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Summary (English)

The goal of the thesis is to explain the Merino Welsh conjecture and related
results to a degree understandable to a student of mathematics unfamiliar with
the subject area. Specifically I deal with an article by my thesis advisor Carsten
Thomassen titled "Spanning trees and orientations in graphs" published in 2010.
I also explore some new results of my own related to the Merino Welsh conjec-
ture.
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Summary (Danish)

Målet for denne afhandling er at forklare Merino-Welsh formodningen og re-
laterede resultater, så de er forståelige for matematisk interesserede der ikke er
hjemmevante i dette område af matematikken. Helt specifikt omhandler afhan-
dlingen en artikel af Carsten Thomassen, min vejleder. Artiklen hedder "Span-
ning trees and orientations in graphs"og blev udgivet i 2010. Jeg udforsker også
et par af mine egne resultater relateret til Merino-Welsh formodningen.d to the
Merino Welsh conjecture.
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Preface

The thesis deals with the Merino Welsh conjecture, which limits the number of
spanning trees, τ(G), in a graph, G, in terms of the number of acyclic orienta-
tions, a(G) and the number of totally cyclic orientations, c(G). This is also a
statement on the convexity of the so-called Tutte polynomial of a graph, which
has a number of interesting applications.

This thesis is centered around an article by Carsten Thomassen: "Spanning trees
and orientations of graphs" from 2010 ([Tho10]). In this article bounds are found
on τ(G), a(G) and c(G), which in combination give the Merino-Welsh conjecture
for graphs with either a small or large amount of edges in relation to the number
of vertices (so there is only a narrow size gap where the conjecture is unsettled).
Additionally, along with proofs of the Merino-Welsh conjecture for cubic graphs
and for planar triangulations, the article also includes the statement of two open
problems, one of which I use as a guide to find new results.

The work in this thesis comes in two parts: A presentation of the article and
some original results. In the presentation of the article I rewrite all proofs from
scratch such that they are clearly understandable to those unfamiliar with the
topic. This is necessary, as the article is written for experts and leaves a lot of
hidden assumptions and "obvious" shortcuts.

As for the original results, I am inspired by the result for planar triangulations
and one of the open problems to try and prove the Merino Welsh conjecture for
outerplanar near-triangulation. I succeed in this and from there also prove the
Merino Welsh conjecture for any outerplanar graph. From there I start moving
towards any planar near-triangulation. Apart from these results, this section
also contains a few minor observations.
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Chapter 1

Introduction

In this chapter I introduce the concepts needed to understand the Merino Welsh
conjecture and why it is interesting. A few relevant proofs are included. I assume
knowledge of graph theory equal to DTU course 01227 "Graph Theory". The
contents of this chapter is based on knowledge from 01527, [Tho10] and other
sources where mentioned

This chapter starts out with some facts about spanning trees, then moves on to
acyclic and totally cyclic orientations. This leads to the Merino Welsh conjec-
ture, followed by the chromatic and Tutte polynomials. I round off with a light
touch on some applications.

In this work a graph has no multiple edges and no loops and a multigraph has
multiple edges and no loops. So if I allow loops, I will mention it specifically. I
use the term oriented path for a path where all edges are oriented in the same
direction. In this work we use the concept of suspended paths. A suspended
path is a path in a graph, where exactly the endvertices have degree > 2. I will
often draw paths as zigzags ( )



2 Introduction

1.1 Spanning trees

The number of different1 spanning trees of a graph is one of the three graph
invariants the Merino Welsh conjecture is about. Just to refresh: a spanning
tree of a graph G is a subgraph, with all the vertices of G and a subset of the
edges to form a tree. Each valid subset is a different spanning tree, so in case
of multiple edges, each edge counts for another spanning tree. We use τ(G) for
the number of different spanning trees of a graph.

Any connected graph has at least one spanning tree, so τ(G) ≥ 1. Graphs that
aren’t connected have no spanning trees, τ(G) = 0.

Importantly, the number of spanning trees obey the so-called Deletion-Contraction
formula:

Theorem 1.1 Let G be a multigraph and let e be an edge in G. Then τ(G) =
τ(G/e) + τ(G− e)

This proof is adapted from my notes from DTU course 01227 "Graph Theory"

Proof. If we consider any edge e in G, here marked in black, with eventual
multiple edges marked in red.

The spanning trees can be divided into those that include e and those that
don’t. If you look at the following drawing, it is easy to see that the spanning

1Two isomorphic spanning trees are not the same.
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trees that don’t include e are exactly the spanning trees of G− e. Note that the
other edges can still be in a spanning tree.

The spanning trees of G that include e would be exactly spanning trees of G/e,
if you contracted e in each of them. To illustrate, here is a drawing of G/e, the
other edges are now loops and will never be in a spanning tree.

Since all spanning trees are accounted for, we have τ(G) = τ(G/e) + τ(G− e).
�

Also of interest later on is the fact that planar duality preserves the number of
spanning trees. As a quick reminder, edges in G correspond to edges in the dual
graph G∗, while faces correspond to vertices and vice versa.

Theorem 1.2 Let G be a planar multigraphs with loops allowed, and let G∗
be the planar dual of this graph. Then τ(G) = τ(G∗).

I got a sketch of this proof from private communication with my advisor Carsten
Thomassen.

Proof. I prove this by constructing a bijection between the spanning trees of
G and G∗. Let G have n vertices, m edges and f faces. If T is a spanning tree
in G, then let T ∗ consist of the edges of G∗ that are not dual edges of edges of
T . The situation is llustrated below with the spanning tree from earlier. The
edges that "escape" should be seen as being connected to the outer face.
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Since T has n − 1 edges, T ∗ must have m − (n − 1) edges. Using Euler’s
polyhedron formula, n −m + f = 2 f − 1 = m − n + 1, T ∗ must have f − 1
edges, the amount a spanning tree should have. Since T is a tree, there must be
a path between any vertex in T ∗ and the vertex that corresponds to the outer
face of G. 2 So since T ∗ is a connected subgraph with f−1 edges, it can only be
a spanning tree. So each spanning tree in G corresponds to a unique spanning
in G∗. Using the same argument in reverse (by starting with a tree in G∗), we
have a bijection between the spanning trees of G and G∗ and so there must be
equally many. �

1.2 Acyclic orientations & Totally cyclic orienta-
tions

We need the concepts of acyclic orientations and totally cyclic orientations. Here
are the definitions, an example of each is given in figure 1.1.

Definition 1.3 An acyclic orientation is an assignment of orientations such
that there is no cycle with all edges oriented the same way. The number of
different acyclic orientations in a graph is called a(G)

Definition 1.4 A totally cyclic orientation is an assignment of orientations
such that there is no edges not in some cycle with all edges oriented the same
way. The number of totally cyclic orientations is called c(G).

Obviously a orientation cannot be both acyclic and totally cyclic, except when
the graph has no edges, then the only orientation is both acyclic and totally
cyclic.

2If that wasn’t the case, T would have had a cycle.
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Figure 1.1: Two kinds of orientations of a graph

(a) An acyclic orienta-
tion

(b) A totally cyclic orien-
tation

If a graph G has no edges a(G) = c(G) = 1, otherwise a(G) ≥ 2 and if all
components of G with edges is 2-edge-connected then c(G) ≥ 2 otherwise c(G) =
0. If there is a loop a(G) = 0.

These two graph invariants3 also obey the Deletion-Contraction formula:

Theorem 1.5 Let G be a multigraph with an edge e. Then a(G) = a(G −
e) + a(G/e)

Theorem 1.6 Let G be a multigraph with an edge e. If e is not part of a
multiple edge or a bridge Let G be a multigraph with an edge e = xy. If the set
of edges between x and y does not form a cut c(G) = c(G− e) + c(G/e)

These proofs are from course 01527 "Graph Theory II" at DTU.

Proof. First we consider the case where e is not part of a multiple edge. We
look at G − e, where e = xy. Let α1 be the number of acyclic orientations
of G − e with a directed path from x to y. Let α2 be the number of acyclic
orientations of G − e with a directed path from y to x. Let α3 be the number
of acyclic orientations of G − e with neither a directed path from x to y nor
one from y to x. If there were both kinds of path it would not be an acyclic
orientation.

Then a(G) = α1 +α2 +2α3 since the first two force a direction on e. a(G−e) =
α1 +α2 +α3 and a(G/e) = α3, since the first two would create a directed cycle
when contracting. It is now easy to see that a(G) = a(G− e) + a(G/e).

