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Han Yue Extending Stochastic Model Checking with Path Rewards

Abstract

Stochastic modeling is widely used for design and analysis of systems in various application domains.
Stochastic model checking is an automatic procedure validating whether a stochastic model satis�es
a given property which is normally expressed by some temporal logics. One of the state of art model
checking tools is PRISM. In the project, Model Checking Real Life, conducted during the spring of
2012, a hypothetic ambulance system has been introduced and some PRISM Discrete-time Markov
Chain (DTMC) models have been developed based on this system. We also attempted to evaluate
some Probabilistic Computation Tree Logic (PCTL) like formulae with path reward properties over
these models. However, PRISM only supports state rewards formulae which validate the expected
rewards based on a certain set of paths start from a speci�c state. After some further studies, we
believe the concept of path reward properties is also useful to the analyses of other systems.

In order to ful�ll this purpose, in this paper, PCTL with state reward formulae is formally extended
with path reward formulae as PCTLR. Base on the concept of dynamic programming, algorithms for
model checking PCTLR probability path reward formulae over both DTMCs and Markov Decision
Processes (MDP) with rewards are developed. Besides, PRISM is extended to support all the above
concepts. While PCTLR is incorporated into the PRISM property speci�cation language, we also
feel the need to grant PRISM with more �exibility, in this project, an extended �lter with �cust�
operator is designed and implemented for the extended PRISM. Finally, the extended PRISM is
tested from three aspects: correctness, performance and robustness.
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1 Introduction

Stochastic modeling is widely used for design and analysis of systems in various application domains.
Di�erent probabilities are used to describe the unreliable or unpredictable behaviors of these systems,
e.g. the lost rate of messages in a network communication protocol and the failure rate of a speci�c
node in a distributed system. Stochastic model checking is an automatic procedure validating
whether a stochastic model satis�es a given property which is normally expressed by some temporal
logics. There are many possible types of models can be used to represent distinguishing features
of the same system. For example, Discrete-time Markov Chain[1] (DTMC) are good at extracting
the discrete-time behaviors of a given system while Continues-time Markov Chain[2] (CTMC) is
a better choice for describing continues-time behaviors, and Markov Decision Process[3] (MDP)
extends DTMC with nondeterminism. To grant more expressiveness to models, a reward / cost
structure is also considered together as a useful extension. In this paper, we will focus on the two
discrete-time model types listed above, DTMC and MDP with reward structures.

1.1 PRISM Model Checker

PRISM[4] is a state of art probabilistic model checker and it is an open source software. A simpli�ed
model checking procedure of PRISM is shown in Figure 1. The inputs of the whole procedure are
model and properties �les where the model �le contains both module and reward de�nitions. The
syntax of PRISM model and properties �les could be found in [5, 6]. To model check the given
properties over the given model, PRISM �rst parses the model �le into the Abstract Syntax Tree
(AST) of modules and the AST of reward structure. Then it parses the properties �le into the AST
of properties. After that, the ASTs of modules, the reward structure and properties will be passed to
the core component of PRISM, the computation engine[7], which handles the actual work of model
checking and returns the result. Note that the AST of reward structure is optional and it only be
needed if some of the properties are reward related.

Computation 
Engine

PRISM Parser

Parsing

Reward 
Structure 

AST

Parsing

Model File

Properties 
File

Properties 
AST

Modules 
AST

Model 
Checking 

Result

Figure 1: The simpli�ed model checking procedure of PRISM

There are several computation engines available in PRISM, and each engine has its own strengths
and weaknesses which depend on the underlying data structures and the algorithms it uses. Though
the e�ciencies of each engine varies toward di�erent types of PRISM properties over di�erent types
of models, if any two engines model check the same property over the same model, the result should
be much the same (they may slightly di�er from each other due to the approximations during
the computation). There are three mature computation engines could be used for model checking
DTMCs and MDPs in the main public release (version 4.0.3) of PRISM: the hybrid, the sparse and
the MTBDD. All these three engines are partially implemented in C for e�ciency reasons while
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PRISM itself is a tool implemented in JAVA. Therefore, it gives some di�culties while modifying
these three engines.

E
xp

li
ci

t 
E

n
g

in
e

Model 
Checking 

Result

Explicit 
Model

Model 
checking

Properties 
AST

Modules 
AST

Constructing

Reward 
Structure 

AST

Figure 2: The simpli�ed model checking procedure based on the explicit engine of PRISM

There is another computation engine called the explicit which is only published in the development
version1 (beta version 4.1). The simpli�ed model checking procedure based on it is shown in Figure 2.
The explicit engine mainly includes the data representation of the explicit model and the explicit
model checker. It is implemented in pure JAVA which gives itself the ease of extending desired
features. Though it still has performance problems and functionality shortages, which will be covered
in the following sections, it is still the best option to test the newly developed algorithms among
all these four engines. Therefore, in this paper, all the modi�cations of PRISM are based on the
explicit engine.

1.2 New Requirements for Stochastic Model Checking

The most important motivation of this paper is from a project, Model Checking Real Life [8], con-
ducted during the spring of 2012, a hypothetic ambulance system has been introduced and a PRISM
DTMC model pattern2 has been developed based on this system. We attempted to evaluate two
types of properties over the models:

• the expected time to resolve an accident once it happens at a given place;

• given a speci�c time instance during an accident, the probability that the remaining resolution
time is greater than x.

They cannot be expressed and evaluated by the conventional model checking techniques. However,
these types of properties are also helpful to be evaluated for other systems:

• For a leader election protocol based communication system:

� the expected times of communications needed to elect a new leader once there is no leader
for the system;

� the probability that the �rst leader will be elected with less than 10 times of communi-
cations to initialize the system.

• For a battery-powered system:

� the expected working hours once it is fully charged;

� given a speci�c time instance of the system, the probability that the energy will run out
within 3 hours.

1A development version is a beta versions of upcoming releases. The newly introduced features on this version
may not be completely implemented, tested or optimized.

2A model pattern is a guideline one can follow while constructing a model of a speci�c instance of the system.
Instead of redesign and rebuild the whole model, one can easily modify the size (e.g. numbers of ambulances in an
ambulance system) of the given system by adjust the existing model.

2
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To sum it up, the �rst type of properties has the structure: �the expected property once some
conditions satisfy�, and the second type of properties has the structure: �given an instance of the
system, the probability that under some conditions to achieve a goal �. Therefore, if there is a way
to express and evaluate properties with these structures, we could get more useful information from
the analysis of a given system.

1.3 Limitations of Prism

In PRISM, Probabilistic Computation Tree Logic[9] (PCTL) with state reward formulae3 is used for
specifying properties of DTMCs and MDPs. None of the above two types of DTMC properties can
be expressed and evaluated by the existing PRISM. However, they can be achieved by modifying
the PRISM property syntax and introducing new algorithms.

Recall that a DTMC is a directed graph, each vertex, also called as a state, of the graph is a unique
instance of the modeled system, the formal de�nition of DTMCs will be found in Section 2.1. One
can use the following formula to evaluate �the expected property once some conditions satisfy�:∑

s∈Sat(conditions) Ps × property(s)∑
s∈Sat(conditions) Ps

,

where Sat(conditions) is a set of states which satisfy the conditions, Ps and property(s) denote the
steady-state probability[10] and the evaluated property value of state s respectively.

Though PRISM supports the computation of the steady-state probabilities for all the states in the
model and the evaluated property values for a set of states, it does not provide the possibility to do
any further computation upon these two result sets. In Modifying PRISM [11], a project conducted
during the autumn of 2012, an operator of PRISM �lters[12] has been introduced with the form:

〈filter〉 ::= �lter(savg, 〈prop〉, 〈states〉),

then the above formula can be expressed as:

�lter(savg, property, conditions).

However, as the steady-state probabilities are not applicable to MDPs, the �savg� operator cannot
be used for MDPs, and we also fell the needs to grant PRISM with more �exibilities. In this paper,
a �lter operator �cust� (stands for customization) will be introduced with the form:

〈filter〉 ::= �lter(cust, 〈customization〉, 〈states〉),

then the above �savg� �lter speci�cation can be rewritten as:

�lter(cust, sum(@ss * @v) / sum(@ss); v: property, conditions),

which is quite similar to the original formula. The formal de�nition of the �cust� operator will be
given in Section 6.

In PRISM property speci�cations, only PCTL state reward formulae are supported. A state reward
formula computes the expected rewards for a given state which is not su�cient to express the second
type of properties introduced above. In an ambulance system, a state reward formula can be used to
express the expected remaining resolution time, which may be much less useful than the probability
that the remaining resolution time is greater than x, at a speci�c time instance during an accident.
Assume if the accident cannot be resolved within 5 minutes, someone will die due to the lateness
of emergency treatments. One can not conclude the ambulance system is satis�ed only because the
expected remaining resolution time is 4 minutes, as it may be the case that the accident will be

3The DTMCs and MDPs represented in PRISM includes both state and transition rewards, the extended PCTL
for property speci�cation only contains state reward formulae.
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resolved in 2 minutes with the probability 50%, and another half chance it will be resolved in 6
minutes. On the other hand, if we can make sure the probability is 0 that the remaining resolution
time is greater than 5, then the system is pretty safe based on the theoretical analysis.

In the project Modifying PRISM, PCTL is extended with reachability path reward formulae with
the form P∼p[R

path
∼′r [F Φ]]. Additionally, three di�erent approaches (pure backward traversal, back-

ward traversal with zero strongly connected component and backward traversal with zero connected
component)of model checking have been introduced. In this paper, another two types of path re-
ward formulae (instantaneous and cumulative) will be introduced for PCTL for DTMCs cooperate
with the corresponding model checking algorithms. Also to extend this concept to PCTL for MDPs
is quite straightforward. As MDPs are extended from DTMCs by adding nondeterminism, thus,
instead of evaluate the probability, the second type of property becomes: �given an instance of the
system, the minimal / maximal probability that under some conditions to achieve a goal �. The
extended PCTL and related model checking algorithms will be covered in later sections.

1.4 Dynamic Programming

Dynamic programming[13] approach solves problems by combining the solutions of subproblems. It
�rst divides the original problem into disjoint subproblems, solves the subproblems recursively, and
then uses the solutions of subproblems to solve the original problem. Dynamic programming is
useful when subproblems overlap, that is some solutions of subproblems are used more than once.
For instance, the original problem is divided into sub problem A and B, subproblem A can be
solved based on the solutions of subproblem s0 and s1 and B can be solved by using the results of s0

and s2. If the normal divide-and-conquer[14] method is used, then subproblem s0 will be computed
twice during the computation of the original problem. In contrast, if the dynamic programming
approach is applied, the result of s0 will be cached once it is computed, then the cached value will
be returned whenever the solution of s0 is required again. By using the dynamic programming
approach to implement an algorithm, one can use a reasonable amount of additional memory to
improve the asymptotic running time from exponential to polynomial. Most of the model checking
algorithms introduced in this paper follow the manner of dynamic programming approach and have
the performance bottle-neck of the running time instead of the memory limitation, thereby an
introduced algorithm in later sections will apply the dynamic programming approach if a better
performance can be achieved.

There are two ways to design a dynamic programming algorithm, and they both yield the same
asymptotic running time. The �rst approach is top-down with memoization4, whose procedure is
written recursively in a natural manner of the recursive de�nition of the original problem. Whenever
a result of a subproblem is required, it �rst checks whether it has been solved before, then it
returns the cached value if it does, otherwise it solves the subproblem and caches the solution.
The second approach is the bottom-up method. It requires pre-sorting the subproblems based on
the increasing order of their �sizes� where solving a subproblem only depends on the solutions of
smaller subproblems. To apply this approach, �rst we �nd out all the subproblems need to be solved
before solving the original problem, sort them by size and keep solving the current smallest unsolved
subproblem until the original problem is solved.

Though both approaches yield the same asymptotic running time, usually the top-down with memo-
ization approach has a bigger constant due to its overhead of recursive procedure calls. Hence, for a
given problem, if one knows all the subproblems, which need to be solved, sorted by the order of size,
then it is always better to use the bottom-up approach. Yet if all the subproblems can not be found
in an easy manner, the top-down approach may be a better choice as it is always applicable and
easy to use when implementing a dynamic programming algorithm. In this paper, all the algorithms

4As quoted from [13]: �This is not a misspelling. The word really is memoization, not memorization. Memoization
comes from memo, since the technique consists of recording a value so that we can look it up later.�
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will be given with the top-down with memoization approach �rst and also the bottom-up approach
if it is applicable.

1.5 Outline

This paper is structured as follows. First, in Section 2, we begin with background materials of the
basic concepts of DTMCs and PCTL. Then the PCTL with state reward formulae is extended as
PCTLR. Also two approaches to eliminate transition rewards of a given DTMC is included. Section 3
represents algorithms of PCTLR model checking over DTMCRs with corresponding optimizations.
A worklist algorithm is introduced at the end of this section. Start from Section 4, background
information of MDPs is provided with the extended PCTLR semantics supporting PCTLR model
checking over MDPRs. All related algorithms can be found in Section 5. Section 6 describes
the syntax, semantics and performance optimizations of the extended �lter property with �cust�
operator. The implementation of the extended PRISM with the concepts represented in this paper
is introduced in Section 7. In Section 8, we list some test cases used to verify the extended PRISM.
Section 9 concludes the paper by comparing the work done in this project with other two papers
containing similar interested research areas.

5
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2 Extending DTMCs and PCTL with Rewards

We begin with extending the PCTL with path reward formulae for DTMCs, it is based on the
extension of PCTL with state reward formulae introduced in [10, 15]. For the completeness and the
readability, brief introductions of the de�nition of DTMCs with rewards and the PCTL with state
reward formulae are summarized from these two papers as Section 2.1 and Section 2.2. Though
some notations are slightly modi�ed, the basic concepts are the same.

2.1 Discrete-time Markov Chains with Rewards

In this paper, a Discrete-time Markov Chain with Rewards will be abbreviated as DTMCR5 for
simplicity. It is assumed that both of the state rewards and transition rewards for a given DTMCR
are real numbers if no exception is explicitly pointed out. Let AP be a �xed, �nite set of atomic
propositions.

De�nition 1. A DTMC is a 4-tuple D = (S, s,P, L) where:

• S is a �nite set of states;

• s ∈ S is an initial state;

• P : S×S → [0, 1] is a transition probability matrix such that for all s ∈ S,
∑
s′∈S P(s, s′) = 1;

• L : S → 2AP is a labeling function mapping each state s ∈ S to a set of atomic propositions
L(s) which are satis�ed in that state.

A DTMCR is a 6-tuple D = (S, s,P, L, rs, rt) where the �rst four elements are de�ned the same as
DTMC and:

• rs : S → R is a state reward function;

• rt : S × S → R is a transition reward function.

The reward a given DTMCR consumes when it moves from a state s to s′ is the sum of the state
reward of s and the transition reward from s to s′. Let rs→s′ denotes this reward, and it is de�ned
as follows:

rs→s′
def
= rs(s) + rt(s, s

′). �

Example 1. Figure 3 shows a DTMCR D = (S, s,P, L, rs, rt) for a hypothetical vending machine.
The machine stands idle when nobody uses it. It shows the menu once a customer C tries to buy
goods on it. C may not buy anything with the probability 0.1 if nothing on the menu interests C
and the machine goes back to the idle state. Otherwise C will choose from chocolate and cola both
with the probability 0.5. The machine releases the chosen stu�, becomes idle again and waits for
the next customer.

For graphical notations used for DTMCRs in this paper, states are drawn as circles with their names
on the center, transitions are represented as arrows with associated probabilities labeled on it and
the initial state is marked by an incoming arrow with no out state. Besides that, if the transition
reward for a speci�c transition is not 0, it is added after the corresponding transition probability
separated by a colon. Similarly if the state reward for a given state is not 0, it is concatenated after
the state name with an additional colon.

The DTMCR of this vending machine has six states S = (s0, s1, s2, s3, s4, s5) with the initial state

5As we discussed in Section 9.1, the concepts of DTMCR are roughly the same as DMRM.
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s0

s1

s3 : 1

s2

1

0.9 : -0.01

0.5

{chocolate}

1

{menu}

{idle}

0.1

s4 : 2

0.5

s5

1

{cola}

{release}

1 : -0.01

Figure 3: The DTMCR of a hypothetical vending machine

s = s0. The transition matrix P is given by:

P =



0 1 0 0 0 0

0.1 0 0.9 0 0 0

0 0 0 0.5 0.5 0

0 0 0 0 0 1

0 0 0 0 0 1

1 0 0 0 0 0


.

The labeling functions L maps from S to 2{idle,menu,chocolate,cola,release}:

L(s0) = {idle}, L(s1) = {menu}, L(s2) = ∅,
L(s3) = {chocolate}, L(s4) = {cola}, L(s5) = {release}

.

The rewards denotes the pro�ts of the vending machine. The positive state rewards represent the
money earned from selling the corresponding product where for all state s ∈ S:

rs(s) =


1 if s = s3

2 if s = s4

0 otherwise

,

and the negative transition rewards indicate the average cost (maintenance fee, electricity, etc) for
executing this action , where for all state s, s′ ∈ S:

rt(s, s
′) =

{
−0.01 if (s, s′) ∈ {(s1, s2), (s5, s0)}
0 otherwise

.

The reward D consumes when it transits from state s1 to s2 is:

rs1→s2 = rs(s1) + rt(s1, s2) = 0 + (−0.01) = −0.01,

and the reward it consumes by moving from s3 to s5 is:

rs3→s4 = rs(s3) + rt(s3, s4) = 1 + 0 = 1. �

An in�nite path ω, which represents an execution of a DTMCR D = (S, s,P, L, rs, rt), is a non-
empty sequence s0s1s2 · · · , where si ∈ S and P(si, si+1) > 0 for all i ≥ 0. For a (�nite or in�nite)
path ω, we denote the ith state of ω by ω(i) and the length (number of transitions) of ω by |ω|,
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which is always∞ for any in�nite path. A pre�x of an in�nite path ω is a �nite path π = s0s1 · · · sn
that for all 0 ≤ i ≤ |π|, ω(i) = π(i). For a �nite path π, the last state is denoted as last(π). In this

paper, let PathD,s and Path
fin
D,s denote the sets of all in�nite and �nite paths starting from state s

in D, while PathD and PathfinD represent the sets of all in�nite and �nite paths starting from any
state in D.

For a �nite path π ∈ PathfinD,s, the total reward consumed along π is denoted by rπ with the
de�nition:

rπ
def
=

|π|−1∑
i=0

rπ(i)→π(i+1),

the probability PD(π) is de�ned as follows:

PD(π)
def
=

{
1 if |π| = 0

P(π(0), π(1)) ·P(π(1), π(2)) · · ·P(π(|π| − 1), last(π)) otherwise
,

and the probability measure for a cylinder set[16] C(π) ⊆ PathD,s is:

PrD(C(π)) = PD(π),

where:

C(π)
def
= {ω ∈ PathD,s | π is a pre�x of ω}.

For an in�nite path ω ∈ PathD,s, the total reward consumed along ω, which is represented by rω,
is always ∞, and there is no probability measure for any single in�nite path.

Example 2. For the DTMCR D = (S, s,P, L, rs, rt) shown in Figure 3, let π1 = s3, π2 = s1s2 and
π3 = s1s2s3, then:

π1(0) = s3; π3(2) = s3;

|π1| = 0; |π2| = 1; |π3| = 2;

PrD(C(π1)) = PD(π1) = 1;

PrD(C(π2)) = PD(π2) = 0.9;

PrD(C(π2)) = PD(π2) = 0.9× 0.5 = 0.45.

rπ1
= rs(s3) = 0

rπ3
= rs(s1) + rt(s1, s2) + rs(s2) + rt(s2, s3) = −0.01 �

2.2 PCTL with State Reward Formulae

Probabilistic Computation Tree Logic(PCTL), a probabilistic extension of the Computation Tree
Logic[17] (CTL), can be used to write speci�cations for DTMCR models. Recall that there are two
kinds of PCTL formulae, state formulae and path formulae. A PCTL formula is a state formula
veri�es whether a state satis�es the given condition. To consider the reward properties for a DTMCR,
the PCTL is extended by introducing a new type of state formulae Rstate

∼r [ϕ].

De�nition 2. The syntax of PCTL with state reward formulae is as follows:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P∼p[φ] | Rstate∼r [ϕ]

φ ::= X Φ | Φ U≤k Φ | Φ U Φ

ϕ ::= I=k | C≤k | F Φ

where Φ is a state formula, φ is a path formula, ϕ is a reward formula, a is an atomic proposition,
∼∈ {<,>,≤,≥}, p ∈ [0, 1], r ∈ R and k ∈ N.
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Note that the superscript `state' of the Rstate∼r operator for a state formula is not necessarily needed,
it is only added for a better clarity to distinguish from the R operator for a path formula which will
be introduced in the later section. �

De�nition 3. Let D = (S, s,P, L, rs, rt) be a DTMCR. For all state s ∈ S, the satisfaction relation
|= is de�ned inductively as:

s |= true ⇔ s ∈ S
s |= a ⇔ a ∈ L(s)

s |= ¬Φ ⇔ s 6|= Φ

s |= Φ1 ∧ Φ2 ⇔ s |= Φ1 ∧ s |= Φ2

s |= P∼p[φ] ⇔ PrD,s(φ) ∼ p
s |= Rstate∼r [ϕ] ⇔ ExpD,s(Xϕ) ∼ r,

where:

PrD,s(φ)
def
= PrD,s{ω ∈ PathD,s | ω |= φ},

and ExpD,s(Xϕ) denotes the expectation of the random variable Xϕ : PathD,s → R. For any path
ω = s0s1s2 · · · ∈ PathD,s:

XI=k(ω)
def
= rs(sk);

XC≤k(ω)
def
=

{
0 if k = 0∑k−1
i=0 rsi→si+1

otherwise
;

XFΦ(ω)
def
=


0 if s0 |= Φ

∞ if ∀i ∈ N.si 6|= Φ∑min{j | sj |=Φ}−1
i=0 rsi→si+1

otherwise

.

The satisfaction relation |= for any valid path ω ∈ PathD, is de�ned as:

ω |= X Φ ⇔ ω(1) |= Φ;

ω |= Φ U≤k Ψ ⇔ ∃i ∈ N.(i ≤ k ∧ ω(i) |= Ψ ∧ ∀j < i.(ω(j) |= Φ));

ω |= Φ U Ψ ⇔ ∃i ∈ N.(ω(i) |= Ψ ∧ ∀j < i.(ω(j) |= Φ)). �

As path formulae, we allow the F operator and the quantitative form of P operator, where F Φ is
equivalent to true U Φ, F≤kΦ is equivalent to true U≤k Φ and P=?[Φ] is evaluated to the probability
value PrD,s(Φ).

Example 3. Below are some PCTL formulae examples of the DTMCR shown in Figure 3:

• P>0.95[F<6release] - the probability that the �rst customer buys a product is greater than
0.95;

• P=?[¬chocolate U release] - the probability of a customer purchasing a product which is not
chocolate. �

2.3 Extended PCTL with Path Reward Formulae

To cover the aspect of the reward properties discussed in Section 1.2, the PCTL should be extended
by introducing a new type of path formulae. In later sections of this paper, PCTL with both state
reward formulae and path reward formulae will be called as PCTLR6 for simplicity.

6As we discussed in Section 9.1, the concepts of PCTLR are roughly the same as PRCTL with di�erent extended
reward properties.
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De�nition 4. The syntax of the PCTLR path formulae is de�ned as follows and the syntax of state
and reward formulae remain the same as De�nition 2:

φ ::= X Φ | Φ U≤k Φ | Φ U Φ | Rpath∼r [ϕ]

Given a DTMCR D = (S, s,P, L, rs, rt), for any state s ∈ S and any path ω ∈ PathD, all the
de�nitions of satisfaction relation |= in De�nition 2 are applied when model checking PCTLR over
DTMCRs with an additional de�nition for reward path formulae:

ω |= Rpath∼r [ϕ] ⇔ Xϕ(ω) ∼ r. �

As mentioned before for the Rstate operator, the superscript `path' for Rpath operator is not neces-
sarily needed. This is because the Rpath operator can only be used together with the P operator, on
the contrary, the Rstate operator can not be nested with the P operator. Therefore, the superscript
(state or path) of the R operator will be omitted if there is no potential confusion.

Example 4. Below are some PCTLR formulae with path reward operators of the DTMCR shown
in Figure 3:

• P=?[R>0[I=6]] - the probability that a customer is just purchasing a product (on either state
s3 or s4 whose state rewards are both above the 0) after 6 time steps;

• P=?[R>=5[C≤10]] - the probability that the total cumulative pro�t gained for the following 10
time step is greater equal than 5;

• P=?[R<1[F release]] - the probability that the pro�t gained for the �rst sale is less than 1. �

2.4 DTMCR Transition Rewards Elimination

When model checking reward related PCTLR formulae over DTMCRs, a simpler algorithm may be
derived if the model does not have any transition with non-zero transition reward, and actually we
can eliminate all non-zero transition rewards for a given DTMCR D = (S, s,P, L, rs, rt) without
modifying the behaviors of the model. The procedure is described by Algorithm 1.

Algorithm 1 Replace-Non-Zero-Transitions(D)

Input: DTMCR D
Output: D after the modi�cation
1: for all state si ∈ S do
2: for all sj ∈ S where P(si, sj) > 0 and rt(si, sj) 6= 0 do
3: if P(si, sj) = 1 then
4: rs(si) := rs(si) + rt(si, sj);
5: rt(si, sj) := 0;
6: else
7: D := Add-Intermediate-State(D, si, sj);
8: end if
9: end for
10: end for
11: return D;

For each transition (si, sj) with a non-zero transition reward, the transition reward will be merged
to the state reward rs(si) if P(si, sj) is 1, otherwise the transition (si, sj) will be replaced by an
intermediate state sij with two new transitions (si, sij) and (sij , sj) as shown in Algorithm 2, where
the atomic proposition auxState stands for Auxiliary State and it is assumed that for all s ∈ S,
auxState /∈ L(s).
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Algorithm 2 Add-Intermediate-State(D, si, sj)

Input: DTMCR D, state si and state sj
Output: D after the modi�cation
1: sij := a newly created state;
2: S := S ∪ {sij};
3: P(si, sij) := P(si, sj); P(sij , sj) := 1; P(si, sj) := 0;
4: L(sij) := {auxState};
5: rs(sij) := rt(si, sj); rt(si, sij) := 0; rt(sij , sj) := 0; rt(si, sj) := 0;
6: return M ;

Let D′ = (S′, s,P′, L′, r′s, r
′
t) be the DTMCR after applying the transition reward elimination in this

way, the behavior of D is retained in D′. In another words, for any �nite path π′ ∈ PathfinD′ where

π(0), last(π) ∈ S, there is a ono-to-one mapping between π′ and a �nite path π ∈ PathfinD . The
probability PD′(π

′) is equal to PD(π) and the total reward consumed along π′ is also equivalent
to rπ. Nevertheless, the model checking results may be a�ected for some PCTLR formulae. The
advantages of this approach are that it requires no changes to the model checking algorithms and
has the minimum impact to the model, thus it is suitable for the cases we would like to temporarily
modify the model and it is known for sure that the modi�cation will not a�ect the result.

Example 5. Figure 4 shows the result DTMCR D′ after applying Algorithm 1 to the DTMCR D
in Figure 3.

s0

s1

s3 : 1

s2

1

0.9

0.5

{chocolate}

1

{menu}

{idle}

0.1

s4 : 2

0.5

s5 :
-0.01

1

{cola}

{release}

1

s12 :
-0.01

1

{auxState}

Figure 4: The simple transition rewards elimination result DTMCR

The transition reward rt(s5, s0) is merged to the state reward rs(s5) as P(s5, s0) is 1, the transition
(s1, s2) is replaced by an intermediate state s12, whose state reward equals to rt(s1, s2), with two
newly introduced transitions (s1, s12) and (s12, s2). It may a�ect the model checking result of the
original model. Model checking P=?[F release] and P=?[R>1[F release]] over both DTMCRs, D
and D′, will achieve the same results. However, model checking P=?[R<0[I=2]] over D will result 0
which is di�erent from the result 0.9 for D′. �

In order to not only retain the behaviors of the original DTMCR after eliminating all the non-zero
transition rewards, but also return the same model checking result as the original DTMCR for any
PCTLR formulae. We can replace all the transitions of the original DTMCR with an intermediate
state and two newly introduced transitions as described in Algorithm 3.

