Spectral Methods for Uncertainty
Quantification

Emil Brandt Kaergaard

DTU

Kongens Lyngby 2013
IMM-M.Sc.-2013-0503

Technical University of Denmark

Department of Applied Mathematics and Computer Science
Building 303B, DK-2800 Kongens Lyngby, Denmark
www.compute.dtu.dk IMM-M.Sc.-2013-0503

Summary (English)

This thesis has investigated the field of Uncertainty Quantification with regard
to differential equations. The focus is on spectral methods and especially the
stochastic Collocation method. Numerical tests are conducted and the stochas-
tic Collocation method for multivariate problems is investigated. The Smolyak
sparse grid method is applied in combination with the stochastic Collocation
method on two multivariate stochastic differential equations. The numerical
tests showed that the sparse grids can reduce the computational effort and at
the same time produce very accurate results.

The first part of the thesis introduces the mathematical background for work-
ing with Uncertainty Quantification, the theoretical background for generalized
Polynomial Chaos and the three methods for the Uncertainty Quantification.
These methods are the Monte Carlo sampling, the stochastic Galerkin method
and the stochastic Collocation method.

The three methods have been tested numerically on the univariate stochastic
Test equation to test accuracy and efficiency and further numerical tests of the
Galerkin method and the Collocation method have been conducted with regard
to the univariate stochastic Burgers’ equation. The numerical tests have been
carried out in MATLAB.

The last part of the thesis involves an introduction of the multivariate stochas-
tic Collocation method and numerical tests. Furthermore a few methods for
reducing the computational effort in high dimensions is introduced. One of
these methods - the Smolyak sparse grids - is applied together with the stochas-
tic Collocation method on the multivariate Test equation and the multivariate
Burgers’ equation. This resulted in accurate and efficient estimates of the statis-

tics.

Summary (Danish)

Denne athandling undersgger og anvender metoder til kvantificering af usikker-
hed. Fokus i opgaven har vaeret at undersgge spektrale metoder til usikkerheds-
bestemmelse med serligt fokus pa den stokastiske Collocation metode. Der er
foretaget numeriske undersggelser af metoderne og den stokastiske Collocation
metode er blevet afprgvet pa multivariate problemer. Den stokastiske Colloca-
tion metode er desuden blevet testet sammen med Smolyak sparse grids pa to
multivariate differentialligninger hvilket var en klar effektivisering og forte til
ngjagtige resultater.

Den fgrste del af athandlingen introducerer den matematiske baggrund for at ar-
bejde med emnet og en teoretisk introduktion af generaliseret Polynomial Chaos
og de tre metoder til usikkerhedsbestemmelse. De anvendte metoder er Monte
Carlo Sampling, den stokastiske Galerkin metode og den stokastiske Collocation
metode.

Der er foretaget numeriske test med de tre metoder pa den univariate Test
equation for at undersgge effektivitet og ngjagtighed. Desuden er der foretaget
yderligere numeriske undersggelser af Galerkin metoden og Collocation metoden
pa den univariate stokastiske Burgers’ equation. De numeriske test er foretaget
i MATLAB.

Den sidste del af afhandlingen omhandler introduktion og afprgvning af den
multivariate stokastiske Collocation metode. Der bliver ogsa introduceret flere
metoder til at reducere den beregningsmaessige byrde der opstar nar antallet af
dimensioner gges. En af disse metoder kaldes Smolyak sparse grid metoden og
denne er blevet anvendt sammen med den stokastiske Collocation metode pa
den multivariate Test equation og den multivariate Burgers’ equation, hvilket

forte til gode resultater.

Preface

This thesis was prepared at DTU Compute: Department of Applied Mathemat-
ics and Computer Science at the Technical University of Denmark in fulfilment
of the requirements for acquiring an M.Sc. in Mathematical Modelling and
Computing. The thesis was carried out in the period from December 3rd 2012
to May 3rd 2013 with associate Professor Allan P. Ensig-Karup as supervisor.

The thesis deals with spectral methods for Uncertainty Quantification and in-
troduces a method to decrease the computational effort of these methods in high
dimensions.

The thesis consists of a study of methods for Uncertainty Quantification and
the application of these. The focus has been on conducting Uncertainty Quan-
tification for differential equations and using spectral methods to investigate the
uncertainty. Especially the stochastic Collocation method has been investigated
and the use of this method in more than one dimension.

The thesis is written to a reader that has basic knowledge of mathematical
modelling and mathematics. It is furthermore assumed that the reader has
knowledge of MATLAB and of numerical tools for solving differential equations.

Lyngby, 03-May-2013

Emil Brandt Keergaard

Acknowledgements

I would like to thank my supervisor, Associate Professor Allan P. Ensig-Karup,
and Ph.D. student Daniele Bigoni for help, advice and inspiration during the
project. They have provided guidance and advice through the project whenever
I asked for it.

Another person who deserves thanks is Emil Kjzer Nielsen who has been explor-
ing this interesting topic alongside me. We have had some great conversations
and discussions and I really appreciate his inputs and his humor.

Furthermore I would like to thank Signe Sgndergaard Jeppesen for her morale
support and for listening when I needed it.

Last but not least I would like to thank Emil Schultz Christensen and Kristian
Rye Jensen for their readiness to help, their advice and their support.

viii

Contents

[Summary (English)| i
[Summary (Danish)| iii
[Prefacel v
|Acknowledgements| vii
1__Introduction| 1
1.1 Uncertainty Quantification|. 2
|I1.2 Motivation and goals for the thesis| 3
I3 Basic literaturelo oo 4
IL.4_Outhine of thesis| 4

|2 Mathematical background| 7
2.1 Hilbert space and inner products| 7

8

9

2.2 Orthogonal Polynomials|

2.2.2 Example: Hermite Polynomials| 9
2.2.3 Example: Jacobi polynomials| 11
2.2.4 Example: Legendre Polynomials| 12
2.3 Gauss Quadrature] Lo oL 14
2.3.1 Computing nodes and weights for Gauss Quadrature| . . . 14
2.3.2 Example: Gauss Hermite Quadraturel 15
2.3.3 Gauss-Lobatto Quadrature] 17
2.4 Polynomial Interpolation|. 18
2.4.1 Relationship between nodal and modal representations|. . 19
2.5 Spectral methods| o 0oL 20

X CONTENTS
[2.6.1 Solver for differential equations in spacel 20

[2.6.2 Solvers for time dependent problems| 24

[3 Basic concepts within Probability Theory] 27
[B.1 Distributions and statisticd 27
[3.1.1 Example: Gaussian distribution|. 28

[3.1.2 Example: Uniform distribution| 29

[3.1.3 Multiple dimensions|o 000 30

B.1.4 Statistics] 31

[3.1.5 Inner product and statistics| L. 31

3.2 Input parameterizations| 32

4 Generalized Polynomial Chaos| 33
4.1 Generalized Polynomial Chaos in one dimension|. 34
4.2 Multivariate Generalized Polynomial Chaos| 34
4.3 Statistics for gPC expansions| L. 36

[Stochastic Spectral Methods| 39
9.1 __Non-intrusive methodslo 40
[5.1.1 Monte Carlo Sampling| 40

[5.1.2 Stochastic Collocation Methodl 41

B2 Infrusivemethods 43
[b.2.1 Stochastic Galerkin method| 43

|6 Test problems| 47
6.1 Test Biquation|. oo oo 47
[6.1.1 Normal distributed parameters| 48

[6.1.2 Uniform distributed parameters|. 51

[6.1.3 Multivariate Test Equation| 53

6.2 Burgers’ Equation|o 0000 59

7 Test of UQ methods on the Test Equation| 59
7.1 Monte Carlo Sampling|, 59
[7.1.1 Gaussian distributed a-parameter| 60

[7.1.2 Unitformly distributed a-parameter(. 63

[[.2 Stochastic Collocation Methodl 64
[(7.2.1 Tmplementation|. 65

[7.2.2 Gaussian distributed a-parameter| 66

[7.2.3 Uniformly distributed a-parameter| 67

[.3 Stochastic Galerkin Method|00 69
[7.3.1 Implementation|., 70

[7.3.2 Gaussian distributed a-parameter| 71

(7.3.3 Uniformly distributed a-parameter{ 72

(.4 _Conclusionl 73

CONTENTS xi

18 Burgers’ Equation| 75
8.1 Stochastic gPC Galerkin method| 75
8.1.1 Numerical approximations|. 77

8.1.2 Implementation|., 79

8.1.3 Numerical experiments|. 80

8.2 Stochastic Collocation Methodl 81
8.2.1 TImplementations| 83

18.2.2 Numerical experiments|. 84
19__Discussion: Choice of method| 87
|10 Literature Study)| 89
|10.1 Brief Introduction to topics and articles| 89
110.2 Sparse Pseudospectral Approximation Method| 90
110.2.1 Introduction of notation and concepts| 91

