
Seamlessness integration between
textual informal BON and Java

Stephen Kow Sarquah

s070069

Kongens Lyngby 2013

M.Sc.-2013-83

DTU Compute
Technical University of Denmark
Matematiktorvet, Building 303B
DK-2800 Lyngby
Denmark
Phone +45 4525 3031, Fax +45 4588 1399
compute@compute.dtu.dk
www.compute.dtu.dk/ M.Sc.-2013-83

Summary (English)

BON (Business Object Notation) is a method well suited for analysis and design
of object-oriented systems. BON focuses on seamlessness, reversibility, scalabil-
ity, simplicity and software contracts to achieve the goal of narrowing the gap
between analysis, design and implementation by using the same notation and
semantics in the three phases. BON has two kinds of notations, graphical and
textual BON. Textual BON is divided into formal diagrams and informal charts
to describe static and dynamic modeling of object-oriented software. Textual
informal BON is written in structured English. An example of a query in a class
chart would be �What is its name?�

Textual informal BON is possible to write by hand but at this point there exists
no tool which integrates textual informal BON with Java in such a way that
the textual informal BON generates Java source code and the Java source code
generates textual informal BON in such a way that feels seamless for the user
of the tool.

This master thesis documents the design and implementation of a textual in-
formal BON editor called iBONText, which has a code generator that features
seamless integration from textual informal BON to Java. iBONText is able to
reverse the process and generate textual informal BON from Java. The code
generation from BON to Java creates Javadoc custom annotations and follows
Java identi�er naming conventions. When the textual informal BON updates
the Java source code updates correspondingly. This gives traceability from the
analysis to the implementation, making the software development more e�cient.

ii

Summary (Danish)

BON (Business Object Notation) er en metode velegnet til analyse og design
af objekt-orienterede systemer. BON fokuserer på gnidningsfrit, reversibilitet,
skalerbarhed, enkelhed og software kontrakter for at nå målet om at indsnævre
kløften mellem analyse, design og implementering ved at bruge samme notation
og semantik i de tre førnævnte faser. BON har to slags notationer, gra�sk og
tekstuel BON. Tekstuel BON er opdelt i formelle diagrammer og uformelle di-
agrammer til at beskrive statisk og dynamisk modellering af objekt-orienteret
software. Tekstuel uformel BON er skrevet i struktureret engelsk. Et eksempel
på en forespørgsel i et klasse diagram ville være "What is its name?"

Tekstuel uformel BON er muligt at skrive i hånden, men på dette tidspunkt
eksisterer der intet værktøj, som integrerer tekstuel uformel BON med Java på
en måde, at tekstuel uformel BON genererer Java kildekode og Java kildekode
genererer tekstuel uformel BON på en sådan måde, der føles gnidningsfrit for
brugeren af værktøjet.

Dette speciale dokumenterer designet og implementeringen af en tekstuel ufor-
mel BON editor, der hedder iBONText, som har en kodegenerator, der indehol-
der gnidningsfrit integration fra tekstuel uformel BON til Java. iBONText er i
stand til at vende processen og generere tekstuel uformel BON fra Java. Koden
generation fra BON til Java genererer Javadoc brugerde�nerede annotations
og følger Java identi�kator navngivning. Når tekstuel uformel BON opdaterer,
opdateres Java kildekoden tilsvarende. Dette giver sporbarhed fra kravene til
implementeringen, hvilket gør software udviklingen mere e�ektiv.

iv

Preface

This thesis was prepared at the department of DTU Compute at the Technical
University of Denmark in ful�lment of the requirements for acquiring an M.Sc.
in Computer Science and Engineering. It was written with professor Joseph
Kiniry as supervisor.

The thesis deals with a domain speci�c language (DSL), model driven design
and codegeneration from abstract models. It deals with maintaining traceability
from analysis to implementation.

The main focus in this thesis is on modeling textual informal Business Object
Notation (BON) as a DSL, codegeneration from informal BON to Java and from
Java to informal BON.

Lyngby, 05-August-2013

Stephen Kow Sarquah

vi

Acknowledgements

I would like to thank my supervisor professor Joseph Kiniry for inspiring me to
make iBONText and for his support. His previous work with BON has been a
great inspiration. I would like to thank my family for supporting me during the
writing process. I would like to thank my sister Maria for her suggestions, to be
able to take time out of her schedule and for her support especially in the end
of the writing process.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Problem de�nition . 1
1.2 Why do we need such a tool? . 2
1.3 Related work . 3
1.4 Outline . 3

2 Background 5
2.1 Business Object Notation . 5
2.2 Informal BON . 7

3 Frameworks 13
3.1 Model driven design . 13
3.2 Eclipse Modeling Framework . 14
3.3 Domain Speci�c Languages . 14
3.4 Model to text transformation . 15
3.5 Eclipse JDT . 18
3.6 Javadoc . 19

4 Textual Informal BON Editor 21
4.1 Abstract Syntax of Informal BON 21
4.2 Concrete Syntax of informal BON 24

x CONTENTS

4.3 Test . 25

5 Codegeneration from BON to Java 29
5.1 Modi�cations to the Ecore model 29
5.2 Informal BON to Java transformation 29
5.3 Con�guration of Javadoc . 32
5.4 Acceptance testing . 35

6 Codegeneration from Java to BON 39
6.1 Initiation . 39
6.2 Abstract Syntax Tree . 40
6.3 Acceptance testing . 42

7 Future work 45
7.1 Scenario charts . 45
7.2 Concrete syntax . 45
7.3 Ecore model . 46
7.4 Java to BON . 46
7.5 Graphical notation . 46

8 Conclusion 47

A JMerger rules 49

B Plugin.xml 51

C User guide 53

Bibliography 61

List of Figures

2.1 Example of a system chart . 7
2.2 Example of a cluster chart . 8
2.3 Example of a class chart . 9
2.4 Example of an event chart . 10
2.5 Example of a scenario chart . 10
2.6 Example of a creation chart . 11

3.1 Example of a concrete syntax in EMFText 16

4.1 The Ecore model for Informal BON 22
4.2 Syntax highlighting for a comment 24
4.3 Syntax highlighting for manifest_textblock 25
4.4 JUnit test results . 27

5.1 Informal_chartsImpl constructor 30
5.2 Private method named �ndProject 30
5.3 Private method named setParents 31
5.4 Private method named createPackages 31
5.5 Merging code with JMerger . 33
5.6 Javadoc of the generated Java packages 33
5.7 Javadoc of the generated Java classes 34
5.8 The generated Java code for an Informal BON model 38

6.1 Private method named analyzePackages 40
6.2 Private method named parse . 40
6.3 ExtendVisitor class . 42

C.1 Import command . 54

xii LIST OF FIGURES

C.2 Import wizard . 55
C.3 Select archive �le to import . 56
C.4 Select Run Con�guration . 56
C.5 Runtime JRE . 57
C.6 Run con�gurations . 57
C.7 Select a wizard . 58
C.8 Textual informal BON editor . 58
C.9 Generate BON model . 59

Listings

3.1 Example of JET template . 16
4.1 Snippet of the CS of informal BON 24
5.1 Javadoc con�guration . 33
6.1 Indexing Javadoc custom tag . 41
6.2 Event Javadoc custom tag . 41

xiv LISTINGS

List of Tables

4.1 Acceptance tests for informal BON editor 26

5.1 Acceptance tests of codegeneration from BON to Java 37

6.1 Acceptance tests of codegeneration from Java to BON 44

xvi LIST OF TABLES

Chapter 1

Introduction

BON (Business Object Notation) is a method well suited for analysis and design
of object-oriented systems. BON focuses on seamlessness, reversibility, scalabil-
ity, simplicity and software contracts to achieve the goal of narrowing the gap
between analysis, design and implementation by using the same notation and
semantics in the three above mentioned phases[22]. BON has two kinds of nota-
tions, graphical and textual BON. Textual BON is divided into formal diagrams
and informal charts to describe static and dynamic modeling of object-oriented
software. Textual informal BON is written in structured English. An example
of a query in a class chart would be �What is its name?�

Textual informal BON is possible to write by hand but at this point there exists
no tool which integrates textual informal BON with Java in such a way that
the textual informal BON generates Java source code and the Java source code
generates textual informal BON in such a way that feels seamless for the user
of the tool.