After applying the replacements, the modi�ed model retains the behaviors of the original model as
the previous approach and all the transitions in the original model become two transitions and an
intermediate state. Therefore, the semantics of PCTLR can be modi�ed to ensure model checking
any PCTLR formula will give the same result as for the original model.
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Algorithm 3 Replace-All-Transitions(D)

Input: DTMCR D
Output: D after the modi�cation
1: for all state si, sj ∈ S where P(si, sj) > 0 do
2: D := Add-Intermediate-State(D, si, sj);
3: end for
4: return D;

Let D = (S, s,P, L, rs, rt) be the original DTMCR and D′ = (S′, s,P′, L′, r′s, r
′
t) be the modi�ed

DTMCR. First, for all state s ∈ S′, it does not satisfy any state formulae if s /∈ S. This can be
achieved by adding an additional guard to the state satisfaction relation de�ned before:

s |= Φ ⇔ auxState /∈ L(s) ∧ s ∈ S
s |= a ⇔ auxState /∈ L(s) ∧ a ∈ L(s)

s |= ¬Φ ⇔ auxState /∈ L(s) ∧ s 6|= Φ

s |= Φ1 ∧ Φ2 ⇔ auxState /∈ L(s) ∧ s |= Φ1 ∧ s |= Φ2

s |= P∼p[φ] ⇔ auxState /∈ L(s) ∧ PrD,s(φ) ∼ p
s |= Rstate∼r [ϕ] ⇔ auxState /∈ L(s) ∧ ExpD,s(Xϕ) ∼ r.

The modi�cation of the state satisfaction relations also �lters out the need to consider the path
satisfaction relation for all the paths starting from a state s ∈ S′ \ S. This is because a path
satisfaction relation will only be considered when model checking a PCTLR state formula with the
P operator. Next, for all path ω ∈ PathD′ , where ω(0) ∈ S, the modi�ed path satisfaction relation
is de�ned as follows:

ω |= X Φ ⇔ ω(2) |= Φ;

ω |= Φ U≤k Ψ ⇔ ∃i ∈ N.(i ≤ k ∧ ω(2i) |= (Ψ) ∧ ∀j < i.(ω(2j) |= (Φ)));

ω |= Φ U Ψ ⇔ ∃i ∈ N.(ω(2i) |= Ψ ∧ ∀j < i.(ω(2j) |= Φ)).

Similarly, the modi�cation of the state satisfaction relations �lters out the need to de�ne the random
variable Xϕ for all the paths starting from a state s ∈ S′ \ S. Finally, for all path ω ∈ PathD′ ,
where ω(0) ∈ S, the modi�ed de�nitions of Xϕ is de�ned as follows:

XI=k(ω)
def
= rs(ω(2k));

XC≤k(ω)
def
=

{
0 if k = 0∑2k−1
i=0 rs(ω(i)) otherwise

;

XFΦ(ω)
def
=


0 if s0 |= Φ

∞ if ∀i ∈ N.si 6|= Φ∑min{j | sj |=Φ}−1
i=0 rs(ω(i)) otherwise

.

Example 6. Figure 5 shows the result DTMCR D′ after applying Algorithm 3 to the DTMCR D
in Figure 3. And for any PCTLR formula, model checking it over D′ with the modi�ed semantics
will give the same result as model checking it over D with the original semantics. �

In order to cover more general cases, all the algorithms introduced in later sections will consider
both state and transition rewards.
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s0

s1

s3 : 1

s2

1

0.9

0.5

{chocolate}

1

{menu}

{idle}

0.1

s4 : 2

0.5

s5

1

{cola}

{release}

1

s01

1

s12 : 
-0.01

1

s24 1

s23 1

S45

1

s35

1

s50 : 
-0.01

1

s10

1

{auxState}

{auxState}{auxState}

{auxState} {auxState}

{auxState}{auxState}

{auxState}

Figure 5: The general transition rewards elimination result DTMCR
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3 PCTLR Model Checking over DTMCRs

The model checking algorithm for PCTL over DTMCs was �rst presented in [9, 18, 19]. It is
extended in [10] for PCTL with state reward formulae over DTMCRs. The input of the algorithm
are a DTMCR D = (S, s,P, L, rs, rt) and a PCTL formula Φ. The output is a set of states Sat(Φ) =
{s ∈ S | s |= Φ}. Even though in most cases, one is only interested in whether a subset of states
S′ ⊆ S (e.g. a subset only contains the initial state {s}) satis�es Φ, the algorithm works by checking
every states in D. The summarized algorithm is given as follows:

Sat(true) = S

Sat(a) = {s|a ∈ L(s)}
Sat(¬Φ) = S\Sat(Φ)

Sat(Φ1 ∧ Φ2) = Sat(Φ1) ∩ Sat(Φ2)

Sat(P∼p[φ]) = {s ∈ S | PrD,s(φ) ∼ p}
Sat(Rstate∼r [ϕ]) = {s ∈ S | ExpD,s(Xϕ) ∼ r}.

The detailed instruction of model checking these formulae can be found in [10] and we will not
include them here. In this paper, the PCTL with state reward formulae is extended with path
reward formulae as PCTLR, which only introduces a new type of path formulae. Therefore, once
we can compute PrD,s(R

path
∼r [ϕ]) for a given reward formula ϕ, the existing algorithm will be able

to model check PCTLR over DTMCRs without any modi�cations. In this section, we will discuss
how to compute these probabilities given a DTMCR and a path reward formula. The algorithms
introduced in this section will be able to handle negative reward values and compute the accurate
results if it is not particularly stated.

3.1 Computing PrD,s(R
path
∼r [I=k])

For a given DTMCR D = (S, s,P, L, rs, rt), let x
k
D,s,∼r denotes PrD,s(R

path
∼r [I=k]), the recursive

de�nition of xkD,s,∼r is:

xkD,s,∼r =


1 if k = 0 ∧ rs(s) ∼ r
0 if k = 0 ∧ ¬(rs(s) ∼ r)∑
s′∈S P(s, s′) · xk−1

D,s,∼r otherwise

(1)

3.1.1 Top-down with Memoization

One way to solve Equation (1) is applying the top-down with memoization approach of dynamic
programming, the algorithm is shown in Algorithm 4 and the auxiliary function Pr-I-DTMCR-Aux
is shown in Algorithm 5.

Algorithm 4 Memoized-Pr-I-DTMCR(D,∼ r, k)

Input: DTMCR D, reward bound ∼ r and step bound k
Output: PrD,s(R

path
∼r [I=k]) for all s ∈ S

1: let p be an empty hash table whose key is composed by a state and a step value;
2: for all state s ∈ S do
3: xs := Pr-I-DTMCR-Aux(D, s,∼ r, k, p);
4: end for
5: return (xs)s∈S ;
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Algorithm 5 Pr-I-DTMCR-Aux(D, s,∼ r, k, p)
Input: DTMCR D, state s, reward bound ∼ r, step bound k and hash table p
Output: PrD,s(R

path
∼r [I=k])

1: if p(s, k) is not de�ned then
2: if k = 0 then

3: p(s, k) :=

{
1 if rs(s) ∼ r
0 otherwise

;

4: else
5: p(s, k) :=

∑
s′∈S P(s, s′) ·Pr-I-DTMCR-Aux(D, s′,∼ r, k − 1, p);

6: end if
7: end if
8: return p(s, k);

Example 7. Let us return to the DTMCR D in Figure 3 and compute PrD,s0(Rpath>0 [I=3]). Let

xkD,s,∼r denotes PrD,s(R
path
∼r [I=k]), by applying the top-down with memoization approach, we will

derive the following equations from top to bottom:

x3
D,s0,>0 = x2

D,s1,>0

x2
D,s1,>0 = 0.1× x1

D,s0,>0 + 0.9× x1
D,s2,>0

x1
D,s0,>0 = x0

D,s1,>0

x0
D,s1,>0 = 0 rs(s1) = 0

x1
D,s2,>0 = 0.5× x0

D,s3,>0 + 0.5× x0
D,s5,>0

x0
D,s3,>0 = x0

D,s4,>0 = 1, rs(s4) > rs(s3) > 0

and the algorithm will solve these equation from bottom to top, we have that:

x1
D,s2,>0 = 0.5× 1 + 0.5× 1 = 1

x1
D,s0,>0 = 0

x2
D,s1,>0 = 0.1× 0 + 0.9× 1 = 0.9

x3
D,s0,>0 = 0.9.

Hence the probability PrD,s0(Rpath>0 [I=3]) is 0.9. �

3.1.2 Bottom-up Method

We can eliminate the recursive calls by applying the bottom-up method approach of dynamic pro-
gramming to solve Equation (1), the algorithm is shown in Algorithm 6.

Example 8. Consider again the DTMCR D in Figure 3 and compute PrD,s(R
path
>0 [I=3]) for all state

s ∈ S. Let xkD,s,>0 denotes PrD,s(R
path
∼r [I=k]), the column vector xkD,>0 = {xkD,s0,>0, · · · , xkD,s5,>0}T.

By applying the bottom-up method approach with the base case x0
D,>0 = {0, 0, 0, 1, 1, 0}T, we have

that:

x1
D,>0 = P · x0

D,>0 = {0, 0, 1, 0, 0, 0}T

x2
D,>0 = P · x1

D,>0 = {0, 0.9, 0, 0, 0, 0}T

x3
D,>0 = P · x2

D,>0 = {0.9, 0, 0, 0, 0, 0}T. �

This bottom-up method approach has the same asymptotic running time as the top-down one, the
upside is it has no overheads of caching calculated values and recursive calls, where the downside is
it may compute some unnecessary values.
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Algorithm 6 Bottom-Up-Pr-I-DTMCR(D,∼ r, k)

Input: DTMCR D, reward bound ∼ r and step bound k
Output: PrD,s(R

path
∼r [I=k]) for all s ∈ S

1: for all state s ∈ S do

2: xs :=

{
1 if rs(s) ∼ r
0 otherwise

;

3: end for
4: for i = 1→ k do
5: for all state s ∈ S do
6: x′s :=

∑
s′∈S P(s, s′)× xs;

7: end for
8: for all state s ∈ S do xs := x′s; end for
9: end for
10: return (xs)s∈S

s0 s1 s21 1 1 sn-1

{target}

1

1……

Figure 6: A linear DTMCR

Example 9. Consider the DTMCR D shown in Figure 6. It has n states, for all state si where
i < n − 1, P(si, si+1) = 1 and P(sn−1, sn−1) = 1. Assume n is 100, and one wants to compute

PrD,s(R
path
>0 [I=99]) for all the states. By applying the top-down approach, one needs to compute:

PrD,s(R
path
>0 [I=99]) for s0 to s99

PrD,s(R
path
>0 [I=98]) for s1 to s99

· · ·

PrD,s(R
path
>0 [I=0]) for s99,

which is 100 + 98 + · · ·+ 1 = 5050 values in total. On the other hand, the bottom-up approach has
to compute 100 ∗ 100 = 10000 values in total. �

3.2 Computing PrD,s(R
path
∼r [C≤k])

For a given DTMCR D = (S, s,P, L, rs, rt), let x
k
D,s,∼r denotes PrD,s(R

path
∼r [C≤k]), the recursive

de�nition of xkD,s,∼r is:

xkD,s,∼r =


1 if k = 0 ∧ 0 ∼ r
0 if k = 0 ∧ ¬(0 ∼ r)∑
s′∈S P(s, s′) · xk−1

M,s′,∼(r−rs→s′ )
otherwise

. (2)

3.2.1 To-down with Memoization

One way to solve Equation (1) is applying the top-down with memoization approach of dynamic pro-
gramming, the algorithm is shown in Algorithm 7 and the auxiliary function Pr-C-DTMCR-Aux
is shown in Algorithm 8.
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Algorithm 7 Memoized-Pr-C-DTMCR(D,∼ r, k)

Input: DTMCR D, reward bound ∼ r and step bound k
Output: PrD,s(R

path
∼r [C≤k]) for all s ∈ S

1: let p be an empty hash table whose key is composed by a state, a reward and a step value;
2: for all state s ∈ S do
3: xs := Pr-C-DTMCR-Aux(D, s,∼ r, k, p);
4: end for
5: return (xs)s∈S ;

Algorithm 8 Pr-C-DTMCR-Aux(D, s,∼ r, k, p)
Input: DTMCR D, state s, reward bound ∼ r, step bound k and hash table p
Output: PrD,s(R

path
∼r [C≤k])

1: if p(s, r, k) is not de�ned then
2: if k = 0 then

3: p(s, r, k) :=

{
1 if 0 ∼ r
0 otherwise

;

4: else
5: p(s, r, k) :=

∑
s′∈S P(s, s′) ·Pr-C-DTMCR-Aux(D, s′,∼ (r − rs→s′), k − 1, p);

6: end if
7: end if
8: return p(s, r, k);

Example 10. Consider the computation of PrD,s1(Rpath≥1 [C≤3]) and DTMCR D in Figure 3. Let

xkD,s,∼r denotes PrD,s(R
path
∼r [C≤k]), by applying the top-down with memoization approach, we will

derive the following equations from top to bottom:

x3
D,s1,≥1 = 0.1× x2

D,s0,≥1 + 0.9× x2
D,s2,≥1.01

x2
D,s0,≥1 = x1

D,s1,≥1

x1
D,s1,≥1 = 0.1× x0

D,s0,≥1 + 0.9× x0
D,s2,≥1.01

x0
D,s0,≥1 = 0 ¬(0 ≥ 1)

x0
D,s2,≥1.01 = 0 ¬(0 ≥ 1.01)

x2
D,s2,≥1.01 = 0.5× x1

D,s3,≥1.01 + 0.5× x1
D,s4,≥1.01

x1
D,s3,≥1.01 = x0

D,s5,≥0.01

x0
D,s5,≥0.01 = 0 ¬(0 ≥ 0.01)

x1
D,s4,≥1.01 = x0

D,s5,≥−0.99

x0
D,s5,≥−0.99 = 1, 0 ≥ −0.99

and the algorithm will solve these equation from bottom to top, we have that:

x1
D,s4,≥1.01 = 1

x1
D,s3,≥1.01 = 0

x2
D,s2,≥1.01 = 0.5× 0 + 0.5× 1 = 0.5

x1
D,s1,≥1 = 0.1× 0 + 0.9× 0 = 0

x2
D,s0,≥1 = 0

x3
D,s1,≥1 = 0.1× 0 + 0.9× 0.5 = 0.45.

Hence the probability PrD,s0(Rpath≥1 [C≤3]) is 0.45. �

17



Han Yue Extending Stochastic Model Checking with Path Rewards

3.3 Computing PrD,s(R
path
∼r [F Φ])

Three di�erent approaches of computing this type of probabilities are introduced in [11], all of them
are based on backward traversal. In this paper, we will discuss how to compute it with dynamic
programming approaches.

For a given DTMCR D = (S, s,P, L, rs, rt) and a state PCTLR formula Φ, let xD,s,∼r denotes

PrD,s(R
path
∼r [F Φ]), the recursive de�nition of xD,s,∼r is:

xD,s,∼r =


1 if s |= Φ ∧ 0 ∼ r
0 if s |= Φ ∧ ¬(0 ∼ r)∑
s′∈S P(s, s′) · xD,s′,∼(r−rs→s′ ) otherwise

. (3)

The problem of Equation (3) is that it cannot always be solved by a dynamic programming algorithm.
This is because after unfolding the recursive de�nition of any given xD,s,∼r, the algorithm requires
that there are �nite number unfolded equations and no mutual dependences7 among them, which
is not guaranteed by Equation (3). For instance, let xD,s,∼r denotes PrD,s(R

path
∼r [F target]) and it

is assumed that 0 ∼ r1 is satis�ed. By unfolding the recursive de�nition of xD,s1,∼r1 based on the
DTMCR shown in Figure 7 (a), we will have:

xD,s1,∼r1 = xD,s2,∼r1

xD,s2,∼r1 = 1

then we can solve the above equations from bottom to top. However, by unfolding the de�nition
based on the DTMCR shown in Figure 7 (b), if r2 = 0, the unfolded equations are:

xD,s1,∼r1 = 0.5× xD,s1,∼r1 + 0.5× xD,s2,∼r1
xD,s2,∼r1 = 1

where there is a self dependence of xD,s1,∼r1 , and if r2 6= 0:

xD,s1,∼r1 = 0.5× xD,s1,∼(r1−r2) + 0.5× xD,s2,∼r1
xD,s1,∼(r1−r2) = 0.5× xD,s1,∼(r1−2r2) + 0.5× xD,s2,∼(r1−r2)

xD,s1,∼(r1−2r2) = 0.5× xD,s1,∼(r1−3r2) + 0.5× xD,s2,∼(r1−2r2)

· · ·

where it ends up with in�nitely many unfolded equations. All these two scenarios will prevent the
algorithm to de�ne xD,s1,∼r1 with only the base cases xD,s2,∼r′ .

s0 s11 1

{target}

s2

1

(a) A DTMCR without loops

s0 s11 0.5

{target}

s2

0.5 : r2 1

(b) A DTMCR with a self loop

Figure 7: Potential problems for computing Equation (3)

In this section, we will discuss how to re�ne Equation (3) in order to apply dynamic programming
algorithms to compute the probability PrD,s(R

path
∼r [F Φ]). As we have not found a general approach

handling a DTMCR, which has both positive and negative rewards, therefore, it is assumed that
the DTMCRs considered in this section only have non-negative rewards.

7A mutual dependence exists between xi and xj if and only if the value of xj is needed to compute the value xi

and vice versa. It also includes the case that xi and xj are the same.
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3.3.1 Top-down with Memoization and Zero Strongly Connected Components

To re�ne Equation (3), a set of states S0
Φ ⊆ S will be introduced �rst, where PrD,s(F Φ) = 0

for all state s ∈ S0
Φ. Then it can be derived from the de�nition of the random variable XFΦ that

XFΦ(ω) = ∞ for all path ω ∈ PathD,s, where s ∈ S0
Φ. Therefore, two more base cases can be

introduced for the recursive de�nition of xD,s,∼r:

xD,s,∼r =

{
1 if s ∈ S0

Φ ∧∞ ∼ r
0 if s ∈ S0

Φ ∧ ¬(∞ ∼ r)
.

Algorithm 9 shows one way to �nd the set S0
Φ for a given DTMCR D and a PCTLR state formula

Φ. It is similar to apply a breadth-�rst traversal on the transposed graph of D. First, the initial
set R contains only the states satisfy Φ. Then the algorithm adds all the states in S\R, which can
reach a state in R, to R and repeats this procedure until there are no new states can be added to R.
Finally, R contains all the states which can reach a state satis�es Φ, and the algorithm will return
S\R as S0

Φ.

Algorithm 9 Compute-S0-DTMCR(D,Φ)

Input: DTMCR D and PCTLR state formula Φ
Output: S0

Φ = {s ∈ S | PrD,s(F Φ) = 0}
1: R := Sat(Φ);
2: repeat
3: R′ := R;
4: R := R ∪ {s ∈ S\R | P(s′, s) > 0};
5: until R = R′

6: return S\R;

Example 11. Let us compute S0
idle for the DTMCR shown in Figure 3. The set R is initial-

ized as {s0}. After the �rst iteration R = {s0, s1, s5}, then R = {s0, s1, s3, s4, s5} and R =
{s0, s1, s2, s3, s4, s5} are the results of the second and the third iteration, respectively. As there
are no more states can be added to R, therefore, we have S0

idle = S\R = ∅. �

Next, we will discuss how to resolve the problems of having in�nitely many unfolded equations and
with mutual dependences among them. Both of these two types of problems are due to loops contain
only non-base states 8 in a DTMCR. A loop of a given DTMCR D = (S, s,P, L, rs, rt) is a �nite
path π, where π(0) = last(π) and for all i, j ∈ [0, |π|), i 6= j ⇒ π(i) 6= (j). For instance, the DTMCR
shows in Figure 7 (b) has one self loop π = s1 contains only non-base states where the base state
is s2 when computing PrD,s(R

path
∼r [F target]). There are two types of loops contain only non-base

states, rπ > 0 for one type of loops π and rπ′ = 0 for another type of loops π′. The former one
will cause the unfolding procedure never ends and the later one will introduce mutual dependences
among the unfolded equations.

The in�nitely many unfolded equations problem can be resolved with some additional base cases.
As there are no negative rewards exist in a DTMCR, thus a probability xD,s,∼r can only be de�ned
with some probabilities xD,s′,∼r′ where r

′ ≤ r, and for each �xed value r′ there are at most |S|
of di�erent xD,s′,∼r′ . If there are �nitely many possible values of r′, then there are only �nitely
many xD,s′,∼r′ needed to de�ne xD,s,∼r which means there are �nitely many result equations of
unfolding the recursive de�nition of xD,s,∼r. By the de�nition of the random variable XFΦ, for all
path ω ∈ PathD,s, XFΦ(ω) >= 0. As a result, we can stop unfolding the recursive de�nition when

8The base states of DTMCR D, which is based on the computation of PrD,s(Rpath
∼r [F Φ]), are all states belong to

Sat(Φ) ∪ S0
Φ.
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facing the following cases based on di�erent reward bound operators:

xD,s,>r = 1 if r < 0

xD,s,≥r = 1 if r ≤ 0

xD,s,<r = 0 if r ≤ 0

xD,s,≤r = 0 if r < 0.

Because there are �nite possible reward values in a DTMCR and there are �nite combinations of
di�erent reward values. Therefore, there are �nitely many possible values r′ ∈ [0, r] of probabilities
xD,s′,∼r′ used to de�ne xD,s,∼r.

Before move to the solution of the mutual dependences problem, we have to introduce a new concept
of a connected component of a DTMCR.

De�nition 5. Let D = (S, s,P, L, rs, rt) be a DTMCR. A Zero Strongly Connected Component
(ZSCC) of D based on a state reward formula Φ is a subset of states ZD ⊆ S satisfying the following
conditions:

• for all state s ∈ ZD, s 6|= Φ and rs(s) = 0;

• for every pair of states si, sj ∈ ZD, where si can be the same as sj , there is a �nite path π
from si to sj , where ∀i ∈ [0, |π|].(π(i) ∈ ZD) and rπ = 0;

• if |ZD| = 1, then the only state s in ZD must satis�es P(s, s) > 0 and rt(s, s) = 0, this ensures
the algorithm will not use the relatively more complicated way to handle states which do not
have to;

• ZD is a maximal subcomponent of D, i.e. there is no distinct ZSCC Z ′D such that if s ∈ ZD,
then s ∈ Z ′D.

In this paper, D.ZSCC(Φ) denotes a set of all the ZSCCs of D based on Φ and ZΦ
D,s represents the

ZSCC contains s where ZΦ
D,s ∈ D.ZSCC(Φ). To simplify the formulae introduced in the later part

of this paper, a state s belongs to a ZSCC in D.ZSCC(Φ) is denoted as follows:

s ∈ D.ZSCC(Φ) ⇔ ∃ZD ∈ D.ZSCC(Φ).(s ∈ ZD). �

s6

s0

{target}

s1

s5 : 1

s4s3

0.25

0.5

s2

0.5

0.25

0.25 : 1

0.5

0.5

0.5

1

1

0.25

0.5

1

Figure 8: A DTMCR with ZSCCs

Example 12. Based on the PCTLR state formula Φ = target, the DTMCR shown in Figure 8 has
two ZSCCs: {s1, s2, s3} and {s6}. �
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Algorithm 10 Detect-ZSCC-DTMCR(D,Φ)

Input: DTMCR D and PCTL state formula Φ
Output: D.ZSCC(Φ)
1: Construct the directed graph G = (V,E), where:

• V := {s | s 6|= Φ ∧ rs(s) = 0};
• E := {(si, sj) | si, sj ∈ V ∧P(si, sj) > 0 ∧ rt(si, sj) = 0};

2: D.ZSCC(Φ) := ∅;
3: for all SCC found by calling Strongly-Connected-Component(G) do
4: if it is not the case that |SCC| = 1 and the only state in SCC does not have a self loop then
5: D.ZSCC(Φ) := D.ZSCC(Φ) ∪ {SCC};
6: end if
7: end for
8: return D.ZSCC(Φ)

Algorithm 10 provides one way to calculate D.ZSCC(Φ) based on a given DTMCR D and a PCTLR
state formula Φ. This algorithms is based on the Strongly-Connected-Component algorithm
from [20]. The algorithm �rst constructs the directed reduced graph of D based on Φ and pass
it as a parameter of Strong-Connected-Component. For all the returned strongly connected
components, it selects the ones satisfy the de�nition of ZSCC for DTMCRs and added them into
the result set D.ZSCC(Φ).

s6s0 s1

s3

s2

Figure 9: The directed reduced graph of the DTMCR shown in Figure 8

Example 13. To calculate D.ZSCC(target) for the DTMCR D in Figure 8 by calling Detect-
ZSCC-DTMCR(D, target), the algorithm �rst constructs the directed reduced graph G which is
shown in Figure 9. The state s4 is not included as it is the target state, s5 is not included due to
its non-zero state reward and the edge (s1, s2) is not included since rt(s1, s2) = 1 6= 0. Then we
call Strongly-Connected-Component(G) which will return three SCCs: {s0}, {s1, s2, s3} and
{s6}. {s0} is not a ZSCC because s0 is the only state of the SCC and it does not have a self loop
in G. Therefore, the result set D.ZSCC(target) = {{s1, s2, s3}, {s6}}. �

For a given DTMCR D = (S, s,P, L, rs, rt) and a ZSCC ZD based on a PCTLR state formula Φ,
let ZD.Out be a set of states which can be reached directly from ZD:

ZD.Out
def
= {s ∈ S | ∃s′ ∈ ZD.((P(s′, s) > 0) ∧ (rt(s

′, s) 6= 0 ∨ s /∈ ZD))}.

In able to ensure that:

• ZD.Out ∩ ZD = ∅;

• ∀s ∈ ZD.∀ω ∈ PathD,s.(ω |= F Φ′ ⇒ XFΦ′(ω) = 0), where s ∈ Φ′ ⇔ s ∈ ZD.Out,

we have to replace all the outgoing transitions from some states in ZM , which have a non-zero reward,
with an intermediate state and two new transitions. This procedure is shown in Algorithm 11. Note
that this procedure only modi�es ZD.Out but not ZD itself.
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Algorithm 11 Add-Aux-State-DTMCR(D,D.ZSCC(Φ))

Input: DTMCR D and set D.ZSCC(Φ)
Output: D after the modi�cation
1: for all ZD ∈ D.ZSCC(Φ) do
2: for all state si ∈ ZD do
3: for all state sj ∈ S where P(si, sj) > 0 and rt(si, sj) 6= 0 do
4: D := Add-Intermediate-State(D, si, sj);
5: end for
6: end for
7: end for
8: return D;

Example 14. Figure 10 shows the model in Figure 8 after replacing the transition (s1, s2) with an
intermediate state s12 and two new transitions (s1, s12) and (s12, s2). �
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Figure 10: The modi�ed DTMCR of Figure 8

To sum all the above concepts up, for a given DTMCR D and a PCTLR state formula Φ, �rst we
compute T = Sat(Φ), S0

Φ and D.ZSCC(Φ), then the necessary auxiliary states are added, �nally,
the recursive de�nition of xD,s,∼r is re�ned as follows:

xD,s,∼r =



1 if


(s ∈ T ∧ 0 ∼ r)
∨ (s ∈ S0

Φ ∧∞ ∼ r)
∨ (∼ is > ∧ r < 0)

∨ (∼ is ≥ ∧ r ≤ 0)

 (4a)

0 if


(s ∈ T ∧ ¬(0 ∼ r))
∨ (s ∈ S0

Φ ∧ ¬(∞ ∼ r))
∨ (∼ is < ∧ r ≤ 0)

∨ (∼ is ≤ ∧ r < 0)

 (4b)

∑
s′∈ZΦ

D,s.Out

PrD,s(Z
Φ
D,s U s′) · xD,s′,∼r if s ∈ D.ZSCC(Φ) (4c)

∑
s′∈S

P(s, s′) · xD,s′,∼(r−rs→s′ ) otherwise (4d)

where:

PrD,s(Z
Φ
D,s U s′)

def
= PrD,s{Φ1 U Φ2},
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where for any state s′′ ∈ S:

s′′ |= Φ1 ⇔ s′′ ∈ ZΦ
D,s

s′′ |= Φ2 ⇔ s′′ = s′.

Let us take a detailed look at the above recursive de�nition:

• Case (4a) and (4b) are the base cases where xD,s,∼r can be de�ned with the �xed value 1 or
0.