110.2.2 Overall approach| 92

110.2.3 Further reading|. 93

110.3 Compressive sampling: Non-adapted sparse approximation of PDES| 93
110.3.1 Ovwerall approach| 93

110.3.2 Recoverability|., 95

110.3.3 Further reading|. L. 96

11 Multivariate Collocation Method| 97
1.1 Tensor Product Collocationl 97
[11.2 Multivariate expansions and statistics| 98
I11.3 Smolyak Sparse Grid Collocation| 100
I11.3.1 Clenshaw-Curtis: Nested sparse grid| 101

12 Numerical tests for multivariate stochastic PDHs| 103
112.1 'Test Equation with two random variables| 103
112.1.1 Implementation|. 104

[12.1.2 Gaussian distributed a-parameter and initial condition 5| 105
112.1.3 Gaussian distributed a and uniformly distributed initial |

| condition 5. Lo 108
112.2 Multivariate Burgers” Equation| 111
112.2.1 Burgers’ Equation with stochastic boundary conditions| . 111

112.2.2 3-variate Burgers’ equation| 115

[T3 Tests with Smolyak sparse grids| 123
|113.1 Introduction of the sparse grids| 124
113.1.1 Sparse Gauss Legendre grad| 124

|113.2 Sparse Clenshaw-Curtis grid|. 125
|113.3 Smolyak sparse grid applied| 127

13.3.1 The 2-variate Test Equation|. 127

xii CONTENTS

|A Supplement to the mathematical background|
|A.1 Orthogonal Polynomials|
[A.1.1 Alternative definition of the Hermite polynomials|.
IA.2 Probability theory| 0 0oL,
IA.3 Random fields and usetul spaces|
[A.4 Convergence and Central Limit Theorem|.
[A"5 TIntroduction of strong and weak g approximation|
[A.5.1 Strong gPC approximation|
[A.5.2 Weak gPC approximation|

B Matlab

IB.2 Test Equation|. oo

IB.3 Burgers’ Equation| 00 0.

IB.4 Burgers” Equation 2D|o o000
IB.5 Burgers” Equation3D| 0000 0oL,
IB.6 Numerical tests with sparse grids|
[B:6.1 Numerical tests for the multivariate Lest equation|
[B.6.2 Numerical tests for the multivariate Burgers’ equation| .

137
138

141

143
143
143
144
144
145
146
146
147

151
151
151
167
168
168
168
175
179
184
184
189
189
193
199
199

. 208

211

CHAPTER 1

Introduction

The fields of numerical analysis and scientific computing have been in great de-
velopment the last couple of decades. The introduction of efficient computers
has lead to massive use of mathematical models and extensive research have
been conducted to optimize the use of these models.

A topic of great interest is the errors in the numerical results and it is currently a
field of active research. This has lead to an increased knowledge within the field
and many improvements have been obtained. In general the errors of numerical
analysis is classified into three groups [I6]: Model errors, numerical errors and
data errors.

The model errors arises when the applied mathematical model does not describe
a given problem exactly. This type of errors will almost always be present when
describing real life problems since the applied mathematical models are simpli-
fications of the problem and since they are based on a set of assumptions.
Numerical errors arises when the mathematical models are solved numerically.
The numerical methods usually involves approximations of the exact model so-
lutions and even though these approximations can be improved by using theory
about convergence and stability, the errors will still be there due to the finite
precision on computers.

The data errors refers to the uncertainty in the input to the mathematical models
which propagates through the model to the output. These errors are unavoid-

2 Introduction

able when the input data is measurement data, since measurements will always
contain errors. Errors in the input also arise when there is limited knowledge
about the input variables or parameters.

1.1 Uncertainty Quantification

As outlined here there are lots of errors to investigate when working with nu-
merical analysis. The focus in this thesis is on quantifying the uncertainty that
propagates from the input to a mathematical model to the output. It is a field
of very active research and many different approaches are applied in order to
optimize the quantification of the uncertainty. In this thesis the focus will be
on a class of methods that are known as spectral methods and on quantify-
ing uncertainty in stochastic differential equations. An example is the ordinary
differential equation called the Test equation which is formulated as

d
iu(t) = —Ju(t), u(0)=na.

By introducing uncertainty in the A-parameter the solutions to the Test equation
based different realizations of the stochastic A-parameter will vary a lot. In figure
[I:1] 9 of such solutions are plotted and it is seen that there is a lot of variation
in the solutions and the uncertainty is increased with time. The 9 solutions in
figure are plotted in the timespan [0, 1] but if the timespan was increased to
e.g. [0,2] the difference in the solutions would have been even greater. In fact
the uncertainty grows exponentially with time. This is a very good reason for
applying uncertainty quantification.

[\)
T
|

Solutions

—
T
/ \
\
|

Figure 1.1: 9 deterministic solutions to the stochastic Test equation

1.2 Motivation and goals for the thesis 3

In this thesis three methods will be used for conducting uncertainty quantifica-
tion. One of them is the Monte Carlo Sampling which is a brute force method
that based on a large number of samples approximates the statistics of the
stochastic solutions. The samples refers solutions to the stochastic problem
which are obtained by solving the system deterministically for a set of realiza-
tions of the stochastic inputs.

The two other methods are spectral methods which are based on using orthog-
onal polynomials to represent the stochastic solution of the problem at hand.
The two methods are called the stochastic Collocation method and the stochas-
tic Galerkin method. The stochastic Collocation method does in general not
require many implementations of a solver for the deterministic problem is avail-
able.

The stochastic Galerkin method often requires analytical derivations and new
implementations. But it is usually obtains more accurate results than the
stochastic Collcation method so both methods have strengths and weaknesses.

1.2 Motivation and goals for the thesis

The combination of spectral methods and uncertainty quantification is a field of
study which is in great development these years and a lot of research is currently
going on worldwide. Besides this the uncertainty quantification has become an
important numerical tool that is applied in many companies.

The studies within the field of uncertainty quantification involves many different
topics and approaches. One topic that has received a lot of attention recently
is how to reduce the computational effort when applying spectral methods such
as stochastic Collocation method to multivariate problems.

Because of the rapid development within uncertainty quantification this thesis
includes a section that introduces a few interesting approaches to decrease the
computational effort based on a literature study of recent scientific articles.

The overall goal of the thesis is to investigate the field of uncertainty quantifi-
cation and gain an insight in the topic. The focus is the combination of spectral
methods and uncertainty quantification.

This means that the thesis will include an introduction to some of the necessary
theory for investigating the field and then introduce several uncertainty quan-
tification methods which involve at least one intrusive and one non-instrusive
method. The goal of the thesis is to introduce the methods theoretically and
conduct numerical tests.

The focus of the thesis is to introduce the topic and to apply spectral methods
for uncertainty quantification. The spectral methods for uncertainty quantifi-

4 Introduction

cation are attractive in many ways but the computational effort of the methods
often grows rapidly in multivariate problems. It is therefore a goal of the thesis
to apply at least one method to reduce the computational effort.

It is a choice not to investigate more advanced PDEs and instead include a more
advanced setting where the computational effort is sought to be reduced.

It is a choice not to investigate more advanced PDEs and instead include a more
advanced setting where the computational effort is sought to be reduced.

1.3 Basic literature

The book Numerical methods for stochastic computations: a spectral method
approach by Dongbin Xiu has served as a basis for working with uncertainty
quantification and the book Spectral Methods for Uncertainty Quantification by
0. Le Maitre and O. Knio has been used as a reference.

Furthermore the article Gaussian Quadrature and the FEigenvalue Problem by
John A. Gubner has been used as a basis for some of the mathematical back-
ground.