If e is part of a multiple edge, G/e will have loops and so will have no acyclic
orientations, that is a(G/e) = 0. G− e will still have the other multiple edges,

3Invariants are f(G), where f(G) = f(G′) when G and G′ are isomorphic.
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so if you add e back in, the rest of the multiple edge will force e to have a certain
direction. So there is the same amount of acyclic orientations. Piecing it all
together a(G) = a(G− e) + 0 = a(G− e) + a(G/e). �

The proof for c(G) goes similarly, except it is a bit more involving to handle the
multiple edges.

Proof. First we consider the case where e is not a multiple edge. We look at
G− e, where e = xy.

Let β1 be the number of orientations of G − e where there is no directed path
that corresponds to an y to x path in G.

Let β2 be the number of orientations of G − e where there is no directed path
that corresponds to an x to y path in G.

Let β3 be the number of orientations of G − e where there is both a directed
path that would correspond to one from x to y and one from y to x.

Then c(G) = β1 + β2 + 2β3 since the first two force a direction on e, while the
last allows e to be directed freely. c(G − e) = β3, since the two first needs e
to complete the cycle, and c(G/e) = β1 + β2 + β3. It is now easy to see that
c(G) = c(G− e) + c(G/e).

If e = xy is part of a multiple edge, let C be set of all edges between x and y.
Now the βs from above are found on G−C instead of G− e, but are otherwise
the same.

The expressions for c(G), c(G− e) and c(G/e) are a bit different:

c(G/e) = 2|C|−1(α1 +α2 +α3), since the other edges between x and y have been
turned into loops.

c(G) = (2|C| − 1)(α1 + α2) + 2|C| ∗ α3, since the two first orientations force an
orientation on one of the edges in C, but the last one doesn’t

c(G−e) = (2|C|−1−1)(α1 +α2)+2|C|−1α3, since the two first orientations force
an orientation on one of the edges in C−, but the last one doesn’t

The expressions for c(G − e) and c(G/e) add up to the expression for c(G), so
Deletion-Contraction works in this case.
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Figure 1.3: The relationship between the orientation of an edge and the ori-
entation of the corresponding edge in the dual graph.

v1

G,c(G)v2

f1

G∗,a(G)

f2

I

�

So both τ(G), a(G) and c(G) obey Deletion-Contraction, you would think there
is a connection, wouldn’t you? It turns out that there is, but it will have to wait
until we get to the Tutte polynomial.

Theorem 1.7 The number of acyclic orientations in a graph G is equal to
the number of totally cyclic orientations in the dual G∗, i.e. a(G) = c(G∗).

This proof was first sketched in personal communication with my advisor, Carsten
Thomassen.

Proof. In this proof I look at totally cyclic orientations in the original graph
and acyclic orientations in the dual. If you want to go the opposite way, you
can just pretend your graph was the dual graph all along.

I start by defining a relation between orientations of a graph G and orientations
of its dual G∗. This relation is illustrated in figure 1.3. Imagine G and its dual
G∗ are drawn on top of each other. Then look at an edge e = v1v2 in G. If e
is orientated from v1 to v2, start at v1 and walk along the edge towards v2. At
some point you will meet the dual edge. Then the dual edge should be oriented
to you right.

I now prove that each acyclic orientation corresponds to exactly one totally
cyclic orientation, and vice versa, i.e. I find a bijection.
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An oriented cycle in an totally cyclic orientation divides the dual graph into two
components with all edges oriented from one to the other.

Since every edge in a totally cyclic orientation is in a directed cycle, the dual
of that edge, xy is oriented from one such component to the other and there is
no way to get from y to x. So no edge in the dual can be in a directed cycle, so
the dual of a totally cyclic orientation will be an acyclic orientation. And since
changing the orientation of one edge will change the orientation of exactly one
edge in the dual (and no other change can change the orientation of that edge),
each totally cyclic orientation corresponds to an unique acyclic orientation. So
there must be c(G) ≤ a(G).

To go the other way: for any acyclic orientation in G∗ look at any edge xy
oriented from x to y. Since the orientation is acyclic, there can be no oriented
path from y to x.

So there must exist an edge cut set C, dividing G∗ into two components H1 and
H2, with x in H1 and y in H2, and where all edges in C are directed from H1

to H2. The dual of those edges must form a directed cycle, and so the dual of
xy must be in a directed cycle. So there must be a(G∗) ≤ c(G).

All in all tis gives a(G∗) = c(G). �

1.3 Merino Welsh conjecture

We have these three Deletion-Contraction formulas, but they split the numbers
differently. Can we quantify how they split them in relation to each other? This
is what the Merino Welsh conjecture is about.

Conjecture 1 (The Merino Welsh conjecture) Let G be a bridge-
less multigraph. Then τ(G) ≤ max{a(G), c(G)}

First let’s look at two simple cases, where we can verify the conjecture:

For a tree τ(G) = 1, a(G) = 2n and c(G) = 0

For a cycle τ(G) = n, a(G) = 2n − 2 and c(G) = 2

Note that the conjecture only works for bridgeless multigraphs: A connected
graph G that has both a loop and a bridge, say ( ), will have a(G) =
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c(G) = 0. But a connected graph will still have spanning trees, so the Merino
Welsh conjecture doesn’t hold for graphs with loops.

To put the Merino Welsh conjecture in a broader perspective, we need to look
at two curious polynomials.

1.4 Chromatic & Tutte polynomials

Graph colourings, an assignment of colours to vertices such that no two neigh-
bouring vertices have the same colour:

You could easily have used fewer colourings in the above example, leading to the
famous question of how few you need in general. But here we are not (directly)
interested in how many colours you need, but in how many different ways you
can colour a graph if you are allowed to use a certain number of colours. This
is what the chromatic polynomial expresses:

Definition 1.8 For a graph G, let P (G, x) be the number of different ways
to colour G with x different of colours.

It can be found by counting how many choices you have to colour each vertex,
which is somewhat easy in simpler graphs where each vertex only depends on its
neighbours. This includes the graph we coloured earlier, which has the chromatic
polynomial P (G, x) = x(x− 1)4(x− 2)2(x− 3)2(x− 4). Starting from the left,
each vertex has the number of choices marked next to it.

x

x− 1 x− 2

x− 3 x− 1

x− 1

x− 1

x− 2

x− 3 x− 4

But in general, it is hard to find the chromatic polynomial. Here is a naive
attempt at finding the chromatic polynomial of a cycle.
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x

x− 1 x− 1

x− 1

x− 1
?

The number of choices at the yellow vertex depends on whether the neighbouring
vertices have the same or different colours, which is hard to quantify. The chro-
matic polynomial of a cycle with n vertices is P (Cn, x) = (x−1)n+(−1)n(x−1),
by the way.4

The chromatic polynomial is related to one of our graph invariants

Theorem 1.9 Let G be a graph. Then a(G) = (−1)nP (G,−1)

This proof is from DTU course 01527 "Graph Theory II" Proof. Proof by
induction on number of edges.

If there is one edge, there are two acyclic orientations. The cromatic polynomial
is P (G,λ) = λn−1(λ − 1), so (−1)nP (G,−1) = (−1)n(−1)n−1(−2) = 2. So in
the base case, they are equal.

If we assume the result for fewer than m edges, then for any graph G with m
edges: use deletion contraction! a(G) = a(G − e) + a(G/e) = (−1)nP (G −
e,−1) + (−1)nP (G/e,−1) = (−1)nP (G,−1). �

The chromatic polynomial can be generalized5 as the Tutte polynomial: P (G, x) =
(−1)nT (G, 1− x, 0). 6

Both the chromatic and the Tutte polynomial obey deletion contraction, except
the formula is slightly different in the case of the chromatic polynomial. For the
chromatic polynomial the formula is P (G, x) = P (G − e, x) − P (G/e, x). For

4I know from DTU course 01527 "Graph Theory II".
5The Tutte polynomial is defined in general on matroids, other examples of matroids are

the columns of matrices. Matroids could be said to generalize the notion of independence.
6For more about this see [Wel10], [Tut54] or DTU course 01257 "Graph Theory II"
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the Tutte polynomial the formula is T (G, x, y) = T (G− e, x, y) + T (G/e, x, y).
I will now prove the formula for the chromatic polynomial.

Proof. For an edge e = xy, P (G/e, x) is the number of colourings where x
and y have the same colour; P (G − e, x) is the number of colourings where
you ignore that x and y are neighbours; If you take all the colourings where
you ignore that x and y are neighbours and subtract the colourings where x
and y have been given the same colour, you get the valid colourings of G. So
P (G, x) = P (G− e, x)− P (G/e, x)) �

Now that we see that these two polynomials have been shown to also obey
Deletion-Contraction, the question again arises of how these things are related.
It turns out that they are something called Tutte-Grothendieck invariants. They
are exactly the graph invariants that obey Deletion-Contraction, and all of them
are evaluations of the Tutte polynomial.7

To see how our invariants are related to the Tutte polynomial, we need to look
at to small graphs. Let’s call the graph that only consists of a vertex and a loop
L ( ) and the graph that consists of two vertices with an edge between them
I ( ).

a(G), τ(G) and c(G) are these evaluations of the Tutte polynomial.