• Case (4c) is the case when the subscript s of xD,s,∼r belongs to a ZSCC. It ensures that for
a given xD,s,∼r where s ∈ ZΦ

D,s, it does not need any xD,s′,∼r, where s
′ ∈ ZΦ

D,s, to de�ne

it. If it does, then ZΦ
D,s is not a maximal subcomponent as there is a loop π, where rπ = 0

and ∃i ∈ [0, |π|].(π(i) /∈ ZΦ
D,s) and we can construct a bigger ZSCC by adding all those states

appeared on π to the existing ZSCC ZΦ
D,s. This is contradictory to the de�nition of ZSCCs.

Therefore, this case excludes the possibility of mutual dependence problems.

• Case (4d) is the same as the recursive case of Equation (3).

• Note that there are some cases have intersections. Even though take any of the intersected
cases will not a�ect the �nal result, consider the cases with the order from (4a) to (4d) will give
a better performance. For instance, xD,s,∼r can satisfy (∼ is < ∧ r ≤ 0) and s ∈ D.ZSCC(Φ)
at the same time, and taking the former case requires no further computation while the later
one does.

With the purpose of simplifying the calculations of Equation (4c). All the ZSCCs of a DTMCR
based on a PCTLR state formula can be further split into several disjoint subsets and di�erent
approaches can be applied to each subset for better performances.

De�nition 6. For all the ZSCCs ZD ∈ D.ZSCC(Φ) of a given DTMCR D and a state formula Φ,
they can be split into following disjoint subsets:

• if |ZD.Out| = 1, then ZD ∈ D.ZSCC1o(Φ) where 1o stands for one out state;

• else if |ZD| = 1, then ZD ∈ D.ZSCC1s(Φ) where 1s stands for the ZSCC contains only one
state;

• the rest ZSCCs belong to D.ZSCCn(Φ).

A ZSCC set with multiple superscripts separated by commas represents the union of the correspond-
ing subsets. For instance, D.ZSCC1o,n(Φ) = D.ZSCC1o(Φ) ∪D.ZSCCn(Φ). �
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Figure 11: DTMCRs contains special types ZSCCs
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Example 15. Consider the PCTLR state formula Φ = target, for the MDPR M in Figure 11:

M.ZSCC1o(Φ) = {{s1, s2}}
M.ZSCC1s(Φ) = {{s0}},

where |ZΦ
D,s1

.Out| = |{s3}| = 1 and |ZΦ
D,s0
| = {s0} = 1. �

For a given DTMCR D and a ZSCC ZΦ
D,s ∈ D.ZSCC(Φ):

• If ZΦ
D,s ∈ D.ZSCC1o(Φ), let {s′} = ZΦ

D,s.Out. As whenever the model goes into ZΦ
D,s, it will

always leave ZΦ
D,s to s

′ with probability 1, therefore, xD,s,∼r can be de�ned with the following
formula:

xD,s,∼r = PrD,s(Z
Φ
D,s U s′) · xD,s′,∼r = xD,s′,∼r.

• If ZΦ
D,s ∈ D.ZSCC1s(Φ), once the model enters the ZSCC, it will leave the ZSCC through one

of the state s′ ∈ ZΦ
D,s.Out with the probability:

P(s, s′)∑
s′∈ZΦ

D,s.Out
P(s, s′)

,

thus xD,s,∼r can be rede�ned in this case as follows:

xD,s,∼r =

∑
s′∈ZΦ

D,s.Out
P(s, s′) · xD,s′,∼r∑

s′∈ZΦ
D,s.Out

P(s, s′)
.

For the above two cases, they both eliminate all computations of PrD,s(Z
Φ
D,s U s′) for all s′ ∈

ZΦ
D,s.Out. The former one introduces no new computations and the only new computations the

latter one introduces are some additions and one division which is faster than using the original
de�nition.

Now we can apply top-down with memoization approach of dynamic programming to solve Equa-
tion (4), the algorithm is shown in Algorithm 12 and the auxiliary function Pr-F-DTMCR-Aux is
shown in Algorithm 13.

Algorithm 12 Memoized-Pr-F-DTMCR(D,∼ r,Φ)

Input: DTMC D, reward bound ∼ r and PCTLR state formula Φ
Output: PrD,s(R

path
∼r [F Φ]) for all s ∈ S

1: T := Sat(Φ);
2: S0

Φ := Compute-S0-DTMCR(D,Φ);
3: D.ZSCC(Φ) := Detect-ZSCC-DTMCR(D,Φ);
4: D := Add-Aux-State-DTMCR(D,D.ZSCC(Φ));
5: let p be an empty hash table whose key is composed by a state and a reward value;
6: for all state s ∈ S do
7: xs := Pr-F-DTMCR-Aux(D,S0

Φ, s,∼ r, T, p);
8: end for
9: return (xs)s∈S

Example 16. To compute PrD,s0(Rpath<1 [F target]) for the DTMCR D in Figure 10, we have:

T = Sat(Φ) = {s4}
S0
target = {s5, s6}

D.ZSCC(Φ) = {{s1, s2, s3}, {s6}}.
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Algorithm 13 Pr-F-DTMCR-Aux(D,S0
Φ, s,∼ r, T, p)

Input: DTMCR D, set of states S0
Φ, state s, reward bound ∼ r, set of target states T and hash

table p
Output: PrD,s(R

path
∼r [F Φ])

1: if p(s, r) is not de�ned then
2: if s |= Φ then

3: p(s, r) :=

{
1 if 0 ∼ r
0 otherwise

;

4: else if s ∈ S0
Φ then

5: p(s, r) :=

{
1 if ∞ ∼ r
0 otherwise

;

6: else if (∼∈ {>,≥} ∧ r ≤ 0) then
7: p(s, r) := 1;
8: else if (∼ is < ∧ r ≤ 0) ∨ (∼ is ≤ ∧ r < 0) then
9: p(s, r) := 0;
10: else if s ∈ D.ZSCC(Φ) then
11: if s ∈ D.ZSCC1o(Φ) and let {s′} = ZΦ

D,s.Out then

12: p(s, r) := Pr-F-DTMCR-Aux(D,S0
Φ, s
′,∼ r, T, p);

13: else if s ∈ D.ZSCC1s(Φ) then

14: p(s, r) :=

∑
s′∈ZΦ

D,s
.Out

P(s,s′)·Pr-F-DTMCR-Aux(D,S0
Φ,s
′,∼r,T,p)∑

s′∈ZΦ
D,s

.Out
P(s,s′) .;

15: else
16: p(s, r) :=

∑
s′∈ZΦ

D,s.Out

PrD,s(Z
Φ
D,s U s′) ·Pr-F-DTMCR-Aux(D,S0

Φ, s
′,∼ r, T, p);

17: end if
18: else
19: p(s, r) :=

∑
s′∈S

P(s, s′) ·Pr-F-DTMCR-Aux(D,S0
Φ, s
′,∼ (r − rs→s′), T, p);

20: end if
21: end if
22: return p(s, r);
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Let xD,s,∼r denotes PrD,s(R
path
∼r [F target]), by applying the top-down with memoization approach,

we will derive the following equations from top to bottom:

xD,s0,<1 =
1

2
xD,s1,<1 +

1

2
xD,s5,<1

xD,s1,<1 = PrD,s1(ZtargetD,s1
U s12)× xD,s12,<1 + PrD,s1(ZtargetD,s1

U s4)× xD,s4,<1 s1 ∈ ZtargetD,s1

=
7

23
xD,s12,<1 +

16

23
xD,s4,<1

xD,s12,<1 = xD,s2,<0

xD,s2,<0 = 0 ∼ is < ∧ 0 ≤ 0

xD,s4,<1 = 1 s4 ∈ T ∧ 0 < 1

xD,s5,<1 = 0 s5 ∈ S0
target ∧ ¬(∞ < 1)

and the algorithm will solve these equation from bottom to top, we have that:

xD,s12,<1 = 0

xD,s1,<1 =
7

23
× 0 +

16

23
× 1 =

16

23

xD,s0,<1 =
1

2
× 16

23
+

1

2
× 0 =

8

23
.

Hence the probability PrD,s0(Rpath<1 [F target]) is 8
23 . �

3.3.2 Optimizing Computations of PrD,s(Z
Φ
D,s U s′)

To compute PrD,s(Z
Φ
D,s U s′) for a given DTMCR D = (S, s,P, L, rs, rt), we can reuse the algo-

rithms for computations of PrD,s(Φ1 U Φ2) based on the de�nition of PrD,s(Z
Φ
D,s U s′). Normally,

the probabilities PrD,s(Φ1 U Φ2) for all state s ∈ S are obtained as the unique solution of the
following linear equation system:

PrD,s(Φ1 U Φ2) =


0 if s ∈ S0

Φ1

1 if s |= Φ2∑
s′∈S P(s, s′) · PrD,s′(Φ1 U Φ2) otherwise

.

One can either solve it by a direct method (e.g. Gaussian elimination) or an iterative method (e.g.
Jacobi). In practice, an iterative method is more likely to be used as it has a much better scalability
and the accuracy is su�cient in most cases. However, because a ZSCC ZD is normally much
smaller than S, i.e. |ZD| << |S| and only probabilities of states within ZD may change through
each iteration. Thus an iterative method which updates the probabilities for all states through
each iteration, particularly Gauss-Seidel used by PRISM, will end up doing a lot of unnecessary
computations. Therefore, we introduce a faster iterative method which only updates the state
whose probability will be changed to optimize the performances of computing PrD,s(Z

Φ
D,s U s′).

The algorithm is shown in Algorithm 14. It maintains a FIFO queue contains all the states whose
corresponding probabilities should be updated. In each iteration, the algorithm pops a state from the
head of the queue, and updates its corresponding probability. If the value is converged, the algorithm
moves to the next iteration directly, otherwise, all the states whose probabilities are based on the
current value will be added to the queue �rst. The algorithm keeps running in this manner until
the queue is empty.
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Algorithm 14 Compute-Until-Probs-DTMCR(D,ZD, so, ε)

Input: DTMCR D, ZSCC ZD, state so ∈ ZD.Out and convergence criterion ε
Output: approximate PrD,s(ZD U s0) for all states s ∈ ZD
1: for all state s ∈ ZD ∪ ZD.Out do xs := 0; end for
2: xso := 1;
3: Let Q be a FIFO queue which disregards insertions of existing elements;
4: Push all the states in ZD into queue Q;
5: while Q is not empty do
6: s := pop the head of Q;
7: x′s :=

∑
s′∈ZD∪ZD.OutP(s, s′) · xs′ ;

8: if |xs − x′s| > ε then
9: Push all the states s′ ∈ ZD where P(s′, s) > 0 into queue Q;
10: end if
11: xs := x′s;
12: end while
13: return (xs)s∈ZD

Example 17. Assume we are going to solve the following linear equation system with convergence
criterion ε = 0.01:

x0 = 0 x1 = x2 x2 = x3

x3 = 0.5x4 + 0.5x5 x4 = 0.5x1 + 0.5x6

x5 = 1 x6 = 0.

The values of each variables through each iteration until all values are converged by using both
Gauss-Seidel method and the newly introduced method are the same, which is shown in Table 1.
Note that the result is based on the assumption that the FIFO queue for the newly introduced
method is initialized as {x3}. This assumption is reasonable as no matter how to initialize the FIFO
queue, it will at most have 6 more iterations, which do not update any variables, than the result
shown in the table.

Table 1: Solving the above linear equation system via iterative methods

Variables
Values through each iteration

0 1 2 3 4 5 · · · 13 14 15 16

x0 0 0 0 0 0 0 · · · 0 0 0 0

x1 0 0 0 1
2

∗ 1
2

1
2 · · · 21

32
21
32

85
128

∗ 85
128

x2 0 0 1
2

∗ 1
2

1
2

1
2 · · · 21

32
85
128

∗ 85
128

85
128

x3 0 1
2

∗ 1
2

1
2

1
2

5
8

∗ · · · 85
128

∗ 85
128

85
128

85
128

x4 0 0 0 0 1
4

∗ 1
4 · · · 21

64
21
64

21
64

85
256

∗

x5 1 1 1 1 1 1 · · · 1 1 1 1

x6 0 0 0 0 0 0 · · · 0 0 0 0

Though they have the same number of iterations, Gauss-Seidel method recomputes and / or updates
each variable for each iteration, while the newly introduced method only computes and updates one
variable for each iteration. The updated variable of each iteration by applying the newly introduced
method is marked with the superscript �∗�. �
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3.3.3 Top-down with Memoization and Zero Connected Components

Besides using the concept of ZSCCs, we can use another type of connected components to compute
the probability PrD,s(R

path
∼r [F Φ]).

De�nition 7. Let D = (S, s,P, L, rs, rt) be a DTMCR. A Zero Connected Component (ZCC) of D
based on a state reward formula Φ is a subset of states ZD ⊆ S satisfying the following conditions:

• for all state s ∈ ZD, s 6|= Φ, s /∈ S0
Φ and rs(s) = 0;

• for every pair of distinct states si and sj , there is a �nite path π either from si to sj or from
sj to si, where for any state s appears on π, s ∈ ZM and rπ = 0;

• if |ZD| = 1, then the only state s in ZD must satis�es P(s, s) > 0 and rt(s, s) = 0;

• ZD is a maximal subcomponent of D, i.e. there is no distinct ZCC Z ′D such that if s ∈ ZD,
then s ∈ Z ′D.

The notations of ZSCCs can be applied to ZCCs by replacing all the ZSCCs with ZCCs. �

One way to compute D.ZCC(Φ) based on a given DTMCR D and a PCTLR state formula Φ is
shown in Algorithm 15. The algorithm �rst constructs the undirected reduced graph. Then for
each state s which does not belong to any ZCC, it �nds all the states can reach from s and the
set contains all these states is a new ZCC. The algorithm repeats this procedure until there are no
remaining states.

Algorithm 15 Detect-ZCC-DTMCR(D,S0
Φ,Φ)

Input: DTMCR D, set of states S0
Φ and PCTL state formula Φ

Output: D.ZCC(Φ)
1: Construct the undirected graph G = (V,E), where:

• V := {s ∈ S | s 6|= Φ ∧ s /∈ S0
Φ ∧ rs(s) = 0};

• E := {(si, sj) | si, sj ∈ V ∧P(si, sj) > 0 ∧ rt(si, sj) = 0};
2: D.ZCC(Φ) := ∅;
3: for all state s ∈ V do
4: if s /∈ D.ZCC(Φ) then
5: ZD := {s′ ∈ V | s′ is reachable from s and s′ /∈ D.ZCC(Φ)};
6: end if
7: D.ZCC(Φ) := D.ZCC(Φ) ∪ {ZD};
8: end for
9: return D.ZCC(Φ);

s0 s1

s3

s2

Figure 12: The undirected reduced graph of the DTMCR shown in Figure 8

Example 18. To compute D.ZCC(target) for the DTMCR D in Figure 8 by calling Detect-
ZCC-DTMCR(D,S0

target, target), the algorithm �rst constructs the undirected reduced graph G
as shown in Figure 12. Then it picks up one state, assume it is s0. All the states reachable from s0
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are s1, s2 and s3 which gives us a ZCC ZD = {s0, s1, s2, s3}. The algorithm terminates from here as
there are no remaining states left. Therefore, the result set D.ZCC(target) = {{s0, s1, s2, s3}}. �

For a given DTMCR D and a PCTLR formula Φ, once D.ZCC(Φ) is computed, we can directly
apply Algorithm 12 to compute PrD,s(R

path
∼r [F Φ]) by replacing all the ZSCCs with ZCCs. Note that

the de�nition of ZCC excludes all states in S0
Φ to be part of any ZCCs. This ensures the correctness

of the algorithm.

s0

s1

0.5

0.5

{target}

s2

1

1

Figure 13: The problem of including states s ∈ S0
target in ZCCs

Example 19. For the DTMCR D in Figure 13, in order to compute PrD,s0(Rpath>0 [F target]), we
have:

T = Sat(target) = {s1}
S0
target = {s2}.

Let xD,s,∼r denotes PrD,s(R
path
∼r [F target]), and the top-down with memoization approach will be

applied. If all states in S0
target are not excluded from ZCCs, we have D.ZSCC(Φ) = {{s0, s2}} and

the following equation will be derived:

xD,s0,>0 = xD,s1,>0 s0 ∈ D.ZCC1o(target)

which is obviously incorrect. Even though we apply the derivation rule for general ZCCs (assume
s0 ∈ D.ZCCn(target)) here:

xD,s0,>0 = PrD,s0(ZtargetD,s0
U s1)× xD,s1,>0 s0 ∈ ZtargetD,s0

=
1

2
xD,s1,>0

xD,s1,>0 = 0 s1 ∈ T ∧ ¬(0 > 0)

where it is concluded that:

xD,s0,>0 =
1

2
× 0 = 0,

which is still not the correct result. On the other hand, if we exclude all states in S0
target from ZCCs,

we have D.ZSCC(Φ) = ∅ and:

xD,s0,>0 = P(s0, s1)× xD,s1,>0 + P(s0, s2)× xD,s2,>0

xD,s1,>0 = 0 s1 ∈ T ∧ ¬(0 > 0)

xD,s2,>0 = 1 s2 ∈ S0
target ∧∞ > 0

which gives us the correct result:

xD,s0,>0 =
1

2
× 0 +

1

2
× 1 =

1

2
. �
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Though both approaches with ZSCCs and ZCCs have the similar structure, the performance varies
in di�erent cases. A ZCC can be consisted of some ZSCCs only, some single states (which does not
belong to any ZSCCs) only or both ZSCCs and single states.

• If a ZCC is consisted of single states only, the performance is no better than considering those
single states separately, and this is the downside of the ZCC approach.

• If a ZCC Z is consisted of a set of ZSCCs ZSCCSet and some single states:

� If |Z.Out| = 1, then consider these states as a single ZCC is better than considering these
ZSCCs and single states separately.

� If |Z.Out| <
∑
Z′∈ZSCCSet |Z ′.Out|, then which approach is better relies on each speci�c

case.

� If |Z.Out| ≥
∑
Z′∈ZSCCSet |Z ′.Out|, then consider these ZSCCs and single states sepa-

rately yield a better performance.

Let xD,s,<r = PrD,s(R
path
<r [F target]). The following examples will provide some cases illustrating

the above performance issues.

s0

{target}

s2

s1

0.5

1

0.5

0.5

10.5

s3 : 1

s4

1

Figure 14: The downside of the ZCC approach

Example 20. First we will show you a case where a ZCC is consisted with single states only
and provides a worse performance than considering single states separately. In the DTMCR D in
Figure 14, D.ZSCC(target) = ∅ and D.ZCC(target) = {{s0, s1, s2}}. To compute xD,s0,<1 with
ZSCCs, we have:

xD,s0,<2 = P(s0, s1)× xD,s1,<2 + P(s0, s2)× xD,s2,<2

xD,s1,<2 = P(s1, s2)× xD,s2,<2 + P(s1, s3)× xD,s3,<2

xD,s2,<2 = P(s2, s4)× xD,s4,<2.

Once xD,s3,<2 and xD,s4,<2 are computed, only three more equations, xD,s2,<2, xD,s1,<2 and xD,s0,<2,
need to be computed in order to achieve the �nal result. However, if the computation of xD,s0,<2 is
done with ZCCs, we have

xD,s0,<2 = PrD,s0(ZtargetD,s0
U s3)× xD,s3,<2 + PrD,s0(ZtargetD,s0

U s4)× xD,s4,<2

xD,s3,<2 = xD,s4,<2 = 1. assume they are computed in advance

Algorithm 14 is applied to compute the until probability. First we push all the three states in ZtargetD,s0
into the queue with the order {s0, s1, s2} and initialize xD,s0,<2, xD,s1,<2 and xD,s2,<2 with value 0.
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The algorithm updates these variables in the following order with the convergence criteria ε = 0.01:

xD,s0,<2 = 0 queue => {s1, s2}
xD,s1,<2 = 0.5 queue => {s2, s0}
xD,s2,<2 = 1 queue => {s0, s1}
xD,s0,<2 = 0.75 queue => {s1}
xD,s1,<2 = 1 queue => {s0}
xD,s0,<2 = 1, queue => {}

this requires computations for 6 equations which is 3 more than the previous approach. �

s0

{target}

s2 s3 : 1

s4

0.5

s1

0.5

1

1

0.5

0.5

1

(a) A typical case where ZSCC is better

s0

{target}

s2

s3 s4

0.5

s1

0.5

0.5

1
0.5

1

1

(b) A special case where ZCC is better

Figure 15: Performance comparisons between ZSCCs and ZCCs

Example 21. Then two more cases will be shown where a ZCC is consisted with both single
states and ZSCCs. Let us start by considering a typical case where using ZSCCs provides a better
performance. In the DTMCR D1 in Figure 15 (a), D1.ZSCC(target) = {ZD1 = {s1, s2}} and
D1.ZCC(target) = {Z ′D1

= {s0, s1, s2}}. To compute xD1,s0,<1 with ZSCCs, we have:

xD1,s0,<1 = xD1,s1,<1

xD1,s1,<1 = PrD1,s1(ZD1
U s3)× xD1,s3,<1 + PrD1,s1(ZD1

U s4)× xD1,s4,<1.

While by using the concept of ZCCs, we have:

xD1,s0,<1 = PrD1,s0(Z ′D1
U s3)× xD1,s3,<1 + PrD1,s1(Z ′D1

U s4)× xD1,s4,<1.

Assume both xD1,s3,<1 and xD1,s4,<1 are computed and Algorithm 14 is used to compute PrD,s(ZD U s′).
It is easy to see that computing PrD1,s1(ZD1

U s3) requires less iterations than PrD1,s0(Z ′D1
U s3)

as in the latter case, whenever PrD1,s1(Z ′D1
U s3) is updated through iterations, PrD1,s0(Z ′D1

U s3)
will be updated afterwards. Therefore, the approach with ZCCs is slower than the one with ZSCCs
in this case.

Next let us move to a special case where using ZCCs is better. In the DTMCR D2 in Figure 15 (b),
D2.ZSCC(target) = {{s0, s1}} and D2.ZCC(target) = {{s0, s1, s2, s3}}. To compute xD1,s0,<1

with ZSCCs, we have:

xD2,s0,<1 = PrD2,s0(ZtargetD2,s0
U s2)× xD2,s2,<1 + PrD2,s0(ZtargetD2,s0

U s3)× xD2,s3,<1

xD2,s2,<1 = xD2,s4,<1

xD2,s3,<1 = xD2,s4,<1.

While by using the concept of ZCCs, we have:

xD2,s0,<1 = xD2,s4,<1. s0 ∈ D2.ZCC
1o(target)
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In the former case, after xD2,s4,<1 is calculated, further computations are required. On the contrary,
the value of xD2,s4,<1 can be assigned directly to xD2,s0,<1 to �nish the computation in the later
case. �

As for a given DTMCR and a PCTLR formula, some ZCCs may provide a better performance and
others do not, so it is hard to say which approach is de�nitely better than the other before we know
the actual conditions. Due to the fact that the discussion of this is beyond the scope of this paper,
we will not go any further and instead will give some test cases in Section 8.3.2 covering two cases
shown in Example 21.

3.3.4 DTMCRs with Negative Rewards

As mentioned before, the algorithm introduced above for computing PrD,s(R
path
∼r [F Φ]) only supports

non-negative rewards. In this section, we will discuss to what extent we can modify it to support
DTMCRs with negative rewards. For a DTMCR D has only non-positive rewards, we can simply
call Algorithm 12 with parameters D′,¬ ∼ −r and Φ to compute PrD,s(R

path
∼r [F Φ]), where:

• D′ is the modi�ed DTMCR by replacing both the state and transition rewards in D with their
absolute values, e.g. a reward -5 will be replaced by the value 5;

• ¬ > ⇔ <, ¬ ≥ ⇔ ≤, ¬ < ⇔ > and ¬ ≤ ⇔ ≥.

Next, let us consider DTMCRs with both positive and negative rewards. For a given DTMCR D
and a PCTLR formula Φ, by the de�nition of the random variable XFΦ, for all path ω ∈ PathD,s,
XFΦ(ω) >= 0 is no longer always true due to the newly introduced negative rewards. However, the
rest properties still hold. Therefore, in order to support these DTMCRs we have to and only have
to modify the following four cases in Equation (4) by replacing all the four 0 with rmin

FΦ (s):

• ∼ is > ∧ r < 0

• ∼ is ≥ ∧ r ≤ 0

• ∼ is < ∧ r ≤ 0

• ∼ is ≤ ∧ r < 0,

where rmin
FΦ (s) is the total rewards consumed along the shortest path start from state s to any state

s′ ∈ Sat(Φ). The formal de�nition of it is as follows:

rmin
FΦ (s)

def
= min

ω∈PathD,s
XFΦ(ω).

The rest of the introduced algorithm for computing PrD,s(R
path
∼r [F Φ]) will be kept the same as

before. To compute rmin
FΦ (s), the converted graph of the given DTMCR is constructed �rst.

De�nition 8. The converted graph of a given DTMCR D = (S, s,P, L, rs, rt) is a 3-tuple G =
(V,E,w) where:

• V is a set of vertices where V = S;

• E is a set of edges where E = {(u, v) | u, v ∈ S ∧P(u, v) > 0};

• w : V × V → R is a weight function where for any u, v ∈ V , w(u, v) = ru→v. �

Once the converted graph is constructed, a shortest path algorithm, which supports negative weights,
can be applied to compute the shortest path from one speci�c state to all the target states. Let
SD(u, v) denotes the shortest distance between vertex u and v in the converted graph, then:

rmin
FΦ (s) = min

s′∈Sat(Φ)
SD(s, s′).
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One well-known shortest path algorithm capable for this job is the Bellman-Ford algorithm[21], also
Shortest Path Faster Algorithm (SPFA)[22] is a nice choice as for sparse graphs it has a better
performance than Bellman-Ford. Because if a graph contains negative cycles, the shortest path for
some pairs of vertices are unable to be de�ned as there is always a path which is shorter than any given
path between these two vertices. Thus, this improved algorithm fails if the input DTMCR contains
negative loops (i.e. its converted graph contains negative cycles). In fact, the improved algorithm
can also be applied to DTMCRs with only non-negative rewards, though it is not recommended due
to the non-negligible running time consumed by the shortest paths computations.

s0

s1

s3

s2-0.01
1

s4

s5
2

-0.01

Figure 16: The converted graph of the DTMCR in Figure 3

Example 22. Figure 16 is the converted graph of the DTMCR in Figure 3 where the weights with
value 0 are omitted, and:

rmin
F release(s0) = 0.99. �

3.4 Worklist Algorithm

Reconsider the algorithms introduced in this section which use the top-down approach of dynamic
programming, all of them compute the probabilities for all the states in the given DTMCR. However,
not all the value are always needed in practice, we can thus apply a simple performance optimization,
which only computing the probabilities for a subset of all the states. Furthermore, a well-known
performance issue of the algorithms using the top-down approach of dynamic programming is the
overhead (both time and memory consuming) of recursive procedure calls. If we can eliminate them,
even though the asymptotic running time of the algorithms will not change, their performances in
practice might be improved. Note that whether the performances will be improved or not after
eliminating the recursive procedure calls depends on the actual implementation of the modi�ed
algorithms and the original implementation of recursive procedure calls for a speci�c programming
language. In this section, we will introduce a worklist algorithm with no recursive procedure calls
and its performance (both running time and memory usage) will be analyzed in Section 8.3.2.

To begin with, let us take a closer look at how those algorithms with top-down approaches work:

• a list of values are requested to be computed for a given algorithm �rst;

• for any value v needs to be computed, if all its dependent values (those used to compute v)
are precomputed, then v will be computed directly. Otherwise, the computation of v will be
postponed and the algorithm will compute all its dependent values which are not precomputed;

• once all the dependent values of v are computed, the algorithm will go back to compute v.

For a speci�c run of an algorithm, we have a dependent graph of all the values computed during the
whole procedure. For instance, assume an algorithm are requested to compute v0, v0 are dependent
on v1, v2 and v3, v1 is dependent on v2, v2 is dependent on v3 and v3 can be computed directly.
Then we will have a dependent graph of these values as shown in Figure 17. Notice that there should
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not be any loops in a dependent graph, otherwise, the recursive de�nition an algorithm is based on
must have the potential mutual dependences problem.

v0 v1 v2 v3

Figure 17: The dependent graph of some values

Therefore, if we �rst �nd all the values need to be computed, do a topological sort on them and work
on them in the post topological order. Then there will be no recursive calls any more. To achieve
this, we can use a doubly linked list, add all the requested values in the list. Then start from the
beginning of the list, for each value:

• if it can be computed directly (the base case), nothing happens;

• otherwise, for all the dependent values of the current value:

� if it does not exist in the list, it will be added at the end of the list,

� otherwise, it will be moved to the end from where it is.

