
Study in Modern Uncertainty
Quantification Methods

Master Thesis
Emil Kjær Nielsen

Technical University of Denmark
Department of Applied Mathematics and Computer Science

DK-2800 Lyngby

Copyright c© Technical University of Denmark 2013

DTU Compute
Department of Applied Mathematics and Computer

Science
Asmussens Alle, bygning 303B

DK-2800 Lyngby
http://compute.dtu.dk

Title:
Study in Modern Uncertainty Quantifica-
tion Methods

Theme:
Uncertainty Quantification Methods

Project Period:
December 2012 - May 2013

Participant:
Emil Kjær Nielsen

Supervisors:
Allan Peter Engsig-Karup

Copies: 3

Page Numbers: 132

Date of Completion:
May 3, 2013

Abstract:

Uncertainty Quantification (UQ) is a rel-
atively new research area where there
over the past years have been an ongoing
development in techniques to improve the
existing UQ methods. As the demand on
quantifying uncertainties are increasing
the methods becomes more widely used.
The goal with the thesis is to apply
UQ using generalized Polynomial Chaos
(gPC) expansion together with spectral
numerical methods on differential equa-
tion. Furthermore experiences with the
programming language Python must be
gained in order to implement the UQ
methods.
The thesis starts by introducing the
mathematical background of the spectral
method including e.g. orthogonal polyno-
mials and quadrature rules. Three differ-
ently UQ methods is, after the introduc-
tion of gPC, presented.
To illustrate uncertainty, the UQ method
are applied on two stochastic differential
equations showing the beneficial by using
spectral methods illustrated by the spec-
tral convergence.
The final part dealing with the illustra-
tion of the curse of dimensionality. It
also contains 1 technique handling the di-
mensionality which is satisfied to some ex-
tend.

The content of this report is freely available, but publication (with reference) may only be pursued due to
agreement with the author.

http://compute.dtu.dk

DTU Compute
Institut Matematik og Computer Science

Asmussens Alle, bygning 303B
DK-2800 Lyngby

http://compute.dtu.dk

Titel:
Studie i moderne metoder til kvantificering
af usikkerhed

Tema:
Metoder til kvantificering af usikkerhed

Projektperiode:
December 2012 - Maj 2013

Deltager:
Emil Kjær Nielsen

Vejledere:
Allan Peter Engsig-Karup

Oplagstal: 3

Sidetal: 132

Afleveringsdato:
3. maj, 2013

Abstract:

Uncertainty Quantification er et forhold-
vist nyt forskningsområde, hvor der over
de seneste år er blevet udviklet teknikker
til at forbedre de existerende UQ meto-
der. Siden flere og flere stiller krav om
kvantificering af usikkerheder metoderne
bliver mere og mere udbredte.
Målet med afhandlingen er at anvende
UQ (kvantificering af usikkerhed) (UQ)
ved at bruge generalized Polynomial Cha-
os (gPC) ekspansion sammen med spek-
trale numeriske metoder på differential
ligninger. Endvidere erfaringer i program-
meringssproget Python skal opnås sådan
at UQ metoderne kan implementeres.
Afhandlingen starter med en introduk-
tion af den bagvedliggende matematiske
teori for de spektrale metoder indeholden-
de f.eks. ortogonale polynomier og kva-
dratur regler. Tre forskellige UQ metoder
vil, efter en introduktion af gPC, blive
præsenteret.
For at illustrere usikkerhederne, UQ me-
toderne er afprøvet på to stokastiske dif-
ferential ligninger, der viser fordelene ved
at bruge de spektrale metoder illustreret
ved den spektrale konvergence.
Den sidste del beskæftiger sig med at il-
lustrere curse of dimensionality. Dette in-
deholder en teknik der håndtere denne di-
mensionalitet, som viser at denne teknik
er tilstrækkelig til en vis grad.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter aftale
med forfatterne.

http://compute.dtu.dk

Contents

Preface ix

1 Introduction 1
1.1 Objectives and goals . 2
1.2 Outlines of the thesis . 3

2 Notation and expressions 5
2.1 Programming language: Python . 7

3 Mathematical background and numerical tools 9
3.1 Orthogonal Polynomials . 9

3.1.1 Examples of orthogonal polynomials 10
3.2 Quadrature rules . 12
3.3 Polynomial interpolation . 15
3.4 Deterministic Collocation method . 15

3.4.1 Construction of the Deterministic Collocation method 16
3.5 Time-integration solver . 18
3.6 Generalized Polynomial Chaos . 19

3.6.1 Multi dimensional gPC . 20

4 Uncertainty Quatification methods 23
4.1 Non-intrusive methods . 23

4.1.1 Monte Carlo Method . 23
4.1.2 Stochastic Collocation Method . 24

4.2 Intrusive methods . 25
4.2.1 Stochastic Galerkin Method . 25

5 Establishment of differential equations 27
5.1 The Test equation . 27

5.1.1 Statistical parameters for the Normal distribution 28
5.1.2 Statistical parameters for the Uniform distribution 33

5.2 The Burger’s equation . 34

vii

viii Contents

6 Test of Uncertainty Quantification methods 37
6.1 Stochastic Test equations - Monte Carlo method 37
6.2 Stochastic Test equations - Stochastic Collocation Method 41
6.3 Stochastic Test equations - Stochastic Galerkin Method 43
6.4 Stochastic Burger’s equation - Monte Carlo method 46
6.5 Stochastic Burger’s equation - Stochastic Collocation method 49
6.6 Stochastic Burger’s equation - Stochastic Galerkin method 50
6.7 Comparison between the UQ methods . 52

7 Topics in Uncertainty Quantification 55

8 Multidimensional problems 59
8.1 Tensor Product Collocation method . 59

8.1.1 Test of Tensor Grid Collocation method 60
8.1.2 Test with 3 random variables . 62

8.2 Sparse Grid Collocation . 65
8.2.1 Test of Sparse Grid Collocation . 65

8.3 Future works . 69

9 Conclusion 71

A Additional analytical statistical solutions for the Test equation 73

B Implemented code 77
B.1 Toolbox code . 77

B.1.1 Legendre polynomials . 77
B.1.2 Hermite polynomials . 78
B.1.3 Lengendre quadrature . 78
B.1.4 Hermite quadrature . 79
B.1.5 Deterministic Collocation functions 79
B.1.6 Implementation of the deterministic Burger’s equation 82

B.2 1 dimensional test code . 84
B.2.1 Stochastic Test equation . 84
B.2.2 Stochastic Burger’s equation . 94

B.3 Multidimensional test code . 102
B.3.1 Stochastic Test equation (d = 2) - SCM 102
B.3.2 Stochastic Test equation (d = 2) - Convergence test 103
B.3.3 Sparse matrix test . 105
B.3.4 Stochastic Burger’s equation (d = 3) - SCM 109

B.4 Sparse grid implementations and tests . 112

Bibliography 131

Preface

This thesis is prepared as a master thesis at the department of Applied Mathematics
and Computer Science at the Technical University of Denmark (DTU) and supervised
by Associate professor Allan Peter Engsig-Karup. The thesis is conducted in the period
from December the 3rd 2012 to May the 3rd 2013 by Emil Kjær Niesen.

The thesis is an introduction to the area Uncertaincy Quantification and will require
knowledges to numerical method for differential equations. The applied programming
language is Python, but basic knowledge to some programming language might be suf-
ficient to understand the implementations. The thesis contains theory of generalized
Polynomial Chaos, orthogonal polynomials and basic probability theory. All simula-
tions and test are performed on a computer with 8.00 GB RAM with a Intel Core i7
processor with 64 bit Windows 8.

I will like to thank my supervisor Allan Peter Engsig-Karup for introducing me to
the area and supervision when needed. Also I like to thank Ph.D. Daniele Bigoni for
helping with the practical questions I had throughout the thesis. A special thank to
fellow student Emil Brandt Kærgaard for the constructive discussions in many fields we
had throughout the period. Johan Kjær Nielsen and Kristian Rye Jensen also have to
be thanked for the critical eyes and feedback on my written report.

Technical University of Denmark, May 3, 2013

Emil Kjær Nielsen
<s072248@student.dtu.dk>

ix

x Preface

Chapter 1

Introduction

Solving differential equation by use of numerical models is continuously in developing and
is used in many engineering and science areas. The development focusing on reducing
the time consumption and the precision of the solutions. Today the numerical tools are
extremely important as simulations can reduce the need for costly physical test in for
example design processes [1].

However, numerical simulations must be handled carefully as assumptions and ap-
proximations leading to error which are unavoidable. The errors introduced between the
numerical simulations and ’the real world’ can be classified into 3 main groups [1].

Model error

The approximation of the physics in the real world is done by mathematical models which
contains the physical laws and principles. However, the mathematical models are often
simplified in order to make the simulations possible or easier. Hence some physical laws
are disregarded as its effects are assumed to be negligible. Therefore the mathematical
models often will not contain all aspects from the physics and cannot exactly replicate
the behaviour in ’the real world’.

Numerical errors

Using numerical methods to solve mathematical models will introduce numerical errors
because of the finite representation of numbers on computers. This involves both trun-
cation errors (e.g. truncation of an infinite sum) and rounding errors (e.g. rounding π to
16 digits). Some numerical methods ensures small numerical errors by taking advantage
of convergence and stability, but numerical errors will practically always exist.

Data errors

To find a solution to a given mathematical model, the parameters and data related to
the model have to be known. This could for example be a temperature or velocity ex-
pressed as model constants, boundary conditions or initial condition. Measurements or

1

2 Chapter 1. Introduction

identifications are used to determine these data and are very often flawed. These errors
are called data errors.

This thesis will focus on the influence data errors have on the solutions for mathe-
matical models in terms of differential equations. The uncertainty in the data will be
represented by random variables and hence it all boils down to solving stochastic dif-
ferential equations quantifying the uncertainty introduced by the data by numerical
methods. Uncertainty Quantification (UQ) is a relatively new research area and gets
more and more attention, as it is demanded that solutions for the differential equations
contains uncertainty.

In figure 1.1 an illustrative example is shown. It shows two deterministic solutions for
the viscous Burger’s equation (introduced later on) for two different boundary conditions.
One boundary condition is u1(t,−1) = 1 while the other is u2(t,−1) = 1.01.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

u
(t
,x

)

u1(t, x)
u2(t, x)

Figure 1.1: Deterministic solutions of viscous Burgers equation for boundary condtions u1(t,−1) = 1
and u2(t,−1) = 1.01.

The solutions in figure 1.1 show that a very small change in the boundary condition can
have a huge impact on the solution. Assume that the boundary condition is found by
measurements and follows a normal distribution N (1, 0.5) (from N (µ, σ2)). Then two
different measurements can give two very different solutions as illustrated in figure 1.1.

1.1 Objectives and goals
As UQ is a relatively new area and will likely be a widely used area in the future it will
be advantageously to get knowledge to UQ method, but also to get knowledges to the

1.2. Outlines of the thesis 3

theoretical background and techniques.
The overall goal with the project is the achieve knowledge to UQ area. To obtain

this goal the theoretical background and numerical tools have to be investigated and
understand. Since this thesis is an introduction to UQ the focus area will be to illustrate
UQ methods, but also to validate and compare them. It is chosen only to use relatively
simple test problem, such that a technique handling the curse of dimensionality can be
treated. The thesis should be presented such that it is possible to imagine how it can be
applied on more complex systems. The thesis is also limited only to handle systems with
random variables and not with random processes. Other objectives are to illustrate the
issues in form of huge systems which have led to different techniques to handle them.
Finally the thesis ends with an illustration one technique that reduces the computational
work.

A secondary goal of this thesis is to get knowledge and experiences to the program-
ming language Python. Previously in my studies the programming language Matlab has
been used, but due to experiences with time consuming calculations it was temping to
try out Python. Another reason to use Python instead of Matlab is that Python is an
open source product.

1.2 Outlines of the thesis
The thesis is mainly based on [2], which is an introduction to UQ. Many of the numerical
tools used throughout the thesis are inspired by [3] and [4].

In the thesis chapter 2 starts covering the notation and expressions used throughout
the thesis and a short introduction to Python will be given. Chapter 3 will move on
with the mathematical background and numerical tools needed by the UQ methods.
This lead to chapter 4 where three UQ methods are presented and shortly discussed.
Chapter 5 introduced the two test problems where some exact expressions are computed
for the simplest problem.

This is followed by a test chapter (chapter 6) where the three methods are tested on
the two problems (containing 1 random variable) and finally the methods are discussed.
Hereafter today’s topics within UQ are shortly presented. In chapter 8 multidimensional
cases are addressed and hereby the curse of dimensionality is illustrate. One of the
method presented in chapter 7 will lastly be illustrated on a multidimensional case.

4 Chapter 1. Introduction

Chapter 2

Notation and expressions

Before going into details with the methods and the underlying tools the used notation
and expressions will be clarified. This will be recurrent throughout the project.

First the general formulation of a Stochastic Differential Equation (SDE) where the
goal is to find the solution u(t,x,Z). A SDE is a Partial Differential Equation (PDE)
added some uncertainty coming from the measured data. The system is defined on a
spatial domain S ⊂ R`, ` = 1, 2, 3, . . . and a time domain t ⊂ [0, T]. The formulation for
a SDE with solution u(x, t,) is given by

ut(x, t,Z) = L(u), S × (0, T]× Rd

B(u) = 0, ∂S × [0, T]× Rd (2.1)
u(x, 0,Z) = u0, S × Rd

where L is a differential operator, B is the boundary condition operator, u0 is the
initial condition and Z = (Z1, Z2, . . . , Zd) ∈ Rd, d ≥ 1 is a set of independent random
variables [2]. The most simple SDE is the case where d = 1 - a SDE having 1 random
variable, which will be the main case in the first part of the thesis.

A (deterministic) solution to the SDE system will be denoted u(t,x,Z). The exact
mean and variance solution are designated with µu and σ2

u respectively (and hereby the
standard deviation is denoted σu). The corresponding estimated mean and variance
solution will have the notation ū and s2

u.
In order to describe the uncertainty in the SDE probability theory is needed. The

uncertainty will be described by the aforementioned random variable Z = Z(z) where
z belongs to the outcome space Ω. E.g. by tossing a coin the outcome space will be
Ω = {head,tail} and hereby the random variable becomes Z belongs to {0, 1}. In this
way the SDE can contain uncertainty on the measured parameters. However, the focus
in this thesis will only be on continuously random variables and not on discrete discrete
variables as in the coin example.

The random variables will follow a certain distribution with a corresponding proba-
bility P (Z = z) which takes values between 0 and 1, where 1 means that the outcome z
will always happen. If the random variable is continuous then P (Z = z) = 0 for z ∈ Ω.

5

6 Chapter 2. Notation and expressions

Instead the probability can be described by the cumulative distribution function (CDF)
which is given by (from [2])

P (Z ≤ a) = FZ(a) =
∫ a

−∞
f(z) dz,

where f(z) is the probability density function (PDF) corresponding to the given distri-
bution and has the condition ∫ ∞

−∞
f(z) dz = 1.

The PDF’s that will be used throughout this thesis are those belonging to the Normal
distribution and to the Uniform distribution. For a random variable Z followingN (µ, σ2)
the PDF is

f(z) = 1√
2πσ2

e−
(z−µ)2

2σ2 ,

and for the random variable following U(a, b) the PDF is

f(z) =
{ 1
b−a , z ∈ [a, b]
0, otherwise

.

Another important property in probability theory that will be used here is the moment
of the continuous random variable. The m’th moment is given by

E[Zm] =
∫ ∞
−∞

zmf(z) dz

for m ∈ N [2]. The first moment m = 1 is the formula for the expected value

µZ = E[Z] =
∫ ∞
−∞

zf(z) dz.

The variance of the random variable Z is defined by

σ2
Z =

∫ ∞
−∞

(z − µZ)2f(z) dz.

Through the thesis the expectation will be determined from a function of a random
variable g(Z) and here the expectation is found by [2] to be

E[g(Z)] =
∫ ∞
−∞

g(z)f(z) dz.

The weighted inner product notation between two functions u(Z) and v(Z) is defined as

〈u, v〉w = E[u(Z)v(Z)] =
∫ ∞
−∞

u(z)v(z)w(z) dz. (2.2)

All these recurrent expressions will be widely used throughout the thesis. With the basic
notation and expressions introduced the mathematical background and some numerical
tools, which makes the basis for the UQ methods, will be explained in the next chapter.
First an introduction to the used programming language Python.

2.1. Programming language: Python 7

2.1 Programming language: Python

All implementations and test will be conducted in the language Python which is a open
source programming language. This is the first time the language is used by the author,
but since Python supports a list of packages which mimic the procedures in Matlab
where the author has great experiences.

Python is language where the user do not need to handling memory management
and the choice of variable types. Therefore the attention remains on programming the
mathematics. The two packages mainly used is NumPy and SciPy. The NumPy package
is for scientific computing and it provides a multidimensional arrays. It includes a
large number of the same functions declared in Matlab. This package makes it a lot
easier to used when coming from Matlab. The SciPy package contains scientific tools
depending on NumPy. For example it contains a time integration solver presented in the
next chapter.

8 Chapter 2. Notation and expressions

Chapter 3

Mathematical background and
numerical tools

Before introducing the specific UQ methods, the mathematical background and the
needed numerical tools have to be stated. A very important ingredient are the orthogonal
polynomials which will be examined first. Afterwards the corresponding quadrature rules
for these polynomials will be introduced. Further on the used time-integration methods
will be explained and finally the generalized Polynomial Chaos expansion is examined.

3.1 Orthogonal Polynomials
To explain orthogonal polynomials, the starting point will be a general polynomial of
degree n given by

Qn(x) = knx
n + kn−1x

n−1 + · · ·+ k1x+ k0 (3.1)

where ki, i = 0, 1, . . . , n are the coefficients. The polynomial can be written into a monic
form which is defined to be the polynomial where the coefficient in front of the leading
term xn equals 1. The polynomial Qn(x) can be rewritten into monic form as

Pn(x) = Qn(x)
kn

= xn + kn−1
kn

xn−1 + · · ·+ k1
kn
x+ k0

kn
.

An orthogonal polynomial is defined as a sequence of polynomials where any pair of
polynomials are orthogonal under some inner product [2]. By using the weighted inner
product (2.2), this can be expressed by

〈Qm, Qn〉w =
∫ ∞
−∞

Qm(x)Qn(x)w(x) dx = γnδmn, m, n ∈ N

where

δmn =
{

0, m 6= n

1, m = n,

9

10 Chapter 3. Mathematical background and numerical tools

known as the Kronecker delta function. The constant γn, called the normalizing constant,
is given by

γn = 〈Qn, Qn〉w.
A sequence of orthogonal polynomials will satisfy a three-term recurrence relation for
x ∈ R. In general the three-term recurrence is on the form

Qn+1(x) = (Anx+Bn)Qn(x)− CnQn−1(x), n = 0, 1, . . . ,

with Q0(x) = 0, Q1(x) = 1 [2]. Further it must be respected that An 6= 0, Cn 6= 0 and
CnAnAn−1 > 0 for all n [2]. In monic form, the three term recurrence is on the following
form (from [5]).

ϕn+1(x) = (x+ an)ϕn(x)− bnϕn−1(x), n = 0, 1, . . . , (3.2)

where
an = 〈xϕn, ϕn〉

〈ϕn, ϕn〉
, bn = 〈ϕn, ϕn〉

〈ϕn−1, ϕn−1〉
The three-term recurrence in monic form is used for the quadrature rule presented later
on.

3.1.1 Examples of orthogonal polynomials

Two types of orthogonal polynomials are the Legendre polynomials and the Hermite
polynomials. These will shortly be presented below.

Legendre polynomials

The Legendre polynomials Ln(x) are defined on the interval x ∈ [−1, 1] and from [2] the
orthogonality relation is

〈Ln, Lm〉w =
∫ 1

−1
Ln(x)Lm(x) dx = 2

2n+ 1δmn,

where the weight is w(x) equals 1. The corresponding three-term recurrence relation is
on the form

Ln+1(x) = 2n+ 1
n+ 1 xLn(x)− n

n+ 1Ln−1(x), n = 1, 2, . . . , (3.3)

where it is defined that L−1(x) = 0 and L0(x) = 1. The implementation of the Legendre
polynomials is shown in appendix B.1.1. Using this the first five Legendre polynomials
are determined to be

L0(x) = 1
L1(x) = x

L2(x) = 3
2x

2 − 1
2

L3(x) = 5
2x

3 − 3
2x

L4(x) = 35
8 x

4 − 30
8 x

2 + 3
8

In figure 3.1 these 5 polynomials are shown.

3.1. Orthogonal Polynomials 11

−1.2 −1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

0

1

x

L
i(
x

)
L0(x)
L1(x)
L2(x)
L3(x)
L4(x)

Figure 3.1: First 5 Legendre polynomial

Hermite polynomials

The other type of orthogonal polynomials that will be used are the Hermite polynomials
Hn(x) which are defined on R. The orthogonal relation is given by

〈Hn, Hm〉w =
∫ ∞
−∞

Hn(x)Hm(x)w(x) dx = n!δmn.

where the weight is w(x) = 1√
2πe
−x2/2 [2]. The three-term recurrence for these polyno-

mials takes the form

Hn+1(x) = xHn(x)− nHn−1(x), n = 0, 1,

where it is defined that H−1(x) = 0 and H0(x) = 1. The implementation of the Hermite
polynomials is shown in appendix B.1.2. The first five Hermite polynomials are then

H0(x) = 1
H1(x) = x

H2(x) = x2 − 1
H3(x) = x3 − 3x
H4(x) = x4 − 6x2 + 3,

and these are shown in figure 3.2 on the interval x ∈ [−3, 3].

12 Chapter 3. Mathematical background and numerical tools

−3 −2 −1 0 1 2 3

−5

0

5

x

H
i(
x

)

H0(x)
H1(x)
H2(x)
H3(x)
H4(x)

Figure 3.2: First 5 Hermite polynomial

3.2 Quadrature rules
An important tool of the UQ methods is the quadrature rule. It is used for approximating
an integral over a given domain and in general the approximation is defined by∫

f(x) dx ≈
n∑
k=1

wkf(xk), (3.4)

where xk is the nodes (or abscissas) and wk is the corresponding weights [5]. There
exist methods to compute these and one of those methods will be presented after some
preliminaries. First the representation of a function will be discussed.

A function f(x) ∈ R can be approximated with a polynomial Q(x) times some known
weight function w(x)

f(x) ≈ w(x)Q(x), (3.5)

from [5]. For the orthogonal polynomials just presented the corresponding weight func-
tions w(x) are known, so these polynomials are possible to use for the approximation of
a continuous function. By applying this on (3.5) the approximation can be written by
(from [5]) ∫

f(x) dx ≈
∫
w(x)Q(x) dx ≈

n∑
k=1

wkQ(xk).

In the following the method used to determine the abscissas xk and weights wk are
presented by a theorem from [5], where the relation between w(x) and wk are also
stated.

3.2. Quadrature rules 13

Theorem 1. The wk and xk can be obtained from the eigenvalue decomposition of the
symmetric, tridiagonal Jacobi matrix

Jn =



a0
√
b1√

b1 a1
√
b2

√
b2

.

. . . an−2
√
bn−1√

bn−1 an−1


where the ai and bi for i = 0, 1, . . . , n − 1 are as in the three-term recurrence in (3.2).
If V TJnV = Λ = diag(λ1, . . . , λn), where V TV = I is the n × n identity matrix, then
xk = λk and wk = v2

k,0
∫∞
−∞w(x) dx, where vk is the kth column of V and vk,0 is the

first component of vk.

In the theorem λk is the kth eigenvalue and vk is the corresponding eigenvector.
Below the theorem is used to determine the abscissas and weights for the Legendre
polynomials and Hermite polynomials, respectively.

Legendre-Gauss quadrature

The starting point for finding the abscissas and weights is in the three-term recurrence
for the Legendre polynomials (3.3)

Ln+1(x) = 2n+ 1
n+ 1 xLn(x)− n

n+ 1Ln−1(x) n > 0. (3.6)

This recurrence is required to be on the three-term recurrence monic form if Theorem 1
can be used. Therefore the coefficient in front of the leading term for Legendre polyno-
mials has to be found. From the 5 first Legendre polynomials listed earlier the leading
coefficients are 1, 1, 3

2 ,
5
2 ,

35
8 which fit with the general leading coefficient (2n)!