1.1 Problem de�nition

The main goal of this master thesis is to design and implement a textual informal
BON editor, which has a code generator that features seamless integration from

2 Introduction

textual informal BON to Java. Therefore the focus in this thesis is on textual
informal BON. The optional goal for this thesis is to reverse the process and
generate textual informal BON from Java. The code generation from BON to
Java will create Javadoc custom annotations and must follow Java identi�er
naming conventions. When the textual informal BON updates the Java source
code updates correspondingly. The textual informal BON editor will be created
using EMFText[9] which is a plugin to the integrated development environment
(IDE) called Eclipse[6]. EMFText is used to de�ne textual domain speci�c
languages (DSL) described by an Ecore metamodel. The grammar of the DSL
is speci�ed using concrete syntax which is derived from the EBNF[11] syntax
speci�cation language.

The textual informal BON editor must feature syntax highlighting. EMFText
will be used to create the textual informal BON editor which parses and type
checks the input and writes out errors, if the syntax or type is not correct. If the
parsing and type checking is correct the Java source code should be generated.
Eclipse JDT[7] will be used to generate textual informal BON from the Java
source code.

1.2 Why do we need such a tool?

It is often the case that artifacts from the analysis are not updated during the
software product life cycle. This is often due to the tools for creating the arti-
facts are not integrated with the tools for implementing the system. Doing so
tools with rich features such as syntax highlighting and type checking will ease
the burden of writing textual informal BON. If the artifacts for the analysis
is not updated when the implementation is updated, the speci�cation of the
system will not be consistent with the source code. This means there will be
no traceability of the analysis in the implementation. It is much harder to un-
derstand the requirements and behavior of a system by reading the source code
instead of reading the speci�cation. When the system needs to be modi�ed,
which is often the case for successful systems[3], it would be more time con-
suming for understanding the system because one needs to reverse engineer the
system. The source code is the most accurate representation of a system since
source code is the one talking to the hardware and executing system actions.
Not the speci�cation[22].

If a tool could automatically update the speci�cation based on the implementa-
tion and vice-versa, traceability in analysis and implementation would be pre-
served, meaning the time used to understand the system would be less compared
to reverse engineer the system. This will make the software development more

1.3 Related work 3

e�cient. This is why iBONText has been developed.

1.3 Related work

iBONText is inspired by tools used to create BON, which is listed in the follow-
ing.

1.3.1 BONc

BONc is a parser and typechecker for BON. BONc can read one or more �les
and/or input from standard input in the BON textual format, parse the input
and typecheck it. The parser also has a pretty-printer that formats and indents
the code and displays color syntax and error highlighting.[13]

1.3.2 ESC/IBON

ESC/IBON is a tool for translating informal BON to formal BON. The tool
focuses on the BON static model. ESC/IBON has an API used to access the
Grammatical Framework code, which the tool is build upon.[21]

1.3.3 Beetlz

Beetlz is a consistency (re�nement) checker for BON and JML-annotated Java.
It takes source �les and speci�cations as input and returns feedback on whether
and where they are inconsistent. The tool is available in a command-line and
in a Eclipse plugin version.[5]

1.4 Outline

The following will describe the structure of the thesis.

• Chapter 1 gives an introduction to BON. The chapter presents the prob-
lem and explains the goal of this thesis

4 Introduction

• Chapter 2 describes the Business Object Notation with focus on the
informal charts.

• Chapter 3 describes the frameworks used in order to create iBONText.

• Chapter 4 goes into detail with the implementation of the textual infor-
mal BON editor.

• Chapter 5 describes the code generation from BON to Java and how to
display informal BON using Javadoc.

• Chapter 6 describes the code generation from Java to BON.

• Chapter 7 gives an overview of improvements which could be added to
the future development of iBONText.

• Chapter 8 contains the conclusion of this thesis.

• Appendix contains the rules for JMerger, the de�nition of plugin.xml
and a user guide for iBONText.

Chapter 2

Background

This chapter gives the reader a background information about Business Object
Notation (BON) and the informal charts of BON will be described in detail.

2.1 Business Object Notation

Business Object Notation[22] (BON) was introduced in 1994 by Kim Waldén
and Jean-Marc Nerson and started as an attempt to extend the concepts of the
Ei�el language[20]. BON is a method for modeling analysis and design of object
oriented systems. BON consists of concepts and notations which are based
upon the principles: simplicity, seamlessness, reversibility, software contracting
and scalability. The syntax and semantics are kept as simple as possible while
containing the most important object oriented concepts.

Simplicity is one of the principles of BON which separates it from other modeling
languages such as UML[19]. The BON notation tries to minimize the number
of concepts. It should be easy for a user of BON to quickly master the notation.
The notation summary for UML (version 1.3) is 161 pages, whereas the summary
for BON is one page.[12]

6 Background

Object-oriented analysis and design has the potential to turn the transition from
analysis to design to implementation into a seamless process which has been the
goal for software engineering for over 20 years. The same set of abstraction of
the class can be used in the analysis-, design- and implementation phases. BON
utilizes this by using the same set of notations in the three phases making the
process seamless[22].

It is often the case that a system needs to be modi�ed to feature new require-
ments. Ideally this would mean that the analysis would be modi�ed �rst followed
by the design and then the implementation would be modi�ed accordingly. How-
ever, it is often the case that only the implementation gets modi�ed to feature
the new requirements. High level speci�cations is only a crude representation
of a system and the implementation problems of a programming language are
ignored. Implementation problems will have to be taken care of before a speci-
�cation can be made executable. This means a new level of abstraction would
be introduced. Re�nements is often applied to the source code because spec-
i�cations cannot address detailed decisions. If the abstract system should be
consistent with the source code, changes to the source code must be re�ected in
the speci�cation which is often too expensive to maintain. There is no telling
if a speci�cation is consistent with the source code because correct source code
can run with an incorrect speci�cation but not vice-versa. Using BON it is
possible to have traceability from analysis to design, to implementation because
the classes introduced in the analysis will also be present in the �nal system[22].

It is important to guarantee software correctness in a system. The approach
BON uses is software contracting. The semantics of each class is de�ned by
assertions that speci�es the pre- and post conditions along with the class in-
variant. These semantics form a contract between the supplier (the class having
operations) and all classes using its operations (the clients). If the contracts are
violated, the system will make an exception.

The system examples found in textbooks on object oriented analysis and design
are nearly always small. A notation in object oriented analysis and design must
be able to scale up and still be useful for large systems. When the system reaches
over 20-30 classes, the class concept isn't enough to describe the structure, the
grouping of classes. BON uses the term clustering to describe the grouping of
classes and a group of classes will be called a cluster. In implementation there
is a need to gain detailed information about a cluster and an overall view of the
structure. The BON notation uses nested clustering and element compression to
achieve this. An example of element compression would be icons in a graphical
user interface.[22]

2.2 Informal BON 7

2.2 Informal BON

Informal BON consists of the informal charts:

• System chart

• Cluster chart

• Class chart

• Event chart

• Scenario chart

• Object creation chart

BON is divided into the static and dynamic model. The static model shows the
clusters of the high leveled classes and the relationship between them. It also
shows the class operations, their signatures and the semantic speci�cation. The
dynamic model shows how the high leveled classes ful�ll their speci�cation by
calling other operations in same or other classes.

2.2.1 The static model

The system chart contains a brief description of one or more clusters of the
system. An example of a system chart can be seen in �gure 2.1.

Figure 2.1: Example of a system chart

8 Background

A cluster chart contains a number of class charts or subclusters of the system. It
can contain information called indexing which can be keywords, author, created
date or whatever one speci�es as relevant. The cluster chart can also contain an
explanation if there needs to be added further information speci�c to the cluster
chart. An example of a cluster chart can be seen in �gure 2.2.

