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Abstract

The determination of the intersection between the demand curve, D(t), and the
travel time curve, t(D), is a keystone in transportation systems analysis. The
determination is a troublesome iterative process that includes an external mode
choice loop as well as an internal route choice loop. Since the internal loop
has to run until termination for each iteration of the external loop, alternative
algorithms that seek to reduce the number of outer iterations are of great in-
terest. As such this thesis presents the method of intersection of straight line
approximations of demand and cost curves (the I method). Numerical exper-
iments indicate that the method is superior to a straightforward conventional
approach, but that it fails to compete with the most e�cient methods cur-
rently available. The main drawback of the I method is its sensitivity to mutual
correlation among the various parts of the network. This problem can not be
addressed within the current structure of the I method. The thesis concludes
that it is unlikely for any two-point based interpolation method to outperform
the best currently available methods.
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Preface

This thesis was prepared as a joint thesis at Technical University of Denmark
between Department of Applied Mathematics and Computer Science and De-
partment of Transport in ful�lment of the requirements for acquiring an BSc
Eng in Mathematics and Technology.

The main goal of the thesis is to implement and test a new method for deter-
mining the mode speci�c transport demand, called The Method of Intersection
of Straight Line Approximations of Demand and Cost Curves or simply The I
Method. The method is a lot di�erent from the usual way of determining the
transport demand, since it makes use of the trends of demand and travel times
between each iteration. The idea behind the method was presented in [RNC13]
by Jeppe Rich and Otto Anker Nielsen from Department of Transport, Techni-
cal University of Denmark in corporation with Guilio Erberto Cantarella from
Department of Transportation Engineering, University of Naples Federico II.
This study can be seen as a continuation of this work and is meant to imple-
ment the method and test it on a small-scale test network. The method has
been implemented and tested in MatLab1.

The thesis consists of 6 chapters. The �rst chapter gives a brief introduction
to the transport network equilibria. The second chapter introduces the funda-
mentals of transport demand analysis required to understand the determination
methods presented later on. Chapter 3 presents the I method, the idea behind
it, and the derivation of it. Before doing so, it explains the standard method and
the concept of method of repeated approximations (MRA) and method of suc-
cessive averages (MSA). Chapter 4 deals with the necessary preparations prior

1MATLAB, Release 2012a, The Mathworks Inc., Natick Massachusetts, United States.
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to the tests of the I method. The small-scale transport network and the the
concept of Monte Carlo generated OD matrices are introduced alongside with
the calibration of some important constants of the models. In chapter 5 the I
method is tested thoroughly, and the results of the tests are discussed. Finally,
chapter 6 gives an explanation of why the I method does not perform as good
as intended. It also suggests some changes to the method (leading to a method
called the C method), and results of tests using these suggestions are discussed
too.

Conclusively, I would like to thank my advisers Bo Friis Nielsen from Depart-
ment of Applied Mathematics and Computer Science, Technical University of
Denmark as well as Jeppe Rich and Otto Anker Nielsen from Department of
Transport, University of Denmark for taking the time to come up with the idea
of this interesting project and for guiding my through the project. Also, I would
like to thank Finn Kuno Christensen, Department of Applied Mathematics and
Computer Science, Technical University of Denmark for developing the LATEX
template used in the thesis.

Lyngby, 31-August-2013

Mads Paulsen
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Chapter 1

Introduction

This introductory chapter gives a short presentation to the main problem area
of the thesis. It seeks to provide the reader with the necessary theoretical
overview to understand the basic theory of transport demand analysis presented
in chapter 2. Thus the chapter can be seen as a prerequisite, but it also seeks to
guide the reader through the content of the thesis, as well as stating the main
limitations of the thesis.

The thesis deals with the determination of transport network equilibria. Be-
tween any two nodes in a transport network (a so-called OD pair, denoted by
Ω) there is a function representing the demand for car transport, DΩ,c(tΩ,c),
as well as a function representing the average travel time by car, tΩ,c(DΩ,c).
The equilibrium demand and average travel time between the OD pair, Ω, is
denoted by (D∗Ω,c, t

∗
Ω,c) and su�ces D∗Ω,c = DΩ,c(t

∗
Ω,c) and t∗Ω,c = tΩ,c(D

∗
Ω,c).

When the equilibrium demand and average travel time between all OD pairs of
the transport network have been found, the transport network is said to be in
equilibrium.

The demand and travel times of car transport a�ect each other, because an
increasing number of cars travelling between the same two points will naturally
lead to a decreasing average speed due to congestion. This causes the aver-
age travel times to increase, and people to select alternatives routes to avoid
congestion.



2 Introduction

If the primary link between an OD pair is heavily congested, a lot of people
will search for alternative routes, whereas only a few will deviate from the usual
route if the congestion is minor. This means that the route choice of the cars is
strongly dependent on the demand for car travel. It is obvious that the route
choice of the cars a�ect the average travel time by car since each route has its
own travel time. It is also true that the amount of people choosing a car over
public transport (the mode choice) is dependent on the travel times. As such, it
can be seen that the network equilibrium can only be found by using a method
that allows the mode choice and route choice to interact with each other.

This study includes only two modes of transportation, cars and public trans-
portation, and uses a �xed overall demand between any OD pair, DΩ. Since all
other transportation modes (bicycles, planes and roller skates etc.) are omit-
ted, a unique equilibrium demand for public transport, D∗Ω,p, can be found as
D∗Ω,p = DΩ−D∗Ω,c. The corresponding equilibrium average travel time for pub-
lic transport could be determined by, t∗Ω,p = tΩ,p(D

∗
Ω,p), but is actually already

known right from the beginning. This is because the travel times of public
transport is assumed to be una�ected by congestion.

Since t∗Ω,p is known from the beginning, it is tempting to simply calculate D∗Ω,p
by DΩ,p(t

∗
Ω,p), but this is not possible, since the demand for public transport is

also (and mainly) dependent on the travel time of the car transport. Instead
a 2-stage model involving an external mode choice loop, and an internal route
choice loop has to be used. For each iteration of the mode choice loop, the route
choice loop has to run until termination. When the mode choice loop reaches
convergence, the network equilibrium has been found.

Since the internal loop has to terminate for each iteration of the external loop,
making each iteration of the external route rather �expensive�, it is of great
interest to reduce the number of iterations of the external loop. The thesis seeks
to do this by implementing and testing a new algorithm called the I method.
The method uses straight line approximations of the demand and cost curves
based on the previous two iterations. The idea was presented in [RNC13], and is
quite groundbreaking in the sense that no prior studies have dealt with utilising
the trend of the demand and cost curves to determine transport equilibria. At
least not to the knowledge of the author.

The tests of the I method will be carried out on a small-scale transport network
using Monte Carlo generated �xed OD matrices. If the I method turns out to be
successful under these conditions, further investigations of the method should
be conducted using a large transport network, and with the use of proper trip
generation and trip distribution. These two aspects are the main limitations of
the thesis.
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The thesis is meant to be read chronologically, but depending on the interest and
the background of the reader, it might not be necessary to read the entire thesis.
Chapter 2 provides the background theory of the thesis, and can be skipped if the
reader is already familiar with the basics of transport network analysis such as
the BPR formula, discrete choice models and random utility theory. In chapter 3
the concepts of the method of repeated approximations (MRA) and the method
of successive averages (MSA) are presented alongside with the I method. The
chapter is very important for the understanding of the I method. Chapter 4 is
concerned with the test network and the calibration of some constants used in
the simulations. The chapter gives a broader understanding of the test results
presented in chapter 5 but is not essential. As metioned, the test results are
found in chapter 5, whereas the conclusive chapter 6 discusses why the I method
fails to behave as intended. This chapter is important for understanding the
downsides of the I method, although the �nal section, section 6.3 can be skipped
if the reader is solely interested in the I method.
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Chapter 2

Fundamentals of

Transportation Demand

Analysis

In transport systems analysis, it is of great importance to be able to �nd the
intersection between the demand curve, D(t), and the cost curve, t(D). The
reason is that this intersection point reveals the actual estimated amount of
tra�c �ow (demand) and travel time (cost) there will be on each link (road) and
route in the tra�c network. It also reveals the amount of passengers travelling
between two nodes (cities) travelling by car, and how large the average travel
time between the two nodes are.

This chapter introduces the basics of transport demand analysis. In section
2.1 an example featuring a very simple transport network will be presented
alongside with the BPR formula. In section 2.2 the general 4-stage model will
be introduced. In the following section (2.3), a reduced model su�cing the
analysis needed for this study is introduced. Section 2.4 presents the theory
of random utility and contains some relevant examples too. Finally, section
2.5 discusses the problems occurring when a transport network is extended to
consist of multiple OD pairs.

The chapter is primarily based on [Ric10], and where no other references are
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given it is implicit that [Ric10] is the source.

2.1 Introduction

Later on in this chapter, transport networks with multiple possible routes and
modes will be presented. But in order to get a gentle introduction to the �eld,
we will begin with a very simple network.

Example 2.1.1 (The Simplest Transport Network)
In this example we consider the simplest transport network possible consisting
of two nodes (cities) connected by a single link (road) with a capacity of Cl = 75.
The travel time for a car travelling on the link is given by

tc(Dc) = t0,c

(
1 + α

(
Dc

Cl

)β)
= 5

(
1 + 0.5

(
Dc

75

)2
)
,

where Dc is the amount of cars travelling between the two cities. Furthermore,
we assume that there is no public transport between the two cities, and no
alternative vehicles (bicycles, roller skates, planes etc.) are available, see �gure
2.1.

Figure 2.1: The transport network of example 2.1.1

Let the demand between the two cities be given by D = 50. Since there are no
other transport options than choosing a car, we clearly have the demand for car
travel to be Dc = D = 50. It is also obvious that the corresponding travel time
by car, tc, will be

tc(50) = 5

(
1 + 0.5

(
50

75

)2
)

= 6.11

We can summarise this, by stating that given a demand of 50, the resulting
demand and cost is given by (D∗c , t

∗
c) = (50, 6.11).

�
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2.1.1 The BPR Formula

The formula used for calculating travel times in example 2.1.1 is a very impor-
tant formula, called the BPR Formula. The formula is a very common way of
calculating travel times. It says that for a speci�c link l, the travel time by car
can be calculated by

tl,c(Dl,c) = t0,l

(
1 + αl

(
Dl,c

Cl

)βl)
.[Ric10] (2.1.2)

Here t0,l is the so called free �ow travel time of the link, meaning the travel
time required given that there are no other cars on the road. Furthermore, αl
and βl are constants, and in this study αl = 0.5, ∀l, whereas βl ∈ {2, 4, 6} is
link speci�c. Finally, Cl is the link speci�c capacity for cars 1, while Dl,c is the
demand for cars on link l.

The model tells us, that as tra�c increases each vehicle have to drive slower in
order to prevent crashing, leading to a higher travel time. Since

Dl,c
Cl

< 1, αl
serves as the maximum percentage of travel time added by congestion. In our
case it is assumed that it takes 50% longer to travel on a fully congested link,
corresponding to a speed reduction of 33%. β is a measure of the curvature
of the travel time. For a high β , the �rst amount of tra�c have almost no
in�uence, whereas the travel times increases fast for high demands, see �gure
2.2.

It should be stressed that the formula is only used to determine the travel time
for cars. The travels time for public transportation are assumed to be equal to
the free �ow travel time, regardless of the demand,

tl,p = t0,l. (2.1.3)

2.2 The General 4-Stage Model

The BPR formula tells how to calculate the corresponding travel time of a link
to any demand of the link. Unfortunately, in order to use the formula, it is
necessary to have a model that can determine the demand for the links.

If demand (D(t)) and travel time (t(D)) had been two simple functions, a so-
lution � (D∗, t∗) satisfying t(D∗) = t∗ and D(t∗) = D∗� could have been found

1The capacity of a link can both be interpreted as the total capacity including both direc-
tions or only one of them. For a discussion about this, see the end of section 4.2.3.
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Figure 2.2: Travel time as a function of the ratio between demand and capacity for
various values of β.

analytically. Unfortunately, they interact on each other in a very complicated
way, and as such, the solution must be found by an iterative algorithm instead,
see chapter 1.

The model needed is called 4-stage model. It consists of the following 4 steps

• Trip generation,

• Trip distribution,

• Mode choice,

• Route assignment. [Ric10]

The above presentation of the model shows the 4 stages of the model, and it is
tempting to believe that when all 4 stages have been completed, all demands
and travel times have been determined. Unfortunately, this is not the case since
the 4-stage model in fact is a 4-stage loop that keep repeating until a stable
solution has been found.

Although this thesis will only use the last two stages of the model, it is important
to know what has been let out. As such a brief explanation of the �rst two stages
follows below.
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2.2.1 Trip Generation and Distribution

The trip generation and the trip distribution are the �rst two steps of the 4-
stage model. The trip generation step involves the determination of generated
and attracted trips for each node of the network. For instance a node with a lot
of work places will attract many trips, whereas a node representing an area on
the country side will only have attract and generate few trips.

The trip distribution step describes how the generated and attracted trips are
distributed between the di�erent nodes of the network. All else being equal
two nodes that are close to each other will be more likely to share the demand
between them than two nodes that are far apart.

It is beyond the scope of this study to dig any further into these two steps, since
this study only deals with a small �ctive test network (see section 4.1). In this
case, the trip generation and distribution are unimportant as long as the total
demand has a realistic size relative to the network. How a realistic total demand
has been determined in this study can be seen in section 4.2.3, whereas section
4.3 shows how a random trip distribution has been created by the use of Monte
Carlo simulation.

2.3 The Reduced 2-Stage Model

It should be stressed clearly, that due to the approach of Monte Carlo simulation
chosen in this study, the 4-stage model reduces to a 2-stage model, since the
trip generation and distributions will be constant and as so are unin�uenced by
the mode and route choice steps.

Thus ignoring the trip generation and trip distribution steps, the 4-stage model
reduces to a 2-stage model consisting of two loops,

• Mode choice (the external loop).

• Route choice (the internal loop).

Throughout the study, the terms internal and external loop will be used fre-
quently.
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2.3.1 Mode Choice � The External Loop

The mode choice normally follows the trip distribution step, meaning that the
current demand between each pair of nodes in the network (a so-called OD pair)
has been determined. In our case using the 2-stage model, the total demand
between any OD pair in the network, DΩ, has been determined. The mode
choice step now seeks to determine how many of these people will choose a
speci�c transportation mode between each OD pair.

In practice there are extraordinarily many transportation modes available. For
short distances people might choose to use roller skates, skateboards, bicycles
or to walk. All these transportation modes will be unrealistic for long distances,
and for certain trips - like crossing the Atlantic - planes will be the only realistic
option.

In this study, we will only consider car travel and transportation by public
transport. We could have included di�erent type of public transport, but since
this would not change the probability of choosing a car, it is unnecessary to
include since this study focuses on car travel.

How people are assumed to choose between car and public transport are depen-
dent on the average travel time of both modes (and will be explained in section
2.4).

If an iteration of the mode choice stage has come to the conclusion, that the
majority of the demand between an OD pair is to be carried out by car, the
corresponding average travel time by car will be very high due to congestion, see
eq. (2.1.2), p. 7. In the next iteration of the mode choice stage, people will be
more likely to use public transport because it is a relatively better option than in
the previous iteration. This pattern continues throughout the iteration process.
Therefore, it is clear that the mode choice stage has to be run several times
before the external solution for each OD pair, (D∗Ω,c, t

∗
Ω,c), can be determined.

2.3.2 Route Choice � The Internal Loop

The route choice step follows the mode choice step. This means that it is known
how many people will travel between each OD pair using each transportation
mode.

People are assumed to be more likely to choose a route with a low travel time
than a route with a high travel time (exactly how will be presented in section
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2.4). The travel times for public transportation are almost independent of the
amount of people choosing that route, and it is customary to assume that the
travel times of public transportation is fully independent of the demand. This
assumption has also been chosen in this study, see section 2.1.2.

As introduced in equation (2.1.2), section 2.1.1, the travel time on a link is
dependent on the demand of the link. Thus, if initially most people are assumed
to choose a route A because it has a low travel time, the links of route A become
congested and the travel time increases. Now the situation has changed, and
route A might be a rather slow route forcing people to choose a di�erent route.

It is therefore clear, that for any speci�c mode demand between each OD pair,
Ω, the route choice step has to run several iterations in order to give the internal
solution for (D�Ω,c, t

�
Ω,c). In other words, for every iteration of the external loop,

the internal loop has to run until convergence has been reached. This issue will
be illustrated in example 2.4.4, section 2.4.3.

2.4 Discrete Choice Models

So far the mode and route choice steps have been introduced brie�y, but no
speci�c formula or method for determining the probability for each choice has
been presented. A formula capable of calculating this is called a discrete choice
model, and such a model will be presented in section 2.4.2.

However, in order for any discrete choice model to be able to calculate the prob-
ability of a certain choice, the concept of utility functions have to be introduced.

2.4.1 Utility Functions

In order to choose between two or more choices, it seems like a good idea to have
a measure of �how good� each choice is. This is exactly the purpose of the so-
called utility functions. For each option, O, the corresponding utility function,
UO, contains information about the utility achieved by choosing option O. A
typical utility function for a transportation option is given by

UO = γtO + κO, (2.4.1)

where tO is the travel time of option O. γ is a measure of the time elasticity,
and will always be negative. It can be interpreted such that if |γ| is big, then
the demand of option O will be very sensitive to changes in tO. κO is the option
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preference constant which emulates that some options have higher demand due
to comfort, safety etc., even though the travel time is the same. For more
information about the exact values of γ and κO used in this study, see section
4.2.1 and section 4.2.2.

2.4.2 The Logit Model

Having introduced the concept of utility functions, it is possible to introduce a
discrete choice model. One of the most widely used methods is the logit model.
Denoting an option by the letter O, the probability of choosing option O is then
given by

PO =
eUO∑
∀i
eUi

. (2.4.2)

It is easy to show that PO ∈]0, 1[,∀O and
∑
∀O
PO = 1, making the logit model a

valid discrete probability density function, see [JFM11].

Alternative models do exist, but dealing with more than one discrete choice
model would be beyond the scope of this study. For more information on these
models, such as the generalized extreme value models, the probit model and the
mixed logit model, see [Tra09].