2n(n!)2 [5]. By
dividing through with this coefficient in (3.6) the monic form is obtained to be the
following

Ln+1(x)2n+1((n+ 1)!)2

(2(n+ 1))! = 2n+ 1
n+ 1 xLn(x)2n+1((n+ 1)!)2

(2(n+ 1))! − n

n+ 1Ln−1(x)2n+1((n+ 1)!)2

(2(n+ 1))! ⇔

ϕn+1(x) = 2n+ 1
n+ 1 xLn(x)2 · 2n((n+ 1)n!)2

(2n+ 2)! − n

n+ 1Ln−1(x)4 · 2n−1(((n+ 1)n)(n− 1)!)2

(2n+ 2))! ⇔

ϕn+1(x) = 2n+ 1
n+ 1 x

2(n+ 1)2

(2n+ 1)(2n+ 2)Ln(x)2n(n!)2

(2n)!

− n

(n+ 1)
4(n+ 1)2n2

(2n+ 2)(2n+ 1)2n(2n− 1)Ln−1(x)2n−1((n− 1)!)2

(2n− 2)! ⇔

ϕn+1(x) = xϕn(x)− n2

4n2 − 1ϕn−1(x) (3.7)

where
ϕn(x) = 2n(n!)2

(2n)! Ln(x).

14 Chapter 3. Mathematical background and numerical tools

Comparing (3.7) with (3.2) it is seen that an = 0 and bn = n2

4n2−1 and hence Jacobi
matrix are

J =


0

√
1
3√

1
3 0

√
4
15√

4
15 0

√
9
35

.

 .

Hereby the eigenvalue analysis can be conducted and the eigenvectors vk and corre-
sponding eigenvalues λk can be obtained. The quadrature abscissas are directly the
eigenvalues xk = λk while the weights wk are found by weight a function, in this case
w(x) = 1 [5], and hereby it follows that

wk = v2
0,k1

∫ 1

−1
1 dx = v2

0,k[x]1−1 = 2v2
0,k.

All this is implemented in a function which is shown in appendix B.1.3

Hermite-gauss quadrature

Again the starting point is the three-term recurrence

Hn+1(x) = xHn(x)− nHn−1(x) n = 0, 1, 2

The leading coefficient has to be found to get the recurrence on monic form. The 5
Hermite polynomials listed earlier have the leading coefficients 1, 1, 1, 1, 1. This means
that the above recurrence already is on monic form and it is seen directly that an = 0
and bn = n. The Jacobi matrix is hereby

J =


0 1
1 0

√
2√

2 0
√

3
.

 .

The weight function are w(x) = e−x
2/2, which gives the weights

wk = v2
0,k

∫ ∞
−∞

e−x
2/2 dx = v2

0,k
√

2π

where the last step is found in [6]. The implementation in Python is listed in appendix
B.1.4. The next section will deals with polynomial interpolation. Here the used polyno-
mials are the Lagrange polynomials which belongs to the nodal representation where the
presented polynomials belongs to the modal representation [3]. The reason the Lagrange
polynomials are used is the beneficial construction. Since it is possible to transform be-
tween the nodal and modal representation verifying the use of the Lagrange polynomials.

3.3. Polynomial interpolation 15

3.3 Polynomial interpolation
In general interpolation is use to construct a solution in between the solution points u(xi).
The simplest form of interpolating is the linear interpolation which makes straight line
segments between the solution points. To achieve a good result with linear interpolation
a huge number of points often is required.

Another way to interpolate is to use polynomial interpolation. Here the final solution
is the polynomial P (x) where it in the nodes xi is required that P (xi) = u(xi). This can
in the nodal representation be written by

INu(x) =
N∑
i=0

u(xi)hi(x), (3.8)

following [3], where hi(x) is the Lagrange polynomial defined as

hi(x) =
N∏

j=0,j 6=i

x− xj
xi − xj

,

and in the points satisfy
hi(xj) = δij (3.9)

The corresponding modal representation interpolation function is in the same way con-
structed by

INu(x) =
N∑
i=0

ûiΦi(x), (3.10)

where Φi(x) is a model basis polynomial function e.g. Legendre or Hermite polynomials.
The coefficients û(xi), on the interval x ∈ [a, b], are defined by (from [3])

ûi = 1
γi
〈u,Φi〉w = 1

γi

∫ b

a
u(x)Φi(x)w(x) dx

By using the proper quadrature rule on this integral the expression is discretized and
hence an solvable expression for the coefficients are obtained. The interpolation for both
the nodal and modal representation are used to develop the deterministic solver and is
presented next.

3.4 Deterministic Collocation method
In order to solve a SDE, a solver for the spatial part of a system is needed. Here the
spectral Collocation method will be used and will from now on be referred to as the
Deterministic Collocation method because of a later introduction of the UQ method -
the Stochastic Collocation method.

16 Chapter 3. Mathematical background and numerical tools

3.4.1 Construction of the Deterministic Collocation method

As the name indicates the method uses collocation points xi, i = 1, 2, . . . , N . The method
require that the solution in these points has to be exact. The idea behind the method
is that the differentiated parts are determined e.g. by

du

dx
= Du. (3.11)

where u = [u(x1), u(x2), . . . , u(xN)]. To construct the D matrix the so-called Vander-
monde matrix is needed. This matrix arises from the relationship between the nodal
and modal representation. From [3] the relation in the collocation points xi between the
nodal and modal representation can be written by

u(xi) =
N∑
j=0

u(xj)hj(xi) =
N∑
j=0

ûjΦj(xi), i = 0, 1, . . . , N.

From this the relationship can be expressed by

u = V û, (3.12)

where the indexes in V are Vij = Φj(xi). With the relation between the modal and nodal
coefficient the corresponding relationship between the nodal and modal basis polynomials
can also be related by

uTh(x) = ûTΦ(x).

From (3.12) this can be manipulated into the following.

uTh(x) =ûTΦ(x)⇔
(V û)Th(x)=ûTΦ(x)⇔
ûTV Th(x) =ûTΦ(x)⇔
V Th(x) =Φ(x).

This makes it clear that the transformation between the nodal and modal basis is quite
simple in form of the Vandermonde matrix. The goal is to find an operator to approxi-
mate the derivatives in the nodal space. So by taking the first derivative of first of the
modal space it is obtained that

du(x)
dx

= d

dx

 N∑
j=0

ûjΦj(x)

 =
N∑
j=0

ûj
d

dx
Φj(x) = V xû,

where V x is the differentiated Vandermonde matrix. In the same way the first derivative
of the nodal space gives

du(x)
dx

= d

dx

 N∑
j=0

u(xj)hj(x)

 =
N∑
j=0

u(xj)
d

dx
hj(x) = Du,

3.4. Deterministic Collocation method 17

where D is the differentiation matrix. Further manipulation of the above shows that

du

dx
= Du = D(V û) = V xû.

From this the differentiation matrix is obtained to be D = V xV
−1. The question is

how these matrices are constructed in practise. It requires both knowledge of the basis
polynomials Φn(x) and the corresponding derivative basis polynomials Φ′n(x). In this
project the Jacobi polynomials P (α,β)

n (x) are used as basis polynomials, which are defined
on the interval x ∈ [−1, 1], where α and β are parameters. The recurrence for the Jacobi
polynomials are given as

P
(α,β)
0 (x) = 1

P
(α,β)
1 (x) = 1

2(α− β + (α+ β + 2)x)

P
(α,β)
n+1 (x) =

(a(α,β)
n,n + x)P (α,β)

n (x)− a(α,β)
n−1,nP

(α,β)
n−1 (x)

a
(α,β)
n+1,n

,

with the coefficients for n > 0

a
(α,β)
n−1,n = 2(n+ α)(n+ β)

(2n+ α+ β + 1)(2n+ α+ β)

a(α,β)
n,n = α2 − β2

(2n+ α+ β + 2)(2n+ α+ β)

a
(α,β)
n+1,n = 2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2) ,

and a(α,β)
−1,0 = 0 [3]. If the parameters are chosen to be α = β = 0 the Legendre polyno-

mials are constructed. For practical computations it can be useful to use the normalized
Jacobi polynomials P̃ (α,β)

n (x) which from [3] is determined by

P̃ (α,β)
n (x) = γ(α,β)

n P (α,β)
n (x) (3.13)

where the normalizing factor is

γ(α,β)
n = 2α+β+1 (n+ α)!(n+ β)!

n!(2n+ α+ β + 1)(n+ α+ β)! .

The kth derivatives of the normalized Jacobi polynomial, which is important in order to
construct V x, can be described by [3]

dk

dxk
P̃ (α,β)
n (x) = (α+ β + n+ k)!

2k(α+ β + n)!

√√√√γ
(α+k,β+k)
n−k

γ
(α,β)
n

P̃
(α+k,β+k)
n−k (x).

Hereby the first derivative is obtained to be

d

dx
P̃ (α,β)
n (x) = P̃ (α,β)

n (x)′ =
√
n(n+ α+ β + 1)P̃ (α+1,β+1)

n−1 (x). (3.14)

18 Chapter 3. Mathematical background and numerical tools

The Vandermonde matrix and the differentiated Vandermonde matrix can now be con-
structed from (3.13) and (3.14).

V =


P̃

(α,β)
0 (x0) P̃

(α,β)
1 (x0) . . . P̃

(α,β)
N (x0)

P̃
(α,β)
0 (x1) P̃

(α,β)
1 (x1)′ . . . P̃

(α,β)
N (x1)

...
...

P̃
(α,β)
0 (xN) P̃

(α,β)
1 (xN) . . . P̃

(α,β)
N (xN)



V x =


P̃

(α,β)
0 (x0)′ P̃

(α,β)
1 (x0)′ . . . P̃

(α,β)
N (x0)′

P̃
(α,β)
0 (x1)′ P̃

(α,β)
1 (x1)′ . . . P̃

(α,β)
N (x1)′

...
...

P̃
(α,β)
0 (xN)′ P̃

(α,β)
1 (xN)′ . . . P̃

(α,β)
N (xN)′

 .

From these two matrices the differentiation matrix D are determined and used to ap-
proximate the derivatives in the given differential equation.

The collocation points xi, i = 0, 1, . . . , N are found by the corresponding Jacobi-
gauss quadrature. This is done by the same procedure as described in section 3.2. These
collocation points are called Gauss-Lobatto nodes if the boundary points (−1 and 1)
are included and the interior points are found by Jacobi-Gauss quadrature. The exact
procedure for this quadrature and the Gauss-Lobatto nodes can be found in [3]. All the
functions used for the Deterministic Collocation method are listed in appendix B.1.5.

3.5 Time-integration solver
In the many SDE or PDE there exist a time-dependent term and a time stepping solver
is therefore needed. Throughout this project the Python function odeint will be used.
The background for this solver will shortly be presented in this section.

The function odeint uses the so-called LSODE (Livermore Solver for Ordinary Dif-
ferential Equations) and exists from the FORTRAN ODE solver pack ODEPACK [7]. LSODE
can solve both stiff and non-stiff ODE systems on the general from

∂u(x, t)
∂t

= L(u).

The solver uses both Adams-Moulton (AM) method and the Backward Differentiation
Formula (BDF) method in a combination [7]. This combination can both take form as
an implicit and explicit solver. To find the solution in each step an iterative predictor-
corrector method is used, where the explicit form is used to the predictor step and the
implicit form is used to the corrector step [7]. The implicit form is in general faster and
more precise compared with the explicit method, since the implicit form can use larger
time steps because of the larger stability area. However, if for the same time step the
explicit solver is faster due to less complexity.

3.6. Generalized Polynomial Chaos 19

The LSODE method will handle the time stepping size which makes it easy to use.
It only requires a right hand side as a function, the initial condition, the times for the
desired solutions and finally the parameters. More information about the solver can be
found in [7].

3.6 Generalized Polynomial Chaos
The original Polynomial Chaos (PC) formulation was proposed by Wiener [8]. He sug-
gested that Hermite polynomials can be used to represent a Gaussian random variable
in a stochastic process. The generalized Polynomials Chaos (gPC) is an extension to
this where other orthogonal polynomials are used to represent random variables with
different distributions. In table 3.1 the distributions of the random variable and the
corresponding optimal orthogonal polynomials are shown.

It is also possible to use e.g. Hermite polynomials to represent a random variable
with a uniform distribution as shown in [2]. This choice of representation leads to a
slower convergence and higher orders of the orthogonal polynomials is needed to obtain
the same precision compared to using the optimal polynomial.

Distribution of Z gPC basis polynomials support
Gaussian Hermite [−∞,∞]
Gamma Laguerre [0,∞]
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Table 3.1: Relation between the gPC and the continuous distribution of the random variable Z

For one dimension (d = 1) the random variable Z can be represented in the proba-
bility space (Ω,F , P) (where Ω is the sample space, F a σ-algebra of subsets of Ω and
P is the probability measure [2]) by (from [8])

Z =
∞∑
i=0

ciΦi(Z),

where ci is the coefficient which in general is given by

ci = 1
γi
E[ZΦi(Z)]

and Φi(Z) is the orthogonal polynomial basis is chosen from the distribution of Z [2].
As a small example on how the representation is used the following simple equation will
be rewritten

du(t, Z)
dt

= α(Z)u(t, Z). (3.15)

Since the solution u(t, Z) is affected by the uncertainty of the variable α(Z) (assume that
α(Z) follows a normal distribution) a gPC expansion can be produced on the u(t, Z) by

20 Chapter 3. Mathematical background and numerical tools

using the Hermite polynomials Hi(Z) by

u(t, Z) =
m∑
i=0

ui(t)Hi(Z).

Here the summation is truncated to the desired number of polynomial orders m. In the
same way α(Z) can be represented by a gPC expansion and (3.15) becomes

m∑
i=0

duiHi(Z)
dt

=
m∑
i=0

aiHi(Z)
m∑
i=0

ui(t)Hi(Z).

From this the methods used in this project takes different approaches to obtain the
desired solution. Next the multi dimensional gPC shortly will be presented.

3.6.1 Multi dimensional gPC

Here it is assumed that the system contains more than 1 random variable (d > 1)
meaning that the gPC expansion gets more complex. However, it will have the same
type of representation

u(t,x,Z) =
∑
|i|≤M

ui(x, t)Ψi(Z). (3.16)

where the i is a multi-index which is defined to be i = (i1, i2, . . . , id) ∈ Nd where
|i| = i1 + i2 + · · · + id. In table 3.2 this is illustrated up to d = 3. In equation (3.16)

|i| Multi-index i Single index
0 (0, 0, 0, 0) 1
1 (1, 0, 0, 0) 2

(0, 1, 0, 0) 3
(0, 0, 1, 0) 4
(0, 0, 0, 1) 5

2 (2, 0, 0, 0) 6
(1, 1, 0, 0) 7
(1, 0, 1, 0) 8
(1, 0, 0, 1) 9
(0, 2, 0, 0) 10
(0, 1, 1, 0) 11
(0, 1, 0, 1) 12
(0, 0, 2, 0) 13
(0, 0, 1, 1) 14
(0, 0, 0, 2) 15

Table 3.2: Multi-index i for d = 3

Ψi(Z) is a collection of the orthogonal polynomials which from [2] is given by

Ψi(Z) = Φi1(Z1)Φi2(Z2) · · ·Φid(Zd), 0 ≤ |i| ≤M,

3.6. Generalized Polynomial Chaos 21

and in the same way for the deterministic coefficient

ui = ui1ui2 · · ·uid , 0 ≤ |i| ≤M.

So through preliminary work by setting up Ψi and ui the representation can be pro-
ceeded in a similar way.

This chapter have presented some numerical tools in form of orthogonal polynomials
and quadrature rules which plays an essential role for the UQ method. Also both a
method to solve deterministic systems have been established and the used time step
integrator is also introduced. Lastly the gPC, a tool for representing the uncertain
variables, is presented and the reader has sufficient background to move on with the UQ
methods.

22 Chapter 3. Mathematical background and numerical tools

Chapter 4

Uncertainty Quatification
methods

Different UQ methods are developed to solve SDE. These methods can be divided into
Non-intrusive methods and Intrusive methods and the most common of these will be in
presented here. The simplest and most intuitive is the Monte Carlo Method which is
presented first. Afterwards the Stochastic Collocation Method (SCM) and the Stochastic
Galerkin Method (SGM) in general will be presented.

4.1 Non-intrusive methods
The Non-intrusive methods are defined as methods that rely on a set of deterministic
solutions to determine the statistical parameters for the SDE. In this thesis two Non-
intrusive methods will be used - The Monte Carlo Method and the SCM.

4.1.1 Monte Carlo Method

As mentioned before the Monte Carlo Method is the simplest and most intuitive method
to solve a SDE. The method relies mi random samples fitting the random variables Z =
Z

(j)
i , i = 1, . . . , d and j = 1, . . . ,mi. For the Monte Carlo method all random variables

have the same representation number M = m1 = m2 = · · · = md since each single
outcome is a random draw from each distribution. For each sample a solution u(x, t,Z(j))
is obtained by a deterministic solver where k = 1, 2, . . . ,M . For the M solutions an
estimate of the mean solution ū(x, t) and the variance s2

u(x, t) can be computed by

ū(x, t) = 1
M

M∑
k=1

u(x, t,Z(k)). (4.1)

where k is a single index running through all combinations of the nodes in the random
space similar to the single index in table 3.2. When the estimated mean is determined

23

24 Chapter 4. Uncertainty Quatification methods

the estimate of the variance follows by

s2
u(x, t) = 1

M

M∑
k=1

(u(x, t,Z(j))2 − ū2. (4.2)

To make it more clear how it in practise is executed assume a SDE is containing d = 2
random variables, Z1 and Z2. For the distributions belonging to these random variables
a single random outcome, denoted z1 and z2, is drawn. By including these two numbers
into the differential equation a deterministic solution can be found. This procedure is
performed M times and hereafter the statistics can be determined.

As described in [2] this method is very inefficient. In fact the convergence rate is
O(M−1/2) which mean that an increase of the precision of one digit will lead to 100
times more calculations. Later this will be illustrated.

4.1.2 Stochastic Collocation Method

Another Non-intrusive method is the Stochastic Collocation Method (SCM). Overall the
method can be characterized as a clever Monte Carlo method where the random space is
represented with much fewer points, with corresponding weights, which finally are used
to determine the estimated mean and variance solution.

The name ’Collocation’ refers to the collocation points z(j)
i , j = 1, 2, . . . ,mi. In this

part the notation Z(k) will refer to the set of prescribed nodes in the random space of
dimension d containing M nodes. In between the collocation points the solution will be
interpolated. The interpolation function I(u)(Z) is then required to find a polynomial
approximation such that the solution in the collocation points is exact. I(u)(Z) is
from [9] defined by

I(u)(Z) =
M∑
k=1

u(Z(k))hj(Z)

where hj(Z) is the Lagrange polynomial which in the collocation points is given by

hk(Z(l)) = δkl, 1 ≤ l, k ≤M. (4.3)

To require that the solution is exact in the collocation points means that [9]

M∑
k=1

ut(x, t,Z(k))hk(Z(l))− L
(M∑
k=0

u(Z(k))hk(Z(l))
)

= 0, l = 1, 2, . . . ,M. (4.4)

Hereby the system (2.1) by using (4.3) and [9] can be written into the following system

ut(x, t, Z(k)) = L(u), S × (0, T]× R
B(u) = 0, ∂S × [0, T]× R

u(x, 0, Z(k)) = u0, S × R.

4.2. Intrusive methods 25

For each k a deterministic solution is obtained u(Z(k)) = u(x, t, Z(k)). To compute the
mean from these solution the following is used

E[I(u(Z))] =
M∑
k=1

u(Z(k)))
∫

Γ
hj(Z)ρ(Z) dz,

where Γ is the random space and ρ(Z) is the pdf of the random variable Z. The integral
can be approximated by the quadrature rule with the abscissa yi and corresponding
weights wi. E.g. if Z (for d = 1) is uniformly distributed then the Legendre-Gauss
quadrature rule is used and if it follows a normal distributed the Hermite-gauss quadra-
ture rule is used. Hereby the estimated expectation E[I(u(Z))] = ū(x, t) is

ū(x, t) =
M∑
k=1

u(Z(k))
M∑
l=1

hk(yl)ρ(yl)wl

These points found by the quadrature rule can also be used as the collocation points to
represent the random space hence Z(k) = yk, k = 1, 2, . . . ,M . By using that hk(yl) = δkl
the above can be reduced to

ū(x, t) =
M∑
k=1

u(Z(k))ρ(Z(k))wk. (4.5)

The estimated variance can from the estimated mean also be found by

s2
u(t,x) =

M∑
k=1

(
u(Z(k))− ū

)2
wkρ(Z(k))). (4.6)

This will be applied when solving different types of differential equations.

4.2 Intrusive methods
Another way of solving SDE is the so-called Intrusive methods. An intrusive method-
ology incorporates stochastic information directly into the governing differential equa-
tion [10]. The intrusive method that will be presented here is the Stochastic Galerkin
Method (SGM).

4.2.1 Stochastic Galerkin Method

The review of this method will for simplicity be done for 1 random variable (d = 1). The
SGM uses the gPC expansion on the solution u(x, t, Z) and at the random parameters
and apply the expansion onto the given SDE.

Again the starting point is the SDE given in (2.1) where the gPC expansion,

u(x, t, Z) =
M∑
k=0

uk(x, t)Φk(Z),

26 Chapter 4. Uncertainty Quatification methods

is performed. In this expansion there are M + 1 terms. Including the multi dimensional
case the total number of terms M + 1 depends on the dimension MZ of the multivariate
random parameter Z and the highest order MΦ of the set of polynomials in Ψi [8]. In
this reference the total number is stated to be

M + 1 = (MZ +MΦ)!
MZ !MΦ! (4.7)

The choices of the orthogonal polynomials depend on how the random variable is dis-
tributed as mentioned earlier. By imposing gPC expansion into the differentiation equa-
tion (first line) (2.1) the following is obtained.

M∑
k=0

∂uk
∂t

(x, k)Φk(Z) = L
(

M∑
k=0

uk(x, t)Φk(Z)
)

In this equation the so-called Galerkin projection is conducted. A Galerkin projection
implies to successively take the inner product of the differential equation above with
orthogonal polynomials Φk(Z), k = 0, 1, . . .M [8]. This can be written as〈

M∑
k=0

∂uk
∂t

(x, t)Φk(Z),Φl(Z)
〉

=
〈
L
(

M∑
k=0

uk(x, t)Φk(Z)
)
,Φl(Z)

〉
, l = 0, 1, . . . ,M.

By exploiting the orthogonality it ends up with a system having M + 1 deterministic
coupled equations, which can be solved with an appropriate numerical solver.

The statistics of the M + 1 solutions from the system above are found by [8]

ū(x, t) = u0(x, t) (4.8)

s2
u(x, t) =

M∑
k=1

〈
Φ2
k(Z)

〉
u2
k(x, t) (4.9)

This ends the chapter of the widely used UQ methods. The Monte Carlo method is
included in order to have a great reference. The method is very inefficient but on the
other hand very intuitive and easier to implement compared with the other methods.
Therefore it can be use to give indication of solutions.

The two other methods are expected to have spectral (exponential) convergence
meaning that a high precision can be obtained by relatively few discretisation points.
The SCM is based on the deterministic solver also making the method relatively easy
to implement while the implementation difficulty of the SGM depends on how complex
the SDE is. Hence SCM and SGM will be preferable for different systems.

Chapter 5

Establishment of differential
equations

To explain and understand UQ different problems in terms of stochastic Ordinary Dif-
ferential Equation (ODE) and stochastic Partial Differential Equations (PDE) will be
establish. This chapter will present the differential equations which will be solved later
by the different UQ methods. First a simple stochastic ODE is presented and the exact
expectations and variances are derived for different distributions on both the parameter
and on the boundary condition.

5.1 The Test equation
The differential equation that will be established first is the so-called Test equation which
is given by

du(t)
dt

= λu(t), u(0) = k, t ≥ 0, (5.1)

where λ is a parameter and k is the Initial Condition(IC). This is a deterministic sys-
tem and does not contain any random variable. (5.1) can be written in the following
stochastic system

du(t,Z)
dt

= α(Z1)u(t, Z), u(0,Z) = β(Z2), t ≥ 0, (5.2)

where α(Z1) is distributed with some distribution F1 and β(Z2) is distributed with some
distribution F2. The exact solution to this ODE can be determined analytically. This
is done by using separation of variables by (using u as integration variable)

du

dt
= α(Z1)u⇔ 1

u
du = α(Z1) dt.