Figure 2.2: Example of a cluster chart

The class chart can contain indexing and explanation. Class charts can contain
queries which are information other classes can ask from this class. It can
contain commands which are services other classes can ask from this class to
provide. A class chart can contain constraints which are the rules a class must
obey. A class can inherit from another class. An example of a class chart can
be seen in �gure 2.3.

2.2.2 The dynamic model

A system event is an event which causes the system to react to a change. System
events can either be external or internal. An external event is triggered by the
environment outside the system, where it has no control. An example of an
incoming external event could be a user clicking on a mouse button. An internal
event is triggered by the system as part of a reaction to an external event. Some
internal events are outgoing, which means as part of their reaction, they send a
response to the environment outside the system.

2.2 Informal BON 9

Figure 2.3: Example of a class chart

The idea of the event chart is to capture a list of external events that triggers
a principal type of system behavior. The reason why we list external events is
because the interaction of objects, which causes the execution of the system,
are external events[22]. These external events may trigger one or more internal
events. If an external event has a corresponding internal event, there is no need
to list both of them in the event chart. The event chart is split up to two event
charts where one is the list of external events and the other the list of internal
events. An event lists which classes an event involves. An example of an event
chart can be seen in �gure 2.4.

The starting point of making a scenario chart is to use the event charts to select
a set of important scenarios which illustrates the behavior of the system. Each
scenario has a name and a short description about the scenario. An example of
a scenario chart can be seen in �gure 2.5.

The creation of new objects may be the link between the static and dynamic
models. At some point during execution of the system, objects may be created.
Analyzing how objects are created may help to identify the semantics of opera-
tions of classes. The object creation chart is a list of classes which creates other
objects. Only the high leveled classes are considered, not the low level objects.

10 Background

Figure 2.4: Example of an event chart

Figure 2.5: Example of a scenario chart

It is a good idea to not list frequently reused library classes such as SET or
TABLE. An example of a creation chart can be seen in �gure 2.6.

2.2 Informal BON 11

Figure 2.6: Example of a creation chart

12 Background

Chapter 3

Frameworks

In this chapter the frameworks used to implement iBonText will be described.
It was decided to implement iBonText as a plug-in for Eclipse, which is a widely
used IDE, because of the frameworks which will be described.

3.1 Model driven design

The frameworks needed to implement iBonText must feature a way to construct
a metamodel for textual informal BON. They must feature a way to construct a
grammar in order to write structured textual informal BON charts. The frame-
works must feature a codegenerator to generate Java source code from textual
informal BON charts. The frameworks must also feature a way to retrieve in-
formation for textual informal BON from Java source code.

To achieve these goals, the frameworks EMFText, Java Emitter Templates and
Eclipse JDT were chosen for this purpose.

14 Frameworks

3.2 Eclipse Modeling Framework

EMF is a modeling framework and code generation facility for building tools
and applications based on a data model. EMF is based on Eclipse. EMF pro-
vides tools and runtime support to produce java classes, adapter classes, which
enables command-based editing of the model, from a model structured in XML
metadata interchange (XMI)[23]. EMF includes a meta model for describing
models and describing the runtime support for models, which is called Ecore.
EMF is capable of generating code from models to build a tree editor. This is
done by using the generator model. The generator model can reproduce code
for the model but if the user speci�es to not overwrite the custom code cre-
ated, the genmodel will not overwrite the custom code. The generation facility
uses Eclipse JDT[7]. In EMF noti�cation observers are called adapters. These
adapters follow the observer pattern which noti�es an object, when an event
occurs.[8]

3.3 Domain Speci�c Languages

A DSL is a type of a programming-, speci�cation-, or modeling language used
to express statements in a speci�c problem or domain. DSLs' targets a speci�c
software problem in a speci�c domain, while a general purpose programming
language like Java or C# or a general purpose modeling language like UML[19],
tries to solve software problems in many domains. An example of a DSL is
CSS[4].

The most important advantage of a DSL, is that it is less comprehensive than
a general purpose language. The learning curve is smaller for a DSL versus a
general purpose language which means a DSL will improve productivity and
e�ciency. In most cases DSLs are much more expressive in their domain than
a general purpose language. The biggest disadvantage of a DSL is that it is
harder to �nd examples of how to use the DSL.

3.3.1 EMFText

EMFText is a plugin to Eclipse for de�ning textual syntax for Ecore-based
meta models. A developer can de�ne his/her own domain speci�c language
(DSL) using this tool. EMFText can generate tool support for the DSL and
it generates an Eclipse editor with syntax highlighting and customizable colors

3.4 Model to text transformation 15

which can be used to load and save instances of a model of the DSL. EMFText
will be used to de�ne textual informal BON as a DSL.

EMFText comes with the parser ANTLR[1], for loading instances of the model
and a printer to save instances of the model. EMFText generates code for the
DSL which is fully customizable. The editor which is generated from EMFText
provides many features that are known from e.g. the Eclipse Java Editor such
as code completion, syntax highlighting and instant error reporting when you
mistype a character in the editor. EMFText has support for ANT[2].

3.3.1.1 Concrete Syntax

When a metamodel is de�ned as an Ecore model the textual representation of
the metamodel concepts must be de�ned consequently. This is called the con-
crete syntax (CS). EMFText provides a syntax generator that can automatically
create a CS speci�cation from the metamodel. The CS conforms to Human Us-
able Textual Notation (HUTN)[16]. To see an example of a CS[10] see �gure
3.1. The CS for the textual informal BON editor will follow the BON textual
grammar provided by Kim Waldén and Jean-Marc Nerson[22].

3.4 Model to text transformation

The main idea of model to text transformation (M2T)[15] is to use a template
to generate textual artifacts. Textual artifacts can be code, documentation,
reports etc. The template has �elds which are data extracted from the model
that makes the codegeneration of textual artifacts dynamic. The code generation
from model to text can be done manually but this might introduce new errors,
can be very complex and take a long time. This process can be automated
using a code generator which often results in better quality of the code. The
transformations often uses best practices for code and ensures consistency to
a project. An implementation of a code generator which iBONText will use is
Java Emitter Templates.

3.4.1 Java Emitter Templates

Java Emitter Templates (JET) is a code generation framework used by EMF.
JET can generate code or documentation from an EMF model using a template.

16 Frameworks

Figure 3.1: Example of a concrete syntax in EMFText

The syntax of JET is a subset of Java Server Pages for retrieving data from the
model. Using JET syntax one can iterate through a model and retrieve data.
An example of a JET template can be seen in listing 3.1.

1 <%@ j e t package=" h e l l o " class="GreetingTemplate " %>
2 Hel lo , <%=argument%>!

Listing 3.1: Example of JET template

3.4 Model to text transformation 17

If we give the string "world" as argument the generated text will be Hello, world.

3.4.2 JMerge

JMerge[18] is an open source tool in EMF which allows code generators to merge
generated code with user modi�ed code. The user modi�ed code will be merged
with the generated code based on rules speci�ed in XML. EMF has JMerge rules
which merges Java elements containing a Javadoc tag named @generated. If a
user modi�es the generated code which has a @generated tag and regenerates
code the user modi�ed code will be overwritten. If a user changes the @generated
tag, modi�es the generated code and regenerate the code, the changes will not
be overwritten. The process of merging user modi�ed code with generated code
is the following:

1. JMerge loads the rules speci�ed in XML, the existing code and the gen-
erated code into an Abstract Syntax Tree(AST)

2. The JMerge rules must contain one or more dictionary patterns which
speci�es regular expressions that will be executed against elements in the
AST. Dictionary patterns must include a capture which is an expression
enclosed in parentheses. The regular expression for EMF's @generated
tag is @(gen)erated. When a dictionary pattern matches a Java element
JMerge records the capture and the Java element.

3. JMerge walks through the pull elements from the JMerge rules. Each pull
element speci�es the AST object to operate on and the AST attribute
which should be copied from existing to generated code.

4. JMerge walks through the AST of the generated code to identify elements
which are not in the AST of the existing code. When an element is found
in the generated code and not in the existing code, the generated code is
copied to the existing code.