Theorem 1.10 For a multigraph with loops G

a(G) = T (G, 2, 0)

c(G) = T (G, 0, 2)

If G is connected
τ(G) = T (G, 1, 1)

The exception for the number of spanning trees, is because T (G, 1, 1) actually
gives the number of maximal cycle-free subgraphs. In connected graphs the
maximal cycle-free subgraphs are exactly the spanning trees.

The first has a very simple proof: a(G) = (−1)nP (G,−1) = (−1)n((−1)nT (G, 1−
(−1), 0)) = T (P, 2, 0)

All of them can be proved like this (This is very much a work in progress)
Proof. Proof by induction on number of edges. Base cases are with one edge,
I and L.

7See [Wel10], DJA Welsh
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We use these identities to prove the base cases: T (L, x, y) = y T (I, x, y) = x

a(L) = 0 = T (L, 2, 0) and a(I) = 2 = T (I, 2, 0).

τ(L) = 1 = T (L, 1, 1) and τ(I) = 1 = T (I, 1, 1).

c(L) = 2 = T (L, 0, 2) and c(I) = 0 = T (I, 0, 2).

As for the induction step, assume the theorem for all graphs with less than m
vertices. Then look at any edge e.

If e is a loop, T (G, x, y) = yT (G − e, x, y). So T (G, 2, 0) = 0 = a(G), since
there can be no acyclic orientations in a graph with loops. T (G, 1, 1) = T (G−
e, 1, 1) = τ(G−e) = τ(G), since there never are loops in spanning trees. Finally
T (G, 0, 2) = 2T (G−e, 0, 2) = 2c(G−e) = c(G), since each loop makes an acyclic
orientation by itself and can be directed two ways.

If e is a bridge, T (G, x, y) = xT (G − e, x, y). So T (G, 2, 0) = 2T (G − e, 2, 0) =
2a(G− e) = a(G), which makes sense since the bridge never could be part of a
oriented cycle. T (G, 1, 1) = T (G − e, 1, 1) = τ(G), this takes a bit of explain-
ing. Since T (G, 1, 1) is actually the number of maximal cycle-free subgraphs,
T (G − e, 1, 1) will be the product of the number of spanning trees in the two
components. The bridge will be in all spanning trees of G, so τ(G) is also equal
to the product of the number of spanning trees in the two components. Finally
T (G, 0, 2) = 0 = c(G), since the bridge could never be in an oriented cycle.

For all other edges, both the Tutte polynomial and the graph invariants obey
Deletion-Contraction, so look at G−e and G/e and use the induction hypothesis.
�

You can see the Merino Welsh conjecture as statement on the convexity of the
Tutte polynomial, in the sense T (G, 1, 1) ≤ max{T (G, 2, 0), T (G, 0, 2)}. Infor-
mation about what happens between them would be an even stronger result,
according the original Merino Welsh article [MW99].

The Tutte polynomial has many applications outside graph theory. According
to Merino and Welsh [MW99] it is used for, among other things, the Jones
polynomial of alternating knots, the partition function in the Ising and Potts
models of statistical physics, the flow polynomial and the terminal reliability
polynomial.



Chapter 2

On "Spanning trees and
orientations of graphs" by

Carsten Thomassen

This chapter is a presentation of the article "Spanning trees and orientations"
by Carsten Thomassen ([Tho10])

The theorems and corollaries from the article are referred to as "Article Theo-
rems" and "Article Corollaries", respectively. For these I have kept their state-
ment verbatim. This chapter largely follows the structure of the article, at least
in terms of the corollaries and theorems.

The article discusses some previous/known results. I will mention these when
they fit with my exposition, not in the order they appear in the article. I do
this to make these fit better in the context.

First we look at graphs with a high number of edges compared to the number
of vertices. We find a bound on the number of trees, and then a bound on the
number of totally cyclic orientations; combined these prove the Merino Welsh
conjecture for graphs G with more than 4 |V (G)| − 4 edges.

Then the Merino Welsh conjecture is proved directly for graphs with a low
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number of edges compared to vertices, less than 16
15 |V (G)| to be exact.

Then we look at cubic graphs1 and planar triangulations: We first find a bound
on the number of acyclic orientations, which we use to prove the Merino Welsh
conjecture on cubic graphs. This leads to a simple proof of the Merino Welsh
conjecture on planar triangulations.

This section rounds off with a look at some related open problems.

Apart from adapting, expanding and reorganizing the proofs all illustrations
are also original work, though some were first sketched during meetings with
my advisor.

2.1 Many edges

The first two results in the article are Theorem 1 and Corollary 1. These are
bounds on the number of spanning trees in a graph, which is the left hand side
of the Merino Welsh conjecture.

Article Theorem 1 Let G be a multigraph with n vertices and vertex-
degrees d1, d2, . . . , dn.Then

τ (G) ≤ d1d2 . . . dn−1

with equality if and only if either some di is zero or the vertex of degree dn is
incident with all edges.

Moreover, if M is any matching in G, then for each edge in M joining the
vertices of degrees di, dj, say, (both distinct from the vertex of degree dn), the
term didj may be replaced by didj − 1 in the above product.

In my proof I first consider two special cases where the theorem can be proven
outright. I then prove the inequality with one induction proof, and then the0
matching part with another induction proof. In the article this is proven as
one big induction with everything else inside. Other than that, the proof is the
same, just much more detailed.

1Just to remind, a cubic graph is a graph where all vertices have degree 3.
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Proof. Let vi be the vertex of degree di for all i. In two cases we can prove the
theorem outright: If there is a vertex of degree 0, or if there is a vertex incident
with all edges.

If there is a vertex of degree zero, there can be no spanning trees, which is
less than or equal to any product with non-negative terms, so τ(G) = 0 ≤
d1d2 . . . dn−1. If there is a degree zero vertex that isn’t vn, there is equality,
τ(G) = 0 = d1d2 . . . 0 . . . dn−1. Since a matching can’t include a vertex of
degree 0, if the edge vivj is an a matching, we can safely replace didj with
(didj − 1) and the product will still be 0. Remember that no vertex is matched
twice in a matching; this means we can replace all pairs without having to use
the same di twice.

If there is a vertex incident with all edges, first lets assume it’s vn. This case
looks like this:

vn

v1 v2

. . .

vn−1

In this case τ(G) = d1d2 . . . dn−1, since each of the d1d2 . . . dn−1 vertices will be
incident to exactly one edge in a spanning tree. Any matching in this multigraph
must be a single edge. That edge must be incident with vn, and so the matching
part of the theorem doesn’t apply.

If it was not vn that was incident with all edges, but instead vi, then

d1d2 . . . di−1didi+1 . . . dn−1 ≥ d1d2 . . . di−1di+1 . . . dn−1dn = τ(G)

If we have a matching, assume the vertex vi is matched with is vj . Since
dn ≤ di − 1, we have that dndj ≤ didj − dj ≤ didj − 1 and so

τ(G) ≤ d1d2 . . . di−1di+1 . . . dj−1djdj+1 . . . dn−1dn

≤ d1d2 . . . di−1di+1 . . . dj−1dj+1 . . . dn−1(didj − 1)
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The rest of this proof goes by induction, twice. The first part of the theorem I
will now prove by induction on the number of vertices, n, with the base cases
of one or two vertices. In a multigraph with one vertex, that vertex will have
degree 0, which was covered above. In a multigraph with two vertices, both
vertices are incident with all edges, which was also covered above.

Now to the actual induction step. First we assume the first part of the theorem
for all multigraphs with less than n vertices. If there is no vertex incident with
all edges, there must be an edge e not incident with vn. Assume this edge is
between vi1 and vj1 (where i1, j1 < n). The deletion-contraction formula for
spanning trees is

τ(G) = τ(G− e) + τ(G/e)

Using the induction hypothesis

τ(G− e) ≤ (di1 − 1)(dj1 − 1)d1d2 . . . dn−1 (2.1)

τ(G \ e) ≤ (di1 − 1 + di1 − 1)d1d2 . . . dn−1 (2.2)

so

τ(G) ≤ (di1 − 1)(dj1 − 1)d1d2 . . . dn−1 + (di1 − 1 + di1 − 1)d1d2 . . . dn−1 (2.3)

and if you expand that expression out you get

τ(G) ≤ (di1dj1 − 1)d1d2 . . . dn−1

which means that
τ(G) < d1d2 . . . dn−1

and so the first part of the theorem have been proved – note the lack of equality.