Once we reach the end of the list, we have all the values need to be computed in the list in topological
order and they can be computed backward with no recursive calls.

Example 23. Consider the problem described by Figure 17. We start with a list contains only v0:

{v0}.

As v0 is dependent on v1, v2 and v3 and none of them exists in the list, so they will be added to the
end of the list. Assume the insertion order is v2, v1 and v3, then the list becomes:

{ v0 , v2, v1, v3}.

Next value to be considered is v2 which is dependent on v3 which is already at the end of the list,
nothing happens. We move to v1 which is dependent on v2 which is in the middle of the list, we
thus move v2 to the end. We have:

{v0, v1 , v3, v2}.

Because v3 is the base case, hence the next value changes the list is v2 which moves v3 to the end:

{v0, v1, v2 , v3}.

Again no changes of the list for v3 and the end of the list is reached, therefore, in order to compute
v0 without any recursive procedure calls, one should compute values in the order v3, v2, v1, v0. �

Note that in the previous example, v2 and v3 have been moved several times, to reduce this type of
movements, we can use the doubly linked list as a stack. Then start from adding all the requested
values in the stack, for each value at the top of the stack:

• if it is visited or it is the base case, compute it directly;

• otherwise, mark it as visited and for all the uncomputed dependent values of the current value:

� if it does not exist in the stack, add it to the top of the stack;

� otherwise, it will be moved to the top from where it is.
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Once the stack is empty, all the values are computed with no recursive calls. Notice that if a value
is marked as visited, it will never be moved to the top of the stack otherwise it is a sign of existing
loops in the dependence graph.

Example 24. Let us retry the problem described by Figure 17 with the new method. We start
with a stack contains only v0 marked as unvisited (F):

{(v0, F )}9.

v0, the unvisited top element, is marked as visited (T) and its dependent values are added into the
stack in the order of v2, v1 and v3, the stack becomes:

{(v0, T ), (v2, F ), (v1, F ), (v3, F )}.

Because the top element v3 is the base case, it is computed directly. Then comes v1, its dependent
value v2 is moved to the top:

{(v0, T ), (v1, T ), (v2, F )}.

From here, all the elements can be computed directly from the top to the bottom of the stack which
yields less steps compared to the previous method. �

To ensure all the operations of the stack take constant time, a data structure called Linked Hash
Stack will be introduced �rst.

De�nition 9. A Linked Hash Stack (denoted by LHS<K, P>) is a stack coupled with a hash
table and can be customized with K, a type of keys, and P , a type of parameters. The stack is
implemented by a doubly linked list which ensures that it takes constant time to move an element
from the middle of the stack to the top. Each element in the stack is a key-parameter pair with the
form (K,P ) and the hash table maps a key to the pointer which points to the element with the same
key in a linked list. Some functions are de�ned for a given LHS<K, P> as shown in Algorithm 16,
where stack and ht are the stack and the hash table of LHS.

Algorithm 16 Functions de�ned for a given LHS<K, P>

1: function isEmpty( ) return whether ht is empty; end function

1: function push(k, p)
2: if ht(k) is de�ned then
3: ptr := ht(k);
4: move the element ptr points to the the top of stack;
5: else
6: push (k, p) into stack and let ptr points to it;
7: ht(k) := ptr;
8: end if
9: end function

1: function peak( ) return the top element (k, p) of stack end function

1: function pop( )
2: remove the mapping of k from ht;
3: return the top element (k, p) of stack and pop it from stack;
4: end function

1: function update(p′) for the top element (k, p) of stack, p := p′; end function

9Assume that the right side is the top of the stack.
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It is obvious that isEmpty, peak, pop and update take only constant time. For push, it also takes
constant time as check an existing key in the hash table takes constant time, move an element from
the middle of a doubly linked list to the end takes constant time and so does add a key-value pair
into the hash table. �

With the newly introduced linked hash stack and the performance improvements mentioned above,
a worklist algorithm is developed as shown in Algorithm 17. It only computes the probabilities for
states in the subset S′ ⊆ S of DTMCR D. By specifying di�erent key type K, tuple of constants C
and details of method Initial-Key, Dependent-Keys and Pr-R-DTMCR, it can compute the
probabilities for all three types of path reward formulae. The worklist speci�cations for instantaneous
reward formula I=k, cumulative reward formula C≤k and reachability reward formula F Φ are shown
in Algorithms 18 to 20, respectively.

Algorithm 17 Worklist-Pr-DTMCR(D,S′,∼ r, C)

Input: DTMCR D, set of states S′ ⊆ S, reward bound ∼ r and tuple of constants C
Output: PrD,s(R

path
∼r [ϕ]) for all s ∈ S′

1: let p be an empty hash table maps a key of type K to a probability value;
2: let W be an empty LHS<K, Boolean>;
3: for all state s ∈ S′ do W .push(Initial-Key(s,∼ r, C), false); end for
4: while ¬W .isEmpty() do
5: (key, canCompute) := W .peak();
6: if canCompute then
7: W .pop();
8: Pr-R-DTMCR(D, key,∼ r, C, p);
9: else
10: W .update(true);
11: for all key′ ∈ Dependent-Keys(D, key,∼ r, C) do
12: if p(key′) is not de�ned then W .push(key′, false); end if
13: end for
14: end if
15: end while
16: return (p(Initial-Key(s,∼ r, C)))s∈S′ ;

Algorithm 18 Worklist speci�cations for I=k

C is a 1-tuple (k) where k is a step bound;
A key of type K is a 2-tuple (s, k) where s is a state and k is a step value;

1: function Initial-Key(s,∼ r, C) return (s, C.k); end function

1: function Dependent-Keys(D, key,∼ r, C)
2: KeySet := ∅;
3: if key.k > 0 then
4: for all s ∈ S where P(key.s, s) > 0 do
5: KeySet := KeySet ∪ {(s, key.k − 1)};
6: end for
7: end if
8: return KeySet;
9: end function

1: function Pr-R-DTMCR(D, key,∼ r, C, p)
2: Pr-I-DTMCR-Aux(D, key.s,∼ r, key.k, p);
3: end function
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Algorithm 19 Worklist speci�cations for C≤k

C is a 1-tuple (k) where k is a step bound;
A key of type K is a 3-tuple (s, r, k) where s is a state, r is a reward value and k is a step value;

1: function Initial-Key(s,∼ r, C) return (s, r, C.k); end function

1: function Dependent-Keys(D, key,∼ r, C)
2: KeySet := ∅;
3: if key.k > 0 then
4: for all s ∈ S where P(key.s, s) > 0 do
5: KeySet := KeySet ∪ {(s, key.r − rkey.s→s, key.k − 1)};
6: end for
7: end if
8: return KeySet;
9: end function

1: function Pr-R-DTMCR(D, key,∼ r, C, p)
2: Pr-C-DTMCR-Aux(D, key.s,∼ key.r, key.k, p);
3: end function

Algorithm 20 Worklist speci�cations for F Φ

C is a 2-tuple (S0
Φ, T ) where Φ and T are sets of states;

A key of type K is a 2-tuple (s, r) where s is a state and r is a reward value;

1: function Initial-Key(s,∼ r, C) return (s, r); end function

1: function Dependent-Keys(D, key,∼ r, C)
2: KeySet := ∅;
3: if xD,key.s,∼key.r does not satisfy any base case conditions of its recursive de�nition then
4: if key.s ∈ D.ZSCC(Φ) then
5: for all s ∈ ZΦ

D,key.s.Out do
6: KeySet := KeySet ∪ {(s, key.r)};
7: end for
8: else
9: for all s ∈ S where P(key.s, s) > 0 do
10: KeySet := KeySet ∪ {(s, key.r − rkey.s→s)};
11: end for
12: end if
13: end if
14: return KeySet;
15: end function

1: function Pr-R-DTMCR(D, key,∼ r, C, p)
2: Pr-F-DTMCR-Aux(D,C.S0

Φ, key.s,∼ key.r, C.T, p);
3: end function
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4 Extending MDPs and PCTL with rewards

Next we will extend the PCTL with path reward formulae for MDPs, it is based on the extension
of PCTL with state reward formulae introduced in [15, 23]. Brief introductions of the de�nition
of MDPs with rewards and the PCTL with state reward formulae are summarized from these two
papers as Section 4.1 and Section 4.2 for the completeness and the readability. Some notations are
slightly modi�ed for the consistency of notations used in this paper.

4.1 Markov Decision Processes with Rewards

For simplicity, a Markov Decision Process with Rewards will be written as MDPR. It is assumed
that both of the state and action rewards for a given MDPR are real numbers if it is not stated
explicitly. Let AP be a �xed, �nite set of atomic propositions.

De�nition 10. An MDP is a 5-tuple M = (S, s,Act, Steps, L) where:

• S is a �nite set of states;

• s ∈ S is an initial state;

• Act is a �nite set of actions;

• Steps : S × Act → DistS is a probabilistic transition function, where DistS : S → [0, 1] is a
probability distribution, i.e. the probability that a transition from s to s′ by taking action a
occurs is Steps(s, a)(s′);

• L : S → 2AP is a labeling function mapping each state to a set of atomic propositions the
state satis�es.

An MDPR is a 7-tuple M = (S, s,Act, Steps, L, rs, ra) where the �rst �ve elements are de�ned the
same as MDP and:

• rs : S → R is a state reward function;

• ra : S ×Act→ R is an action reward function.

The reward a given MDPR consumes, when it takes action a at state s, is the sum of the state
reward of s and the action reward of a at s. Let rs→a denotes this reward, and it is de�ned as
follows:

rs→a
def
= rs(s) + ra(s, a). �

For a given MDPR, if an action a ∈ Act is available at s ∈ S, then Step(s, a) is de�ned and∑
s′∈S Steps(s, a)(s′) = 1, otherwise Step(s, a) is not de�ned. The set of available actions for a

given state s is denoted by A(s) = {a ∈ ACT | Steps(s, a)}, and A(s) 6= ∅ as deadlocks are
disallowed.

Example 25. Figure 18 shows an MDPR M = (S, s,Act, Steps, L, rs, ra) for a hypothetical vend-
ing machine which is similar to the one used in Example 1. The only di�erence is that after it
shows the menu to the customer C, C will choose between cancel the purchase or select a product
nondeterministically instead of based on certain probabilities.

For graphical notations used of MDPs in this paper, states are drawn as circles with their names
on the center, actions are denoted as a black dot linking to the state it belongs to by a solid line
labeled with the action name. transitions are represented as arrows with associated probabilities on
it and the initial state is marked by an incoming arrow with no out state. Besides that, if the action
reward for a speci�c action is not 0, it is added after the corresponding action name separated by a
colon. Similarly if the state reward for a given state is not 0, it is concatenated after the state name
with an additional colon.
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Figure 18: The MDPR for a hypothetical vending machine

The MDPR of this vending machine has �ve states S = (s0, s1, s2, s3, s4) with the initial state s = s0

and the alphabet of actions Act = {initialize, cancel, select, nofity, release}. The probabilistic
transition function Steps is given by:

Steps(s0) = {(initialize, [s1 7→ 1])};
Steps(s1) = {(cancel, [s0 7→ 1]), (select, [s2 7→ 0.5, s3 7→ 0.5])};
Steps(s2) = {(notify, [s4 7→ 1])};
Steps(s3) = {(notify, [s4 7→ 1])};
Steps(s4) = {(release, [s0 7→ 1])}.

The labeling functions L maps from S to 2{idle,menu,chocolate,cola}:

L(s0) = {idle}, L(s1) = {menu}, L(s2) = {chocolate}, L(s3) = {cola} and L(s4) = ∅

The rewards denotes the pro�ts of the vending machine. The positive state rewards represent the
money earned from selling the corresponding product where ∀s ∈ S:

rs(s) =


1 if s = s2

2 if s = s3

0 otherwise

,

and the negative action rewards indicate the average cost (maintenance fee, electricity, etc) for
executing this action , where ∀s ∈ S, a ∈ Act:

ra(s, a) =

{
−0.01 if (s, a) ∈ {(s1, select), (s4, release)}
0 otherwise

.

The reward D consumes when it choses the action select at s1 is:

rs1→select = rs(s1) + rt(s1, select) = 0 + (−0.01) = −0.01,

and the reward it consumes by choosing the action notify at s3 is:

rs3→notify = rs(s3) + ra(s3, notify) = 1 + 0 = 1. �
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We can achieve a set of paths by unfolding an MDPR M = (S, s,Act, Steps, L, rs, ra). An in-
�nite path ω through M is a non-empty sequence s0a0s1a1 · · · , where si ∈ S, ai ∈ A(si) and
Steps(si, ai)(si+1) > 0 for all i ≥ 0. A pre�x of a in�nite path is a �nite path π = s0a0s1 · · · sn
ending in a state. For a (�nite or in�nite) path ω, ωs(i) and ωa(i) represent the ith state and the
ith action of a path ω respectively and the length (number of actions) of ω is denoted by |ω|, which
is always ∞ for any in�nite path. The last state of a �nite path π is denoted by last(π). In this

paper, let PathM,s and Path
fin
M,s represent the sets of all in�nite and �nite paths starting from state

s in M , while PathM and PathM denote the sets of all in�nite and �nite paths starting from any
state in M .

For a �nite path π ∈ PathfinM,s, the total reward consumed along it is denoted by rπ, which is de�ned
as follows:

rπ
def
=

|π|−1∑
i=0

rπs(i)→πa(i),

and on the other hand, the total reward consumed along an in�nite path ω ∈ PathD,s, which is
represented by rω, is always ∞.

Example 26. For the MDPR M = (S, s,Act, Steps, L, rs, ra) shown in Figure 18, let π1 = s2,
π2 = s1 select s2 and π3 = s1 select s3 notify s4, then:

|π1| = 0; |π2| = 1; |π3| = 2;

πs1(0) = s1; πs3(1) = s3;

πa2 (0) = select; πa3 (1) = notify;

rπ1 = rs(s2) = 0;

rπ2 = rs(s1) + ra(s1, select) = −0.01;

rπ3 = rs(s1) + ra(s1, select) + rs(s3) + ra(s3, notify) = −0.01 + 2 = 1.99. �

To model check probabilistic properties over MDPRs, a probability space[24] over in�nite paths needs
to be built. However, we have to resolve all the nondeterminism before constructing the probability
space. A possible resolution of nondeterminism is denoted by an adversary, also called a policy,
which chooses an action at each state based on the history of its execution.

De�nition 11. An adversary of a given MDPR M = (S, s,Act, Steps, L, rs, ra) is a function σ :
Pathfin → DistAct, where DistAct : Act→ [0, 1] is a probability distribution:

•
∑
a∈A(last(π)) σ(π)(a) = 1;

• and σ(π)(a) = 0 for all action a /∈ A(last(π)).

An adversary σ is memoryless if the distribution σ(π) only depends on last(π) and it is deterministic

if for all π ∈ PathfinM , ∃a ∈ A(last(π)).(σ(π)(a) = 1). �

Let Adv represents the set of all possible adversaries of a given MDPR M . Once an adversary
σ ∈ Adv is applied to M , the behavior of M can be captured by an induced DTMCR, whose each
state is a �nite path of M .

De�nition 12. The induced DTMCR for an MDPR M = (S, s,Act, Steps, L, rs, ra) and an adver-

sary σ is Mσ = (PathfinM , s,P, L′, r′s, rt) where for all π, π
′ ∈ PathfinM :

• P(π, π′) =

{
σ(π)(a) · Steps(last(π), a)(s) if π′ = πas

0 otherwise
;

• L′(π) = L(last(π));

• r′s(π) = rs(last(π));
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• rt(π, π′) =

{
ra(last(π), a) if π′ = πas

0 otherwise
.

Note that there is a one-to-one mapping between PathM and PathMσ , which means from the start
state s, the induced DTMCR Mσ yields a probability space, denoted by PrσM,s, over all the in�nite
paths in PathM . Though the induced DTMCR constructed in this way has in�nite number of
states, if an adversary σ′ is memoryless, then the induced DTMCR Mσ′ can be reduced to an
|S|-state DTMCR. �
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(b) The induced DTMC for a non-memoryless adversary

Figure 19: Two induced DTMCRs of the MDPR shown in Figure 18

Example 27. For the MDPR introduced in Example 25 (shown in Figure 18) and a memoryless
adversary σ1 which will choose the action cancel with probability 0.1 and select with probability
0.9 at state s1. The induced DTMCR can be reduced in an |S|-state DTMCR which is shown in
Figure 19 (a). For another non-memoryless adversary σ2 which will choose the action cancel with
probability 1−k % 5×0.2 and select with probability k % 5×0.2 at state s1, where k is the number
of times (includes the current one) it reaches state s1. The induced DTMCR is partialy shown in
Figure 19 (b). �

4.2 PCTLR for MDPRs

The syntax of PCTLR for MDPRs are exactly the same as for DTMCRs introduced in Section 2,
the main di�erences are:

• De�nitions of the random variable Xϕ where transition rewards are placed by the action
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rewards. For any path ω = s0a0s1a1 · · · ∈ PathM,s:

XI=k(ω)
def
= rs(sk);

XC≤k(ω)
def
=

{
0 if k = 0∑k−1
i=0 rsi→ai otherwise

;

XFΦ(ω)
def
=


0 if s0 |= Φ

∞ if ∀i ∈ N.si 6|= Φ∑min{j | sj |=Φ}−1
i=0 rsi→ai otherwise

.

• Semantics of the probabilistic operator and the reward operator which require a certain prop-
erty should be satis�ed for all possible adversaries. Let:

Prmin
M,s(φ)

def
= min

σ∈Adv
{PrσM,s(φ)}

Prmax
M,s (φ)

def
= max

σ∈Adv
{PrσM,s(φ)}

Expmin
M,s(Xϕ)

def
= min

σ∈Adv
{ExpσM,s(Xϕ)}

Expmax
M,s(Xϕ)

def
= max

σ∈Adv
{ExpσM,s(Xϕ)},

where PrσM,s(φ) is the probability measure and ExpσM,s(Xϕ) is the reward measure, when σ is
applied to M . The satisfaction relation |= is de�ned for these two operators as follows:

s |= P∼p[φ] ⇔

{
Prmin

M,s(φ) ∼ p ∼∈ {>,≥}
Prmax

M,s (φ) ∼ p ∼∈ {<,≤}

s |= Rstate∼r [ϕ] ⇔

{
Expmin

M,s(Xϕ) ∼ r ∼∈ {>,≥}
Expmax

M,s(Xϕ) ∼ r ∼∈ {<,≤}
.

Note that it is not as the PCTLR for DTMCRs, the quantitative form of the probabilistic operator
P=?[φ] can not be evaluated to a speci�c value, instead, we should use the minimum and maximum
quantitative forms of the P operator, Pmin

=? [φ] and Pmax
=? [φ].

Example 28. Below are some PCTLR formulae with path reward formulae of the MDPR shown
in Figure 18:

• P<0.5[R>0[I=6]] - the probability that a customer is just purchasing a product (on either state
s2 or s3, the only two states whose rewards are greater than 0) after 6 time steps is less than
0.5;

• Pmin
=? [R>=5[C≤10]] - the minimum probability that the total cumulative pro�t gained for the

following 10 time step is greater equal than 5;

• Pmax
=? [R<1[F release]] the maximum probability that the pro�t gained for the �rst sale is less

than 1. �

4.3 MDPR Action Rewards Elimination

Similar to the transition rewards elimination, the non-zero action rewards can be eliminated for
a given MDPR. There are also two approaches, the �rst approach retains the behaviors of the
original MDPR but may give di�erent results when model checking some PCTLR formulae over the
modi�ed MDPR. The procedure of eliminating the non-zero action rewards in this way is described
by Algorithm 21, where the action name auxAct stands for Auxiliary Action.
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Algorithm 21 Replace-Non-Zero-Actions(M)

Input: MDPR M
Output: M after the modi�cation
1: Act := Act ∪ {auxAction}; . Assume that auxAction /∈ Act.
2: for all state s ∈ S do
3: for all action a ∈ A(s) where ra(s, a) 6= 0 do
4: if A(s) = {a} then
5: rs(s) := rs(s) + ra(s, a);
6: ra(s, a) := 0;
7: else
8: M := Add-Intermediate-State(M, s, a);
9: end if
10: end for
11: end for
12: return M ;

For each action (s, a) with a non-zero action reward, the action reward will be merged to the state
reward rs(s) if A(s) is {a}, otherwise, the action (s, a) will be replaced by an intermediate state
sa with the modi�ed action (s, a) and the newly introduced action (sa, auxAct) as illustrated in
Algorithm 22, where the atomic proposition auxState stands for Auxiliary State and it is assumed
that for all s ∈ S, auxState /∈ L(s).

Algorithm 22 Add-Intermediate-State(M, s, a)

Input: MDPR M , state s and action a
Output: M after the modi�cation
1: sa := a newly created state;
2: S := S ∪ {sa};
3: Steps(sa, auxAct) := Steps(s, a); Steps(s, a) := [sa → 1];
4: L(sa) = {auxState};
5: rs(sa) := ra(s, a); ra(s, a) := 0; ra(sa, auxAct) := 0;
6: return M ;

Example 29. Figure 20 shows the result MDPR M ′ after applying Algorithm 21 to the MDPR M
in Figure 18.

The action reward ra(s4, release) is merged to the state reward rs(s4) as release is the only option
for s4, the action (s1, select) is replaced by an intermediate state s123, whose state reward equals to
ra(s1, select), with the modi�ed action (s1, select) and the newly introduced action (s124, auxAct).
The modi�cation may a�ect the model checking result compared to the original model. Model
checking Pmin

=? [F release] and Pmax
=? [R>1[F release]] over both MDPRs, M and M ′, will achieve the

same results. However, model checking Pmax
=? [R<0[I=2]] over M will result 0 which is di�erent from

the result 1 for M ′. �

The second approach is applying Algorithm 22 to all the actions of all the states in the original
MDPR as described by Algorithm 23. The satisfaction relation |= de�ned for the P and Rstate

operators are modi�ed as follows, for all state s ∈ S:

s |= P∼p[φ] ⇔ auxState /∈ L(s) ∧ ∀σ ∈ Adv.(PrσM,s(φ) ∼ p)
s |= Rstate∼r [ϕ] ⇔ auxState /∈ L(s) ∧ ∀σ ∈ Adv.(ExpσM,s(Xϕ) ∼ r)

and the rest semantics of PCTLR is modi�ed as for DTMCRs. This approach will ensure the
modi�ed model not only retains the behaviors of the original model, but also returns the same result
when model checking any PCTLR formula over it.
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Figure 20: The simple action rewards elimination result MDPR

Algorithm 23 Replace-All-Actions(M)

Input: MDPR M
Output: M after the modi�cation
1: for all state s ∈ S do
2: for all action a ∈ A(s) do
3: M := Add-Intermediate-State(M, s, a);
4: end for
5: end for
6: return M ;

Example 30. Figure 21 shows the result MDPR M ′ after applying Algorithm 23 to the MDPR M
in Figure 18. And for any PCTLR formula, model checking it over M ′ with the modi�ed semantics
will give the same result as model checking it over M with the original semantics. �
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Figure 21: The general action rewards elimination result MDPR

In order to cover more general cases, all the algorithms introduced in later sections will consider
both state and action rewards.

44



Han Yue Extending Stochastic Model Checking with Path Rewards

5 PCTLR Model Checking over MDPRs

The detailed model checking algorithm for PCTL over MDPs can be found in [25] and it is extended
in [10] for PCTL with state reward formulae over MDPRs. The later algorithm is almost identical
with the model checking algorithm for PCTLR over DTMCRs. The key di�erence is how it handles
the P and Rstate operators. For a given MDPRM = (S, s,Act, Steps, L, rs, ra), a set of states satisfy
the probability state formula P∼p[φ] is de�ned as:

Sat(P∼p[φ]) =

{
{s ∈ S | Prmin

M,s(φ) ∼ p} ∼∈ {>,≥}
{s ∈ S | Prmax

M,s (φ) ∼ p} ∼∈ {<,≤}

Sat(Rstate∼r [ϕ]) =

{
{s ∈ S | Expmin

D,s(Xϕ) ∼ r} ∼∈ {>,≥}
{s ∈ S | Expmax

D,s (Xϕ) ∼ r} ∼∈ {<,≤}
.

The detailed illustrations of the algorithm are also included in the above two papers and we will
not cover them here. Similar to the situation of model checking the newly introduced PCTLR
over DTMCRs, PCTLR also only brings in one new type of path formulae for MDPRs. Therefore,
once both Prmin

M,s(R
path
∼r [ϕ]) and Prmin

M,s(R
path
∼r [ϕ]) can be computed for a given reward formula ϕ, the

existing algorithm will be able to model check PCTLR over MDPRs without any modi�cations. In
this section, we will discuss how to compute these probabilities given an MDPR and a path reward
formula. As before, the algorithms introduced in this section will be able to handle negative reward
values and compute accurate results if no exception is explicitly pointed out.

5.1 Computing PrM,s(R
path
∼r [I=k])

For a given MDPRM = (S, s,Act, Steps, L, rs, ra), let xmin,k
M,s,∼r and x

max,k
M,s,∼r denote Pr

min
M,s(R

path
∼r [I=k])

and Prmax
M,s (Rpath∼r [I=k]) respectively. Then the recursive de�nitions of xmin,k

M,s,∼r and x
max,k
M,s,∼r are:

xmin,k
M,s,∼r =


1 if k = 0 ∧ rs(s) ∼ r
0 if k = 0 ∧ ¬(rs(s) ∼ r)
mina∈A(s){

∑
s′∈S Steps(s, a)(s′) · xmin,k−1

D,s′,∼r } otherwise

, (5)

xmax,k
M,s,∼r =


1 if k = 0 ∧ rs(s) ∼ r
0 if k = 0 ∧ ¬(rs(s) ∼ r)
maxa∈A(s){

∑
s′∈S Steps(s, a)(s′) · xmax,k−1

D,s′,∼r } otherwise

. (6)

5.1.1 Top-down with Memoization

One way to solve Equations (5) and (6) is applying the top-down with memoization approach
of dynamic programming, the algorithm is shown in Algorithm 24 and the auxiliary function
Pr-I-MDPR-Aux is shown in Algorithm 25.

Algorithm 24 Memoized-Pr-I-MDPR(M,∼ r, k, func)
Input: MDPR M , reward bound ∼ r, step bound k and function func ∈ {min,max}
Output: PrfuncM,s (Rpath∼r [I=k]) for all s ∈ S
1: let p be an empty hash table whose key is composed by a state and a step value;
2: for all state s ∈ S do
3: xs := Pr-I-MDPR-Aux(M, s,∼ r, k, func, p);
4: end for
5: return (xs)s∈S ;
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Algorithm 25 Pr-I-MDPR-Aux(M, s,∼ r, k, func, p)
Input: MDPR M , state s, reward bound ∼ r, step bound k, function func ∈ {min,max} and hash

table p
Output: PrfuncM,s (Rpath∼r [I=k])
1: if p(s, k) is not de�ned then
2: if k = 0 then

3: p(s, k) :=

{
1 if rs(s) ∼ r
0 otherwise

;

4: else
5: k′ := k − 1;
6: p(s, k) := funca∈A(s){

∑
s′∈S Steps(s, a)(s′) ·Pr-I-MDPR-Aux(M, s′,∼ r, k′, func, p)};

7: end if
8: end if
9: return p(s, k);

Example 31. To compute Prmax
M,s0

(Rpath>1 [I=2]) for the MDPR M in Figure 18. Let xmax,k
M,s,∼r de-

notes Prmax
M,s (Rpath∼r [I=k]), by applying the top-down with memoization approach, we will derive the

following equations from top to bottom:

xmax,2
M,s0,>1 = max{1× xmax,1

M,s1,>1}

xmax,1
M,s1,>1 = max{1× xmax,0

M,s0,>1, 0.5× x
max,0
M,s2,>1 + 0.5× xmax,0

M,s3,>1}

xmax,0
M,s0,>1 = 0 rs(s0) = 0

xmax,0
M,s2,>1 = 0 rs(s2) = 1

xmax,0
M,s3,>1 = 1, rs(s4) = 2 > 1

and the algorithm will solve these equation from bottom to top, we have that:

xmax,1
M,s1,>1 = max{1× 0, 0.5× 0 + 0.5× 1} = max{0, 0.5} = 0.5

xmax,2
M,s0,>1 = max{1× 0.5} = 0.5.

Hence the probability Prmax
M,s0

(Rpath>1 [I=2]) is 0.5. �

5.1.2 Bottom-up Method

We can eliminate the recursive calls by applying the bottom-up method approach of dynamic pro-
gramming to solve Equations (5) and (6), the algorithm is shown in Algorithm 26.