So far it has been assumed that each choice has a deterministic utility, UO.
This method is overly simpli�ed, and in reality not all people will have the same
utility for this choice. In order to correct for this, a stochastic error term can
be added to the utility function. For person i the utility for option O can then
be written as,

UO,i = UO + εO,i,

where εO,i is a randomly distributed term. If person i is faced with a number
of options, it can then be assumed that person i chooses option O, if and only
if UO,i > UU,i,∀U 6= O. This is equivalent to

UO + εO,i > UU + εU,i ⇔
εO,i − εU,i > UU − UO.

The probability of the above happening is determined by the distribution of εO,i
(which is the same as for εU,i). It is commonly assumed that the error terms
come from the standard Gumbel distribution given by

f(εO,i) = e−εO,ie−e
−εO,i

, F (εO,i) = e−e
−εO,i

.
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When this is the case, it turns out that P (UO,i > UU,i),∀U 6= O is exactly
the logit model as given in (2.4.2). Thus, by using the logit model we actually
emulate the fact that the choices are probabilistic. [Tra09]

A slightly di�erent approach is to simulate every error term for each person
stochastically, and then make the person choose the choice with the higher util-
ity. Although this would increase realism and possibly decrease the number of
external iterations required to converge, this study will stick to making proba-
bilistic discrete choices based on the logit model. The reason is that this thesis
is solely dealing with a comparative study of the performance of an alternative
algorithm for the external loop. A stochastic approach is most likely not to
strongly favour one of the methods over the other, and as such the improved
performance would be unimportant. Also the added noise from the stochastic
error terms could possibly make it harder to �nd any patterns revealing why
the new method is performing as it is.

For more information on stochastic simulation, see [LK00] for a general approach
or [Tra09] for stochastic simulation for discrete choice models.

2.4.3 Examples of Simple Transport Networks Requiring
Discrete Choices

Now that we know how to choose between two di�erent options, we are ready
to extend example 2.1.1 by adding public transport to the network.

Example 2.4.3 (Simple network requiring mode choice)
We consider the same transport network as in example 2.1.1 with the addition
of a train running between the two cities, see �gure 2.3.

Figure 2.3: The transport network of example 2.4.3

Regardless of the amount of passengers on the train, it takes the train 5 time
units to travel between the two cities (tp=5). We still have D = 50 and the
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travel time on the road given by

tc(Dc) = 5

(
1 + 0.5

(
Dc

75

)2
)
.

Additionally, the following constants have been given

γ = −1, κc = 1.5, κp = 0.

Since there is no route choice involved in this example, our 2-stage models
reduces to a 1-step model where only the mode choice is under consideration.

The way to get through the �rst iteration of the mode choice step is to assume
there is no tra�c on the network, and calculating the corresponding travel times.
In this case we will have tc = tp = 5, which yields the following utility functions.

Uc = γtc + κc = −1 · 5 + 1.5 = −3.5,

Up = γtp + κp = −1 · 5 + 0 = −5.

Based on these utility functions, the initial probability of choosing a car over
public transportation can be calculated by

Pc =
e−3.5

e−3.5 + e−5
= 0.8176.

And since the car demand is equal to the overall demand times the probability
of choosing a car, the following demand is obtained by

Dc = 0.8176 · 50 = 40.88.

This demand is then used to calculate the next travel etc. This process has
to run for several iterations before convergence is reached. The calculations of
these will be omitted, but the iteration pattern can be seen in �gure 2.4. The
solution to this system turns out to be

(D∗c , t
∗
c) = (35.84, 5.57).

�

So far we have seen how to handle a transport network with a single link and with
public transport. In reality, it is very seldom that there is only one possible route
to the destination. This next example, which will be the �rst example where
both loops of the 2-stage model will be active, seeks to show how to handle such
a case.
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Figure 2.4: Iteration pattern of example 2.4.3

Example 2.4.4 (Simple network requiring mode and route choice)

In this example we continue with the setup from 2.4.3, but with a minor change.
A new freeway between the two cities has been build, see �gure 2.5. Under free
�ow conditions, it takes 4.5 time units to travel it, and it has a capacity of 100.
It has a β parameter equal to 4, so that the travel time of the new link (link 2)
becomes

t2,c = t0,l

(
1 + 0.5

(
D2,c

C2

)β2
)

= 4.5

(
1 + 0.5

(
D2,c

100

)4
)
.

Due to so-called induced demand (see [Ger09]) caused by the newly built freeway
between the two cities, the demand have increased to reach D = 100.

As in example 2.4.3, we �rst assume that there is no tra�c on the network, and
then determine the corresponding travel times, t1,c = tp = 5 and t2,c = 4.5.

As known from before, the next step is to calculate the utility function for car
travel and public transportation. Normally, the travel time (tc) used in the
utility function of cars would be the demand-weighted average of the travel
times of the possible routes. Since, in this �rst iteration, both demands are
assumed to be 0, we simply use the average given by tc =

t1,c+t2,c
2 = 4.75. This
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Figure 2.5: The transport network of example 2.4.4

gives us the following utility functions.

Uc = γtc + κc = −1 · 4.75 + 1.5 = −3.25,

Up = γtp + κp = −1 · 5 + 0 = −5.

The corresponding demand is then

Dc = 100 · e−3.25

e−3.25 + e−5
= 85.20.

Now, since we have more than 1 possible route for the car demand, we have to
initiate the route choice stage. In order to choose between the routes, the logit
model is used, and it yields

D1,c = 85.20 · e−5

e−5 + e−4.5
= 37.30

D2,c = D −D1,c = 47.90.

By using these demands, we can calculate the corresponding travel times of each
link

t1,c = 5 ·

(
1 + 0.5

(
37.30

75

)2
)

= 5.62

t2,c = 4.5 ·

(
1 + 0.5

(
47.90

100

)4
)

= 4.55.

These travel times can then be used to calculate the demand of both routes.

Since the internal loop has to run for many iterations, the calculations will
be skipped, and instead �gure 2.6 shows the iteration pattern of the internal
loop. It can be see that the method converges towards the internal solutions
(D�1,c, t

�
1,c) = (29.13, 5.38) and (D�2,c, t

�
2,c) = (56.07, 4.72).
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Figure 2.6: Iteration pattern of link 1 and 2 of example 2.4.4.

Using the internal solution, the average travel time by car can be calculated as

tc =
D1,ct1,c +D2,ct2,c

D
=

29.13 · 5.38 + 56.07 · 4.72

85.20
= 4.95.

This can be used to determine the car demand of the next external iteration. The
example can be completed by repeating the above process until the di�erence
in the car demand is su�ciently small.

�
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2.5 Networks with Multiple OD Pairs

After studying the last two examples, the required prerequisites to understand
a complex transport system are almost ful�lled. One thing still needs to be
introduced, though.

In example 2.4.4 we allowed multiple possible routes for the car demand. Both
of these routes only consisted of 1 link, connecting the same two nodes. In a
more advanced transport network, there are several nodes, and thus also a lot
of OD pairs.

When going through the 2-stage model of a transport network with multiple
OD pairs, each stage of the model has to be completed for each OD pair before
continuing. This is due to the fact that the system can not be solved for 1
isolated OD pair, since the solution is dependent on the solution of the other
OD pairs. For more information about this see section 6.2.

When there are multiple OD pairs, there will also be routes consisting of several
links. In this case, the demand for each link is simply the sum of the demand
of all routes containing this link. Formally, this can be written as

Dl,c =
∑
∀r|l∈Gr

Dr,c.

Using this information, the travel time for each link can be calculated by the
BPR formula (see section 2.1.1),

tl,c = t0,l,c

(
1 + αl

(
Dl,c

Cl

)βl)
.

This allows the calculation of the travel time for each route, by simply adding
the travel times of the links contained in the route

tr,c =
∑
∀l∈Gr

tl,c.

And �nally, by knowing the travel time of each route, the demand for each route
can be calculated as

Dr,c = DΩr,c
eγtr,c∑

∀s∈GΩr

eγts,c
,

where Ωr is the OD pair corresponding to route r.



Chapter 3

Methods for Determination

Transport Network

Equilibria

As seen in the preceding chapter, when determining the demand and travel time
of all OD pairs, routes and links of a transport network, an iterative approach
has to be used. This approach consists of an external and an internal loop. The
standard way of dealing with this is presented in section 3.1. In section 3.2,
an alternative algorithm for the external loop (the I method) will be presented.
Finally, some suggestions for alterations which have been considered during the
development of the algorithm will be presented in section 3.3.

3.1 The Standard Method

After having introduced the fundamentals of transportation demand analysis in
the preceding sections, we are now ready to introduce what will be referred to
as the standard method in the rest of this study. Later on in this section, we will
take a look at the standard method using the method of successive (weighted)
averages (MS(W)A), but for now the method of repeated approximations will
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be presented.

3.1.1 MRA - The Method of Repeated Approximations

The Method of Repeated Approximations, generally known as (MRA), sounds
much more complicated than it is. It is actually just the pure iterative ap-
proach used so far. The name comes from the fact, that for every stage of the
model, the approximations are based on the former approximations. Since these
stages repeat themselves gradually making better and better approximations,
the method is called the method of repeated approximations. In order to really
understand the I method, it is needed to get an understanding of the standard
method, and how MSA is applied in this case.

It is the simplest case and does not use any trends what so ever. One can think
of the method as if it was taking a snapshot of the transport network after each
stage in the 2-stage model. Based on this snapshot, it makes the best possible
approximation, and takes another snapshot.

A more structured review of the algorithm follows below.

Algorithm 3.1.1 (The standard method using MRA)

1. For each OD-pair, calculate the average free �ow travel times, tΩ,c,1.

2. Set k = 1.

3. For each OD-pair, calculate the k'th demand for car tra�c, DΩ,c,k, based
on the latest average travel time by cars, tΩ,c,k. That is DΩ,c,k = DΩ,c(tΩ,k).

4. Increment k by 1.

5. For each OD-pair, run the internal (route assignment) loop in order to
calculate the new average travel times, tΩ,c,k.

6. Repeat step 3-5 until ||DΩ,c,k−DΩ,c,k−1|| ≤ τ for all OD-pairs or k ≥ kmax.

An example of the iteration process of the standard method of repeated approx-
imations for a single OD pair can be seen in �gure 3.1. The �gure also shows the
iteration process of the method of successive averages, which will be the topic
of the following subsection.
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3.1.2 MSA - The Method of Successive Averages

The method of repeated approximations is the most basic approach, and in some
cases it turns out to be too simple, in the sense that under certain conditions
the standard methods may fail to converge due to the steepness of the demand
and cost curves. In these cases, convergence can be secured by using a very
simple successive approach, called the method of successive averages (MSA).

Let Ik denote the k'th iteration using MSA. Furthermore, let Îk+1 denote the
values obtained by applying MRA on Ik. Then the MSA alters the next iteration
in the following way

Ik = ak Îk + (1− ak)Ik−1, ak ∈]0, 1]. (3.1.2)

The ak's are chosen such that ak is a decreasing convex functions of k, and
k ∈ N+.

Studies ([BC01, LHH09, Can97, CP01] among others) have shown that the
number of external iterations required can be lowered dramatically by applying
MSA averaging to the standard method. There are two obvious ways to apply
the MSA averaging - either applying it to the demand function or to the cost
function. Earlier studies have shown that applying it to the cost function is far
more e�cient and robust than applying it on the demand. [RNC13]

The iteration pattern of the MSA method can be seen in �gure 3.1. It is seen that
the convergence is much faster than that of the MRA method. It almost seems
as if the MRA method is pulled towards the solution. The reason is that the it
does not go all the way down or up to the cost function, but remains somewhere
in between. The next iteration takes it back on level with the demand function,
but in a place much closer to the solution than the MRA would have done.
According to [RNC13] it can be considered as a type of contraction, although it
di�ers from the mathematical de�nition of a contraction.

A common and very straightforward way to calculate ak, is by letting ak = 1
k .

When using this formula, it can be shown by a proof of induction, that for any
k, all iterations are weighted exactly equally.

Lemma 3.1.3 Let Ik denote the k'th iteration using MSA with k ∈ N+. Fur-
thermore, let Îk be the values obtained by using MRA on Ik−1 for k ≥ 2 and
Î1 = I1. If Ik is calculated by eq. (3.1.2) with ak = 1

k , then

Ik =
1

k

k−1∑
j=0

Îj+1.
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Figure 3.1: Comparison of the standard method using MRA and MSA.

Proof. It clearly holds for k = 1, since

I1 =
1

1
· Î1 =

1

1

1∑
j=1

Îj .

Assuming that it holds for k − 1, it can be shown that it also holds for k,

Ik =
1

k
· Îk +

(
1− 1

k

)
· Ik−1

=
1

k
· Îk +

k − 1

k
· 1

k − 1

k−1∑
j=1

Îj

=
1

k

k∑
j=1

Îj .

�
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Another common way to calculate the MSA coe�cient, is by using

ak =
1

kd
, d ≤ 1.

By selecting d = 2
3 , corresponding to ak = k−

2
3 , the method introduced in

[Pol90] is obtained. Since d ≤ 1 the Polyak-type MSA coe�cient converges to
0 slower than than the conventional MSA coe�cient. Numerical experiments of
[BC01] show that the Polyak-type MSA coe�cient bene�ts from this by being
more e�cient than the conventional MSA approach.

However, in [LHH09] it is suggested, that although ak = k−
2
3 does perform well,

it may converge to zero too slowly to be optimal (see �gure 3.2).

3.1.3 MSWA - The Method of Successive Weighted Aver-
ages

In order to adjust for the slow decay of the Polyak-type MSA coe�cient, [LHH09]
introduces an alternative way of calculating the MSA coe�cient, called the
method of successive weighted averages (MSWA). In this case, the MSA co-
e�cient is given by

ak =
kd∑k
j=1 j

d
, d ≥ 0. (3.1.4)

When d = 0, the method equals standard MSA averaging,

ak =
k0∑k
j=1 j

0
=

1∑k
j=1 1

=
1

k
.

Figure 3.2 compares the MSA coe�cient of [Pol90] (to the left) with the MSA
coe�cient of [LHH09] (to the right). It is seen that for the [LHH09]-type MSA
coe�cient, the higher the d, the slower the decrease of ak. The opposite holds
for the MSA coe�cient of [Pol90]. Numerical experiments from [LHH09] gives
ambiguous results, but indicate that MSA coe�cients of this type may be prefer-
able compared to the Polyak-type MSA coe�cient. As such this thesis will use
MSA coe�cients based on the theory from [LHH09].

In general, when d is chosen as an integer, a closed form expression exists. Since
d = 1, 2, 3, 4, 5 will be used in this study, the closed form expressions of these
are calculated below. The formulas for

∑k
j=1 j

d for various d has been used in
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Figure 3.2: The Polyak type (left) and Liu type (right) MSA coe�cient as a function
of k for various values of d.

the calculations (see [Wei]).

k1

k∑
j=1

j1

=
k

1
2k(k + 1)

=
2

k + 1
,

k2

k∑
j=1

j2

=
k2

1
6k(k + 1)(2k + 1)

=
6k

(k + 1)(2k + 1)
,

k3

k∑
j=1

j3

=
k3

1
4k

2(k + 1)2
=

4k

(k + 1)2
,

k4

k∑
j=1

j4

=
k4

1
30k(k + 1)(2k + 1)(3k2 + 3k − 1)

=
30k3

(k + 1)(2k + 1)(3k2 + 3k − 1)
,

k5

k∑
j=1

j5

=
k5

1
12k

2(k + 1)2(2k2 + 2k − 1)
=

12k3

(k + 1)2(2k2 + 2k − 1)
.

The algorithm of the standard method using MSWA on the cost function is
presented below.
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Algorithm 3.1.5 (The standard method using MSA on tΩ,c)

1. For each OD-pair, calculate the average free �ow travel times, tΩ,c,1.

2. Set k = 1.

3. For each OD-pair, calculate the k'th demand for car tra�c, DΩ,c,k, based
on the latest travel times, tΩ,c,k. That is DΩ,c,k = DΩ,c(tΩ,c,k).

4. Increment k by 1.

5. For each OD-pair, perform the internal (route assignment) loop in order
to calculate the new travel time, tΩ,c,k.

6. Calculate ak.

7. For each OD-pair, set tΩ,c,k = ak t̂Ω,c,k + (1− ak)tΩ,c,k−1.

8. Repeat step 3-7 until ||DΩ,c,k−DΩ,c,k−1|| ≤ τ for all OD-pairs or k ≥ kmax.

Since MSWA is a also a method of successive averages, the �W� is only used to
di�erentiate it from an equally weighted MSA. For the sake of simplicity, and
since this study will not deal with the method of equally weighted successive
averages (except for in the internal loop), MSA will be used as an acronym for
the method of weighted successive averages as well.

3.1.4 The Route Choice Loop (The Internal Loop)

The preceding algorithms have made use of an internal loop � the route assign-
ment loop. In this loop the demand of every OD pair is spread out on routes
according to the theory of section 2.4 and 2.5.

The algorithm uses a standard MSA on the link travel times where the coe�cient
is calculated as ak = 1

k−1 . The reason why ak = 1
k−1 is used as opposed to

ak = 1
k , is due to the fact that the loop has to start with k = 2 in order for the

code to work.

The algorithm assigning routes to the demand between each OD pair can be
seen below.

Algorithm 3.1.6 (Internal loop / Route assignment loop)

1. Let tr,c,2 = tr,p.
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2. Set ki = 2

3. Calculate Dr,c,ki = DΩr,c,k
e
γtr,c,ki∑

r∈GΩr

e
γtr,c,ki

4. Calculate Dl,c,ki =
∑
∀r|l∈Gr Dr,c,ki .

5. Calculate aki = 1
ki−1 .

6. Calculate tl,c,ki = akit0,l ·
(

1 + αl

(
Dl,c
Cl

)βl)
+ (1− aki)tl,c,ki .

7. Increment ki by 1.

8. Calculate tr,c,ki =
∑
l∈Gr tl,c,ki−1

9. Repeat 3-8 until |DΩ,c,ki −DΩ,c,ki−1| < τi for all Ω or ki > ki,max.

10. Set tr,c,2 = tr,c,ki , and begin next loop from step 2.

It is worth noting that the above algorithm uses the route assignment from
the last external iteration as the initial guess for the next iteration. This can
decrease the number of internal iterations dramatically, but can also in some
cases lead to instability that may make the internal loop fail to converge.