Now for the matching part. We do an induction proof on the size of the match-
ing, m′. As the base case we have a matching with a single edge. In a multigraph
with two vertices, τ(G) = d1 = d2, and so the matching part of the theorem
doesn’t apply. In larger graphs, if vi1vj1 is the edge in the matching, this is
exactly what we did for equation (2.3).

For the induction step, we assume the theorem for all matchings of size less
than m′ on all graphs. If e = vimvjm is an edge in the matching M , then
M − e must be a matching on both G− e and G/e. To see that this is the case,
remember that none of the other edges in the matching touch vim or vjm . Using
the induction hypothesis we get

τ(G−e) ≤ d1d2 . . . (di1dj1−1)(di2dj2−1) . . . (dim−1djm−1−1)(dim−1)(djm−1) . . . dn−1
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τ(G\e) ≤ d1d2 . . . (di1dj1−1)(di2dj2−1) . . . (dim−1djm−1−1)(dim−1+dim−1)dn−1

Due to Deletion-Contraction

τ(G) = τ(G− e) + τ(G/e)

and so

τ(G) ≤ d1d2 . . . (di1dj1 − 1)(di2dj2 − 1) . . . (dim−1
djm−1

− 1)(dimdjm − 1) . . . dn−1

Note that there are no restrictions on equality when matchings are involved.�

From this you can find a bound that requires less information about the graph:

Article Corollary 1 Let G be a multigraph with n vertices and m edges.
Then

τ (G) ≤
(

2
m

n

)n−1
This doesn’t have an explicit proof in the article—just the facts that are neces-
sary to prove it. Even then my proof is barely any longer.

Proof. The sum of degrees of G is
∑n

i=1 di = 2m. For a fixed m the product

τ(G) ≤ d1d2 . . . dn−1

is highest when dn is smallest. dn is smallest when all vertices have the same
degree, namely the average degree. So

τ(G) ≤
(

2
m

n

)n−1
�

The article mentions a similar result by Kostochka [Kos95]: τ(G) ≤ d1d2 . . . dn/(n−
1). It then goes on to compare these two bounds with some classes of graphs
where the number of trees is known exactly. These exact formulas are from
[Ber71].

Cayleys formula states that a complete graphKn has nn−2 spanning trees. Since
all vertices have degree n − 1 in a spanning tree, Theorem 1 and Kostochka’s
formula gives (n− 1)n−1 as a bound.
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Scoin’s formula states that a complete bipartite graph Kp,q has pq−1qp−1 span-
ning trees. In such a bipartite graph, there will be p vertices of degree q and
q of degree p. If we assume, without loss of generality, that p ≥ q, Theorem 1
gives qppq−1, since we have to leave out a p or a q. Kostochka’s formula gives
pqqp/(p+ q − 1), which is slightly tighter than the bound from Theorem 1.

It is proposed that for graphs with Ω(n2) edges, the ratio of the product of
vertex degrees and τ(G) is bounded by a polynomial of n. Kostochka has proved
something weaker than this.

The next result is Theorem 2, which is a bound on the number of totally cyclic
orientations, used on the right hand side of the Merino Welsh conjecture.

Theorem 2 in combination with Corollary 1 will give us our first proof of the
Merino Welsh conjecture for some class multigraphs.

Article Theorem 2 Let G be a connected, bridgeless multigraph with n
vertices and m edges. Then

c (G) ≥ 2m−n+1

This proof goes by induction on how many more edges than vertices there are.
Most of the proof is explaining how the induction step works. The original proof
in the article has the same structure, only shorter and much less explicit.

Proof. We prove by induction on k the difference between m and n: k =
m− n. A connected bridgeless subgraph has minimum degree 2,2 so a minimal
connected bridgeless multigraph is a cycle, so this will be our base case. In this
case m− n = 0 and a cycle has two totally cyclic orientations, so

c(G) = 2 ≥ 20+1

In the induction case, we assume that c(H) ≥ 2m
′−n′+1 for all graphs H with

n′ vertices, m′ edges and m′ − n′ < k.

Then for any graph G with m − n = k let H ⊂ G be a maximal connected
bridgeless proper subgraph of G. Let n′ be the number of vertices and m′ the
number of edges in H.

2If there were degree 0 vertices, it wouldn’t be connected, and if there were degree 1 vertices,
it wouldn’t be bridgeless.
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Since H is a proper subgraph, there must be some part P ′ of G that isn’t in H.
Since G is connected, some of the edges in P ′ must be incident with vertices in
H. Let P be P ′ with these vertices in H included.

P must be connected, otherwise you could add one of the components of P to
H without getting G, which contradicts the maximality of H.

P must also have at most two vertices in H, otherwise you could take two
vertices in H ∩P and find a path Q between them in P . There must be an edge
in P −Q for the third vertex, so H ∪Q ( G, which goes against the maximality
of H.

Which means P must be a path or a cycle, since otherwise you could find a
path as subset of P with endvertices in P ∩H or a cycle as a subset of P with
a vertex in P ∩H, both contradicting the maximality of H.

If P is a path, it must have one more vertex than it has edges. That means P ′
must have fewer vertices than edges, since there are two in P ∩ H. If P is a
cycle, it must have as many vertices as edges. That means P ′ must have fewer
vertices than edges, since there is a vertex in P ∩ H. Eiter way that means
|m′ − n′| < |m− n| and H is covered by our induction hypothesis.

H

G

P

By the induction hypothesis we know that

c(H) ≥ 2m
′−n′+1
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In addition, no matter how we orient3 P it will give a totally cyclic orientation
of G in combination with a totally cyclic orientations of H4, so

c(G) ≥ 2c(H) ≥ 2 · 2m
′−n′+1 = 2(m

′−n′+1)+1 (2.4)

Since there is one more edge than vertex in P , we have

m− n = m′ − n′ + 1

and so, in combination with (2.4), we have

c(G) ≥ 2m−n+1

�

All the results so far can be combined to get Corollary 2: that the Merino Welsh
conjecture is true for multigraphs with many edges. Interestingly enough, we
don’t need to consider a(G) at all in this case, where we have plenty of edges.
This is intuitively plausible, as many edges would lead to more ways of making
cycles in the graph.

Article Corollary 2 Let G be a bridgeless multigraph with n vertices, m
edges. If m ≥ 4n− 4, then

τ (G) < c (G)

Again with this corollary, there was no proof given in the article, as it is a pretty
straight forward piece of formula manipulation.

Proof. Corollary 1 states that

τ(G) ≤
(

2
m

n

)n−1
if we assume that m ≥ 4n− 4, we get

3In this case orienting a path means orienting all the edges the same way
4Note that there might be orientations that become totally cyclic with the addition of the

orientations of P
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τ(G) ≤
(

2
m

m
4 + 1

)n−1

which can be rewritten as

τ(G) ≤
(

8
m

m+ 4

)n−1

(2.5)

Theorem 2 states that

c(G) ≥ 2m−n+1

if we again assume that m ≥ 4n− 4, we get

c(G) ≥ 23n−3 = 8n−1 (2.6)

since m
m+4 < 1, we can combine (2.5) and (2.6) to get

τ (G) < 83n ≤ c (G)

�

2.2 Few edges

Now we look at the situation where there is a large number of edges in relation
to vertices. The first step is this proposition, which is used in Theorem 3, but
no proof or source was given in the article.

Proposition 2.1 For all real x ≥ 3q > 0

2q
(
x

q
+ 1

)q

≤ 2x

Proof. For y ≥ 3 it holds that

2y + 2 ≤ 2y
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Since x
q ≥ 3 replace y by x

q to get

2
x

q
+ 2 ≤ 2

x
q

Take the qth power on both sides:(
2

(
x

q
+ 1

))q

≤ 2
x
q q

which is

2q
(
x

q
+ 1

)q

≤ 2x

�

Now we can prove Theorem 3 from the article, a direct verification of the Merino
Welsh conjecture for graphs with a small number of edges compared to vertices.
And again we only need one of the invariants; this time just the number of
acyclic orientations. Intuitively this still makes sense, as fewer edges would
mean that there are fewer ways you could make a cycle.

Article Theorem 3 Let G be a graph with n vertices and m edges. If
m ≤ 16

15n then

τ (G) < a (G)

This theorem is proven by induction on the number of vertices, but the case
where the minimum degree is 2 takes up most of the proof. In this case, we
prove that the graph G is a subdivision of a unique graph H with minimum
degree 3 except for vertices incident with a single double edge. This H might
have a special structure, where the theorem is easy to prove. If not, the edges
and vertices of H are subject to an inequality, which allows us to prove the
theorem. The proof in the article follows the same structure, but is again much
more concise and implicit.