1.4 Outline of thesis

This thesis has a focus on spectral methods for uncertainty quantification and
includes theoretical and numerical applications of such.

In Chapter 2 the mathematical background is outlined. This includes orthogonal
polynomials, quadratures rules and numerical tools. The mathematical intro-
duction is continued in Chapter 3 which contains some basic concepts within
probability theory. These two chapters also serves as an introduction to the
notation that is used throughout the thesis.

Chapter 4 gives an introduction to generalized Polynomial Chaos (gPC), the
gPC expansions and the the important properties of gPC. The generalized Poly-
nomial Chaos serves as a basis for introducing the stochastic Galerkin method
and the stochastic Collocation method in chapter 5. The theoretical background
for applying these two methods is outlined in this chapter and the chapter serves
as a basis for conducting numerical tests. Chapter 6 introduces an ordinary dif-
ferential equation (ODE) denoted the Test Equation and a partial differential
equation (PDE) called Burgers’ Equation. These two differential equations will
form the basis of the numerical tests.

1.4 Outline of thesis 5

In chapter 7 numerical tests of the univariate Test equation is conducted and the
accuracy and convergence of the uncertainty quantification methods and chap-
ter 8 contains numerical tests involving Burgers’ equation. The numerical tests
of the uncertainty quantification methods has confirmed some of the properties
outlined in the theory and Chapter 9 gives a brief summery of the strengths and
weaknesses for methods and outline which method that will be use in the rest
of the thesis.

Chapter 10 is a literature study which describes some interesting topics which
are recently introduced in the field of uncertainty quantification. Chapter 11
introduces the multivariate stochastic collocation method. The multivariate
stochastic Collocation method is investigated in Chapter 12 through numerical
tests and in chapter 13 the Smolyak sparse grids are applied in combination
with the multivariate stochastic Collocation method.

Chapter 14 is a discussion of the methods and the conducted numerical tests.
It includes a section which outline some possible future works.

Introduction

CHAPTER 2

Mathematical background

The uncertainty quantification conducted in this thesis is based on theory within
many fields. The two main fields of mathematics are probability theory and the
theory regarding spectral methods.

In this chapter the basic tools for applying spectral methods are outlined as well
as the numerical solvers for deterministic partial differential equations (PDE)
used in this thesis.

In chapter [3| the stochastic theory will be outlined. This means that unless
anything else is stated the theory outlined in this chapter is deterministic.

2.1 Hilbert space and inner products

Before the theory of spectral methods can be outlined some basic definitions are
needed which will be introduced here. First of all L? denotes a Hilbert space
with a corresponding inner product and its induced norm. The L? space is de-

fined such that for u € L? it holds that |lullz = ([|u|2du)% < oo where p is a
Lebesgue measure and S is the support of the measure.

The measure y is in this thesis used such that the integral [, f(z)du(z) can
be replaced by the weighted integral [, f(z)w(z)dz with w(z) = 0 for = out-
side the domain D. Furthermore the following definition will be used p(R) =

8 Mathematical background

f OOOO (z)dz. The general measure theory is beyond the scope of this thesis and
the interested reader can see e.g. [16] or [19] for an introduction.
The inner products in this thesis will be defined as

(u, v) :[Su(m)v(x)d,u(x)z/su(x)v(m)w(gc)d:r. (2.1)

The inner product is actually a weighted inner product and is generally referred
to as (-,-), but in this thesis the notation (-,-) is used for simplicity. The
weighted Hilbert space L2 [a,b] can be formulated as

b
L2[ab] = {u: [a,8] > R| / 2)dp(z) = / () w(@)ds < 0o}
Furthermore a stochastic Hilbert space is used later on and it is defined as
Lip,(Iz) ={f : 1z = R|E[f*(Z)] = [f*(2)dFz(z) <oo}, (2.2)
Iz

where Z is a stochastic variable.

2.2 Orthogonal Polynomials

In this section a basic introduction to the theory of orthogonal polynomials is
given and further information can be found in e.g. [I]. In the following 9 will
be used as either 91 = Ny = {0,1,2,...} or as an index set @ = {0,1,...,N}.
There are many different notations for an orthogonal polynomial and in this
project the following will be adopted

O, () = apnx™ + ap_12" -+ arxy +ag, an #0, (2.3)

where the leading coefficient, a,,, is non-zero. Often the orthogonal polynomials
are referred to in monic form which means that the leading coefficient is one.
Since the leading coefficient is non-zero a transformation of the general form
into monic form is made by dividing with a,,

D, (x Ay a
"():x”+n71x”71+- 8+ 2 g, 20
Qn Qp, (7% Ap,

P,(x) =

Another often used representation of the orthogonal polynomial which is intro-
duced in e.g. [10] yields

bn(r) =2 +Z];{E(» or(x), n>1.

2.2 Orthogonal Polynomials 9

When a system of polynomials {®,, () } nem fulfils (2.4) it is said to be orthogonal
with respect to a real positive measure pu.

/Stbn(x)@m(x)du(x) = Ybnm, n,MmEMN, (2.4)

where S is the support of the measure p, d,,,, is the Kronecker delta function
and 7, is a normalization constant defined as [¢ ®7 (z)du(z) = vy for n € M.
As described in the previous section the measure p typically has a density w(zx)
which means that the integral could be formulated as

/ D, ()P, (2)w(x)dr = Yndpm, n,m €N
s

An orthonormal system of polynomials refers to a system of orthogonal polyno-
mials which have normalization constants 1. To normalize a set of orthogonal
polynomials the individual polynomials are divided by the corresponding nor-

malization factors, i.e. ®,(z) = (I)L—\/W(i)

2.2.1 Three-term Recurrence relation

A general three-term recurrence relation can be formulated for @, (x) with z € R
and states

—2P,(2) = BnPri1(2) + 0 Pp(2) + 1 Pr1(x), n>1,

where (3,7, # 0 and [3%11 > 0 as introduced in [19]. Equivalently a three-term
recurrence relation can be established for ¢, (x) in monic form which yields

¢71,+1(:C) = (1: - an) an(l‘) - bn¢n,—1(x)a n Z 1, (25)

where
0 — (260(@). 60 (@)
n <¢n(w):¢n(w)>

_ <¢n(1)7x¢n71(z)> _ <¢n(1)7¢'n($)>
bn = 15 @8 1 @) = WBna @ nale)y = 0

For more information on the three-term recurrences see [10] and [19].

2.2.2 Example: Hermite Polynomials

The Hermite Polynomials is an important class of polynomials and there are
two often used definitions of the polynomials. Both are introduced in this thesis

10 Mathematical background

with different naming such that it is possible to differentiate between the two
definitions. In both cases the polynomials are defined on the real line, i.e.
x € R. One of the types of Hermite polynomials is used in Polynomial Chaos
expansions and is denoted H,(z). These are defined here and the alternative
definition denoted He, (x) can be seen in Appendix The weight functions for
H, (z) are defined as a Gaussian

n [n/2]
1 d 22 1 n—2k

Hn(x) = mdl‘iﬁ[ei%] =nl g(*l)kmfﬂ >

where [n/2] refers to the largest integer that is smaller than or equal to 5. The
three-term recurrence relation is

Hpi1(z) = 2Hy(z) — nH,—1(x), (2.6)

where Hy(x) = 1 and H;(x) = z. The normalization factor -, can be computed
as

= o) Hale)) = = [HEw)eFdo =

The first five H, (z) polynomials are given as

Hy(z) = 1,

Hi(z) = =,

Hy(z) = 2% -1, (2.7)
Hs(z) = 2% -3z,

Hy(z) = 2°—1023 + 152.

In figure 2.1] these polynomials have been plotted

2.2 Orthogonal Polynomials 11

Figure 2.1: The first five Hermite polynomials.

The intuitive inspection of figure seems to justify the implementation of the
polynomials given in appendix [B| since the plotted polynomials are of the right
order. They also fits very well with the analytical expressions for the first five
polynomials given in and resembles the figures in [16] and [19].