5. JMerge walks through the sweep element from the JMerge rules. Each
sweep element speci�es the AST object to operate on and a markup. If
the existing code matches a sweep element but the generated code does
not, the Java element is removed from the existing code.

6. The updated existing code is written to a Java class �le.

JMerge can merge rules which target:

18 Frameworks

• CompilationUnit

• Field

• Import

• Initializer

• Member

• Method

• Package

• Type

3.5 Eclipse JDT

JDT stands for Java Development Tools. It consists of a set of plug-ins to give
the rich featured environment Java IDE to Eclipse. The plug-ins provides APIs
to be accessed by external tools. The plug-ins are categorized into the following
groups:

• JDT APT

• JDT Core

• JDT Debug

• JDT Text

• JDT UI

JDT APT adds support for annotations to Java 5 projects in Eclipse. JDT
Core adds support for a Java model which provides an API for navigating the
Java element tree. A Java element tree contains package fragments, compilation
units, binary classes, types, methods and �elds. JDT Core also adds support
for an indexed based search infrastructure which is used for searching, type
hierarchy and refactoring. JDT Debug adds support for debugging. JDT Text
adds support for syntax and keywords highlighting. It adds support to show
Javadoc for a speci�c Java element in a pop-up window. It adds support to
automatically create and organize import declarations. JDT Text also adds
support for code formatting. JDT UI adds support for the Java views of the
Eclipse workbench. It features the package explorer, the type hierarchy view,
Java outline view and a wizard for creating Java elements.[7]

3.6 Javadoc 19

3.6 Javadoc

Javadoc is a tool for parsing declarations and documentation comments in Java
source code. It produces a set of HTML pages describing classes, interfaces,
constructors, methods and �elds. Using Javadoc it is possible to get a structured
overview of a Java project and the comments in the Java source code.[17]

20 Frameworks

Chapter 4

Textual Informal BON
Editor

In this chapter, the implementation of textual informal BON as a DSL will be
described. The Ecore model for textual informal BON will be described followed
by a description of a concrete syntax of the textual informal BON editor. Tests
will be demonstrated to prove the system works according to the requirements.

4.1 Abstract Syntax of Informal BON

The Ecore model metamodels informal BON as the abstract syntax. It can be
seen in �gure 4.1. The following passage will describe the �gure.

Informal BON consists of informal charts which is named Informal_charts. The
class Informal_charts has a contained association with the multiplicity of zero or
more, to Class_Chart, Cluster_chart, Event_chart, Scenario_chart and Cre-
ation_chart. Informal_charts has a contained association to System_chart
with the multiplicity of one. System_chart inherits from the abstract class
called NamedElement. NamedElement has an attribute called name which is of
type EString. Since many classes have a name, they all inherit from NamedEle-
ment. System_chart is a chart and therefore it inherits from the abstract class

22 Textual Informal BON Editor

Figure 4.1: The Ecore model for Informal BON

4.1 Abstract Syntax of Informal BON 23

Chart. A Chart has a contained association to Part called chart_part, with the
multiplicity zero or one, which inherits from NamedElement. Part describes if
and how the chart is divided into �les; e.g. a System chart could be written in
two �les to simplify the system overview. Chart has a contained association to
Explanation named chart_indexing and has the multiplicty zero or one. It in-
herits from NamedElement and it has a contained association to the class Index-
ing, which has a multiplicity zero or one named chart_indexing. Indexing has
a contained association named index_term_list to the class Index_Identi�er
which inherits from NamedElement and has the attribute index_string, which
is of the type EString. Index_string has the multiplicity of one or many be-
cause it should be possible to write several index_strings. An example could
be an Index_Identi�er which has the name keywords. Keywords consists of
one or more index_strings. System_chart has a contained association to Clus-
ter named cluster_entries, which has the multiplicity of one to many. This is
because in a system chart we de�ne the clusters. Cluster inherits from Descrip-
tionElement which has the attribute called description of the type EString. The
name states that it is a description of the cluster. DescriptionElement inherits
from NamedElement so we can give Cluster a name.

As seen in �gure 4.1, Cluster_chart inherits from Chart, has an association
to Cluster and has a contained association to ClassBON named class_entries
with the multiplicity of zero or many. The reason for the multiplicity of zero
or many is because it is possible in BON to have a cluster in a cluster making
it possible of nesting subsystems in a large system. ClassBON inherits from
DescriptionElement.

Class_chart has one list for each of the classes Commands, Constraints and
Queries. This is made to make several instances of Command, Constraint and
Query inside one class which gives a better overview. The multiplicity of the as-
sociations from Commands to Command, Constraints to Constraint and Queries
to Query are zero or many. Command, Constraint and Query inherits from
NamedElement. A Class_chart has an association to ClassBON called class
which has the multiplicity of one. This means there has to be instantiated a
Class in order for a Class_chart to have an association to it. A Class_chart
has an association, with the multiplicity of zero or more, to ClassBON which is
called inherit. This means a Class_chart can inherit from one or more Class-
BON. Class_chart inherits from Chart.

Event_chart has an attribute called event_type of the type Event_type.
Event_type is an enumeration specifying if the event chart, lists incoming or
outgoing events. Event_chart has an association to System_chart called sys-
tem_name because in informal BON one speci�es the system name for the
event chart. Event_chart inherits from Chart and has a contained association
to Event named event_entries, which has the multiplicity of zero or many. This

24 Textual Informal BON Editor

lists all events for the event chart. Event has an association to ClassBON called
involves, which has the multiplicity of one to many. As the name states an event
can involve one or many classes. Event inherits from NamedElement.

Scenario_chart has an association to System_chart named system_name. It
inherits from Chart and has a contained association to Scenario, which is named
scenario_entries and has the multiplicity of zero or many. Scenario inherits from
DescriptionElement. A scenario chart can have multiple scenarios which each
has a name and a description.

Creation_chart inherits from Chart, has an association to System_chart named
system_name and has a contained association to Creation named creation_entries
with the multiplicity of zero or many. Creation has two associations to Class-
BON. One named creator whichh the multiplicity of one, the other named cre-
ates, which has the multiplicity of one or many. In a creation chart a class,
which is the creator, creates instances of one or more classes.

4.2 Concrete Syntax of informal BON

The concrete syntax (CS) de�nes what is allowed to be written in the informal
BON editor. In the CS a comment is de�ned as seen in listing 4.1.

1 TOKENS {
2 DEFINE COMMENT $ '−− ' (~(' \n ' | ' \ r ' | ' \ u f f f f ')) ∗$;
3 DEFINE MANIFEST_TEXTBLOCK STRING_BEGIN_END+$ ($+SIMPLE_STRING+$ | '

\\ ' $+LINEBREAK+WHITESPACE+$∗ ' \\ ' ($+WHITESPACE+$) ∗$
4 +SIMPLE_STRING+$ | $+WHITESPACE+$)+$+STRING_BEGIN_END;
5 DEFINE STRING_BEGIN_END $ ' " ' $;
6 }
7 TOKENSTYLES {
8 "COMMENT" COLOR #00bb00 , ITALIC ;
9 "MANIFEST_TEXTBLOCK" COLOR #2a00 f f ;
10 }

Listing 4.1: Snippet of the CS of informal BON

This means whenever a line begins with the characters "�", the rest of the line
will be viewed as a comment and have syntax highlighting. See �gure 4.2.

Figure 4.2: Syntax highlighting for a comment

4.3 Test 25

A manifest_textblock is de�ned as string_begin_end, which is quote begin,
simple_string, which is all characters without whitespace then string_begin_end,
which is quote end. The manifest_textblock is highlighted in a blue color as
seen in �gure 4.3.

Figure 4.3: Syntax highlighting for manifest_textblock

Keywords such as system chart, indexing, creation chart are highlighted in bold
red. The full list of keywords can be found in the BON textual grammar[22]. If
there is a reference from one ClassBON to another, that reference must be of
that class type. E.g. in a cluster chart there is a reference to a cluster. This
cluster must be created before it can be referenced. In this case you cannot
reference to a scenario, it must be a cluster. The CS follows the Ecore model
by including all elements and having the same multiplicity as in the model. An
identi�er must be written in uppercase. An identi�er could be the name of the
system chart. In BON an identi�er does not have to be in uppercase but we
have chosen to do so to keep a strict way of modeling.