Example 32. Return to the MDPR M in Figure 18. Let xmax,k
M,s,∼r denotes Pr

max
M,s (Rpath∼r [I=k]), the

row vector xmax,k
M,∼r = {xmax,k

M,s0,∼r, · · · , x
max,k
M,s4,∼r}. To compute Prmax

M,s (Rpath>1 [I=2]) for all state s ∈ S,
we can apply the bottom-up method approach with the base case:

xmax,0
M,>1 = {0, 0, 0, 1, 0},

then by using the Equation (6) for each state s ∈ S, we have:

xmax,1
M,>1 = {0, 0.5, 0, 0, 0},

�nally, the desired probabilities can be computed by reapplying the Equation (6):

xmax,2
M,>1 = {0.5, 0, 0, 0, 0}. �
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Algorithm 26 Bottom-Up-Pr-I-MDPR(D,∼ r, k, func)
Input: MDPR M , reward bound ∼ r, step bound k and function func ∈ {min,max}
Output: PrfuncM,s (Rpath∼r [I=k]) for all s ∈ S
1: for all state s ∈ S do

2: xs :=

{
1 if rs(s) ∼ r
0 otherwise

;

3: end for
4: for i = 1→ k do
5: for all state s ∈ S do
6: x′s := funca∈A(s){

∑
s′∈S Steps(s, a)(s′) · xs′};

7: end for
8: for all state s ∈ S do xs := x′s; end for
9: end for
10: return (xs)s∈S

Similar to the performance comparison between the top-down and bottom-up approaches for comput-
ing PrD,s(R

path
∼r [I=k]) over DTMCRs. Both top-down and bottom-up approaches for MDPRs have

the same asymptotic running time, while the top-down method has overheads of caching calculated
values and recursive procedure calls and the bottom-up method may compute some unnecessary
values.

5.2 Computing PrM,s(R
path
∼r [C≤k])

For a given MDPR M = (S, s,Act, Steps, L, rs, ra), let xmin,k
M,s,∼r and x

max,k
M,s,∼r denote the probability

Prmin
M,s(R

path
∼r [C≤k]) and Prmax

M,s (Rpath∼r [C≤k]) respectively. Then the recursive de�nitions of xmin,k
M,s,∼r

and xmax,k
M,s,∼r are:

xmin,k
M,s,∼r =


1 if k = 0 ∧ 0 ∼ r
0 if k = 0 ∧ ¬(0 ∼ r)
mina∈A(s){

∑
s′∈S Steps(s, a)(s′) · xmin,k−1

M,s′,∼(r−rs→a)} otherwise

, (7)

xmax,k
M,s,∼r =


1 if k = 0 ∧ 0 ∼ r
0 if k = 0 ∧ ¬(0 ∼ r)
maxa∈A(s){

∑
s′∈S Steps(s, a)(s′) · xmax,k−1

M,s′,∼(r−rs→a)} otherwise

. (8)

5.2.1 Top-down with Memoization

Algorithm 27 Memoized-Pr-C-MDPR(M,∼ r, k, func)
Input: MDPR M , reward bound ∼ r, step bound k and function func ∈ {min,max}
Output: PrfuncM,s (Rpath∼r [C≤k]) for all s ∈ S
1: let p be an empty hash table whose key is composed by a state, a reward and a step value;
2: for all state s ∈ S do
3: xs := Pr-C-MDPR-Aux(M, s,∼ r, k, func, p);
4: end for
5: return (xs)s∈S

One way to solve Equations (7) and (8) is applying the top-down with memoization approach
of dynamic programming, the algorithm is shown in Algorithm 27 and the auxiliary function
Pr-C-MDPR-Aux is shown in Algorithm 28.
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Algorithm 28 Pr-C-MDPR-Aux(M, s,∼ r, k, func, p)
Input: MDPR M , reward bound ∼ r, step bound k, function func ∈ {min,max} and hash table p

Output: PrfuncM,s (Rpath∼r [C≤k])
1: if p(s, r, k) is not de�ned then
2: if k = 0 then

3: p(s, r, k) :=

{
1 if 0 ∼ r
0 otherwise

;

4: else
5: k′ := k − 1;
6: for all action a ∈ A(s) do
7: r′ := r − rs→s′ ;
8: va :=

∑
s′∈S Steps(s, a)(s′) ·Pr-C-MDPR-Aux(M, s′,∼ r′, k′, func, p);

9: end for
10: p(s, r, k) := funca∈A(s){va};
11: end if
12: end if
13: return p(s, r, k);

Example 33. Let us go back to the MDPR M in Figure 18 and computate Prmax
M,s0

(Rpath≥1 [C≤3]).

Let xmax,k
M,s,∼r denotes Pr

max
M,s (Rpath∼r [C≤k]), by applying the top-down with memoization approach, we

will derive the following equations from top to bottom:

xmax,3
M,s0,≥1 = max{xmax,2

M,s1,≥1}

xmax,2
M,s1,≥1 = max{xmax,1

M,s0,≥1, 0.5× x
max,1
M,s2,≥1.01 + 0.5× xmax,1

M,s3,≥1.01}

xmax,1
M,s0,≥1 = max{xmax,0

M,s1,≥1}

xmax,0
M,s1,≥1 = 0 ¬(0 ≥ 1)

xmax,1
M,s2,≥1.01 = max{xmax,0

M,s4,≥0.01}

xmax,0
M,s4,≥0.01 = 0 ¬(0 ≥ 0.01)

xmax,1
M,s3,≥1.01 = max{xmax,0

M,s4,≥−0.99}

xmax,0
M,s4,≥−0.99 = 1, 0 ≥ −0.99

and the algorithm will solve these equations from bottom to top, we have that:

xmax,1
M,s3,≥1.01 = max{1} = 1

xmax,1
M,s2,≥1.01 = max{0} = 0

xmax,2
M,s1,≥1 = max{0, 0.5× 0 + 0.5× 1} = 0.5

xmax,3
M,s0,≥1 = max{0.5} = 0.5.

Hence the probability Prmax
M,s0

(Rpath≥1 [C≤3]) is 0.5. �

5.3 Computing PrM,s(R
path
∼r [F Φ])

For a given MDPR M = (S, s,Act, Steps, L, rs, ra), let xmin
M,s,∼r and x

max
M,s,∼r denote the probability

Prmin
M,s(R

path
∼r [F Φ]) and Prmax

M,s (Rpath∼r [F Φ]) respectively. Then the recursive de�nitions of xmin
M,s,∼r
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and xmax
M,s,∼r are:

xmin
M,s,∼r =


1 if s |= Φ ∧ 0 ∼ r
0 if s |= Φ ∧ ¬(0 ∼ r)
mina∈A(s){

∑
s′∈S Steps(s, a)(s′) · xmin

M,s′,∼(r−rs→a)} otherwise

, (9)

xmax
M,s,∼r =


1 if s |= Φ ∧ 0 ∼ r
0 if s |= Φ ∧ ¬(0 ∼ r)
maxa∈A(s){

∑
s′∈S Steps(s, a)(s′) · xmax

M,s′,∼(r−rs→a)} otherwise

. (10)

Similar to the recursive de�nition Equation (3) for DTMCRs, Equations (9) and (10) also have the
potential problems of in�nitely many unfolded equations and mutual dependences. For instance,
assume that 0 ∼ r1 is satis�ed, by unfolding the recursive de�nition of x

min
M,s0,∼r1 based on the MDPR

shown in Figure 22, if r2 = 0, we will have:

xmin
M,s0,∼r1 = min{xmin

M,s0,∼r1 , x
min
M,s1,∼r1}

xmin
M,s1,∼r1 = 1,

where there is a self dependence of xmin
M,s0,∼r1 , and if r2 6= 0:

xmin
M,s0,∼r1 = min{xmin

M,s0,∼(r1−r2), x
min
M,s1,∼r1}

xmin
M,s0,∼(r1−r2) = min{xmin

M,s0,∼(r1−2r2), x
min
M,s1,∼(r1−r2)}

xmin
M,s0,∼(r1−2r2) = min{xmin

M,s0,∼(r1−3r2), x
min
M,s1,∼(r1−2r2)}

· · ·

where it ends up with in�nitely many unfolded equations.

s0

b : r2

1a

1

s1

1a

{target}

Figure 22: Potential problems for computing Equations (9) and (10)

To resolve theses problem, we can re�ne Equations (9) and (10) in the similar ways as we did for
Equation (3) with some modi�cations due to the nondeterministic properties of MDPRS. Like the
assumption we made for DTMCRs, the MDPRs considered in this section only have non-negative
rewards.

5.3.1 Top-down with Memoization and Zero Strongly Connected Components

First we have to introduced two sets of states:

Smin,0
Φ = {s ∈ S | Prmin

M,s(F Φ) = 0}

Smax,0
Φ = {s ∈ S | Prmax

M,s (F Φ) = 0},

where Smin,0
Φ contains all the states, which cannot reach any state satis�es Φ, for some certain

adversaries and Smax,0
Φ contains all the states, which cannot reach any state satis�es Φ, for all possible

adversaries. As for any state s, if Prmax
M,s (F Φ) = 0 then Prmin

M,s(F Φ) = 0, hence Smax,0
Φ ⊆ Smin,0

Φ .
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Algorithm 29 can be used to �nd either of these sets, it is the combination of the Algorithm 1 and
3 in [23].

Algorithm 29 Compute-S0-MDPR(M,Φ, func)

Input: MDPR M , PCTLR state formula Φ and function func ∈ {min,max}
Output: S0

Φ = {s ∈ S | PrfuncM,s (F Φ) = 0}
1: R := Sat(Φ);
2: repeat
3: R′ := R;
4: if func = min then
5: R := R ∪ {s ∈ S\R | ∀a ∈ A(s).(∃s′ ∈ R.(Steps(s, a)(s′) > 0))};
6: else
7: R := R ∪ {s ∈ S\R | ∃a ∈ A(s).(∃s′ ∈ R.(Steps(s, a)(s′) > 0))};
8: end if
9: until R = R′

10: return S\R;

Once we have these two sets, two more base cases can be introduced for each of the recursive
de�nition of xmin

M,s,∼r and x
max
M,s,∼r:

xmin
M,s,∼r =

{
1 if s ∈ Smax,0

Φ ∧∞ ∼ r
0 if s ∈ Smin,0

Φ ∧ ¬(∞ ∼ r)
,

xmax
M,s,∼r =

{
1 if s ∈ Smin,0

Φ ∧∞ ∼ r
0 if s ∈ Smax,0

Φ ∧ ¬(∞ ∼ r)
.

Please pay attention to the ways how Smin,0
Φ and Smax,0

Φ are used above. As for all state s ∈ Smax,0
Φ ,

by the de�nition of the random variable XFΦ, ∀ω ∈ PathM,s.(XFΦ(ω) =∞), thus both xmin
M,s,∼r and

xmax
M,s,∼r can be de�ned with a �xed value based on the truth value of ∞ ∼ r. On the other hand,

for all state s ∈ Smin,0
Φ :

∃σ ∈ Adv.∀ω ∈ PathMσ,s.(XFΦ(ω) =∞),

where:

PathMσ,s
def
=

⋃
π∈PathfinM
last(π)=s

PathMσ,π.

Also both the possible values of a given xmin
M,s,∼r and a given xmax

M,s,∼r are within the interval [0, 1]
and they should be de�ned with the minimum and the maximum of all possible values respectively.
If we stop unfolding the recursive de�nition of xmin

M,s,∼r and xmax
M,s,∼r once s ∈ Smin,0

Φ , they will be
de�ned with a �xed value of either 0 or 1. Otherwise, they will be de�ned with a value within the
interval [0, 1] which might di�er from 0 or 1. Therefore, for a given xmin

M,s,∼r where s ∈ Smin,0
Φ , it

should be de�ned as 0 if ¬(∞ ∼ r) is satis�ed as 0 is the minimum possible value it can be, otherwise
the recursive de�nition should be applied to cover the possible values which is smaller than 1. The
case for a given xmin

M,s,∼r where s ∈ S
min,0
Φ is similar, it should be de�ned as 1 directly if ∞ ∼ r is

satis�ed, otherwise the recursive de�nition should be applied.

Next, we de�ne the Zero Strongly Connected Component of a MDPR as follows.

De�nition 13. Let M = (S, s,Act, Steps, L, rs, ra) be an MDPR. A Zero Strongly Connected
Component (ZSCC) of M based on a state reward formula Φ is a subset of states ZM ⊆ S satisfying
the following conditions:

• for all state s ∈ ZM , s 6|= Φ and rs(s) = 0;
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• for every pair of states si, sj ∈ ZM , where si can be the same as sj , there is a �nite path π
from si to sj , where for any state s appears on this path, s ∈ ZM and rπ = 0;

• if |ZM | = 1, then the only state s in ZM must satis�es:

∃a ∈ A(s).(Steps(s, a)(s) > 0 ∧ ra(s, a) = 0),

this ensures the algorithm will not use the relatively more complicated way to handle states
which do not have to;

• ZM is a maximal subcomponent of M .

Like the ZSCC related concepts of DTMCRs, M.ZSCC(Φ) denotes a set of all the ZSCCs of M
based on Φ and ZΦ

M,s represents the ZSCC contains s where ZΦ
M,s ∈ M.ZSCC(Φ). To simplify the

formulae introduced in the later part of this paper, a state s belongs to a ZSCC in M.ZSCC(Φ) is
denoted as follows:

s ∈M.ZSCC(Φ) ⇔ ∃ZM ∈M.ZSCC(Φ).(s ∈ ZM ). �

s0

b : 1

s1 s21a

1 b : 1

a

0.5

1

a' 1 s4

1a

{target}

s3 : 1

0.3

0.2

a

1

0.5a

s5

1a

0.5

Figure 23: A MDPR with a ZSCC

Example 34. Based on the PCTLR state formula Φ = target, the MDPR shown in Figure 23 has
two ZSCCs: {s1, s2} and {s5}. �

Algorithm 30 Detect-ZSCC-MDPR(M,Φ)

Input: MDPR M and PCTL state formula Φ
Output: M.ZSCC(Φ)
1: Construct the direct graph G = (V,E), where:

• V := {s | s /∈ Φ ∧ rs(s) = 0};
• E := {(si, sj) | si ∈ V ∧ sj ∈ V ∧ ∃a ∈ Act(si).(ra(si, a) = 0 ∧ Steps(si, a)(sj) > 0)};

2: for all SCC found by calling Strongly-Connected-Component(G) do
3: if it is not the case that |SCC| = 1 and the only state in SCC does not have a self loop then
4: M.ZSCC(Φ) := M.ZSCC(Φ) ∪ {SCC};
5: end if
6: end for
7: return M.ZSCC(Φ)

Algorithm 30, which is based on the Strongly-Connected-Component algorithm from [20],
provides one way to calculateM.ZSCC(Φ) for a given MDPRM and a given PCTLR state formula
Φ. It is similar to Algorithm 10 and they only di�er from how they construct the edges of the
reduced graphs. This algorithm considers actions and the one before considers transitions.
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s0 s1 s2 s5

Figure 24: The reduced graph of the MDPR shown in Figure 23

Example 35. To �nd all the ZSCCs of the MDPRM shown in Figure 23 based on the state formula
Φ = target. First the reduced graph of M is constructed as shown in Figure 24. Then it is passed
to Strongly-Connected-Component as the parameter. The SCC algorithm will return three
SCCs: {s0}, {s1, s2} and s5. {s0} is not a ZSCC as it only contains one state which does not have
a self loop in the reduced graph. Therefore, the result set M.ZSCC(Φ) = {{s1, s2}, {s5}}. �

For a given MDPR M = (S, s,Act, Steps, L, rs, ra), let ZM ∈ M.ZSCC(Φ), for a PCTLR state
formula Φ:

ZM .Out
def
= {s ∈ S | ∃s′ ∈ ZM .∃a ∈ A(s).((Steps(s′, a)(s) > 0) ∧ (ra(s′, a) 6= 0 ∨ s /∈ ZM ))},

and we have to modify the MDPR M by adding some auxiliary states to ensure:

• ∀s ∈ ZM .Out.(s /∈ ZM );

• ∀s ∈ ZM .∀ω ∈ PathM,s.(ω(i) |= Φ′ ⇒ XFΦ′(ω) = 0), where s |= Φ′ ⇔ s ∈ ZM .Out.

The algorithm to add these auxiliary states for ZM is shown in Algorithm 31. Note that this
procedure only modi�es ZM .Out but not ZM itself.

Algorithm 31 Add-Aux-State-MDPR(M,M.ZSCC(Φ))

Input: MDPR M and set M.ZSCC(Φ)
Output: M after the modi�cation
1: for all ZM ∈M.ZSCC(Φ) do
2: for all state si ∈ ZM do
3: for all action a ∈ A(si) where ra(si, a) 6= 0 do
4: M := Add-Intermediate-State(M, s, a);
5: end for
6: end for
7: end for
8: return M ;

s0

b : 1

s1 s21a

1 b
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0.5
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s1b : 11 auxAct

0.5a
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1a
0.5

0.3

{auxState}

Figure 25: The modi�ed result of the MDPR in Figure 23
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Example 36. Figure 25 shows the model in Figure 23 after insert the auxiliary state s1b for action
b at state s1. �

To sum all the above concepts up, the recursive de�nition of xmax
M,s,∼r is re�ned as follows after

compute T = Sat(Φ), Smin,0Φ , Smax,0Φ and M.ZSCC(Φ) and add necessary auxiliary sates for a
given MDPR M :

xmin
M,s,∼r =



1 if


(s ∈ T ∧ 0 ∼ r)
∨ (s ∈ Smax,0

Φ ∧∞ ∼ r)
∨ (∼ is > ∧ r < 0)

∨ (∼ is ≥ ∧ r ≤ 0)

 (11a)

0 if


(s ∈ T ∧ ¬(0 ∼ r))

∨ (s ∈ Smin,0
Φ ∧ ¬(∞ ∼ r))

∨ (∼ is < ∧ r ≤ 0)

∨ (∼ is ≤ ∧ r < 0)

 (11b)

min
σ∈Adv

{
∑

s′∈ZΦ
M,s.Out

PrσM,s(Z
Φ
M,s U s′) · xmin

M,s′,∼r} if s ∈M.ZSCC(Φ) (11c)

min
a∈A(s)

{
∑
s′∈S

Steps(s, a)(s′) · xmin
M,s′,∼(r−rs→a)} otherwise (11d)

where:

PrσM,s(Z
Φ
M,s U s′)

def
= PrσM,s(Φ1 U Φ2),

where for any state s′′ ∈ S:

s′′ |= Φ1 ⇔ s′′ ∈ ZΦ
M,s

s′′ |= Φ2 ⇔ s′′ = s′

Here are some further explanations of the above recursive de�nition:

• Case (11a) and (11b) are the base cases where xmin
M,s,∼r can be de�ned with the �xed value 1

or 0 where the four conditions (∼ is > ∧ r < 0), (∼ is ≥ ∧ r ≤ 0), (∼ is < ∧ r ≤ 0) and
(∼ is ≤ ∧ r < 0) are introduced to prevent the in�nitely many unfolded equations problem as
for DTMCRs.

• Case (11c) is taken when the subscript s of xmin
M,s,∼r belongs to a ZSCC ZΦ

M,s. It ensures that
there is no mutual dependences problems among the unfolded equations. Once for all the state
s′ ∈ ZΦ

M,s.Out, x
min
M,s′,∼r is computed, we can compute the formula

min
σ∈Adv

{
∑

s′∈ZM .Out
PrσM,s(Z

Φ
M,s U s′) · xmin

M,s′,∼r}

by either solving a Linear Programming (LP) problem to get a theoretically accurate result
(the actual result may still be approximate due to the inaccuracy of real number computations
in practice) or using a value iteration algorithm to get an approximate result. For the former
approach, the following LP problem needs to be solved:

maximize
∑

s∈ZΦ
M,s

xmin
M,s,∼r subject to the constraints:

xmin
M,s,∼r = the precomputed value for all s ∈ ZΦ

M,s.Out

xmin
M,s,∼r ≤

∑
s′∈ZΦ

M,s∪Z
Φ
M,s.Out

Steps(s, a)(s′) · xmin
M,s′,∼r for all s ∈ ZΦ

M,s and a ∈ Act(s)
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and it is demonstrated in [26] that it has a unique solution. For the latter approach, let us
introduce variables yns for all state s ∈ ZΦ

M,s ∪ ZΦ
M,s.Out, n ∈ N and equations:

yns =


the precomputed value if s ∈ ZΦ

M,s.Out

0 if s ∈ ZΦ
M,s ∧ n = 0

mina∈Act(a)

∑
s′∈ZM∪ZM .Out Steps(s, a)(s′) · yn−1

s′ otherwise

It is shown in [27] that limn→∞ yns = minσ∈Adv{
∑
s′∈ZM .Out Pr

σ
M,s(Z

Φ
M,s U s′) · xmin

M,s′,∼r},
hence we can approximate the limn→∞ yns for a su�ciently large n. Algorithm 32 provides
one way doing the value iteration based on the above equations to compute the desired value.
Notice that instead of updating all the variables for each iteration, a variable is only updated
once the values of its dependent variables (those used to compute it) are changed. Though
solve the LP problem will give a relatively more accurate solution, the value iteration approach
o�ers a better scalability and the approximation is good enough in practice. In this paper, we
will go for the value iteration approach.

• Case (11d) is the same as the recursive case of Equation (9).

• Note that there are some cases intersect with each other. Though the �nal result will be the
same by taking any of the intersected cases, consider the cases with the order from (11a) to
(11d) will yield a better performance and some optimizations introduced in the later part also
based on this order.

By replacing all the appearances of min with max and max with min in Equation (11), the re�ned
recursive de�nition of xmax

M,s,∼r, after computing T = Sat(Φ), Smin,0Φ , Smax,0Φ and M.ZSCC(Φ) and
adding necessary auxiliary sates for a given MDPR M , can be derived as follows:

xmax
M,s,∼r =



1 if


(s ∈ T ∧ 0 ∼ r)

∨ (s ∈ Smin,0
Φ ∧∞ ∼ r)

∨ (∼ is > ∧ r < 0)

∨ (∼ is ≥ ∧ r ≤ 0)

 (12a)

0 if


(s ∈ T ∧ ¬(0 ∼ r))
∨ (s ∈ Smax,0

Φ ∧ ¬(∞ ∼ r))
∨ (∼ is < ∧ r ≤ 0)

∨ (∼ is ≤ ∧ r < 0)

 (12b)

max
σ∈Adv

{
∑

s′∈ZΦ
M,s.Out

PrσM,s(Z
Φ
M,s U s′) · xmax

M,s′,∼r} if s ∈M.ZSCC(Φ) (12c)

max
a∈A(s)

{
∑
s′∈S

Steps(s, a)(s′) · xmax
M,s′,∼(r−rs→a)} otherwise (12d)

where Case (12c) can also be handled either by solving a LP problem:

minimize
∑

s∈ZΦ
M,s

xmax
M,s,∼r subject to the constraints:

xmax
M,s,∼r = the precomputed value for all s ∈ ZΦ

M,s.Out

xmax
M,s,∼r ≥

∑
s′∈ZΦ

M,s∪Z
Φ
M,s.Out

Steps(s, a)(s′) · xmax
M,s′,∼r for all s ∈ ZΦ

M,s and a ∈ Act(s)

or by Algorithm 32 using the value iteration approach. In this paper, we will go for the latter one.

In order to simplify the calculations of Equation (11c) and (12c). All the ZSCCs of MDPR based
on a PCTLR state formula can be further split into several disjoint subsets and di�erent approaches
can be applied to each subset for better performances.
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Algorithm 32 Value-Iteration-ZSCCn-Case(M,ZM , (x
func
M,s,∼r)s∈ZM .Out, func, ε)

Input: MDPRM , reward bound ∼ r, precomputed xfuncM,s,∼r for all the states s ∈ ZM .Out, function
func ∈ {min,max} and convergence criterion ε

Output: approximate xfuncM,s,∼r for all the states s ∈ ZM
1: for all state s ∈ ZM .Out do xs := xfuncM,s,∼r; end for
2: for all state s ∈ ZM do xs := 0; end for
3: Let Q be a FIFO queue which disregards the insertion of existing elements in it;
4: Push all the states in ZM into queue Q;
5: while Q is not empty do
6: s := pop the head of Q;
7: x′s := funca∈A(s)

∑
s′∈ZM∪ZM .Out Steps(s, a)(s′) · xs′ ;

8: if |xs − x′s| > ε then
9: Push all the states s′ ∈ ZM where ∃a ∈ A(s′).(Steps(s′, a)(s) > 0) into queue Q;
10: end if
11: xs := x′s;
12: end while
13: return (xs)s∈ZM

De�nition 14. For all the ZSCCs ZM ∈M.ZSCC(Φ) of a given MDPR M and a state formula Φ,
they can be split into following disjoint subsets:

• if |ZM | = 1 or |ZM .Out| = 1, then ZM ∈M.ZSCC1(Φ);

• else if |ZM .Out| = 2, then ZM ∈M.ZSCC2(Φ);

• the rest ZSCCs belong to M.ZSCCn(Φ).

A ZSCC set with multiple superscripts separated by commas represents the union of the correspond-
ing subsets. For instance, M.ZSCC1,n(Φ) = M.ZSCC1(Φ) ∪M.ZSCCn(Φ). �
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(a) A MDPR with type 1 ZSCCs
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(b) A MDPR with type 2 ZSCCs

Figure 26: MDPRs contain special types ZSCCs

Example 37. Consider the PCTLR state formula Φ = target, for the MDPR M1 in Figure 26 (a):

M1.ZSCC
1(Φ) = {{s0}, {s1, s2}},

where |ZΦ
M1,s0

| = 1 and |ZΦ
M1,s1

.Out| = |{s3}| = 1. For the MDPR M2 in Figure 26 (b):

M2.ZSCC
2(Φ) = {{s0, s3}},

where |ZΦ
M2,s0

.Out| = |{s1, s2}| = 2|. �
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For a given xfuncM,s,∼r where func ∈ {min,max} and a PCTLR state formula Φ, based on the order
we consider the recursive de�nition cases, the case where s ∈ M.ZSCC(Φ) will only be considered

if s /∈ Smax,0
Φ . Also when s ∈ Smin,0

Φ , the ZSCC case will only be considered if some adversaries,

which ensure M will �nally reach a target state (leave ZΦ
M,s), might de�ne xfuncM,s,∼r with a better

value than not reaching any target state forever. Therefore, for the ZSCC case, only the adversaries
ensure M leave ZΦ

M,s need to be considered.

When ZΦ
M,s ∈M.ZSCC1(Φ):

• if |ZΦ
M,s.Out| = 1 and let {s′} = ZΦ

M,s.Out, asM �nally will leave ZΦ
M,s and s

′ is the only state

it will go with probability 1, therefore, we can de�ne xfuncM,s,∼r directly with xfuncM,s′,∼r;

• if |ZΦ
M,s| = 1, M will �nally leave ZΦ

M,s through one of the action a ∈ Act(s), therefore, we
can ensure xfuncM,s,∼r is de�ned with the minimum / maximum value by choosing the adversary,
which guarantees M will leave with the action provides the minimum / maximum value with
probability 1.

The following equation covers both the above scenarios:

funca∈Act(s){
∑

s′∈ZΦ
M,s.Out

Steps(s, a)(s′)∑
s′∈ZΦ

M,s.Out
Steps(s, a)(s′)

× xs′},

and it will be used as the special approach to handle states s ∈M.ZSCC1(Φ).

When ZΦ
M,s ∈ M.ZSCC2, let {s1, s2} = ZΦ

M,s and assume that xfuncM,s1,∼r ≥ xfuncM,s2,∼r. Because M

�nally will leave ZΦ
M,s through either s1 or s2 and for each adversary σ:

PrσM,s(Z
Φ
M,s U s1) + PrσM,s(Z

Φ
M,s U s2) = 1.

Therefore, we can maximize PrσM,s(Z
Φ
M,s U s1) or PrσM,s(Z

Φ
M,s U s2) to achieve the maximum / mini-

mum value of xfuncM,s,∼r. Let Pr
max
M,s1

(ZΦ
M,s U s2) denotes the maximum probabilities of PrσM,s1

(ZΦ
M,s U s2)

over all adversaries and it is de�ned as follows:

Prmax
M,s1(ZΦ

M,s U s2)
def
= max

σ∈Adv
PrσM,s1(ZΦ

M,s U s2),

the algorithm used to handle states s ∈M.ZSCC2(Φ) is shown in Algorithm 33. Note that we can
only maximize either probabilities to achieve the minimum / maximum value instead of minimum

the other probability. This is because for the case s ∈ Smin,0
Φ , an adversary σ, which gives the

minimum value of one probability, will make both probability PrσM,s(F s1) and PrσM,s(F s2) to be
0 at the same time.