Then integrate on both sides gives∫ u(t,Z)

u(0,Z)

1
u
du = −α(Z1)

∫ t

0
1 dt⇔ [ln(u)]u(t,Z)

u(0,Z) = α(Z1)t

27

28 Chapter 5. Establishment of differential equations

and the exact solution is then obtained to be

ln(u(t,Z))− ln(u(0,Z)) = α(Z1)t

ln
(
u(t,Z)
u(0,Z)

)
= α(Z1)t

u(t,Z)
u(0,Z) = eα(Z1)t

u(t,Z) = u(0,Z)eα(Z1)t.

By insertion of the boundary condition the exact solution is

u(t,Z) = β(Z2)eα(Z1)t.

5.1.1 Statistical parameters for the Normal distribution

The statistical parameters are advantageous to know in order to investigate the cor-
rectness of the used UQ method but also to compare the different methods. These
parameters (the exact expectation E[u] = µu and the exact variance Var[u] = σ2

u) will
here be determined analytically for different cases

Case 1: α(Z1) ∼ N (µ1, σ
2
1) and β(Z2) = k

In this first case the parameter α(Z1) follows a normal distribution and the IC β(Z2) is
kept constant at k ∈ R. The outcome will be denoted ω. Recall that the expectation of
a function is determined by

E[g(X)] =
∫ ∞
−∞

g(x)fX(x) dx. (5.3)

Since u(t,Z) = β(Z2)eα(Z1)t then E[u] = E[β]E[eαt], if it is assumed that α(Z1) and
β(Z2) are independent. The hard part is to compute E[eαt] as it contains the uncertainty.
It is done below.

E[eαt] =
∫ ∞
−∞

eωt
1√

2πσ2
1

e
− (ω−µ1)2

2σ2
1 dω

= 1√
2πσ2

1

∫ ∞
−∞

eωte
− (ω−µ1)2

2σ2
1 dω

= 1√
2πσ2

1

∫ ∞
−∞

e
ωt− (ω−µ1)2

2σ2
1 dω. (5.4)

5.1. The Test equation 29

The exponent in the exponential function can be manipulated further

ωt− (ω − µ1)2

2σ2
1

= ωt− 1
2σ2

1
(ω2 + µ2

1 − 2ωµ1)

= − 1
2σ2

1
(ω2 + µ2

1 − 2ωµ1 − 2σ2
1ωt)

= − 1
2σ2

1
(ω2 + µ2

1 − 2ω(µ1 + σ2
1t)). (5.5)

By the calculations in (5.6) a connection to (5.5) is seen.

(ω − (µ1 + σ2
1t))2 = ω2 + (µ1 + ω2t)2 − 2ω(µ1 + σ2

1t)
= ω2 + µ2

1 + σ4
1t

2 + 2µ1σ
2
1t− 2ω(µ1 + σ2

1t)
= ω2 + µ2

1 − 2ω(µ1 + σ2
1t) + σ4

1t
2 + 2µ1σ

2
1t. (5.6)

The first 3 terms in (5.6) is the same as the parentheses in (5.5). Therefore (5.5) can be
expressed through

− 1
2σ2

1
(ω2 + µ2

1 − 2ω(µ1 + σ2
1t)) = − 1

2σ2
1

((ω − (µ1 + σ2
1t))2 − σ4

1t
2 − 2µ1σ

2
1t)

= − 1
2σ2

1
(ω − (µ1 + σ2

1t))2 + 1
2σ

2
1t

2 + µ1t.

This can be inserted into (5.4) and further manipulated to

1√
2πσ2

1

∫ ∞
−∞

e
− 1

2σ2
1

(ω−(µ1+σ2
1t))2+ 1

2σ
2
1t

2+µ1t
dω

= 1√
2πσ2

1

∫ ∞
−∞

e
− 1

2σ2
1

(ω−(µ1+σ2
1t))2

e
1
2 (σ2

1t
2+2µ1t) dω

= e
1
2 (σ2

1t
2+2µ1t)

∫ ∞
−∞

1√
2πσ2

1

e
− 1

2σ2
1

(ω−(µ1+σ2
1t))2

dω.

The terms inside the integration sign will integrate to 1 because it is the density function
for N (µ1 + σ2

1t, σ
2
1). Therefore it ends up with

E[eαt] = e
1
2 (σ2

1t
2+2µ1t).

Since E[β] = b the final exact expectation for u(t,Z) is

µu = E[u] = E[β]E[eαt] = ke
1
2 (σ2

1t
2+2µ1t). (5.7)

The variance is calculated from the mean in general by

σ2
X = Var(X) = E[X2]− (E[X])2, (5.8)

30 Chapter 5. Establishment of differential equations

and E[X2] can be calculated by

E[g(X)2] =
∫ ∞
−∞

g(x)2fX(x) dx.

Translating this into this case the following is obtained to be

E[u2] = E[β2]E[(eαt)2] = k2
∫ ∞
−∞

eω2t 1√
2πσ2

1

e
(ω−µ1)2

2σ2
1 dω.

The integral is almost the same as the integral in (5.4). The only difference is the 2t
instead of the t in the first exponential function. Therefore the solution for E[eαt] can
be used and by substitute t with 2t the following is achieved

E[eα(Z)2t] = e
1
2 (σ2

1(2t)2+2µ12t)

= e
1
2 (σ2

14t2+4µ1t)

= e2σ2
1t

2+2µ1t.

The second term in (5.8) is calculated by

(E[u])2 = (ke
1
2 (σ2

1t
2+2µ1t))2 = k2e(σ2

1t
2+2µ1t).

Therefore the final expression for the exact variance for the Test equation where α(Z) ∼
N (µ1, σ

2
1) is

σ2
u = k2e2σ2

1t
2+2µ1t − k2eσ

2
1t

2+2µ1t

= k2(e2σ2
1t

2+2µ1t − eσ2
1t

2+2µ1t). (5.9)

Case 2: α(Z1) = k and β(Z2) ∼ N (µ2, σ
2
2)

In this case it is the IC β(Z2) which follows a normal distribution and α(Z2) is kept
constant. Again the exact expectation µu and the exact variance σ2

u should be calculated.
The µu is determined by

µu = E[u] = E[β]E[ekt],

where E[ekt] = ekt since α(Z1) is a constant. The other expectation E[β] = µ2 because
this is how β(Z2) is defined. Therefore the final expectation where β(Z2) follows a
normal distribution is given by

µu = E[u] = µ2e
kt.

5.1. The Test equation 31

The exact variance for this case σ2
u can again be calculated by (5.8). The two terms is

given by

(E[u])2 = µ2
2e

2kt,

E[u2] =
∫ ∞
−∞

ω2e2kt 1√
2πσ2

2

e
− (ω−µ2)2

2σ2
2 dω

= e2kt√
2πσ2

2

∫ ∞
−∞

ω2e
− (ω−µ2)2

2σ2
2 dω.

The last integral have to be manipulated in order to obtain a useful expression. This is
done by first creating a variable transformation by $ = ω − µ2. Since d$

dω = dω+µ2
dω = 1

then dω = d$. The above can hereby be rewritten to

E[u2] = e2kt√
2πσ2

2

∫ ∞
−∞

($ + µ2)2e
− ($+µ2−µ2)2

2σ2
2 d$

= e2kt√
2πσ2

2

∫ ∞
−∞

($2 + µ2
2 + 2$µ2)e

− $2
2σ2

2 d$.

This can be divided into 3 integrals

E[u2] = e2kt√
2πσ2

2

(∫ ∞
−∞

$2e
− $2

2σ2
2 d$ +

∫ ∞
−∞

µ2
2e
− $2

2σ2
2 d$ +

∫ ∞
−∞

2$µ2e
− $2

2σ2
2 d$

)
.

By substituting back in the last integral it is obtained that

∫ ∞
−∞

2$µ2e
− $2

2σ2
2 d$ = 2µ2

∫ ∞
−∞

(ω − µ2)e
− (ω−µ2)2

2σ2
2 dω

= 2µ2

∫ ∞
−∞

(ωe
− (ω−µ2)2

2σ2
2 dω − µ2

∫ ∞
−∞

e
− (ω−µ2)2

2σ2
2 dω


= 2µ2

(
µ2

√
2σ2

2π − µ2

√
2σ2

2π

)
= 0.

32 Chapter 5. Establishment of differential equations

The last step is done by an integral reference from [6]. The two remaining integrals can
also by a manipulated from [6] to

E[u2] = e2kt√
2πσ2

2

(∫ ∞
−∞

$2e
− $2

2σ2
2 d$ +

∫ ∞
−∞

µ2
2e
− $2

2σ2
2 d$

)

= e2kt√
2πσ2

2

(1
2

√
π(2σ2

2)3 + µ2
2

√
2πσ2

2

)

= e2kt√
2πσ2

2

(1
22 σ2

2

√
2πσ2

2 + µ2
2

√
2πσ2

2

)

= e2kt
(
σ2

2 + µ2
2

)
.

Hereby the exact variance solution is found to be

σ2
u = E[u2]− (E[u])2 = e2kt

(
σ2

2 + µ2
2

)
− µ2

2e
2kt = e2ktσ2

2.

Case 3: α(Z1) = N (µ1, σ
2
1) and β(Z2) ∼ N (µ2, σ

2
2)

In this case both α(Z1) and β(Z2) are normal distributed. The exact expectation µu is
again calculated by

µαβ = E[u] = E[β]E[eαt].

From earlier the two expectation terms in the expression above is found to be

E[β] = µ2

E[eαt] = e
1
2 (σ2

1t
2+µ1t), (5.10)

which gives the exact expectation as

µu = µ2e
1
2 (σ2

1t
2+µ1t).

The exact variance σ2
u is similar to earlier found by

σ2
αβ = E[u2]− (E[u])2 = E[β2]E[(eαt)2]− (E[β])2(E[eαt])2.

All these 4 expectations have been derived earlier to be

E[β2] = µ2
2 + σ2

2,

E[(eαt)2] = e2σ2
1t

2+2µ1t,

(E[β])2 = µ2
2,

(E[eαt])2 = eσ
2
1t

2+2µ1t,

and by insertion
σ2
u = (µ2

2 + σ2
2)e2σ2

1t
2+2µ1t − µ2

2e
σ2

1t
2+2µ1t.

5.1. The Test equation 33

5.1.2 Statistical parameters for the Uniform distribution

The random variables could also be distributed by the Uniform distribution U [a, b]. If so
the expectation and variance for the Test equations will take another expression which
will be determined analytical in this section.

Case 1: α(Z1) ∼ U(a1, b1) and β(Z2) = k

The parameter α(Z1) will now follow a Uniform distribution on a interval [a1, b1] while
the IC is a constant k. By (5.3) the expectation for E[eαt] in this case can be expressed
by

E[eαt] =
∫ b1

a1
eωt

1
b1 − a1

dω

= 1
b1 − a1

∫ b1

a1
eωt dω

= 1
b1 − a1

[1
t
eω
]b1

a1

= 1
t(b1 − a1)(eb1t − ea1t).

So the final expression for the expectation is

µu = E[u] = k

t(b1 − a1)(eb1t − ea1t). (5.11)

Again the variance is derived by (5.8) where the terms are

E[u2] = E[(keαt)2] = k2
∫ b1

a1
(eωt)2 1

b1 − a1
dω = k2

2t(b1 − a1)(eb12t − ea12t),

(E[u])2 =
(

k

t(b1 − a1)(eb1t − ea1t)
)2

= k2

(t(b1 − a1))2 (eb1t − ea1t)2.

By this the exact variance is

σ2
α = E[u2]−(E[u])2 = k2

(1
2t(b1 − a1)(eb12t−ea12t)− 1

(t(b1 − a1))2 (eb1t−ea1t)2
)
. (5.12)

Other cases where the exact mean and variance solution are determined analytically for
the random variable(s) following the Uniform distribution can be found in appendix A.

Now the exact solutions for different cases are found and can be used to investigate
the convergence of the different UQ methods, but also to compare the estimated mean
and variance solutions between the UQ methods.

34 Chapter 5. Establishment of differential equations

5.2 The Burger’s equation
A bit more complicated differential equation is the Burger’s equation, because it has a
spatial dimension and contains a non-linear term. The deterministic Burger’s equation
with specified boundary condition and initial conditions for x ∈ [−1, 1] and t ≥ 0 is
given by

∂u(x, t)
∂t

+ u(x, t)∂u(x, t)
∂x

= ν
∂2u(x, t)
∂x2 ,

u(−1, t) = 1,
u(1, t) = −1,
u(x, 0) = −x,

where ν is the viscosity [2]. The deterministic equation with ν = 0.05 can be solved by
using the Deterministic Collocation method explained in section 3.4. An exact analytic
mean solution for the Burger’s equation is not known here, so the solution of the deter-
ministic system will give an indication of what can be expected of the mean solution.
The implementation to solve the deterministic Burger’s equation can be seen in appendix
B.1.6. The solution for different times t are shown in figure 5.1.

From the figure it is seen that over time the solution goes against a steady state
solution that seems to be reached at t = 20. However, this steady state point is not
constant and depend on the input parameters to the system.

The stochastic Burger’s equation that will be solved by the UQ methods is the system
where some uncertainty is the following equation.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

u
(t
,x

)

u(x, 0)
u(x, 5)
u(x, 10)
u(x, 15)
u(x, 20)

Figure 5.1: Deterministic solution for the Burger’s equation with initial condition u(x, 0) = −x to
different times t

5.2. The Burger’s equation 35

∂u(x, t,Z)
∂t

+ u(x, t,Z)∂u(x, t,Z)
∂x

= ν(Z3)∂
2u(x, t,Z)
∂x2 ,

u(−1, t,Z) = 1 + δ1(Z1),
u(1, t,Z) = −1 + δ2(Z2), (5.13)
u(x, 0,Z) = −x.

Here there are added uncertainty on both boundary conditions with δ1(Z1) and δ2(Z2)
which each follows a given distribution. It is also possible that the parameter ν(Z3)
contains uncertainty. The main test case in the first test section will be where uncertainty
only is on the left boundary. This ends the establishment of the test problems in this
thesis which the different UQ method must solve. The stochastic Test equation will
mainly be used to validate the UQ methods as the analytical mean and variance solutions
know are known. The stochastic Burger’s equation will on the other hand be used to
challenge the methods on dimensions and efficiency. The next chapter will test the
methods with the two problems for d = 1.

36 Chapter 5. Establishment of differential equations

Chapter 6

Test of Uncertainty
Quantification methods

The different methods presented earlier in chapter 4 will know be tested, evaluated and
discussed on the relative simple SDE’s presented in chapter 5. First the Monte Carlo
method is tested on the Stochastic Test equation with a random variable which follows
different distributions.

6.1 Stochastic Test equations - Monte Carlo method
The Stochastic Test equation (5.2) with the parameter α(Z) ∼ N (0, 1) and with the
boundary condition β = 1 will be the first test example for the Monte Carlo method.
From (5.7) and (5.9) an exact expression for the mean and variance solution are given
which will be used for comparison and to determine the error of the Monte Carlo method.

In the implementation of the method α(Z) is created as an N × 1 vector consisting
of N random numbers from the distribution N (0, 1). These random numbers are given
to the time-integrator function odeint together with the initial condition u(0, Z) = 1,
the time domain t = [0, 1] with time step ∆t = 0.01 and the right hand side formulated
as a function by
def rhs(u,t ,a):

u = a∗u
return u

odeint’s output is the solution u(t, Z) to each time t and for each random variable α(Z).
An estimate of the mean and variance solution can then be solved from all the samples
by (4.1) and (4.2), respectively. The entire implementation of this test case is shown in
appendix B.2.1

In figure 6.1 the mean ū(t) and variance s2
u(t) solution for M = 100 and M = 1000

samples are shown together with the exact mean µu(t) and variance σ2
u(t) solution.

37

38 Chapter 6. Test of Uncertainty Quantification methods

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

t

Mean for M = 100

ū(t)
µu(t)

0 0.2 0.4 0.6 0.8 1
0

2

4

t

Variance for M = 100

s2
u(t)
σ2
u(t)

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

t

Mean for M = 1000

ū(t)
µu(t)

0 0.2 0.4 0.6 0.8 1
0

2

4

t

Variance for M = 1000

s2
u(t)
σ2
u(t)

Figure 6.1: Estimated mean and variance for M = 100 and M = 1000.

As expected the increase of M gives a better precision of the estimated mean and vari-
ance. It should be mentioned that if these plots were produced again they could have
given a different result that varies from what is seen and it it possible to get a relatively
precise result for a low M . However, the chance to obtain a result with high preci-
sion is much larger for increasing M . The reason for this is the random draw from the
distribution which makes the solution a bit fluctuating.

A more illustrative way to show the estimated mean and standard deviation solution
in the same figure where the standard deviation is added and subtracted from the mean
solution. In this way it is easier to compare the two solutions point wise. For M = 1000
this is produced and illustrated in figure 6.2 for the same problem just solved.

Figure 6.2 illustrates that uncertainty grows as the time goes on, but that should
also be the outcome since the variance shown in figure 6.1 also grows over time. This
also makes good sense because a small error in the beginning will affect the result in the
following time steps and therefore the increase in uncertainty over time.

6.1. Stochastic Test equations - Monte Carlo method 39

0 0.2 0.4 0.6 0.8 1

0

1

2

3

t

ū(t)
µu(t)
± std

Figure 6.2: Estimated mean for M = 1000 with the corresponding standard deviation for α(Z) ∼
N (0, 1).

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

t

ū(t)
µu(t)
± std

Figure 6.3: Estimated mean for M = 1000 with the standard deviation for α(Z) ∼ U(−1, 1).

Now α(Z) is given another distribution - the uniform distribution U(−1, 1) while all
other parameters are kept the same. For this case the exact mean solution µu(t) (5.11)
is known and is used to the comparison. The implementation is very similar and can be
seen in appendix B.2.1.

Figure 6.3 shows the solutions and the difference is not that big compared with α(Z)
following a normal distribution but there seems to be a kind of scaling factor difference

40 Chapter 6. Test of Uncertainty Quantification methods

between the two solutions. The mean solution does not increase that much where α(Z)
following the uniform distribution and the standard deviation area are also smaller. The
estimated mean solution is close to the exact mean solution but that was also expected
for M = 1000. However, the comparison of the solutions in figure 6.2 and 6.3 should
not be too concluding, since it is hard to compare if a normal and uniform distribution
are similar. On the other hand the two figures illustrates the affect another distribution
has.

Lastly an investigation of the convergence rate of the Monte Carlo method solv-
ing the stochastic Test equation. As mentioned earlier it is expected that the method
have a convergence rate on O(M−1/2) where M is the number of simulations. The
convergence test will produce for α(Z) ∼ N (0, 1) and with the number of simulations
M ∈ [100, 500000]. All other parameters are the same as in the first example. The error
for M simulations is calculated by

EM = max
t

(|µuM (t)− ūM (t)|). (6.1)

The implementation of the convergence test is listed in appendix B.2.1.
The convergence rate in figure 6.4 is first of all seen to follow the expected rate (the

blue line) roughly. However, the precision does not follow the line perfectly and varies
a lot. For one of the biggest M the error could be of size 10−4 but for M + 1, just a
number larger, the error could be of size 10−2. This is a quite big variation that occurs
by the random selection from the distribution. However, the trend in figure 6.4 is that
for increasing M the error will decrease.

102 103 104 105 106

10−4

10−3

10−2

10−1

M

E
M

O(M−1/2)
Error

Figure 6.4: Convergence for the Monte Carlo method with α(Z) ∼ N (0, 1).

6.2. Stochastic Test equations - Stochastic Collocation Method 41

6.2 Stochastic Test equations - Stochastic Collocation Method
More efficient method is needed, since the Monte Carlo method was illustrated to be
very inefficient, so now the Stochastic Collocation Method (SCM) is tried out on the
stochastic Test equation.

Again the parameter α(Z) is chosen to follow the standard normal distribution
N (0, 1), so it is the exact same problem, as solved by the Monte Carlo method. The
implementation is very similar as the implementation of the Monte Carlo method. The
only difference is how the random variable α(Z) is represented and how the expecta-
tion and the variance solution are calculated. α(Z) is represented by M values from
the Hermite-Gauss quadrature, since α(Z) is normal distributed. From the quadrature
the abscissas z and weights w are returned for the standard normal distribution. The
abscissas must therefore be transformed to actual distribution of α(Z) ∼ N (µ, σ2) by

α = µ+ σz.

In this case where µ = 0 and σ = 1 it doesn’t change the abscissas. For each element in
α(Z(j)), j = 1, 2, . . . ,M a deterministic solution u(t, α(Z(j)) are solved by the Determin-
istic Collocation method and odeint. Hence the estimated mean and variance solution
can be found by (4.5) and (4.6) which can be compared with the analytical solutions
(5.7) and (5.9). The implementation is listed in appendix B.2.1.

In figure 6.5 the result are shown for M = 5 nodes representing the random variable.
To the left the 5 deterministic solutions are shown and on the right the mean solution
ū(t) and the corresponding standard deviation are shown together with the exact mean
solution µu(t).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

t

u(t, α1)
u(t, α2)
u(t, α3)
u(t, α4)
u(t, α5)

0 0.2 0.4 0.6 0.8 1

0

2

4

t

ū(t)
µu(t)
± std

Figure 6.5: Left is the 5 deterministic solutions for the 5 different α(Z) ∼ N (0, 1). To the right the
corresponding estimated mean for M = 5 with the standard deviation.

First of all the estimated mean solution in figure 6.5 seems to be almost the same as the
exact mean solution and also better than the result found by the Monte Carlo method
with M = 1000 samples. The standard deviation seems to be the same. So with only
M = 5 the precision is improved. The figure to the left shows the 5 deterministic

42 Chapter 6. Test of Uncertainty Quantification methods

solutions that together with the quadrature weights are the elements for determine the
estimated mean and variance solution.

Now it is tried out with α(Z) ∼ U(−1, 1) to see if the same efficiency improvement
also is obtained for this distribution. It should hopefully not affect the method, so
it is expected the same efficiency. To represent α(Z) by the uniform distribution the
Legendre polynomials must be used. By the Legendre quadrature the abscissas z and
w are found. To transform from the interval [−1, 1], where the Legendre polynomials
are defined, to the wanted interval [a, b] the following transformation is used

α = b− a
2 z + a+ b

2 . (6.2)

Again in this case the transformation doesn’t change anything because the transforma-
tion is from [−1, 1] to [−1, 1]. The implementation of this test is shown in appendix
B.2.1. Figure 6.6 shows the results for this case with M = 5.

0 0.2 0.4 0.6 0.8 1

1

2

t

u(t, α1)
u(t, α2)
u(t, α3)
u(t, α4)
u(t, α5)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

t

ū(t)
µu(t)
± std

Figure 6.6: Left is the M = 5 deterministic solutions for the 5 different α(Z) ∼ U(−1, 1). To the right
the corresponding estimated mean with the standard deviation.

Again the mean solution ū(t) is very close to the exact mean solution µu(t) and by
comparison of the standard deviation with the corresponding standard deviation found
with the Monte Carlo method they seem very similar.

So it seems like that the SCM is a very efficient method to find a precise solutions at
least for the Test Equation. To investigate the actual precision the mean and variance
solution are determined for different values of M and hereby the convergence can be
obtained. This is shown in figure 6.7. M is running on the interval [1, 20] and the
parameter α(Z) ∼ N (0, 1). The error is determined in the same way as in (6.1). The
code for the convergence test is listed in appendix B.2.1.

As expected the SCM have shows spectral (exponential) convergence. To compare
with the solutions in figure 6.5 where M = 5 the error on the mean solution is seen to
be approximately 10−4. To obtained this precision by using the Monte Carlo method
approximately M = 5 · 105 have to be used and this guaranties not the desired pre-
cision. It is also seen that for M > 9 the estimated mean will not be improved and

6.3. Stochastic Test equations - Stochastic Galerkin Method 43

for the estimated variance it is for M > 13. The reason for this difference is that the
variance increase faster over time compared with the mean solution. This means that
the maximumM , where the precision not will be increased, will variate for other choices
of random variables and other SDE’s. It also depends on how large the time t is. It is
therefore not easy to decide the maximum M .

100 101

10−10

10−8

10−6

10−4

10−2

100

M

E
M

Error on mean
Error on variance

Figure 6.7: Convergence for both mean and variance for the SCM with α(Z) ∼ N (0, 1).

6.3 Stochastic Test equations - Stochastic Galerkin Method
The Test Equation will now be solved by the Stochastic Galerkin Method (SGM) which
takes another approach compared to the two other methods. The SGM will be illustrated
for the same case where α(Z) ∼ N (0, 1) for easy comparison. Afterwards the convergence
test also is conducted for this case.