Better methods to obtain convergence of the internal loop probably exist, but
it has not been the focus of this study which focuses primarily on convergence
of the external loop. It may lead to methods struggling to converge in the route
choice loop, and during the performance tests towards the end of the study (see
section 5), it will be necessary to take into account that the internal loop might
not be constructed ideally.

3.1.5 Fake Convergence

When using iterative algorithms without having any prior knowledge about the
actual solution, a stopping criteria based on the latest iterations of the algorithm
is needed. Generally, a stopping criteria is a criteria, that indicates that not
much will change if the algorithm kept running for a longer time. In other
words, when the stopping criteria is ful�lled, the latest iterations were more or
less identical, and the current guess is probably as good as it gets.

One known danger of using such a stopping criteria, is that an algorithm might
ful�l the stopping criteria even though it is not near the actual solution � espe-
cially, if using heavy MSA. This situation will be denoted as �fake convergence�
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in this study. The cause behind this phenomenon becomes evident by rewriting
the left-hand side of the stopping criteria,

||DΩ,c,k −DΩ,c,k−1|| = ||DΩ,c(tΩ,c,k)−DΩ,c(tΩ,c,k−1)||
= ||DΩ,c(ak t̂Ω,c,k + (1− ak)tΩ,c,k−1)−DΩ,c(tΩ,c,k−1)||.

Since ||DΩ,c(aktΩ,c,k+(1−ak)tΩ,c,k−1)−DΩ,c(tΩ,c,k−1)|| will be close to 0, when
ak is close to 0, a too fast decreasing ak might su�ce the stopping criteria solely
because ak is low, and not because DΩ,c,k ≈ D∗Ω,c, ∀Ω.

The case is even more extreme, if the MSA averaging is used directly on the
demands. Then the stopping criteria becomes

τ ≥ ||DΩ,c,k −DΩ,c,k−1||
≥ ||akD̂Ω,c,k + (1− ak)DΩ,c,k−1 −DΩ,c,k−1||
≥ ak||D̂Ω,c,k −DΩ,c,k−1||,

which can be rearranged to yield

||D̂Ω,c,k −DΩ,c,k−1|| ≤
τ

ak
.

In this case it is pretty clear, that this can be ful�lled if either ||D̂Ω,c,k−DΩ,c,k−1||
or ||ak|| is su�ciently small. Remember that DΩ,c,k−1 is an averaged value
including information of every demand occurred in the iteration process, and as
such ||D̂Ω,c,k−DΩ,c,k−1|| is a measure of how close D̂Ω,c,k is to the current best
guess of D∗Ω,c. Only if this di�erence is small, convergence has been reached
righteously.

The best way to avoid fake convergence is to avoid extremely fast descending
MSA functions. In the case of Liu-type MSA it will be to prevent a too low value
of d, see �gure 3.2, p. 24. d = 0 corresponds to the standard MSA averaging,
and as a general rule of thumb one should be careful when using d-values lower
than this, which is also suggested in that article since d ≥ 0.

3.2 The I Method � The Method of Intersection

of Straight Line Approximations of Demand

and Cost Curves

In this section the method of intersection of straight line approximations of
demand and cost curves (the I method) will be introduced. Later on in the
section, a derivation and an algorithm of the method will follow. But �rstly, the
general idea of the I method will be presented.
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Figure 3.3: The �rst intersection of straight line approximations using the I method.

3.2.1 The Idea of the I Method

In [RNC13] an idea for a new iterative algorithm is presented. The idea is to
let the 4 latest points of the iteration process approximate the system linearly,
in the sense that one straight line approximates the demand curve, and another
straight line approximates the cost function. The intersection of these two lines
(denoted by (D̃Ω,c, t̃Ω,c)) is expected to be a good approximation of (D∗Ω,c, t

∗
Ω,c),

hopefully resulting in an algorithm requiring few iterations to converge.

It is obvious that neither the cost function nor demand function is a straight
line itself, but on the majority of both curves, the assumption of linearity is
expected to be decent. When the functions are not formed by straight lines, the
intersection (D̃Ω,c, t̃Ω,c) might not lie on neither the demand nor cost function.

As such, the method will not use (D̃Ω,c, t̃Ω,c) as the next point directly. Instead
each of the coordinates will be used as input in the other function, such that the
two resulting points from the iteration will be (D̃Ω,c, t(D̃Ω,c)) and (D(t̃Ω,c), t̃Ω,c).

The method might be quite hard to understand without a visual sketch of the
method. Such a sketch can be seen in �gure 3.3 and 3.4, where the �rst two
iterations have been plotted for the �rst two iterations of the I method for a
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Figure 3.4: The second intersection of straight line approximations using the I
method.

single OD pair. The yellow dots are the interpolation points, which are con-
nected by the yellow interpolation lines. The green dot marks the intersection
point (D̃Ω,c, t̃Ω,c), whereas the black dots are the evaluations of the intersection

points, ((D(t̃Ω,c), t̃Ω,c)) and ((D̃Ω,c, t(D̃Ω,c))).

As seen in the �gures, the I method can not be applied initially, since it requires
2 interpolation points per function, yielding a total of 4 points. The �rst 4 points
using the standard MRA are (DΩ,c,1, tΩ,c,1), (DΩ,c,1, tΩ,c,2), (DΩ,c,2, tΩ,c,2), and
(DΩ,c,2, tΩ,c,3). These 4 points are actually su�cient to initiate the I method, but
since the �fth point (DΩ,c,3, tΩ,c,3) can be calculated easily without having to run
the internal loop, the �fth point will also be calculated using the standard MRA
method. This makes (DΩ,c,2, tΩ,c,2) and (DΩ,c,3, tΩ,c,3) the two interpolation
points for the demand function, and (DΩ,c,1, tΩ,c,2) and (DΩ,c,2, tΩ,c,3) the two
interpolation points for the cost function.
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3.2.2 Derivation of the intersection point (D̃Ω,c, t̃Ω,c)

Now that the general idea and visual introduction to the I method has been
presented, a derivation of the straight line approximations and the intersection
between them is needed.

Let the points used to approximate the demand curve be denoted by (DΩ,c,k−1,
tΩ,c,k−2) and (DΩ,c,k, tΩ,c,k−1), and the points used to approximate the cost
curve be denoted (DΩ,c,k−1, tΩ,c,k−1) and (DΩ,c,k, tΩ,c,k).

Furthermore, let the line approximating the demand and cost curve for OD pair
Ω be denoted by yDΩ and ytΩ , respectively. Since both are straight lines, it will
be possible to write both of them on the form

yDΩ(D) = bDΩ ·D + aDΩ (3.2.1)

ytΩ(D) = btΩ ·D + atΩ , (3.2.2)

where the a's and b's are real coe�cients.

Using the general formulas for a and b for a line passing through (x1, y1), (x2, y2),

b =
y2 − y1

x2 − x1
,

a = y2 − bx2,

it is easy to compute the needed a and b 's:

bDΩ
=
tΩ,c,k−1 − tΩ,c,k−2

DΩ,c,k −DΩ,c,k−1
, aDΩ

= tΩ,c,k−1 − bDΩ
DΩ,c,k,

btΩ =
tΩ,c,k − tΩ,c,k−1

DΩ,c,k −DΩ,c,k−1
, atΩ = tΩ,c,k − btΩDΩ,c,k.

It is worth noting that the above is not valid if DΩ,c,k = DΩ,c,k−1. This turns
out to be a purely mathematical problem, that does not occur in practice. The
stopping criteria of the iteration process is ||DΩ,c,k − DΩ,c,k−1|| < τ , and the
process will only continue as long as there is signi�cant changes in some of the
demands. When this is the case, there will also be minor changes in the other
OD pairs (see section 6.2).

We will now search for the formula for the intersection point between yDΩ(D)
and ytΩ(D), denoted by (D̃Ω,c, t̃Ω,c). By denoting the D-coordinate of the in-
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tersection by D̃Ω,c we get,

btΩD̃Ω,c + atΩ = bDΩD̃Ω,c + aDΩ ⇔

D̃Ω,c =
aDΩ
− atΩ

btΩ − bDΩ

.

Yet again, this is not valid if btΩ = bDΩ
. But this is also very unlikely to happen,

since btΩ is the slope of an increasing function, whereas bDΩ
is the slope of a

decreasing function.

By inserting the above into yDΩ(D) (or ytΩ(D)), we get

t̃Ω,c = btΩD̃Ω,c + atΩ .

3.2.3 The I Method Using MRA

After having introduced the thought and the derivation of the I method, a proper
algorithm is ready to be introduced. And since any further explanation of the
method will provide less information than simply stating the actual algorithm,
the algorithm is presented directly below.

Algorithm 3.2.3 (The I method using MRA)

1. Follow the standard method for the �rst 3 iterations (that is until DΩ,c,1,
DΩ,c,2, DΩ,c,3, tΩ,c,1, tΩ,c,2, tΩ,c,3 are known for all OD-pairs (Ω)).

2. For all Ω, set t̃Ω,c,3 = tΩ,c,3, t̃Ω,c,2 = tΩ,c,2, D̃Ω,c,3 = DΩ,c,2, and D̃Ω,c,2 =
DΩ,c,1.

3. Set k = 3.

4. For all Ω, calculate bDΩ =
t̃Ω,c,k−t̃Ω,c,k−1

DΩ,c,k−DΩ,c,k−1
, aDΩ = t̃Ω,c,k−bDΩDΩ,c,k, btΩ =

tΩ,c,k−tΩ,c,k−1

D̃Ω,c,k−D̃Ω,c,k−1
, and atΩ = tΩ,c,k − btΩD̃Ω,c,k.

5. Calculate D̃Ω,c,k+1 =
aD,Ω−atΩ
bt,Ω−bD,Ω and t̃Ω,c,k+1 = btΩD̃Ω,c,k+1 + atΩ .

6. Calculate DΩ,c,k+1 = DΩ,c(t̃Ω,c,k+1) and tΩ,c,k+1 = tΩ,c(D̃Ω,c,k+1).

7. Increment k by one.

8. Repeat step 4-7 until ||DΩ,c,k−DΩ,c,k−1|| ≤ τ for all OD-pairs or k ≥ kmax.
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It is worth noting that the I method does not use MSA on the �rst initial
iterations prior to the straight line approximations. Although it could take some
of the interpolation points closer to the equilibrium point, it would also cause
the interpolation points of the cost function to lie far from the cost function.

Also, when the I method performs the internal loop, it should be stressed clearly,
that it does not use DΩ,c,k to calculate the travel times, but D̃Ω,c,k.

3.2.4 The I Method Using MSA

Algorithm 3.2.3 is the simplest form of the I method, and it did not use MSA.
In the following section, possible ways to apply MSA to the I method will be
discussed.

Applying MSA to the average route cost of each OD pair (tΩ) is an essential
part of traditional MSA averaging with the standard method. Since the OD
demand for car is calculated using tΩ,c, the MSA-averaging also stabilizes the
resulting demand, DΩ,c. This does not only provide fast convergence, it also
makes the method robust in the sense that convergence is possible even for
situations where the standard method without MSA would have had diverged.

This can also be done with the I method. Unfortunately, the I method uses
DΩ,c(t̃Ω,c) rather than DΩ,c(tΩ,c), why the MSA averaging will not in�uence
the demands much. It will of course have an impact since the tΩ,c's are used to
calculate the next t̃Ω,c, but expect the impact is expected to be relatively small
compared to the impact observed for the standard method.

Another problem that occurs when using MSA on tΩ,c, is the fact that the

point estimates of the cost function (ak t̂Ω,c(D̃Ω,c,k) + (1 − ak)tΩ,c(D̃Ω,c,k+1))
will no longer be an estimate of the actual cost function (see �gure 3.1), but
will lie somewhere in between due to the �contraction�. This may not sound as
a big problem at �rst glance, but since this point is used to make a straight
line approximation of the cost function, it is clear that the method will end up
making an approximation of a di�erent curve. Luckily, this curve will also go
through the equilibrium point (D∗Ω,c, t

∗
Ω,c) why the method might still converge.

The I method with MSA on tΩ,c is described in the following algorithm.

Algorithm 3.2.4 (I method w/ MSA on tΩ,c)

1. Follow the standard method using MSA on tΩ,c for the �rst 3 iterations
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(that is until DΩ,c,1, DΩ,c,2, DΩ,c,3, tΩ,c,1, tΩ,c,2, tΩ,c,3 are known for all
OD-pairs (Ω)).

2. For all Ω, set t̃Ω,c,3 = tΩ,c,3, t̃Ω,c,2 = tΩ,c,2, D̃Ω,c,3 = DΩ,c,2, and D̃Ω,c,2 =
DΩ,c,1.

3. Set k = 3.

4. For all Ω, calculate bDΩ
=

t̃Ω,c,k−t̃Ω,c,k−1

DΩ,c,k−DΩ,c,k−1
, aDΩ

= t̃Ω,c,k−bDΩ
DΩ,c,k, btΩ =

tΩ,c,k−tΩ,c,k−1

D̃Ω,c,k−D̃Ω,c,k−1
, and atΩ = tΩ,c,k − btΩD̃Ω,c,k.

5. Calculate D̃Ω,c,k+1 =
aDΩ
−atΩ

btΩ−bDΩ
and t̃Ω,c,k+1 = btΩD̃Ω,c,k+1 + atΩ .

6. Calculate ak

7. Calculate DΩ,c,k+1 = DΩ,c(t̃Ω,c,k+1) and tΩ,c,k+1 = ak t̂Ω,c(D̃Ω,c,k+1)+(1−
ak)tΩ,c,k.

8. Increment k by one.

9. Repeat step 4-8 until ||DΩ,c,k−DΩ,c,k−1|| ≤ τ for all OD-pairs or k ≥ kmax.

MSA on tΩ,c might make the I method a little more stable. But since the
corresponding OD demand is not calculated by using this tΩ,c, but by using t̃Ω,
the demands may still �uctuate unrestrained.

One way to overcome this problem is to use MSA directly on DΩ,c too. In this
case the straight line approximations will be of two curves that di�er from the
cost and demand functions which might be a problem (see the above discussion
of MSA on tΩ,c). A strict algorithm will not be presented since the di�erences
between this and algorithm 3.2.4 are minuscule.

Another approach that might stabilize the I method is to apply the MSA aver-
age on t̃Ω,c. The reason behind this, is that it is the cost used to calculate the

demand. But since (D̃Ω,c, t̃Ω,c) is the intersection of the straight line approxi-
mations of the demand and cost function, it would seem weird to only use MSA
on one of the coordinates, and it could possibly cause the method to be very
unstable. Instead it is more obvious to apply MSA on both t̃Ω,c and D̃Ω,c.

As it was the case for the previous method, a strictly formulated algorithm will
not be presented since the changes between this and algorithm 3.2.4 are very
small. It should be mentioned though, that when using this method the 3 initial
iterations (that is run with the standard method) should be run using MRA.
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Thus, when applying MSA to t̃Ω,c and D̃Ω,c the ak should be calibrated such
that a4 = 1, meaning that ak should be calculated as

ak =
(k − 3)d

k−3∑
j=1

jd
.

3.3 Alternative Interpolation Methods

In this section a bunch of alternative interpolation methods, that could have
been used to approximate the demand and cost curves will be presented. An
actual code where these methods are implemented is beyond the scope of this
study, why this section is mostly meant as an inspiration for further research.

3.3.1 Progressively Weighted Least Squares Method

When approximating a line to explain the behaviour of some data points, the
least squares method is normally used. Since it is assumed that after each
iteration, we are getting closer to the real equilibrium. This knowledge can
be implemented to the least squares method by weighting the latest iterations
higher than the �rst iterations. Thus, instead of minimizing the square error,
the line we are searching for is then minimizing the weighted square errors
[JFM11]. As opposed to the I method, this will also give some weight to the
early iterations.

The method might not be very useful, since the previous iterations that the
I method has �left behind� is in fact of less importance than the following it-
erations that are closer to the equilibrium point. Thus, it might be better to
disregard the early iterations fully (as done in the I method) than to give them
a small weight. Especially since the goal is to make a good approximation be-
tween the last two iterations where the equilibrium is expected to be, rather
than making an approximation that gives a good overall approximation.

Because of this, the method of progressively weighted least squares will not be
discussed any further in this study.
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3.3.2 Higher Order Polynomial Interpolation

In 3.3.1 a method of improving the accuracy of the approximations by including
extra interpolation points was introduced. When dealing with more than two
interpolation points, another way to increase accuracy is to include a 2nd order
polynomial term to the approximation, allowing curvature for the approxima-
tion.

Unfortunately, this method would not be fruitful. The di�erence between any
two 2nd order polynomials is also a 2nd order polynomial. For any 2nd order
polynomial P2, it holds that P2(x) = 0 is true for either 2, 1 or 0 values of x,
why the method could result in more than one intersection between the two
approximations. How to deal with this problem is not obvious. And since the
severity of the problem increases when there is no intersection, approximations
using polynomials of order 2 or higher can be ruled out.

3.3.3 Exponential Interpolation

A way to overcome the problems occurring from higher order polynomials, but
without giving up on adding a bit of curvature to the approximation, is to
interpolate using exponential functions of the form

f(x) = aebx.

Two exponential functions will always either intersect nowhere (same b and
di�erent a), 1 place or everywhere (same b and a) � the exact same situation
as for two straight lines.

Although it can be a good thing to add a bit of curvature to the approximations,
the exponential interpolation has a major disadvantage in the cases where the
demand or cost almost form a straight line, or where the curves are concave. In
this case an exponential curvature would be assumed, although the assumption
may turn out to anything but true. And since there are very few cases, where
an exponential interpolation will be a good approximation, the exponential in-
terpolation will not be examined any further in this study.
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Chapter 4

Test Preparations

Before tests of the I method can be run, a series of important questions regarding
the test network, important constants, and the OD matrix generation principle
has to be answered. In section 4.1, the small-scale test network used in this
study will be presented. Section 4.2 will handle the calibration of some of the
important constants used in various formulas. Finally, section 4.3 explains how
Monte Carlo generation of random OD matrices can emulate the trip generation
and trip distribution steps from the 4-Stage model (see section 2.2, p. 7).

4.1 The Test Network

In order to test the I method, a network on which a series of tests can be run has
to be constructed. The chosen test network is a rather simple network consisting
of 9 nodes and 16 links. The network can be seen in �gure 4.1.

The network can be interpret as a city with a city center in node 9, having an
inner and an outer ring road. The nodes 1-4 lie on the outer ring, and the nodes
5-8 lie on the inner ring. The nodes are numbered clockwise from the outside
to the inside.
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Figure 4.1: The test network and the capacity of each link.