Proof. We will prove this by induction on the number of vertices, n. Our base
case is the 2-path ( ) which has 1 spanning tree and 2 acyclic orientations.

Now for the induction step, assume the theorem holds for all graphs with less
than n vertices.

If G is not connected, there are no spanning trees and at least 1 acyclic orien-
tation. If there are vertices of degree 0, the graph is not connected.
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If there are vertices of degree 1, let v be a vertex of degree 1 and let H be G
without v.

v

H

Since there are fewer than n vertices in H, the induction hypothesis tells us that
τ(H) < a(H). The edge from v to H must be in all spanning trees of G, so
τ(G) = τ(H), but no matter how we orient that edge, it will never be part of
a oriented cycle, so a(G) = 2a(H). Combine these three equations and we get
τ(G) < a(G).

Then G must have minimum degree 2, which has two subcases: If the graph is a
cycle, we already proved this in chapter 1. If G is not a cycle, then the situation
is a bit more complicated.

Then we need to look at a multigraph H related to G. We can construct H from
G, like so: For every vertex in G of degree at least 3 we make a corresponding
vertex in H. Any edges between these vertices we keep. The remaining vertices
in G now all have degree 2. That means they must be on a suspended path in
G. For any such path, say between vertices x and y in G, if x 6= y, add an edge
between the vertices corresponding to x and y in H. If x = y, add a new vertex
in H with a double edge to the vertex corresponding to x. Note that H needs
to be a multigraph, since there could be many different paths between x and y.

Now the only vertices in H of degree 2 are incident with a double edge, all the
other vertices have degree at least 3. Let p be the number of vertices in H and
let q be the number of edges. I now claim that q ≥ 4

3p −
1
3 and that H has

a special structure when there is equality. I will examine this structure after I
have proven the formula.
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If all vertices have degree at least 3, we must have q = 3
2p >

4
3p −

1
3

5. If
there are vertices of degree 2, I prove the claim by induction on the number of
vertices.

As a base case, we have graphs with at most 4 vertices. There are five archetypi-
cal graphs with at most 4 vertices and minimum degree 2, excluding the 2-cycle,
since we already took care of cycles. The archetypical graphs are shown in fig-
ure 2.1. All other graphs on at most four with minimum degree 2 can be made
by adding edges to these graphs:

Figure 2.1: The five archetypical graphs

(a) A1 (b) A2 (c) A3

(d) A4 (e) A5

A1 A2 A3 A4 A5
p 2 3 4 4 4

4p/3− 1/3 7/3 11/3 5 5 5
q 3 4 6 5 6

Table 2.1

In table 2.1 you can see p, q and the right hand side of the inequality. We see
that they all are good and that there only is equality in the case of A4. If you
added edges to these graphs, you would not change p and so you would just
make the left hand side of the inequality bigger.

So for the induction step, assume that q ≥ 4
3p−

1
3 for all graphs of this sort with

fewer than q vertices. Then look at a vertex x of degree 2.6 This vertex must
be incident with a double edge to, say, a vertex y. There are six different such
cases.

5since we have a minimum degree, p ≥ 1
6we have already considered the case where all vertices have degree 3 or more.
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If y has degree 5 or more, use the induction hypothesis onH−x with p′, q′. Then
q′ ≥ 4

3p
′− 1

3 , adding the part we removed we get 1 = q′+ 2 and 4
3 (p′+ 1)− 1

3 =
q′ + 4

3 < q.

x
y y

If y has degree 4 and is incident with another double edge to some vertex z, use
the induction hypothesis on H − x− y. Then q′ ≥ 4

3p
′ − 1

3 , adding the part we
removed we get q = q′ + 4 and 4

3 (p′ + 2)− 1
3 = q′ + 2 4

3 < q.

x
y z z

If y has degree 4 and is incident with 2 single edges to vertices z and u, use
the induction hypothesis on H − x − y with an edge added between z and
u. Then q′ ≥ 4

3p
′ − 1

3 , adding the part we removed we get q = q′ + 3 and
4
3 (p′ + 2)− 1

3 = q′ + 2 4
3 < q.

x y

z

u

z

u

If y has degree 3 and the other neighbour z of y has degree 4 or more, use the
induction hypothesis on H − x − y with p′, q′. Then q′ ≥ 4

3p
′ − 1

3 , adding the
part we removed we get q = q′ + 3 and 4

3 (p′ + 2)− 1
3 = q′ + 2 4

3 < q.

x
y z z

If y has degree 3 and the other neighbour z of y has degree 3, and z has a double
edge to say u, use the induction hypothesis on H − x − y with p′, q′. Then
q′ ≥ 4

3p
′− 1

3 , adding the part we removed we get q = q′+ 3 and 4
3 (p′+ 2)− 1

3 =
q′ + 2 4

3 < q.

x
y z z z z
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If y has degree 3 and the other neighbour z of y has degree 3, and z has 2
neighbours say u and v, use the induction hypothesis on H − x− y − z adding
an edge between u and v with p′, q′ vertices, edges. Then q′ ≥ 4

3p
′ − 1

3 , adding
the part we removed we get q = q′ + 4 and 4

3 (p′ + 3)− 1
3 = q′ + 4 4

3 = q. So this
is the only place we have equality.

x
y

z

v

u

v

u

That is all the induction steps, now for the special structure. The structure is
partly a tree with only degree 1 and 3 vertices, with a vertex with a double edge
added to each degree 1 vertex. That way all vertices have degree 2 or 3. This
is the case for the base case with equality; it consists of the tree on 2 vertices
plus degree 2 vertices.

The structure is illustrated below. The red vertices are degree 3 vertices in the
tree, the blue vertices are degree 1 in the tree, green vertices are added to the
blue ones.

The induction step with equality adds a degree 3 vertex in the middle of any
edge, connected to a degree 1 vertex with a degree 2 vertex on. This actually
permits adding the degree 3 vertex to one of the double edges, but that would
leave a degree 2 vertex without a double edge. Such a H could not have been
constructed.

If H is a graph with such a structure, call the tree part T . In G this corresponds
to a tree T where all vertices have degree 1, 2 or 3. Let l be the number of vertices
in T , then T has 1 spanning tree and 2l−1 acyclic orientations.

The rest of H is 2-cycles attached to the degree 1 vertices of T ′, which cor-
responds cycles in G. For each of these cycles, if the cycle is of length ki, it
has ki spanning trees and 2ki − 2 acyclic orientations. The number of acyclic
orientations in G is the product of the number of acyclic orientations in T and
all the cycles, and likewise for the spanning trees. So if there are I degree 2
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vertices in H,

τ(G) = 1 ·
I∏

i=0

ki

and

a(G) = 2l
I∏

i=0

(
2ki − 2

)
s

So when H has this special structure, τ(G) ≤ a(G).

Now we look at the remaining versions of H where q > 4
3p−

1
3 . In this case we

will prove that if s is a nonnegative real number and m ≤ 16
15n+ s

15 then

τ (G) ≤ 2sa (G)

which is slightly stronger than the original theorem. By the definition of H, G
can be formed by inserting pi vertices into each edge ei of H. We introduce
r = p1 + p2 + · · ·+ pq = n− p. A very rough bound on the number of spanning
trees of H is 2q, since each edge can either be or not be in a tree. If we have a
spanning tree of H, we can make a spanning tree of G by, for each edge ei not
in the tree, adding all but one of the pi + 1 edges to the tree. This can be done
in pi + 1 ways per edge not in the tree, and so a very rough bound on number
of spanning trees of G is

τ(G) < 2q(p1 + 1)(p2 + 1) . . . (pq + 1)

and, in likeness with Corollary 2, since a product is maximized when all the
terms are around the same size and the average is r

q , we have

τ(G) < 2q
(
r

q
+ 1

)q

We can create acyclic orientations of G by, for each ei ∈ N , orienting all but
one of the edges of a ei as we want, so each ei ∈ H gives rise to at least 2pi

acyclic orientations, and so we have

a(G) ≥ 2p12p2 . . . 2pq = 2r

where the right part follows from the definition of r.
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To go on, we need that

q + r = m

and using the expanded assumption of the theorem that m ≤ 16
15n+ s

15 for any
real s ≥ 0 we get

q + r ≤ 16

15
n+

s

15

Using that n = p+ r

q + r ≤ 16

15
(p+ r) +

s

15

and since q ≥ p 4
3

q + r ≤ 16

15

(
q

3

4
+ r

)
+

s

15

which expanded gives

q + r ≤ q 4

5
+ r

16

15
+

s

15

and reduces to

s+ r ≥ 3q

Now we can add s to the inequality on the number of trees like this

τ(G) < 2q
(
r

q
+ 1

)q

≤ 2q
(
r + s

q
+ 1

)q

If we use proposition 2.1 with x = r + s we get
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τ(G) ≤ 2r+s

and since 2r < a(G)

τ(G) < 2sa(G)

which is Theorem 3. �

2.3 Cubic graphs and triangulations

This time the approach is more like the first part; we prove a bound on a(G)
and combine it with a bound on the number of trees to get the conjecture. That
means we will also have independent bounds on all the invariants

So we will now look at Theorem 4, a bound on number of acyclic orientations.