Before the implementation the system first have to be manipulated. The Test equa-
tion is listed here again.

du

dt
(t, Z) = −α(Z)u(t, Z), u(0, Z) = β. (6.3)

To rewrite this system the gPC expansions for u(t, Z) and the random variable α(Z) are
first established. In the expansion the Hermite polynomials Hi(Z) are used since α(Z)
follows a Normal distribution and this is the only random variable in the SDE.

u(t, Z) =
M∑
i=0

ui(t)Hi(Z), α(Z) =
M∑
i=0

aiHi(Z),

44 Chapter 6. Test of Uncertainty Quantification methods

where a0 = µ, a1 = σ and all other elements are 0, since α(Z) can be represented by
µ + σZ. By substituting these expansions into the differential equation the following
system is obtained

M∑
i=0

dui
dt
Hi(Z) = −

M∑
i=0

M∑
j=0

aiHi(Z)ujHj(Z).

Now by using a Galerkin projection that project the above equation onto the random
space spanned by the polynomial basis will now be conducted. This is done by succes-
sively evaluate the inner product and exploit the orthogonality. From [2] the system
then becomes

duk
dt

= − 1
γk

M∑
i=0

M∑
j=0

aiujeijk, ∀k = 0, 1, . . . ,M (6.4)

where γk = k! is the normalization factor for the Hermite polynomials and

eijk = E[Hi(Z)Hj(Z)Hk(Z)], 0 ≤ i, j, k ≤M.

eijk can be found by the Hermite-gauss quadrature but in this case it can also be found
exact by (from [2])

eijk = i!j!k!
(s− i)!(s− j)!(s− k)! , s ≥ i, j, k and 2s = i+ j + k is even

If the 2 conditions are not satisfied then eijk = 0. The implemented function calculating
eijk is listed in appendix B.2.1. The system (6.4) can be written into a vector system [2]
by

du

dt
= ATu

where the elements in A is computed by

Ajk = − 1
k!

M∑
i=0

aieijk

and with the initial condition being u = b, where b = [β, 0, 0, . . .]T .
This system is now ready to be implemented where these vectors and the matrix

are build. The right hand side is different from the two other methods implemented
since the system is set up to a matrix vector product. The right hand side function is
implemented as
import numpy as np

def rhs(u,t ,A):
u = np.dot(A.T,u)
return u

6.3. Stochastic Test equations - Stochastic Galerkin Method 45

which is given to the time integration function odeint together with the initial condition
vector u and the matrix A. The mean and variance solution is found from the output
from odeint by (4.8) and (4.9). All code for this test can be seen in appendix B.2.1.

In figure 6.8 the estimated and exact mean solution is shown together with the
estimated standard deviation. The figure is produced for 5 expansions, so M = 5.

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

t

ū(t)
µu(t)
± std

Figure 6.8: Estimated mean solution for M = 5 with the corresponding standard deviation for α(ω) ∼
N (0, 1).

The SGM also produces a very fine result in this case and there seems to be no difference
compared to the solution found with the SCM. Hereby the outcome from the two methods
seems to be similar.

The SGM could also be used to solve the Test Equation with the α(Z) ∼ U(−1, 1)
where the result will be similar to the result solved with the SCM. Instead the conver-
gence of the SGM will be investigated in the same way as for the SCM. So by running
through M = 1, 2 . . . , 20 and compute the error EM in the same way as in (6.1) figure
6.9 were produced. The actual code for this convergence test can be seen in appendix
B.2.1.

In figure 6.9 spectral convergence is again obtained for both the mean and variance
solutions as expected of SGM. Compared with the convergence of the SCM, where the
lowest precision is around 10−10 for M = 9, the lowest precision for SGM is around
10−8. The reason could be that more numerical errors enters from the vector matrix
calculations. Besides that the convergence of SCM and SGM seems to be very similar.

Now the tree methods have been tried out on a very simple problem and it is inter-
esting to try with something a bit more complicated - Burger’s equation. So far it is
seen that the two spectral method can estimate mean and variance solution quite pre-

46 Chapter 6. Test of Uncertainty Quantification methods

cise and efficient, but some difference might appear when solving the stochastic Burger’s
equation.

100 101
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

M

E
M

Error on mean
Error on variance

Figure 6.9: Convergence for both mean and variance for the SGM with α(ω) ∼ N (0, 1).

6.4 Stochastic Burger’s equation - Monte Carlo method
The stochastic Burger’s equation will first be solved by the Monte Carlo method. Before
the Monte Carlo method can be applied to the problem a deterministic solver should
be developed to the system. Here the Deterministic Collocation method will be used as
examined in general earlier.

The Deterministic Collocation method is simple to construct for the SDE (5.13).
Since the differential part can be approximated with the differentiation matrix D by
(3.11)

du

dx
= Du

where u is a N × 1 vector corresponding to the Gauss-Lobatto nodes. The stochastic
Burger’s equation can be written into the following system

du

dt
= −u (Du) + νD2u.

The initial condition will be u(x, 0) = −x which ensures that u(−1, 0) = 1 and u(1, 0) =
−1, when no uncertainty are added to the boundary. Therefore the boundary condition
only have to be du

dx(−1, t) = 0 and du
dx(1, t) = 0, such that the slope on the boundary

points are 0.
From the above the right hand side can be established and is implemented as follows.

6.4. Stochastic Burger’s equation - Monte Carlo method 47

import numpy as np

def rhs(u,t ,v,D,D2):
u = −u∗np.dot(D,u) + v∗np.dot(D2,u)
u[0] = 0.0
u[−1] = 0.0
return u

where D2 are the squared differentiation matrix D2 and v is the parameter ν. The
technique handling that steady state will be reached is by iteratively solving the problem
for times ti and ti+k and then compare the solutions. This could be done for each
time step (k = 1), meaning a comparison between u(x, ti, Z) and u(x, ti+1, Z) until the
difference is below be below e.g. 10−6. Then it will be assumed that steady state is
reached.

Another way is to compare the solution u(x, ti, Z) and u(tx,i+1000, Z) and see if the
difference between these two solutions is below 10−6. In this way the number of loops
is reduced a lot. On the other hand the steady state time ts is possible to be 999 time
steps past the steady state point (for the specified tolerance). The implementation of
this iterative control is shown below, to show how it is implemented in practice.
Initial tolerance, which must be too big.
tol = 1
max_iter = 1
Time step
dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)

while tol> 10∗∗(−6) and max_iter < 10∗∗5:
Solve the system in the next nt_jump time steps
u = odeint(rhs,u_init,t_span,tuple([nu,D,D2]))

Find the difference between the solution to the first and the last
element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init−u_check))

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init = u_check

max_iter += 1

48 Chapter 6. Test of Uncertainty Quantification methods

Now the deterministic part of the system is established and the stochastic part is the
only thing remaining. For the Monte Carlo method it is simply just done by picking
M random numbers from the desired distribution and solve the deterministic system M
times. The overall implementation is shown in appendix B.2.2.

The parameters chosen to solve the stochastic Burger’s equation are ν = 0.05,
u(−1, t) = 1 + δ1(Z), δ1(Z) ∼ U [0, 0.1] and u(1, t) = −1, the number of spacial nodes
N = 80 and the number of samples M = 1000. The result of this run is shown in figure
6.10.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

ū(x, 800)
± std

Figure 6.10: Estimated mean solution for the Burger’s equation for M = 1000 samples with the
corresponding standard deviation with uncertainty U(0, 0.1) on the left boundary.

For this problem the exact mean solution is not known, but by comparing the solution
with the solution of the same problem in [2] it is seen to quite similar. Keeping the
results from solving the Test equation by the Monte Carlo method in mind, M = 1000
realizations gives variations in the solutions. This means that the solution must be
expecting some errors.

To analyse the result it is seen in figure 6.10 that when ū(x, 800) decreases the
standard deviation increases so in this area the mean solution is most uncertain. In the
other areas the standard deviation is quite small. Next the exact same SDE is solved by
the SCM.

6.5. Stochastic Burger’s equation - Stochastic Collocation method 49

6.5 Stochastic Burger’s equation - Stochastic Collocation
method

The exact same problem shall also be solved by the SCM. The implementation is based
on the same spatial solver (the Deterministic Collocation method) as used before. The
difference is the way the random variable (δ1(Z)) is represented. Since δ1(Z) is uniform
distributed the Legendre polynomials are used to represent the random variable. This
is done by the Legendre-gauss quadrature which gives the abscissas z and weights w on
the interval [−1, 1]. For this problem these abscissas have to be scaled to the desired
interval [0, 0.1] by using the transformation (6.2).

For each abscissa z(i) the deterministic solutions could be determined by running a
for-loop around the deterministic solver. Another way to determine all deterministic
systems is to build one large system by the Kronecker product. This means that the
system is repeated with the number of realizations M (the number of abscissas in z). In
short notation the system is written as

du

dt
= −ueDeue + νGeue

where ue is a MN × 1 vector and De and Ge are MN ×MN matrices given by

ue =



u(x1, t, z
(1))

u(x2, t, z
(1))

...
u(xN , t, z(1))
u(x1, t, z

(2))
...

u(xN , t, z(M))


, De =


D

D
. . .

D

 , Ge =


D2

D2

. . .
D2



For M = 5 and N = 80 this system is implemented and the mean solution and the
standard deviation solution for the stochastic Burger’s equation are solved to each time
steps by odeint. The results are shown in figure 6.11 together with the 5 individual
deterministic solution for each z(i). It should be mentioned that the solutions are shown
for t = 800 where the steady state is reached. The code is listed in appendix B.2.2.

50 Chapter 6. Test of Uncertainty Quantification methods

−1 −0.5 0 0.5 1
−1

0

1

x

u(x, 800, z(1))
u(x, 800, z(2)

u(x, 800, z(3)

u(x, 800, z(4)

u(x, 800, z(5)

−1 −0.5 0 0.5 1
−1

0

1

x

ū(x, 800)
± std

Figure 6.11: Left is the N = 5 deterministic solutions for the 5 different δ ∼ U(0, 0.1). To the right
the corresponding estimated mean solution and the estimated standard deviation.

For only M = 5 the mean solution is determined with at least the same precision as
the Monte Carlo method. This means that a reduction of solving approximately 1000
deterministic system and in the same time achieve, most likely, more precise solutions.
It shows the strength of the SCM. To the left the 5 deterministic solutions is shown that
illustrates how the random space is spanned.

6.6 Stochastic Burger’s equation - Stochastic Galerkin method
The SGM will as the last method being used to solve the stochastic Burger’s equation.
As for the Test equation some manipulations of the system first have to be made before
the implementation can be conducted.

Starting from the stochastic Burger’s equation given in (4.8) and by exploitation
of the gPC expansion with the Legendre polynomials Li(Z), since the uncertainty is
uniform distributed by

u(x, t, Z) =
M∑
i=0

uiLi(Z).

By insertion of this expansion into the differential equation the following equation is
obtained.

M∑
i=0

∂ui
∂t

Li(Z) = −
M∑
i=0

M∑
j=0

uiLi(Z)∂uj
∂x

Lj(Z) + ν
M∑
i=0

∂2ui
∂x2 Li(Z).

On this system the Galerkin projection is performed by taking the inner product between
each term and Lk(Z), k = 0, 1, . . . ,M . By taking the orthogonality into account the
system ends up with (from [2])

∂uk
∂t

= − 1
γk

M∑
i=0

M∑
j=0

ui
∂uj
∂x

eijk + ν
∂2uk
∂x2 , k = 0, 1, . . . ,M.

6.6. Stochastic Burger’s equation - Stochastic Galerkin method 51

This time the differentiated parts are approximated with finite difference stencils where
they will be approximated by [4]

∂u

∂x
(xi, t) = u(xi+1, t)− u(xi−1, t)

2∆x ,

∂2u

∂x2 (xi, t) = u(xi+1, t)− 2u(xi, t) + u(xi−1, t)
(∆x)2 .

In short form notation the whole system will be as below
∂uk
∂t

= − 1
γk
U IBkuvec + νAuk + gk, k = 0, 1, . . . ,M,

where the matrices and vectors are defined as below. The indexes ui,j refers to the i’th
spatial point and the j’th expansion.

uk =


u1,k
u2,k
...

uN,k

 uvec =



u1,0
u2,0
...

uN,0
u1,1
u2,1
...
...

uN−1,M
uN,M



, gk =



1
2∆xγk

∑M
i=0

∑M
j=0 u0,ju1,ieijk + u0,k

ν
(∆x)2

0
...
0

− 1
2∆xγk

∑M
i=0

∑M
j=0 uN+1,juN,ieijk + uN+1,k

ν
(∆x)2



U I =


u1,0 0 . . . u1,M 0
0 u2,0 0 u2,M

.
uN,0 . . . uN,M

A =


−2 1
1 −2 1

1 −2 1
.

1 −2



Bk =




0 e0,0,k

−e0,0,k 0 . . .
. e0,0,k

−e0,0,k 0

 . . .


0 e0,M,k

−e0,M,k 0 . . .
. e0,M,k

−e0,M,k 0


... . . .

0 eM,0,k

−eM,0,k 0 . . .
. eM,0,k

−eM,0,k 0




0 eM,M,k

−eM,M,k 0 . . .
. eM,M,k

−eM,M,k 0





52 Chapter 6. Test of Uncertainty Quantification methods

The sizes of the matrices are that uk is a N × 1 vector, uvec is a NM × 1 vector, U I is
a N × NM matrix, A is a N × N matrix, Bk is a NM × NM matrix and gk, which
handles the boundary conditions, is a N × 1 vector.

This system will be tested with N = 38, M = 5, ν = 0.05 and the initial condition
u(x, 0, Z) = −x. The entire implementation can be seen in appendix B.2.2. The mean
and standard deviation solution are shown i figure 6.12.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

ū(x, 100)
± std

Figure 6.12: Mean and standard deviation solution for SGM with δ1(Z) ∼ U [0, 0.1] and with M = 5.

Compared with the solutions solve by SCM the solutions of the SGM are not the same.
The reason for the difference must be a small error in the implementation which not was
found. Even though the solutions are wrong, they still have the same trends and the
correct solutions seems to be estimated by some scaling. This could illustrate that the
implementation of SGM a least not is easy to implement.

6.7 Comparison between the UQ methods
A comparison and evaluation of the 3 different UQ methods based on the tests done in
the previous sections but also from the discussion in [2] will be presented. This will end
with a selection of 1 of the UQ methods for the further experiments in this projects.

It is obvious from the tests that the Monte Carlo method is not preferable since it
is very inefficient. Already for the simplest test example it was very time-consuming.
For complex SDE’s the time consumption will be extremely huge. However, it is a very
intuitive and relatively easy method to implement and use and have therefore been used
as a reference for the correctness of the other methods.

The SCM is compared to SGM easy to implement as long as the deterministic solver is
implemented for the problem. The applicability of SCM is not affected of the complexity

6.7. Comparison between the UQ methods 53

or non-linear terms in the differential equation which is handled by the deterministic
solvers [2]. The efficiency for the SCM was for these simple problems extremely good,
but also the precision was very satisfactory.

The Stochastic Galerkin Method (SGM) is on the other hand not trivial to implement
and depend very much on the complexity of the differential equation. The experience
from the implementation of the SGM method for the Burger’s equation were time-
consuming and is guaranteed not optimal implemented with respect to efficiency. The
convergence is very similar to the convergence for the SCM.

All this indicates that the SCM is the preferable method, but in [2] it is explained
that the accuracy of the SGM is better than SCM for multidimensional random spaces
(d > 1) because of the so called aliasing error which is introduced by the interpolation.
If the same precision have to be achieved for the multidimensional random space then
higher order of orthogonal polynomials is needed for the SCM compared to the SGM [2].

The choice of method therefore depends on different factors but overall the SGM
method preferable for differential equation with multiple random variables and the im-
plementation can be done. For few random variables or for a very complex differential
equation the SCM is preferable.

Taking all this into account and the experience working with the methods the SCM
will be the selected method for further experiments mainly because that it is easier
to implement and that the number of variables in the further experiments not will be
extremely large.

54 Chapter 6. Test of Uncertainty Quantification methods

Chapter 7

Topics in Uncertainty
Quantification

In this part of the project some of the research areas and topics in UQ will be presented.
So far in this project the problems have been quite simple. This part will illustrate the
terms of the systems which causing the problems.

So far the solved systems (stochastic Test equation and stochastic Burger’s equation)
have only included d = 1 random variable into the SDE. This keep the systems relatively
small and relatively easy solved by the UQ methods. As described in [11] it is possible
to have practical stochastic problem with more than hundred random variables d > 100
in addition to the traditional space and time dimensions. This lead to a huge or almost
impossible amount of work if such a problem is solved by the presented methods.

To illustrate the amount of work in the high dimensional case lets say that d random
variable exist in a given SDE and each of these are represented in m nodes. From [11]
the number of times the deterministic solver have to be performed is

M = md.

If it is assumed that there exist d = 10 random variables, all represented with lets say
m = 5 nodes leading to 510 = 9, 765, 625 times the deterministic system have to be
solved. The number grows extremely fast as the number of random variables increases.

This have naturally resulted in a research and developing of method which makes
it possible to solve systems with several random variables solved in a reasonable time
horizon. There is still a limit in how large d can be by using SCM [12] and there
is an ongoing research for pushing to this limit. Below are techniques handling high
dimensional random space in SDE presented very shortly to give a brief overview of the
topics. References are given if more details are desired.

`1-minimization

This short description is based on [11]. The overall idea comes from the generation of
a underdetermined system and from this system the goal is to find the computational

55

56 Chapter 7. Topics in Uncertainty Quantification

cheapest solution by `1-minimization. The underdetermined system is often encountered
for high dimensions (d >> 1). The base is taking in the gPC expansion, for the Stochastic
Collocation method, used to represent the target function u(t,x,Z) by

u(t,x,Z) =
∑
|i|<K

ûiΨi(Z)

with the multi-index i explained in gPC section 3.6. (In the following the single-index
l will be used which runs through a ordered scheme for the multi-index). This can be
rewritten into the linear system [11]

V û = f

where û containing the K (highest polynomial degree of Ψl) coefficients. f is the sample
of the deterministic solutions u(t,x,Z(m)) and the matrix V = vm,l is a Vandermonde-
type interpolation matrix ([11]) given as

vm,l = Ψl(Z(m)), m = 1, . . . ,M, l = 1, . . . ,K.

For M > K the underdetermined system is obtained which means that the sample
of deterministic solution M is larger then the total polynomial degree M . For a big
difference between these two numbers the system becomes severely underdetermined
and here the `1-minimization can be used to find the solution by

min ‖û‖1 =
M∑
l=1
|ûl|, subject to V û = f .

This is the convex relaxation of min ‖û‖0 := #{l : ûl 6= 0} finding the coefficient vector
containing most zeros and hereby the most reduced.

ANOVA decomposition

The abbreviation ANOVA comes from the statistical method ’analysis of variance’. The
main idea behind this method according to the high dimensional problems (d >> 1) is
to split the multi-dimensional random space into smaller subdimensions [13]. This way
of decomposing the dimensionality is a effective way to break the curse of dimensionality
for certain systems by solving several low-dimensional systems. However, if the ANOVA
decomposition still results in a component with relatively high dimensionality nothing
is gained with respect to the computational complexity [13].

The ANOVA decomposition method can be combined with the Multi-Element Prob-
abilistic Collocation Method (MEPCM) in order to be able to solve additional prob-
lems [13]. The MEPCM solves each component of the ANOVA decomposition efficiently
and the total statistics can be obtained from these subsolutions. To read more see [13].

57

Space Grid Collocation

This section is based on [2] and [14]. A third method to handle the curse of dimen-
sionality is the sparse grid method also called the Smolyak sparse grid. The sparse grid
method can be used in the multivariate case to reduce the computational cost and keep
the approximate same precision. The reduction of computational cost from the reduction
of deterministic system needed to be solved. Hence the sparse grid method can only be
used for the SCM out of the introduced methods. Therefore sparse grid can overcome
the curse of dimension to a certain extent.

The sparse grid method is a sparse quadrature rule where fewer abscissas and weights
are obtained in correspondence to the original quadrature rules. Therefore there also
here exists several sparse quadrature e.g. gauss-Legendre, Clenshaw Curtis and gauss-
Hermite (see [14]) which corresponds to the different distributions in the same way as
described earlier. Because of the fewer nodes and weights the number of deterministic
systems to be solved decreases and hence a reduction of the total dimension.

A more theoretical description will be presented later in the thesis, but first the Ten-
sor Product Collocation will be introduced which uses the full tensor grid.

This chapter have illustrated shortly the ongoing research that have been the past
years and further some difference approaches to handle the curse of dimensionality.
Overall these methods are relatively complex and demands a strong theoretical under-
standing, so at this point it might be abstract methods. Hence the next chapter will in
some way illustrate the curse of dimensionality and finally use the sparse grid based on
gauss-Legendre quadrature to illustrate it is beneficial.

58 Chapter 7. Topics in Uncertainty Quantification

Chapter 8

Multidimensional problems

As highlighted in the study of the literature the curse of dimensionality is the main big
topic of today’s research. The systems with relatively many random variables results
in huge systems which are very time consuming. In this chapter this is illustrated and
further some tools to handle the complexity will be introduced. These tools will enable
the systems to have several random variables, but not systems which contains a huge
amount of random variables.

Based on chapter 6 (where the systems only contained 1 random variable) the used
method will be the SCM. First the Tensor Product Collocation will be introduced and
afterwards the solutions for the stochastic Test equation and stochastic Burger’s equation
will be shown to verify and illustrate the effects of the Tensor Product Collocation and
to illustrate the curse of dimensionality.

8.1 Tensor Product Collocation method
Recall the general system (2.1) now with d > 1. In other words there will exist at least 2
random variables having the notation Z = {Z1, . . . , Zd}, where the i’th random variable
will be represented by Θi = {z(1)

i , . . . , z
(mi)
i } which is mi long.

Section 4.1.2 describes how the mean solution is determined with use of interpolation
based on Lagrange polynomials hi(x). In the multivariate case the total interpolation is
a tensor product between the one-dimensional interpolations which is notated by

Ii(u) =
mi∑
k=1

u(z(k)
i)hk(Zi) i = 1, 2, . . . , d.

The set of the these interpolation can by [9] be formulated via the tensor product

I(u) = (I1 ⊗ · · · ⊗ Id)(u) =
m1∑
k1=1
· · ·

md∑
kd=1

u(z(k1)
1 , . . . , zkdd)(hk1(Z(1))⊗ · · · ⊗ hkd(Z

(d)))

(8.1)

59

60 Chapter 8. Multidimensional problems

By the same procedure as in section 4.1.2 (using the quadrature rule) the estimated
mean solution is solved from [9]

ū(x, t) =
m1∑
k1=1
· · ·

md∑
kd=1

u

(
z

(k1)
1 , . . . , z

(kd)
d

)(
ρ(z(k1)

1)w(k1)
1 · · · ρ(z(kd)

d)w(kd)
d

)
. (8.2)

This shows that all combinations between the weights for each random variable and co-
efficients for every combination of the nodes z(j)

i . The corresponding estimated variance
solution can from this mean expression also be determined as in previous sections by
s2
u = E[u2]− (E[u])2.

The number of nodes to represent the random space is M = m1m2 · · ·md. If it
is assumed that all random variables is represented with the same number of nodes
m1 = m2 = · · · = md = m then the total number of nodes is M = md. This number will
of course grow very fast if the number of random variables increases and/or m increases.
M is desired to be small because the deterministic system has to be solved M times.

The practical implementation of the multi-dimensional Tensor Grid Collocation will
be illustrated in context with the visualization of the results in the next section.

8.1.1 Test of Tensor Grid Collocation method

The Test equation will here consist of two random variables (d = 2), where the parameter
in the differential equation α(Z1) and the boundary condition β(Z2) both will contain
uncertainty. The SDE will take the following form

du(t,Z)
dt

= α(Z1)u(t,Z), u(0,Z) = β(Z2), t ≥ 0

The parameter α(Z1) will in this example follow a N (0, 1) while the boundary condition
β(Z2) will follow N (1, 0.12) and both variables will be represented by m1 = m2 = 6
nodes. This leads to M = m2

1 = 36 deterministic systems, which have to be solved in
order to determine the mean and variance solution. The nodes from the two distributions
(Θ1,Θ2) and the corresponding weights (w1,w2) are determined from the Hermite-gauss
quadrature. The nodes are then transformed to the desired interval by

z1 = 0 + 1 ·Θ1,

z2 = 1 + 0.1 ·Θ2.