Alongside each link of the network, the capacity of the link has been written.
The outer ring has a capacity of 100, the roads connecting the outer and inner
ring have a capacity of 80, the inner ring has a capacity of 75, and the roads
connecting the city center with the inner ring have a capacity of 50.

Also, on each link there is some sort of public transport, that is assumed to have
no maximum capacity. The type of public transport is irrelevant, but could be
bus rapid transport (BRT), light rail rapid transit (LRRT), metro etc. There is
no public transport outside of the links.

4.1.1 Travel Time of Each Link

It is assumed that the free �ow speeds of each road are identical. This means
that the free �ow travel time of each route is only based on the length of the
road. The free �ow travel time from any of the outer points to the center is
set to be 4. The free �ow travel time on all other links can then be calculated
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Figure 4.2: The test network and the free �ow travel time of each link.

geometrically, so that e.g. the free �ow travel time between node 1 and 2 is
equal to 2π and so forth. The network with all free �ow travel times shown can
be seen in �gure 4.2.

The travel times shown are the free �ow travel times. As introduced in the
BPR formula (eq. (2.1.2)), section 2.1.1, the travel time increases as congestion
occurs,

tl,c(Dl,c) = t0,l

(
1 + αl

(
Dl,c

Cl

)βl)
.

The e�ect of congestion is determined by the link-speci�c β-constant, which can
be seen for all links in �gure 4.3.

Recall that public transportation is assumed to be una�ected by congestion,
and as such the travel times for public transportation is equal to the free �ow
travel times seen in �gure 4.2.
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Figure 4.3: The test network and the βl-values of each link.

4.1.2 The Routes

Besides the nodes and links, the network has a tremendous amount of routes too
� 2007 to be exact. These routes represents every possible connection between
any two nodes of the network, without passing through the same link twice.
Since the routes from A to B, are the same as the routes from B to A (just in
reverse order), there is a total of(

9
2

)
=

9!

2! · 7!
=

8 · 9
2

= 36

di�erent OD pairs1. This means that on average there are more than 55 possible
route between any two OD pairs. Clearly, some routes are more likely than
others, and an approach where each route had the same possibility would be
foolish.

It is obvious that a route with a shorter travel time, should be more likely than
a route with a high travel time, and as introduced in section 2.4.2 this choice is
emulated by a logit model, where the constants γ and κc determines the initial

1Normal studies would have used twice as many (72) OD pairs for this network. See the
end of section 4.2.3 why half of the OD pairs can be ignored.
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probability of choosing a given route. The values of these will be calibrated in
the following section.

4.2 Calibration of Various Constants

This section seeks to determine realistic values of some constants used in the
transportation models. The constants that are to be calibrated includes a mea-
sure of the time elasticity γ, the car preference constant κc and the expected
total amount of demand on the network ∆•.

4.2.1 The Measure of Time Elasticity (γ)

The time elasticity is a very important parameter for route (and mode) choice. If
the time elasticity is rather small (in absolute terms), the cars will spread out on
the network, whereas a rather high time elasticity will result in almost everyone
choosing the fastest route. Note that γ is not equal to the time elasticity. Still,
γ and time elasticity will be used interchangeably throughout the report, since
it is the only measure of the time elasticity that occurs in the study.

In order to determine a realistic value γ, three examples will be provided. In
each case, a couple of routes will be selected, and for each route an approximate
estimate of the amount of cars choosing this route will be made. Afterwards a
series of tests will be run with various values of γ. These tests will determine
which values of γ result in a realistic route choice, and which values of γ that
do not.

It should be stressed that in these tests, the amount of passengers choosing the
speci�c route is under the assumption that each route can be driven at free �ow
speed. Of course, as the network gets congested these numbers might not be
realistic any more. This is not a problem, since the routes in this case will have
updated travel times that correspond to the current tra�c load. These tests
only serve to calibrate the value of γ.

We will begin with an example between two adjacent �corner points� on the
outer ring.

Example 4.2.1 (From 1 to 2)
In the following example we are looking at three di�erent routes (a red, a blue,
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Figure 4.4: Three highlighted routes from node 1 to 2.

and a green) leading from node 1 to node 2. The routes can be seen in �gure
4.4.

From the �gure, it seems as is if we would expect at least 40% of the travellers to
use the red route. If less than 40% choose this route, the time elasticity should
be increased.

The percentage of travellers using each route is presented in the table below
(table 4.1) for various values of γ.

The table shows that in order to get at least 40% of the passengers to choose the
red route, |γ| must be more than 0.4. It can also be seen, that when |γ| ≤ 0.6,
more than 8% of the passengers choose a fourth route. Since there are only
three obvious routes in this example, it seems as if |γ| should be chosen higher

γ -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0
Red (%) 14.0 33.6 46.8 55.3 61.7 67.1 71.7 75.9 79.5 82.6
Blue (%) 11.8 23.8 27.9 27.8 26.1 23.9 21.6 19.2 16.9 14.8
Green (%) 9.9 16.9 16.7 14.0 11.1 8.5 6.5 4.8 3.6 2.7
Others (%) 64.4 25.8 8.7 3.0 1.1 0.4 0.1 0.1 0.0 0.0

Table 4.1: Route probability for three highlighted routes from node 1 to 2 for various
values of γ
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Figure 4.5: Three highlighted routes from node 1 to 3

than 0.6.

�

Example 4.2.2 (From 1 to 3)
This is an example of route choice between the two nodes that are furthest apart
(1 and 3). Since the nodes are so far apart, there is a lot of parallel realistic
routes in this case. The 3 chosen routes can be seen in �gure 4.5. Note that the
green route is not the third fastest option, but is solely chosen because it is a
quite intuitive route.

Once again the percentage of travellers choosing a speci�c route for various
time elasticities have been computed and can be seen in table 4.2. Note that
the numbers for the green and blue routes are the combined numbers, where
the left and right alternative of the two have been added.

γ -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0
Red (%) 8.6 22.0 38.8 55.7 70.0 80.7 87.9 92.5 95.4 97.2
Blue (%) 10.9 17.7 19.7 18.0 14.3 10.5 7.2 4.8 2.5 2.0
Green (%) 6.9 7.1 5.0 3.2 1.5 0.7 0.3 0.1 0.1 0.0
Others (%) 73.6 53.3 36.5 23.5 14.2 8.2 4.6 2.5 1.4 0.7

Table 4.2: Route probability for three highlighted routes from node 1 to 3 for various
values of γ
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Figure 4.6: The only obvious route between node 1 and 5.

The table reveals that when |γ| exceeds 1.4, only 7.2% of the passengers or less
would choose the blue route. Since the blue route is a rather obvious choice, it
would seem as if |γ| should be kept smaller than 1.4.

�

Example 4.2.3 (From 1 to 5)
This example is in contrast to example 4.2.2, where there were many realistic
routes. In this case there is only 1 realistic route, and choosing another route
than this would be highly unlikely. Thus it is expected that at most 0.5% will
choose an alternative route. It is illustrated in �gure 4.6.

Once again the percentages have been calculated, and they can be seen in table
4.3. It is seen that we |γ| should be bigger than 0.6, since any |γ| ≤ 0.6 makes
too many people choose an unrealistically long route.

�

γ -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0
Red (%) 37.8 89.4 98.7 99.8 100.0 100.0 100.0 100.0 100.0 100.0

Others (%) 62.2 10.6 1.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.3: Route probability for the highlighted route from node 1 to 5 for various
values of γ

.
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Summarizing the above examples, we get that γ ∈ ] − 1.4,−0.6[ in order to
obtain a realistic value. Therefore, the forthcoming performance tests could use
any of these values, but to be on the safe side, the middle-most value (γ = −1)
has been chosen for the forthcoming tests.

4.2.2 The Mode Preference Constant (κc)

Another important constant is the car preference constant κc. This constant
is the only one of the constants that can be determined without any tests.
In fact, when one important constant is known it can be determined purely
mathematically. The constant (µ0) that has to be known is the market share of
cars on the network, under the assumption that all transportation modes have
the same travel time for all possible routes. Since this transport network is a
�ctive one, the number is unknown. A value of µ0 = 0.85 has been selected in
this study.

Recall that the probability of choosing a car over public transportation is cal-
culated by the logit model

PΩ,c =
eUΩ,c

eUΩ,c + eUΩ,p
=

1

1 + eUΩ,p−UΩ,c
,

where the utility functions for car and public transport are given by

UΩ,c = γtΩ,c + κc,

UΩ,p = γtΩ,p.

Thus, when the two travel times are equal the probability of choosing a car
reduces to

PΩ,c =
1

1 + e−κc
.

Since we want the probability to be equal to µ0 we get the following,

µ0 =
1

1 + e−κc
⇔

e−κc =
1

µ0
− 1 ⇔

κc = − ln

(
1

µ0
− 1

)
.

This can be rewritten so that the car preference constant is given as

κc = ln

(
µ0

1− µ0

)
. (4.2.4)
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Since we have chosen µ0 = 0.85 in this study, the resulting car preference con-
stant will be

κc = ln

(
0.85

1− 0.85

)
= ln

(
0.85

0.15

)
≈ 1.735.

4.2.3 The Demand between each OD-Pair (DΩ)

Normally the demand between an OD pair is determined by a gravity formula,
which is dependent on socio-economic measures of the two, and the distance
between them (see [Voo56] for the original development or [Ric10] for an intro-
duction).

More importantly, the road network is constantly being altered (new roads are
built, public transport is increased, roads are extended, tolls are applied etc.)
so that the ratio between the �ow and the capacity on the network is not too
low, and not close to 1.

In our case, we have the opposite task. We have a road network with a given
capacity, and we seek to �nd a realistic demand, so that the �ow will not be too
low, also not too close to the network capacity.

In order to solve this problem, some shorthand notation will come in handy.
Let C• denote total car capacity of the tra�c network. It holds that

C• :=

nl∑
l=1

Cl = 1220.

Likewise, the total demand is given by

D• :=

nΩ∑
O=1

DΩ.

The total demand is going to be shared by cars and public transportation. Thus
the above only gives a maximum total car demand (D•,c),

D•,c < D•.

Because of this, intuitively, it could be a good idea to simply set D• = C•,
since the demand for public transport would be subtracted, leading to a D•,c a
realistic amount below C•. Unfortunately, the situation is more complicated as
such, which the following example seeks to show.
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Example 4.2.5
A traveller travelling from node 1 to node 3 will have to use at least 2 links to
get to his destination (see �gure 4.5, p. 43). But most of the time, more than
two links will be used. In fact, the fastest route passes through the center of
the graph, and in this case 5 links will be used. By doing this, even though the
demand only counts for 1, the remaining total capacity is reduced by 5.

�

Even though example 4.2.5 is the most extreme case of the network, it still
shows an important point. If all travellers had the same e�ect on the network
as the one from the example, the total capacity would be exceeded if one has
simply chosen to put D• = C•, unless the public transport would carry an
unrealistically high amount of the demand.

Thus we need to come up with a di�erent approach. One way to do it, is to
check if D• was realistic, retrospectively, by calculating the market share by
cars (µ) after the test has been run. This can be done by the following formula,

µ :=
1

nΩ

nΩ∑
O=1

DΩ,c

DΩ
.

If D• was too high, the demand would be so big, that the �ow on the link
would approach their capacity, while �there was still travellers left to place in
the system�. Thus these will be placed in the public transport so to say, making
the amount of people using public transport relatively great, corresponding to
a low µ (µ < 0.65).

On the other hand, ifD• was too low, there would be no congestion on the roads,
and the bene�ts from riding a car (included in the mode preference constant κc
(see section 4.2.2)) would exceed the relatively small time loss due to congestion.
Thus almost everyone would travel by car resulting in a high µ. µ > 0.75 might
indicate that D• was too low.

4.3 Generation of Random OD-Matrices Using

Monte Carlo Simulation

There are plenty of ways to generate random OD-matrices. In this study an
extremely simple approach is used. For each OD matrix, the expected total
demand, ∆•, is given as a parameter, and then the demand for each OD-pair



48 Test Preparations

DΩ is draw randomly from the uniform distribution U
(

1, 2D•nΩ

)
. By denoting

D•
nΩ

by D̄Ω, we say that

DΩ ∼ U(1, 2D̄Ω).

By doing this, the distribution of D• will su�ce the following,

E[D•] = nΩE(DΩ) = nΩ
1 + 2D̃Ω

2
= ∆• +

nΩ

2
,

Var(D•) = nΩVar(DΩ) = nΩ
1

12
(2D̄Ω − 1)2 =

nΩ

3

(
D̄2

Ω − D̄Ω +
1

4

)
/

∆2
•

3nΩ
,

SD(D•) =

√
nΩ

3

(
D̄2

Ω − D̄Ω +
1

4

)
/

∆•√
3nΩ

.

In the above we have used that the variance of a uniform distribution U(a, b) is
equal to 1

12 (b− a)2 [JFM11].

The following example seeks to show the size of the variability of the approach.

Example 4.3.1
In our study we have 36 OD-pairs, such that nΩ = 36. Assume that we want
to do a Monte Carlo generation of an OD-matrix with the parameter ∆• = 450.
Then, with 95% con�dence, we can say that the resulting D• will approximately
lie in the interval

∆• +
nΩ

2
± 1.96

√
nΩ

3

(
D̄2

Ω − D̄Ω +
1

4

)
= 468± 1.96

√√√√36

3

((
450

36

)2

− 450

36
+

1

4

)
≈ [387, 550].

�

It can be seen, that when we want the total to be equal to 450 the width of the
95% con�dence interval is about 163 wide. Luckily, by looking at the formula,
it seen that the width of the con�dence interval is approximately proportional
to ∆•, such that for smaller values of ∆• (and hence also D•), the width will
decrease proportionally.

By using this approach it could seem as if the market share is only dependent
on D•. This is de�nitely not the case. If all the demand is concentrated on
OD-pairs that are fairly close to each other, the total �ow would be much less
than if the demand was concentrated on OD-pairs far apart. And since a big
�ow will result in large car costs, the market share of the cars would be smaller
in this case and vice versa.
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Nevertheless, D• is still of great importance, and as such it serves as an easy
way to �handle� the size of µ.

It should be noted, that this study uses symmetric OD matrices, which means
that if there is a demand of x passengers between A and B, there is an equal
demand between B and A. This will (almost) always be the case for a full day
OD matrix. Sometimes, this does not emulate reality su�ciently, and the OD
matrices are split into di�erent sections of the day, causing the OD matrix to
be non-symmetric.

Since symmetric OD matrices are used (and there are no one-way streets in the
network) it is fair to let the OD pair between 1 and 2 be equal to the OD pair
between 2 and 1. This allows the number of OD pairs to be reduced from 72 to
36 OD pairs.

When a demand between an OD pair is stated, it is not obvious if this is solely
the demand between A and B or the demand between both A and B as well as
B and A. It does not matter which of the two interpretation is chosen, as long
as the interpretation of the corresponding capacity for each link Cl is re�ecting
this as well.
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Chapter 5

Comparative Monte Carlo

Testing of the I Method

In this chapter the results of a series of tests will be presented. In order to
allow comparison, tests have been run for both the I method and the standard
method. Section 5.1 gives a general introduction to the tests. It is followed
by section 5.2 that deals with the comparison of the I method and standard
method when both methods are using MRA. Finally, section 5.3 compares the
two methods when applying MSA.

5.1 Introductory Remarks Regarding the Tests

This section serves to provide a small introduction to the series of tests regarding
the number of tests, the used parameters, and how the test results will be
evaluated.

For each method 30 randomly generated OD matrices have been constructed1,
and the number of external iterations required to reach convergence has been
noted. The matrices were constructed using ∆• = 450, and the internal loop

1Each method has faced the same 30 OD matrices due to seeding.
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was allowed to run a maximum of 1000 iterations per external iteration. The
market share of cars ranged from 67.5% to 73.5% which seems to be fairly
realistic according to the discussion about a realistic total demand in section
4.2.3.

Whenever MSA has been used, the standard method has used MSA on tΩ,c,
whereas MSA on three di�erent variable combinations have been tried for the I
method. In each case, the d-values have been set to 1, 2, 3, 4, and 5

5.1.1 Two Di�erent Tolerances

The tolerance of the stopping criteria has been run under both strict (τ = 0.001)
and more relaxed conditions ( τ = 0.01). Recall that the expected demand
between each OD pair is ∆•

nΩ
= 450

36 = 12.5. And since less than 80% of this is
expected to be travelled by car, the car demand between each OD pair, will on
average be less than 10. This makes τ = 0.001 corresponds to a relative change
of less than 0.01% on average. And since the internal loop uses a tolerance that
is 100 times smaller, the restrictions for convergence of the internal loop are
indeed very strict when using τ = 0.001.

By re-running all tests again with the tolerance to τ = 0.01 we might see a
change in the amount of external iterations needed for the I method and its
di�erent MSA averaging methods. They might all improve at the same rate, but
the only way to �nd out if the previous tolerance was favouring or disfavouring
one of the methods, is to run the test with another tolerance. Thus, all methods
have been run with two di�erent tolerances.

5.1.2 How to Evaluate the Test Results

Each method will be evaluated on two parameters. The number of required
iterations to reach convergence is the key parameter, but the failure rate � that
is the number of matrices that failed to converge divided by the total number of
matrices � will be evaluated too. The reason why the failure rate is not weighted
that much, is that a non-converging OD matrix is caused by an internal loop
failing to converge in less than 1000 iterations. A faster internal convergence
might have been possible with a better algorithm for the internal loop, but since
this is beyond the scope of this thesis (see section 3.1.4), the failure rate will
only be looked at secondarily.

Due to the lack of convergence for some OD matrices for certain methods, it has
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not been possible to make a fully fair average. Some methods can at most use
22 OD matrices to determine the average number of required iterations, whereas
some methods include all tests, including some under-performing tests. In order
to correct for this, the best 20 tests have been selected for each method, and an
average has been made solely on the basis these 20 tests. The 95% con�dence
interval of this measure has been calculated by

x̄20 ± t0.025(19)
Sx̄20√

20
≈ x̄20 ± 0.468 · Sx̄20

,

with x̄20 being the mean of the top 20 performances, and Sx̄20
being the sample

standard deviation of the top 20 performances.

