) = (1/Peh)*1/h^2*y20+1/(2*h)*y20;

69 G2(end) = (1/Peh)*1/h^2*y2N1−1/(2*h)*y2N1;

70

71 % The system of ODE's for y2

72 dy2 = 1/Le*(A2*y1+(B2+C2)*y2+G2);

73

74 % The complete system of ODE's

75 dy = [dy1;dy2];
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A.2 Simulation of the Packed-Bed Reactor Model

The following script simulates the packed-bed reactor model without heat transfer between

the reaction mixture and the reactor wall. In addition to this, the script also compares the

steady states found to the steady states from [4].

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % Initialization

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 Le = 3;

5 Da = 0.135;

6 beta = 0.5;

7 gamma = 22;

8 Pem = 3000;

9 Peh = 1000;

10

11 N = 200;

12 par = [Le; Da; beta; gamma; Pem; Peh; N];

13 tspan = [0 4];

14

15 b = 0.5; % Start of bed

16 L = 1; % length of bed

17

18 Y10 = 1;

19 Y20 = 1;

20

21 % The initial conditions

22 y0 = zeros(2*N,1);

23 y0(1:N) = 0;

24 y0(N+1:2*N) = 1;

25

26 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

27 % Simulation

28 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 [t,y] = ode15s(@SystemModel,tspan,y0,[],par,Y10,Y20);

30 y1 = y(:,1:N);

31 y2 = y(:,N+1:2*N);
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32

33 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34 % Plotting

35 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36 y1 = y1(:,N/2+1:N);

37 y2 = y2(:,N/2+1:N);

38 l = linspace(b,L,N/2);

39

40 % Simulation of the concentration

41 hold on

42 plot(l,y1(round(length(t)*1/4),:),'b−','LineWidth',2)

43 plot(l,y1(round(length(t)*2/4),:),'g−','LineWidth',2)

44 plot(l,y1(round(length(t)*3/4),:),'r−','LineWidth',2)

45 plot(l,y1(end,:),'c−','LineWidth',2);

46 hold off

47

48 xlabel('Dimensionless length, x')

49 ylabel('Dimensionless concentration, y1')

50 legend('\tau = 1','\tau = 2','\tau = 3','\tau = 4','Location','SouthWest')

51 fh = figure(1);

52 set(fh,'color','white')

53 set(gca,'box','off')

54

55 % Simulation of the temperature

56 figure

57 hold on

58 plot(l,y2(round(length(t)*1/4),:),'b−','LineWidth',2)

59 plot(l,y2(round(length(t)*2/4),:),'g−','LineWidth',2)

60 plot(l,y2(round(length(t)*3/4),:),'r−','LineWidth',2)

61 plot(l,y2(end,:),'c−','LineWidth',2);

62 hold off

63

64 xlabel('Dimensionless length, x')

65 ylabel('Dimensionless temperature, y2')

66 legend('\tau = 1','\tau = 2','\tau = 3','\tau = 4','Location','NorthWest')

67 fh = figure(2);

68 set(fh,'color','white')

69 set(gca,'box','off')
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70

71 % Three−dimensional plots

72 h = 1/(N+1);

73 z = (h:h:N*h)';

74 yp1 = y(:,1:N);

75 yp2 = y(:,N+1:2*N);

76

77 figure

78 mesh(z,t,yp1)

79 title('Dimensionless concentration'); xlabel('Dimensionless length, x');

80 ylabel('Dimensionless Time, \tau');

81 fh = figure(3); set(fh,'color','white'); set(gca,'box','off');

82

83 figure

84 mesh(z,t,yp2)

85 title('Dimensionless temperature'); xlabel('Dimensionless length, x');

86 ylabel('Dimensionless time,\tau');

87 fh = figure(4); set(fh,'color','white'); set(gca,'box','off')

88

89 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

90 % Reconstruction of the steady state plot from the article 'Convective

91 % instability and its suppression in packed−bed− and monolith reactors'

92 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

93 % Concentration

94 art1 = load('SteadyStateConcentration.txt');

95 x1art = art1(:,1);

96 y1art = art1(:,2);

97

98 yi1 = interp1(x1art,y1art,l); % Interpolation

99

100 figure

101 hold on

102 plot(l,y1(end,:),'b−','LineWidth',2);

103 plot(l,yi1,'.r');

104 hold off

105

106 axis([0.5 1 0 0.9])

107 xlabel('Dimensionless length, x')
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108 ylabel('Dimensionless concentration, y1')

109 legend('Simulation of Steady State','Steady State Simulation from [4]',...