To solve the 36 different deterministic differential equations all the the combinations of
the elements in z1 and z2 have to be constructed. To do this a python function called
cartesian [15] is used which makes all possible combinations between all elements in
the d vectors, which is given as inputs to the function. The same function is also used
to make all the combinations between the weights. The code for this are shown below.
Create all combinations of the nodes
nodes = cartesian((Theta_1,Theta_2))

8.1. Tensor Product Collocation method 61

Split into two different vectors
A = nodes[:,0]
B = nodes[:,1]

Create all combinations of the weights
W_all = cartesian((w1,w2))

Split into two different vectors
W1 = W_all[:,0]
W2 = W_all[:,1]

Multiple all the combinations of weights
W = W1∗W2

Note that the output from the cartesian function is a matrix with the i’th columns
being different repetition of e.g. wi. In this test case A, B and W have the size of 36 fitting
the number of deterministic systems that should be solved. On this form the vectors A
and B can be given to the time-integration solver odeint together with the right-hand
side and the initial condition and hereby the solutions for the 36 deterministic differential
equations can be obtained. The complete code can be seen in appendix B.3.1.

The estimated mean is computed by (8.2) and can be compared with the exact mean
solution determined analytical to (??). The final solution by running this test can be
seen in figure ??.

0 5 · 10−2 0.1 0.15 0.2 0.25

0

2

4

t

0 0.2 0.4 0.6 0.8 1

0

2

4

t

ū(t)
µu(t)
± std

Figure 8.1: Left: The 36 deterministic solutions for 0 ≤ t ≤ 0.25. Right: The estimated and the exact
mean solution together with the estimated standard deviation.

Left in figure (??) it is illustrated how the different deterministic solutions are distributed
- like spanning the random space. At t = 0 the 6 nodes to represent the uncertainty
on the boundary are apparent. From each of these nodes 6 solutions take their base
corresponding to the 6 nodes representing α(Z1). This gives all together the 36 differ-
ent deterministic solutions which makes the base of the statistics shown to the right.
Compared with figure 6.2 the big difference is seen on the boundary (t = 0) where the

62 Chapter 8. Multidimensional problems

standard deviation already is of a certain level. The standard deviation does not differ
much otherwise. It is only slightly larger.

It is interesting to find out if the TPC method has an effect on the convergence, so
an equivalent convergence test as performed earlier will be done. It takes the exact same
parameters as above but will be running through the total number of nodes M = m1m2
with m1 = m2 ∈ [2, 3, . . . , 20]. This implementation is listed in appendix B.3.2. In figure
8.2 the convergence are shown for both the mean and variance solution.

101 102

10−10

10−8

10−6

10−4

10−2

100

M

E
M

Error on mean
Error on variance

Figure 8.2: Convergence for both mean and variance solution for the SCM with α(Z1) ∼ N (0, 1) and
β(Z2) ∼ N (1, 0.12).

The convergence process is exactly the same as in figure 6.7. The only difference is the
M axis. For M = 81 the mean have reached an optimal precision with respect to the
mean solution. In the convergence process with only 1 random variable this point is at
M = 9. The relationship between these two fits very well as 92 = 81. This means that
the representation of a single random variable does not increase with d - for this case.
This result should therefore only be used as an indication.

8.1.2 Test with 3 random variables

To illustrate the curse of dimensionality the stochastic Burger’s equation will be solved
containing three random variables - two on the boundary and one describing the param-
eter ν in (5.13). The three random variables will in the test be the following

δ1(Z1) =δ2(Z2) = U [0, 0.1],
ν(Z3) =N [0.2, 0.001].

8.1. Tensor Product Collocation method 63

This means that the two boundary conditions will take the following form

u(−1, x,Z) = 1 + δ1(Z1),
u(1, x,Z) = −1 + δ2(Z2).

The abscissas and weights are found by Legendre-gauss quadrature for the boundary
condition and by Hermite quadrature for ν(Z3). In the same way as for the Test equa-
tion all the combinations between the abscissas and between the weights are found by
cartesian. The number of abscissas to represent the 3 random variables will beM = m3

(assuming m1 = m2 = m3). For Burger’s equation a space dimension also exist which is
represented by N nodes.

Therefore M deterministic differential equations have to be solved each with the
differentiation matrixD of size N×N . Hence the total system to be solved, constructed
by the Kronecker product, consists of MN ×MN matrices. The number of nonzero
elements in this matrix will be around nnz = NNM out of N2M2 elements.

This gives occasion to consider sparse matrices to decrease the computational cost.
In Python this is simply done by importing a sparse package where the creation of the
sparse matrices and corresponding matrix multiplication function for sparse matrices are
included. The right hand side therefore is rewritten to
import scipy.sparse as sparse

def rhs_SCM(u,t,nu,D,D2,B):
u = −u∗D.dot(u) + nu∗D2.dot(u)
u = u∗B
return u

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·104

0

100

200

300

400

MN

C
om

pu
ta
tio

na
lt
im

e
in
s Full matrices

Sparse matrices

Figure 8.3: Computational time in seconds solving the stocastic Burger’s equation with 3 with random
variables for different sizes (MN ×MN) of both full and sparse differentiation matrices.

64 Chapter 8. Multidimensional problems

To show the benefit by using sparse matrices instead of full matrices a combinations of
N = [40, 50, 60, 70] and M = [33, 43, 53] = [27, 64, 125] are conducted and the solution
times is obtained for the desired combinations. The entire implementation of this sparse
test is shown in appendix B.3.3

It is clear from figure 8.3 that sparse matrices reduces the computation time as
expected. It should be noticed that there are fewer points for the full matrices because
full matrices larger than around 7500 × 7500 results in memory error. This means yet
another advantage by using sparse matrices instead of full matrices.

So by using the sparse matrices it is possible to solve Burger’s equation withM = 125
and N = 60. For these numbers the estimated mean and standard deviation solution
are determined and are shown for t = 500 in figure 8.4. The implementation to produce
this results is given in appendix B.3.4.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

ū(x, 500)
± std

Figure 8.4: Mean and standard deviation solution for the stochastic Burger’s equation with δ1(Z1) =
δ2(Z2) ∼ U [0, 0.1] and ν(Z3) ∼ N [0.2, 0.001].

The solution can not directly be compared with the previous solutions of the stochastic
Burger’s equation, since the parameter ν (which having affect on the slope of the solution)
takes higher values. The reason why the mean of ν(Z3) is not chosen to be 0.05 is that
smaller values will make the solution less smooth which the time-integration function
odeint cannot handle.

About the standard deviation solution it is not increasing that much when in taking
into account that there are uncertainty on 3 parameters. However, the variance on
ν(Z1) is in this case not that big, so other choices will probably increase the area of the
standard deviation.

Introducing 3 random variables into Burger’s equation has shown that the computa-
tional work grows massively and even when sparse matrices is used larger systems are

8.2. Sparse Grid Collocation 65

almost impossible to solve with this set up. To solve larger systems smarter methods
need to be taking into account.

8.2 Sparse Grid Collocation
In order to be able to compute SDE’s even faster but also to make it possible solve larger
systems (higher d or higher dimensions of x) a sparse grid method now will be introduced
also called Smolyak sparse collocation. It takes base from the short description in the
literature study (chapter 7). After the basic theory some examples will be shown in
order to illustrate the efficiency but also to illustrate that the precision is kept. First
shortly the theoretical background.

The Sparse Grid Collocation (SGC) takes base in the tensor product presented in
(8.1) but SGC (or from know on sparse grid) will only be a subset of the full tensor grid.
From [2] the construction of the sparse grid is

∑
l−d+1≤|i|≤l

(−1)l−|i| ·
(
d− 1
N − |i|

)
·
(
Ii1 ⊗ · · · ⊗ Iid

)
, (8.3)

where l ≥ d is an integer corresponds to the level of the construction. To specify
further it means that the level l can be at most the maximum order of the 1 dimensional
polynomials Φ(Z). If e.g. the order for two polynomials are 4 and 5 then l can maximum
take the value 5.

The expression (8.3) is rather complex but in short words it is a combination of
subsets of the full tensor grid. This can be expressed (from [2]) as the nodal set by

θM =
⋃

l−d≤|i|

(
Θi1 × · · · ×Θid

)
.

This shows the collection of subset of the full tensor grid. Depending on the choice of
the Gauss quadrature there are multiple sparse grid constructions which have different
accuracy and efficiency. The different choices are mentioned earlier. The sparse grid
construction that will be used here is the one based on the Legendre-Gauss quadrature.
This sparse grid quadrature is not the most effective but has a better accuracy than
most of the others. In the next section the sparse grid will be used to illustrate their
effects.

8.2.1 Test of Sparse Grid Collocation

From the theory it is illustrated that the sparse grid have fewer points compared with
the corresponding to the full tensor grid constructed by the Tensor Product Collocation
method. In the literature study some of these were highlighted. In this test section the
sparse grid will be based on Legendre-Gauss quadrature. All the implementations for
this section are listed in appendix B.4.

An example on the difference between the full tensor grid and the sparse grid can
be shown by a spanned random space with d = 2. For the full tensor grid each random

66 Chapter 8. Multidimensional problems

variable will be represented with m = 9 where the corresponding level l = 2. The two
grids are illustrated in figure 8.5.

−1 −0.5 0 0.5 1
−1

0

1

z1

z 2

−1 −0.5 0 0.5 1
−1

0

1

z1

z 2
Figure 8.5: Left: The full grid with m1 = m2 = 9 with totally 81 points. Right: The sparse grid with
corresponding level l = 2 with totally 21 points.

For each combination of the representations (of the random variables) z1 and z2 a de-
terministic solution has to be solved. Hence 81 deterministic systems have to be solved
for the full tensor grid while only 21 are determined for the sparse grid. Therefore the
sparse grid always will be more efficient in relation to the corresponding full tensor grid.
The question is what effect the sparse grid will have on the precision.

Before the investigation of the precision the number of grid points for different di-
mensions will to be illustrated. This is shown in table 8.1 where the number of nodes
for the sparse grid is found by using the code in [16]. The tables illustrates very well

m\d 1 2 3 4
1 1 1 1 1
3 3 9 27 81
9 9 81 729 6, 561
23 23 529 12, 167 279, 841
53 53 2, 809 148, 877 7, 890, 481

l\d 1 2 3 4
0 1 1 1 1
1 3 5 7 9
2 9 21 37 57
3 23 73 159 289
4 53 225 597 1, 265

Table 8.1: Left: The number of nodes in the random space using full tensor grid. Right: The number
of nodes in the random space using sparse grid.

that the number of points are reduced drastically by using the sparse grid method. It
should be mentioned that m increases in the table such that it corresponds to the level l
which is seen from the d = 1 columns. In this columns the number of nodes are the same
and hence there is nothing to gain in the one dimensional cases using sparse grid. If the
precision is kept for the sparse grid it will enable to determine much larger systems.

Hence the stochastic Burger’s equation with d = 3 random variables will be solved
both for the full tensor grid and the sparse grid. For convenience, all the 3 random

8.2. Sparse Grid Collocation 67

variables will follow a uniform distribution as the following

δ1(Z1) =δ2(Z2) = U [0, 0.1],
ν(Z3) =U [0.05, 0.35],

according to the general system (5.13). For the full tensor product the number of
representation of the random variables is m1 = m2 = m3 = 5 leading to M = 125
nodes. For the sparse grid method the level is chosen to be l = 2 which from table 8.1
corresponds to M = 37 nodes. These two node representations are shown in figure 8.6.

−0.5 0 0.5 −0.5
0

0.5−1

0

1

z1
z2

z 3

−0.5 0 0.5 −0.5
0

0.5−1

0

1

z1
z2

z 3

Figure 8.6: Left:Full tensor grid containing M = 125 nodes. Right: Sparse grid containing M = 37
nodes corresponding to level l = 2.

This illustrates further that as d grows the computational cost is greatly reduced. The
level l = 2 corresponds to the full tensor grid where all random variables are represented
by m = 9 nodes. This case will lead to memory error and is therefore not possible to
solve with the used computer.

−1 −0.5 0 0.5 1
−1

0

1

x

ū(x, 400)
± std

−1 −0.5 0 0.5 1
−1

0

1

x

ū(x, 400)
± std

Figure 8.7: Left: Mean and standard deviation solutions for the full tensor grid. Right: Mean and
standard deviation solutions for the sparse grid.

68 Chapter 8. Multidimensional problems

In figure 8.7 the results of storchastic Burger’s equation are shown for both the full
tensor grid and the sparse grid, with N = 40 points to represent the spatial space. The
steady state is reached at t = 400. The solutions in the figure seems to very similar so
by using the sparse grid method the almost same solution can be produced much faster.

I order to compare the solutions the difference between them are calculated. This will
clarify how similar the solutions are. The difference both between the mean solutions
and between the standard deviation solutions are illustrated in figure 8.8.

−1 −0.5 0 0.5 1
−2

−1

0

1

·10−2

x

Mean difference
Std difference

Figure 8.8: Difference between the mean and standard deviation solution for the full tensor grid and
the sparse grid.

This figure shows that the largest difference is of the order of approximately 10−2. The
figure does not illustrates which solution is the better, because the exact mean and
standard deviation solution are not determined for the stochastic Burger’s equation.
Intuitive the full tensor grid could be assumed to be the most precise solution as more
points in the random space is taken into account. On the other hand the used sparse
grid with level l = 2 corresponds to the tensor grid with M = 93 = 729 nodes and this
have higher precision than the tensor grid with M = 53 = 125.

However, the overall conclusion from this is that a similar solution can be obtained by
using sparse grids. Hence this makes it possible to determine the existent SDE’s based
on full tensor grids much faster, but also to determine SDE’s which not are possible to
solve with the full tensor grid.

The final results presented are the calculation times for the same stochastic Burger’s
equation just solved. The calculation times both found for the full tensor grid and
the sparse grid. The full tensor grid will run through M = [23, 33, 43, 53, 63] while for
the sparse grid runs through l = [1, 2, 3]. In table 8.2 the corresponding number of
nodes/grid points are illustrated together with the corresponding calculation times. To
explain the variables in the table to the right, Ms is how many nodes there is in the

8.3. Future works 69

M time/s
23 2.26
33 18.63
43 333.73
53 2527.32
63 9003.26

l Ms Mf Time/s
1 7 33 1.48
2 27 93 32.59
3 159 233 2669.91

Table 8.2: Left: Calculation times using full tensor grid for different choices of M to represent the 3
random variables. Right: Calculation times using sparse grid for different levels l (and corresponding
number of sparse grid points Ms and corresponding full tensor grid points Mf).

sparse grid while Mf is the number of nodes in the corresponding full tensor grid. The
two tables shows a huge reduction in time by using the sparse grid. It also shows that
it is possible to solve the stochastic Burger’s equation where each 3 random variable is
represented by 23 nodes in about 45 minutes.

This illustrates that larger representations are possible by using sparse grids and it
also can be an important method if larger systems (d > 3) are needed to be solved.
Overall, the chapter has given an idea of the curse of dimensionality and 1 method
(sparse grid) that deal with the problem. The sparse grid has makes it possible to solve
system which not is possible to solve with the full tensor grid, but the sparse grid also
has a upper limit on how large the systems can be.

8.3 Future works
The work presented in this thesis is introducing materials and additional methods, sys-
tems and techniques could be investigated and tested. One of the techniques presented
(sparse grid) in chapter 7 has been illustrated with one type of sparse grid. Other types
of sparse grids could also be investigated and compared with the processed sparse grids.

It will also be of great interest to implement and use the other techniques presented
in chapter 7 (ANOVA and `1- minimization) in order to improve the solution times
further. For implementations of these techniques larger systems also can be tested as
the systems in this thesis not will be sufficient challenging. As an extension to this
systems the random processes also could be taken into account where the Karhunen-
Loeve expansions are needed.

70 Chapter 8. Multidimensional problems

Chapter 9

Conclusion

This thesis has first of all showed that the spectral numerical methods can be used to
quantifying uncertainty relatively efficient as spectral convergence is obtained. The the-
ory based on the orthogonal polynomials and the corresponding quadratures together
with the knowledges to generalized Polynomial Chaos makes the basic of the used Un-
certainty Quantification methods.

Throughout the thesis two stochastic differential equations (stochastic Test equation
and stochastic Burger’s equation) have been solved in many different combinations of
random variables. Three methods have be used to determined the statistics of these
different systems. The stochastic Test equation is solved satisfactory by all these meth-
ods and the expected convergence is obtained which validates all the methods. For
the stochastic Burger’s equation the Monte Carlo method and the Stochastic Colloca-
tion Method (SCM) solves the statistics as expected, while the implementation of the
Stochastic Galerkin Method (SGM) ended with wrong (almost correct) statistics due to
a complex implementation.

It can be concluded that the SCM is the preferable UQ method in this thesis due
to the relatively ease of the implementation but also because of the strong convergence
and efficiency. The Monte Carlo method is too inefficient, but the method will for some
very large systems be the only method to estimate the statistics. Furthermore it has
been a great reference method. The SGM was deselected due to the relatively complex
implementation but with the correct implementation the method in some cases still
would be preferable.

With SCM the curse of dimensionality was illustrated using the full tensor grid to
construct the nodes in the random space. In the same chapter the sparse grid was
tested and shown that SDE’s will be solved much faster and also larger systems are
possible to solve compared to the full tensor grid constructed by Tensor Product Collo-
cation method. Additional techniques could be added to this work in order to further
improvements of the methods.

The experiences with the programming language Python has been positive after few
initial difficulties. Many operations and function calls is very much like the corresponding
in Matlab. Overall, the experiences with Python is that it is a bit more efficient compared

71

72 Chapter 9. Conclusion

to Matlab but particular the efficiency of the function odeint is very high. The usability
of Python is not at the same level as in Matlab.

Appendix A

Additional analytical statistical
solutions for the Test equation

Here additional calculation for obtaining an exact analytical mean and variance solutions
for the random variables following a uniform distributions. It is in addition to section
5.1.2.

α(Z) = k and β(Z) ∼ U(a2, b2)

The expectation and the variance is here determined in the opposite case. The expecta-
tion for an uniform distributed variable on the interval [a2, b2] is given to be

E[β] = b2 + a2
2

E[eαt] = ekt

By this the expectation µu in this case is

µu = b2 + a2
2 ekt (A.1)

In order to determined the corresponding variance solution E[β2] have to be solved as
in all other cases.

E[β2] =
∫ b2

a2
ω2 1
b2 − a2

dω

= 1
b2 − a2

[1
3ω

3
]b2

a2

= 1
b2 − a2

(1
3b

3
2 −

1
3a

3
2

)
= 1

3

(
b32 − a3

2
b2 − a2

)

73

74 Appendix A. Additional analytical statistical solutions for the Test equation

By the rule (b32 − a3
2) = (b2 − a2)(b22 + a2b2 + a2

2) the following is obtained

E[β2] = 1
3(b22 + a2b2 + a2

2)

The other term is the variance expression (E[β])2 is determined by

(E[β])2 =
(
b2 + a2

2

)2
= (b2 + a2)2

4

and hereby the exact variance solution is found to be

σ2
u = E[β2]− (E[β])2 = 1

3(b22 + a2b2 + a2
2)− (b2 + a2)2

4
= 1

3(b22 + a2b2 + a2
2)− 1

4(b22 + a2
2 + 2a2b2)

= 4
12b

2
2 −

3
12b

2
2 + 4

12a
2
2 −

3
12a

2
2 + 4

12a2b2 −
6
12a2b2

= 1
12(b22 + a2

2 − 2a2b2) = 1
12(b2 − a2)2

Next the case where both random variables following an uniform distributed are outlined.

α(Z1) ∼ U(a1, b1) and β(Z2) ∼ U(a2, b2)

Here both parameters follows an uniform distribution and the expectation and variance
solution is also in this case determined. First the expectation is determined by

µu = (E[u]) = (E[β])(E[eαt])

From earlier these expectations is determined to be

(E[β]) = b2 + a2
2 ,

(E[eαt]) = 1
t(b1 − a1)(eb1t − ea1t),

and the final expectation is

µu = b2 + a2
2t(b1 − a1)(eb1t − ea1t)

The variance can be determined by earlier computations seen by

E[u2] = E[β2]E[(eαt)2]
(E[u])2 = (E[β])2(E[eαt])2

75

All these four parts have been determined previously and by insertion the final expression
for the variance it ends up with

σ2
u = E[u2]− (E[u])2

= 1
3(b22 + a2b2 + a2

2) 1
2t(b1 − a1)(eb12t − ea12t)− (b2 + a2)2

4
1

t2(b1 − a1)2 (eb1t − ea1t)2

= b22 + a2b2 + a2
2

6t(b1 − a1) (eb12t − ea12t)− (b2 + a2)2

4t2(b1 − a1)2 (eb1t − ea1t)2

76 Appendix A. Additional analytical statistical solutions for the Test equation

Appendix B

Implemented code

All relevant used Python code is presented in this appendix. This is divided into three
sections - ’Toolbox code’, ’1 dimensional test code’ and ’Multidimensional test code’

B.1 Toolbox code

B.1.1 Legendre polynomials

The implementation of Legendre polynomials.
import numpy as np

def legendrepol(x,n):
x = x[:,np.newaxis]
x = x [:,0]
Preallocate for the n+1 polynomials
L = np.zeros((len(x),n+1))

if n == 0:
Zero order polynomial
L [:,0] = 1.

elif n == 1:
Zero and first order polynomial
L [:,0] = 1.
L [:,1] = x

else:
Zero and first order polynomial
L [:,0] = 1.
L [:,1] = x
i = 2
while i <= n:

Using the three-term recurssion to determine the n>1 order
polynomials
L [:, i] = ((2.∗(i−1.) + 1.)/((i−1.) +1.))∗x∗L[:, i−1]−\

((i−1.)/((i−1.)+1.))∗L[:, i−2]

77

78 Appendix B. Implemented code

i += 1
return L

B.1.2 Hermite polynomials

The implementation of Hermite polynomials.
import numpy as np

def hermitepol(x,n):
Preallocate for the n+1 polynomials.
H = np.zeros((len(x),n+1))
if n == 0:

The zero order polynomial
H [:,0] = 1

elif n == 1:
The zero and first order polynomial
H [:,0] = 1.
H [:,1] = 2.∗x

else:
The zero and first order polynomial
H [:,0] = 1.
H [:,1] = 2.∗x

i = 2
while i <= n:

Using the three-terms recurrence to determine the n>1 order
polynomials
H[:, i] = 2.∗x∗H[:,i−1] − 2.∗(i−1)∗H[:,i−2]
i += 1

return H

B.1.3 Lengendre quadrature

Below is the code for the Legendre quadrature shown.
import numpy as np

def legendrequad(n):
Coefficient a_n
a = np.zeros((n,1))
Coefficient b_n
vecn = np.arange(1.,n)[:, np.newaxis]
b = vecn∗∗2/(4∗vecn∗∗2−1)

Set up the Jacobi matrix
J = np.diag(np.sqrt(b [:,0]),1)
J = J + J.T

B.1. Toolbox code 79

Determine the eigenvalues and eigenvectors
lambda_n,V = np.linalg.eig(J)

Sorting index
i = lambda_n.argsort(axis = None)
The abscissas
x = np.sort(lambda_n)

Determine the weigts
w = 2∗V[0,:]∗∗2
w = w[i]
return x,w

B.1.4 Hermite quadrature

Here is the implemented code for the Hermite quadrature.
import numpy as np

def hermitequad(n):
Coefficient a_n

a = np.zeros((n,1))
Coefficient b_n
b = np.arange(1.,n)[:, np.newaxis]

Set up the Jacobi matrix
J = np.diag(np.sqrt(b [:,0]),1)
J = J + J.T

Determine the eigenvalues and eigenvectors
lambda_n,V = np.linalg.eig(J)

Sorting index
i = lambda_n.argsort(axis = None)
The abscissas

x = np.sort(lambda_n)

Determine the weigts
w = np.sqrt(2∗np.pi)∗V[0,:]∗∗2
w = w[i]
return x,w

B.1.5 Deterministic Collocation functions

Here the Python functions that makes the basis for the Deterministic Collocation method
are shown.