Also, when comparing two speci�c methods, a paired t-test has been used. In
these cases the relevant p-value describing the probability of obtaining a mean
value lower than the observed mean from the method under consideration, given
that the true mean of the method under consideration is equal to the true mean
of the other method used in the comparison. [JFM11]

5.2 Using MRA

It is now time for the presentation of the �rst series of results. The �rst tests
have been using the I method and standard method, respectively, using MRA.
The full results of these tests can be found in table A.1 and A.2, appendix A, p.
83� 2. The tests have been run for two di�erent tolerances, and the tests with
the strict tolerance will be evaluated initially.

5.2.1 Using a Strict Tolerance (τ = 0.001)

Figure 5.1 summarises the results of the test, by having a diagram showing the
failure rate of the tests to the list, and a boxplot of the top 20 tests of each
method to the right.

In the diagram of the failure rates, it is seen that the I method is rather unstable,
since it fails to converge in 26.7% of the cases. For comparison the standard
method only fails to converge within 200 external iterations in 6.7% of the cases.

2In these table a third method called the C method is also listen. It will be introduced in
section 6.3.
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Figure 5.1: Summary of the tests of the I method and standard method using MRA
and τ = 0.001

The instability put aside, the I method performs much better than the standard
method, beating it in 20 out of the 22 cases where convergence was achieved.
Figure 5.1 also shows the boxplot of the top 20 tests for both the I method and
the standard method. It is seen that both the minimum, �rst quartile, median,
third quartile and maximum is lower than those of the standard method. Also,
it is seen that the �fth best test of the standard method required about the
same number of iterations as the �fteenth best test of the I method.

To sum up, when using a tolerance of τ = 0.001, the I method performs much
better on average on the standard method, when both methods are using MRA.
Nevertheless, it should be kept in mind, that the failure rate of the I method
was very high compared to that of the standard method.

5.2.2 Using a More Relaxed Tolerance (τ = 0.01)

The tests for the I method and the standard method using MRA have also been
run under the tolerance of τ = 0.01 too. Figure 5.2 contains the information
of the failure rate and the general performance. It is seen that the less strict
tolerance has decreased the failure rate from 26.7% to a mere 3.3%. In fact,
using the more relaxed tolerance, the failure rate of the I method is lower than
that of the standard method which remains unchanged at 6.7%.
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Figure 5.2: Summary of the tests of the I method and standard method using MRA
and τ = 0.01

Figure 5.2 also reveals that the I method in general requires much less iterations
to converge than the standard method. It has even improved compared to the
standard method, since the third quartile of the I method now is less than the
�rst quartile of the standard method.

The relative change of the median of iterations needed for the I method and the
standard method was almost equal, with a relative drop of around 27% for both
methods.

To sum up, the tolerance did almost have the same impact on performance
for both methods. But the I method managed to improve the stability a lot,
making it undoubtedly superior to the standard method using MRA and a
relaxed tolerance.

5.3 Using MSA

In this section the results of the tests using MSA will be presented and dis-
cussed. MSA averaging on tΩ,c is the most commonly used method to secure
fast convergence for the standard method. These tests will show if a similar
dramatical drop in required iterations can be seen when using the I method.
MSA for the I method will be discussed �rst, and will later be compared to the
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standard method using MSA. The full results can be found in appendix A, p.
81.

5.3.1 Using a Strict Tolerance (τ = 0.001)

Once again the tests under the strict tolerance will be discussed �rst. Table 5.1
sums up the failure rates of all of the di�erent approaches for the I method.
The I method is quite stable when using MSA averaging on tΩ,c, with a failure
rate between 0% and 3.3% depending on the value of d. Likewise when MSA
is used on both tΩ,c and DΩ,c, where the average failure rate is 3.3%. When

using MSA on t̃Ω,c and D̃Ω,c on the other hand, the I method is quite unstable.
Depending on the d-value the method only converges in 80%-93% of the cases.
For comparison, it can be said that the standard method using MSA on tΩ,c
converged in all of the cases.

Figure 5.3 gives an idea of the number of required iterations to reach converge
for each method. As explained in the introduction to this chapter, an average
has been calculated on the basis of the 20 best performances of each method.
This is indicated by a marker in �gure 5.3. The 95%-con�dence intervals have
been shown as straight lines in the plot.

It is seen that the standard method in fact did perform a lot better when apply-
ing MSA. When using d = 5, the average number of external iterations required
to reach convergence for the top 20 tests has been reduced by more than 73%,
achieving an average of only 8.45 iterations. d = 2, 3, 4 did a little worse, but still
impressive, job with between 8.65 and 12.05 iterations required for convergence
on average. d = 1 uses an average of 18.15 external iterations.

As expected, the I method fails to bene�t much from MSA. It is evident from
�gure 5.3, that MSA on tΩ,c and DΩ,c results in a much slower convergence,
requiring between 30 and 40 iterations to converge on average. MSA on tΩ,c
generally requires around 25 iterations to converge, which is also worse than the

MRA 26.7%
d = 1 d = 2 d = 3 d = 4 d = 5

MSA on tΩ 3.3% 0% 0% 3.3% 3.3%
MSA on tΩ & DΩ 3.3% 0% 3.3% 3.3% 6.7%

MSA on t̃Ω & D̃Ω 20% 20% 16.7% 6.7% 6.7%

Table 5.1: Failure rate of the tests for the I method using MSA and τ = 0.001
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Figure 5.3: Number of required iterations of the tests for the I method and standard
method using MSA and τ = 0.001

average for the I method using MRA. When MSA is used on t̃Ω,c and D̃Ω,c the
required number of iterations is around 20 on average, and it is the method that
performs the best when the stability issues are ignored.

In addition to �gure 5.3, table 5.2 also seeks to explain the performance of the I
method using various MSA. It shows the p-value from the one-sided hypothesis
test based on a paired t-test compared to the MRA, where the alternative hy-
pothesis has been that MSA is better. All valid measurements (that is all the
OD matrices where both methods converged) have been used in the tests.

It can be seen that none of the methods perform signi�cantly better than the
MRA on a 95%-con�dence level. The p-values of both methods when using

d = 1 d = 2 d = 3 d = 4 d = 5
MSA on tΩ > 0.5 0.1061 > 0.5 > 0.5 > 0.5

MSA on tΩ & DΩ > 0.5 > 0.5 > 0.5 > 0.5 > 0.5

MSA on t̃Ω & D̃Ω 0.2876 0.0762 0.1846 0.1935 0.3882

Table 5.2: p-values of the I method of various MSA approaches in a one-sided paired
t-test compared to the MRA approach, with the alternative hypothesis
being that the MSA is better, and using τ = 0.001
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d = 2 are rather low, though, and it can not be ruled out that these methods
actually perform a little better than the MRA when d = 2. But it is crystal
clear that no MSA method gives the I method a noticeable boost � unlike the
standard method that changes from being a bad method using MRA, to being
a very e�cient method using MSA on tΩ,c.

To sum up, the standard method bene�ts immensely from using MSA on tΩ,c.
The I method fails to get the same improvement, and none of the observed
improvements were signi�cant on a 95% con�dence level. It should be noted,
though, that using MSA on tΩ,c managed to increase stability a lot without
making it perform worse.

5.3.2 Using a More Relaxed Tolerance (τ = 0.01)

So far we have witnessed that the standard method using MSA on tΩ,c was
superior to any other method under a strict tolerance. The di�erence is so
huge that obtaining competitive results just by relaxing the tolerance seems
unrealistic. Nevertheless, the series of tests has been run with the tolerance τ =
0.01 too, especially to see if MSA on various variables can lead to signi�cantly
improved results for the I method. Once again the full results can be found in
appendix A, p. 81�.

Table 5.3 shows the failure rate of the various methods. It is seen that the I
method manages to converge for every OD matrix for any value of d when using
MSA on tΩ,c. The I method using MSA on both tΩ,c and DΩ,c also manages
to converge every time when using d = 1, 2, 3, 5. When using d = 4 it fails to
converge a single time. The I method using MSA on t̃Ω,c and D̃Ω,c shows great
improvements regarding stability using this more relaxed tolerance. It converges
in 100% of the OD matrices when d ≥ 3. For both d = 1 and d = 2 it only fails
to converge a single time. The standard method using MSA on tΩ,c once again
manages to converge in all 150 cases.

MRA 3.3%
d = 1 d = 2 d = 3 d = 4 d = 5

MSA on tΩ 0% 0% 0% 0% 0%
MSA on tΩ & DΩ 0% 0% 0% 3.3% 0%

MSA on t̃Ω & D̃Ω 3.3% 3.3% 0% 0% 0%

Table 5.3: Failure rate of the tests for the I method using MSA and τ = 0.01
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Figure 5.4: Number of required iterations of the tests for the I method and standard
method using MSA and τ = 0.01

Figure 5.4 shows the average and the con�dence interval of the average of the
top 20 performances for each method. Yet again, it is seen that the standard
method clearly outperforms the I method when using MSA on tΩ,c. With a
properly selected d, the standard method requires as little as 6.55 iterations on
average for d = 3. Using MRA the standard method required an average of
25.05 iterations, which makes the drop correspond to almost 75%.

It is harder to make a conclusion about the various MSA approaches of the I
method under this tolerance than under the previous. In �gure 5.4 it is readily
seen that the lines of the di�erent methods cross each other. What they all have
in common, is that their performances remain far from that of the standard
method using MSA on tΩ,c. It is seen that all three methods manage to get an

d = 1 d = 2 d = 3 d = 4 d = 5
MSA on tΩ > 0.5 0.0151 0.3928 0.5000 > 0.5

MSA on tΩ & DΩ > 0.5 > 0.5 > 0.5 > 0.5 > 0.5

MSA on t̃Ω & D̃Ω 0.0001 0.0026 0.0987 0.0004 0.0001

Table 5.4: p-values of the I method of various MSA approaches in a one-sided paired
t-test compared to the MRA approach, with the alternative hypothesis
being that the MSA is better, and using τ = 0.01
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average lower than 15, when a good d is chosen. It is also seen that MSA on
tΩ,c and DΩ,c is very sensitive to the value of d, whereas MSA on t̃Ω,c and D̃Ω,c

performs decently regardless of the d-value.

In order to determine whether or not any of these MSA approaches performed
better than the I method using MRA, once again paired t-tests have been used.
The p-values of these tests can be found in table 5.4.

Once again, it is easily seen that MSA on both tΩ,c and DΩ,c undoubtedly fails
to improve the performance of the I method. Also, notice that MSA on tΩ,c
is quite sensitive to the chosen d, and once again performs much better when
using d = 2. In this case the p-value is less than 2%, and the di�erence is in fact
signi�cant on most commonly used signi�cance levels. As mentioned earlier,
MSA on t̃Ω,c and D̃Ω,c is not that sensitive to the chosen d-value. Still, it is seen
that d = 3 is a far worse choice than the others, making the p-value almost 10%.
All other d-values result in p-values below 1%, why there is clear signi�cance
that this MSA is in fact improving the performance.

It should be mentioned though, that the improvements are rather small. The
standard method managed to reduce its top 20 average of required iterations
for convergence by 70%, whereas the I method is far from getting a similar
performance boost. The relative improvement is only 25%.

To summarise the results from the more relaxed tolerance, it is still very clear
that the I method fails to achieve the same bene�ts from MSA compared to the
standard method. Nevertheless, using this relaxed tolerance, the I method did
improve signi�cantly compared to the MRA approach when using MSA on t̃Ω,c
and D̃Ω,c. Improvements were also seen for MSA on tΩ,c, but they were small

compared to those seen by MSA on t̃Ω,c and D̃Ω,c. Finally, the stability of the
MSA approached improved tremendously with the change of tolerance.



Chapter 6

Diagnosis of the I Method

In this chapter, a diagnosis of the I method will be made. The basis of the
diagnosis is a (DΩ,c, tΩ,c)-plot which will be presented in section 6.1. Information
from this section implies that the mutual correlation among the OD pairs has
a great impact on the I method. The correlation is investigated thoroughly in
section 6.2. Finally, section 6.3 uses the knowledge from the previous sections
to present an alternative version of the I method � the C method � which will
be tested, discussed, and evaluated.

6.1 Tracking Down the I Method Step by Step

In order to get a better understanding of the I method, it might be useful to
look at a (DΩ,c, tΩ,c)-plot for a single OD pair. The plot will, for a given OD

pair Ω, show the points (D̃Ω,k, tΩ,c,k) and (DΩ,c,k, t̃Ω,c,k) after each iteration.

In �gure 6.1 and 6.2 the �rst two iterations of the I method have been plotted for
the OD-pair 2-4 (Ω = 10) using OD matrix 14 from the Monte Carlo simulations.
Just as in �gure 3.3 and 3.4 in section 3.2.1, the demand and cost function are
represented as a blue and a red line, respectively. The yellow dots indicate the
interpolation points, which are connected by the yellow linear approximations.
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Figure 6.1: The �rst intersection of straight line approximations using the I method
on the test network using OD matrix-14 and observing Ω = 10.

The intersection point, (D̃Ω,c, t̃Ω,c) is marked with a green dot. Finally, the

resulting points, (D̃Ω,c, tΩ,c(D̃Ω,c)) and (DΩ,c(t̃Ω,c), t̃Ω,c) are denoted by black
dots.

It is seen that (DΩ,c(t̃Ω,c), t̃Ω,c) is quite close to the equilibrium point already

after the �rst iteration. Unfortunately, the other point, (D̃Ω,c, tΩ,c(D̃Ω,c)), is far
from the equilibrium, and also very far from the cost function it is supposed to
approximate. When looking at the second iteration, the trend continues. The
intersection point was very close to the approximation of the demand function
of the previous iteration, why there is not much change in this point. But once
again the approximation of the cost function is far from the cost function.
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Figure 6.2: The second intersection of straight line approximations using the I
method on the test network using OD-matrix 14 and observing Ω = 10.

6.1.1 Mathematical Explanation of the Poor Approxima-
tion of the Cost Function

In order to determine why the I method fails to make a good approximation of
the cost function, but approximates the demand function perfectly, it is neces-
sary to dig into the mathematics of the two functions.

Recall that the normal 4-stage model has been reduced to a 2 step model (see
section 2.3). In this model the demand between each OD pair is �xed for each
test, why the demand can be calculated accurately solely by using tΩ,c,

DΩ,c =
1

1 + eγ(tΩ,p−tΩ,c)−κc
.

Thus, no matter which method is used, it will always be possible to �nd a unique
car demand for any average car travel time between any OD pair.
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Figure 6.3: Point estimates of the cost function for the I method and C method,
respectively.

For tΩ,c, on the other hand, this is not the case. Recall that tΩ,c is the average
travel time for a person travelling by car between the OD pair Ω, and that this
is determined by the travel time of each route between Ω, which actually quite
dependent on overlapping routes (see section 6.2.1). Thus, tΩ,c is calculated by
using DΥ,c,∀Υ, and not only for Ω, and as a consequence, the corresponding
average travel time can not be uniquely determined solely on the basis of DΩ,c.

The above is the most severe problem of the I method. The problem is illustrated
in �gure 6.3 which shows how the I method fails to approximate the cost function
accurately. The �gure also shows the approximations made by the C method,
which will be introduced in section 6.3.

On the other hand, since the standard method does not use any predictions using
trends from an isolated OD pair, the problem does not occur for the standard
method. Of course, when using MSA, the estimation of the cost function is
in fact terrible. The di�erence is that when using the standard method, each
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Figure 6.4: The iteration pattern of the standard method using MSA and MRA,
respectively, on the test network using OD-matrix 14 and observing
Ω = 10.

estimate is a point estimate, and it is not used as an estimator of the trend of
the cost function. Figure 6.4 shows how the standard method iterates robustly
towards the solution when using MSA and MRA.

6.2 Mutual Correlation of the OD Pairs

Section 6.1.1 showed that the correlation will have a severe impact on the I
method. The goal of this section is to determine, how this impact is seen, and
especially to check if there are certain OD pairs that have greater impact on the
correlation than others. The section will also deal with a discussion of applicable
ways to use this knowledge to improve the I method.
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In certain situations, the I method behaves in a very unexpected way that is far
from the more or less ideal case presented in section 3.2.1, p. 28. Because the
demand and cost of Ω is not entirely dependent on the latest cost and demand
for Ω, but also on other OD pairs (Υ 6= Ω), sometimes tΩ,c is increasing even
though the demand is decreasing and vice versa.

In order to investigate this, we consider a single OD pair, Ω. IfDΥ = 0, ∀Υ 6= Ω,
then tΩ,c would be relatively small since the only tra�c in the network is caused
by DΩ. Now, let DΥ = k, ∀Υ 6= Ω, and let k increase. As k increases, more
tra�c have to be absorbed by the network, and more congestion will appear,
making tΩ,c higher.

The following example seeks to show this e�ect numerically.

Example 6.2.1 (tΩ,c is also dependent on DΥ, Υ 6= Ω.)
Consider the following OD matrix

0 k 50 k k k k k k
k 0 k k k k k k k
50 k 0 k k k k k k
k k k 0 k k k k k
k k k k 0 k k k k
k k k k k 0 k k k
k k k k k k 0 k k
k k k k k k k 0 k
k k k k k k k k 0


.

We will now investigate what happens to the �nal demand and cost for cars
between node 1 and 3 as k is increased. Since the OD pairs have been given
ascending numbers based on the contained nodes (so that node 1 to node 3
corresponds to Ω = 2), the values can be found in the following two variables,
D∗2,c and t

∗
2,c. The results are summarised in �gure 6.5.

As expected, it is seen that t∗2,c is an increasing function of k, and as a conse-
quence D∗2,c is a decreasing function of k.

�

6.2.1 Overlapping and Disjunct OD Pairs

We have now seen that the demand and cost of a speci�c OD pair is also depen-
dent on the other OD pairs. Intuitively, for a single OD pair under consideration,
all other OD pairs will not have the same impact. It is assumed that overlapping
routes will have a greater impact than perpendicular routes.
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Figure 6.5: D∗
2,c and t

∗
2,c as functions of the demand of all other OD pairs

The following example seeks to test this hypothesis.

Example 6.2.2 (Dependency of overlapping routes)
In order to test for the e�ect of overlapping routes, we will yet again see what
happens to the �nal demand and cost of OD pair number 2. The OD matrix
for this test case is given below,

0 0 50 0 0 0 k 0 0
0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
k 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.1

OD pair number 6, that connects node 1 and 7,is expected to use many of
the same links as OD pair number 2 (see �gure 4.1, section 4.1, p. 38). By
letting the demand of all other OD pairs be negligible small, and increasing D6

gradually, it is possible to see how two overlapping routes a�ect each other.