Article Theorem 4 If G is a 3-connected cubic graph with n vertices, then
for all n,

a (G) ≥ 2

3
· 6n/2 − 2 · 3n/2−1

To prove this, we first prove that we can decompose the graph into suspended
paths and a cycle. Then we calculate a bound on a(G) with that decomposition.
There is no structural difference from the article.

Proof. Since the graph is cubic, we start by removing an edge to have sus-
pended paths. Then we continue to remove suspended paths until we get a
cycle. From now on there will always be at least 2 vertices of degree 2, and so
at least 1 suspended path. This can be seen in the following illustrations. First
when removing an edge
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And then when we remove a suspended path from a formerly cubic graph.

To see that this is possible we will prove that whenever you delete a suspended
path in this process, you leave a graph that has only 1 component with edges
and this component is bridgeless. Look at a step in the process and call the
component with edges G′. If G′ is a cycle, we are done. If not, there must be at
least 2 vertices left of degree 3.7 Then G′ is the subdivision of a unique cubic
multigraph H. You can construct H from G′ by taking a copy of all vertices in
G′ of degree 3. Then add an edge between 2 vertices in H if there is a suspended
path between the corresponding vertices in G′. The question of suspended paths
with the same vertex v in both ends does not come up, as that would make the
remaining edge incident with v a bridge.

If H is 3-connected, there are 3 disjoint paths between any pair of points. So if
P is a suspended path in G′ there are two other paths between the endvertices
of P . That means G′ − P is bridgeless, and if you remove the edges from P ,
there will be only one component with edges.So G′ − E(P ) has 1 component
with edges and this component is bridgeless.

G′

P

G′ − P

7There must be an even number of odd vertices, and 3 is the only allowed odd degree.
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So let’s look at the case when H is not 3-connected. Then there must exist
edges e1 and e2 such that H − e1 − e2 is disconnected. Now choose e1 and e2
such that the smallest component of H − e1 − e2 is smallest possible. Call this
component H ′. Since H is cubic there must be other edges in H ′.

H ′

e1

e2

Since G was originally 3-connected, there must at some earlier point in the
process have been another path from H ′ to the rest of H. This path must have
had an endvertex somewhere in the H ′ part of G′. This endvertex is now a
part of a suspended path that is an edge in H ′. This is illustrated below, the
endvertex as a yellow square and the removed path out of H ′ as a dashed line.

H ′

e1

e2

Now since we chose H ′ to be minimal, e cannot be a bridge in H ′, and so H − e
will still be 2-connected, and so G′ − E(P ) will have no bridge and there will
only remain 1 component with edges.

So since you can keep removing edges until you get a cycle, we do that. Let r1
be the number of edges in this cycle, it will have 2r1 − 2 acyclic orientations.
We then add the suspended paths back in, one by one, in the right order. If the
number of edges in each of the suspended paths is r2, r3, . . . , rk, each of them
can be oriented in 2ri − 1 ways without causing cycles.8

a(G) ≥ (2r1 − 2)(2r2 − 1)(2r3 − 1) . . . (2rk − 1) (2.7)

8If both the fully oriented ways gave totally cyclic orientations, there would already be a
cycle
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Since each suspended path takes 2 vertices from degree 2 to degree 3, there
must be n

2 − 1 suspended paths, since the edge from the start also needs two
endvertices. Including the cycle, that means k = n

2

Furthermore
r1 + r2 + · · ·+ rk = m− 1 =

3n

2
− 1

The right hand side of equation (2.7) will be minimized when most of the terms
are as small as possible, and since the suspended paths can be of length 2 and
the cycle needs to be of length at least 3, the suspended paths will be made
small and all in all absorb 2 · (n

2 − 1) edges. Then there are 3n
2 − 1 − (n − 2)

edges left for the cycle, i.e. r1 = n
2 + 1.

a(G) ≥ (2
n
2 +1 − 2)(22 − 1)

n
2−1

which expanded out give

a(G) ≥ 2

3
6

n
2 − 2 · 3n

2−1

which is Theorem 4. �

With this in hand we continue with Theorem 5, verifying the Merino Welsh
conjecture for cubic graphs. This time it is a different kind of class, maximum
degree instead of number of edges. But maximum degree is also a limit on the
number of edges.

As stated in the article, Theorem 5 is

Article Theorem 5 If G is a multigraph of maximum degree 3, then τ (G) ≤
a (G).

But there is an exception: 2 vertices with a triple edge between them ( ),
where a(G) = 2 and τ(G) = 3. In this case c(G) = 6, so the Merino Welsh
conjecture holds, but this still makes the induction go wrong. This problem
turns out to be solvable.

I have found another problem, with the induction step. In the cases where re-
place a degree two vertex ( ) with an edge, and in the case where we replace
( ) with an edge, the formulas in the article were wrong. Take the case
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where H is a 4-cycle as a counterexample. The graphs for this counterexample
are shown in figure 2.2.

The 4-cycle has 14 acyclic orientations, while the two expansions have 30 and
62, respectively. In the first case, the number of acyclic orientations should have
tripled, in the second case it should have grown sevenfold. The good news is
that this problem disappears when stop adding an edge to H. In the example
above H would have been the 3-path instead, which has 8 acyclic orientations,
which makes the mulitpliier work. As an added bonus this turns the problem
with ( ) into a non-issue, since it will never be the H graph in an induction
step.

Figure 2.2: The bad decompositions

(a) H (b) H + degree 2 vertex

(c) H + path with double edge (d) What H should be

The theorem I prove is

Theorem 2.2 If G is a multigraph of maximum degree 3, then τ (G) ≤ a (G),
unless G consists of a pair of vertices with 3 edges between them.

The proof is an induction proof on the number of vertices. The first part of
the proof takes care of multiple edges and vertices with degree different from 3.
Now that the problem is reduced to cubic graphs, we consider the case where
the graph is not 3-connected. The last part of the proof is for 3-connected cubic
graphs. In the article this proof is by induction on the number of edges, but
I think this method is clearer. As explained above, the induction step is also
different.

Proof. If the graph consists of exactly 2 vertices with a triple edge between
them, the situation is as described above. In all other cases we do induction on
the number of vertices, n. Base case are multigraphs with 1 or 2 vertices and
max degree 2. With 1 vertex, there can be no edges, so τ(G) = a(G) = 1. If
there are 2 vertices, there can be either 0, 1 or 2 edges between them. Then they
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have 0, 1 or 2 spanning trees, respectively, and 1, 2 or 2 acyclic orientations,
respectively.

Now for the induction step, we assume the theorem for graphs with less that n.
If G is disconnected, then τ (G) = 0 and a (G) ≥ 1. This covers the case where
there is a component with a triple edge. If G has a bridge, then we remove it
and consider the 2 connected components, say H1 and H2.

H1 H2

Then the number of spanning trees in G is τ (G) = τ (H1) τ (H2), since each
spanning tree in G is one of the spanning trees from each connected component,
plus the bridge. By the induction hypothesis τ (H1) ≤ a (H1) and τ (H2) ≤
a (H2), and so τ (H1) τ (H2) ≤ a (H1) a (H2)9. Since any combination of acyclic
orientations of H1 and H2, along with any orientation of the bridge, will result
in an acyclic orientation of G, 2a (H1) a (H2) = a (G). All in all

τ (G) = τ (H1) τ (H2) ≤ a (H1) a (H2) =
1

2
a (G)

This also takes care of vertices with degree 1, since the incident edge will be a
bridge.

Consider the case when v ∈ G is a point of degree 2. Then there are two cases:

If v is incident with a double edge, call the rest of the graph H. τ (G) = 2τ (H),
since a spanning tree in H plus exactly 1 of the 2 edges is a spanning tree in
G. Likewise a (G) = 2a (H), since an acyclic orientation of H plus any of the
2 parallel orientations (illustration of parallel) of the 2 edges gives an acyclic
orientation of G. By the induction hypothesis, τ(H) ≤ a(H), so τ(G) ≤ a(G).