2.2.3 Example: Jacobi polynomials

The Jacobi polynomials are a widely used class of polynomials and they are
defined as the eigenfunctions for a certain Sturm-Liouville problem which will
not be described further here. A more in-depth description of the origin of the
Jacobi Polynomials is found in [I5].
The Jacobi polynomials, {P*?}, can be described by the following three-term
recurrence relation

anl W Prifi (@) = (an +)PP (@) — apl, | Pif (w), (2.8)

n,n n—1n* n—1
where the first two polynomials are given by
PO = 1
P (x)

%(a—ﬁ+(a+ﬁ+2)x)

12 Mathematical background

and the coefficient for n = 0 is af’ﬁo = 0 and for n > 0 the coefficients are

aB 2(n+a)(n+B)

Up—1,n = 2n+a+pB+1)(2n+a+p)

a?— B2

2n+a+B+2)(2n+a+p)

a,f _
an,n - (

a,f _ 2(n+1)(n+a+p+1)
an+17n - (2nta+B+2)2nta+p+1) "

The weight function for the Jacobi polynomials is w(z) = (1 — z)*(1 + z)? and
the normalization constant is given by

(n+ a)l(n+ B)!

af _ || pxB||2 — gatb+1

where || - [[; = || - lz2-1,1) is the norm which belongs to the space of Jacobi
polynomials.

2.2.4 Example: Legendre Polynomials

The Legendre polynomials are a subclass of the Jacobi polynomials with @ =
B = 0 and weight w = 1 and they will be used extensively in this thesis.

The Legendre polynomials {L,(z)} € [-1,1] are usually normalized such that
L, (1) =1 and in this normalized form the polynomials can be formulated as

Lo(z) = ;ni(—l)k (i) (S)m"_%, (2.9)

where [3] denote 5 rounded down to nearest integer. For the weight function
w(z) the Legendre polynomials are an orthogonal basis for L2 [—1,1]. The first
two Legendre polynomials are Lo(z) = 1 and L;(z) = z and the three-term

recurrence relation is
(n+1)Lpt1(z) = 2n+1)xL,(x) —nLlp_1(x). (2.10)
It is often written in monic form as well which yields

2n+1 n
o) = eta@) =00

With the definition (2.11) of the Legendre pPolynomials the normalization con-
stant v, can be computed as

L1 (2). (2.11)

1
1
_ _ 2 _
o= L) = [B ()ula)ds = 5.

2.2 Orthogonal Polynomials 13
The first five Legendre polynomials are given by
L()((E) 1,
Ll(x) z,
1
Ly(z) 5(33;2 —1), (2.12)
1
Ls(x) 5(5373 — 3z),
1
Ly(z) g(359[:4 — 3022 + 3),
(2.13)

The polynomials have been plotted in figure

1 [
0.5
=
= o
~J
—0.5 |
-1+
-3

Figure 2.2: The first five Legendre polynomials.

The functions in figure 2.2) corresponds very well with the analytical expressions
in (2.12) and resembles the figures in [16] and [19]. The implementation of the
polynomials can be found in appendix [B]

14 Mathematical background

2.3 Gauss Quadrature

Quadrature rules are an important tool when conducting integration numeri-
cally and it is a widely used concept. It is a way to approximate an integral
Ji f(@)du(z) = [, f(x)w,(v)dz where I, is the domain of and this is done
by computing another integral flwg(x) w,, (z) dz where the function g is chosen
such that its integral is known and it resembles f. Furthermore ¢ is often chosen
such that the integral can be evaluated as

[gte)wy@)ds = 3" wngla). (2.14)
Ia k=1

where wj, are weights and x; are nodes that belongs to the range of integration.
A class of functions that are widely used in quadratures as the approximating
functions g is the class of polynomials and it can be shown that for a polynomial
P of degree less than n and for the right nodes x, and weights wy, it holds that

/ P(z)wp(x)dz = wiP(zy). (2.15)

Lo k=1

Once the nodes x; have been chosen, the weights wy can be computed such
that the relation (2.15) holds. This means that if g is chosen to be a polynomial
the relation @ holds which is a very nice property in numerical analysis.
The orthogonal polynomials introduced earlier can be used in this context as
g and the weights w(z) plays a crucial role in the choice of polynomials. In
order to resemble the integral fITf(x) wy () dz in the best way the polynomial
integration weights should be as "close" to the weights w,, as possible.

2.3.1 Computing nodes and weights for Gauss Quadrature

The validity of can be extended to polynomials f of degree 2n by choosing
the nodes in a clever way - which is the idea behind Gaussian Quadrature. The
idea is to use orthogonal polynomials on monic form, {¢,}, of degree up to N
and compute the quadrature points, x;, as the zeros of ¢, 1 and the weights
w; can hereafter be computed, see e.g. [I0] or [15]. In Theorem a way of
computing the Gauss quadrature points and weights are outlined as in [10].

THEOREM 2.1 By using a,, and b, in the three-term recurrence relation (2.5)
the quadrature nodes, x;, and weights, w;, can be computed by eigenvalue de-

2.3 Gauss Quadrature 15

composition of the symmetric, tridiagonal Jacobi matrix

a Vb
\/Eal \/5

bn72 Ap—2 \/m
\V4 bnfl Gp—1

This leads to defining VT J,V = A = diag(\1,...,\n) where)\, is the j’th
eigenvalue, V is a matriz containing the corresponding eigenvectors and V'V =
1. From this definition the quadrature nodes and weights can be computed as

zy =2, w;=p(R)v7,,

where v; o is the first element of the j’th column of V, i.e. the first element of
the j’th eigenvector.

The proof of the theorem can be found in [I0]. As seen from the theorem the
quadrature weights depends on p(R). It is important to note that the defi-
nition of an orthogonal polynomial often relies on a normalized weight which
means that z(R) = [wy(x) dz = 1 where w,(x) is the polynomial integration
weights. This is not necessarily a problem but using the normalized polynomial
weights will lead to different quadrature weights than the ones that typically
are represented in the literature.

The presentation of the Gauss Legendre quadrature and Gauss Hermite quadra-
ture will therefore involve the non-normalized weights, i.e. u(R) # 1.

Another thing to notice is that the general three-term recurrence relation used
in theorem [2.1]is on monic form. This is not the case for many of the three-term
recurrence relations used to describe the most common orthogonal polynomi-
als. The recurrence relation for the Legendre polynomials given in is an
example of a recurrence that has to be modified in order to identify a,, and b,.

2.3.2 Example: Gauss Hermite Quadrature

The Hermite polynomials H,(x) are defined to have a leading coefficient of
1 and in this section the polynomial weights are scaled with /27 such that

du(z) = e~% and w(R) = v/27. The scaling has been made to obtain the
quadrature nodes that typically is occurs in the literature, see e.g. [10]. The
recurrence relation for H, (z) is given by and since the leading coefficient
is 1 the recurrence relation is already in the appropriate monic form and it seen

16 Mathematical background

that a, = 0 and b,, = n. Substituting these expressions into the Jacobi matrix
J, yields

The Gauss Hermite quadrature weights and nodes can be computed by an eigen-
value decomposition of this Jacobi matrix and the implementation can be found

in appendix [B]in section

2.3.2.1 Example: Gauss Legendre Quadrature

The Legendre polynomials have a non-normalized u(x) which yields du(x) = dx
2n)!

and thereby p(R) = f_ll ldx = 2. Furthermore the leading coefficient is Q((W

and the three-term recurrence relation is given by (2.10). First the term L, 1 ()
is isolated on the left-hand side by dividing with (n+1) as in (2.11) which yields

2n+1 (@) n
zL,(x) — ——
n+1 n—+1

Ln-‘rl(x) = Ln—l(x)-

In order to get this expression on the form of ¢, described in (2.5) a division
with the leading order coefficient is carried out. This means that ¢,(x) =

L, (z) 2(2(2)'?2 . Dividing with the leading coefficient for the (n+1)’th term in the

three-term recurrence results in

201 ((n + 1)1)?
2(n+1))!