1Due to the inability of the MatLab code to deal with no demands, all the zeros have been
set to 10−4
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Figure 6.6: D∗
2,c and t

∗
2,c as functions of D6

The results are summarised �gure 6.6. As expected, the demand and cost of
OD pair number 2 is heavily in�uenced by the increasing demand of OD pair 6.

�

It is clearly seen that the demand of an OD pair with many overlapping route
had a huge impact on the results. Example 6.2.3 seeks to show whether or not
a �perpendicular� OD pair will also have an e�ect.

Example 6.2.3 (Dependency of perpendicular routes)
Once again the demand of OD pair number 2 has been �xed to 50. In this
test, the demand of OD Pair number 10 between note 2 and 4 will be varied,
corresponding to the following OD matrix,

0 0 50 0 0 0 0 0 0
0 0 0 k 0 0 0 0 0
50 0 0 0 0 0 0 0 0
0 k 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.

The results from these tests are summarised in �gure 6.7. It is seen that the
demand of OD pair 10 has almost no e�ect on the cost and demand of OD pair
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Figure 6.7: D∗
2,c and t

∗
2,c as functions of D10

2. From this it seems fair to conclude that perpendicular routes only have a
minuscule impact.

�

6.2.2 The Inability of the I Method to Include Correlation

Previously, when using the I method, the method has worked isolated on one
OD pair at the time. By doing this the dependency of all the other OD pairs
has been ignored. But as seen in section 6.2, the other OD pairs do in fact have
quite some in�uence on the demand and cost of each OD pair.

In order to correct this �error� in the previously introduced I method, it could
intuitively be a very good idea to look at more than one OD pair at the time.
By doing this it could be possible to include the impact of the other OD pairs
in the model.

Unfortunately, the I method is based on straight line approximations of the
demand and cost curves using only two interpolation points per curve. This
only allows the determination of 2 coe�cients (the constant term a and the
slope coe�cient b). Therefore, it is not possible to include any term correcting
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for the correlation of the other OD pairs.

If more information is wanted in each approximation, the number of included
interpolation points have to be increased. Doing this would be beyond the scope
of this study, but it could be a way to improve the performance of the I method.
However, it should be kept in mind that adding interpolation points also delays
the �rst �real� iteration of the I method.

6.3 The C Method - A Combination of the Stan-

dard and I Method

In this section the method called the C method will be explained and tested. It
will begin with explaining the thought behind the C method.

6.3.1 The Idea of the C method

Due to the inability of the I method to approximate the cost function properly,
the C method only seeks to approximate the demand function (but not the cost
function) on the basis of the intersection point. Thus, instead of using tΩ,c(D̃Ω,c)
and DΩ,c(t̃Ω,c) the C method uses DΩ,c(t̃Ω,c) and t(DΩ,c(t̃Ω,c)).

The C method only uses half of the information obtained by solving the lin-
ear system, but could possibly bene�t from a better approximation of the cost
curve. At least the thought behind the method is that by evaluating the travel
time using the demand function, and not by a geometrical approach, the cor-
responding approximation of the cost function might be better. Figure 6.3 on
p. 64, section 6.1.1 showed that the C method did in fact approximate the cost
function in a di�erent manner. If it was better or worse was hard to tell though.

An iteration pattern of the C method can be seen in �gure 6.8 and 6.9. It is
similar to the I method, but there is one major di�erence. When the I method
has run for two iterations using intersections, the quadrilateral formed by the
four intersection points can form any quadrilateral. When using the C method,
the intersection points will always be vertically aligned in pairs of two, because
the point estimate of the cost function is calculated by the demand function.
As such the four points form a trapezoid, because two of the sides are parallel
with each other. This will have an e�ect of the position of the next intersection,
but it is hard to determine if it is bene�cial or not.
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Figure 6.8: The �rst intersection of straight line approximations using the C method
on the test network using OD-matrix 14 and observing Ω = 10.

The algorithm of the method is presented below.

Algorithm 6.3.1 (The C method)

1. Follow the standard method for the �rst 3 iterations (that is until DΩ,c,1,
DΩ,c,2, DΩ,c,3, tΩ,c,1, tΩ,c,2, tΩ,c,3 are known for all OD-pairs (Ω)).

2. For all Ω, set t̃Ω,c,3 = tΩ,c,3, t̃Ω,c,2 = tΩ,c,2, D̆Ω,c,3 = DΩ,c,2, and D̆Ω,c,2 =
DΩ,c,1.

3. Set k = 3.

4. For all Ω, calculate bDΩ
=

t̃Ω,c,k−t̃Ω,c,k−1

DΩ,c,k−DΩ,c,k−1
, aDΩ

= t̃Ω,c,k − bDΩ
DΩ,c,k,

btΩ =
tΩ,c,k−tΩ,c,k−1

D̆Ω,c,k−D̆Ω,c,k−1
, and atΩ = tΩ,c,k − btΩD̆Ω,c,k.
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Figure 6.9: The second intersection of straight line approximations using the C
method on the test network using OD-matrix 14 and observing Ω = 10.

5. Calculate t̃Ω,c,k+1 = btΩ
aDΩ
−atΩ

btΩ−bDΩ
+ atΩ .

6. Calculate DΩ,c,k+1 = DΩ,c(t̃Ω,c,k+1) and tΩ,c,k+1 = tΩ,c(DΩ,c,k+1).

7. Set D̆Ω,c,k+1 = DΩ,c,k+1.

8. Increment k by one.

9. Repeat step 4-8 until ||DΩ,c,k−DΩ,c,k−1|| ≤ τ for all OD-pairs or k ≥ kmax.

It might seem weird to use D̆Ω,c since it is almost always equal to DΩ,c. For
k ≥ 5, it could have been omitted, but for the �rst two �real� iterations of
the C method it is required in order to adjust for the fact that the coordinate
progression changes from (DΩ,c,k, tΩ,c,k) and (DΩ,c,k, tΩ,c,k+1) to (DΩ,c,k, t̃Ω,c,k)
and (DΩ,c,k, tΩ,c,k).
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Figure 6.10: Summary of the test for the I method, standard method, and C
method using MRA and τ = 0.001

Whereas the I method used MSA on three di�erent combinations of variables,
the C method will only try to use MSA on tΩ,c or on t̃Ω,c. It is hard too determine
theoretically if any of the two MSA methods will perform better than the MRA
approach. The performance tests in the following two subsections will reveal
the answer for the test case.

6.3.2 Performance Tests of the C Method Using MRA

The tests of the C method have been run under the same conditions as the
others (see section 5.1). This includes running the tests under both a strict and
a relaxed tolerance.

Once again the evaluation of the method will begin by looking at the failure
rate of the method using MRA under a strict stopping criteria. A �gure of this
can be seen on the left side of �gure 6.10. It is seen that the C method is much
more stable than the I method, managing to converge in 90% of the cases. Still
it is a little more unstable than the standard MRA method, which only has a
failure rate of 6.7%.

The right side of the same �gure illustrates the number of required iterations
when convergence was reached. It is seen that the C method generally performs
better than the two other methods, and has smaller range. The best performance



74 Diagnosis of the I Method

Figure 6.11: Summary of the test for the I method, standard method, and C
method using MRA and τ = 0.01

of the I method is better than the best performance of the C method, though.
This is also why the C method is not signi�cantly better than the I method on
the basis of a paired t-test. The relevant p-value is in this case 0.1978.

The tests have also been run under a relaxed tolerance (τ = 0.01). An illustra-
tive summary of these tests can be seen in �gure 6.11. Just as for the I method,
the stability increases a lot by the relaxed tolerance. It makes the C method
converge in 96.7% of the cases, making it just as stable as the I method, and
more stable than the standard method.

The increase of stability is also re�ected in the boxplot on the right side of
�gure 6.11. The range for the C method is far smaller than for any of the other
methods. This also results in a smaller p-value, and this time the p-value for
the C method being better than the I method on the basis of a paired t-test is
0.0781, which makes the C method questionably better than the I method.

To summarise, the C method is a lot more stable than the I method. It converges
more often, and its range is much smaller. The performance on the other hand,
is quite similar, and the C method only performed signi�cantly better than the
I method under a relaxed stopping criteria and a con�dence level below 90%.
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MRA 10.0%
d = 1 d = 2 d = 3 d = 4 d = 5

MSA on tΩ 0% 0% 0% 0% 0%
MSA on t̃Ω 3.3% 0% 0% 0% 0%

Table 6.1: Failure rate of the tests for the C method using MSA and τ = 0.001

6.3.3 Performance Tests of the C Method Using MSA

It was seen that the C method did not di�er much from the I method when
using MRA. In order to �nd out if a di�erent conclusion can be obtained when
using MSA, a series of tests has been run.

It turns out that MSA applied on the C method is a very good way to secure
convergence. This is can be derived from table 6.1, that shows the failure rate
of each method. When using a strict tolerance, MSA on tΩ,c converges every
time, and MSA on t̃Ω,c also has a success rate of 100% for 4 of the 5 d-values.
When d = 1 it fails to converge in 3.3% of the cases.

Although the stability has been increased, the performance did not improve
by the MSA. This can be seen in table 6.2 and 6.3, which shows the relevant
p-values from the paired t-tests for the C method using MSA on tΩ,c and t̃Ω,c,
respectively, compared to both the I method and C method using MRA, where
the MSA is assumed better in the alternative hypothesis. It also shows the
average for all tests, and for the top 20 tests. It can be seen that none of
the MSA approaches manages to get a better average than any of the MRA
methods, regardless of the d-value.

When running the tests under a relaxed tolerance, the stability of the C method

C Method (MRA)
C Method (MSA on tΩ,c)

d = 1 d = 2 d = 3 d = 4 d = 5
x̄All 23.11 34.33 25.50 27.77 27.00 26.47
x̄20 20.70 31.05 21.10 23.85 21.95 20.65
pI 0.1978 > 0.5 > 0.5 > 0.5 > 0.5 > 0.5
pC - > 0.5 > 0.5 > 0.5 > 0.5 > 0.5

Table 6.2: p-values of the C method using MSA on tΩ,c in a one-sided paired t-test
compared to the MRA approach, with the alternative hypothesis being
that the MSA is better, and using τ = 0.001.
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C Method (MRA)
C Method (MSA on t̃Ω,c)

d = 1 d = 2 d = 3 d = 4 d = 5
x̄All 23.11 31.62 29.47 32.20 27.10 27.53
x̄20 20.70 23.80 20.20 24.55 20.05 22.15
pI 0.1978 > 0.5 > 0.5 > 0.5 > 0.5 > 0.5
pC - > 0.5 > 0.5 > 0.5 > 0.5 > 0.5

Table 6.3: p-values of the C method using MSA on t̃Ω,c in a one-sided paired t-test
compared to the MRA approach, with the alternative hypothesis being
that the MSA is better, and using τ = 0.001.

using MSA is total, in the sense that all methods converge for all OD matrices
for all values of d (see table 6.4). This is in contrast to the MRA, which fails to
converge in 3.3% of the cases.

To study the performance of the C method using MSA under a strict tolerance,
we have tables 6.5 and 6.6, which are the counterparts of table 6.2 and 6.3. It is
seen that using d ≥ 2 for MSA applied on tΩ,c results in fewer average number
of required iterations than both the I and C method using MRA. Whereas it
manages to get signi�cantly better than the I method, by having a p-value of
0.0314, the di�erence is insigni�cant compared to the C-method using MRA.
The relevant p-value is 0.1145, which tells that it can not be ruled out that the
di�erences are caused by pure chance.

MSA on t̃Ω,c improves the performance of the C method when d = 1, 4, 5.
Whereas it is almost signi�cantly better than the I method using MRA when
d = 4 on a 95%-con�dence interval, it is far from being signi�cantly better than
the C method using MRA.

MRA 3.3%
d = 1 d = 2 d = 3 d = 4 d = 5

MSA on tΩ 0% 0% 0% 0% 0%
MSA on t̃Ω 0% 0% 0% 0% 0%

Table 6.4: Failure rate of the tests for the C method using τ = 0.01
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C Method (MRA)
C Method (MSA on tΩ,c)

d = 1 d = 2 d = 3 d = 4 d = 5
x̄All 16.48 19.30 16.27 15.17 15.80 16.17
x̄20 14.55 17.10 12.70 11.90 12.35 12.25
pI 0.0781 > 0.5 0.1693 0.0314 0.1289 0.2514
pC - > 0.5 0.4465 0.1145 0.3046 0.4492

Table 6.5: p-values of the C method using MSA on tΩ,c in a one-sided paired t-test
compared to the MRA approach, with the alternative hypothesis being
that the MSA is better, and using τ = 0.01.

To summarise the evaluation of the C method using MSA, it was seen that MSA
increases the stability of the C method, although the C method using MRA was
quite stable in itself. The required number of iterations to reach convergence
was higher than both the I and C method using MRA, when facing a strict
convergence criteria. This is in contrast to the tests using a relaxed tolerance,
where the MSA did improve the performance a little in some cases. Although
MSA on tΩ,c and d = 2 was signi�cantly better than the I method using MRA,
a similar conclusion could not be made when compared to the C method.

C Method (MRA)
C Method (MSA on t̃Ω,c)

d = 1 d = 2 d = 3 d = 4 d = 5
x̄All 16.48 16.10 21.87 18.33 15.90 16.07
x̄20 14.55 12.55 14.85 13.50 12.95 12.35
pI 0.0781 0.2003 > 0.5 > 0.5 0.0770 0.1626
pC - 0.3902 > 0.5 > 0.5 0.1970 0.2135

Table 6.6: p-values of the C method using MSA on t̃Ω,c in a one-sided paired t-test
compared to the MRA approach, with the alternative hypothesis being
that the MSA is better, and using τ = 0.01.
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Chapter 7

Conclusion

The determination of the intersection of the demand curve, D(t), and travel time
curve, t(D), between any two nodes in a transport network is of great importance
in transportation systems analysis. This equilibrium is found iteratively using
a model containing an external mode choice loop and an internal route choice
loop. The two loops a�ect each other due to congestion, but as the iteration
process approaches the equilibrium, the changes become smaller and smaller
eventually revealing the equilibrium. This thesis sought to examine the use of
the intersection between straight line approximations of the demand and cost
curves (the I method) in the determination process. A corresponding MatLab
implementation was created, and the method was tested on a small-scale network
using various Monte Carlo generated �xed OD matrices. The results showed
that the I method was superior to the standard method when using the method
of repeated approximations (MRA), but that it did not bene�t much from the
method of successive averages (MSA). As a consequence, it was outperformed
by the standard method using MSA. The main problem of the I method was the
mutual correlation among similar OD pairs, which made the I method fail to
approximate the cost function su�ciently well. It turned out to be impossible
to correct for the mutual correlation, since the approximations were already
fully determined. The thesis did not rule out the existence of an approach using
the intersection of approximations of the demand and cost functions with the
ability to outperform a properly chosen standard MSA, but suggested that such
an approach in all likelihood will be using more than two interpolation points.
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Appendix A

Results Tables of the

Comparative Monte Carlo

Tests of the I Method

In this appendix, the tables showing the results of the performance tests of the
I method, standard method, and C method can be found. For more information
about the tests and an analysis of the results, see section 5, p. 51 for information
on the tests of the standard and I method, and section 6.3, p. 70 for more
information on the C method.

The d's in the tables are the d-values used to calculate the MSA-coe�cient,

ak =
kd∑k
j=1 j

d
.

The entry �NC� denotes that there was no convergence due to a diverging inter-
nal loop. The entry > 200 indicates that the method failed to converge within
200 external iterations, but that all internal loops converged up to this point.

The x̄ has been calculated as the mean of all the tests that converged. The
corresponding standard deviation belonging to the mean, is given by

Sx̄ =
Sx√
nc
,
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where Sx is the standard deviation found among the converged tests, and nc is
the number of tests managing to converge.