110 'Location','SouthWest')

111 fh = figure(5);

112 set(fh,'color','white')

113 set(gca,'box','off')

114

115 figure

116 plot(l,y1(end,:)−yi1,'g−','LineWidth',2);

117 xlabel('Dimensionless length, x')

118 ylabel('Residual')

119 fh = figure(6);

120 set(fh,'color','white')

121 set(gca,'box','off')

122

123 % Temperature

124 art2 = load('SteadyStateTemperature.txt');

125 x2art = art2(:,1);

126 y2art = art2(:,2);

127

128 yi2 = interp1(x2art,y2art,l); % Interpolation

129

130 figure

131 hold on

132 plot(l,y2(end,:),'b−','LineWidth',2);

133 plot(l,yi2,'.r');

134 hold off

135

136 xlabel('Dimensionless length, x')

137 ylabel('Dimensionless temperature, y2')

138 legend('Simulation of Steady State','Steady State Simulaion from [4]',...

139 'Location','SouthEast')

140 fh = figure(7);

141 set(fh,'color','white')

142 set(gca,'box','off')

143

144 figure

145 plot(l,y2(end,:)−yi2,'g−','LineWidth',2);
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146 xlabel('Dimensionless length, x')

147 ylabel('Residual')

148 fh = figure(8);

149 set(fh,'color','white')

150 set(gca,'box','off')
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A.3 The Packed-Bed Reactor Model with Heat Transfer to

the Reactor Wall

The MatLab implementation of the packed-bed reactor model with heat transfer between

the reaction mixture and the reactor wall is see below.

1 function dy = SystemModelWall(~,y,par,Y10,Y20)

2 % This function implements a differential equation model for a packed−bed

3 % reactor with heat tranfer between the reaction mixture and the reactor

4 % wall.

5 % Input y is a vector of function values.

6 % par is a vector containing the parameter values.

7 % Y10 is the inlet concentration.

8 % Y20 is the inlet temperature.

9 % Output dy is a vector containing the derivatives of y.

10 % Programmer Jan Langdeel Pedersen, 2013.

11

12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 % Initialization

14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 Le = par(1);

16 Da = par(2);

17 beta = par(3);

18 gamma = par(4);

19 Pem = par(5);

20 Peh = par(6);

21 Hw = par(7);

22 y2w = par(8);

23 N = par(9);

24 h = 1/(N+1);

25

26 y1 = y(1:N);

27 y2 = y(N+1:2*N);

28

29 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 % y1

31 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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32 A1 = diag(−Da*exp(gamma*(1−1./y2)),0);

33

34 B1 = (1/Pem)*(1/h^2)*(diag(−2*ones(N,1),0)+diag(ones(N−1,1),1)...

35 +diag(ones(N−1,1),−1));

36

37 C1 = −1/(2*h)*(diag(ones(N−1,1),1)+diag(−ones(N−1,1),−1));

38

39 % Robin BC at B1

40 y10 = (2*Pem*Y10*h−4*y1(1)+y1(2))/(2*Pem*h−3);

41

42 % Neumann BC at B2

43 y1N1 = 1/3*(4*y1(N)−y1(N−1));

44

45 % The approximated function values at the endpoints

46 G1 = zeros(N,1);

47 G1(1) = (1/Pem)*1/h^2*y10+1/(2*h)*y10;

48 G1(end) = (1/Pem)*1/h^2*y1N1−1/(2*h)*y1N1;

49

50 % The system of ODE's for y1

51 dy1 = (A1+B1+C1)*y1+G1;

52

53 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

54 % y2

55 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

56 A2 = −beta*A1;

57

58 B2 = Pem/Peh*B1;

59

60 C2 = C1;

61

62 H2 = −diag(Hw*ones(N,1),0);

63

64 W2 = Hw*y2w*ones(N,1);

65

66 % Robin BC at B1

67 y20 = (2*Peh*Y20*h−4*y2(1)+y2(2))/(2*Peh*h−3);

68

69 % Neumann BC at B2
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70 y2N1 = 1/3*(4*y2(N)−y2(N−1));

71

72 % The approximated function values at the endpoints

73 G2 = zeros(N,1);

74 G2(1) = (1/Peh)*1/h^2*y20+1/(2*h)*y20;

75 G2(end) = (1/Peh)*1/h^2*y2N1−1/(2*h)*y2N1;

76

77 % The system of ODE's for y2

78 dy2 = 1/Le*(A2*y1+(B2+C2+H2)*y2+G2+W2);

79

80 % The complete system of ODE's

81 dy = [dy1;dy2];
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A.4 Simulations with Disturbances

The following script simulates the packed-bed reactor model subject to a disturbance to the

inlet conditions.