27 (n+1)1)22n + 1
Qn+1)) n+l-
2"t (n+ 1)) n

TTemrn) arit@

Lpti(z) = Ly ()

The derivations has been divided into two parts - one to compute the coefficient
in front of L,(z) denoted ¢; and one for the coefficient in front of L,_1(z)

2.3 Gauss Quadrature 17

denoted co. The derivations for computing ¢; are carried out below.
2"t (n+1))22n + 1
2(n+1)! n+1
2"2((n+ Dl (n+ 1) 2n+1
(2n + 2)! ntl
2nl(n+)nl(n+1) 2n+1
2n+2)2n+1)(2n)! n+1
» 2(n+)nin!
2n+2)2n) "
_ on nln! .
(2n)!
The second coefficient is computed as
2 (n+1))2 n
2n+1)! n+1
2" 122((n+ Dnn — D) ((n+ Dnn—-1)!) n
Cn+2)2n+1)2n)2n—-1)2n—-2)! n+1

c1 =

n

C2

 ontl 2(2n +2)n((n — N2 (n+ 1)n n
B (2n+2)2n+1)(2n)(2n —1)(2n — 2)!n+1
N ()
(2n+1)(2n —1)(2n — 2)!
271 ((n — 1)1)? n?

2n—-2)! (@2n+1)(2n—-1)

Substituting these results into the expression obtained earlier yields

Ont1(x) = c1Ln(x) — co2Lp—1(x)
(n!)? n? 21 ((n —1)1)?
= 2" L — L,_
O T G T g § R s e TR)
n2
= z¢n(z) - m%fl(fﬂ)-
which means that a,, = 0 and b,, = % = #. The Gauss Legendre

quadrature has been implemented in MATLAB and can be seen in appendix

B.I1

2.3.3 Gauss-Lobatto Quadrature

Another widely used class of quadrature is the Gauss-Lobatto quadrature that
basicly is the same as described above just with the difference that the endpoints

18 Mathematical background

are included in the quadrature nodes. This means that for example Legendre
Gauss-Lobatto quadrature with n quadrature points involves the zeros of a Leg-
endre polynomial as well as the end points —1 and 1.

The Gauss-Lobatto quadrature is generally not exact for as high orders of poly-
nomials as the regular Gauss quadrature but it includes the end points which
can be very useful in some cases, e.g. when solving boundary value problems,
see [I5]. Therefore the choice between Gauss quadrature and Gauss-Lobatto
quadrature often depends on whether the boundary nodes plays a significant
role or not for the solution.

2.4 Polynomial Interpolation

Polynomial interpolation is an approximation of a function f by use of polyno-
mials, Py, which satisfies that f(z;) = Pas(z;) for a given set of nodes {z;}}.
For the one dimensional case this yields

PM(;UZ-):aMxiw—i----—l—alxi—i—ao:f(;vi), 1=0,1,...,N.

When using polynomial interpolation the Lagrange polynomials are a widely
used class of polynomials and the Lagrange polynomials, h;(z), are defined as

M
hi(z) =[] % i=0,1,...,N.
j=04#i "

The Lagrange polynomials has a special property, namely

L, =17,

0, @#J,

where 9; ; is the Kronecker delta function. The Lagrange polynomials are used
to establish a nodal representation on the form

hj(wi) = 0i5 = {

Fla) =3))hs(a),

and this form is called Lagrange form. Typically M = N since this yields
a unique interpolating polynomial Zf(z) = Qn(z). That Qn(z) is unique is
seen by assuming that another interpolating polynomial Gy () exists such that
Gn(z;) = f(z;) for i =0,1,..., N. The difference between the two polynomials
is a new polynomial of order N, i.e. Dy(x) = Qn(x) —Gn(x). This polynomial
will have N + 1 distinctive roots which implies that Dy () is the zero polyno-
mial and thereby that Qu(x) is unique.

2.4 Polynomial Interpolation 19

Besides having a nodal representation in Lagrange form of the interpolating
polynomial a modal representation can be used as well. In the nodal represen-
tation introduced here it is the Lagrange polynomials hy(x) that are unknown
but in modal form the coefficients are unknown and the polynomials are known -
typically they are orthogonal polynomials like Legendre or Hermite polynomials.
This means that the modal representation of f can be formulated as

where the coefficients typically are represented as

fi=- /D F(2)®; (x)w(z)dz,

_ij

where D, is the domain of z, w(z) is a weight chosen according to the polyno-
mials ®; in order to secure orthogonality and ; is the normalization constant
for the polynomials.

2.4.1 Relationship between nodal and modal representa-
tions

Interpolating a function f in a discrete setting with polynomials is done by using
a modal or a nodal interpolating polynomial representation. By using Lagrange
polynomials h(x) as the nodal basis functions and appropriately chosen polyno-
mials ®(x) for the modal representation the following relationship between the
modal and nodal representations can be established [7]

N N
flz:) = ijq)j(l'i) = ijhj(ﬂ?i), 1=0,...,N
=0

=0

where z; are the nodal interpolation points, which in this project typically are
generated by use of a quadrature rule. The relationship between the modal and
nodal coefficients in the discrete interpolations can be expressed by use of the
Vandermonde matrix V which elements are computed as V; ; = ®;(x;). The
relationship between the coefficients can be expressed as

f=Vrt, (2.16)

where f and f are vectors containing the nodal and modal coefficients, respec-
T
tively. Since the nodal and modal bases are related as f' h(z) = f ®(z) the

20 Mathematical background

basis functions can also be related by use of the Vandermonde matrix. By use
of (2.16)) it is seen that the following holds

h(z) = (VE)Th(z) = VTh(z). (2.17)

This means that the bases can be related as

F VT () = f o)
()}
Vin(z) = @(2)

From this result it is clear that the Vandermonde matrix can transform the
discrete nodal basis functions into the discrete modal basis functions and vice
versa.

2.5 Spectral methods

The theory introduced here about orthogonal polynomials serves as the basis for
spectral methods. The orthogonal polynomials serves as a basis for polynomial
expansions on which the class of spectral methods is based on. The spectral
methods in general has spectral convergence which is one the main properties
that makes the methods attractive. The spectral methods for uncertainty quan-
tification will be introduced in chapter 5.

2.6 Numerical solvers

In this section a numerical method for for solving PDE’s in space will be outlined.
Furthermore a method for solving PDE’s in time is introduced.

2.6.1 Solver for differential equations in space

When solving the differential equations in space there are a lot of different
methods and approaches. In this section a spectral method for solving a non-
periodic PDE is introduced.

2.6 Numerical solvers 21

2.6.1.1 Deterministic Collocation Method

The deterministic Collocation method is based on polynomial interpolation of
the solution v which means that a set of interpolation points, x;, has to be chosen
[7]. These points are typically known as collocation points and the Collocation
method relies on a discrete nodal representation of the solution on the form

N
INUZ E Unhn-
i=0

The collocation points used in this thesis will be chosen to be Gauss Lobatto
nodes. The deterministic Collocation method is based on a linear representa-
tion of the solution and a linear operator L is introduced. This means that a
differential equation on the form

d du du
o <adx> —|—b% +cu= f(x), x€ Dy, (2.18)

where D, is the domain of = can be represented by a linear differential operator
defined as
d d d
L=— b— . 2.19
<) + . +c (2.19)

a—
der \ dz
By introducing an interpolation derivative D as

d
Dv=—1Inv (2.20)
dx
a discrete expression for £ denoted Ly can be formulated for evaluation of an
approximation to the solution w in the interior collocation points. This means
that

Ly =D (AD) + BD +C, (2.21)

can be used to evaluate Ly (Zyu(z;)) = f(x;) for i = 1,...,N — 1. Some
adjustment are however necessary since the boundary conditions has not been
enforced yet.

The boundary conditions can be enforced in different ways by modifying the es-
tablished system of equations and this will be described in the implementation
section For further information see [7].

In order to use the deterministic Collocation method later on it has to be es-
tablished how the spatial differential matrix can be computed. This is outlined
in the following section.

22 Mathematical background

2.6.1.2 Construction of a spatial differential matrix

By use of the Vandermonde matrix it is possible to construct a discrete operator
for computing an approximation of the first derivative in nodal space. The first
derivative in modal space can in discrete form be formulated as

In matrix form this can be expressed as

df

- dd;
= wf T,ij — J
dx Valy Vi

dz |,
In nodal space an approximation of the first derivative in space can be expressed
as

d [N4
= > fihi(x) Zij%hj(ﬂﬁ)-
§=0 §=0
In matrix form the nodal approximation can be formulated as

df dh;
—=Df D, .=_—2
dx ’ Y dx

’
Zi

where f is a vector containing the function evaluations. Now an expression for
the derivative matrix D can be derived.