Algorithm 33 Compute-ZSCC2-Case(M, s, ZM , (x
func
M,s′,∼r)s′∈ZM .Out, func)

Input: MDPR M , state s, ZSCC ZM , precomputed xfuncM,s′,∼r for all the states s′ ∈ ZM .Out and
function func ∈ {min,max}

Output: xfuncM,s,∼r

1: Let {s1, s2} be ZM .Out, where xfuncM,s1,∼r ≥ x
func
M,s2,∼r;

2: if func = min then
3: x := Prmax

M,s (ZM U s2) · xfuncM,s2,∼r + (1− Prmax
M,s (ZM U s2)) · xfuncM,s1,∼r;

4: else
5: x := Prmax

M,s (ZM U s1) · xfuncM,s1,∼r + (1− Prmax
M,s (ZM U s1)) · xfuncM,s2,∼r;

6: end if
7: return x
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Algorithm 34 Memoized-Pr-F-MDPR(M,∼ r,Φ, func, ε)
Input: MDPR M , reward bound ∼ r, PCTL state formula Φ, function func ∈ {min,max} and

convergence criterion ε
Output: PrfuncM,s (Rpath∼r [F Φ]) for all s ∈ S
1: T := Sat(Φ);

2: Smin,0
Φ := Compute-S0-MDPR(M,Φ,min);

3: Smax,0
Φ := Compute-S0-MDPR(M,Φ,max);

4: M.ZSCC(Φ) := Detect-ZSCC-MDPR(M,Φ);
5: M := Add-Aux-State-MDPR(M,M.ZSCC(Φ));
6: let p be an empty hash table whose key is composed by a state and a reward value;
7: for all state s ∈ S do
8: xs := Pr-F-MDPR-Aux(M,Smin,0

Φ , Smax,0
Φ , s,∼ r, T, func, p, ε);

9: end for
10: return (xs)s∈S

Algorithm 35 Pr-F-MDPR-Aux(M,Smin,0
Φ , Smax,0

Φ , s,∼ r, T, func, p, ε)

Input: MDPRM , set of states Smin,0
Φ and Smax,0

Φ , reward bound ∼ r, set of target states T , function
func ∈ {min,max}, hash table p and convergence criterion ε

Output: PrfuncM,s (Rpath∼r [F Φ])
1: if p(s, r) is not de�ned then

2: if


(s ∈ T ∧ 0 ∼ r)

∨ (s ∈ S¬func,0Φ ∧∞ ∼ r)
∨ (∼ is > ∧ r < 0)

∨ (∼ is ≥ ∧ r ≤ 0)

 then . ¬min = max, ¬max = min

3: p(s, r) := 1;

4: else if


(s ∈ T ∧ ¬(0 ∼ r))

∨ (s ∈ Sfunc,0Φ ∧ ¬(∞ ∼ r))
∨ (∼ is < ∧ r ≤ 0)

∨ (∼ is ≤ ∧ r < 0)

 then

5: p(s, r) := 0;
6: else if s ∈M.ZSCC(Φ) then

7: (xs′)s′∈ZΦ
M,s.Out

:= (Pr-F-MDPR-Aux(M,Smin,0
Φ , Smax,0

Φ , s′,∼ r, T, func, p, ε))s′∈ZΦ
M,s

;

8: if s ∈M.ZSCC1(Φ) then

9: p(s, r) := funca∈Act(s){
∑
s′∈ZΦ

M,s.Out
Steps(s,a)(s′)∑

s′∈ZΦ
M,s

.Out
Steps(s,a)(s′) × xs′};

10: else if s ∈M.ZSCC2(Φ) then
11: p(s, r) := Compute-ZSCC2-Case(M, s, ZΦ

M,s, (xs′)s′∈ZΦ
M,s.Out

, func);

12: else
13: (p(s′, r))s′∈ZM := Value-Iteration-ZSCCn-Case(M,∼ r, (x′s)s′∈ZΦ

M,s.Out
, func, ε);

14: end if
15: else
16: for all adversary a ∈ A(s) do
17: r′ := r − rs(s)− ra(s, a);
18: va :=

∑
s′∈S Steps(s, a)(s′) ·Pr-F-MDPR-Aux(M, s′,∼ r′,Φ, func, p);

19: end for
20: p(s, r) = funca∈A(s){va};
21: end if
22: end if
23: return p(s, r);
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Now the top-down with momoization approach of dynamic programming can be applied to solve
Equations (11) and (12), the algorithm is shown in Algorithm 34 and the auxiliary function Pr-F-
MDPR-Aux is introduced by Algorithm 35.

Example 38. To compute Prmin
M,s0

(Rpath≥1 [F target]) for the MDPR M in Figure 25, we have:

T = Sat(Φ) = {s4}

Smin,0
target = {s0, s5}

Smax,0
target = {s5}

M.ZSCC(Φ) = {{s1, s2, s3}, {s5}}

Let xmin
M,s,∼r denotes Pr

min
M,s(R

path
∼r [F target]), by applying the top-down with memoization approach,

we will derive the following equations from top to bottom:

xmin
M,s0,≥1 = min{xmin

M,s0,≥0, 0.5× xmin
M,s1,≥1 + 0.5× xmin

M,s5,≥1}
xmin
M,s0,≥0 = 1 ∼ is ≥ ∧ r = 0 ≤ 0

xmin
M,s1,≥1 = min

σ∈Adv


PrσM,s1(ZtargetM,s1

U s1b) · xmin
M,s1b,≥1

+PrσM,s1(ZtargetM,s1
U s3) · xmin

M,s3,≥1

+PrσM,s1(ZtargetM,s1
U s4) · xmin

M,s4,≥1


xmin
M,s1b,≥1 = min{xmin

M,s2,≥0}
xmin
M,s2,≥0 = 1 ∼ is ≥ ∧ r = 0 ≤ 0

xmin
M,s3,≥1 = min{xmin

M,s4,≥0}
xmin
M,s4,≥0 = 1 s4 ∈ T ∧ 0 ≥ 0

xmin
M,s4,≥1 = 0 s4 ∈ T ∧ ¬(0 ≥ 1)

xmin
M,s5,≥1 = 1 s5 ∈ Smax,0

target ∧∞ ≥ 1

and the algorithm will solve these equation from bottom to top. We have that:

xmin
M,s3,≥1 = min{1} = 1

xmin
M,s1b,≥1 = min{1} = 1.

Then Value-Iteration-ZSCCn-Case is called to compute xmin
M,s1,≥1 with the convergence criterion

ε = 10−6, let ys denotes xmin
M,s,≥1. The algorithm starts with the initial values: ys1 = 0, ys2 = 0,

ys1b = 1, ys3 = 1 and ys4 = 0. After the �rst iteration: ys1 = 0 and ys2 = 0. The algorithm stops as
no values are changed, i.e. the convergence criterion is satis�ed. Therefore:

xmin
M,s1,≥1 = ys1 = 0

xmin
M,s0,≥1 = min{1, 0.5× 0 + 0.5× 1} = 0.5.

Thus the probability Prmin
M,s0

(Rpath>1 [F target]) is 0.5. �

5.3.2 Optimizing Computations of Prmax
M,s (ZΦ

M,s U s′)

To compute Prmax
M,s (ZΦ

M,s U s′) for a given MDPR M = (S, s,Act, Steps, L, rs, ra), we can reuse the

algorithms for computations of Prmax
M,s (Φ1 U Φ2) based on the de�nition of Prmax

M,s (ZΦ
M,s U s′). In

normal cases, Prmax
M,s (Φ1 U Φ2) can be computed by either solving a linear programming problem or

applying an iterative method, particularly Gauss-Seidel used by PRISM. Similar to the downsides
for computing until probabilities for DTMCRs, the existing value iteration method updates too
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Algorithm 36 Compute-Until-Probs-MDPR(M,ZM , s0, func, ε)

Input: MDPR M , ZSCC ZM , state s0 ∈ ZM .Out, function func ∈ {min,max} and convergence
criterion ε

Output: approximate PrfuncM,s (ZM U s′) for all the states s ∈ ZM
1: for all state s ∈ ZM ∪ ZM .Out do xs := 0; end for
2: xs0 := 1;
3: Let Q be a FIFO queue which disregards insertions of existing elements;
4: Push all the states in ZM into queue Q;
5: while Q is not empty do
6: s := pop the head of Q;
7: x′s := funca∈A(s)

∑
s′∈ZM∪ZM .Out Steps(s, a)(s′) · xs′ ;

8: if |xs − x′s| > ε then
9: Push all the states s′ ∈ ZM where ∃a ∈ A(s′).(Steps(s′, a)(s) > 0) into queue Q;
10: end if
11: xs := x′s;
12: end while
13: return (xs)s∈ZM

many unnecessary values (of those states s′ /∈ ZΦ
M,s). Therefore, a new iteration method, which

only update values (of those states s′ ∈ ZΦ
M,s) when it is necessary, is introduced in Algorithm 36.

Prmax
M,s (ZΦ

M,s U s′) for a given MDPRM with the convergence criterion ε can be computed by calling

Compute-Until-Probs-MDPR(M,ZΦ
M,s, s

′,max, ε).

The performance gain of the newly introduced algorithm can be analyzed with the similar case
shown in Example 17.

5.3.3 Top-down with Memoization and Zero Connected Components

Instead of using the concept of ZSCCs, we can also use another type of connected components to
compute the probability PrM,s(R

path
∼r [F Φ]).

De�nition 15. Let M = (S, s,Act, Steps, L, rs, ra) be an MDPR. A Zero Connected Component

(ZCC) of M based on the computation of PrfuncM,s (Rpath∼r [F Φ]) is a subset of states ZM ⊆ S satisfying
the following conditions:

• for all state s ∈ ZM , rs(s) = 0, s 6|= Φ and:

� if (func = min∧ ∼∈ {>,≥}) ∨ (func = max∧ ∼∈ {<,≤}), s /∈ Smax,0
Φ ,

� otherwise, s /∈ Smin,0
Φ ;

• for every pair of distinct states si and sj , there is a �nite path π either from si to sj or from
sj to si, any state appears on this path s ∈ ZM and rπ = 0;

• if |ZD| = 1, then the only state s ∈ ZD must satis�es:

∃a ∈ A(s).(Steps(s, a)(s) > 0 ∧ ra(s, a) = 0);

• ZM is a maximal subcomponent of M , i.e. there is no distinct ZCC Z ′M such that if s ∈ ZM ,
then s ∈ Z ′M .

The notations of ZSCCs can be applied to ZCCs by replacing all the ZSCCs with ZCCs. One
exception is that because ZCCs of a given MDPR do not only depend on a PCTLR state formula
Φ, but also depend on a function func ∈ {min,max} and a relational operator ∼∈ {<,≤, >,≥}.
Therefore, M.ZSCC(Φ) will be replaced by M.ZCC(func,∼,Φ). �
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The algorithm used to compute M.ZCC(func,∼,Φ) is almost identical with Algorithm 15. By
applying the new exclusion rules for states and considering actions instead of transitions when
constructing the reduced graph, we will achieve the new algorithm as shown in Algorithm 37.

Algorithm 37 Detect-ZCC-MDPR(M,Smin,0
Φ , Smax,0

Φ ,∼,Φ, func)

Input: MDPRM , set of states Smin,0
Φ and Smax,0

Φ , relational operator ∼∈ {<,≤, >,≥}, PCTL state
formula Φ and function func ∈ {min,max}

Output: M.ZCC(func,∼,Φ)
1: V := {s ∈ S | s 6|= Φ ∧ rs(s) = 0};
2: if (func = min∧ ∼∈ {>,≥}) ∨ (func = max∧ ∼∈ {<,≤}) then
3: V := V \Smax,0

Φ ;
4: else
5: V := V \Smin,0

Φ ;
6: end if
7: Construct the undirected graph G = (V,E), where:

E := {(si, sj) | si, sj ∈ V ∧ ∃a ∈ A(si).(Steps(si, a)(sj) > 0 ∧ ra(si, a) = 0)};
8: M.ZCC(func,∼,Φ) := ∅;
9: for all state s ∈ V do
10: if s /∈M.ZCC(func,∼,Φ) then
11: ZD := {s′ ∈ V | s′ is reachable from s and s′ /∈M.ZCC(func,∼,Φ)};
12: end if
13: M.ZCC(func,∼,Φ) := M.ZCC(func,∼,Φ) ∪ {ZD};
14: end for
15: return M.ZCC(func,∼,Φ);

s0 s1 s2

Figure 27: The undirected reduced graph of the MDPR shown in Figure 23

Example 39. To compute M.ZCC(min, >, target) for the MDPR M in Figure 23 by calling Al-
gorithm 37, the algorithm �rst constructs the undirected reduced graph G as shown in Figure 27.
The reason why the reduced graph does not include state s5 is that it belongs to Smax,0

target. Then the
algorithm picks up one state, assume it is s0. All the states reachable from s0 are s1 and s2 which
gives us a ZCC ZD = {s0, s1, s2}. The algorithm terminates from here as there are no remaining
states left. Therefore, the result set M.ZCC(min, >, target) = {{s0, s1, s2}}. �

Once M.ZCC(func,∼,Φ) is found, we can replace all the ZSCCs of Algorithm 34 with ZCCs
to compute PrM,s(R

path
∼r [F Φ]). Note that similar to the additional exclusion rules for ZCCs of

DTMCRs, the de�nition of ZCCs for MDPRs also excludes some additional states which ensures
the correctness of the algorithm. One example to show it can be constructed with the same concept
used in Example 19. The performance comparisons between ZSCCs and ZCCs of MDPRs are the
same as those of DTMCRs and they will not be repeated here.

5.3.4 MDPRs with Negative Rewards

As mentioned earlier, the above algorithm for computing PrM,s(R
path
∼r [F Φ]) over MDPRs only

supports non-negative rewards. The way how to modify it to support negative rewards is similar as
we did for DTMCRs. For a MDPR M with only non-positive rewards, Algorithm 34 can be called
with parameters M ′,¬ ∼ −r,Φ, func and ε to compute PrfuncM,s (Rpath∼r [F Φ]), where:
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• M ′ is the modi�ed MDPR by replacing both the state and transition rewards in M with their
absolute values;

• ¬ > ⇔ <, ¬ ≥ ⇔ ≤, ¬ < ⇔ > and ¬ ≤ ⇔ ≥.

To modify the algorithm supporting MDPRs with both positive and negative rewards, a approach
almost the same as for DTMCRs can be applied. The only di�erences the de�nition of the con-
verted graph of a given MDPR and modifying the following four cases in both Equation (9) and
Equation (10) by replacing all the four 0 with rmin

FΦ (s):

• ∼ is > ∧ r < 0

• ∼ is ≥ ∧ r ≤ 0

• ∼ is < ∧ r ≤ 0

• ∼ is ≤ ∧ r < 0,

where rmin
FΦ (s) is the total rewards consumed along the shortest path start from state s to any state

s′ ∈ Sat(Φ). The formal de�nition of it is as follows:

rmin
FΦ (s)

def
= min

ω∈PathM,s
XFΦ(ω).

The rest of the introduced algorithm for computing PrM,s(R
path
∼r [F Φ]) will be kept the same as

before. To compute rmin
FΦ (s), the converted graph of the given MDPR is constructed �rst.

De�nition 16. The converted graph of a given MDPR M = (S, s,Act, Steps, L, rs, ra) is a 3-tuple
G = (V,E,w) where:

• V is a set of vertices where V = S;

• E is a set of edges where E = {(u, v) | u, v ∈ S ∧ ∃a ∈ A(u).Steps(u, a)(v) > 0};

• w : V × V → R is a weight function where for any u, v ∈ V :

w(u, v) = min
a∈A(u)

Steps(u,a)(v)>0

ru→a. �

Once the converted graph is constructed, a shortest path algorithm, as introduced for DTMCRs,
can be applied to compute the shortest path from one speci�c state to all the target states.

s0

s1

s2
-0.01

1

s3

s4
2

-0.01

-0.01

Figure 28: The converted graph of the MDPR in Figure 18

Example 40. Figure 28 is the converted graph of the MDPR in Figure 18 where the weights with
value 0 are omitted, and:

rmin
F idle(s1) = 0. �
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Same as the improved algorithm for DTMCRs, the improved algorithm for MDPRs can also be ap-
plied to MDPRs with only non-negative rewards with a worse performance due to the non-negligible
running time consumed by shortest paths computations and it does not support MDPRs with neg-
ative cycles.

5.4 Worklist Algorithm

Similar to the concepts introduced for the worklist algorithm for DTMCRs in Section 3.4, a worklist
algorithm for MDPRs is developed and shown in Algorithm 38. The algorithm is almost identical
to Algorithm 17 with an additional parameter func indicates whether the algorithm computes the
minimum or the maximum probability. The speci�cations for all three types of reward reward
formulae are covered in Algorithms 39 to 41.

Algorithm 38 Worklist-Pr-MDPR(M,S′,∼ r, C, func)
Input: MDPR M , set of states S′ ⊆ S, reward bound ∼ r tuple of parameters C and function

func ∈ {min,max}
Output: PrfuncM,s (Rpath∼r [ϕ]) for all s ∈ S′
1: let p be an empty hash table maps a key of type K to a probability value;
2: let W be an empty LHS<K, Boolean>;
3: for all state s ∈ S′ do W .push(Initial-Key(s,∼ r, C), false); end for
4: while ¬W .isEmpty() do
5: (key, canCompute) := W .peak();
6: if canCompute then
7: W .pop();
8: Pr-R-MDPR(M,key,∼ r, C, func, p);
9: else
10: W .update(true);
11: for all key′ ∈ Dependent-Keys(M,key,∼ r, C, func, p) do
12: if p(key′) is not de�ned then W .push(key′, false); end if
13: end for
14: end if
15: end while
16: return (p(Initial-Key(s,∼ r, C)))s∈S′ ;
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Algorithm 39 Worklist speci�cations for I=k

C is a 1-tuple (k) where k is a step bound;
A key of type K is a 2-tuple (s, k) where s is a state and k is a step value;

1: function Initial-Key(s,∼ r, C) return (s, C.k); end function

1: function Dependent-Keys(D, key,∼ r, C, func, p)
2: KeySet := ∅;
3: if key.k > 0 then
4: for all state s ∈ S where ∃a ∈ Act(Key.s).(Steps(key.s, a)(s) > 0) do
5: KeySet := KeySet ∪ {(s, key.k − 1)};
6: end for
7: end if
8: return KeySet;
9: end function

1: function Pr-R-MDPR(M,key,∼ r, C, func, p)
2: return Pr-I-MDPR-Aux(M,key.s,∼ r, key.k, func, p);
3: end function

Algorithm 40 Worklist speci�cations for C≤k

C is a 1-tuple (k) where k is a step bound;
A key of type K is a 3-tuple (s, r, k) where s is a state, r is a reward value and k is a step value;

1: function Initial-Key(s,∼ r, C) return (s, r, C.k); end function

1: function Dependent-Keys(D, key,∼ r, C, func, p)
2: KeySet := ∅;
3: if key.k > 0 then
4: for all state s ∈ S and all action a ∈ Act(key.s) where Steps(key.s, a)(s) > 0 do
5: KeySet := KeySet ∪ {(s, key.r − rkey.s→a, key.k − 1)};
6: end for
7: end if
8: return KeySet;
9: end function

1: function Pr-R-MDPR(M,key,∼ r, C, func, p)
2: return Pr-C-MDPR-Aux(M,key.s,∼ key.r, key.k, func, p);
3: end function
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Algorithm 41 Worklist speci�cations for F Φ

C is a 4-tuple (Smin,0
Φ , Smax,0

Φ , T, ε) where Smin,0
Φ , Smax,0

Φ , T are sets of states and ε is a convergence
criterion;
A key of type K is a 2-tuple (s, r) where s is a state and r is a reward value;

1: function Initial-Key(s,∼ r, C) return (s, r); end function

1: function Dependent-Keys(D, key,∼ r, C, func, p)
2: KeySet := ∅;
3: if xfuncM,key.s,∼key.r does not satisfy any base case conditions of its recursive de�nition then
4: if key.s ∈M.ZSCC(Φ) then
5: for all s ∈ ZΦ

M,key.s.Out do
6: KeySet := KeySet ∪ {(s, key.r)};
7: end for
8: else
9: for all state s ∈ S and all action a ∈ Act(key.s) where Steps(key.s, a)(s) > 0 do
10: KeySet := KeySet ∪ {(s, key.r − rkey.s→a)};
11: end for
12: end if
13: end if
14: return KeySet;
15: end function

1: function Pr-R-MDPR(M,key,∼ r, C, func, p)
2: return Pr-F-MDPR-Aux(M,C.Smin,0

Φ , C.Smax,0
Φ , key.s,∼ key.r, C.T, func, p, C.ε);

3: end function
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6 Extending Filters

The syntax of the original �lter is as follows:

〈filter〉 ::= �lter(〈op〉, 〈prop〉, 〈states〉)

where 〈op〉 is a possible operator for the �lter, 〈prop〉 is a PRISM property and 〈states〉 is a boolean
expression used to �lter a set of state applying the operator based on the property. The detailed
de�nition, which is omitted here for simplicity, could be found in [12]. In this section, a new operator
�cust� (stands for customization) will be introduced to grant �lters with better �exibilities.

6.1 Extended Filter

De�nition 17. The syntax of the extended �lter is de�ned as follows:

〈filter〉 ::= �lter(〈parameter〉, 〈states〉)
〈parameter〉 ::= 〈op〉, 〈prop〉 | cust, 〈customization〉

〈customization〉 ::= 〈formula〉〈definition〉

where 〈formula〉 is a user de�ned arithmetic expression which has the following syntax:

〈formula〉 ::= 〈term〉 | 〈formula〉+ 〈term〉 | 〈formula〉 − 〈term〉
〈term〉 ::= 〈factor〉 | 〈term〉 ∗ 〈factor〉 | 〈term〉/〈factor〉
〈factor〉 ::= 〈operand〉 | − 〈operand〉
〈operand〉 ::= 〈literal〉 | @〈cust-variable〉 | 〈identifier〉 | 〈func〉 | (〈formula〉)

〈cust-variable〉 ::= 〈reserved〉 | 〈identifier〉
〈reserved〉 ::= ss

〈func〉 ::= count() | 〈fname〉(〈formula〉)
〈fname〉 ::= min | max | sum | avg | �rst

where 〈literal〉 is a number (integer or double) and 〈identifier〉 is a user-de�ned identi�er which
could represent a variable, a constant or a formula de�ned in the model or properties �le, all of them
follow the PRISM syntaxes of numbers and identi�ers, and 〈definition〉 is a list of cust-variable
de�nitions whose syntax is:

〈definition〉 ::= ε | ; 〈identifier〉 : 〈prop〉〈definition〉. �

A �cust� �lter property with the form:

�lter(cust, 〈formula〉〈definition〉, 〈states〉),

can be translated to a formula which gives a speci�c value for a given model and looks similar to
〈formula〉. The translation of the property is the translation of 〈formula〉 which is a recursively
de�ned procedure and can be summarized as follows:

• For @〈cust−variable〉, if it is not in the scope of a 〈func〉, an error will be reported, otherwise:

� for @ss, if the property is veri�ed over a MDPR,an error will be given, otherwise, it will
be translated to Ps which denotes the steady-state probability of state s;

� for @〈identifier〉, an error will be given if it is not de�ned in 〈definition〉, otherwise,
assume it is de�ned with a PRISM property prop, it will be translated to prop(s) which
represents the value of prop over the state s.
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• For 〈identifier〉 not following with an @, if it is not de�ned in the model �le or the properties
�le, an error will be reported, otherwise:

� in the case it represents a variable, an error will be given if it is not in the scope of a
〈func〉, otherwise, it will be translated to 〈identifier〉(s) which represents the value of
the variable at the state s.

� in the case it represents a constant or a formula, no further translation needs to be done.

• count() will be translated to |Sat(〈states〉)|.

• For 〈fname〉(〈formula′〉):

� min will be translated to min
s∈Sat(〈states〉)

{〈formula′〉};

� max will be translated to min
s∈Sat(〈states〉)

{〈formula′〉};

� sum will be translated to
∑

s∈Sat(〈states〉)

{〈formula′〉};

� avg will be translated to

∑
s∈Sat(〈states〉){〈formula′〉}

|Sat(〈states〉)|
;

� let sf be the �rst (lowest-indexed) state in Sat(〈states〉), �rst will be translated to
evaluate(sf , 〈formula′〉) where evaluate is a function replacing all the appearance of
s in the translation of 〈formula′〉 with sf .

• The rest of 〈formula〉 will be kept as it is in the property.

Example 41. The �lter property:

�lter(cust, sum(@ss * @v) / sum(@ss); v: prop, states),

will be translated to the formula: ∑
s∈Sat(states){Ps × prop(s)}∑

s∈Sat(states) Ps
. �

6.2 Performance Optimizations for CUST Operator

As we mentioned in Section 1.1, all properties will be parsed to property Abstract Syntax Trees
(AST). Then the property AST is passed to the computation engine and the model checking result
is computed. If the passed property is a �cust� �ler property with the form:

�lter(cust, 〈formula〉〈definition〉, 〈states〉).

The computation engine will �rst compute Sat(〈states〉), then it will verify all the properties listed
in the 〈definition〉, �nally, based on these results, it evaluates the 〈formula〉. In this section, we
will introduce some optimizations could be applied before and during the computation in order
to improve the performance. As all of these performance optimizations are based on simple AST
modi�cations and value cache mechanisms, thus, for the simplicity of this paper we will be focusing
on the ideas themselves instead of providing detailed algorithms.

Before the property AST is passed to the computation engine, following modi�cations can be done
to improve the computation performances:

• If a cust-variable de�ned in 〈definition〉 has not been used in the 〈formula〉, then the property
it represents does not need to be veri�ed. Therefore, it can be remove from the AST.

E.g. In the following property:
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�lter(cust, sum(@v); v: prop; v: prop′, states),

there are two cust-variables v and v′ de�ned in 〈definition〉. v is used in 〈formula〉 while
v′ is not. After the optimization, the sub-AST of v: prop′ is removed and the modi�ed AST
represents the following property instead:

�lter(cust, sum(@v); v: prop, states).

• If some sub-formulae of 〈formula〉 can be precomputed, we can simplify the 〈formula〉 by
replacing the sub-formula with a single literal. This may improve the performance in practice.

E.g. In the following property:

�lter(cust, sum(1 + 2 + @v); v: prop, states),

where the sub-formula 1+2 can be precomputed. After the optimization, the sub-AST of 1+2
will be replaced with the literal 3 and the modi�ed AST passed to the computation engine
represents the following property:

�lter(cust, sum(3 + @v); v: prop, states).

This optimization will give a better performance because the computation engine will compute
sum(3 + @v) in the following manner:

1: sum := 0;
2: for all state s ∈ Sat(states) do
3: sum := sum+ 3 + prop(s);
4: end for

Before the AST modi�cation, the engine needs to compute 1 + 2 in each iteration which is
saved after the optimization. Also this concept can be extended to sub-formulae not only
includes literals but also constants.

E.g. For the following property:

�lter(cust, sum(a + 1 + 2 + @v); v: prop, states),

where a is a constant assigned as 3. After the optimization, then modi�ed AST used to do the
computation will represent the following property:

�lter(cust, sum(6 + @v); v: prop, states).

During the computation, following two cache mechanisms can be applied to avoid redundant com-
putations:

• Once the result of a �lter customization function is computed, the result will be cached for
later usage.

E.g. After the optimization, the avg(@v) in the following property will only be computed once
for the whole calculation:

�lter(cust, avg(@v - avg(@v)); v: prop, states).

This optimization will give a better performance because the computation engine will compute
avg(@v - avg(@v)) in the following manner:

1: avg := 0;
2: for all state s ∈ Sat(states) do
3: avg := prop(s) + compute(avg(@v));
4: end for
5: avg := avg/|Sat(states)|;

where compute(avg(@v)) is a procedure call returns the computation result of avg(@v). Before
the optimization, the engine computes avg(@v) in each iteration. If the result is cached after
it is computed �rst time, then the computations needed for the rest iterations are saved.
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• The previous optimization can be further improved by not only caching the calculated result
for the �lter customization function itself, but also other �lter customization functions with
the same structure.

E.g. After the optimization, the both appearances of avg(@v + 1) in the following property
will only be computed once for the whole calculation:

�lter(cust, sum((@v - avg(@v + 1)) * (@v - avg(@v + 1))); v: prop, states).