9We use that τ ≥ 0
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v

G H

Otherwise v is incident with say v1 and v2. Consider now the graph H where
we remove v.

v
v1

v2

v1

v2

G H

Looking at the spanning trees of H the worst case is when v1v2 isn’t in the
spanning tree of H, since then we need to connect v. This can be done in
exactly two ways, so τ(G) ≤ 2τ(H).

v

v1

v2

v

v1

v2

Orientation-wise, no matter how v1v2 is oriented, if the orientations of v1vv2
are not aligned. there will be no cycles, that were not originally there.

v

v1

v2

v

v1

v2
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so each orientation inH corresponds to at least 2 orientations in G, i.e. 2a (H) ≤
a (G), so

τ(G) ≤ 2τ(H) ≤ 2a(H) ≤ a(G)

and the theorem holds for vertices of degree 2.

Consider the case where G contains a path xyzu, where yz is joined by a double
edge. In case x 6= u, remove y and z to form H.

xy

z u

x

u

G H

Worst case is when the tree in H does not contain xu, since then we need to
connect y and z in G. This can be done in five ways, so τ (G) ≤ 5τ (H).

In case of acyclic orientations, there are six ways to orient the edges so they
aren’t aligned, and since we can always agree with xu, 7a (H) ≤ a (G), i.e.

τ (G) ≤ 5τ(H) ≤ 5a(H) ≤ 7a(H) ≤ a (G)
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x,u

y

z

x,u

G H

In case x = u, just remove y and z, leaving no edge joining x and u. Then the
argument is the same, except there is no xu-edge to agree with, so 6a (G) ≤
a (G).

So we may assume that G is 2-connected and cubic. Assume now that G is not
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3-connected. Then there exists a pair of edges e1 = x1x2 and e2 = y1y2 such
that G− e1 − e2 is disconnected.

Let H1, H2 be the resulting connected components.

x1 x2

y1 y2

e1

e2

H1 H2

Now we form G1 by adding the edge x1y1 to H1 and G2 by adding x2y2 to H2,
whether or not those edges existed to begin with. Remember, that since G is
2-connected, x1 6= y1 and x2 6= y2, so G1 and G2 will be loopless.

x1 x2

y1 y2

G1 G2

A spanning tree in G can contain either both of e1 and e2 or only 1 of them. A
spanning tree that contains both e1 and e2 must contain a path between them;
assume this path is in H1. Then the part of the spanning tree that is in H2

must be a spanning forest, which becomes a spanning tree when we add x2y2.

If we introduce τ ′ (G2) as the number of spanning trees in G2 that includes the
edge x2y2, then the number of spanning trees in G containing both e1 and e2
and a path between them in H1 must be τ (H1) τ ′ (G2). Similarly the number
of spanning trees in G containing both e1 and e2 and a path between them in
H2 must be τ (H2) τ ′ (G1).

A spanning tree in G that contains exactly one of e1 and e2 must contain a
spanning tree in both H1 and H2, and so there are 2τ (H1) τ (H2) such trees.
All in all
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τ (G) = τ (H1) τ ′ (G2) + τ (H2) τ ′ (G1) + 2τ (H1) τ (H2)

and since the spanning trees of H1 are exactly the spanning trees of G1 not
containing x1y1, we have τ (G1) = τ (H1) + τ ′ (G1), and similarly τ (G2) =
τ (H2) + τ ′ (G2). This means that

τ (G) = τ (H1) τ (G2) + τ (H2) τ (G1)

Now we introduce a1 (Hi) as the number of acyclic orientations of Hi that
contains a directed path between xi, yi , and a0 (Hi) as the number of acyclic
orientations that doesn’t contain a directed path between xi, yi. Since an acyclic
orientation either does or doesn’t contain a directed path between xi, yi, we have

a (Hi) = a0 (Hi) + a1 (Hi) (2.8)

and
a (Gi) = 2a0 (Hi) + a1 (Hi) (2.9)

since a directed path between xi and yi enforces10 a direction on xiyi.

If we combine orientations of H1 and H2 and orient e1 and e2 willy-nilly, we get

a (G) ≤ 4a (H1) a (H2)

If e1 and e2 both are oriented from H1 to H2 (or the other way), they cannot
cause cycles, so let’s look at the case where e1 is oriented from H1 to H2 and
e2 from H2 to H1. Then a cycle would only appear when there is a path in H1

directed from e2 to e1 and a path in H2 directed from e1 to e2. The number
of such orientations is a1(H1)

2 and a1(H2)
2 , respectively, since there is only one

edge-disjoint path and you can just flip the edges. That makes a1(H1)
2

a1(H2)
2

cyclic orientations with e1 oriented from H1 to H2, and by symmetry we get the
same amount with e1 oriented from H2 to H1. So all in all

a (G) = 4a (H1) a (H2)− 2
a1 (H1)

2

a1 (H2)

2

10in order to preserve acyclicness
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If we use formula (2.8) to expand we get

a (G) = 4a0 (H1) a0 (H2)+4a0 (H1) a1 (H2)+4a1 (H1) a0 (H2)+
7

2
a1 (H1) a1 (H2)

(2.10)

Putting it all together we have

τ (G) = τ (H1) τ (G2) + τ (H2) τ (G1)

if we use the induction hypothesis on H1, H2, G1 and G2, we get

τ (G) ≤ a (H1) a (G2) + a (H2) a (G1)

expanding these with equation (2.8) and equation (2.9), we get

τ (G) ≤ (a0 (H1) + a1 (H1)) (2a0 (H2) + a1 (H2))

+ (a0 (H2) + a1 (H2)) (2a0 (H1) + a1 (H1))

expanding this we get

τ (G) ≤ 4a0 (H1) a0 (H2)+3a0 (H1) a1 (H2)+3a1 (H1) a0 (H2)+2a1 (H1) a1 (H2)

which is less than the right hand side of equation (2.10), so we get

τ (G) ≤ a (G)

So we may assume G is 3-connected and cubic. If G has more than 26 vertices
then Theorem 4 combined with

τ (G) ≤ 2
5
3

(
16

3

)n
2

from [McK83] gives τ (G) ≤ a (G).

Since G is cubic and every graph must have an even number of odd vertices, G
must have an even number of vertices. So we only need to check graphs with
an even number of vertices. In the article the following bounds are presented

n 4 6 8 10 12 14 16
max τ (G) 248832 16 81 392 2000 9800 50421
min a (G) 1.1 · 106 18 126 810 5000 3 · 104 1.8 · 105

n 18 20 22 24 26
max τ (G) 1265625 6422000 32710656 ≤ 8.6 · 108 ≤ 4.5 · 109

min a (G) 6.7 · 106 4 · 107 2.4 · 108 1.4 · 109 8.7 · 109
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The bounds on a(G) are from Theorem 4. The bounds on τ(G) originate from
private communication between Carsten Thomassen and Gordon Royle for n =
4, 6, . . . 22, and with Brendan McKay for n = 24, 26. �

Now that we have proved Theorem 5, we can do another Merino Welsh veri-
fication straight away! This time it is Theorem 6, verifying the Merino Welsh
conjecture for planar triangulations.

Article Theorem 6 If G is a planar triangulation, then

τ (G) ≤ c (G)

This proof is by direct usage of some identities for planar dual graphs.

Proof. Let H denote the geometric dual graph of G. Then τ (G) = τ (H).
Since G is a planar triangulation, H must be a cubic multigraph, and so by
theorem 5 τ (H) ≤ a (H) and τ (G) ≤ a (H). Finally since a (H) = c (G), we
have that τ (G) ≤ c (G). �

2.4 Two open problems

It is interesting that, in our results, τ(G) is bounded by a(G) when there are
few edges, and c(G) when there are many edges. You could ask yourself if that
is the general situation, and that there might be some place they meet. This
question is the first of 2 open problems posed in the article, except it is stated
in even stronger terms: Is the dividing line m = 2n− 2?

This dividing line is motivated by the "double-path" on n vertices: . . . .
This multigraph has τ(G) = a(G) = c(G) = 2n−1. Add an edge between
any pair of consecutive vertices and you get a graph with 2n − 1 vertices and
a(G) = 2n−1 < 3 · 2n−2 = τ(G). The dual multigraph has 2n − 3 edges and
c(G) < τ(G). So if there is a dividing line, it must be 2n− 2. There are further
considerations of this problem in chapter 3.

Do likewise about the best possible bound for the number of acyclic orientations
in a 2- or 3-connected graph. 6smt → 7smt
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Another open problem pertains to the number of acyclic orientations in a cubic
graph. A modification of Theorem 4 gives a(G) ≥ 6

n
2 /2 for 2-connected cubic

graphs. This is best possible within a factor 2. The question is then: How good
can you do for 3-connected graphs? Does there exist a 3-connected cubic graph
with less that 7n/2n−1000 acyclic orientations.