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % Initialization

3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4 Le = 3;

5 Da = 0.135;

6 beta = 0.5;

7 gamma = 22;

8 Pem = 3000;

9 Peh = 1000;

10 N = 400;

11 par = [Le; Da; beta; gamma; Pem; Peh; N];

12

13 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

14 % Simulation

15 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

16 % The initial condition

17 y0 = zeros(2*N,1);

18 y0(1:N) = 0;

19 y0(N+1:2*N) = 1;

20 [~,y] = ode15s(@SystemModel,[0 400],y0,[],par,1,1);

21 y1 = y(:,1:N);

22 y2 = y(:,N+1:end);

23 y10s = y1(end,:)';

24 y20s = y2(end,:)';

25

26 % Time loop

27 NTime = 100; % Number of simulations

28 t_sim = 10; % End time

29 t_span = linspace(0,t_sim,NTime);

30 Y1 = []; Y2 = []; T = [];

31

32 y1_0 = ones(size(t_span));
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33 y2_0 = y1_0;

34 y0 = [y10s;y20s];

35

36 for n = 1:NTime−1

37 if n > NTime/5

38 y2_0(n) = 0.95; %Step change in temperature

39 end

40

41 [t,y] = ode15s(@SystemModel,[t_span(n) t_span(n+1)],y0...

42 ,[],par,y1_0(n),y2_0(n));

43 y1 = y(:,1:N);

44 y2 = y(:,N+1:end);

45

46 %New initial state

47 y0(1:N) = y1(end,:);

48 y0(N+1:end) = y2(end,:);

49

50 %Storage of solution

51 Y1 = [Y1; y1]; Y2 = [Y2; y2]; T = [T; t];

52 end

53

54 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

55 % Plotting

56 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

57 h = 1/(N+1);

58 z = (h:h:N*h)';

59

60 figure

61 mesh(z,T,Y1)

62 title('Dimensionless Concentration'); xlabel('Dimensionless Length, x');

63 ylabel('Dimensionless Time, \tau');

64 fh = figure(1); set(fh,'color','white'); set(gca,'box','off');

65

66 figure

67 mesh(z,T,Y2)

68 title('Dimensionless Temperature'); xlabel('Dimensionless Length, x');

69 ylabel('Dimensionless Time, \tau');

70 fh = figure(2); set(fh,'color','white'); set(gca,'box','off')
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71

72 figure

73 hold on

74 plot(z,Y1(1,:),'b−','LineWidth',2)

75 plot(z,Y1(round(length(T)*0.3),:),'r−','LineWidth',2)

76 plot(z,Y1(round(length(T)*0.6),:),'g−','LineWidth',2)

77 plot(z,Y1(end,:),'c−','LineWidth',2)

78 title('Dimensionless Concentration profiles');

79 xlabel('Dimensionless Length, x'); ylabel('Dimensionless Concentration, y_1');

80 legend('t = 0', 't = 3', 't = 6', 't = 10');

81 fh = figure(3); set(fh,'color','white'); set(gca,'box','off')

82 hold off

83

84 figure

85 hold on

86 plot(z,Y2(1,:),'b−','LineWidth',2)

87 plot(z,Y2(round(length(T)*0.3),:),'r−','LineWidth',2)

88 plot(z,Y2(round(length(T)*0.6),:),'g−','LineWidth',2)

89 plot(z,Y2(end,:),'c−','LineWidth',2)

90 title('Dimensionless Temperature profiles');

91 xlabel('Dimensionless Length, x'); ylabel('Dimensionless Temperature, y_2');

92 legend('t = 0', 't = 3', 't = 6', 't = 10');

93 fh = figure(4); set(fh,'color','white'); set(gca,'box','off')

94 hold off
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A.5 The MatCont System File

The MatCont system file is seen below. The initial condition is found by simulating the

steady state with the initial parameter values with twice as many grid points as specified by

the user. By using this simulation an initial condition, a new steady state simulation is then

performed with the user-specified number of grid points. In this way, an accurate steady state

is calculated and the continuation can be performed with fewer grid points.