80 Appendix B. Implemented code

import numpy as np
import scipy as sc
import scipy.misc as scm
from pylab import ∗

factorial = scm.factorial

The three constants a_{n-1,n}, a_{n,n} and a_{n+1,n} are defined as a
function.
def aconst(n,alpha,beta):

ab = alpha + beta
ab1 = ab + 1
ab2 = ab1 + 1
aminus = (2∗(n+alpha)∗(n+beta))/((2∗n+ab1)∗(2∗n+ab))
a = (alpha∗∗2−beta∗∗2)/((2∗n+ab2)∗(2∗n+ab))
aplus = (2∗(n+1)∗(n+ab1))/((2∗n+ab2)∗(2∗n + ab1))
return aminus,a,aplus

Jacobi polynomial function
def JacobiP(x,alpha,beta,n):

Solved often used terms
ab = alpha + beta
ab1 = ab + 1
ab2 = ab1 + 1

Preallocate
P = np.zeros((n+1,len(x)))
Zero order polynomial
P [0,:] = 1

if n>0:
First order polynomial is calculated.
P [1,:] = 0.5∗(alpha−beta+ab2∗x)

if n>1:
for i in xrange(2,n+1):

amin,a,amax = aconst(i−1,alpha,beta)
Calculates the n>1 order polynomials
P[i ,:] = ((a+x)∗P[i−1,:]−amin∗P[i−2,:])/amax

N = np.linspace(0,n,n+1)
Normalizing factor is calculated.
gamma = 2∗∗(ab1)∗(factorial(N+alpha)∗factorial(N+beta))/\

(factorial (N)∗(2∗N+ab1)∗factorial(N+ab));
Calculates the normalized Jacobi polynomials.
P = 1/np.sqrt(gamma)∗P.T
return P

B.1. Toolbox code 81

Differentiated polynomial function.
def GradJacobiP(x,alpha,beta,n):

N = np.linspace(0,n,n+1)
const = np.sqrt(N∗(N+alpha+beta+1.))
if n == 0:

Zero order polynomial.
P = np.zeros((len(x),1))

else:
Zero order polynomial.
P1 = np.zeros((len(x),1))
n>0 order polynomials by calling the JacobiP function.
P2 = JacobiP(x,alpha+1,beta+1,n−1)
P = const∗c_[P1,P2]

return P

Quadrature function for the Jacobi polynomial.
def JacobiGQ(alpha,beta,n):

if n == 0:
Abscissas
x = (alpha+beta)/(alpha+beta+2)
Weights
w = 2;

else:
N = np.linspace(0,n,n+1)
h1 = 2∗N+alpha+beta
Constructing the Jacobi matrix.
if alpha +beta ==0.0:

J = np.zeros((n+1,n+1))
J [1:,1:] = np.diag(−0.5∗(alpha∗∗2−beta∗∗2)/(h1[1:]+2)/h1[1:])
J = J + np.diag(2/(h1[0:−1]+2)∗np.sqrt(N[1:]∗(N[1:]+alpha+beta)∗\

(N[1:]+alpha)∗(N[1:]+beta)/(h1[0:−1]+1)/(h1[0:−1]+3)),1)
else:

J = np.diag(−0.5∗(alpha∗∗2−beta∗∗2)/(h1+2)/h1)+\
np.diag(2/(h1[0:−1]+2)∗np.sqrt(N[1:]∗(N[1:]+alpha+beta)∗\

(N[1:]+alpha)∗(N[1:]+beta)/(h1[0:−1]+1)/(h1[0:−1]+3)),1)
J = J + J.T

Solves the eigenvalues and eigenvectors.
D,V = np.linalg.eig(J)
Sort the eigenvalues.
i = D.argsort(axis = None)
x = np.sort(D)
Calculates the corresponding weights.
w = V[0,:]∗∗2∗2∗∗(alpha+beta+1)/(alpha+beta+1)∗factorial(alpha)∗\

factorial (beta)/ factorial (alpha+beta)
Sort the weights.
w = w[i]
return x,w

82 Appendix B. Implemented code

Gauss-Lobatto node function.
def JacobiGL(alpha,beta,n):

Preallocate.
x = np.zeros((n+1,1))
if n ==1:

Boundary nodes.
x[0] = −1.0
x[1] = 1.0

else:
Finds the interior nodes by the JacobiGQ function.
x,w = JacobiGQ(alpha+1,beta+1,n−2)
x = x[:, np.newaxis]
Adds the boundary nodes.
x = np.vstack((−1,x,1))
x=x[:,0]

return x,w

B.1.6 Implementation of the deterministic Burger’s equation

Below the implementation of the deterministic Burger’s equation is shown.
import numpy as np
import jacobipol
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from time import ∗
from pylab import ∗

JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

The right hand side defined as a function.
def rhs(u,t ,v,D,D2):

u = −u∗np.dot(D,u) + nu∗np.dot(D2,u)
u[0] = 0.0
u[−1] = 0.0
return u

Function to create the initial condition.
def init (x):

u_init = −x
return u_init

Vandermonde matrix defined as a function.
def vanderMat(x):

N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

B.1. Toolbox code 83

Differentiated Vandermonde matrix defined as a function.
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

Left spacial bound
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 80
Space step
dx = (x_right−x_left)/n_space

Initial time
t_init = 0.0
End time
t_final = 1000.0
Times the solution is desired.
t_span = np.linspace(t_init,t_final,n_time)

parameter nu
nu = 0.05

Parameters for the deterministic collocation method
alpha = 0.0
beta = 0.0

Gauss-Lobatto nodes
x,w = JacobiGL(alpha,beta,n_space)

Construction of the Vandermonde matrix and the differentiated
Vandermonde matrix.
V = vanderMat(x)
Vx = vanderMatx(x)

Determined the differentiation matrix D and D^2.
D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

Initial condition.
u_init = init(x)

Solve the system.
u = odeint(rhs,u_init,t_span,tuple([nu,D,D2]))

84 Appendix B. Implemented code

B.2 1 dimensional test code

B.2.1 Stochastic Test equation

Code for the Monte Carlo method used at the Stochastic Test equation with α(Z) ∼
N (0, 1).
import numpy as np
from matplotlib.pylab import ∗
import time
import rhs as rhs
from scipy.integrate import odeint

Number of realizations from the distribution.
n_expan = 1000

Set the time range
t_start = 0.0
t_final = 1.0
delta_t = 0.1

t_span = np.linspace(t_start,t_final, int(2.0/delta_t)+1)
Number of time steps - 1 extra for initial condition.
num_steps = np.floor((t_final − t_start)/delta_t) + 1

Set initial condition.
beta = 1.0

Parameters for the distribution.
mu = 0.0
var = 1.0
sigma = sqrt(var)

Draw n random numbers.
alpha = np.random.normal(mu,sigma,n_expan)

Initial condition.
u_init = beta∗np.ones((n_expan,1))

Determine the solution.
u = odeint(rhs.rhs,u_init [:,0], t_span,tuple([alpha]))

Calculates the statisicals parameters.
mu_estimate = np.mean(u, axis = 1)
var_estimate = np.mean(u∗∗2, axis = 1)−mu_estimate∗∗2

Exact mean and variance solution.
mu_exact = beta∗exp(0.5∗(sigma∗∗2∗t_span∗∗2 + 2.∗mu∗t_span))
var_exact = beta∗∗2∗exp(2∗sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)\

− beta∗∗2∗exp(sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)

B.2. 1 dimensional test code 85

std = np.sqrt(var_estimate)

Code for the Monte Carlo method used at the Stochastic Test equation with α(Z) ∼
U(−1, 1).
import numpy as np
from matplotlib.pylab import ∗
import time
import rhs as rhs
from scipy.integrate import odeint

Number of realizations from the distribution.
n_expan = 1000

Set the time range
t_start = 0.0
t_final = 1.0
delta_t = 0.1
t_span = np.linspace(t_start,t_final, int(2.0/delta_t)+1)
num_steps = np.floor((t_final − t_start)/delta_t) + 1

Set initial condition
beta = 1.0

Parameters for the distribution.
a = −1
b = 1

Draw n random numbers.
alpha = np.random.uniform(a,b,n_expan)

Initial condition.
u_init = beta∗np.ones((n_expan,1))

Determine the solutions.
u = odeint(rhs.rhs,u_init [:,0], t_span,tuple([alpha]))

Calculates the statisicals parameters.
mu_estimate = np.mean(u, axis = 1)
var_estimate = np.mean(u∗∗2, axis = 1)−mu_estimate∗∗2

t = t_span.copy()
t_span = t_span[1:]

Exact mean and variance solution.
mu_exact = beta/(t_span∗(b−a))∗(exp(b∗t_span)−exp(a∗t_span))
var_exact = beta∗∗2∗(1/(2∗t_span∗(b−a))∗(exp(b∗2∗t_span)−exp(a∗2∗t_span))−\

1/(t_span∗(b−a))∗∗2∗(exp(b∗t_span)−exp(a∗t_span))∗∗2)
mu_exact = r_[beta,mu_exact]
var_exact = r_[0.0,var_exact]

86 Appendix B. Implemented code

std = np.sqrt(var_estimate)

Convergence test where α(Z) ∼ N (0, 1).
import numpy as np
from matplotlib.pylab import ∗
import time
import rhs as rhs
from scipy.integrate import odeint

N = np.linspace(10,np.sqrt(500000),50)
N = N∗∗2

Set the time range
t_start = 0.0
t_final = 1.0
delta_t = 0.1
t_span = np.linspace(t_start,t_final, int(2.0/delta_t)+1)

Set initial condition
beta = 1.0

Parameters for the distribution.
mu = 0.0
var = 1.0
sigma = np.sqrt(var)

Preallocate vector to containing errors.
E = np.zeros((len(N),1))
i = 0
for n in N:

n = int(n)
alpha = np.random.normal(mu,sigma,n)

All initial condition.
u_init = beta∗np.ones((n,1))
u = np.zeros((len(t_span),n))
nn = 10

Split the system up in order to avoid large matrices.
for j in xrange(0, n/nn):

Initial condition.
u0 = u_init[j∗nn:j∗nn+nn,0]
Random parameters
alpha_in = alpha[j∗(nn):j∗(nn)+nn]
Solve the subsystem.
u = odeint(rhs.rhs,u0,t_span,tuple([alpha_in]))

Calculates the estimated mean solution
for the subsystem.

B.2. 1 dimensional test code 87

mu_estimate_nn = np.mean(u, axis = 1)
var_estimate_nn = np.var(u, axis = 1)

Overall estimated mean solution.
if j!=0:

mu_estimate = (mu_estimate∗(j−1)∗nn+mu_estimate_nn∗nn)/(j∗nn)
else:

mu_estimate = mu_estimate_nn

mu_exact = beta∗exp(0.5∗(sigma∗∗2∗t_span∗∗2 + 2.∗mu∗t_span))

Calculates the estimated mean solution.
E[i] = np.max(np.abs(mu_estimate−mu_exact))
i+=1

Code for the SCM used to solve stochastic Test equation with α(Z) ∼ N (0, 1).
import numpy as np
from matplotlib.pylab import ∗
import time
import rhs as rhs
from scipy.integrate import odeint
import hermitepol as hep
import hermitequad as heq

Set the time range
t_start = 0.0
t_final = 1.0
delta_t = 0.01
t_span = np.linspace(t_start,t_final, int(2.0/delta_t)+1)

Set initial condition
beta = 1.0

Set the statistical parameters.
mu = 0.0
var = 1.0
sigma = np.sqrt(var)

Number of nodes to represent the random variable.
n_expan = 5

Calls the hermite-gauss quadrature to obtaine nodes and weights.
x,w = heq.hermitequad(n_expan,2)

Transforming the nodes.
alpha = mu + sigma∗x

Initial condition.
u_init = beta∗np.ones((n_expan,1))

88 Appendix B. Implemented code

Determine the solutions.
u = odeint(rhs.rhs,u_init [:,0], t_span,tuple([alpha]))

Calculates the estimated mean and variance solution.
mu_estimate = 1/np.sqrt(2∗np.pi)∗sum(w∗u,axis=1)
var_estimate = 1/np.sqrt(2∗np.pi)∗\

sum(w∗((u−np.tile(mu_estimate,[n_expan,1]).T))∗∗2,axis=1)

Exact mean and variance solutions.
mu_exact = beta∗exp(0.5∗(sigma∗∗2∗t_span∗∗2 + 2.∗mu∗t_span))
var_exact = beta∗∗2∗exp(2∗sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)\

− beta∗∗2∗exp(sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)
std = np.sqrt(var_estimate)

Code for the SCM to solve the stochastic Test equation with α(Z) ∼ U(−1, 1).
import numpy as np
from matplotlib.pylab import ∗
import time
import rhs as rhs
from scipy.integrate import odeint
import legendrepol as lep
import legendrequad as leq

Set the time range
t_start = 0.0
t_final = 1.0
delta_t = 0.01
t_span = np.linspace(t_start,t_final, int(2.0/delta_t)+1)

Set initial condition
beta = 1.0

Number of nodes in random space.
n_expan = 5

Uniform distribution parameters.
a = −1.0
b = 1.0
x,w = leq.legendrequad(n_expan)

Transformation from [-1,1] to [a,b]
alpha = 0.5∗(b−a)∗x + 0.5∗(b+a)

Calculates initial condition
u_init = beta∗np.ones((n_expan,1))

Determine the solutions
u = odeint(rhs.rhs,u_init [:,0], t_span,tuple([alpha]))

B.2. 1 dimensional test code 89

Statistical parameters.
mu_estimate = 0.5∗sum(w∗u,axis=1)
var_estimate = 0.5∗\

sum(w∗((u−np.tile(mu_estimate,[n_expan,1]).T))∗∗2,axis=1)
std = np.sqrt(var_estimate)

t = t_span.copy()
t_span = t_span[1:]

Exact mean and variance solution.
mu_exact = beta/(t_span∗(b−a))∗(exp(b∗t_span)−exp(a∗t_span))
var_exact = beta∗∗2∗(1/(2∗t_span∗(b−a))∗(exp(b∗2∗t_span)−exp(a∗2∗t_span))−\

1/(t_span∗(b−a))∗∗2∗(exp(b∗t_span)−exp(a∗t_span))∗∗2)
mu_exact = r_[beta,mu_exact]
var_exact = r_[0.0,var_exact]

Convergence test where α(Z) ∼ N (0, 1)
import numpy as np
from matplotlib.pylab import ∗
import rhs as rhs
from scipy.integrate import odeint
import hermitepol as hep
import hermitequad as heq

N = np.linspace(1,20,20)

Set the time range
t_start = 0.0
t_final = 1.0
delta_t = 0.01
t_span = np.linspace(t_start,t_final, int(2.0/delta_t)+1)

Set initial condition
beta = 1.0

Normal distribution parameters.
mu = 0.0
var = 1.0
sigma = np.sqrt(var)

Preallocation.
E_mu = np.zeros((len(N),1))
E_var = np.zeros((len(N),1))
i = 0

for n in N:
n_expan = int(n)

90 Appendix B. Implemented code

Determines nodes and weights.
x,w = heq.hermitequad(n_expan,2)

Transformation from [-1,1] to [a,b]
alpha = mu + sigma∗x

Calculates initial condition
u_init = beta∗np.ones((n_expan,1))

Determine the solutions
u = odeint(rhs.rhs,u_init [:,0], t_span,tuple([alpha]))

Statistical parameters.
mu_estimate = 1/np.sqrt(2∗np.pi)∗sum(w∗u,axis=1)
mu_exact = beta∗exp(0.5∗(sigma∗∗2∗t_span∗∗2 + 2.∗mu∗t_span))

Exact mean and variance solution.
var_estimate = 1/np.sqrt(2∗np.pi)∗\

sum(w∗((u−np.tile(mu_estimate,[n_expan,1]).T))∗∗2,axis=1)
var_exact = beta∗∗2∗exp(2∗sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)\

− beta∗∗2∗exp(sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)

Determine the errors.
E_mu[i] = np.max(np.abs(mu_estimate−mu_exact))
E_var[i] = np.max(np.abs(var_estimate−var_exact))
i+=1

Code for the SGM used to solve stochastic Test equation with α(Z) ∼ N (0, 1).
import numpy as np
import scipy as sp
import scipy.misc as spm
from pylab import ∗
import he_product
import rhs as rhs
from scipy.integrate import odeint

triple_product = he_product.he_tpi
double_product = he_product.he_dpi

Initial time
t_init = 0.0
End time
t_final = 1.0
Number of time steps
dt = 0.01
Time step
n_time = int((t_final−t_init)/dt)
t_span = np.linspace(t_init,t_final,n_time)
Initial condition

B.2. 1 dimensional test code 91

beta = 1.0
Number of expansion
n_expan = 5

Parameters of the stochastic variable
mu = 0.0
var = 1.0
sigma = np.sqrt(var)

Coefficients a_i
a = np.zeros((n_expan+1,1))
a [0,0] = mu
a [1,0] = sigma

Preallocating
A = np.zeros((n_expan+1,n_expan+1))
u0 = np.zeros((n_expan+1,1))

Initial vector.
u0 [0,0] = beta

Construct the matrix containing e_{ijk}.
for j in xrange(0,n_expan+1):

for k in xrange(0,n_expan+1):
for i in xrange(0,n_expan+1):

A[j,k] = A[j,k] − a[i ,0]∗ triple_product(i , j ,k)/double_product(k,k)

Determine the solutions.
u = odeint(rhs.rhs,u0 [:,0], t_span,tuple([−A]))

n = range(1,n_expan+1)

Statistical parameters.
mu_estimate = u[:,0]
var_estimate = sum(double_product(n,n)∗u[:,1:]∗∗2,axis=1)

Exact statistical parameters
mu_exact = beta∗exp(0.5∗(sigma∗∗2∗t_span∗∗2 + 2.∗mu∗t_span))
var_exact = beta∗∗2∗exp(2∗sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)\

− beta∗∗2∗exp(sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)
std = np.sqrt(var_estimate)

Function that calculates eijk. Convergence test where α(Z) ∼ N (0, 1)
import numpy as np
import scipy as sp
import scipy.misc as spm

fac = sp.misc. factorial

92 Appendix B. Implemented code

def he_tpi(i, j ,k):

s = np.floor((i+j+k)/2)
if (s<i or s<j or s<k):

value = 0.0
elif (np.mod(i+j+k,2) != 0):

value = 0.0
else:

value = (fac(i)∗fac(j)∗fac(k))/(fac(s−i)∗fac(s−j)∗fac(s−k))
return value

def he_dpi(i,j):
if i != j :

value = 0.0
else:

value = fac(i)
return value

Convergence test where α(Z) ∼ N (0, 1)
import numpy as np
import scipy as sp
import scipy.misc as spm
from pylab import ∗
import he_product
import rhs as rhs
from scipy.integrate import odeint

triple_product = he_product.he_tpi
double_product = he_product.he_dpi

N = np.linspace(1,20,20)

Initial time
t_init = 0.0
End time
t_final = 1.0
Number of time steps
dt = 0.01
Time step
n_time = int((t_final−t_init)/dt)
t_span = np.linspace(t_init,t_final,n_time)
Initial condition
beta = 1.0

Parameters of the stochastic variable
mu = 0.0
var = 1.0
sigma = np.sqrt(var)

B.2. 1 dimensional test code 93

Preallocate error vectors
E_mu = np.zeros((len(N),1))
E_var = np.zeros((len(N),1))
l = 0

for n in N:
Number of expansion
n_expan = n

Coefficients a_i
a = np.zeros((n_expan+1,1))
a [0,0] = mu
a [1,0] = sigma

Preallocating
A = np.zeros((n_expan+1,n_expan+1))
u0 = np.zeros((n_expan+1,1))

Initial vector.
u0 [0,0] = beta

Construct the matrix containing e_{ijk}.
for j in xrange(0,int(n_expan)+1):

for k in xrange(0,int(n_expan)+1):
for i in xrange(0,int(n_expan)+1):

A[j,k] = A[j,k] − a[i ,0]∗ triple_product(i , j ,k)/double_product(k,k)

Determine the solutions.
u = odeint(rhs.rhs,u0 [:,0], t_span,tuple([−A]))

Statistical parameters.
mu_estimate = u[:,0]
mu_exact = beta∗exp(0.5∗(sigma∗∗2∗t_span∗∗2 + 2.∗mu∗t_span))

n = range(1,int(n_expan)+1)
var_estimate = sum(double_product(n,n)∗u[:,1:]∗∗2,axis=1)
var_exact = beta∗∗2∗exp(2∗sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)\

− beta∗∗2∗exp(sigma∗∗2∗t_span∗∗2 + 2∗mu∗t_span)
std = np.sqrt(var_estimate)

Calculates the errors.
E_mu[l] = np.max(np.abs(mu_estimate−mu_exact))
E_var[l] = np.max(np.abs(var_estimate−var_exact))
l+=1

94 Appendix B. Implemented code

B.2.2 Stochastic Burger’s equation

Code for the Monte Carlo method used to solve stochastic Burger’s equation with
δ1(Z) ∼ U(0, 0.1).
import numpy as np
import jacobipol
from matplotlib.pyplot import ∗
from scipy.integrate import odeint
import time

JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

Right hand side function
def rhs(u,t ,v,D,D2):

u = −u∗np.dot(D,u) + v∗np.dot(D2,u)
u[0] = 0.0
u[−1] = 0.0
return u

Initial condition function.
def init (x):

u_init = −x
return u_init

Vandermonde matrix function
def vanderMat(x):

N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

Differentiated vandermonde matrix function
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

Number of expansions
n_expan = 1000

Left spacial bound
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 80
Space step
dx = (x_right−x_left)/n_space

B.2. 1 dimensional test code 95

Initial time
t_init = 0.0
End time
t_final = 1000.0
Time step
dt = 0.31
Number of time steps
n_time = int(np.ceil((t_final/dt)))

parameter nu
nu = 0.05

Uniform distribution parameters.
a = 0.0
b = 0.1

Time step vector.
t_span = np.linspace(0,t_final,n_time)

Spatial nodes is determined.
alpha = 0.0
beta = 0.0
x,w = JacobiGL(alpha,beta,n_space)

Determine the Vandermonde matrices.
V = vanderMat(x)
Vx = vanderMatx(x)

Determine the Differential matrices and the squared differential matrix.
D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

Preallocating.
u_final = np.zeros((len(x),n_expan))

Creating the M random numbers
delta = np.random.uniform(a,b,n_expan)

for n in range(1,len(delta)+1):
Initial condition.
u_init = init(x)
Adding the uncertainty.
u_init[0] = u_init[0] + delta[n−1]

Initial tolerance, which must be too big.
tol = 1
max_iter = 1
Time step

96 Appendix B. Implemented code

dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)

while tol> 10∗∗(−6) and max_iter < 10∗∗5:
Solve the system in the next nt_jump time steps
u = odeint(rhs,u_init,t_span,tuple([nu,D,D2]))

Find the difference between the solution to the first and the last
element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init−u_check))

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init = u_check
max_iter += 1

Save the steady state solution.
u_final [:, n−1] = u_check

Calculates the statistical parameters.
mu_estimate = np.mean(u_final,axis =1)
var_estimate = np.var(u_final,axis =1)
std = np.sqrt(var_estimate)

Code for the SCM used to solve stochastic Burger’s equation with δ1(Z) ∼ U(0, 0.1).
import numpy as np
from scipy.sparse. linalg .dsolve import linsolve
import matplotlib.pyplot as plt
from pylab import ∗
from scipy.integrate import odeint
import legendrequad
import jacobipol
from time import ∗
import scipy.sparse as sparse

legendrequad = legendrequad.legendrequad
JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

Initial condition function.
def init (x):

return −x
Vandermonde matrix function

B.2. 1 dimensional test code 97

def vanderMat(x):
N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

Differentiated vandermonde matrix function
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

Right hand side function
def rhs_SCM(u,t,nu,D,D2,B):

u = −u∗np.dot(D,u) + nu∗np.dot(D2,u)
u = u∗B
return u

Number of time steps
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 39
Space step
dx = (x_right−x_left)/n_space
The parameter nu
nu = 0.05

Interval of the uniform boundary
a = 0.0
b = 0.1

Number of boundary nodes
n_expan = 5
z,w = legendrequad(n_expan)

Transform from interval [-1,1] to [a,b]
delta = (b−a)/2∗z + (b+a)/2

Spatial nodes is determined.
alpha = 0.0
beta = 0.0
x,w_nu = JacobiGL(alpha,beta,n_space)

Determine the Vandermonde matrices.
V = vanderMat(x)
Vx = vanderMatx(x)

Determine the Differential matrices and the squared differential matrix.
D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

98 Appendix B. Implemented code

Initial condition.
u_init = init(x)
u_init = u_init

Expanding the system so in contains the deterministic systems.
D_expan = np.kron(np.identity(n_expan),D)
D2_expan = np.kron(np.identity(n_expan),D2)
u_init_expan = np.tile(u_init,n_expan)
delta_expan = np.zeros(((n_expan)∗(n_space+1),1))

for i in xrange(0,n_expan):
delta_expan[i∗(n_space+1):(i∗(n_space+1)+n_space+1),:]\
=delta[i]∗np.ones((n_space+1,1))

u_init_expan[u_init_expan>0] = u_init_expan[u_init_expan>0]\
∗(1+delta_expan[u_init_expan>0,0])