This can be achieved by either:

� Having a hash table maps all pre-calculated �lter customization functions to its cached
result. When the algorithm retrieves the result for a speci�c �lter customization function
from the hash table, if it is not de�ned in the table, it will be calculated and put into the
table. Otherwise, the cached value will be returned.

� Or instead of having a hash table, we can make all the references of the sub-ASTs with
the same structure point to a same instance. This is the approach used in the actual
implementation of this project. To make it more clear, the AST before the optimization
of the above property is shown in Figure 29 (a), where the rectangles with round corners
are unfolded sub-ASTs. After the optimization, the AST becomes the one shown in
Figure 29 (b). Note that even though from the data structure point of view, there is only
one instance of the sub-AST of avg(@v + 1), the algorithm uses the modi�ed AST treats
it the same as the original one. From here, we can apply the previous optimization to
cache the result once it is computed for later usage.

filter

v:propformulacust states

sum

*

- - 

@v avg(@v + 1) @v avg(@v + 1)

(a) Before the optimization

filter

v:propformulacust states

sum

*

- - 

@v avg(@v + 1) @v

(b) After the optimization

Figure 29: The ASTs of �lter(cust, sum((@v - avg(@v + 1)) * (@v - avg(@v + 1))); v: prop, states)
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7 Extending PRISM

Based on the existing PRISM source code, following functionalities are further extended for PRISM:

• Added the support of transition rewards for explicit engine. Transition rewards were supported
for other computation engines but explicit. However, for the explicit engine of the extended
PRISM, transition rewards can only be used for the newly introduced algorithms included in
this paper yet.

• Added the support of expressing PCTLR formulae with PRISM properties.

• Implemented the following model checking algorithms:

� Top-down with memoization and Worklist approach for:

∗ Computing PrD,s(R
path
∼r [I=k]) over DTMCRs;

∗ Computing PrD,s(R
path
∼r [C≤k]) over DTMCRs;

∗ Computing PrD,s(R
path
∼r [F Φ]) with either ZSCCs or ZCCs over DTMCRs with non-

negative rewards only;

∗ Computing PrM,s(R
path
∼r [I=k]) over MDPRs;

∗ Computing PrM,s(R
path
∼r [C≤k]) over MDPRs;

∗ Computing PrM,s(R
path
∼r [F Φ]) with either ZSCCs or ZCCs over MDPRs with non-

negative rewards only.

� Bottom-up method approach for:

∗ Computing PrD,s(R
path
∼r [I=k]) over DTMCRs;

∗ Computing PrM,s(R
path
∼r [I=k]) over MDPRs.

• Applied the following model checking algorithm optimizations for both DTMCRs and MDPRs:

� Optimized the algorithm for probability until operator computations;

� Computing probabilities of path reward operator over a subset of all states only.

• Realized the extended �lters with �cust� operator with all performance optimizations presented
in Section 6.

• Added an option tap to ease the setups of the newly introduced model checking algorithms.

• Added the reports of error messages when a user mis-uses the newly introduced functionalities.

Table 2: Modi�cation Statistics

Language �les comment code

HTML(All Same) 1 0 3

make(All Same) 16 144 431

Bourne Shell(All Same) 6 82 168

C++(All Same) 93 6,613 19,445

Java

same 553 41,484 123,994

modi�ed 39 3 705

added 39 167 5,428

removed 0 0 124
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In this section, we will show that where these changes are taking place in the existing PRISM source
code. Once the source code is downloaded from the PRISM website, several folders can be found
under the root folder. All actual source code is located under a folder called �src� which is the
only folder has been modi�ed. Table 2 shows the modi�cation statistics of the �src� folder. For all
changed folders under it, we will go through them one by one.

7.1 Modi�cations of Existing PRISM Classes

First let us take a look at modi�cations of the existing PRISM classes. Note that for the simplicity
reason, not all the modi�ed classes are included. Those classes which are modi�ed merely due to
the e�ect of structure renovations but remain the same functionalities are omitted.

explicit is the folder contains all classes related to the explicit computation engine.

• ConstructModel is the model constructor which constructs the model data structure based on
the model �le AST. It is modi�ed to add transition rewards to the model when it constructs
a DTMC or CTMC. The action rewards for MDPs and CTMDPs are already supported.

• DTMCModelChecker which extends ProbModelChecker is the model checker used for DTMC
models. Algorithm 14, the optimized probability until computation algorithm for DTMCRs,
is added to this class.

• DTMCSimple is the actual data structure of the DTMCR model used in the extended PRISM.
Transitions are stored as a list of hash tables which maps a state index to a probability value.
Each hash table on the ith position of the list represents transitions from the ith state of the
model. It is modi�ed to support the transition rewards.

• MDPModelChecker which extends ProbModelChecker is the model checker used for MDP
models. Algorithm 36, the optimized probability until computation algorithm for MDPRs, is
added to this class.

• MDPSimple is the actual data structure of the MDPR model used in the extended PRISM.
Transitions are stored as a list of lists of hash tables. The �rst layer list maps a state index to
its action lists and the action list maps an action index to the actual transitions. A method
instantiate MDPSimple from an instance of MDPSparse is added.

• MDPSparse is another implementation of the MDP model used in the original PRISM. It is a
sparse matrix (non-mutable) explicit-state representation of the MDP model. It is smaller and
faster if the modi�cation of the constructed model is not required. This class is unchanged.

• ProbModelChecker, which extends StateModelChecker contains model checking algorithms for
state formulae. The support of model checking probability path reward formulae is added
here.

• StateModelChecker is the super class for explicit-state model checkers. The framework of model
checking PRISM properties are included here. It is modi�ed to support model checking a sub-
AST of ExpressionFilterCust (a class of a property AST element which will be introduced
later).

explicit/rewards is the folder contains all classes related to the reward data structures of explicit
computation engine.

• ConstructRewards is the reward structure constructor. It is modi�ed to support transition
rewards for DTMCRs.
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• MCRewards is the interface provides accesses to explicit-state rewards for both DTMCs and
CTMCs. Two additional API is added, one is used to get transition rewards and the other one
is used to return whether there are negative rewards for the current model.

• MDPRewards is the interface provides accesses to explicit-state rewards for MDPs. One addi-
tional API is added to return whether there are negative rewards for the current model.

• MDPRewardsSimple, which implements MDPRewards, is the actual reward data structure
used for MDPRs which supports both state and action rewards. It is modi�ed to be able to
return a boolean value indicates whether the current model contains negative rewards.

parser is the folder contains classes related to the PRISM parsers for both model and properties
�les. It is also accompanied with related AST data structures and JavaCC (Java Compiler Compiler,
a parser generator for java) parser �les.

• PrismParser is the auto-generated class by JavaCC based on PrismParser.jj. It is the parser
class for both model and properties �les.

• PrismParserConstants is the auto-generated class by JavaCC based on PrismParser.jj. It
contains all the constants of the parser.

• PrismParserTokenManager is also the auto-generated class by JavaCC based on PrismParser.jj.
It is the token manager class for prism parser.

• PrismParser.jj is the JavaCC �le whom the prism parser is auto-generated based on. It is
modi�ed to support the newly introduced syntaxes of PCTLR and �lter properties.

parser/ast is the folder contains all AST element classes of model and properties �le ASTs.

• ExpressionFilter is the AST element class of the �lter property. It is modi�ed to support the
newly introduced �cust� operator.

parser/visitor All operations toward to model and properties ASTs are implemented by using
the Visitor design pattern[28]. This is the folder contains all visitor classes.

• ASTTraverse, which implements ASTVisitor, is the visitor class performances a depth-�rst
traversal of a given AST without modifying any elements of it. It is extended to support the
newly introduced �lter properties.

• ASTTraverseModify, which implements ASTVistor, is the visitor class performances a depth-
�rst traversal of a given AST with the ability to modify the traversed elements. It is extended
to support the newly introduced �lter properties.

• ASTVistor is the interface of the PRISM AST visitor framework.

• SemanticCheck, which extends ASTTraverse, is the visitor class checks the semantic correctness
of a given AST. It is modi�ed to support the semantic checking of the newly introduced �lter
properties.

• Simplify, which extends ASTTraverseModify, is the visitor class simpli�es the given AST.
Performance optimizations of the extended �lter ASTs before passing to the computation
engine are implemented here.

• TypeCheck, which extends ASTTraverse, is the visitor class checks the type correctness of a
given AST, e.g. whether the customization function count() takes no arguments, whether all
operands of the customization function sum() are integers or doubles. It is modi�ed to support
the type correctness checking of the newly introduced �lter properties.
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prism is the folder contains classes of the main PRISM API, the command-line tool, etc.

• PrismSettings is the class of the option dialog. It is modi�ed to add an additional tab for
setups of newly introduced algorithms.

7.2 Newly Introduced Classes

Then the newly introduced classes are introduced as follows.

explicit/rewards is added with one new class.

• MCRewardsSimple, which implements MCRewards, is the actual reward data structure used
for DTMCRs which supports both state and transition rewards. It also can return a boolean
value indicates whether there are negative rewards for the current model.

parser/ast is added with three new classes.

• ExpressionFilterCust is the AST element class of the �cust� �lter property itself.

• ExpressionFilterCustFunc is the AST element class of customization functions of the �cust�
�lter property.

• ExpressionFilterCustVar is the AST element class of customization variables of the �cust� �lter
property.

explicit/probpathrewardformulae is a newly introduced folder contains all classes related to
the PCTLR probability path reward formulae.

• DTMCSimpleAdv, which extends DTMCSimple is the data structure of the DTMCR used
when the concepts of ZSCCs or ZCCs are needed. It extends DTMCSimple with informations
of connected components and all the related algorithms are implemented here.

• LinkedHashStack is the actual implementation of the data structure introduced in De�nition 9.

• MDPSimpleAdv, which extends MDPSimple is the data structure of the MDPR used when the
concepts of ZSCCs or ZCCs are needed. It extends MDPSimple with informations of connected
components and all the related algorithms are implemented here.

• ProbPathRewardsFormulaeChecker is the model checker for PCTLR probability path reward
formulae. Note that in the actual implementation, all top-down with memoization approaches
included in this paper are implemented as a worklist algorithm with recursive procedure calls
while the worklist approaches introduced in this paper are implemented as a worklist algo-
rithm without recursive procedure calls. The Algorithms 6 and 26 and the optimization only
computing probabilities for a subset of the total states of a given model are implemented here.

• ProbPathRewardsFormulaeSettings is the data contract class contains all informations of the
setup tab of model checking probability path reward formulae.

explicit/probpathrewardformulae/multikey is a newly added folder contains all classes of
multi-key data structures used as a unique key of hash tables used in the model checking PCTLR
probability path reward formulae algorithms.

• MultiKey is the interface of all multi-key classes.

• MultiKeyC, which implements MultiKey, is the multi-key class used for computations of cu-
mulative path reward formulae.
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• MultiKeyI, which implements MultiKey, is the multi-key class used for computations of in-
stantaneous path reward formulae.

• MultiKeyF, which implements MultiKey, is the multi-key class used for computations of reach-
ability path reward formulae.

explicit/probpathrewardformulae/speci�cation is a newly introduced folder contains all spec-
i�cation classes.

• DTMCSpeci�cation, which implements Speci�cationMemoized and Speci�cationWorklist, is
the base speci�cation class for DTMCRs.

• DTMCSpeci�cationC, which extends DTMCSpeci�cation, is the speci�cation class as intro-
duced in Algorithm 19, it also includes the implementation of Algorithm 8.

• DTMCSpeci�cationF, which extends DTMCSpeci�cation, is the speci�cation class as intro-
duced in Algorithm 20, it also includes the implementation of Algorithm 13.

• DTMCSpeci�cationI, which extends DTMCSpeci�cation, is the speci�cation class as intro-
duced in Algorithm 18, it also includes the implementation of Algorithm 5.

• MDPSpeci�cation, which implements Speci�cationMemoized and Speci�cationWorklist, is the
base speci�cation class for MDPRs.

• MDPSpeci�cationC, which extends MDPSpeci�cation, is the speci�cation class as introduced
in Algorithm 40, it also includes the implementation of Algorithm 28.

• MDPSpeci�cationF, which extends MDPSpeci�cation, is the speci�cation class as introduced
in Algorithm 41, it also includes the implementation of Algorithm 35.

• MDPSpeci�cationI, which extends MDPSpeci�cation, is the speci�cation class as introduced
in Algorithm 39, it also includes the implementation of Algorithms 25, 32 and 33.

• Speci�cation is the base interface of all speci�cation classes.

• Speci�cationMemoized, which extends Speci�cation, is the base interface of speci�cation classes
for top-down with memoization approaches.

• Speci�cationWorklist, which extends Speci�cation, is the base interface of speci�cation classes
for worklist approaches.

7.3 User Manual of Extended PRISM

Detailed user manual of the original PRISM can be found at PRISM Manual version 4.0.3 included
with the PRISM source code package. In this section, we will illustrated how to use the newly
introduced functionalities of the extended PRISM.

Probability path reward formulae are supported by the extended PRISM property syntax
with the following form:

P operator [ R operator [ rewardprop ] ],

where both P and R operators follow the PRISM property syntax introduced in the manual . Note
that there is no signi�cant distinction between the state R operator and the path R operator. When
the R operator used separately, it means the state R operator, while it is nested with a P operator,
it becomes the path R operator. The only di�erence is that the path R operator can only be used
with bound (< r, etc.) instead of query (=?).
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Example 42. The formula Prmin(Rpath≥1 [F target]), where target is a boolean variable, can be
expressed by the PRISM property Pmin=? [ R>=1 [ F target ] ]. �

Extended �lter properties with �cust� operator can be used by following the syntax intro-
duced in Section 6.

Figure 30: The snapshot of the setup tap for probability path reward formulae algorithms

Path reward formulae setup tab is newly added to the option dialog which can be accessed
via the PRISM menu Options/Options. A snapshot of it is shown in Figure 30.

• Filtered states only indicates whether the probabilities will be computed for all the states or
only the states selected by the �lter properties.
Example 43. The PRISM property:

�lter(print, P=? [ R<1[ F s=5 ] ], s<2),

will only computes Pr(R<1[F s = 5]) for all states where s < 2 are satis�ed when �Filtered
states only� is on, otherwise, the probabilities will be computed for all states of the given
model. The property:

P=? [ R<1[ F s=5 ] ],

will only computes Pr(R<1[F s = 5]) for initial states when the parameter is on. �

• DTMCR Pr I method indicates which approach will be used to compute probabilities of in-
stantaneous path reward formulae over DTMCRs and it has three options: �Top-down with
Memoization�, �Bottom-up Method� and �Worklist�.

• DTMCR Pr C method indicates which approach will be used to compute probabilities of
cumulative path reward formulae over DTMCRs and it has two options: �Top-down with
Memoization� and �Worklist�.

• DTMCR Pr F method indicates which approach will be used to compute probabilities of
reachability path reward formulae over DTMCRs and it has two options: �Top-down with
Memoization� and �Worklist�.
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• MDPR Pr I method indicates which approach will be used to compute probabilities of in-
stantaneous path reward formulae over MDPRs and it has three options: �Top-down with
Memoization�, �Bottom-up Method� and �Worklist�.

• MDPR Pr C method indicates which approach will be used to compute probabilities of cumula-
tive path reward formulae over MDPRs and it has two options: �Top-down with Memoization�
and �Worklist�.

• MDPR Pr F method indicates which approach will be used to compute probabilities of reacha-
bility path reward formulae over MDPRs and it has two options: �Top-down with Memoization�
and �Worklist�.

• Connected component type indicates which type of connected components will be used to
compute probabilities of reachability path reward formulae and it has two options: �ZSCC�
and �ZCC�.

• Optimized until indicates whether Algorithms 14 and 36 will be applied over DTMCRs and
MDPRs, respectively.

• Convergence criterion is the convergence criterion value used for the newly introduced algo-
rithms.
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8 Experiments

In this section, we will test the newly introduced functionalities of the extended PRISM. The test
cases are divided into three groups: test cases for extended �lters, PCTLR model checking over
DTMCRs and PCTLR model checking over MDPRs. Test cases in each group are further split into
three categories, correctness, performance and robustness, if applicable. Let us start by taking a
look at how to construct model �les in PRISM.

8.1 Modeling DTMCRs and MDPRs in PRISM

[5] provides a good introduction about the PRISM language. To write the model �le of a given
DTMCR or MDPR in PRISM, we can �rst construct the model without assigning rewards to any
states, transitions (DTMCR) or actions (MDPR).

Example 44. Let us have a look at two examples of model �les of a DTMCR model and a MDPR
model. The DTMCR shown in Figure 3 can be described by using the code as follows:

1 dtmc
2

3 module VendingMachine
4

5 s : [ 0 . . 5 ] in i t 0 ;
6

7 [ ] s=0 −> ( s '=1) ;
8 [ ] s=1 −> 0.1 : ( s '=0) + 0 .9 : ( s '=2) ;
9 [ ] s=2 −> 0.5 : ( s '=3) + 0 .5 : ( s '=4) ;
10 [ ] s=3 −> ( s '=5) ;
11 [ ] s=4 −> ( s '=5) ;
12 [ f e e ] s=5 −> ( s '=0) ;
13

14 endmodule

and the MDPR shown in Figure 18 can be expressed by using the following code:

1 mdp
2

3 module VendingMachine
4

5 s : [ 0 . . 4 ] in i t 0 ;
6

7 [ i n i t i a l i z e ] s=0 −> ( s '=1) ;
8 [ c ance l ] s=1 −> ( s '=0) ;
9 [ s e l e c t ] s=1 −> 0.5 : ( s '=2) + 0 .5 : ( s '=3) ;
10 [ n o t i f y ] s=2 −> ( s '=4) ;
11 [ n o t i f y ] s=3 −> ( s '=4) ;
12 [ r e l e a s e ] s=4 −> ( s '=0) ;
13

14 endmodule

Note that the above two model �les only include the DTMCR and the MDPR without rewards. �

Once the model is constructed, we can assign the rewards to the corresponding states, transitions
or actions. The way to express state rewards is the same to both DTMCR and MDPR models, and
describing action rewards for MDPR models is also quite straightforward.
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Example 45. The state rewards and action rewards of the MDPR in Figure 18 can be described
by the following reward structure:

1 rewards
2 s=2 : 1 ;
3 s=3 : 2 ;
4 [ s e l e c t ] true : −0.01;
5 [ r e l e a s e ] true : −0.01;
6 endrewards

and for the DTMCR in Figure 3, we can apply the similar approach to express the state rewards
and the reward of the transition from s5 to s0 with the reward structure as follows:

1 rewards
2 s=3 : 1 ;
3 s=4 : 2 ;
4 [ f e e ] true : −0.01;
5 endrewards

However, this will not assign any reward value to the transition from s1 to s2 and we cannot �x this
problem by simply labeling transitions from s1 with �fee� as follows:

1 [ f e e ] s=1 −> 0.1 : ( s '=0) + 0 .9 : ( s '=2) ;

as this will assign transitions from s1 to both s0 and s2 with reward -0.01 which is not the same as
shown by the DTMCR in Figure 3. Also PRISM does not provide a way to give a special label to a
speci�c transition in DTMCRs. �

Next, let us discuss how to resolve the above issue. One way is applying the transition rewards elim-
ination algorithm introduced in Section 2.3 with the pros and cons stated previously. The other way
is modeling each transition with separate commands based on the support of local nondeterminism
in PRISM. For a DTMCR model, when there are more than one command whose guard is satis�ed
at the same time, the probability to choose each command is the same and the total probability is
1. Hence, we can model the transitions from s1 in DTMCR shown in Figure 3 with following code
instead:

1 [ ] s=1 −> ( s '=0) ;
2 [ f e e ] s=1 −> ( s '=2) ;
3 [ f e e ] s=1 −> ( s '=2) ;
4 [ f e e ] s=1 −> ( s '=2) ;
5 [ f e e ] s=1 −> ( s '=2) ;
6 [ f e e ] s=1 −> ( s '=2) ;
7 [ f e e ] s=1 −> ( s '=2) ;
8 [ f e e ] s=1 −> ( s '=2) ;
9 [ f e e ] s=1 −> ( s '=2) ;
10 [ f e e ] s=1 −> ( s '=2) ;

Though it seems that it creates 9 transitions from s1 to s2 each with probability 0.1, all �parallel�
transitions will be merged to a single transition in PRISM. So by using the above code, the transitions
from s1 will end up as one to s0 with probability 0.1 and one to s2 with probability 0.9 which is the
same as desired. From here, we can label all commands describing the transition from s1 to s2 with
�fee� as shown above to assign the corresponding transition reward.

To generalize this approach for a given DTMCRD = (S, s,P, L, rs, rt), in order to express transitions
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from a given state s in separate commands, one needs to �nd the smallest10 integer n, where:

∀s′ ∈ S.∃xs′ ∈ N.(
xs′

n
= P(s, s′)).

Then ∀s′ ∈ S, write n×P(s, s′) commands with the following form:

[ ] <At state s> -> (<At state s′>);

Once we have the model �le with transitions described by separating commands, we can label
commands for each transition with di�erent names and assign each transition with di�erent reward
values when needed. If n does not exist, then this approach is not applicable to that speci�c model.

Note that the second approach is a workaround based on the gray side of PRISM language speci-
�cation. PRISM treats the appearance of local nondeterminism as the result of a user error and a
warning will be given if there is one and the model �le will become almost impossible to understand
when model becomes bigger and more complicate. Therefore, this approach is not recommended for
big and complex models and the approach with transition reward elimination should be considered
instead. On the other hand, this approach works �ne with small and simple models as its ease to
apply.

8.2 Extended Filters

In this section, several test cases will be given covering the correctness and robustness aspects of the
implementation of the extended �lters. As the performance gains of the optimizations introduced
in this paper are straightforward and the implementation does not provide the interfaces to control
whether they are applied or not. Therefore, the performance gains of these optimizations will not
be covered here.

8.2.1 Correctness Tests

s1 : 1 1 s2 : 1 s4 : 1s3 : 11 11 s5 : 1

1

{s=1} {s=2} {s=3} {s=4} {s=5}

Figure 31: A DTMCR for testing extended �lters

Test Case 1. Verify the correctness of the implementation of extended �lters

Model: DTMCR in Figure 31, the model �le can be found at Section B.1.

Conditions: c in a declared integer constant which is assigned as 3.

Result: The test results are shown in Table 3. All the properties can be easily computed by hand
to verify the results are all correct and the computation details are omitted. �

8.2.2 Robustness Tests

The test cases in this section will cover the situations when a user mis-uses the �cust� �lter properties
where an error message containing the problem information should be shown to the user.

10This is not a necessary requirement, but it will signi�cantly reduce the code length.
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Table 3: Experiment results of Test Case 1

Properties Results

�lter(cust, 1+2/3) 1.6666666666666665

�lter(cust, (1+2)/3) 1.0

�lter(cust, (c+3)/4) 1.5

�lter(cust, count(), s>1&s<5) 3

�lter(cust, min(s)) 1

�lter(cust, max(s)) 5

�lter(cust, sum(s)) 15

�lter(cust, avg(s)) 3.0

�lter(cust, sum(s+1)/count()) 4.0

�lter(cust, max(@v); v: R=? [ F s=5 ]) 4.0

�lter(cust, sum(@v*@ss); v: R=? [ F s=5 ], s>1) 1.2

�lter(cust, sum(@v*@ss); v: R=? [ F s=5 ], s<5) 2.0

Test Case 2. A variable is used out of the scope of a customization function

Model: Same as Test Case 1.

Property: �lter(cust, s)

Result: An error message is given as shown in Figure 32. �

Figure 32: The error message of Test Case 2

Test Case 3. An unde�ned identi�er is used

Model: Same as Test Case 1.

Property: �lter(cust, avg(s0))

Result: An error message is given as shown in Figure 33. �

Figure 33: The error message of Test Case 3

Test Case 4. A cust-variable is used out of the scope of a customization function

Model: Same as Test Case 1.

Property: �lter(cust, @v; v: R=? [ F s=5 ])
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Result: An error message is given as shown in Figure 34. �

Figure 34: The error message of Test Case 4

Test Case 5. An unde�ned cust-variable is used

Model: Same as Test Case 1.

Property: �lter(cust, avg(@v))

Result: An error message is given as shown in Figure 35. �

Figure 35: The error message of Test Case 5

8.3 PCTLR Model Checking over DTMCRs

The functionality of the extended PRISM model checking PCTLR formulae over DTMCRs will be
tested in this section.

8.3.1 Correctness Tests

First let us test the correctness of the extended PRISM model checking PCTLR formulae over
DTMCRs by computing the four cases in Examples 7, 8, 10 and 16. The results computed by the
extended PRISM should almost be the same as the results we did manually. There might be some
minor di�erences due to the known precision lost problem of double value computations in JAVA.

Test Case 6. Verify the result in Example 7

Model: DTMCR D in Figure 3, the model �le can be found at Section B.2

Property: P=? [ R>0 [ I=3 ] ]

Conditions: All four combinations of:

• whether using the �Top-down with Memoization� or the �Worklist� approach;

• whether �Filtered states only� is on or o�.

Result: 0.8999999999999999 for all above four conditions which is slightly di�erent from the result
0.9 we got from the manual computation. This is due to the precision lost problem of JAVA, when
execute the following JAVA code snippet:

1 double i = 1 .0 / 10 , sum = 0 ;
2 f o r ( i n t j = 0 ; j < 9 ; j++) { sum += i ; }
3 System . out . p r i n t l n (sum) ;
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the actual output (the �nal value of sum) is 0.8999999999999999 while the expected result is 0.9. The
above JAVA code snippet mimics the way how PRISM computes the probability of the transition
of D from s1 to s2 with the model �le we provide. Thus the value of P(s1, s2) in the PRISM
DTMCR model of D is 0.8999999999999999. Therefore, the extended PRISM gives the result as we
expected. �

Test Case 7. Verify the result in Example 8

Model: Same as Test Case 6.

Property: �lter(print, P=? [ R>0 [ I=3 ] ])

Conditions: Bottom-up Method.

Result: 0.8999999999999999 for state s0 and 0 for the rest states which is the same as the result we
got by the manual computation regardless the precision lost problem. �

Test Case 8. Verify the result in Example 10

Model: Same as Test Case 6.

Property: �lter(state, P=? [ R>=1 [ C<=3 ] ], s=1)

Conditions: Same as Test Case 6.

Result: 0.44999999999999996 for all four conditions which is the same as the result in Example 10
despite of the precision lost problem. �

Test Case 9. Verify the result in Example 16

Model: DTMCR in Figure 8, the model �le can be found at Section B.3.

Property: P=? [ R<1 [ F s=4 ] ]

Conditions: All eight combinations of:

• whether using the �Top-down with Memoization� or the �Worklist� approach;

• whether �Optimized until� is on or o�;

• whether �Filtered states only� is on or o�.

Result: The results with di�erent values of the convergence criterion ε for using both the �ZSCC�
and the �ZCC� approach is shown in Table 4, the results for each approach under the same con-
vergence criterion value are the same for all eight combinations. We can see easily from the
table that the smaller the convergence criterion value is, the more precise the result is ( 8

23 ≈
0.3478260869565217391304347826087). �

Table 4: Experiment results of Test Case 9

ε Results for ZSCCs Results for ZCCs

10−6 0.34782600175006134 0.34782578400021813

10−7 0.3478260802165576 0.34782606299220475

10−8 0.34782608642338003 0.3478260802165576

10−9 0.3478260868065757 0.34782608642338003

10−10 0.3478260869446608 0.3478260869143494

10−15 0.3478260869565216 0.3478260869565213

10−20 0.34782608695652173 0.34782608695652173
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Next, we modi�ed a dice model included in the PRISM source code to continue the correctness tests
of the extended PRISM model checking PCTLR formulae over DTMCRs. The modi�ed model is
shown in Figure 36 and the modi�ed parts are marked as dark yellow.

s0

0.5 : 1

s1

s3

s4

s5

s6

0.5 : 1

0.5 : 1

s2

0.5

0.5 : 1

0.5 : 1

0.5 : 1

0.5 : 1

s7 : 1

s8 : 2

s9 : 3

s10 : 4

s11 : 5

s12 : 6

0.5

0.5 : 1

0.5 : 1

0.5 : 1

0.5 : 1

0.5 : 1

{s=7, d=1}

{s=7, d=2}

{s=7, d=3}

{s=7, d=4}

{s=7, d=5}

{s=7, d=6}

{s=3, d=0}

{s=4, d=0}

{s=5, d=0}

{s=6, d=0}

{s=2, d=0}

{s=1, d=0}

{s=0, d=0}

1

1

1

1

1

1

Figure 36: A DTMCR of the modi�ed dice model

Test Case 10. Verify properties over the modi�ed dice model

Model: DTMCR in Figure 36, the model �le can be found at Section B.4.