1 function out = PackedBedSystem

2 out{1} = @init;

3 out{2} = @fun_eval;

4 out{3} = [];

5 out{4} = [];

6 out{5} = [];

7 out{6} = [];

8 out{7} = [];

9 out{8} = [];

10 out{9} = [];

11

12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 function dfdt = fun_eval(~,y,N,Da,Le,beta,gamma,Pem,Peh)

14 y1 = y(1:N);

15 y2 = y(N+1:2*N);

16 h = 1/(N+1);

17

18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 % y1

20 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 A1 = diag(−Da*exp(gamma*(1−1./y2)),0);

22

23 B1 = (1/Pem)*(1/h^2)*(diag(−2*ones(N,1),0)+diag(ones(N−1,1),1)...

24 +diag(ones(N−1,1),−1));

25

26 C1 = −1/(2*h)*(diag(ones(N−1,1),1)+diag(−ones(N−1,1),−1));

27

28 % Robin BC at B1

29 y10 = (2*Pem*h−4*y1(1)+y1(2))/(2*Pem*h−3);
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30

31 % Neumann BC at B2

32 y1N1 = 1/3*(4*y1(N)−y1(N−1));

33

34 % The approximated function values at the endpoints

35 G1 = zeros(N,1);

36 G1(1) = (1/Pem)*1/h^2*y10+1/(2*h)*y10;

37 G1(end) = (1/Pem)*1/h^2*y1N1−1/(2*h)*y1N1;

38

39 % The system of ODE's for y1

40 dy1 = (A1+B1+C1)*y1+G1;

41

42 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

43 % y2

44 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 A2 = −beta*A1;

46

47 B2 = Pem/Peh*B1;

48

49 C2 = C1;

50

51 % Robin BC at B1

52 y20 = (2*Pem*h−4*y2(1)+y2(2))/(2*Pem*h−3);

53

54 % Neumann BC at B2

55 y2N1 = 1/3*(4*y2(N)−y2(N−1));

56

57 % The approximated function values at the endpoints

58 G2 = zeros(N,1);

59 G2(1) = (1/Peh)*1/h^2*y20+1/(2*h)*y20;

60 G2(end) = (1/Peh)*1/h^2*y2N1−1/(2*h)*y2N1;

61

62 % The system of ODE's for y2

63 dy2 = 1/Le*(A2*y1+(B2+C2)*y2+G2);

64

65 % The complete system of ODE's

66 dfdt = [dy1;dy2];

67 dfdt = sparse(dfdt);
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68

69 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

70 function [tspan,y0,options] = init(N,Da,Le,beta,gamma,Pem,Peh)

71 N2 = 2*N;

72 par = [Le; Da; beta; gamma; Pem; Peh; N2];

73 tspan1 = 0;

74 tspan2 = 150;

75 tspan = [tspan1 tspan2];

76

77 % The initial conditions

78 y0 = zeros(2*N2,1);

79 y0(1:N2) = 0;

80 y0(N2+1:2*N2) = 1;

81

82 [~,yss] = ode15s(@SystemModel,tspan,y0,[],par);

83 y1ss = yss(:,1:N2);

84 y2ss = yss(:,N2+1:2*N2);

85 y10ss = y1ss(end,:);

86 y20ss = y2ss(end,:);

87

88 % Removing half the points

89 Y1ss = zeros(N,1);

90 Y2ss = Y1ss;

91 for i = 1:N

92 Y1ss(i) = y10ss(2*i);

93 Y2ss(i) = y20ss(2*i);

94 end

95

96 y0ss = [Y1ss; Y2ss];

97

98 % Simulation with half the number of mesh points

99 par = [Le; Da; beta; gamma; Pem; Peh; N];

100 tspan = [tspan2 tspan2+1];

101 [~,y2] = ode15s(@SystemModel,tspan,y0ss,[],par);

102

103 y12 = y2(:,1:N);

104 y22 = y2(:,N+1:2*N);

105 y01 = y12(1,:);



95 APPENDIX A. MATLAB CODE

106 y02 = y22(1,:);

107 y0 = [y01, y02]';

108

109 handles = feval(@PackedBedSystem);

110 options = odeset('Vectorized','on');
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A.6 The MatCont Script File

The MatLab script that actually creates the bifurcation diagrams is seen below.