4.3 Test

To check if the system works according to the requirements one needs to test
the system. The informal BON editor will be tested with acceptance and unit
tests.

4.3.1 Acceptance testing

One or more features would be complicated to test using unit tests which is why
we use acceptance tests. These features are:

• Keywords highlighting

• Syntax highlighting

• Type checking

The actual results of the tests can be seen in �gure 4.2 and �gure 4.3.

26 Textual Informal BON Editor

Test
case
ID

Test case Test description Expected re-
sult

Actual result Passed
/
Failed

T01 Keywords
highlighting

Test that key-
words such as
"system chart"
or "indexing" are
highlighted

Keywords are
highlighted

The keywords
are highlighted
in bold red

Passed

T02 Comment
highlighting

Test that comments
are written in italic
and is colored green

Comments are
highlighted

The comments
are highlighted
in green and
italic

Passed

T03 String high-
lighting

Test that strings
are colored blue

Strings are high-
lighted

The strings are
highlighted in a
blue color

Passed

T04 Type check-
ing

Test that references
to objects are cor-
rect. In an event
chart it must be
possible to refer-
ence to the system
chart and not the
cluster chart

References are
correct types

The references
are correct
types

Passed

Table 4.1: Acceptance tests for informal BON editor

4.3 Test 27

4.3.2 Unit testing

The model of the informal BON editor will be tested using JUnit. It should be
possible to create one system chart. It should be possible to create zero or more
class charts, cluster charts, event charts, scenario charts and creation charts.
There are 8 tests. In each test we test if it's possible to create the following:
informal charts, system chart, cluster chart, event chart, scenario chart and
creation chart. The last two tests are for two class charts. The results of the
tests can be seen on �gure 4.4. The tests �nished after 0,227 seconds and all 8
tests passed.

Figure 4.4: JUnit test results

28 Textual Informal BON Editor

Chapter 5

Codegeneration from BON
to Java

In this chapter we describe the generation of Java code from informal charts.
The chapter describes the modi�cations made to the Ecore model, the model
to text transformation, solving the issue of multiple inheritance, the merging of
user modi�ed code and generated code, the con�guration of Javadoc and the
test results of the code generation.

5.1 Modi�cations to the Ecore model

The Ecore model shown in �gure 4.1 has been modi�ed to help the generation
of Java code. In order to know which cluster a class or a cluster belongs to, a
class and a cluster has a reference to a cluster named parent.

5.2 Informal BON to Java transformation

The methods for creating Java classes, packages and Javadoc top-level descrip-
tion are in the Java class GenerateJavaCode. These methods are invoked from

30 Codegeneration from BON to Java

the constructor of Informal_chartsImpl. An adapter is added to the object
of the class which initializes when it receives a noti�cation of the event type
REMOVING_ADAPTER. The reason for this is, when the user saves the In-
formal BON model, the event type REMOVING_ADAPTER is received. When
the event type is received, the BON model is validated using the basic validity
checker provided by EMF. If the severity equals OK, the generation of Java code
can begin. The Java code for this is shown in �gure 5.1.

Figure 5.1: Informal_chartsImpl constructor

Using Eclipse JDT we can search the workspace for a project with the same
name as the system name of the system chart. If it isn't found, a Java project
with that name is created. The Java code for �nding the project is shown in
�gure 5.2.

Figure 5.2: Private method named �ndProject

If a bin folder for the project doesn't exist, it is created and added to the project.
If a source folder for the project with the name src doesn't exists it is created
and the default Java Runtime Environment (JRE) is added to the project. After
this the parent of all clusters and classes are set. The Java code for setting the
parent of all clusters and classes can be seen in �gure 5.3.

5.2 Informal BON to Java transformation 31

Figure 5.3: Private method named setParents

The Java packages corresponding to the clusters are created in the correct hier-
archy. The description, indexing and explanation of a cluster chart is written to
a Java �le in the package using JET. The Java �le is named package-info.java.
The JET template is named clusterBON.javajet. The Java code for creating
the Java packages can be seen in �gure 5.4.

Figure 5.4: Private method named createPackages

This ensures that information about the cluster is preserved as Javadoc in the
implementation. After the packages are created, the Java classes are created
containing information from the class charts, event charts and creation charts
as Javadoc. The information are description, indexing and explanation from the
class_chart, events from the events chart if it involves the class and creations
from the creation chart if the class is the creator. The JET template to create the
Java classes is named informalBON.javajet. When the Java classes are created,
the top-level description of the system is created in a �le called overview.html.
The �le contains the explanation of the system chart embedded into HTML.

32 Codegeneration from BON to Java

This serves as a top-level description of the system for Javadoc. The template
to create this is named systemBON.htmljet.

5.2.1 Multiple inheritance

When modeling in BON it is allowed to have classes derive from multiple classes
allowing multiple inheritance by inheriting �elds and methods from those classes.
However, in Java this is not allowed. Java supports single inheritance. A class
can only derive from one class except the Object class which has no superclass.
To solve the issue with multiple inheritance in BON and single inheritance in
Java, the generated Java class will only inherit from one class which is the �rst
in the list of classes to inherit from in the informal BON model. The tex-
tual informal BON editor supports multiple inheritance but the code generation
doesn't so the user of the tool must be aware of this when designing the system.
The user must keep in mind that this tool is designed to be used for integra-
tion between informal BON and Java. Java allows multiple implementations of
interfaces however informal BON doesn't make use of interfaces.

5.2.2 Merging Java code

Under certain circumstances, one doesn't want the codegenerator to overwrite
the changes made to Java source code. This could happen if additional Javadoc
comments are added to the Java class, which are speci�c to Java and not BON.
To solve this problem, JMerger is used to merge user modi�ed code with gener-
ated code. The setup and merging of JMerger can be seen in �gure 5.5.

Based on the rules we made for JMerger, it searches the body of a class and the
Javadoc comments of a class for the annotation@generated. If the tag is mod-
i�ed, the code generator will not generate any code for the Javadoc comments
or body of a class. The rules can be seen in appendix A.

5.3 Con�guration of Javadoc

When the Java project, containing the Java packages and Java classes, is created
Javadoc documents can be generated. Javadoc gives a more structured overview
of the Java project as a webpage in HTML. The Javadoc documentation can
contain a title, which should be the same as the Java project. The overview must

5.3 Con�guration of Javadoc 33

Figure 5.5: Merging code with JMerger

be set to the �le called overview.html, which is in the folder called doc inside
the Java project. Options must be set in order for the Javadoc to recognize and
display the custom Javadoc annotations. This can be seen in listing 5.1.

1 −tag bon . index ing : a : " Indexing : "
2 −tag bon . query : a : "Quer ies : "
3 −tag bon . command : a : "Commands : "
4 −tag bon . c on s t r a i n t : a : " Const ra in t s : "
5 −tag bon . c r e a t o r : a : "Creat ion chart : "
6 −tag bon . event : a : "Event chart : "
7 −tag bon . exp lanat ion : a : "Explanation : "

Listing 5.1: Javadoc con�guration

This will make it easier to get an overview of the Java project and packages as
shown in �gure 5.6 and the classes as shown in 5.7.