The p-values in the bottom of the table are the p-values from the one-sided
hypothesis tests. In the paired t-tests used to calculate the p-values all valid
measurements (converged tests) have been used. pI indicates the probability of
obtaining a mean value lower than the observed mean from the method under
consideration, given that the true mean of the method under consideration is
equal to the true mean of the I method using MRA. Likewise, pC is the p-value
with respect to the C method using MRA.
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OD-matrix no. I Method Standard Method C Method D• µ

1 15 25 21 408 0.735
2 13 30 19 430 0.725
3 21 64 28 498 0.701
4 41 > 200 30 450 0.714
5 NC 46 24 488 0.705
6 21 41 24 466 0.709
7 NC 53 NC 495 0.701
8 NC 37 NC 483 0.716
9 21 41 26 481 0.709
10 23 27 22 464 0.715
11 NC 28 23 518 0.700
12 26 52 33 530 0.696
13 29 88 28 524 0.685
14 29 97 32 538 0.686
15 NC 38 19 447 0.716
16 19 21 19 451 0.724
17 26 28 20 486 0.709
18 21 55 NC 573 0.675
19 29 38 21 441 0.712
20 NC 37 24 443 0.722
21 11 17 17 435 0.733
22 NC > 200 30 512 0.696
23 28 26 14 448 0.716
24 NC 93 29 486 0.703
25 23 36 15 452 0.715
26 26 37 22 440 0.725
27 27 66 26 480 0.715
28 20 23 21 416 0.723
29 30 42 20 476 0.706
30 23 22 17 440 0.726

x̄ 23.7 43.1 23.1 473.3 0.710
Sx̄ 1.4 4.1 1.0 7.1 0.003
pI - > 0.5 0.1977 - -
pC > 0.5 > 0.5 - - -

Table A.1: Results of the I, standard and C method using MRA and τ = 0.001

OD-matrix no. I Method Standard Method C Method D• µ

1 8 20 12 408 0.735
2 9 24 18 430 0.725
3 19 50 16 498 0.701
4 25 > 200 25 450 0.714
5 17 36 16 488 0.705
6 16 32 18 466 0.709
7 28 43 27 495 0.701
8 20 29 17 483 0.716
9 18 32 12 481 0.709
10 20 21 15 464 0.715
11 NC 22 17 518 0.700
12 18 41 19 530 0.696
13 22 69 16 524 0.685
14 15 76 NC 538 0.686
15 20 30 14 447 0.716
16 13 16 16 451 0.724
17 20 22 16 486 0.709
18 19 43 20 573 0.675
19 19 30 14 441 0.712
20 19 29 13 443 0.722
21 11 13 11 435 0.733
22 20 > 200 24 512 0.696
23 17 20 14 448 0.716
24 25 74 19 486 0.703
25 12 28 15 452 0.715
26 17 29 16 440 0.725
27 16 52 15 480 0.715
28 13 18 16 416 0.723
29 19 33 15 476 0.706
30 11 17 12 440 0.726

x̄ 17.4 33.9 16.5 473.3 0.710
Sx̄ 0.9 3.2 0.7 7.1 0.003
pI - > 0.5 0.0781 - -
pC > 0.5 > 0.5 - - -

Table A.2: Results of the I, standard and C method using MRA and τ = 0.01
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OD Matrix
Standard method (MSA on tΩ,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 21 13 10 9 8 408 0.735
2 21 13 10 9 8 430 0.725
3 21 15 12 11 10 498 0.701
4 20 14 12 11 10 450 0.714
5 16 12 10 9 9 488 0.705
6 17 12 10 9 9 466 0.709
7 17 13 10 9 9 495 0.701
8 19 12 9 8 9 483 0.716
9 16 12 10 9 9 481 0.709
10 21 13 10 9 9 464 0.715
11 22 13 10 9 8 518 0.700
12 23 16 12 11 10 530 0.696
13 25 17 13 11 11 524 0.685
14 22 15 12 10 10 538 0.686
15 19 12 10 9 9 447 0.716
16 20 13 9 8 8 451 0.724
17 22 13 10 9 9 486 0.709
18 25 17 13 11 11 573 0.675
19 17 12 10 9 9 441 0.712
20 21 13 10 9 9 443 0.722
21 13 8 7 7 7 435 0.733
22 17 18 14 12 12 512 0.696
23 22 13 10 9 8 448 0.716
24 16 11 10 9 9 486 0.703
25 16 11 9 8 8 452 0.715
26 19 12 10 9 8 440 0.725
27 22 15 12 11 10 480 0.715
28 18 11 9 8 8 416 0.723
29 21 13 11 10 9 476 0.706
30 19 12 9 8 8 440 0.726

x̄ 19.6 13.1 10.4 9.3 9 473.3 0.710
Sx̄ 0.5 0.4 0.3 0.2 0.2 7.1 0.003
pI 0.0054 ∼ 0 ∼ 0 ∼ 0 ∼ 0 - -
pC 0.0007 ∼ 0 ∼ 0 ∼ 0 ∼ 0 - -

Table A.3: Results of the standard method using MSA on tΩ,c and τ = 0.001.

OD Matrix
Standard method (MSA on tΩ,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 10 8 7 7 7 408 0.735
2 10 8 7 7 8 430 0.725
3 10 9 8 8 9 498 0.701
4 10 8 7 8 9 450 0.714
5 8 7 7 7 8 488 0.705
6 8 7 7 7 8 466 0.709
7 8 8 7 7 8 495 0.701
8 9 7 6 7 8 483 0.716
9 8 7 7 7 8 481 0.709
10 10 8 7 7 7 464 0.715
11 11 8 7 7 8 518 0.700
12 11 9 8 7 8 530 0.696
13 12 10 8 8 9 524 0.685
14 10 9 8 8 9 538 0.686
15 9 7 6 7 8 447 0.716
16 10 7 6 6 7 451 0.724
17 11 8 7 7 7 486 0.709
18 12 10 8 8 9 573 0.675
19 9 7 7 7 8 441 0.712
20 10 8 7 7 8 443 0.722
21 7 5 5 6 7 435 0.733
22 13 10 9 9 9 512 0.696
23 10 8 7 7 7 448 0.716
24 8 7 7 8 9 486 0.703
25 8 7 6 7 8 452 0.715
26 9 7 6 7 8 440 0.725
27 10 9 8 8 9 480 0.715
28 9 7 6 6 7 416 0.723
29 10 8 7 7 8 476 0.706
30 9 7 6 6 7 440 0.726

x̄ 9.6 7.8 7 7.2 8 473.3 0.710
Sx̄ 0.3 0.2 0.2 0.1 0.1 7.1 0.003
pI ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 - -
pC ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 - -

Table A.4: Results of the standard method using MSA on tΩ,c and τ = 0.01.
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OD Matrix
I method (MSA on tΩ,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 30 21 23 29 29 408 0.735
2 28 20 39 18 35 430 0.725
3 28 20 38 27 37 498 0.701
4 34 28 40 42 31 450 0.714
5 44 31 25 30 40 488 0.705
6 29 21 31 29 31 466 0.709
7 30 23 40 30 39 495 0.701
8 36 29 21 40 29 483 0.716
9 34 22 30 33 51 481 0.709
10 33 23 27 26 18 464 0.715
11 36 23 25 34 28 518 0.700
12 35 23 36 23 24 530 0.696
13 41 23 24 25 30 524 0.685
14 0 26 36 47 0 538 0.686
15 23 24 33 32 34 447 0.716
16 29 12 21 18 13 451 0.724
17 31 24 23 0 33 486 0.709
18 33 32 30 47 38 573 0.675
19 38 21 30 26 26 441 0.712
20 25 19 19 22 22 443 0.722
21 17 12 14 26 13 435 0.733
22 33 31 30 32 46 512 0.696
23 42 21 29 21 30 448 0.716
24 30 27 32 56 37 486 0.703
25 32 19 56 21 37 452 0.715
26 30 35 27 21 35 440 0.725
27 27 26 45 34 28 480 0.715
28 36 18 19 18 14 416 0.723
29 28 21 36 57 30 476 0.706
30 31 18 17 18 13 440 0.726

x̄ 31.8 23.1 29.9 30.4 30 473.3 0.710
Sx̄ 1 1 1.7 2 1.8 7.1 0.003
pI > 0.5 0.1061 > 0.5 > 0.5 > 0.5 - -
pC > 0.5 0.2896 > 0.5 > 0.5 > 0.5 - -

Table A.5: Results of the I method using MSA on tΩ,c and τ = 0.001.

OD Matrix
I method (MSA on tΩ,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 19 12 19 14 30 408 0.735
2 18 12 10 13 13 430 0.725
3 31 15 14 17 29 498 0.701
4 32 23 21 27 29 450 0.714
5 20 16 14 18 34 488 0.705
6 18 14 21 14 14 466 0.709
7 13 17 18 24 32 495 0.701
8 14 23 17 14 14 483 0.716
9 14 14 21 27 34 481 0.709
10 17 14 10 13 13 464 0.715
11 22 12 10 14 13 518 0.700
12 17 18 22 21 19 530 0.696
13 25 18 13 14 19 524 0.685
14 22 24 28 35 26 538 0.686
15 21 14 21 14 14 447 0.716
16 21 12 9 10 10 451 0.724
17 18 12 10 25 24 486 0.709
18 26 17 15 25 21 573 0.675
19 16 14 22 14 14 441 0.712
20 16 13 13 13 14 443 0.722
21 13 8 9 9 9 435 0.733
22 22 26 24 22 26 512 0.696
23 18 12 22 13 13 448 0.716
24 21 22 14 26 29 486 0.703
25 21 9 18 14 29 452 0.715
26 28 19 18 13 13 440 0.725
27 21 14 25 14 22 480 0.715
28 14 12 9 10 10 416 0.723
29 20 18 30 23 27 476 0.706
30 15 12 9 10 10 440 0.726

x̄ 19.8 15.5 16.9 17.3 20.1 473.3 0.710
Sx̄ 0.9 0.8 1.1 1.2 1.5 7.1 0.003
pI > 0.5 0.0151 0.3928 0.5000 > 0.5 - -
pC > 0.5 0.0292 > 0.5 > 0.5 > 0.5 - -

Table A.6: Results of the I method using MSA on tΩ,c and τ = 0.01.
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OD Matrix
I method (MSA on tΩ,c & DΩ,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 45 25 31 48 90 408 0.735
2 50 31 28 41 33 430 0.725
3 39 45 35 89 44 498 0.701
4 40 58 88 51 66 450 0.714
5 32 36 36 NC NC 488 0.705
6 34 28 42 52 53 466 0.709
7 36 33 40 46 49 495 0.701
8 31 39 35 51 NC 483 0.716
9 38 69 33 36 75 481 0.709
10 41 29 NC 105 47 464 0.715
11 59 23 34 26 39 518 0.700
12 49 46 67 33 43 530 0.696
13 NC 58 40 33 49 524 0.685
14 63 43 49 63 48 538 0.686
15 48 21 51 66 64 447 0.716
16 35 25 60 39 27 451 0.724
17 51 37 51 48 38 486 0.709
18 49 47 49 117 58 573 0.675
19 56 38 41 45 44 441 0.712
20 30 30 74 45 26 443 0.722
21 23 23 27 34 30 435 0.733
22 71 48 71 54 84 512 0.696
23 36 31 34 62 26 448 0.716
24 48 33 57 35 39 486 0.703
25 27 49 120 30 44 452 0.715
26 31 20 61 37 70 440 0.725
27 49 70 40 51 47 480 0.715
28 30 20 61 41 50 416 0.723
29 45 40 33 28 32 476 0.706
30 39 18 44 25 24 440 0.726

x̄ 42.2 37.1 49.4 49.3 47.8 473.3 0.710
Sx̄ 2.1 2.6 3.8 4.1 3.3 7.1 0.003
pI > 0.5 > 0.5 > 0.5 > 0.5 > 0.5 - -
pC > 0.5 > 0.5 > 0.5 > 0.5 > 0.5 - -

Table A.7: Results of the I method using MSA on tΩ,c & DΩ,c and τ = 0.001.

OD Matrix
I method (MSA on tΩ,c & DΩ,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 17 12 16 39 23 408 0.735
2 12 11 18 21 25 430 0.725
3 24 42 31 29 21 498 0.701
4 18 21 34 25 24 450 0.714
5 22 24 27 41 34 488 0.705
6 15 16 41 57 21 466 0.709
7 15 16 21 33 31 495 0.701
8 12 12 40 30 34 483 0.716
9 13 14 26 40 53 481 0.709
10 39 12 19 21 45 464 0.715
11 17 13 17 19 24 518 0.700
12 20 26 21 38 25 530 0.696
13 33 16 27 32 28 524 0.685
14 19 24 44 26 47 538 0.686
15 20 13 19 17 34 447 0.716
16 18 11 32 21 25 451 0.724
17 23 20 22 20 18 486 0.709
18 21 15 35 25 29 573 0.675
19 39 15 25 19 32 441 0.712
20 14 26 16 19 21 443 0.722
21 11 11 12 24 13 435 0.733
22 14 22 21 34 21 512 0.696
23 21 15 12 18 16 448 0.716
24 31 15 25 19 22 486 0.703
25 27 14 17 19 22 452 0.715
26 14 12 26 17 18 440 0.725
27 18 23 16 28 20 480 0.715
28 17 15 11 32 21 416 0.723
29 17 37 43 21 41 476 0.706
30 13 10 11 NC 30 440 0.726

x̄ 19.8 17.8 24.2 27 27.3 473.3 0.710
Sx̄ 1.4 1.4 1.8 1.8 1.7 7.1 0.003
pI > 0.5 > 0.5 > 0.5 > 0.5 > 0.5 - -
pC > 0.5 > 0.5 > 0.5 > 0.5 > 0.5 - -

Table A.8: Results of the I method using MSA on tΩ,c & DΩ,c and τ = 0.01.
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OD Matrix
I method (MSA on t̃Ω,c & D̃Ω,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 16 13 11 13 11 408 0.735
2 17 14 17 13 11 430 0.725
3 20 NC 25 27 20 498 0.701
4 NC NC NC 36 28 450 0.714
5 26 23 29 34 22 488 0.705
6 18 15 20 30 36 466 0.709
7 23 19 33 22 23 495 0.701
8 24 21 25 NC 24 483 0.716
9 29 19 20 18 29 481 0.709
10 20 20 27 30 24 464 0.715
11 22 28 NC 23 27 518 0.700
12 26 NC 25 15 21 530 0.696
13 NC 52 39 24 31 524 0.685
14 NC 22 20 18 36 538 0.686
15 22 15 25 18 22 447 0.716
16 NC 18 24 34 36 451 0.724
17 31 18 22 18 14 486 0.709
18 25 17 21 28 26 573 0.675
19 19 26 20 27 15 441 0.712
20 34 21 31 19 16 443 0.722
21 13 14 14 13 11 435 0.733
22 44 NC NC 24 NC 512 0.696
23 NC 17 27 28 21 448 0.716
24 24 30 26 28 31 486 0.703
25 23 18 17 19 18 452 0.715
26 19 19 16 19 NC 440 0.725
27 NC NC NC NC 25 480 0.715
28 19 15 NC 15 28 416 0.723
29 27 NC 31 28 26 476 0.706
30 16 13 16 14 18 440 0.726

x̄ 23.2 20.3 23.2 22.7 23.2 473.3 0.710
Sx̄ 1.4 1.7 1.3 1.3 1.4 7.1 0.003
pI 0.2876 0.0762 0.1846 0.1935 0.3882 - -
pC > 0.5 0.2111 > 0.5 0.3765 > 0.5 - -

Table A.9: Results of the I method using MSA on t̃Ω,c & D̃Ω,c and τ = 0.001.

OD Matrix
I method (MSA on t̃Ω,c) & D̃Ω,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 9 9 10 8 8 408 0.735
2 13 9 12 9 11 430 0.725
3 11 13 16 14 18 498 0.701
4 13 NC 17 NC 17 450 0.714
5 14 16 15 16 15 488 0.705
6 10 10 10 14 11 466 0.709
7 15 15 11 16 16 495 0.701
8 11 18 15 16 16 483 0.716
9 12 12 11 20 12 481 0.709
10 15 18 13 17 20 464 0.715
11 11 17 14 16 23 518 0.700
12 15 16 12 19 12 530 0.696
13 NC 18 22 17 16 524 0.685
14 14 17 12 15 12 538 0.686
15 22 16 11 15 14 447 0.716
16 19 22 14 17 15 451 0.724
17 15 11 12 13 12 486 0.709
18 17 11 13 16 15 573 0.675
19 13 15 32 16 12 441 0.712
20 18 12 14 12 14 443 0.722
21 7 7 9 9 11 435 0.733
22 20 31 26 17 18 512 0.696
23 11 13 20 16 12 448 0.716
24 13 17 35 17 22 486 0.703
25 10 10 16 11 11 452 0.715
26 11 12 12 19 11 440 0.725
27 15 17 15 17 21 480 0.715
28 8 13 12 11 12 416 0.723
29 20 14 16 13 21 476 0.706
30 9 9 25 11 11 440 0.726

x̄ 13.5 14.4 15.7 14.7 14.6 473.3 0.710
Sx̄ 0.7 0.9 1.2 0.6 0.7 7.1 0.003
pI 0.0001 0.0026 0.0987 0.0004 0.0001 - -
pC 0.0009 0.0164 0.3214 0.0272 0.0209 - -

Table A.10: Results of the I method using MSA on t̃Ω,c & D̃Ω,c and τ = 0.01.
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OD Matrix
C method (MSA on tΩ,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 36 17 33 21 21 408 0.735
2 29 22 44 31 18 430 0.725
3 27 25 42 44 33 498 0.701
4 35 41 25 39 36 450 0.714
5 39 25 21 23 22 488 0.705
6 35 22 35 27 46 466 0.709
7 42 44 33 29 34 495 0.701
8 31 24 31 21 30 483 0.716
9 37 23 22 32 39 481 0.709
10 32 20 25 18 14 464 0.715
11 29 27 31 18 18 518 0.700
12 30 23 31 23 31 530 0.696
13 48 41 27 25 38 524 0.685
14 52 18 33 33 40 538 0.686
15 33 22 25 21 22 447 0.716
16 34 21 18 18 13 451 0.724
17 28 22 29 40 18 486 0.709
18 44 28 27 49 46 573 0.675
19 34 22 24 31 28 441 0.712
20 32 27 13 23 18 443 0.722
21 31 12 19 18 13 435 0.733
22 33 44 38 29 34 512 0.696
23 39 14 24 18 27 448 0.716
24 37 31 21 26 35 486 0.703
25 25 33 21 21 26 452 0.715
26 30 27 22 21 21 440 0.725
27 35 24 36 41 26 480 0.715
28 32 23 27 25 13 416 0.723
29 31 23 30 31 21 476 0.706
30 30 20 26 14 13 440 0.726

x̄ 34.3 25.5 27.8 27 26.5 473.3 0.710
Sx̄ 1.1 1.5 1.3 1.6 1.8 7.1 0.003
pI > 0.5 > 0.5 > 0.5 > 0.5 > 0.5 - -
pC > 0.5 > 0.5 > 0.5 > 0.5 > 0.5 - -

Table A.11: Results of the C method using MSA on tΩ,c and τ = 0.001.

OD Matrix
C method (MSA on tΩ,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 21 19 10 14 13 408 0.735
2 17 13 10 13 13 430 0.725
3 17 17 22 32 14 498 0.701
4 23 19 14 14 14 450 0.714
5 16 23 18 13 13 488 0.705
6 18 15 18 14 13 466 0.709
7 23 21 14 13 13 495 0.701
8 16 17 14 13 13 483 0.716
9 13 14 14 14 13 481 0.709
10 16 20 10 13 10 464 0.715
11 17 14 10 13 13 518 0.700
12 26 10 21 25 43 530 0.696
13 19 29 23 22 37 524 0.685
14 19 14 14 14 13 538 0.686
15 13 14 14 13 13 447 0.716
16 17 16 9 10 10 451 0.724
17 19 9 10 13 15 486 0.709
18 25 28 20 29 41 573 0.675
19 22 14 14 13 13 441 0.712
20 22 13 13 13 13 443 0.722
21 15 8 9 9 10 435 0.733
22 24 35 29 34 32 512 0.696
23 19 12 14 10 13 448 0.716
24 29 23 13 13 13 486 0.703
25 18 9 14 14 13 452 0.715
26 18 14 18 13 13 440 0.725
27 20 14 26 25 17 480 0.715
28 16 12 9 10 10 416 0.723
29 22 10 22 18 14 476 0.706
30 19 12 9 10 10 440 0.726

x̄ 19.3 16.3 15.2 15.8 16.2 473.3 0.710
Sx̄ 0.7 1.2 1.0 1.2 1.7 7.1 0.003
pI > 0.5 0.1693 0.0314 0.1289 0.2514 - -
pC > 0.5 0.4465 0.1145 0.3046 0.4492 - -

Table A.12: Results of the C method using MSA on tΩ,c and τ = 0.01.