Conditions: The options are set as follows:

• using the �Worklist� approach;

• �Optimized until� is on;

• �Filtered states only� is on;

• �ZSCC� is the used connected component type;

• convergence criterion value is 10−6.

Result: The results can be found at Table 5. As all the properties can be easily computed by hand
to verify that they are all correct, thus the computation details are omitted. �

8.3.2 Performance Tests

Test cases in this section cover the performance aspects we talked in this paper.

Test Case 11. Performance comparisons between approaches of computing PrD,s(R
path
∼r [I=k])

Model: DTMCR in Figure 6, the model �le can be found at Section B.5.

Property: P=? [ R<=0 [ I=n ] ]

Conditions: The property are veri�ed under the following conditions:
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Table 5: Experiment results of Test Case 10

Properties Result

P=? [ R<=0 [ I=3 ] ] 0.25

P=? [ R>3 [ I=3 ] ] 0.375

P=? [ R>=6 [ I=3 ] ] 0.125

P=? [ R<2 [ C<=3 ] ] 0.125

P=? [ R<3 [ C<=5 ] ] 0.0625

P=? [ R>10 [ C<=5 ] ] 0.375

P=? [ R>12[ C<=5 ] ] 0.25

P=? [ R>13 [ C<=5 ] ] 0.125

P=? [ R<=3 [ F s=7 & d=1 ] ] 0.25

• C1: �Top-down with Memoization� and �Filtered states only� is o�;

• C2: �Bottom-up Method�;

• C3: �Top-down with Memoization� and �Filtered states only� is on.

Result: The results can be found at Table 6. From the results, it is clear that the �Top-down
with Memoization� approach has quite some overheads of caching computed values and recursive
procedure calls. Therefore, even though it computes less values than the �Bottom-up Method�, it is
still much slower than the �Bottom-up Method�. However, the �Top-down with Memoization� can
apply the �Filtered states only� optimization which signi�cantly improves the performance if the set
of states, which the property should be veri�ed on them, is much smaller than the set of all states
in the model. In this case, only the property veri�cation result of the initial state is required. �

Table 6: Experiment results of Test Case 11

n
Running times

C1 C2 C3

100 0.006s 0.001s <0.001s

200 0.039s 0.012s <0.001s

300 0.087s 0.026s <0.001s

500 0.211s 0.042s 0.001s

1000 0.953s 0.152s 0.002s

2000 6.625s 0.525s 0.003s

s0

s1

0.5 0.5

s2

0.5

s3

0.5

0.50.5

s2n-2

s2n-1

0.50.5

s2n

0.5

0.5

1

{target}

0.5 0.5

0.5 0.5

……

……

Figure 37: A DTMCR for probability until computation performance tests
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Test Case 12. Test performance improvement of Algorithm 14

Model: DTMCR in Figure 37, the model �le can be found at Section B.6.

Property: P=? [ R<=0 [ F s=2*n ] ]

Conditions: The property are veri�ed under the following conditions:

• C1: �Optimized until� is o�;

• C2: �Optimized until� is on.

The following options are set the same for both conditions:

• �Filtered states only� is on;

• using �Top-down with Memoization� approach;

• �ZSCC� is the used connected component type;

• convergence criterion value is 10−6.

Result: The results can be found at Table 7. We can see that the newly introduced algorithm runs
faster than the existing one with a bit precision lost. �

Table 7: Experiment results of Test Case 12

n
Running times Results

C1 C2 C1 C2

100 0.048s 0.028s 0.9999822081707235 0.9999055906544994

200 0.108s 0.065s 0.9999643272542411 0.9998102367278698

300 0.161s 0.091s 0.9999464466574863 0.999714891894469

400 0.334s 0.133s 0.9999285663804587 0.9996195561534309

500 0.422s 0.239s 0.9999106864231516 0.9995242295038884

s0

0.5

……

s1 s3

0.5

0.5

s2

0.50.5

0.5

……

0.5

0.5

s2n-2

s2n-1

0.5

0.5

0.50.5 s2n+2

1
s2n : r

s2n+1

0.5

0.5

1

1

Figure 38: A DTMCR for connected component performance tests

Test Case 13. Performance comparisons between approaches based on ZSCCs and ZCCs

Model: DTMCR in Figure 38, the model �le can be found at Section B.7.

Property: P=? [ R<=0 [ F s=2*n+2 ] ]

Conditions: The property are veri�ed under the following conditions:

• C1: �ZSCC� is the used connected component type;

• C2: �ZCC� is the used connected component type.
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The following options are set the same for both conditions:

• �Filtered states only� is on;

• using �Top-down with Memoization� approach;

• �Optimized until� is on;

• convergence criterion value is 10−6.

Result: The results can be found at Table 8. When r=1, the model is the similar case as the DTMCR
in Figure 15 (a) and r=0 covers the case as the DTMCR in Figure 15 (b). The result running times
are the same as expected. �

Table 8: Experiment results of Test Case 13

n

Running times

r = 1 r = 0

C1 C2 C1 C2

100 0.038s 0.048s 0.045s 0.029s

200 0.64s 0.098s 0.068s 0.04s

300 0.107s 0.16s 0.1s 0.073s

500 0.223s 0.361s 0.259s 0.164s

750 0.416s 0.614s 0.424s 0.321s

1000 0.632s 0.959s 0.673s 0.497s

s0

1/n

s1 : 1

1/n
s2 : 2

sn : n

1/n

1/n

sn+1

1

1

1

1

1

……

Figure 39: A DTMCR for performance tests of the worklist approach

Test Case 14. Performance comparisons between the �Top-down with Memoization� and �Worklist�
approaches

Model: DTMCR in Figure 39 with n=1000, the model generator (a JAVA script generates the model
�le) can be found at Section A.1. The reason of using this model is that it has more transitions from
a single state than a normal DTMCR model, which gives a bad situation of the worklist approach
as it needs to push all the following states into the stack when it mimics the recursive procedure
call.

Property: P=? [ R<=300 [ I=step ] ], where step is an integer constant declared in the properties
�le.

Conditions: The property are veri�ed under the following conditions with �Filtered states only� is
on:

85



Han Yue Extending Stochastic Model Checking with Path Rewards

• C1: using �Top-down with Memoization� approach;

• C2: using �Worklist� approach.

Result: The results can be found at Table 9, where OOM stands for �Out Of Memory�. The results
table shows that the worklist approach has more overheads than the existing recursive procedure
calls. This may be due to the additional time spend on instantiating classes, accessing data from
a class instance, queue and stack operations. However, it has a better memory performance, which
means it can handle more complicate problems. �

Table 9: Experiment results of Test Case 14

step
Running times

C1 C2

151 0.122s 0.215s

301 0.261s 0.372s

451 0.471s 0.561s

601 0.563s 0.937s

1501 1.339s 2.691s

3001 OOM 6.753s

4501 OOM 21.373s

The tests of the performance comparison between the algorithms introduced in this paper for comput-
ing PrD,s(R

path
∼r [F Φ]) and the algorithms introduced in [11] are also conducted. As the algorithms

introduced in [11] are similar to the bottom-up method of the approaches included in this paper.
Therefore, the performance comparison results are the same as Test Case 11. The approaches in-
troduced in this paper are slower, while the �Filtered states only� optimization can be applied to
signi�cantly improve the performance in certain situations.

8.3.3 Robustness Tests

Finally, the robustness aspect is covered in this section.

Test Case 15. Compute PrD,s(R
path
∼r [F Φ]) over DTMCRs with negative rewards

Model: Same as Test Case 9 by replacing all the reward values r with −r.

Property: Same as Test Case 9

Result: An error message is given as shown in Figure 40. �

Figure 40: The error message of Test Case 15

8.4 PCTLR Model Checking over MDPRs

In this section, the functionality of the extended PRISM model checking PCTLR formulae over
MDPRs will be tested. Because the performance comparison results between di�erent approaches of
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MDPRs are the same as DTMCRs, hence only the correctness and robustness aspects are covered.

8.4.1 Correctness Tests

Similar to the test cases of DTMCRs, we will test the correctness of the extended PRISM model
checking PCTLR formulae over MDPRs by computing the four cases in Examples 31 to 33 and 38.

Test Case 16. Verify the result in Example 31

Model: MDPR in Figure 18, the model �le can be found at Section B.8

Property: Pmax=? [ R>1 [ I=2 ] ]

Conditions: All four combinations of:

• whether using the �Top-down with Memoization� or the �Worklist� approach;

• whether �Filtered states only� is on or o�.

Result: 0.5 for all above four conditions which is the same as the manually computed result. �

Test Case 17. Verify the result in Example 32

Model: Same as Test Case 16.

Property: �lter(print, Pmax=? [ R>1 [ I=2 ] ])

Conditions: Bottom-up Method.

Result: 0.5 for state s0 and 0 for the rest states, and it is the same as we computed in Example 32. �

Test Case 18. Verify the result in Example 33

Model: Same as Test Case 16.

Property: Pmax=? [ R>=1 [ C<=3 ] ]

Conditions: Same as Test Case 16.

Result: 0.5 for all four conditions which is the same as the result shown in Example 33. �

Test Case 19. Verify the result in Example 38

Model: MDPR in Figure 23, the model �le can be found at Section B.9.

Property: Pmin=? [ R>=1 [ F s=4 ] ]

Conditions: All sixteen combinations of:

• whether using the �Top-down with Memoization� or the �Worklist� approach;

• whether using the �ZSCC� or the �ZCC� approach;

• whether �Filtered states only� is on or o�;

• whether �Optimized until� is on or o�.

Result: 0.5 for all above sixteen conditions as we expect. �

Then two simple MDPRs are created to further test the correctness of the extended PRISM model
checking PCTLR formulae over MDPRs. The models are shown in Figure 41.

Test Case 20. Verify properties over a simple MDPR without ZSCCs

Model: MDPR in Figure 41 (a), the model �le can be found at Section B.10.

Conditions: Same as Test Case 10
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(a) A simple MDPR without ZSCCs
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(b) A simple MDPR with ZSCCs

Figure 41: Two simple MDPRs

Result: The results can be found at Table 10. As all the properties can be easily computed by hand
to verify that they are all correct, thus the computation details are omitted. �

Table 10: Experiment results of Test Case 20

Properties Result

Pmin=? [ R<=1 [ I=3 ] ] 0.3

Pmax=? [ R<=1 [ I=3 ] ] 0.5

Pmin=? [ R<=1 [ I=5 ] ] 0.3

Pmax=? [ R<=1 [ I=5 ] ] 0.5

Pmin=? [ R<=5 [ C<=4 ] ] 0.75

Pmax=? [ R<=5 [ C<=4 ] ] 1.0

Pmin=? [ R<=2 [ C<=4 ] ] 0.09

Pmax=? [ R<=2 [ C<=4 ] ] 0.25

Pmin=? [ R>1 [ I=3 ] ] 0.5

Pmax=? [ R>1 [ I=3 ] ] 0.7

Pmin=? [ R>1 [ I=7 ] ] 0.5

Pmax=? [ R>1 [ I=7 ] ] 0.7

Pmin=? [ R>=5 [ C<=4 ] ] 0

Pmax=? [ R>=5 [ C<=4 ] ] 0.35

Pmin=? [ R>=2 [ C<=4 ] ] 1.0

Pmax=? [ R>=2 [ C<=4 ] ] 1.0

Test Case 21. Verify properties over a simple MDPR with ZSCCs

Model: MDPR in Figure 41 (b), the model �le can be found at Section B.11.

Conditions: Same as Test Case 10

Result: The results are shown at Table 11. As all the properties can be easily computed by hand to
verify that they are all correct, thus the computation details are omitted. �
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Table 11: Experiment results of Test Case 21

Properties Result

Pmin=? [ R>1 [ F s=4 ] ] 0.4

Pmax=? [ R>1 [ F s=4 ] ] 0.5

Pmin=? [ R>2 [ F s=4 ] ] 0.0

Pmax=? [ R>2 [ F s=4 ] ] 0.5

Pmin=? [ R<2 [ F s=4 ] ] 0.5

Pmax=? [ R<2 [ F s=4 ] ] 0.6

8.4.2 Robustness Tests

At last, two more test cases will cover the situations when a user mis-uses the functionalities of the
extended PRISM model checking PCTLR formulae over MDPRs.

Test Case 22. Compute PrM,s(R
path
∼r [F Φ]) over MDPRs with negative rewards

Model: Same as Test Case 19 by replacing all the reward values r with −r.

Property: Same as Test Case 19

Result: An error message is given as shown in Figure 42. �

Figure 42: The error message of Test Case 22

Test Case 23. Verify a �cust� �lter property with @ss over MDPRs

Model: Same as Test Case 19.

Property: �lter(cust, sum(@ss*@v); v: Pmin=? [ R>=1 [ F s=4 ] ])

Result: An error message is given as shown in Figure 43. �

Figure 43: The error message of Test Case 23
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9 Conclusion

In this paper, we extended both the syntax and semantics of the PCTL with state reward formulae.
The extended logic is called PCTLR which includes instantaneous, cumulative and reachability
path reward formulae. The PCTLR can be used to describe properties for both DTMCRs and
MDPRs. The PCTLR model checking algorithms over DTMCRs and MDPRs have been discussed
and developed. We also provided some performance optimizations towards these algorithms.

Meanwhile, we extended the syntax and semantics of the existing PRISM �lter property with an ad-
ditional operator �cust� which grants PRISM properties with more �exibilities. Several performance
optimizations have been applied to the computations of the newly introduced property type.

Besides the theoretical work mentioned above, we also implemented these concepts as extensions of
PRISM which is implemented in Java. The extended PRISM has been tested from three aspects:
correctness, performance and robustness and the results are satisfying as expected.

9.1 Related work

After this project is done, some papers with the related topic have been found and studied. Two
papers with the algorithms similar to the ones presented in this paper are [29, 30]. [29] introduces a
model checking approach for analyzing Discrete-time Markov Reward Models (DMRM). A DMRM
with a single reward structure is almost de�ned the same as the DTMCR introduced in this paper,
the only di�erence is that a DMRM does not have transition rewards. In [29], the PCTL is extended
as the Probabilistic Reward CTL (PRCTL) with some reward constraints. One type of PRCTL
state formulae it introduces is:

P∼p[Φ UNJ Φ],

where Φ is a state formula, ∼∈ {<,>,≤,≥}, p ∈ [0, 1], N ⊆ N ∪ {∞} and J ⊆ R≥0. This type
of PRCTL state formulae can express the same meaning of the following type PCTLR formulae
introduced in this paper:

P∼p[R
path
∼r [F Φ],

by letting N = {∞}, J = {j ∈ R≥0 | j ∼ r}, then the following formula is equal to the above one:

P∼p[true U
N
J Φ].

The paper introduces an e�cient algorithm which is capable to model checking such formulae. The
algorithm unfolds the given DMRM step by step from some initial states and stops if some conditions
are satis�ed. For the unbounded time case, it also uses the concept of the ZSCCs. As at each step,
it only keeps unfolding the model along those paths satisfying the reward conditions. Therefore,
the sum of total probabilities of the paths will be unfolded is monotonous decreasing when step
increases. This grants the correctness for the algorithm to stop once the sum is smaller than p when
∼∈ {>,≥}. The support of transition rewards should be easy to be extended for this algorithm.
However, as the potential problem it may cause as we discussed earlier in this paper, the concept of
adding intermediate states for non-zero reward transitions go out of a ZSCC should also be applied.

To sum it up, the algorithm introduced in [29] has the similar approach as introduced in this paper
to solve the same problem, while the former one follows a breadth-�rst traversal of the unfolded
path forest of a given DMRM and the later one follows a depth-�rst traversal of the unfolded path
forest of a given DTMCR. They both have the same running complexity.

[30] presents an approach to model check quantile queries for until properties in MDP with non-
negative rewards on states. PRCTL supports the type of path formulae Φ U≤r Φ is introduced,
where Φ is a state formula and r ∈ N. The sub-problem the paper solves to achieve its �nal goal is
computing the probability PrM,s(Φ

′ U≤r Φ), which means the same as PrM,s(R
path
≤r [F Φ]) introduced

in this paper when Φ′ = true. The way the paper uses to compute PrM,s(Φ
′ U≤r Φ) is solving a
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linear program. For instance, given an MDP with non-negative integer state reward M , let xM,s,i

be PrmaxM,s (true U≤i Φ). To compute PrmaxM,s (true U≤r Φ) for all state s ∈ S, the following linear
program will be solved:

minimize
∑

xM,s,i subject to the constraints:

xM,s,i ≥ 0 for all s ∈ S and i ≤ r
xM,s,i = 1 for all s ∈ Sat(Φ) and i ≤ r

xM,s,i ≥
∑
s′∈S

Steps(s, a)(s′) · xM,s′,i−rs(s′). for all s ∈ S and a ∈ A(s) and rs(s
′) ≤ i ≤ r

The running complexity to solve this linear program is polynomial to the number of equations, which
is greater than r multiplies |S|. To compute PrmaxM,s (true U≤r Φ) with the approach introduced in
this paper, we need at most r multiplies |S| equations and each equation can be computed in linear
time of the operations included in it if the equation is not used to de�ne a state belongs to a ZSCC.
Therefore, our approach yields a generally better running complexity than the approach introduced
in [30] and in the worst case when the whole model is a ZSCCn, our approach regresses to the same
running complexity as solving the above LP problem.
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A Model Generators

A.1 Generator based on the model pattern in Figure 39

1 import java . i o . Buf feredWriter ;
2 import java . i o . F i l e ;
3 import java . i o . F i l eWr i t e r ;
4 import java . i o . IOException ;
5

6 /∗∗
7 ∗
8 ∗ author Han Yue
9 ∗/
10 pub l i c c l a s s DTMCRPerfStackLoad {
11

12 /∗∗
13 ∗ param args the command l i n e arguments
14 ∗/
15 pub l i c s t a t i c void main ( St r ing [ ] a rgs ) throws IOException {
16 i n t s i z e = 10000;
17

18 F i l e f i l e = new F i l e ( "DTMCRPerfStackLoad .pm" ) ;
19 Buf feredWriter output = new Buf feredWriter (new Fi l eWr i t e r ( f i l e ) )

;
20 output . wr i t e ( "dtmc\ r \n" ) ;
21 output . wr i t e ( "\ r \n" ) ;
22

23 output . wr i t e ( "module model\ r \n" ) ;
24 output . wr i t e ( "\ t s : [ 0 . . " + ( s i z e + 2) + " ] i n i t 0 ; \ r \n" ) ;
25

26 f o r ( i n t i = 1 ; i <= s i z e ; i++) {
27 output . wr i t e ( "\ t [ ] s=0 −> ( s '=" + i + " ) ; \ r \n" ) ;
28 output . wr i t e ( "\ t [ ] s=" + i + " −> ( s '=" + ( s i z e + 2) + " ) ; \ r

\n" ) ;
29 }
30 output . wr i t e ( "\ t [ ] s=" + ( s i z e + 2) + " −> ( s '=0) ; \ r \n" ) ;
31 output . wr i t e ( "endmodule\ r \n" ) ;
32 output . wr i t e ( "\ r \n" ) ;
33

34 output . wr i t e ( " rewards \ r \n" ) ;
35 output . wr i t e ( "\ t t ru e : s ; \ r \n" ) ;
36 output . wr i t e ( " endrewards " ) ;
37 output . c l o s e ( ) ;
38 }
39 }

B Model Files

B.1 DTMCR in Figure 31

1 dtmc
2

3 module F i l t e rT e s t e r

iii



Han Yue Extending Stochastic Model Checking with Path Rewards

4

5 s : [ 1 . . 5 ] in i t 1 ;
6

7 [ ] s<5 −> ( s '= s+1) ;
8 [ ] s=5 −> ( s '=1) ;
9

10 endmodule
11

12 rewards
13 true : 1 ;
14 endrewards

B.2 DTMCR in Figure 3

1 dtmc
2

3 module VendingMachine
4

5 s : [ 0 . . 5 ] in i t 0 ;
6

7 [ ] s=0 −> ( s '=1) ;
8 [ ] s=1 −> ( s '=0) ;
9 [ f e e ] s=1 −> ( s '=2) ;
10 [ f e e ] s=1 −> ( s '=2) ;
11 [ f e e ] s=1 −> ( s '=2) ;
12 [ f e e ] s=1 −> ( s '=2) ;
13 [ f e e ] s=1 −> ( s '=2) ;
14 [ f e e ] s=1 −> ( s '=2) ;
15 [ f e e ] s=1 −> ( s '=2) ;
16 [ f e e ] s=1 −> ( s '=2) ;
17 [ f e e ] s=1 −> ( s '=2) ;
18 [ ] s=2 −> 0.5 : ( s '=3) + 0 .5 : ( s '=4) ;
19 [ ] s=3 −> ( s '=5) ;
20 [ ] s=4 −> ( s '=5) ;
21 [ f e e ] s=5 −> ( s '=0) ;
22

23 endmodule
24

25 rewards
26 s=3 : 1 ;
27 s=4 : 2 ;
28 [ f e e ] true : −0.01;
29 endrewards

B.3 DTMCR in Figure 8

1 dtmc
2

3 module ZSCC
4

5 s : [ 0 . . 6 ] in i t 0 ;
6

7 [ ] s=0 −> 0.5 : ( s '=1) + 0 .5 : ( s '=5) ;
8 [ c o s t ] s=1 −> ( s '=2) ;
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9 [ ] s=1 −> ( s '=3) ;
10 [ ] s=1 −> ( s '=4) ;
11 [ ] s=1 −> ( s '=4) ;
12 [ ] s=2 −> 0.25 : ( s '=1) + 0.25 : ( s '=3) + 0 .5 : ( s '=4) ;
13 [ ] s=3 −> 0.5 : ( s '=1) + 0 .5 : ( s '=2) ;
14 [ ] s=4 −> ( s '=4) ;
15 [ ] s=5 −> ( s '=6) ;
16 [ ] s=6 −> ( s '=6) ;
17

18 endmodule
19

20 rewards
21 s=5 : 0 ;
22 [ c o s t ] true : 1 ;
23 endrewards

B.4 DTMCR in Figure 36

1 dtmc
2

3 module d i c e
4

5 // l o c a l s t a t e
6 s : [ 0 . . 7 ] in i t 0 ;
7 // value o f the d i c e
8 d : [ 0 . . 6 ] in i t 0 ;
9

10 [ ] s=0 −> 0.5 : ( s '=1) + 0 .5 : ( s '=2) ;
11 [ d i s tu rb ] s=1 −> ( s '=3) ;
12 [ ] s=1 −> ( s '=4) ;
13 [ ] s=2 −> 0.5 : ( s '=5) + 0 .5 : ( s '=6) ;
14 [ d i s tu rb ] s=3 −> ( s '=3) ;
15 [ ] s=3 −> ( s '=7) & (d'=1) ;
16 [ ] s=4 −> 0.5 : ( s '=7) & (d'=2) + 0 .5 : ( s '=7) & (d'=3) ;
17 [ ] s=5 −> 0.5 : ( s '=7) & (d'=4) + 0 .5 : ( s '=7) & (d'=5) ;
18 [ ] s=6 −> 0.5 : ( s '=2) + 0 .5 : ( s '=7) & (d'=6) ;
19 [ ] s=7 −> ( s '=7) ;
20

21 endmodule
22

23 rewards
24 [ ] s<7 : 1 ;
25 d = 1 : 1 ;
26 d = 2 : 2 ;
27 d = 3 : 3 ;
28 d = 4 : 4 ;
29 d = 5 : 5 ;
30 d = 6 : 6 ;
31 endrewards

B.5 DTMCR in Figure 36

1 dtmc
2

v
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3 const int n = 10 ;
4

5 module DTMCRPrIPerfTester
6

7 s : [ 0 . . n ] in i t 0 ;
8

9 [ ] s<n −> ( s '= s+1) ;
10 [ ] s=n −> ( s '=n) ;
11

12 endmodule
13

14 rewards
15 true : 0 ;
16 endrewards

B.6 DTMCR in Figure 36

1 dtmc
2

3 const int n = 10 ;
4

5 module DTMCROptimizedUntilTester
6

7 s : [ 0 . . 2 ∗ n ] in i t 0 ;
8

9 [ ] s<2∗n & mod( s , 2)=0 −> 0.5 : ( s '= s+1) + 0 .5 : ( s '= s+2) ;
10 [ ] s<2∗n−1 & mod( s , 2)=1 −> 0.5 : ( s '=s−1) + 0 .5 : ( s '= s+2) ;
11 [ ] s=2∗n−1 −> 0.5 : ( s '=s−1) + 0 .5 : ( s ' = s+1) ;
12 [ ] s=2∗n −> true ;
13

14 endmodule
15

16 rewards
17 true : 0 ;
18 endrewards

B.7 DTMCR in Figure 36

1 dtmc
2

3 const int n = 500 ;
4 const double r = 0 ;
5

6 module DTMCRCCPerfTester
7

8 s : [ 0 . . 2 ∗ n+2 ] in i t 0 ;
9

10 [ ] s<2∗n & mod( s , 2)=0 −> 0.5 : ( s '= s+1) + 0 .5 : ( s '= s+2) ;
11 [ ] s<2∗n & mod( s , 2)=1 −> 0.5 : ( s '=s−1) + 0 .5 : ( s '= s+2) ;
12 [ ] s>=2∗n −> ( s '=2∗n+2) ;
13

14 endmodule
15

16 rewards

vi
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17 s=2∗n : r ;
18 endrewards

B.8 MDPR in Figure 18

1 mdp
2

3 module VendingMachine
4

5 s : [ 0 . . 4 ] in i t 0 ;
6

7 [ i n i t i a l i z e ] s=0 −> ( s '=1) ;
8 [ c ance l ] s=1 −> ( s '=0) ;
9 [ s e l e c t ] s=1 −> 0.5 : ( s '=2) + 0 .5 : ( s '=3) ;
10 [ n o t i f y ] s=2 −> ( s '=4) ;
11 [ n o t i f y ] s=3 −> ( s '=4) ;
12 [ r e l e a s e ] s=4 −> ( s '=0) ;
13

14 endmodule
15

16 rewards
17 s=2 : 1 ;
18 s=3 : 2 ;
19 [ s e l e c t ] true : −0.01;
20 [ r e l e a s e ] true : −0.01;
21 endrewards

B.9 MDPR in Figure 23

1 mdp
2

3 module ZSCC
4

5 s : [ 0 . . 5 ] in i t 0 ;
6

7 [ a ] s=0 −> 0.5 : ( s '=1) + 0 .5 : ( s '=5) ;
8 [ b ] s=0 −> true ;
9 [ a ] s=1 −> ( s '=2) ;
10 [ b ] s=1 −> ( s '=2) ;
11 [ a ] s=2 −> 0.5 : ( s '=1) + 0 .2 : ( s '=3) + 0 .3 : ( s '=4) ;
12 [ a2 ] s=2 −> ( s '=4) ;
13 [ a ] s=3 −> ( s '=4) ;
14 [ a ] s=4 −> ( s '=4) ;
15 [ a ] s=5 −> ( s '=5) ;
16

17 endmodule
18

19 rewards
20 s=3 : 1 ;
21 [ b ] true : 1 ;
22 endrewards

B.10 MDPR in Figure 41 (a)

vii
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1 mdp
2

3 module SimpleMDPR1
4

5 s : [ 0 . . 3 ] in i t 0 ;
6

7 [ ] s=0 −> 0.3 : ( s '=1) + 0 .7 : ( s '=2) ;
8 [ ] s=0 −> 0.5 : ( s '=1) + 0 .5 : ( s '=3) ;
9 [ ] s>0 −> ( s '=0) ;
10

11 endmodule
12

13 rewards
14 s=1 : 1 ;
15 s=2 : 2 ;
16 s=3 : 3 ;
17 endrewards

B.11 MDPR in Figure 41 (b)

1 mdp
2

3 module SimpleMDPR2
4

5 s : [ 0 . . 4 ] in i t 0 ;
6

7 [ ] s=0 −> 0.5 : true + 0.3 : ( s '=1) + 0 .2 : ( s '=2) ;
8 [ ] s=0 −> 0.5 : ( s '=1) + 0 .5 : ( s '=3) ;
9 [ ] s>0 −> ( s '=4) ;
10

11 endmodule
12

13 rewards
14 s=1 : 1 ;
15 s=2 : 2 ;
16 s=3 : 3 ;
17 endrewards

viii
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