Chapter 3

New results

The first proof of the Merino Welsh conjecture in the article is corollary 2, where
we prove the conjecture for graphs with a large number of edges compared to
vertices. Here we find that τ(G) ≤ c(G), in agreement with problem 1. The
second Merino Welsh result is theorem 3, where we find that a small number
of edges compared to vertices leads to τ(G) ≤ a(G), also in agreement with
problem 1. The next Merino Welsh result is theorem 5, where we find that
cubic graphs have τ(G) ≤ a(G) and since cubic graphs have m = 3

2n ≤ 2n − 2
for n ≥ 31, this is also in agreement with problem 1.

To go on we need something called Euler’s polyhedron formula. It states that,
if a planar graph G has n vertices, m edges and f faces n−m+ f = 2. In more
general terms, you could also say that the Euler characteristic of the plane is 2.

As for planar triangulations, we need to use Euler’s polyhedron formula. If we
look at the dual graph of a planar triangulation, we have a cubic graph with
f vertices, n faces and m edges. So cubic means that f = 2

3m and using the
Euler characteristic m = 3n− 6, so a planar triangulation has more than 2n− 2
vertices. This fits with the fact that τ(G) ≤ c(G). While this is nowhere near a
proof of problem 1, it still suggests a bound on a class of graphs, if that class is
all on one side of 2n− 2.

1Which is good enough, since the smallest cubic graph has four vertices
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It is on this background I decided to look at outerplanar near-triangulations.

3.1 The Merino Welsh conjecture for outerplanar
near-triangulations

Planar near-triangulations are planar graphs where the outer face is the only
face that has degree different from 3. Outerplanar graphs are planar graphs
where all vertices are lie on the outer face. I look at the graphs that fulfill both
those conditions. Note that outerplanar near-triangulations are edge-maximal
outerplanar graphs.

A way to look at an outerplanar near-triangulation is to consider it as a cycle
with a number of chords. The cycle provides n edges and there must be n − 3
chords to triangulate the inner face. So an outerplanar near-triangulation has
2(n− 2) + 1 edges, so problem 1 would suggest τ(G) ≤ a(G).

What I acually prove is that for any outerplanar near-triangulation 2τ(G) ≤
a(G).

Proof. The proof goes by induction on the number of vertices, and 2-path is
my base case. The 2-path has one spanning tree and two acyclic orientations,
so it’s good. The 2-path isn’t actually a near-triangulation, but due to the
way my proof works, it is the fundamental building block of outer-planar near-
triangulations.

For the induction step, look at any face/triangle in the graph. Call the edges
of the triangle a, b and c, and the three (edge-)disjoint subgraphs that contain
each of the edges A, B and C. Exactly half of the acyclic orientations of A will
orient an edge in the triangle each way, since flipping all edges in an acyclic
orientation is still an acyclic orientation. Likewise for B and C. A triangle has
6 acyclic orientations, and we can just combine the acyclic orientations of A, B
and C based on the edges of the triangle, so a(G) = 6

8a(A)a(B)a(C).

We now introduce the number of spanning trees in A that contains the edge
in the triangle as τ ′(A). Now we combine the spanning trees of A, B and C,
based on the spanning trees of the triangle. If a and b are in the spanning
tree of the triangle, we can use any spanning tree of A and B, but when c isn’t
in the spanning tree, we need to use a tree from C where c is in, but remove
c when we add it. For the three spanning trees of the triangle, that gives
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τ(G) = τ(A)τ(B)τ ′(C) + τ ′(A)τ(B)τ(C) + τ(A)τ ′(B)τ(C). This is less that
3τ(A)τ(B)τ(C), and using the induction hypothesis τ(G) ≤ 3

8a(A)a(B)a(C) =
1
2a(G) �

3.2 Towards outerplanar graphs

The next step from outerplanar near-triangulations is to prove the Merino Welsh
conjecture for all outerplanar graphs. Since outerplanar near-triangulations are
edge maximal outerplanar graphs, outerplanar graphs will have at most 2n− 3
edges. So we are still looking for τ(G) ≤ a(G).

I found out that, if you remove a chord from an outerplanar graph, you will at
worst halve the number of acyclic orientations. So if all chords in outerplanar
graphs are in at least half of all spanning trees, we would be able to prove
the Merino Welsh conjecture for outerplanar graphs. This would happen by
induction with the outerplanar near triangulations as base cases.

I did some work towards this, but it didn’t bear any fruit. Chords incident with
vertices of degree 3 have this property on their own, but they interact strangely.

Unfortunately, I found a counterexample:

An internal edge in this graph is in 24 different spanning trees, but there are 54
in total.

I did then find that a small reformulation of the induction step for outerplanar
near-triangulations works for any outerplanar graph

Take any face. A cycle has 2n−2 acyclic orientations, so a(G) = 2n−2
2n a(G1)a(G2) . . . a(Gn).

A cycle has n spanning trees, so τ(G) ≤ nτ(G1)τ(G2) . . . τ(Gn). Using the in-
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duction hypothesis, τ(G) ≤ n
2n a(G1)a(G2) . . . a(Gn) ≤ a(G) �

3.3 Near-triangulations

Since near-triangulations have only degree 3 faces, except the outer face, the
dual of a near-triangulation is a graph where all vertices except one has degree
3.

Outerplanar near-triangulations are already covered above, so we are now inter-
ested in near-triangulations with vertices in the middle of the graph. m−2n+3
seems to be the number of internal vertices, but I have not managed to prove
it. If it is we can combine this with Euler’s polyhedron formula to get a bound
on the degree of the only vertex of degree ≥ 3 in the dual graph.

If you split the large vertex of the dual graph repeatedly, you can get a cubic
graph, but it won’t help, since all the other graphs of the Deletion-Contraction
formula "go the wrong way" Merino Welsh-wise.

I have found an alternative proof of Theorem 1 from the article, but it only
works for planar graphs:

Proof. Look at the dual graph. Let the vertex of degree dn correspond to the
outer face of the dual. Then for each of the "inner faces" in the dual graph we
need to remove an edge from each to get rid of the cycles of the dual graph. We
can do this in d1d2 . . . dn−1 ways (Argument for why this includes all spanning
trees of the dual graph. Possibly using the Euler characteristic.) This gives
τ(G∗) ≤ d1d2 . . . dn−1. Since the number of spanning trees is the same in the
two graphs, we have τ(G) ≤ d1d2 . . . dn−1

For the second half: Each edge in the matching is a pair of adjecent faces in
the dual. Assume these faces have degrees di and dj . The case where both
faces remove the same edge is useless, so for those two faces we can use didj − 1
instead. �

The dual of a near-triangulation is 2-vertex-connected and 3-edge-connected. A
sketch of the proof:

Proof. There is one path between any two inner faces using only inner faces.
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Each of those faces have two vertex-disjoint paths to the outer face, otherwise
they have an additional inner path. If they have two inner paths the graph is
3-vertex-connected, otherwise it is 2-vertex connected. �



48 New results



Bibliography

[Ber71] Claude Berge. Principles of Combinatorics. Academic Press, 1971.

[Kos95] A. V. Kostochka. The number of spanning trees in graphs with a
given degree structure. Random structures and Algorithms, 6(2 and
3):269–274, 1995.

[McK83] Brendan D. McKay. Spanning trees in regular graphs. European Jour-
nal of Combinatorics, 4:149–160, 1983.

[MW99] Criel Merino and Dominic J. A. Welsh. Forests, colorings and acyclic
orientations of the square lattice. Annals of Combinatorics, 3:417–429,
1999.

[Tho10] Carsten Thomassen. Spanning trees and orientations in graphs. Jour-
nal of Combinatorics, 1(2):101–111, 2010.

[Tut54] W. T. Tutte. A contribution to the theory of chromatic polynomials.
Canadian Journal of Mathematics, 6:80–91, 1954.

[Wel10] Dominic J. A. Welsh. Matroid theory. Dover, New York, dover ed.
edition, 2010. (original work published by Academic press in London
in 1976).


	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Spanning trees
	1.2 Acyclic orientations & Totally cyclic orientations
	1.3 Merino Welsh conjecture
	1.4 Chromatic & Tutte polynomials

	2 On "Spanning trees and orientations of graphs" by Carsten Thomassen
	2.1 Many edges
	2.2 Few edges
	2.3 Cubic graphs and triangulations
	2.4 Two open problems

	3 New results
	3.1 The Merino Welsh conjecture for outerplanar near-triangulations
	3.2 Towards outerplanar graphs
	3.3 Near-triangulations

	Bibliography