89

OD Matrix
C method (MSA on t̃Ω,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 20 17 15 17 24 408 0.735
2 46 16 39 14 15 430 0.725
3 28 23 53 29 33 498 0.701
4 43 72 35 51 47 450 0.714
5 21 20 67 28 21 488 0.705
6 28 32 28 23 22 466 0.709
7 67 31 30 33 23 495 0.701
8 20 20 27 31 28 483 0.716
9 50 26 20 36 25 481 0.709
10 19 18 30 15 28 464 0.715
11 32 31 27 18 19 518 0.700
12 55 76 61 44 34 530 0.696
13 68 66 38 44 35 524 0.685
14 30 51 63 34 34 538 0.686
15 20 26 14 16 27 447 0.716
16 24 36 27 17 23 451 0.724
17 27 16 22 18 38 486 0.709
18 30 32 30 39 20 573 0.675
19 21 18 28 21 23 441 0.712
20 34 32 31 43 42 443 0.722
21 23 23 30 21 15 435 0.733
22 35 52 55 26 46 512 0.696
23 20 14 22 16 30 448 0.716
24 43 24 29 27 29 486 0.703
25 >200 22 21 17 16 452 0.715
26 23 23 32 45 44 440 0.725
27 29 16 32 43 18 480 0.715
28 18 13 16 15 21 416 0.723
29 27 20 16 15 22 476 0.706
30 16 18 28 17 24 440 0.726

x̄ 31.6 29.5 32.2 27.1 27.5 473.3 0.710
Sx̄ 2.6 3.1 2.6 2.1 1.7 7.1 0.003
pI > 0.5 > 0.5 > 0.5 > 0.5 > 0.5 - -
pC > 0.5 > 0.5 > 0.5 > 0.5 > 0.5 - -

Table A.13: Results of the C method using MSA on t̃Ω,c and τ = 0.001.

OD Matrix
C method (MSA on t̃Ω,c) D• µ

d = 1 d = 2 d = 3 d = 4 d = 5

1 9 10 13 10 10 408 0.735
2 17 9 14 11 10 430 0.725
3 16 23 18 13 26 498 0.701
4 23 19 13 15 24 450 0.714
5 12 15 27 19 20 488 0.705
6 13 24 18 20 24 466 0.709
7 16 23 17 21 13 495 0.701
8 11 14 15 14 13 483 0.716
9 15 16 21 15 13 481 0.709
10 11 17 12 18 15 464 0.715
11 11 13 12 13 12 518 0.700
12 31 31 20 19 27 530 0.696
13 23 46 19 28 18 524 0.685
14 15 54 17 21 28 538 0.686
15 16 21 13 11 11 447 0.716
16 26 18 14 16 12 451 0.724
17 15 11 13 11 12 486 0.709
18 16 19 20 14 14 573 0.675
19 12 34 14 11 12 441 0.712
20 18 13 14 12 15 443 0.722
21 9 9 9 9 9 435 0.733
22 25 70 31 31 20 512 0.696
23 12 10 67 19 13 448 0.716
24 12 14 14 19 13 486 0.703
25 14 20 11 16 10 452 0.715
26 14 15 14 13 28 440 0.725
27 37 27 18 16 13 480 0.715
28 9 27 9 10 19 416 0.723
29 16 14 39 21 19 476 0.706
30 9 20 14 11 9 440 0.726

x̄ 16.1 21.9 18.3 15.9 16.1 473.3 0.710
Sx̄ 1.2 2.5 2.0 1.0 1.1 7.1 0.003
pI 0.2003 > 0.5 > 0.5 0.077 0.1626 - -
pC 0.3902 > 0.5 > 0.5 0.197 0.2135 - -

Table A.14: Results of the C method using MSA on t̃Ω,c and τ = 0.01.
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Appendix B

MatLab Implementations

This chapter shows the MatLab codes used in the performance tests of the
standard, I and C method.

There might be redundancy in the codes, and possibly there are parts of the
codes that could have been made more e�cient. The primary goal of the codes
have not been to make a very fast code, since it was never the intention of
the code to use it on real-life transport networks. As such, it has been made
su�ciently e�cient to handle tests on a small test network (see section 4), but
has also remained a manageable structure in cases where a more e�cient coding
could have been used.

Most of the variable names are directly taken from the theory presented in the
study. Whenever this is not the case, a brief introduction to the variable has
been stated before the code.

B.1 The Internal Loop

Since all other methods uses the internal loop, it is natural to start with the
code of the internal loop. When other methods have called this code, the name
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internalLoop has been used. The code can be seen below:

MatLab code B.1.1 (The Internal Loop)

%Initialising various constants
k_i=2;
tau_i=tau/100;
t_lc=t_0l;
t_rc=t_lc*link';
D_rc=zeros(1,n_r);
D_lc=zeros(1,n_l);
converged_i=false;

%Setting the travel times of each route equal to
%the final travel times of the last external iteration.
t_rc(2,:)=t_rc_init;

while(k_i<k_imax);

% Calculating the route demands.
for ODp=1:n_Omega

D_rc(k_i,StartEnd(ODp,1):StartEnd(ODp,2)) =...
D_Omegac(k,ODp).*exp(gamma*...
t_rc(k_i,StartEnd(ODp,1):StartEnd(ODp,2)))./...
sum(exp(gamma*t_rc(k_i,StartEnd(ODp,1):StartEnd(ODp,2))));

end

%Checking for convergence.
if(norm(D_rc(k_i,:)-D_rc(k_i-1,:),inf)< tau_i)

converged_i=true;
end

%Calculating link demands.
D_lc(k_i,:)=D_rc(k_i,:)*link;

%Calculating the standard MSA coefficient.
a_k=1/(k_i-1);

%Calculating the link travel times using the BPR formula and MSA.
t_lc(k_i,:)=a_k*t_0l.*(1+alpha_l*(D_lc(k_i,:)./C_l).^beta_l) + ...

(1-a_k)*t_lc(k_i-1,:);

%Incrementing k_1.
k_i=k_i+1;

%Calculating the route travel times.
t_rc(k_i,:)=t_lc(k_i-1,:)*link';

end

% Saving the final route cost for use in next external iteration.
t_rc_init=t_rc(k_i,:);

�

B.2 The Standard Method

In this section, the MatLab implementation of the standard method will be
presented. The code consists of some network speci�c variables, that has been
initialized prior to the code. A brief explanation of these variables follows below.



The Standard Method 93

• beta_l is a vector containing the β−coe�cient for the BPR formula (see
section 2.1.1) for all the links of the network.

• t_0l is a vector containing the free �ow travel time of all the links of the
network.

• link is a binary matrix of size nr × nl. A 1 in the (r, l)'th entry denotes
that l is a part of route r. A 0 denotes that it is not.

• StartEnd is a nΩ × 2 matrix. All the routes have a unique ID in such a
way, that all the routes corresponding to the OD pair Ω have numbers in
the interval between the (Ω, 1)'th and the (Ω, 2)'th entry, with the latter
being the highest route ID for any route corresponding to Ω.

Having introduced these variables, the code is now ready to be presented.

MatLab code B.2.1 (The Standard Method)

%Initialisation of the constants.
tau=0.01;
k_max=200;
k_imax=1000;
Delta_dot=450;
mu_0=0.85;
kappa_c=-log(1/mu_0-1);
gamma=-1;
alpha_l=0.5;
beta_l=[6,6,4,6,4,6,4,4,2,2,2,2,2,2,2,2];
n_r=2007;
n_l=16;
n_Omega=36;

%% Determining the public transport OD-pair costs.
t_rp=t_0l*link';
D_rp=zeros(1,n_Omega);
t_Omegap=D_rp;

% For each OD pair, the probability of choosing each route is
% calculated using a logit model. Secondly, the average travel
% time of each route is calculated.
for ODp=1:n_Omega

denominator = sum(exp(gamma*t_rp(StartEnd(ODp,1)...
:StartEnd(ODp,2))));

D_rp(StartEnd(ODp,1):StartEnd(ODp,2))=...
exp(gamma*t_rp(StartEnd(ODp,1):StartEnd(ODp,2)))./denominator;

t_Omegap(ODp)=D_rp(StartEnd(ODp,1):StartEnd(ODp,2))...
*t_rp(StartEnd(ODp,1):StartEnd(ODp,2))';

end

% Equal in 1st iteration, because the flow is 0.
t_Omegac_init=t_Omegap;

%% Testing various OD-matrices
for od=1:30

rng(436+od);
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%% Loading OD-matrix and transforming it to a vector.
Dbar = Delta_dot/36;
D_Omega=randi(round(2*Dbar),1,36);

%% Testing for various values of d
for d=1:5

% The initial route travel times for cars are initiated.
t_rc_init=t_rp;

% Average travel times for each OD pair are initiated.
t_Omegac = t_Omegac_init;

% The demand for car travel on each OD pair is calculated,
% using a logit model.
for ODp=1:n_Omega

D_Omegac(ODp)=1/(1+exp(-kappa_c))*D_Omega(ODp);
end

%% External loop
k=1;
converged=false;

while(~converged && k <k_max)
% Internal Loop
internalLoop;

%Checking for non-convergence of internal loop
if(k_i>=k_imax)

break;
end

% Updating demand and cost.
k=k+1;

%Calculating the MSA coefficient. For MRA is wanted, set a_k=1;
a_k=k^d/sum((1:k).^d);
for ODp=1:n_Omega

t_Omegac(k,ODp)=a_k*(t_rc(k_i,StartEnd(ODp,1):...
StartEnd(ODp,2))*D_rc(k_i,StartEnd(ODp,1):StartEnd(...
ODp,2))'/D_Omegac(k-1,ODp))...
+(1-a_k)*t_Omegac(k-1,ODp);

D_Omegac(k,ODp)=1/(1+exp(-(gamma*(t_Omegac(k,ODp)-t_Omegap(ODp))...
+kappa_c)))*D_Omega(ODp);

end

%Checking for convergence
if(norm(D_Omegac(k,:)-D_Omegac(k-1,:),inf)<tau)

converged=true;
end

end

% The market share of car travel is calculated.
mu=sum(D_Omegac(k,:))/sum(D_Omega);

end
end

�
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B.3 The I Method

The I method contains no further variables that are not already presented in
the study, why the code will just be presented straight away.

MatLab code B.3.1 (The I Method)

%Initialisation of the constants.
tau=0.01;
k_max=200;
k_imax=1000;
Delta_dot=450;
mu_0=0.85;
kappa_c=-log(1/mu_0-1);
gamma=-1;
alpha_l=0.5;
beta_l=[6,6,4,6,4,6,4,4,2,2,2,2,2,2,2,2];
n_r=2007;
n_l=16;
n_Omega=36;

%% Determining the public transport OD-pair costs.
t_rp=t_0l*link';
D_rp=zeros(1,n_Omega);
t_Omegap=D_rp;

% For each OD pair, the probability of choosing each route is
% calculated using a logit model. Secondly, the average travel
% time of each route is calculated.
for ODp=1:n_Omega

denominator = sum(exp(gamma*t_rp(StartEnd(ODp,1)...
:StartEnd(ODp,2))));

D_rp(StartEnd(ODp,1):StartEnd(ODp,2))=...
exp(gamma*t_rp(StartEnd(ODp,1):StartEnd(ODp,2)))./denominator;

t_Omegap(ODp)=D_rp(StartEnd(ODp,1):StartEnd(ODp,2))...
*t_rp(StartEnd(ODp,1):StartEnd(ODp,2))';

end

% Equal in 1st iteration, because the flow is 0.
t_Omegac_init=t_Omegap;

%% Testing various OD-matrices
for od=1:30

rng(436+od);

%% Loading OD-matrix and transforming it to a vector.
Dbar = Delta_dot/36;
D_Omega=randi(round(2*Dbar),1,36);

%% Testing for various values of d
for d=1:5

% The initial route travel times for cars are initiated.
t_rc_init=t_rp;

% Average travel times for each OD pair are initiated.
t_Omegac = t_Omegac_init;

% The demand for car travel on each OD pair is calculated,
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% using a logit model.
for ODp=1:n_Omega

D_Omegac(ODp)=1/(1+exp(-kappa_c))*D_Omega(ODp);
end

%% First internal loop
%k needs to be updated for use in the internal loop.
k=1;
internalLoop;

%Calculating the MSA coefficient. For MRA, set a_k=1;
a_k=2^d/sum((1:2).^d);
for ODp=1:n_Omega

t_Omegac(2,ODp)=a_k*(t_rc(k_i,StartEnd(ODp,1):...
StartEnd(ODp,2))*D_rc(k_i,StartEnd(ODp,1):StartEnd(...
ODp,2))'/D_Omegac(k-1,ODp))...
+(1-a_k)*t_Omegac(k-1,ODp);

D_Omegac(2,ODp)=1/(1+exp(-(gamma*(t_Omegac(2,ODp)-t_Omegap(ODp))...
+kappa_c)))*D_Omega(ODp);

end

%% Second internal loop
%k needs to be updated for use in the internal loop.

k=2;
internalLoop;

%Calculating the MSA coefficient. For MRA, set a_k=1;
a_k=3^d/sum((1:3).^d);
for ODp=1:n_Omega

t_Omegac(3,ODp)=a_k*(t_rc(k_i,StartEnd(ODp,1):...
StartEnd(ODp,2))*D_rc(k_i,StartEnd(ODp,1):StartEnd(...
ODp,2))'/D_Omegac(k-1,ODp))...
+(1-a_k)*t_Omegac(k-1,ODp);

D_Omegac(3,ODp)=1/(1+exp(-(gamma*(t_Omegac(3,ODp)-t_Omegap(ODp))...
+kappa_c)))*D_Omega(ODp);

end

%% External loop

%Initialising Dtilde_Omegac and ttilde_Omegac
ttilde_Omegac=t_Omegac;
Dtilde_Omegac=zeros(3,36);
Dtilde_Omegac(2:3,:)=D_Omegac(1:2,:);
converged=false;
k=3;

while(~converged && k <k_max)
% Calculating dtilde and ttilde;
b_D = (ttilde_Omegac(k,:)-ttilde_Omegac(k-1,:))./...

(D_Omegac(k,:)-D_Omegac(k-1,:));
a_D = ttilde_Omegac(k,:)-b_D.*D_Omegac(k,:);
b_t = (t_Omegac(k,:)-t_Omegac(k-1,:))./...

(Dtilde_Omegac(k,:)-Dtilde_Omegac(k-1,:));
a_t = t_Omegac(k,:)-b_t.*Dtilde_Omegac(k,:);
Dtilde_Omegac(k+1,:) =(a_D-a_t)./(b_t-b_D)
ttilde_Omegac(k+1,:) = (b_t.*Dtilde_Omegac(k+1,:)+a_t)+...

%The internal loop is run
internalLoop_I;

%Checking for non-convergence of internal loop
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if(k_i>=k_imax)
break;

end

%Calculating MSA coefficient. For MRA, set a_k=1.
a_k=(k+1)^d/sum((1:(k+1)).^d)

%Updating cost and demand.
for Omega=1:n_Omega

t_Omegac(k+1,Omega)=a_k*(t_rc(k_i,StartEnd(Omega,1):...
StartEnd(Omega,2))*D_rc(k_i,StartEnd(Omega,1):StartEnd(...
Omega,2))'/Dtilde_Omegac(k+1,Omega))+(1-a_k)*t_Omegac(k,Omega);

D_Omegac(k+1,Omega)=1/(1+exp(-(gamma*(ttilde_Omegac(k+1,Omega)...
-t_Omegap(Omega))+kappa_c)))*D_Omega(Omega);

end

%Incrementing k.
k=k+1;

% Checking for convergence.
if(norm(D_Omegac(k,:)-D_Omegac(k-1,:),inf)<tau)

converged=true;
end

end

%Calculating the market share of cars.
mu=sum(D_Omegac(k,:))/sum(D_Omega);

end

�

The procedure internalLoop_I is identical to internalLoop, except that internalLoop_I
uses D̃Ω,c instead of DΩ,c.

B.4 The C method

In order to avoid a lot of redundancy, the upper part of the code for the C
method (denoted by 6 vertical dots) has been cropped. That part of the code
is identical the the code of the I method. The rest of the code is as follows.

MatLab code B.4.1 (The C Method)

:
:
:
%% External loop
%Initializing the external loop

k=3;
converged=false;
ttilde_Omegac=t_Omegac;
Dbreve_Omegac=zeros(3,36);
Dbreve_Omegac(2:3,:)=D_Omegac(1:2,:);
while(~converged && k <k_max)
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% Calculating Dbreve and ttilde;
b_D = (ttilde_Omegac(k,:)-ttilde_Omegac(k-1,:))./...

(D_Omegac(k,:)-D_Omegac(k-1,:));
a_D = ttilde_Omegac(k,:)-b_D.*D_Omegac(k,:);
b_t = (t_Omegac(k,:)-t_Omegac(k-1,:))./...

(Dbreve_Omegac(k,:)-Dbreve_Omegac(k-1,:));
a_t = t_Omegac(k,:)-b_t.*Dbreve_Omegac(k,:);
ttilde_Omegac(k+1,:) =b_t.*(a_D-a_t)...

./(b_t-b_D)+a_t);

%Incrementing k
k=k+1;

%Calculating the demands.
for Omega=1:n_Omega

D_Omegac(k,Omega)=1/(1+exp(-(gamma*(ttilde_Omegac(k,Omega)...
-t_Omegap(Omega))+kappa_c)))*D_Omega(Omega);

end

%Running the internal loop.
internalLoop;

%Checking if internal loop converged.
if(k_i>=k_imax)

break;
end

%Calculating the cost function.
for Omega=1:n_Omega

t_Omegac(k,Omega)=t_rc(k_i,StartEnd(Omega,1):...
StartEnd(Omega,2))*D_rc(k_i,StartEnd(Omega,1):StartEnd(...
Omega,2))'/D_Omegac(k,Omega);

end

%Setting Dbreve_k = D_k.
Dbreve_Omegac(k,:)=D_Omegac(k,:);

% Checking for convergence.
if(norm(D_Omegac(k,:)-D_Omegac(k-1,:),inf)<tau)

converged=true;
end

end

�
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