Figure 5.6: Javadoc of the generated Java packages

34 Codegeneration from BON to Java

Figure 5.7: Javadoc of the generated Java classes

5.4 Acceptance testing 35

5.4 Acceptance testing

The features of the code generation will be tested using acceptance tests. The
tests can be seen in the following table:

Test
case
ID

Test case Test description Expected re-
sult

Actual result Passed
/
Failed

T05 Generate
Java project

Test that a Java
project is created
based on the name
of the system chart

Java project is
created with the
system chart
name as name
of the project

Java project is
created with the
system chart
name as name of
the project using
Java naming
convention

Passed

T06 Generate
Java pack-
ages

Test that Java
packages are cre-
ated according to
the cluster charts

Java packages
are created
according to the
cluster charts

Java packages
are created ac-
cording to the
cluster charts
in the correct
structure and the
names are all in
lowercase

Passed

T07 Generate
Java classes

Test that Java
classes are gener-
ated in the correct
packages

Java classes are
generated in the
correct packages

Java classes
are generated
in the correct
packages and
name of classes
is compliant with
Java naming
convention

Passed

T08 Generate bin
folder

Test a bin folder
is generated for the
Java project

A bin folder is
generated for
the Java project

A bin folder is
generated for the
Java project as an
output for class
�les

Passed

T09 Set JRE on
Java project

Test that a JRE
is set on the Java
project

JRE is set on
the Java project

The default JRE
is set on the Java
project

Passed

36 Codegeneration from BON to Java

T10 Apply infor-
mation to
Java class
based on
class chart

Test that index-
ing, explanation,
queries, commands
and constraints
are generated as
Javadoc custom
annotations on the
class

Class chart
information is
generated as
Javadoc custom
annotations

Class chart in-
formation is
generated as
Javadoc custom
annotations

Passed

T11 Apply infor-
mation to
Java class
based on
creation
charts

Test that if a class
is a creator in a
creation chart,
that creation in-
formation should
be generated as a
Javadoc custom
annotation in that
class

Creation chart
information is
generated as
Javadoc custom
annotations

Creation chart
information is
generated as
Javadoc custom
annotations

Passed

T12 Apply infor-
mation to
Java class
based on
event charts

Test that if an
event involves a
class, that event
should be gener-
ated as a Javadoc
custom annotation
in that class

Event chart
information is
generated as
Javadoc custom
annotations

Event chart
information is
generated as
Javadoc custom
annotations

Passed

T13 Apply infor-
mation to
Java class
based on the
system chart

Test that informa-
tion in the system
chart is generated
as text

System chart
information is
generated as
text

System chart
information is
generated as text
in a �le called
overview.html

Passed

T14 Apply infor-
mation to
Java class
based on
scenario
charts

Test that infor-
mation from the
scenario charts are
generated as text

Scenario charts
are generated as
text

Information from
scenario charts
are not found
in the generated
�les

Failed

5.4 Acceptance testing 37

T15 User modi-
�ed code

Test that if a user
has modi�ed the
generated Java
code and modi-
�ed the generated
custom tag in
the Javadoc then
changes will not be
overwritten

Changes are not
overwritten if
the generated
tag is modi�ed

Changes are not
overwritten Passed

T16 Generate
classes from
model in
same project

Test that if a gen-
eral project with
the same name as
the system chart,
contains the infor-
mal charts then
that project will be
converted to a Java
project contain-
ing packages and
classes

Project is con-
verted to a Java
project

Project is con-
verted to a Java
project

Passed

T17 Create class
chart with
special char-
acters as
identi�er

Test if the class
chart can contain
special characters
such as "$" and
":", as identi�ers

Java class is
generated ac-
cording to the
information in
the class chart

iBONText does
not accept "$"
and ":" as identi-
�ers

Failed

T18 Create class
chart which
has a class
that inherits
from itself

Test if a class in a
class chart can in-
herit from itself

Class in a class
chart should not
be able to in-
herit from itself

Class in class
chart can inherit
from itself

Failed

Table 5.1: Acceptance tests of codegeneration from BON to Java

An example of the generated Java project, packages and classes can be seen in
�gure 5.8

38 Codegeneration from BON to Java

Figure 5.8: The generated Java code for an Informal BON model

Chapter 6

Codegeneration from Java
to BON

This chapter describes how informal charts will be generated from Java source
code to a bon �le. The creation of an abstract syntax tree, the issue of inheri-
tance and the test results will be described.

6.1 Initiation

In order to generate informal charts from Java source code and save it to a bon
�le, a menu must be created for starting the codegeneration. The menu is an
extension which needs to be added to a plugin and is called org.eclipse.ui.menus.
A command must also be created so when the user presses Generate BON
model the codegeneration begins. The command is the extension called
org.eclipse.ui.commands. The plugin.xml used for iBONText can be seen in
appendix B. The codegeneration is handled by the class BONHandler which
will be described in the next section.

40 Codegeneration from Java to BON

6.2 Abstract Syntax Tree

In order to create the informal charts model an AST must be created containing
the abstract syntax of the Java source code. The AST will be created based on
the Javadoc of Java packages and classes in the class called BONHandler.

First we must iterate through the Java project and �nd all Java packages. This
is shown in �gure 6.1. Then we iterate through all IComplilationUnits (Java
source �les) of the package and create an AST for retrieving information from
the Java source code, which can be Javadoc. This is shown in �gure 6.2.

Figure 6.1: Private method named analyzePackages

Figure 6.2: Private method named parse

Information for BON clusters are stored in the Javadoc of Java �les called
package-info.java. Whenever package-info.java is encountered then a cluster
chart can be added to the informal charts model. The hierarchy of the clusters
can be determined by the structure of the Java packages. Package-info.java
contains the description of the cluster, which starts from the �rst line of Javadoc
without any tags to the �rst Javadoc tag. Package-info.java can contain the
explanation and indexing of a cluster chart. The explanation has a Javadoc
custom tag which is@bon.explanation. The indexing has the Javadoc custom
tag @bon.indexing where each index identi�er is contained within the HTML
tag . Within each index identi�er there can one to many index strings
where each index string is separated by a comma. An example of this can be
seen in listing 6.1. Each of these elements are added to the cluster chart or the
cluster of the cluster chart and then added to the informal charts model.

6.2 Abstract Syntax Tree 41

1 /∗∗
2 ∗ @bon . index ing
3 ∗ <l i >keywords : c l u s t e r chart , Organizat ion </ l i >
4 ∗/

Listing 6.1: Indexing Javadoc custom tag

Java classes has the same name as BON classes and the BON classes are stored
within a cluster with the same name as the Java package. Information for BON
classes are stored in the Javadoc of Java classes. The description, indexing and
explanation for BON classes and class charts are stored in the same way as for
BON clusters and cluster charts. The Java classes may contain queries, com-
mands, constraints, events for event charts and creations for creation charts.
Queries has the Javadoc custom tag @bon.query where each query is con-
tained within the HTML tag . Commands has the Javadoc custom tag
@bon.command where each command is contained within the HTML tag
. Constraints has the Javadoc custom tag @bon.constraint where each
constraint is contained within the HTML tag . A BON event is only
present within a Java class if the BON event involves the BON class. An event
chart can have the event type incoming or outgoing meaning all the events in
the event chart is either incoming or outgoing. Events has the Javadoc custom
tag @bon.event where each event is contained within the HTML tag
along with the event type. An example of this can be seen in listing 6.2.

1 /∗∗
2 ∗ @bon . event
3 ∗ <l i >incoming : Make person a programmer</ l i >
4 ∗/

Listing 6.2: Event Javadoc custom tag

Creations are stored within a Java class if the creator of the creation is equal
to the BON class. Creations has the Javadoc custom tag @bon.creator where
each creation is contained within the HTML tag . Indexing, explanation,
queries, commands and constraints are added to the class chart, while the de-
scription is added to the class of the class chart. Incoming events are added to
the event chart containing incoming events and outgoing events are added to
the event chart containing outgoing events. Creations are added to one creation
chart and hereafter the informal charts are then added to the informal charts
model.

When the informal charts model is created then a textual informal BON �le can
be created. The textual informal BON �le is created using JET and the template
is named Java2BON.bonjet. The informal charts model is iterated through and

42 Codegeneration from Java to BON

the system chart, cluster charts, class charts, event charts and creation charts
are written to the textual informal BON �le.

6.2.1 Inheritance in class charts

In order to add inheritance to the class chart, we need to retrieve the class
which the class of the class chart derives from. This is done by adding the class
ExtendVisitor which is derived from ASTVisitor, which can be seen in �gure
6.3. ExtendVisitor checks if an AST node is derived from another class, if it has
a super class. If it has a super class then the �eld type is set and we're able to
retrieve the super class.