X _pe_p (vf) — V1,

dzx

where fis a vector containing the modal coefficients and from this it is seen that
D =V, V~!. The matrices V and V, can be expressed as

Po(x1) Pi(x1) - Pn(xr)
Do(z2) Pi(z2) -0 Pn(z2)
V= : : :
Po(rn) Pi(zn) - Pn(zn)
and
Po(x1) Pi(x1) -0 (1)
Do(z2) @y(x2) -0 Pn(z2)
Vo = : ; . :
‘I)o(ﬂ-CN)/ Pi(xn) o Pn(zn)

The implementation of these matrices can be found in appendix [B]

2.6 Numerical solvers 23

2.6.1.3 Legendre polynomials and the differential matrix

In this thesis the Legendre polynomials will be used as basis polynomials in the
deterministic Collocation method. In practise the orthogonal basis polynomials
are often normalized [7] which means that the Vandermonde matrix can be
expressed as

Lo(@:) Li(z1) -+ Ly(@)
v Lo(:fw) Ll(:-r2) LfoZ) 7 (2.22)
Lo (‘JJN) El(.@) e zN(‘JJN)

where L;(z) is the normalized i’th order Legendre polynomial. The Vander-
monde matrix for the first derivatives in space with regard to a Legendre basis
can be expressed as

Lo(@) Li(z1) -+ Lw(@)
e R
Fo(en) Taow) - In(on)

This means that when an expression for the derivative of the Legendre poly-
nomials has been established the spatial derivative matrix for a Legendre basis
can be computed. As a subclass of the Jacobi polynomials the derivatives of the
Legendre polynomials can be derived from the expression for the derivatives of
the Jacobi polynomial.

In general the derivative of the Jacobi polynomials can be computed as

dk 'n+a+pB+1+k)
a,B _ potk.ptk
dgk ™™ (ZIJ) 2’“F(’I’L+O[+ﬁ+ 1) n—k (.Z‘),

where I'(a) = (a — 1)!. As mentioned earlier the orthonormal polynomials are
for computational reasons used instead of the standard polynomials and the
normalized Jacobi polynomials can be expressed as

_ P2O(a)

,Yg,ﬁ’

PP (z) (2.24)

This means that the general expression for the derivative of the normalized
Jacobi polynomials is

ikﬁa,ﬂ(x) _ F(TL + o+ ﬁ + 1 + k) 'Vsj;jﬁ—i_k ﬁa+k,ﬁ+k(x)
dxk™ " 2T(n+a+pB+1) o8 ok ’

24 Mathematical background

The first order derivative of the orthonormal Jacobi polynomials can be derived
to be

LA (@) = v/nln + at B+ DB).

This means that the derivative of the Legendre polynomials can be expressed
as
d ~

%Ln(x) =+/n(n+ 1)&1’_11(33)

Now the basis for using the deterministic Collocation method has been estab-
lished and the implementations of the matrices V, V, and D can be seen in

appendix [B]

2.6.2 Solvers for time dependent problems

There exists a lot of different solvers for solving time dependent problems and
each of them has strengths and weaknesses. In this section a solver is outlined
for time dependent problems where the time dependent term is differentiated
once with respect to the time ¢. This means that the problem can be outlined
as

du(z,t)
dt

=L(u), DxT,

where L is a differential operator, D is the spatial domain and T is the time
domain. There exists a class of solvers for time dependent differential equations
which is called Runge-Kutta methods and one of these has been implemented
in MATLAB. The implemented method is an explicit Runge-Kutta method and
is denoted ERK [7].

2.6.2.1 ERK: Explicit fourth-order Runge-Kutta

This method is an explicit fourth-order Runge-Kutta which means that it is a
one-step method that relies only on the current solution when computing the

2.6 Numerical solvers

25

next solution. The method can be outlined as

[
< =
8
s
N~—

+ 3AtP

[
v S

iG

U+ AtP

TOATTWT QAT QAT YRS
[I

@

I

e

~—

w(x, tip

fti+ 3At,0)
U+ SALHP - G)

flti+ 3ALU) -

f(ti+At,U) 4+ 2P
=U+AtG+ LP)

where u(z, t;) denotes the current solution and w(z, t; 1) the solution in the next
time step. The method has been implemented in MATLAB in the file ERK.m and

can be seen in appendix [B]

26

Mathematical background

CHAPTER 3

Basic concepts within
Probability Theory

This chapter will give a brief introduction to some basic concepts within prob-
ability theory which are used in relation to Uncertainty Quantification. The
interested reader can find a more thorough description in [16] or [19].

3.1 Distributions and statistics

In order to cope with the stochastic problems investigated in this thesis some
basic definitions about distributions and statistics has to be introduced. First
of all a random variable X has a (cumulative) distribution function, Fx (x), and
a (probability) density function. The distribution function, Fly, is defined as a
collection of probabilities that fulfils

Fx(z)=P(X <z)=P({w: X(w) <z}). (3.1)

Due to the definition of the probability P it holds that 0 < F'x < 1. The prob-
ability density function, fx(z), is closely linked to the cumulative distribution

28 Basic concepts within Probability Theory

function through the relations
@ d
Fa(@) = [fx(@de md fil@) = 7 Fx(o) (3.2)

The cumulative distribution function is as indicated by the name a cumulated
probability in the sense that it computes the probability of X being in an interval
and does not obtain any value in a single point. The density function on the
other hand is intuitively a way of computing the probability in a point or in an
infinitesimal interval.

3.1.1 Example: Gaussian distribution

A common and important class of distribution is the Gaussian distribution which
is also called the normal distribution and is denoted N'(u,0?), where u € R is
the mean, o2 > 0 is the variance and ¢ is called the standard deviation. The
probability density function (PDF) can be formulated as

The distribution is often used with the parameters ¢ = 0 and o2 = 1, i.e.
N(0,1), which is referred to as the standard normal distribution. The PDF for
the standard normal distribution is plotted in figure 3.1

3.1 Distributions and statistics 29

0.4 .

0.3 |

0.2 .

fx(z)

Figure 3.1: The PDF for the standard normal distribution.

3.1.2 Example: Uniform distribution

The uniform distribution is also an important class and its main characteristic
is that all outcomes within the support of the distribution is equally probable.
Furthermore the support is defined as an interval on the real line and charac-
terized by Iy = [a, b].

The PDF of the uniform distribution is defined as

1

)5 z€lab]
fx(:v)—{ob e 3.9

The PDF for the uniform distribution with support Ix = [0,1] is plotted in
figure [3.2]

30 Basic concepts within Probability Theory

0.8} 1

0.6 |- N

fx(z)

Figure 3.2: The PDF for the uniform distribution.

3.1.3 Multiple dimensions

In multiple dimensions it is useful to define the joint density function and the
marginal density function. The definitions given here will for simplicity be de-
fined for two variables but it can be extended to any dimension. The definitions
will be based on [I7].

The joint density function is defined as a function f(z,y) that for —oco < z,y <
oo fulfils

f(xay) ZO VZE,y,
SN (3.5)
f—oo f—oo f(x,y) dxdy = 1.
The multivariate cumulative distribution function can be defined as
a b
F(a,b) = / / f(z,y) dzedy (3.6)

A new type of function can be introduced for the multivariate case namely
the marginal density function which is defined as f,(x) = fix;o f(z,y)dy. The
function f,(x) has to fulfil

fz(2) >0 Vo
{ffooo fo(z)de = 1. (3.7)

3.1 Distributions and statistics 31

The marginal density in y is defined equivalently and denoted f,(y).

3.1.4 Statistics

In this thesis there is mainly computed two statistics in the numerical investi-
gations, namely the expectation and the variance. The expectation of a random
variable X with density function F, can be computed as

MX:E[X]Z/I xdFX(JS):/I zfx d(z),

where Ix is the domain of the variable and fx is the PDF. The variance of X
can be computed as

0% = var(X) = / (x — px)? dFx (z) = / (2 — px)? fed(a).

Ix Ix

Furthermore for m € N the m’th moment of X can be computed as

]E[Xm]:/ a:mdFX(x):/ ™ fx d(x).

IX IX

It is also possible to define a moment generating function and an example of
this can be seen in [19].