Boundary slope condition.
B = np.ones((n_space+1,1))
B = B[:,0]
B[0] = 0.0
B[−1] = 0.0
B = np.tile(B,n_expan)

Initial tolerance, which must be too big.
tol = 1
max_iter = 1
Time step
dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)

while tol> 10∗∗(−6) and max_iter < 10∗∗5:
Solve the system in the next nt_jump time steps
u = odeint(rhs_SCM,u_init_expan,t_span,\

tuple ([nu,D_expan,D2_expan,B]))
Find the difference between the solution to the first and the last
element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init_expan−u_check))

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init_expan = u_check

B.2. 1 dimensional test code 99

max_iter += 1

Save the steady state solution.
u_sol = u_check.reshape(n_space+1,n_expan,order=’F’)

Expand the weights to the right size.
w_expan = np.tile(w,(n_space+1,1))

Calculates the statistical parameters.
mu_estimate = 0.5∗np.sum(w_expan∗u_sol,axis=1)
var_estimate = 0.5∗np.sum(w_expan∗\

((u_sol−np.tile(mu_estimate,[n_expan,1]).T))∗∗2,axis=1)
std = np.sqrt(var_estimate)

Code for the SGM used to solve stochastic Burger’s equation with δ1(Z) ∼ U(0, 0.1).
import numpy as np
import scipy as sp
import scipy.misc as spm
from pylab import ∗
import mtx_e as mtx
import le_product
import legendrequad
import rhs_burger as rhsb
from scipy.integrate import odeint
import jacobipol as jac

mtx = mtx.mtx
legendrequad = legendrequad.legendrequad
double_product = le_product.legendre_double_product

def init (x):
return −x

nu = 0.05
Initial time
t_init = 0.0
End time
t_final = 100.0
Number of time steps
n_time = 1000
Time step
#dt = (t_final-t_init)/n_time
#dt = 0.001
n_time = int(n_time)
Left spacial bound
x_left = −1.0
Right spacial bound
x_right = 1.0

100 Appendix B. Implemented code

Number of spacial steps
n_space = 39

Space step
dx = (x_right−x_left)/n_space
Number of expansion
n_expan = 6

t_span = np.linspace(t_init,t_final,n_time+1)

Setup time and space
t = np.zeros((n_time+1,1))
x = linspace(−1,1,n_space+1)

b_mean =0.05
#b_std = np.sqrt(1.0/12.0*(0.1-0.0)**2)
b_std = 1.0/np.sqrt(12)∗(1.1−1.0)

Initial condition computed
u_init = init(x[1:−1])

Pre-allocation
u_space = np.zeros((n_space+1,n_expan+1))
u_time = np.zeros((n_space+1,n_time+1))

Impose boundary condition and initial condition
u_space[0,0] = 1.0+b_mean
u_space[0,1] = b_std
u_space[1:−1,0] = u_init
u_space[−1,0] = −1.0

Store mean solution for t=0.
u_time[:,0] = u_space[:,0]

Setup all expansions on vectorform
u_space_vec = u_space[1:−1,:].flatten(1)[:,np.newaxis]

one = np.ones((n_space−1,1))

Stencilmatrix for the double differentiation term
A = nu/(dx∗∗2.)∗(np.diag(one[1:,0],−1) + np.diag(one[1:,0],1)\

+ np.diag(−2.∗one [:,0],0))

Stencilmatrix for the sigle differentiation term
B = 1./(2.∗dx)∗(np.diag(−one[1:,0],−1) + np.diag(one [1:,0],1))

Vector conpemsate with the boundary
g = np.zeros((n_space−1,1))

B.2. 1 dimensional test code 101

Repetition og the u matrix
I = np.tile(np.eye(n_space−1),(1,n_expan+1))
u_space_I = u_space_vec.T∗I

#Pre-allocation
C = zeros(((n_expan+1),(n_expan+1),n_expan+1))
CB = zeros(((n_space−1)∗(n_expan+1),(n_space−1)∗(n_expan+1),n_expan+1))

for l in xrange(0,n_expan+1):
Matrix containing e_{i,j,k}
C [:,:, l] = mtx(l,n_expan+1)
Kronecker product between the stencilmatrix B and the e_{i,j,k}-matrix
CB [:,:, l] = np.kron(C[:,:, l], B)

for i in xrange(0,n_time):
u1 = u_space[1,:]
u2 = u_space[−2,:]
for k in xrange(0,n_expan+1):

g [0,0] = 0.0
g[−1,0] = 0.0

for kk in xrange(0,n_expan+1):
g [0,0] = g[0,0]+ u_space[0,kk]∗(1./(2.∗dx)∗sum(C[:,kk,k]\

∗u1))
g[−1,0] = g[−1,0] + u_space[−1,kk]∗(−1./(2.∗dx)∗sum(C[:,kk,k]\

∗(u2)))

g [0,0] = 1./double_product(k,k)∗g[0,0] + u_space[0,k]∗nu/(dx∗∗2.)
g[−1,0] = 1./double_product(k,k)∗g[−1,0] + u_space[−1,k]∗nu/(dx∗∗2.)

u = u_space[1:−1,k][:,np.newaxis]

u_temp = odeint(rhsb.rhs,u[:,0],t_span[i: i+2],\
tuple ([u_space_vec[:,0],u_space_I,A,CB[:,:,k],g [:,0], k,n_space]))

u_temp = u_temp[−1,:]
u_space[1:−1,k] = u_temp

print t_span[i]
u_time[:,i+1] = u_space[:,0]
u_space_vec = u_space[1:−1,:].flatten(1)[:,np.newaxis]
u_space_I = u_space_vec.T∗I

mu_estimate = u_time[:,−1]
n = np.linspace(1,n_expan,n_expan)
gamma_n = 2.0/(2.0∗n+1.0)

var_estimate = np.sum(gamma_n∗u_space[:,1:]∗∗2,1)
std = np.sqrt(var_estimate)

102 Appendix B. Implemented code

B.3 Multidimensional test code

B.3.1 Stochastic Test equation (d = 2) - SCM

import numpy as np
from matplotlib.pylab import ∗
import time
import rhs as rhs
from scipy.integrate import odeint
import hermitequad as heq
import legendrequad as leq
from cartesian import ∗

Initial condition function.
def init (t ,a,b):

u = b∗np.exp(a∗t)
return u

Set the time range
t_start = 0.0
t_final = 1.0
delta_t = 0.01
t_span = np.linspace(t_start,t_final, int(2.0/delta_t)+1)

Set initial condition
beta = 1.0

Statistical parameters for the random variables.
mu1 = 0.0
var1 = 1.0
sigma1 = np.sqrt(var1)

mu2 = 1.0
var2 = 0.1
sigma2 = np.sqrt(var2)

Number of realizations to represent the random variables.
n_expan = 6

x1,w1 = heq.hermitequad(n_expan,2)
x2,w2 = heq.hermitequad(n_expan,2)

Transformation.
Theta_1 = mu1 + sigma1∗x1
Theta_2 = mu2 + sigma2∗x2

Create all combinations of the nodes
nodes = cartesian((Theta_1,Theta_2))

B.3. Multidimensional test code 103

Split into two different vectors
A = nodes[:,0]
B = nodes[:,1]

Create all combinations of the weights
W_all = cartesian((w1,w2))

Split into two different vectors
W1 = W_all[:,0]
W2 = W_all[:,1]

Multiple all the combinations of weights
W = W1∗W2

Determine the initial condition.
u_init = init (0,A,B)

Determine the solutions.
u = odeint(rhs.rhs,u_init,t_span,tuple([A]))

Calculates the estimate statistics
mu_estimate = (1/np.sqrt(2∗np.pi))∗∗2∗np.sum(np.tile(W,[len(t_span),1])∗u,1)
var_estimate = 1/np.sqrt(2∗np.pi)∗∗2∗\

sum(W∗((u−np.tile(mu_estimate,[n_expan∗n_expan,1]).T))∗∗2,axis=1)

Calculates the exact statistics.
mu_exact = mu2∗exp(0.5∗(sigma1∗∗2∗t_span∗∗2 + 2.∗mu1∗t_span))
var_exact = (mu2∗∗2 + sigma2∗∗2)∗exp(2∗sigma1∗∗2∗t_span∗∗2 + 2∗mu1∗t_span)\

− mu2∗∗2∗exp(sigma1∗∗2∗t_span∗∗2 + 2∗mu1∗t_span)
std = np.sqrt(var_estimate)

B.3.2 Stochastic Test equation (d = 2) - Convergence test

import numpy as np
from matplotlib.pylab import ∗
import time
import rhs as rhs
from scipy.integrate import odeint
import hermitequad as heq
import legendrequad as leq
from cartesian import ∗

Initial condition function.
def init (t ,a,b):

u = b∗np.exp(a∗t)
return u

Set the time range

104 Appendix B. Implemented code

t_start = 0.0
t_final = 1.0
delta_t = 0.01
t_span = np.linspace(t_start,t_final, int(2.0/delta_t)+1)

Set initial condition
beta = 1.0

Statistical parameters for the random variables.
mu1 = 0.0
var1 = 1.0
sigma1 = np.sqrt(var1)

mu2 = 1.0
var2 = 0.1
sigma2 = np.sqrt(var2)

E = np.zeros((19,1))
V = np.zeros((19,1))
M = np.zeros((19,1))

for i in range(2,21):
n_expan = i

x1,w1 = heq.hermitequad(n_expan,2)
x2,w2 = heq.hermitequad(n_expan,2)

Transformation.
Theta_1 = mu1 + sigma1∗x1
Theta_2 = mu2 + sigma2∗x2

Create all combinations of the nodes
nodes = cartesian((Theta_1,Theta_2))

Split into two different vectors
A = nodes[:,0]
B = nodes[:,1]

Create all combinations of the weights
W_all = cartesian((w1,w2))

Split into two different vectors
W1 = W_all[:,0]
W2 = W_all[:,1]

Multiple all the combinations of weights
W = W1∗W2

Determine the initial condition.

B.3. Multidimensional test code 105

u_init = init (0,A,B)

Determine the solutions.
u = odeint(rhs.rhs,u_init,t_span,tuple([A]))

Calculates the estimate statistics
mu_estimate = (1/np.sqrt(2∗np.pi))∗∗2∗np.sum(np.tile(W,[len(t_span),1])∗u,1)
var_estimate = 1/np.sqrt(2∗np.pi)∗∗2∗\

sum(W∗((u−np.tile(mu_estimate,[n_expan∗n_expan,1]).T))∗∗2,axis=1)

Calculates the exact statistics.
mu_exact = mu2∗exp(0.5∗(sigma1∗∗2∗t_span∗∗2 + 2.∗mu1∗t_span))
var_exact = (mu2∗∗2 + sigma2∗∗2)∗exp(2∗sigma1∗∗2∗t_span∗∗2 + 2∗mu1∗t_span)\

− mu2∗∗2∗exp(sigma1∗∗2∗t_span∗∗2 + 2∗mu1∗t_span)
std = np.sqrt(var_estimate)

Calculates the errors.
E[i−2,0] = np.max(np.abs(mu_estimate−mu_exact))
V[i−2,0] = np.max(np.abs(var_estimate−var_exact))
M[i−2,0] = n_expan∗∗2

B.3.3 Sparse matrix test

import numpy as np
from scipy.sparse. linalg .dsolve import linsolve
import matplotlib.pyplot as plt
from pylab import ∗
from scipy.integrate import odeint
import legendrequad
import jacobipol
import hermitequad
from time import ∗
import scipy.sparse as sparse
from cartesian import ∗

Initial condition function.
def init (x):

return −x
Vandermonde matrix function
def vanderMat(x):

N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

Differentiated vandermonde matrix function
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

106 Appendix B. Implemented code

Right hand side function for full matrices
def rhs_full(u,t ,nu,D,D2,B):

u = −u∗np.dot(D,u) + nu∗np.dot(D2,u)
u = u∗B
return u

Right hand side function for sparse matrices
def rhs_sp(u,t,nu,D,D2,B):

u = −u∗D.dot(u) + nu∗D2.dot(u)
u = u∗B
return u

hermitequad = hermitequad.hermitequad
legendrequad = legendrequad.legendrequad
JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

Number of time steps
x_left = −1.0
Right spacial bound
x_right = 1.0

t_span = 0

Interval of the uniform boundary
a1 = 0.0
b1 = 0.1

a2 = 0.0
b2 = 0.1

Statistical parameters for v.
mu_nu = 0.2
var_nu = 0.001
std_nu = np.sqrt(var_nu)

Define the combinations that the timings must be performed at.
M = np.array((39,49,59,69))
N1 = np.array((4,5,6))

MN = cartesian((M,N1))
MN = c_[MN[:,0],MN[:,1],MN[:,1],MN[:,1]]
P = np.product(MN,axis=1)
MNP = c_[MN,P]

I = np.argsort(MNP.T)

MNP1 = MNP[I[−1,:]]

B.3. Multidimensional test code 107

T_full = np.zeros((len(MNP1),1))
T_sp = np.zeros((len(MNP1),1))

for i in range(len(MNP1)):
Number of nodes representing randomvariables
n_expan1 = MNP1[i,1]
n_expan2 = MNP1[i,2]
n_expan3 = MNP1[i,3]
Number of spacial steps
n_space = MNP1[i,0]

z1,w1 = legendrequad(n_expan1−1)
z2,w2 = legendrequad(n_expan2−1)
nu,w_nu = hermitequad(n_expan3−1,2)

Transforming weights.
w1 = w1/2
w2 = w2/2
w3 = 1/np.sqrt(2∗np.pi)∗w_nu

Transform from interval [-1,1] to [a,b]
delta1 = (b1−a1)/2∗z1 + (b1+a1)/2
delta2 = (b2−a2)/2∗z2 + (b2+a2)/2
Transforming the v parameter
nu = mu_nu + std_nu∗nu

Makes all possible combinations between all abscissas.
delta_temp = cartesian((delta1,delta2,nu))
Delta1 = delta_temp[:,0]
Delta2 = delta_temp[:,1]
Nu = delta_temp[:,2]

Makes all possible combinations between all weights.
W_temp = cartesian((w1,w2,w3))
W1 = W_temp[:,0]
W2 = W_temp[:,1]
W3 = W_temp[:,2]

W = W1∗W2∗W3

Determine the total number of deterministic systems that have to be
solved.
new_dim = (n_expan1−1)∗(n_expan2−1)∗(n_expan3−1)

To the deterministic solver
alpha = 0.0
beta = 0.0
x,w_nu = JacobiGL(alpha,beta,n_space)

108 Appendix B. Implemented code

Determine the Vandermonde matrices.
V = vanderMat(x)
Vx = vanderMatx(x)

Differential matrices
D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

Expand the differential matrices.
D_expan = sparse.kron(sparse.eye(new_dim,new_dim),D)
D2_expan = sparse.kron(sparse.eye(new_dim,new_dim),D2)

Initial condtion.
u_init = init(x)
Expand the nu parameter.
Nu_expan = np.repeat(Nu,n_space+1)

Expand the initial condtion.
u_init_expan = np.tile(u_init,new_dim)
u_init_expan[0:−1:(n_space+1)] =\

u_init_expan[0:−1:(n_space+1)] + Delta1
u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] = \

u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] + Delta2

Boundary slope condition.
B = np.ones((n_space+1,1))
B = B[:,0]
B[0] = 0.0
B[−1] = 0.0
B = np.tile(B,new_dim)

Initial tolerance, which must be too big.
tol = 1
max_iter = 1
Time step
dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)
t1 = time()
while tol> 10∗∗(−6) and max_iter < 10∗∗5:

Solve the system in the next nt_jump time steps
u = odeint(rhs_sp,u_init_expan,t_span,\

tuple ([Nu_expan,D_expan,D2_expan,B]))
Find the difference between the solution to the first and the last

B.3. Multidimensional test code 109

element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init_expan−u_check))

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init_expan = u_check

max_iter += 1
T_sp[i,0] = time()−t1

B.3.4 Stochastic Burger’s equation (d = 3) - SCM

import numpy as np
from scipy.sparse. linalg .dsolve import linsolve
import matplotlib.pyplot as plt
from pylab import ∗
from scipy.integrate import odeint
import legendrequad
import jacobipol
import hermitequad
from time import ∗
import scipy.sparse as sparse
from cartesian import ∗

hermitequad = hermitequad.hermitequad
legendrequad = legendrequad.legendrequad
JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

Initial condition function.
def init (x):

return −x
Vandermonde matrix function
def vanderMat(x):

N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

Differentiated vandermonde matrix function
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

Right hand side function
def rhs_SCM(u,t,nu,D,D2,B):

u = −u∗D.dot(u) + nu∗D2.dot(u)
u = u∗B

110 Appendix B. Implemented code

return u

Number of time steps
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 39
Space step
dx = (x_right−x_left)/n_space
The parameter nu

Interval of the uniform boundary
a1 = 0.0
b1 = 0.1

a2 = 0.0
b2 = 0.1

Statistical parameters for v.
mu_nu = 0.2
var_nu = 0.001
std_nu = np.sqrt(var_nu)

Number of nodes representing random variables
n_expan = 5
z1,w1 = legendrequad(n_expan−1)
z2,w2 = legendrequad(n_expan−1)
nu,w_nu = hermitequad(n_expan−1,2)

Transforming weights.
w1 = w1/2
w2 = w2/2
w3 = 1/np.sqrt(2∗np.pi)∗w_nu

Transform from interval [-1,1] to [a,b]
delta1 = (b1−a1)/2∗z1 + (b1+a1)/2
delta2 = (b2−a2)/2∗z2 + (b2+a2)/2
Transforming the v parameter
nu = mu_nu + std_nu∗nu

Makes all possible combinations between all abscissas.
delta_temp = cartesian((delta1,delta2,nu))
Delta1 = delta_temp[:,0]
Delta2 = delta_temp[:,1]
Nu = delta_temp[:,2]

Makes all possible combinations between all weights.
W_temp = cartesian((w1,w2,w3))

B.3. Multidimensional test code 111

W1 = W_temp[:,0]
W2 = W_temp[:,1]
W3 = W_temp[:,2]

W = W1∗W2∗W3

Determine the total number of deterministic systems that have to be
solved.
new_dim = (n_expan−1)∗∗3

To the deterministic solver
alpha = 0.0
beta = 0.0
x,w_nu = JacobiGL(alpha,beta,n_space)

Determine the Vandermonde matrices.
V = vanderMat(x)
Vx = vanderMatx(x)

Differential matrices
D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

Expand the differential matrices.
D_expan = sparse.kron(sparse.eye(new_dim,new_dim),D)
D2_expan = sparse.kron(sparse.eye(new_dim,new_dim),D2)

Initial condtion.
u_init = init(x)
Expand the nu parameter.
Nu_expan = np.repeat(Nu,n_space+1)

Expand the initial condtion.
u_init_expan = np.tile(u_init,new_dim)
u_init_expan[0:−1:(n_space+1)] =\

u_init_expan[0:−1:(n_space+1)] + Delta1
u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] = \

u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] + Delta2

Boundary slope condition.
B = np.ones((n_space+1,1))
B = B[:,0]
B[0] = 0.0
B[−1] = 0.0
B = np.tile(B,new_dim)

Initial tolerance, which must be too big.
tol = 1
max_iter = 1

112 Appendix B. Implemented code

Time step
dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)

while tol> 10∗∗(−6) and max_iter < 10∗∗5:
t1 = time()
Solve the system in the next nt_jump time steps
u = odeint(rhs_SCM,u_init_expan,t_span,\

tuple ([Nu_expan,D_expan,D2_expan,B]))
t3 = time()−t1
Find the difference between the solution to the first and the last
element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init_expan−u_check))

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init_expan = u_check

max_iter += 1

Save the steady state solution.
u_sol = u_check.reshape(n_space+1,new_dim,order=’F’)

Calculates the statistical parameters.
mu_estimate = np.sum(W∗u_sol,axis=1)
var_estimate = np.sum(W∗\

((u_sol−np.tile(mu_estimate,[new_dim,1]).T))∗∗2,axis=1)
std = np.sqrt(var_estimate)

B.4 Sparse grid implementations and tests
Code construction two dimensional full grid and tensor grid.
import numpy as np
from scipy.sparse. linalg .dsolve import linsolve
import matplotlib.pyplot as plt
from pylab import ∗
from scipy.integrate import odeint
import legendrequad
import jacobipol
import hermitequad
from time import ∗

B.4. Sparse grid implementations and tests 113

import scipy.sparse as sparse
from cartesian import ∗

hermitequad = hermitequad.hermitequad
legendrequad = legendrequad.legendrequad
JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

def init (x):
return −x

def vanderMat(x):
N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

def vanderMatx(x):
N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

def rhs_SCM(u,t,nu,D,D2,B):
u = −u∗np.dot(D,u) + nu∗np.dot(D2,u)
u = u∗B
return u

Number of time steps
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 29
Space step
dx = (x_right−x_left)/n_space
The parameter nu
nu = 0.05

Interval of the uniform boundary
a1 = 0.0
b1 = 0.1

a2 = 0.0
b2 = 0.1

Number of boundary nodes
n_expan = 10
z1,w1 = legendrequad(n_expan−1)
z2,w2 = legendrequad(n_expan−1)

114 Appendix B. Implemented code

#x1 = np.array([0.0,-1.0,1.0,0.0,0.0,-np.sqrt(0.5),np.sqrt(0.5)\
#,-1.0,1.0,-1.0,1.0,0.0,0.0])
#x2 = np.array([0.0,0.0,0.0,-1.0,1.0,0.0,0.0,-1.0,-1.0,1.0,1.0,\
#-np.sqrt(0.5),np.sqrt(0.5)])

y1 = np.array([−0.774596669241483,0.0,0.774596669241483,0.0,0.0,0.0,\
−0.949107912342758,−0.741531185599394,−0.405845151377397,0.405845151377397,\
0.741531185599394,0.949107912342758,−0.774596669241483,0.774596669241483,\
−0.774596669241483,0.774596669241483,0.0,0.0,0.0,0.0,0.0,0.0])

y2 = np.array([0.0,0.0,0.0,−0.774596669241483,0.0,0.774596669241483,0.0\
,0.0,0.0,0.0,0.0,0.0,−0.774596669241483,−0.774596669241483,\
0.774596669241483,0.774596669241483,−0.949107912342758,−0.741531185599394,\
−0.405845151377397,0.405845151377397,0.741531185599394,0.949107912342758])

w1 = w1/2
w2 = w2/2

Transform from interval [-1,1] to [a,b]
delta1 = (b1−a1)/2∗z1 + (b1+a1)/2
delta2 = (b2−a2)/2∗z2 + (b2+a2)/2

z_temp = cartesian((z1,z2))

plot(z_temp[:,0],z_temp[:,1], ’ . ’)

delta_temp = cartesian((delta1,delta2))

Delta1 = delta_temp[:,0]
Delta2 = delta_temp[:,1]

Delta1 = (b1−a1)/2∗y1 + (b1+a1)/2
Delta2 = (b2−a2)/2∗y2 + (b2+a2)/2

W_temp = cartesian((w1,w2))

W1 = W_temp[:,0]
W2 = W_temp[:,1]

W = W1∗W2

#new_dim = (n_expan-1)**2
new_dim = len(Delta1)
To the deterministic solver
alpha = 0.0
beta = 0.0

x,w_nu = JacobiGL(alpha,beta,n_space)

B.4. Sparse grid implementations and tests 115

V = vanderMat(x)
Vx = vanderMatx(x)

D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

D_expan = np.kron(np.identity(new_dim),D)
D2_expan = np.kron(np.identity(new_dim),D2)

u_init = init(x)

u_init_expan = np.tile(u_init,new_dim)
u_init_expan[0:−1:(n_space+1)] =\

u_init_expan[0:−1:(n_space+1)] + Delta1
u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] = \

u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] + Delta2

B = np.ones((n_space+1,1))
B = B[:,0]
B[0] = 0.0
B[−1] = 0.0
B = np.tile(B,new_dim)

tol = 1
max_iter = 1
dt = 0.1
nt_jump = 1000
t_end = dt∗nt_jump
t_span = np.linspace(0,t_end,nt_jump)

while tol> 10∗∗(−6) and max_iter < 10∗∗5:
u = odeint(rhs_SCM,u_init_expan,t_span,\

tuple ([nu,D_expan,D2_expan,B]))
u_check = u[−1,:]
tol = max(np.abs(u_init_expan−u_check))
print tol

t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init_expan = u_check

max_iter += 1

u_sol = u_check.reshape(n_space+1,new_dim,order=’F’)