Figure 6.3: ExtendVisitor class

6.3 Acceptance testing

The features of the code generation will be tested by using acceptance tests.
The tests can be seen in the following table:

Test
case
ID

Test case Test description Expected re-
sult

Actual result Passed
/
Failed

6.3 Acceptance testing 43

T19 Generate
bon �le

Test that a bon
�le is created with
the same name as
the Java project se-
lected

A bon �le is
created with the
same name as
the Java project

A bon �le is
created with the
same name as the
project inside a
folder called bon

Passed

T20 Generate
system chart

Test that a sys-
tem chart is cre-
ated with explana-
tion and clusters

A system chart
is created with
name as the
Java project.
The system
chart has clus-
ters and an
explanation

A system chart
is created with
the same name
as the selected
Java project and
the system chart
contains clusters
with a descrip-
tion. The system
chart also has an
explanation

Passed

T21 Generate
cluster
charts

Test that cluster
charts are gener-
ated and the cluster
charts contains in-
dexing, explanation
and a combination
of clusters and/or
classes

Cluster charts
are created
containnig
indexing, expla-
nation and a
combination of
clusters and/or
classes

Cluster charts
are created con-
tainnig indexing,
explanation and
a combination of
clusters and/or
classes

Passed

T22 Generate
class charts

Test that class
charts are gener-
ated and the class
charts contains
indexing, expla-
nation, queries,
commands and
constraints

Class charts are
created contain-
ing indexing,
explanation,
queries, com-
mands and
constraints

Class charts are
created contain-
ing indexing,
explanation,
queries, com-
mands and
constraints

Passed

T23 Generate
event charts

Test that event
charts are gener-
ated and the event
charts contains
the type of events,
events and which
class the events
involves

Event charts
are generated
and the event
charts contains
the eventtype,
events and
which class the
events involves

Event charts are
generated and the
event charts con-
tains the event-
type, events and
which class the
events involves

Passed

44 Codegeneration from Java to BON

T24 Generate
creation
charts

Test that cre-
ation charts are
generated and the
creation charts con-
tains the creator
class and which
class it creates

Creation charts
are generated
and the creation
charts contains
the creator class
and which class
it creates

Creation charts
are generated
and the creation
charts contains
the creator class
and which class
it creates

Passed

Table 6.1: Acceptance tests of codegeneration from Java to BON

Chapter 7

Future work

This chapter describes which features could be added to future development of
iBONText based on the test results from table 4.1 5.1 and 6.1.

7.1 Scenario charts

As it is made now, scenario charts from the informal charts aren't generated as
Javadoc. This can be done by generating the information of the scenario charts
to the �le overview.html since the scenario charts illustrate important aspects
of the overall behavior of the system.

7.2 Concrete syntax

When creating informal charts it is not possible to use special characters inside
a simple_string. The characters "$" and ":" cannot be used. It is possible
that the use of other special characters would result in an error. To solve this
problem, the concrete syntax must be corrected to include special characters in
simple_strings.

46 Future work

7.3 Ecore model

When creating a class chart it is possible for a class to inherit from itself. This
should not be possible. To add this feature, a constraint in the Ecore model
must be made. The inherit must not be equal to the class of the class chart.

7.4 Java to BON

When generating the textual informal BON models from Java, in some cases
there's spacing in the simple_strings. A text might look like the following:
" This cluster represents the base level of the system". The spacing
must be deleted so the informal charts and the Javadoc is ideally identical.

7.4.1 Seamless codegeneration

The generation of the informal charts from Java isn't a seamless process. One
must select a Java project in the Java view then press Java to BON in the menu,
then press Generate BON model. The generation of the informal charts from
Java source code should start whenever the user presses save.

7.5 Graphical notation

When making informal charts, it is much easier to get an overview of a system
if the informal charts use a graphical notation. Diagrams are much easier to
read than a textual notation. The textual notation should provide a foundation
for the graphical notation. A way to implement this could be using Graphical
Modeling Framework (GMF) where you can develop graphical editors based on
EMF and GEF[14].

Chapter 8

Conclusion

This thesis has demonstrated how to design and implement a textual informal
BON editor called iBONText which features seamless integration between tex-
tual informal BON and Java. The editor follows the grammar for textual infor-
mal BON provided by Kim Waldén and Jean-Marc Nerson in 1994. The editor
parses and type checks the input. If the input is correct, Java source code and
Javadoc with custom annotations will be generated from the textual informal
BON. Textual informal BON can be generated from Java source code. iBON-
Text has been tested using JUnit tests and acceptance tests. The Java source
code maintains its traceability from the textual informal BON. This means the
time to understand the requirements and the system's behavior is much less
compared to reverse engineering the system from the Java source code, making
the software development more e�cient.
The textual informal BON editor is missing improvements which remains to be
done. Scenario charts aren't generated as Javadoc meaning the behavior of the
system isn't found in the Java source code. When writing a simple_string in
the textual informal BON editor, it is not possible to use special characters.
The class of the class chart can inherit from itself. When generating informal
charts from Java source code, simple_strings contains spaces. The process of
generating informal charts from Java source code isn't seamless. In this report
there has been suggested solutions to these improvements. iBONText encour-
ages the use of informal BON in software engineering and maintains traceability
from the analysis to the implementation.

48 Conclusion

Appendix A

JMerger rules

1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <merge : opt ions
3 xmlns : merge="http ://www. e c l i p s e . org / org / e c l i p s e /emf/ codegen/

jmerge /Options ">
4
5 <merge : d i c t i ona ryPat t e rn name="generatedMember"
6 s e l e c t="Member/getComment" match="\ s ∗@\s ∗(generated) \ s ∗\n" />
7
8 <merge : pu l l targetMarkup="^generated$ " sourceGet="Method/getBody"
9 targetPut="Method/setBody" />
10
11 <merge : pu l l targetMarkup="^generated$ " sourceGet="Member/

getComment"
12 targetPut="Member/setComment" />
13
14 <merge : pu l l targetMarkup="^generated$ " sourceGet="Type/

ge tSupe r c l a s s "
15 targetPut="Type/ s e t Supe r c l a s s " />
16
17 </merge : opt ions>

50 JMerger rules

Appendix B

Plugin.xml

1 <?xml ve r s i on=" 1 .0 " encoding="UTF−8"?>
2 <? e c l i p s e v e r s i on=" 3 .0 "?>
3 <!−−
4 −−>
5 <plugin>
6 <extens i on po int="org . e c l i p s e . emf . e co re . generated_package">
7 <package
8 u r i="http ://www. emftext . org / language /BON"
9 class="org . emftext . language .BON.BONPackage"
10 genModel="metamodel/BON. genmodel"/>
11 </extens ion>
12 <extens i on
13 po int="org . e c l i p s e . u i . commands">
14 <category
15 id="org . emftext . language .BON. commands . category "
16 name="Sample Category">
17 </category>
18 <command
19 categoryId="org . emftext . language .BON. commands . category "
20 id="org . emftext . language .BON. commands . BONHandler"
21 name="Generate BON model">
22 </command>
23 </extens ion>
24 <extens i on
25 po int="org . e c l i p s e . u i . hand le r s ">
26 <handler
27 class="org . emftext . language .BON. javatobon . BONHandler"
28 commandId="org . emftext . language .BON. commands . BONHandler

">

52 Plugin.xml

29 </handler>
30 </extens ion>
31 <extens i on
32 po int="org . e c l i p s e . u i . b ind ings ">
33 <key
34 commandId="org . emftext . language .BON. commands . BONHandler

"
35 context Id="org . e c l i p s e . u i . context s . window"
36 schemeId="org . e c l i p s e . u i .

d e f au l tAcc e l e r a t o rCon f i gu r a t i on "
37 sequence="M1+6">
38 </key>
39 </extens ion>
40 <extens i on
41 po int="org . e c l i p s e . u i . menus">
42 <menuContribution
43 locat ionURI="menu : org . e c l i p s e . u i . main .menu? a f t e r=

add i t i on s ">
44 <menu
45 id="org . emftext . language .BON.menus . BONHandler"
46 label="Java to BON"
47 mnemonic="M">
48 <command
49 commandId="org . emftext . language .BON. commands .