3.1.5 Inner product and statistics

In many cases it is possible to express the statistics in terms of inner prod-
ucts. This of course requires the definition of an inner product and a proper
space where this inner product is defined. The inner product was defined in a
deterministic setting as and in a stochastic setting it can be defined as

(U, V) apy :/ u(X)v(X)dFX:/ u(X)v(X) fxd(z).

IX IX

By comparing this definition with the definition of the statistics it is seen that
the statistics can be represented by use of the inner product. This means for
instance that the expectation can be computed as

E[X] = (VX,VX)ar, :/ a:dFX(x):/ xfx d(z).
IX IX
The corresponding space is LleX (Ix) = {f : Ix — R|E[f?] < oo} with the
norm defined by || f|lary = VE[f?]-

32 Basic concepts within Probability Theory

3.2 Input parameterizations

The objective of this thesis is to study the effects of having uncertainty on the
input variables to a mathematical model. In practice this leads to some restric-
tions on the input variables. To be usable in a computer they have to be finite
and they should be independent, since most methods within the field require
this in practise. Two approaches for achieving this will be outlined here and
they are based on [16] and [19].

When the stochastic input is system parameters the input is already parametrized.
The focus is therefore on ensuring the independence of the parameters. The pro-
cedure can be outlined as in Algorithm [I]

Algorithm 1 Procedure for ensuring independence of stochastic system param-
eters.

1: Let the system parameters be defined as Y = (Y7,...Y,,) with n > 1 and
with distribution function Fy (y) = P(Y <y) where y € R™.

2: Find a suitable transformation function T such that Y = T(Z) for Z =
(Z1,...,7Zq) € R being a set of mutually independent random variables.

Similarly the approach can be outlined when the input parameters are stochastic
processes which is seen in Algorithm [2}

Algorithm 2 Procedure for parameterization of random processes.

1: Let the stochastic process that models the stochastic inputs be defined as
(Yx, k € D) where k is an index belonging to the index set Dy. The index
k can belong to either a time or a space domain.

2: Find a suitable transformation function 7' such that Y, = T(Z) for Z =
(Z1,...,Z4) with d > 1 being a set of mutually independent random vari-
ables.

Often the stochastic process is not finite dimensional which means some kind of
finite approximation has to be established. This introduces the problem with
precision contra efficiency of the numerical solvers. An increasing number of
terms in the finite approximation usually leads to increasing precision but also
leads to more computational work. For more information see [16] and [19].

CHAPTER 4

Generalized Polynomial
Chaos

The Generalized Polynomial Chaos (gPC) is outlined in this section. The gPC
expansions described in the following are based on smooth orthogonal polynomi-
als such as Hermite polynomials or Legendre polynomials. In fact the original
polynomial chaos was based on Hermite polynomials and proved to be quite
effective, when the stochastic parameters are Gaussian distributed but gener-
ally it is slow for non-Gaussian distributed variables. Therefore the gPC was
introduced where the orthogonal basis polynomials are chosen according to the
distribution of the stochastic parameters.

The gPC is a way of representing a stochastic process X (w) parametrically. This
is done by using an expansion with orthogonal polynomials such that a random
field X (w) can be represented by

X(w) = 6;(w),
=0

where ® represent the given basis polynomial and w the random variable(s).
The polynomials are chosen such that the weights that ensures the orthogonal
property (®;,®;) = [}, ®;i(2)®;(z)w(x)dz = (®7)d; ; resembles the probabil-
ity distribution function of the random variables. If a random variable, w, is
standard normal distributed it means that the probability density function is

34 Generalized Polynomial Chaos

1

27
mials. In this way a relation between the distribution of a random variable and
the chosen basis functions can be outlined as in Table {11

1 5
e~ 29 which corresponds to the weight function wy of the Hermite polyno-

Distribution of Z gPC basis polynomials Support

Gaussian Hermite (—00,00)
Gamma Laguerre [0, 00)
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Table 4.1: Correspondence between distributions and the generalized Polyno-
mial Chaos.

4.1 Generalized Polynomial Chaos in one dimen-
sion

In a single dimensional stochastic variable space with the random variable Z the
gPC basis functions are chosen to be orthogonal polynomials, {®(x)} where
the type of polynomials are coupled with the distribution of Z according to table
A1l

The approximation of a function f by gPC can be either in weak or strong form
depending on how much information is available about f and Z. Both the weak
and strong gPC approximations are introduced in appendix [A]

The type of gPC approximation that is typically used in this thesis is the gPC
projection, where the N’th degree orthogonal gPC projection for a function
[€ L2y, () is

fi,(2), ﬁ:% F(2)8:(2)],

] =

Pnxf(Z) =

2

Il
=]

where {7;} are the normalization factors. The convergence of the orthogonal
projection follows from the theory but the convergence rate depends heavily on
the smoothness of f [19]. The smoother f the faster the convergence.

4.2 Multivariate Generalized Polynomial Chaos

The focus is now on gPC in multiple dimensions. The variables Z = (Z1,. .., Zy)
are assumed to be mutually independent and if this is not the case with the

4.2 Multivariate Generalized Polynomial Chaos 35

stochastic variables in the original problem a parametrization can be conducted
in order to achieve the independence of the variables.

The variables Z; have support Iz, and marginal distribution Pz, (z;) = P(Z; <
z;) and since the variables are independent it holds that

d
Fy(z1,...,2¢) = P(Z1 < 21,00, 29 < 2q) = HFZi(Zi)a
i=1

and Iz =1z X ---x1Iz,.

For the variable Z; a corresponding set of univariate gPC basis functions are
introduced, i.e. {¢x(Z;)}_, € Pn(Z;), which are polynomials in Z; of degree
up to N.

In order to introduce a compact notation for the multivariate gPC expansion a
so-called multi-index is introduced. It is a vector of indices for the d variables,
i= (i1,...,iq), and |i| = i1 + --- + iq by definition. As an example the first
multi-indices for d = 3 are listed in Table A1l

[i| | Multi-index i | Single Index k
0 000)
1

(4.1)

—
P2 ©oo~1o Utk o

—
[\

As seen from Table it is possible to use a single index instead of the multi-
index. Both types of indices are commonly used in the literature and in most
cases it is just a matter of preference.

Now it is possible to define a set of basis functions for all d variables and these
are introduced as ®;(Z) = ¢i, (Z1) -+ ¢i,(Z4) and 0 < |i| < N.

The expectation of the multivariate gPC can be expressed as

E[®:(2)0;(7)] = / B1(2)®;(2)dF (=) = iy,

where 655 = 0, j, - .- 0i,,j, is the d-variate Kronecker delta function and ; =
E[®?] = 71 ... 74 is the normalization factor. The basis functions ®; belongs to

36 Generalized Polynomial Chaos

the polynomial space

PN(Z) ={p: Iz > R[p(Z) =) a®i(2)},
[il<N

which has the dimension dimP4, = ij/._ d) Otherwise the polynomials

®;(Z) can be defined to be of degree up to N in each dimension which implies a
polynomial space, P4, of dimension dim P4, = N¢. This choice of space usually
results in too many basis functions to be evaluated in practise for large dimen-
sions.

As in the univariate case a multivariate gPC projection can be defined as

Pyf= Y fi®i(2),

lij<nN

where the coefficients can be computed as
N 1 1 .
fi= —Bl@) = = [F)B(IaF), Vil < N
1 1

The d-variate gPC projection is conducted in the space LgFZ which is defined

as (2.2).

4.3 Statistics for gPC expansions

The gPC expansions can be used not only to approximate a function f but also
to estimate the statistics of f. If u(x,t,Z) is a random process with = € D,
t € T and Z € R? then the N’th order gPC expansion can be expressed as

uN(a,t, Z) = Y sz, t);(Z) € PR,
lil<N

for any fixed z € D, and t € T. The orthogonality of the basis functions
enables the following computations of the statistics. For instance the mean
can be approximated as E[u(x,t,Z)] ~ E[uN(z,t,Z)] and the computation of

4.3 Statistics for gPC expansions 37

E[ul (x,t, Z)] yields

E[u™ (x,t, Z)]

[
5

B
=
©
~
S~—

sz(Z)

- / S i, H)04(2) | @o(2)dFs(2)
[iI<N
= ’0,0 (ac, t).
The orthogonality of the basis functions has been utilized as well as the fact the

zero-order polynomial ®¢(Z) is defined to be ones which explains how it could
be introduced in the second equality. The variance can be computed as

var(u(z,t, 7)) = E[(u(x,t, Z) — pu(z,1))?].