Wx = np.array([−0.088888888888889,−0.022222222222222,\
−0.022222222222222,−0.022222222222222,−0.022222222222222\
,0.266666666666667,0.266666666666667,0.027777777777778,\

116 Appendix B. Implemented code

0.027777777777778,0.027777777777778,0.027777777777778,\
0.266666666666667,0.266666666666667])

Wy = np.array([−0.617283950617284,0.684182413706223,−0.617283950617284,\
−0.617283950617284,−1.777777777777778,−0.617283950617284,\
0.258969932337739,0.559410782978553,0.763660101010238,0.763660101010238,\
0.559410782978553,0.258969932337739,0.308641975308642,0.308641975308642,\
0.308641975308642,0.308641975308642,0.258969932337739,0.559410782978553,\
0.763660101010238,0.763660101010238,0.559410782978553,0.258969932337739])/4

mu_estimate = np.sum(Wy∗u_sol,axis=1)
var_estimate = np.sum(Wy∗\

((u_sol−np.tile(mu_estimate,[new_dim,1]).T))∗∗2,axis=1)
std = np.sqrt(var_estimate)

The implementation with full tensor grid for the stochastic Burger’s equation where the
3 random variables follows an Uniform distribution.
import numpy as np
from scipy.sparse. linalg .dsolve import linsolve
import matplotlib.pyplot as plt
from pylab import ∗
from scipy.integrate import odeint
import legendrequad
import jacobipol
import hermitequad
from time import ∗
import scipy.sparse as sparse
from cartesian import ∗

hermitequad = hermitequad.hermitequad
legendrequad = legendrequad.legendrequad
JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

Initial condition function.
def init (x):

return −x
Vandermonde matrix function
def vanderMat(x):

N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

Differentiated vandermonde matrix function
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

Right hand side function

B.4. Sparse grid implementations and tests 117

def rhs_SCM(u,t,nu,D,D2,B):
u = −u∗D.dot(u) + nu∗D2.dot(u)
u = u∗B
return u

Number of time steps
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 39
Space step
dx = (x_right−x_left)/n_space
The parameter nu

Interval of the uniform boundary
a1 = 0.0
b1 = 0.1

a2 = 0.0
b2 = 0.1

Statistical parameters for v.
a3 = 0.05
b3 = 0.35

Number of nodes representing random variables
n_expan = 7
z1,w1 = legendrequad(n_expan)
z2,w2 = legendrequad(n_expan)
z3,w3 = legendrequad(n_expan)

Transforming weights.
w1 = w1/2
w2 = w2/2
w3 = w3/2

Transform from interval [-1,1] to [a,b]
delta1 = (b1−a1)/2∗z1 + (b1+a1)/2
delta2 = (b2−a2)/2∗z2 + (b2+a2)/2
nu = (b3−a3)/2∗z3 + (b3+a3)/2
Makes all possible combinations between all abscissas.
delta_temp = cartesian((delta1,delta2,nu))
Delta1 = delta_temp[:,0]
Delta2 = delta_temp[:,1]
Nu = delta_temp[:,2]

Makes all possible combinations between all weights.
W_temp = cartesian((w1,w2,w3))

118 Appendix B. Implemented code

W1 = W_temp[:,0]
W2 = W_temp[:,1]
W3 = W_temp[:,2]

W = W1∗W2∗W3

Determine the total number of deterministic systems that have to be
solved.
new_dim = (n_expan)∗∗3

To the deterministic solver
alpha = 0.0
beta = 0.0
x,w_nu = JacobiGL(alpha,beta,n_space)

Determine the Vandermonde matrices.
V = vanderMat(x)
Vx = vanderMatx(x)

Differential matrices
D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

Expand the differential matrices.
D_expan = sparse.kron(sparse.eye(new_dim,new_dim),D)
D2_expan = sparse.kron(sparse.eye(new_dim,new_dim),D2)

Initial condtion.
u_init = init(x)
Expand the nu parameter.
Nu_expan = np.repeat(Nu,n_space+1)

Expand the initial condtion.
u_init_expan = np.tile(u_init,new_dim)
u_init_expan[0:−1:(n_space+1)] =\

u_init_expan[0:−1:(n_space+1)] + Delta1
u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] = \

u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] + Delta2

Boundary slope condition.
B = np.ones((n_space+1,1))
B = B[:,0]
B[0] = 0.0
B[−1] = 0.0
B = np.tile(B,new_dim)

Initial tolerance, which must be too big.
tol = 1
max_iter = 1

B.4. Sparse grid implementations and tests 119

Time step
dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)

t1 = time()
while tol> 10∗∗(−6) and max_iter < 10∗∗5:

Solve the system in the next nt_jump time steps
u = odeint(rhs_SCM,u_init_expan,t_span,\

tuple ([Nu_expan,D_expan,D2_expan,B]))

Find the difference between the solution to the first and the last
element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init_expan−u_check))

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init_expan = u_check
print ’ tol : ’ , tol , ’ index: ’ ,n
max_iter += 1

Timing[n,0] = time()−t1
Save the steady state solution.
u_sol = u_check.reshape(n_space+1,new_dim,order=’F’)

Calculates the statistical parameters.
mu_estimate = np.sum(W∗u_sol,axis=1)
var_estimate = np.sum(W∗\

((u_sol−np.tile(mu_estimate,[new_dim,1]).T))∗∗2,axis=1)
std = np.sqrt(var_estimate)

The implementation with sparse grid for the stochastic Burger’s equation where the 3
random variables follows an Uniform distribution.
import numpy as np
from scipy.sparse. linalg .dsolve import linsolve
import matplotlib.pyplot as plt
from pylab import ∗
from scipy.integrate import odeint
import legendrequad
import jacobipol
import hermitequad
from time import ∗
import scipy.sparse as sparse
from cartesian import ∗
import scipy.io as sio

120 Appendix B. Implemented code

hermitequad = hermitequad.hermitequad
legendrequad = legendrequad.legendrequad
JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

mat = sio.loadmat(’C:/Users/miv_kjaer/Dropbox/Kun mig − speciale UQ/\
Python/Methods/SCM/Burgers equation/Multidimensional/sparsegrid3d.mat’)
data = mat[’zw’]

y1 = data [:,0]
y2 = data [:,1]
y3 = data [:,2]
W = data[:,3]/8

Initial condition function.
def init (x):

return −x
Vandermonde matrix function
def vanderMat(x):

N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

Differentiated vandermonde matrix function
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

Right hand side function
def rhs_SCM(u,t,nu,D,D2,B):

u = −u∗D.dot(u) + nu∗D2.dot(u)
u = u∗B
return u

Number of time steps
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 39
Space step
dx = (x_right−x_left)/n_space
The parameter nu

Interval of the uniform boundary
a1 = 0.0
b1 = 0.1

B.4. Sparse grid implementations and tests 121

a2 = 0.0
b2 = 0.1

a3 = 0.05
b3 = 0.35

Transform from interval [-1,1] to [a,b]
Delta1 = (b1−a1)/2∗y1 + (b1+a1)/2
Delta2 = (b2−a2)/2∗y2 + (b2+a2)/2
nu = (b3−a3)/2∗y3 + (b3+a3)/2

Determine the total number of deterministic systems that have to be
solved.
new_dim = (len(y1))

To the deterministic solver
alpha = 0.0
beta = 0.0
x,w_nu = JacobiGL(alpha,beta,n_space)

Determine the Vandermonde matrices.
V = vanderMat(x)
Vx = vanderMatx(x)

Differential matrices
D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

Expand the differential matrices.
D_expan = sparse.kron(sparse.eye(new_dim,new_dim),D)
D2_expan = sparse.kron(sparse.eye(new_dim,new_dim),D2)

Initial condtion.
u_init = init(x)
Expand the nu parameter.
Nu_expan = np.repeat(nu,n_space+1)

Expand the initial condtion.
u_init_expan = np.tile(u_init,new_dim)
u_init_expan[0:−1:(n_space+1)] =\

u_init_expan[0:−1:(n_space+1)] + Delta1
u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] = \

u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] + Delta2

Boundary slope condition.
B = np.ones((n_space+1,1))
B = B[:,0]
B[0] = 0.0
B[−1] = 0.0

122 Appendix B. Implemented code

B = np.tile(B,new_dim)

Initial tolerance, which must be too big.
tol = 1
max_iter = 1
Time step
dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)

while tol> 10∗∗(−6) and max_iter < 10∗∗5:
t1 = time()
Solve the system in the next nt_jump time steps
u = odeint(rhs_SCM,u_init_expan,t_span,\

tuple ([Nu_expan,D_expan,D2_expan,B]))
t3 = time()−t1
Find the difference between the solution to the first and the last
element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init_expan−u_check))

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init_expan = u_check

max_iter += 1

Save the steady state solution.
u_sol = u_check.reshape(n_space+1,new_dim,order=’F’)

Calculates the statistical parameters.
mu_estimate = np.sum(W∗u_sol,axis=1)
var_estimate = np.sum(W∗\

((u_sol−np.tile(mu_estimate,[new_dim,1]).T))∗∗2,axis=1)
std = np.sqrt(var_estimate)

The implementation of the timings for the full tensor grid.
import numpy as np
from scipy.sparse. linalg .dsolve import linsolve
import matplotlib.pyplot as plt
from pylab import ∗
from scipy.integrate import odeint
import legendrequad
import jacobipol
import hermitequad

B.4. Sparse grid implementations and tests 123

from time import ∗
import scipy.sparse as sparse
from cartesian import ∗

hermitequad = hermitequad.hermitequad
legendrequad = legendrequad.legendrequad
JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

Initial condition function.
def init (x):

return −x
Vandermonde matrix function
def vanderMat(x):

N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

Differentiated vandermonde matrix function
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

Right hand side function
def rhs_SCM(u,t,nu,D,D2,B):

u = −u∗D.dot(u) + nu∗D2.dot(u)
u = u∗B
return u

Number of time steps
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 39
Space step
dx = (x_right−x_left)/n_space
The parameter nu

Interval of the uniform boundary
a1 = 0.0
b1 = 0.1

a2 = 0.0
b2 = 0.1

Statistical parameters for v.
a3 = 0.05
b3 = 0.35

124 Appendix B. Implemented code

N = range(2,8)
Timing = np.zeros((len(N),1))
mu_e = np.zeros((len(N),n_space+1))
std_e = np.zeros((len(N),n_space+1))
Number of nodes representing random variables
for n in range(2,8):

n_expan = n
z1,w1 = legendrequad(n_expan)
z2,w2 = legendrequad(n_expan)
z3,w3 = legendrequad(n_expan)

Transforming weights.
w1 = w1/2
w2 = w2/2
w3 = w3/2

Transform from interval [-1,1] to [a,b]
delta1 = (b1−a1)/2∗z1 + (b1+a1)/2
delta2 = (b2−a2)/2∗z2 + (b2+a2)/2
nu = (b3−a3)/2∗z3 + (b3+a3)/2
Makes all possible combinations between all abscissas.
delta_temp = cartesian((delta1,delta2,nu))
Delta1 = delta_temp[:,0]
Delta2 = delta_temp[:,1]
Nu = delta_temp[:,2]

Makes all possible combinations between all weights.
W_temp = cartesian((w1,w2,w3))
W1 = W_temp[:,0]
W2 = W_temp[:,1]
W3 = W_temp[:,2]

W = W1∗W2∗W3

Determine the total number of deterministic systems that have to be
solved.
new_dim = (n_expan)∗∗3

To the deterministic solver
alpha = 0.0
beta = 0.0
x,w_nu = JacobiGL(alpha,beta,n_space)

Determine the Vandermonde matrices.
V = vanderMat(x)
Vx = vanderMatx(x)

Differential matrices

B.4. Sparse grid implementations and tests 125

D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

Expand the differential matrices.
D_expan = sparse.kron(sparse.eye(new_dim,new_dim),D)
D2_expan = sparse.kron(sparse.eye(new_dim,new_dim),D2)

Initial condtion.
u_init = init(x)
Expand the nu parameter.
Nu_expan = np.repeat(Nu,n_space+1)

Expand the initial condtion.
u_init_expan = np.tile(u_init,new_dim)
u_init_expan[0:−1:(n_space+1)] =\

u_init_expan[0:−1:(n_space+1)] + Delta1
u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] = \

u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] + Delta2

Boundary slope condition.
B = np.ones((n_space+1,1))
B = B[:,0]
B[0] = 0.0
B[−1] = 0.0
B = np.tile(B,new_dim)

Initial tolerance, which must be too big.
tol = 1
max_iter = 1
Time step
dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)

t1 = time()
while tol> 10∗∗(−6) and max_iter < 10∗∗5:

Solve the system in the next nt_jump time steps
u = odeint(rhs_SCM,u_init_expan,t_span,\

tuple ([Nu_expan,D_expan,D2_expan,B]))

Find the difference between the solution to the first and the last
element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init_expan−u_check))

126 Appendix B. Implemented code

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init_expan = u_check
print ’ tol : ’ , tol , ’ index: ’ ,n
max_iter += 1

Timing[n−2,0] = time()−t1
Save the steady state solution.
u_sol = u_check.reshape(n_space+1,new_dim,order=’F’)

Calculates the statistical parameters.
mu_estimate = np.sum(W∗u_sol,axis=1)
mu_e[n−2,:] = mu_estimate
var_estimate = np.sum(W∗\

((u_sol−np.tile(mu_estimate,[new_dim,1]).T))∗∗2,axis=1)
std = np.sqrt(var_estimate)

std_e[n−2,:] = std

The implementation of the measured time for sparse grids.
import numpy as np
from scipy.sparse. linalg .dsolve import linsolve
import matplotlib.pyplot as plt
from pylab import ∗
from scipy.integrate import odeint
import legendrequad
import jacobipol
import hermitequad
from time import ∗
import scipy.sparse as sparse
from cartesian import ∗
import scipy.io as sio

hermitequad = hermitequad.hermitequad
legendrequad = legendrequad.legendrequad
JacobiP = jacobipol.JacobiP
GradJacobiP = jacobipol.GradJacobiP
JacobiGL = jacobipol.JacobiGL

mat = sio.loadmat(’C:/Users/miv_kjaer/Dropbox/Kun mig − speciale UQ/\
Python/Methods/SCM/Burgers equation/Multidimensional/sparsegridd3k3.mat’)
data = mat[’zw’]

y1 = data [:,0]
y2 = data [:,1]
y3 = data [:,2]
W = data[:,3]/8

Initial condition function.
def init (x):

B.4. Sparse grid implementations and tests 127

return −x
Vandermonde matrix function
def vanderMat(x):

N = len(x)
V = JacobiP(x,0.0,0.0,N−1)
return V

Differentiated vandermonde matrix function
def vanderMatx(x):

N = len(x)
Vx = GradJacobiP(x,0.0,0.0,N−1)
return Vx

Right hand side function
def rhs_SCM(u,t,nu,D,D2,B):

u = −u∗D.dot(u) + nu∗D2.dot(u)
u = u∗B
return u

Number of time steps
x_left = −1.0
Right spacial bound
x_right = 1.0
Number of spacial steps
n_space = 39
Space step
dx = (x_right−x_left)/n_space
The parameter nu

Interval of the uniform boundary
a1 = 0.0
b1 = 0.1

a2 = 0.0
b2 = 0.1

a3 = 0.05
b3 = 0.35

Transform from interval [-1,1] to [a,b]
Delta1 = (b1−a1)/2∗y1 + (b1+a1)/2
Delta2 = (b2−a2)/2∗y2 + (b2+a2)/2
nu = (b3−a3)/2∗y3 + (b3+a3)/2

Determine the total number of deterministic systems that have to be
solved.
new_dim = (len(y1))

To the deterministic solver
alpha = 0.0
beta = 0.0

128 Appendix B. Implemented code

x,w_nu = JacobiGL(alpha,beta,n_space)

Determine the Vandermonde matrices.
V = vanderMat(x)
Vx = vanderMatx(x)

Differential matrices
D = np.linalg.solve(V.T,Vx.T).T
D2 = np.dot(D,D)

Expand the differential matrices.
D_expan = sparse.kron(sparse.eye(new_dim,new_dim),D)
D2_expan = sparse.kron(sparse.eye(new_dim,new_dim),D2)

Initial condtion.
u_init = init(x)
Expand the nu parameter.
Nu_expan = np.repeat(nu,n_space+1)

Expand the initial condtion.
u_init_expan = np.tile(u_init,new_dim)
u_init_expan[0:−1:(n_space+1)] =\

u_init_expan[0:−1:(n_space+1)] + Delta1
u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] = \

u_init_expan[n_space:(n_space+1)∗new_dim:n_space+1] + Delta2

Boundary slope condition.
B = np.ones((n_space+1,1))
B = B[:,0]
B[0] = 0.0
B[−1] = 0.0
B = np.tile(B,new_dim)

Initial tolerance, which must be too big.
tol = 1
max_iter = 1
Time step
dt = 0.1
Number of time jumps
nt_jump = 1000
The last t in the first t_span
t_end = dt∗nt_jump
Create the t_span
t_span = np.linspace(0,t_end,nt_jump)

t1 = time()
while tol> 10∗∗(−6) and max_iter < 10∗∗5:

Solve the system in the next nt_jump time steps
u = odeint(rhs_SCM,u_init_expan,t_span,\

B.4. Sparse grid implementations and tests 129

tuple ([Nu_expan,D_expan,D2_expan,B]))
t3 = time()−t1
Find the difference between the solution to the first and the last
element in t_span
u_check = u[−1,:]
tol = max(np.abs(u_init_expan−u_check))
print tol

Update t_span and the initial condition
t_span = np.linspace(t_end∗max_iter,t_end∗(max_iter+1),nt_jump)
u_init_expan = u_check

max_iter += 1

Save the steady state solution.
t3 = time()−t1
u_sol = u_check.reshape(n_space+1,new_dim,order=’F’)

Calculates the statistical parameters.
mu_estimate = np.sum(W∗u_sol,axis=1)
var_estimate = np.sum(W∗\

((u_sol−np.tile(mu_estimate,[new_dim,1]).T))∗∗2,axis=1)
std = np.sqrt(var_estimate)

130 Appendix B. Implemented code

Bibliography

[1] O. P. Le Maître and O. M. Knio. Spectral Methods for Uncertainty Quantification.
Springer, 2010.

[2] Dongbin Xiu. Numerical Methods for Stochastic Computations: A Spectral Method
Approach. Princeton University Press, 2010.

[3] Allan P. Engsig-Karup. Slides for 02689 – polynomial methods, 2009.

[4] Lars Eldén, Linde Wittmeyer-Koch, and Hans Brunn Nielsen. Introduction to Nu-
merical Computation - analysis and MATLAB illustrations. Studentlitteratur, 2004.

[5] John A. Gubner. Gaussian Quadrature and the Eigenvalue Problem, 2009.

[6] Murray R. Spiegel and John Liu. Mathematical Handbook of Formulars and Tables.
Schaum’s Outlines, 1999.

[7] Alan C. Hindmarsh and Krishnan Radhakrishnan. Description and Use of LSODE,
the Livermore Solver for Ordinary Differential Equations. NASA Reference Publi-
cation, 1993.

[8] John Jakeman. General procedure of Storchastic Galerkin Methods.
http://maths-people.anu.edu.au/~jakeman/QuantifyingUncertainty/
Tutorials/SGtutorial.html.

[9] Dongbin Xiu and Jan S. Hesthaven. High-Order Collocation Methods for Differential
Equation with Random Inputs. SIAM J. Sci. Comput., 2005.

[10] M. T. Reagan, H. N. Najm, B. J. Debusschere, O P Le Maire, O. M. Knio, and
R. G. Ghanem. Spectral Stochastic Uncertainty Quantification in Chemical Systems.
http://lmee.univ-evry.fr/~olm/biblio_dwnload/reagan_uq.pdf.

[11] Liang Yang, Ling Guo, and Dongbin Xiu. Stochastic Collocation Algorithms Using
`1-minimization, 2012.

[12] Guang Lin. Uncertainty quantification algorithms, analysis and applications for
high dimensional stochastic pde systems.

131

http://maths-people.anu.edu.au/~jakeman/QuantifyingUncertainty/Tutorials/SGtutorial.html
http://maths-people.anu.edu.au/~jakeman/QuantifyingUncertainty/Tutorials/SGtutorial.html
http://lmee.univ-evry.fr/~olm/biblio_dwnload/reagan_uq.pdf

132 Bibliography

[13] Jasmine Foo and George Em Karniadakis. Multi-element probabilistic collocation
method in high dimensions. Elsevier, 2009.

[14] John Burkardt. Sparse Grid Collocation for Uncertaincy Quantififation. http:
//people.sc.fsu.edu/~jburkardt/presentations/scala_2012.pdf. Accessed:
2013-05-01.

[15] Stackoverflow. Cartesian Python code. http://stackoverflow.com/questions/
1208118/using-numpy-to-build-an-array-of-all-combinations-of-two-arrays.
Accessed: 2013-04-22.

[16] John Burkardt. Sparse Grid Based on Gauss-Legendre Rules. http://people.sc.
fsu.edu/~jburkardt/f_src/sparse_grid_gl/sparse_grid_gl.html. Accessed:
2013-04-30.

http://people.sc.fsu.edu/~jburkardt/presentations/scala_2012.pdf
http://people.sc.fsu.edu/~jburkardt/presentations/scala_2012.pdf
http://stackoverflow.com/questions/1208118/using-numpy-to-build-an-array-of-all-combinations-of-two-arrays
http://stackoverflow.com/questions/1208118/using-numpy-to-build-an-array-of-all-combinations-of-two-arrays
http://people.sc.fsu.edu/~jburkardt/f_src/sparse_grid_gl/sparse_grid_gl.html
http://people.sc.fsu.edu/~jburkardt/f_src/sparse_grid_gl/sparse_grid_gl.html

	Front page
	English title page
	Danish title page
	Contents
	Preface
	1 Introduction
	1.1 Objectives and goals
	1.2 Outlines of the thesis

	2 Notation and expressions
	2.1 Programming language: Python

	3 Mathematical background and numerical tools
	3.1 Orthogonal Polynomials
	3.1.1 Examples of orthogonal polynomials

	3.2 Quadrature rules
	3.3 Polynomial interpolation
	3.4 Deterministic Collocation method
	3.4.1 Construction of the Deterministic Collocation method

	3.5 Time-integration solver
	3.6 Generalized Polynomial Chaos
	3.6.1 Multi dimensional gPC

	4 Uncertainty Quatification methods
	4.1 Non-intrusive methods
	4.1.1 Monte Carlo Method
	4.1.2 Stochastic Collocation Method

	4.2 Intrusive methods
	4.2.1 Stochastic Galerkin Method

	5 Establishment of differential equations
	5.1 The Test equation
	5.1.1 Statistical parameters for the Normal distribution
	5.1.2 Statistical parameters for the Uniform distribution

	5.2 The Burger's equation

	6 Test of Uncertainty Quantification methods
	6.1 Stochastic Test equations - Monte Carlo method
	6.2 Stochastic Test equations - Stochastic Collocation Method
	6.3 Stochastic Test equations - Stochastic Galerkin Method
	6.4 Stochastic Burger's equation - Monte Carlo method
	6.5 Stochastic Burger's equation - Stochastic Collocation method
	6.6 Stochastic Burger's equation - Stochastic Galerkin method
	6.7 Comparison between the UQ methods

	7 Topics in Uncertainty Quantification
	8 Multidimensional problems
	8.1 Tensor Product Collocation method
	8.1.1 Test of Tensor Grid Collocation method
	8.1.2 Test with 3 random variables

	8.2 Sparse Grid Collocation
	8.2.1 Test of Sparse Grid Collocation

	8.3 Future works

	9 Conclusion
	A Additional analytical statistical solutions for the Test equation
	B Implemented code
	B.1 Toolbox code
	B.1.1 Legendre polynomials
	B.1.2 Hermite polynomials
	B.1.3 Lengendre quadrature
	B.1.4 Hermite quadrature
	B.1.5 Deterministic Collocation functions
	B.1.6 Implementation of the deterministic Burger's equation

	B.2 1 dimensional test code
	B.2.1 Stochastic Test equation
	B.2.2 Stochastic Burger's equation

	B.3 Multidimensional test code
	B.3.1 Stochastic Test equation (d=2) - SCM
	B.3.2 Stochastic Test equation (d=2) - Convergence test
	B.3.3 Sparse matrix test
	B.3.4 Stochastic Burger's equation (d=3) - SCM

	B.4 Sparse grid implementations and tests

	Bibliography