1 % Initialization

2 global cds

3 N = 82; Da = 1; Le = 40; beta = 0.25; gamma = 11; Pem = 1000; Peh = 1000;

4 ap = 2; % The active parameter

5 par = [N;Da;Le;beta;gamma;Pem;Peh];

6 handles = feval(@PackedBedSystem);

7 [~,y0,options] = feval(handles{1},N,Da,Le,beta,gamma,Pem,Peh);

8

9 % Initial information is computed

10 [y1,v1] = init_EP_EP(@PackedBedSystem,y0,par,ap);

11

12 % Options

13 MaxNumPoints = 550;

14 opt = contset;

15 opt = contset(opt,'MaxNumPoints',MaxNumPoints);

16 opt = contset(opt,'Backward',1);

17 opt = contset(opt,'Eigenvalues',1);

18

19 % The continuation

20 [y,v,s,h,f] = cont(@pde_1,y1,v1,opt);

21

22 % Diagrams at the end point

23 cpl(y,v,s,[2*N+1 N]); xlabel('Da'); ylabel('y_1(N)');

24 fh = figure(1);

25 set(fh,'color','white')

26

27 figure

28 cpl(y,v,s,[2*N+1 2*N]); xlabel('Da'); ylabel('y_2(N)');

29 fh = figure(2); set(fh,'color','white')

30

31 figure

32 cpl(y,v,s,[2*N+1 3]); xlabel('Da'); ylabel('y_1(1)');

33 fh = figure(3); set(fh,'color','white')

34
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35 figure

36 cpl(y,v,s,[2*N+1 N+3]); xlabel('Da'); ylabel('y_2(1)');

37 fh = figure(4); set(fh,'color','white')
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A.7 The Complete System Model

The MatLab implementation of the complete model is seen below.

1 function dy = SystemModelFBWall(~,y,par,Y10,Y20)

2 % This function implements a differential equation model for a packed−bed

3 % reactor with heat tranfer between the reaction mixture and the reactor

4 % wall and an integrated heat exchanger.

5 % Input y is a vector of function values.

6 % par is a vector containing the parameter values.

7 % Y10 is the inlet concentration.

8 % Y20 is the inlet temperature.

9 % Output dy is a vector containing the derivatives of y.

10 % Programmer Jan Langdeel Pedersen, 2013.

11

12 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 % Initialization

14 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 Le = par(1);

16 Da = par(2);

17 beta = par(3);

18 gamma = par(4);

19 Pem = par(5);

20 Peh = par(6);

21 Hw = par(7);

22 y2w = par(8);

23 dTapp = par(9);

24 alpha = par(10);

25 N = par(11);

26 h = 1/(N+1);

27

28 y1 = y(1:N);

29 y2 = y(N+1:2*N);

30 T3 = y2(end);

31

32 T1 = T3−dTapp;

33 T2 = alpha*Y20+(1−alpha)*T1;

34 lambda2 = T2;
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35

36 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37 % y1

38 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

39 A1 = diag(−Da*exp(gamma*(1−1./y2)),0);

40

41 B1 = (1/Pem)*(1/h^2)*(diag(−2*ones(N,1),0)+diag(ones(N−1,1),1)...

42 +diag(ones(N−1,1),−1));

43

44 C1 = −1/(2*h)*(diag(ones(N−1,1),1)+diag(−ones(N−1,1),−1));

45

46 % Robin BC at B1

47 y10 = (2*Pem*Y10*h−4*y1(1)+y1(2))/(2*Pem*h−3);

48

49 % Neumann BC at B2

50 y1N1 = 1/3*(4*y1(N)−y1(N−1));

51

52 % The approximated function values at the endpoints

53 G1 = zeros(N,1);

54 G1(1) = (1/Pem)*1/h^2*y10+1/(2*h)*y10;

55 G1(end) = (1/Pem)*1/h^2*y1N1−1/(2*h)*y1N1;

56

57 % The system of ODE's for y1

58 dy1 = (A1+B1+C1)*y1+G1;

59

60 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

61 % y2

62 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

63 A2 = −beta*A1;

64

65 B2 = Pem/Peh*B1;

66

67 C2 = C1;

68

69 H2 = −diag(Hw*ones(N,1),0);

70

71 W2 = Hw*y2w*ones(N,1);

72
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73 % Robin BC at B1

74 y20 = (2*Peh*lambda2*h−4*y2(1)+y2(2))/(2*Peh*h−3);

75

76 % Neumann BC at B2

77 y2N1 = 1/3*(4*y2(N)−y2(N−1));

78

79 % The approximated function values at the endpoints

80 G2 = zeros(N,1);

81 G2(1) = (1/Peh)*1/h^2*y20+1/(2*h)*y20;

82 G2(end) = (1/Peh)*1/h^2*y2N1−1/(2*h)*y2N1;

83

84 % The system of ODE's for y2

85 dy2 = 1/Le*(A2*y1+(B2+C2+H2)*y2+G2+W2);

86

87 % The complete system of ODE's

88 dy = [dy1;dy2];
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