BONHandler"
50 id="org . emftext . language .BON.menus . BONHandler"
51 mnemonic="S">
52 </command>
53 </menu>
54 </menuContribution>
55 <menuContribution
56 locat ionURI=" too lba r : org . e c l i p s e . u i . main . t oo lba r ? a f t e r=

add i t i on s ">
57 <too lba r
58 id="org . imm. dtu . s070069 . java . t o o l ba r s . sampleToolbar "

>
59 <command
60 commandId="org . emftext . language .BON. commands .

BONHandler"
61 id="org . emftext . language .BON. t oo l ba r s . BONHandler"
62 t o o l t i p="Say h e l l o world">
63 </command>
64 </too lbar>
65 </menuContribution>
66 </extens ion>
67 </plugin>

Appendix C

User guide

This document describes how to run iBONText.

iBONText is a plugin to Eclipse, therefore to run iBONText one needs to
download and install Eclipse from http://www.eclipse.org/downloads/. In-
formation about installing Eclipse can be found at http://wiki.eclipse.

org/Eclipse/Installation. iBONText has been developed using Eclipse 4.2.
Other versions haven't been tested.

Download the source code for iBONText at https://github.com/sarquah/

iBONText.

Open Eclipse. From the menu press File then Import, as shown on �gure C.1.

Expand General and select Existing Projects into Workspace as shown
on �gure C.2.

Select Select root directory: and browse to the projects downloaded as shown
on �gure C.3. Select all projects then press Finish.

The projects should now be imported and iBONText is almost ready to run.
Right-click on the project org.emftext.language.BON, go to Run as and
select Run Con�gurations... as shown on �gure C.4.

http://www.eclipse.org/downloads/
http://wiki.eclipse.org/Eclipse/Installation
http://wiki.eclipse.org/Eclipse/Installation
https://github.com/sarquah/iBONText
https://github.com/sarquah/iBONText

54 User guide

Figure C.1: Import command

Select Eclipse Application and press New launch con�guration. Name
your launch con�guration and make sure theRuntime JRE is the latest version
as shown in �gure C.5.

Next select the tabArguments. Remove all text inVM arguments and insert
-XX:MaxPermSize=128m to make sure there's enough memory at runtime.
Press Apply then Run. This is shown in �gure C.6.

Select File �> New �> Project and navigate to EMFText Project. Select
EMFText bon project and press next. This is shown in �gure C.7.

Give your project a name then press Finish. You should now have a project
with a bon �le containing errors as shown in �gure C.8.

To generate Java source code and Javadoc custom annotations edit your informal
charts and press save. If the model is veri�ed, Java source code and Javadoc

55

Figure C.2: Import wizard

custom annotations will be generated as shown in �gure 5.8.

To generate textual informal BON from Java source code select your Java project
in the view called Java. In the menu press Java to BON �> Generate BON
model as shown in �gure C.9.

A bon �le will be generated in the folder bon of the Java project.

56 User guide

Figure C.3: Select archive �le to import

Figure C.4: Select Run Con�guration

57

Figure C.5: Runtime JRE

Figure C.6: Run con�gurations

58 User guide

Figure C.7: Select a wizard

Figure C.8: Textual informal BON editor

59

Figure C.9: Generate BON model

60 User guide

Bibliography

[1] ANTLR. http://www.antlr.org/.

[2] Apache Ant. http://ant.apache.org.

[3] Frederick Brooks. No silver bullet - essence and accident in software engi-
neering. page 4, 1986.

[4] Cascading Style Sheets. http://www.w3.org/standards/webdesign/

htmlcss.

[5] Eva Darulova and Fintan Fairmichael. http://kindsoftware.com/

products/opensource/Beetlz/.

[6] Eclipse. http://www.eclipse.org.

[7] Eclipse Java Development Tools. http://www.eclipse.org/jdt/

overview.php.

[8] Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/

?project=emf#emf.

[9] EMFText. http://www.emftext.org.

[10] EMFText guide. http://www.emftext.org/index.php/EMFText_

Documentation.

[11] Extended Backus�Naur Form. http://www.cl.cam.ac.uk/~mgk25/

iso-14977.pdf.

http://www.antlr.org/
http://ant.apache.org
http://www.w3.org/standards/webdesign/htmlcss
http://www.w3.org/standards/webdesign/htmlcss
http://kindsoftware.com/products/opensource/Beetlz/
http://kindsoftware.com/products/opensource/Beetlz/
http://www.eclipse.org
http://www.eclipse.org/jdt/overview.php
http://www.eclipse.org/jdt/overview.php
http://www.eclipse.org/modeling/emf/?project=emf#emf
http://www.eclipse.org/modeling/emf/?project=emf#emf
http://www.emftext.org
http://www.emftext.org/index.php/EMFText_Documentation
http://www.emftext.org/index.php/EMFText_Documentation
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

62 BIBLIOGRAPHY

[12] Richard F. Paige and Jonathan S. Ostro�. A comparison of the business
object notation and the unifed modeling language. Technical report, De-
partment of Science, York University.

[13] Fintan Fairmichael. http: // kindsoftware. com/ products/

opensource/ BONc/ . PhD thesis.

[14] Graphical Modeling Framework. http://www.eclipse.org/modeling/

gmp/.

[15] Object Management Group. MOF Model to Text Transformation Language
(MOFM2T), 1.0. http://www.omg.org/spec/MOFM2T/1.0/.

[16] Human-Usable Textual Notation. http://www.omg.org/spec/HUTN/.

[17] Javadoc. http://docs.oracle.com/javase/7/docs/technotes/tools/

windows/javadoc.html.

[18] JMerge. http://wiki.eclipse.org/JET_FAQ_What_is_JMerge%3F.

[19] Craig Larman. Applying UML and patterns: an introduction to object-
oriented analysis and design and iterative development. Prentice Hall, 2004.

[20] Bertrand Meyer. Ei�el: The Language. Prentice Hall, 1991.

[21] Aidan Morrissey. http://kindsoftware.com/documents/reports/

Morrissey10.pdf. Master's thesis.

[22] Kim Waldén and Jean-Marc Nerson. Seamless Object-Oriented Software
Architecture. Prentice Hall, 1994.

[23] XML Metadata Interchange. http://www.omg.org/spec/XMI/.

http://kindsoftware.com/products/opensource/BONc/
http://kindsoftware.com/products/opensource/BONc/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/HUTN/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://wiki.eclipse.org/JET_FAQ_What_is_JMerge%3F
http://kindsoftware.com/documents/reports/Morrissey10.pdf
http://kindsoftware.com/documents/reports/Morrissey10.pdf
http://www.omg.org/spec/XMI/

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Problem definition
	1.2 Why do we need such a tool?
	1.3 Related work
	1.4 Outline

	2 Background
	2.1 Business Object Notation
	2.2 Informal BON

	3 Frameworks
	3.1 Model driven design
	3.2 Eclipse Modeling Framework
	3.3 Domain Specific Languages
	3.4 Model to text transformation
	3.5 Eclipse JDT
	3.6 Javadoc

	4 Textual Informal BON Editor
	4.1 Abstract Syntax of Informal BON
	4.2 Concrete Syntax of informal BON
	4.3 Test

	5 Codegeneration from BON to Java
	5.1 Modifications to the Ecore model
	5.2 Informal BON to Java transformation
	5.3 Configuration of Javadoc
	5.4 Acceptance testing

	6 Codegeneration from Java to BON
	6.1 Initiation
	6.2 Abstract Syntax Tree
	6.3 Acceptance testing

	7 Future work
	7.1 Scenario charts
	7.2 Concrete syntax
	7.3 Ecore model
	7.4 Java to BON
	7.5 Graphical notation

	8 Conclusion
	A JMerger rules
	B Plugin.xml
	C User guide
	Bibliography