By using vV the variance can be approximated by

2

E[(uN(z,t,Z) — puv (2,1)%] = / Z Ui (2, t)Di(2) — Go(x,t) | dFz(z)
lij<N
2

/ > iz, t)®i(2) | dFz(2)

0<|i|<N

Z ’0*12('77’ t)7i~

0<|i|<N

where the orthogonality ensures the validity of the second to last equality sign
since

/(ﬁi(x,t)cbi(z)) (U§(x,t)@4(2)) dFz(z) =0 for i # j.

Other statistics can be approximated as well by applying their definitions to the
gPC approximation u®V [19].

38

Generalized Polynomial Chaos

CHAPTER 5

Stochastic Spectral
Methods

Uncertainty Quantification (UQ) will in this project be with regard to solving
Partial Differential Equations (PDEs). The PDEs in this thesis can in general for
a time domain 7" and spatial domain D C R with ¢ =1,2,3,... be formulated
as

u(z, t,w) = Lu), DxTxQ
B(u) = 0,, IDxTxQ
u = wug, ODx[t=0]xKQ,

where w € Q are the random inputs of the system in a probability space
(w, F,P), L is a differential operator, B is the boundary condition (BC) op-
erator and wug is the initial condition (IC).

In many cases it is required to restate the random variables w such that a
parametrization, Z = (Z1,...,Z3) € R? with d > 1, consisting of independent
random variables is used instead. This means that the PDE system is on the
form

ug(x,t,Z) = L(u), DxTxR?

B(u) = 0, 9D xT xR? (5.1)
u = wug, ODx[t=0]xR%

40 Stochastic Spectral Methods

This general formulation will be used in the following when introducing the
techniques for UQ.

5.1 Non-intrusive methods

The non-intrusive methods are generally speaking a class of methods which re-
lies on realizations of the stochastic system - i.e. deterministic solutions of the
underlying non-stochastic system. This is an interesting feature of the non-
intrusive methods for stochastic systems, since well-known solvers can be used
without any particular modifications. Another interesting part is when the de-
terministic solutions are decoupled the solutions can be computed in parallel.
A drawback with the non-intrusive methods is the computational effort that
grows with the number of deterministic solutions to be computed. This draw-
back will be further described later and is an important topic in UQ.

5.1.1 Monte Carlo Sampling

The Monte Carlo Sampling (MCS) is based on constructing a system of inde-
pendent and identical distributed (i.i.d.) variables Z. Then a system like
is solved as a deterministic system for M different realizations of Z and thereby
obtaining M solutions of the type u(¥ (x,t) = u(z,t, Z%), where Z° refers to the
i’th realization of Z.

When the M solutions have been computed the solution statistics can be esti-
mated. For example the mean of the solution can be estimated according to the
Central Limit Theorem (CLT) as

This is as mentioned only an estimation of the true mean, 4 = E(u) = y,, and
an error estimate of MCS follows from the CLT [19].
Since the M solutions u(z,t,Z") are ii.d. it means that for M — oo the

distribution of 4 converges towards a Gaussian distribution N (g, %), where (1,
and o, are the exact mean and standard deviation of the solution, respectively.
This means that the standard deviation of the Gaussian distribution is M _%au
and from this the convergence rate is established as O(M~2) [19].

It is important to note that only two requirements are to be met in order to
use MCS. Namely that the system is on the right form and that a solver for
the deterministic system is at hand. When these requirements are fulfilled a

5.1 Non-intrusive methods 41

convergence rate of O(M *%) can be obtained independently of the dimension
of the random space, which is quite unique. It is however worth noting that the
convergence rate is rather slow and if the deterministic solver is time consuming
then it will take an immense amount of time to obtain a decent accuracy on the
estimates of the statistics.

It should also be mentioned that there exists several methods which are based
on the Monte Carlo method but has e.g. better efficiency. These methods are
generally known as Quasi-Monte Carlo methods but it lies outside the scope of
this thesis to investigate these methods.

5.1.2 Stochastic Collocation Method

The stochastic collocation method (SCM) is a stochastic expansion method
that in general relies on expansion through Lagrange interpolation polynomials.
The overall idea is to choose a set of collocation points Zy; = {Z7 jl‘il in the
random space. Then is enforced in each of the nodes Z7 which means that
the following system is solved for j =1,..., M

up(z,t,27) = L(u), DxT xR?
B(u) = 0,, 9D xT xR?
u = wg, ODx[t=0]xR%.

This system is deterministic for each j and hence the SCM involves solving M
deterministic systems. This is a very broad definition of the SCM and it would
include the Monte Carlo sampling. Usually when using the SCM a clever choice
of collocation points is made - e.g. choosing the points by a quadrature rule and
exploit the belonging quadrature weights when computing the statistics.

The solution of the PDE can be representated by use of Lagrange inter-
polating functions which have been described earlier. Hence the solution u is
represented by an interpolation

W(Z) =T(u) = u(Z)h;(2), (5.2)

Jj=1

where h; are the Lagrange polynomials and u(Z7) = u(z,t, Z7). It is important
to remember that the Lagrange polynomials are defined in a appropriate inter-
polation space Vi and that h;(Z7) = §;; for 4,5 € [1,..., M]. This means that
the interpolation @(Z) is equal to the exact solution in each of the M collocation
points.

From M deterministic solutions in the collocation points the statistics of the in-
terpolation can be computed and thereby represent the statistics of the stochas-

42 Stochastic Spectral Methods

tic solution to ((5.1)). The mean of the interpolation @ can for instance be com-
puted as

M .
Bl = Y_u(2)) [hy(:)ol)de (5.3)

J=1

where T is the random space in which Z is defined and p(z) is a distribution
specific weight - namely the probability density function of the distribution of
Z. The evaluation of the expectation can be non-trivial and knowledge of the
Lagrange polynomials is needed. This can be obtained by use of an inverted
Vandermonde-type matrix but it often requires quite a lot of work [20].
Another approach is to use a quadrature rule to evaluate the integral which
leads to

M M
Ela] =Y u(Z7)) hj(z)plz)wn, (5.4)
j=1 k=1

where zj, are the quadrature points and wy are the quadrature weights. The
approximation of the integral in by quadrature is exact since the Lagrange
polynomials are of order M and the quadrature is exact for polynomials of this
order.

The attained expression for the mean of the interpolation can be further sim-
plified by choosing the collocation points smartly. The quadrature nodes and
weights are chosen so they represent the distribution of the random parameters.
This means that the quadrature points could be chosen as collocation points,
i.e. z; = Z7. Hence the characteristic of the Lagrange polynomials, h;(Z7) = §;;
for i,j € [1,..., M], can be exploited once again and reduces to

M))
Eli] = 3 u(2))o(2),

In the same way the variance of the interpolation can be computed as
varfa] = E[(a - E[a])’]
~ [@-E@)Po:
r

2

M .
[X u@) -Elal | o

j=1

2

M .
Zu(zj)hj(zk) —E[a] | plzr)wg.
j=1

Il
NE

=~
Il

1

where the integral of the expectation is evaluated by use of the appropriate
quadrature rules. Again the quadrature points and collocation points could be

5.2 Intrusive methods 43

the same points which leads to

2

M .
> w(Z)si; —Efa] | p(Z*)w.

Jj=1

M=

var[a] =

b
Il
—

(u(Z%) ~ Efa))” p(Z*ywy,.

I
M=

b
Il
-

In the same way other statistics could be computed as well if needed. The
approach outlined here is an interpolation approach but there is another common
approach within the stochastic Collocation methods which is referred to as a
pseudo-spectral approach which uses discrete projection. This approach will
however not be pursued further but more information can be found in e.g. [19].

5.2 Intrusive methods

Unlike the non-intrusive methods the intrusive methods rely on modifying the
initial problem and in this project the focus will be on the intrusive polynomial
chaos (PC) methods that relies on a weighted residual formalism.

These methods leads to spectral convergence but on the contrary to the non-
intrusive methods implies extra analytical and numerical work. The modifi-
cation of the stochastic system to be solved can be very troublesome and the
resulting stochastic system often requires solvers that are different from the
usual deterministic solvers [16]. Hence it is a trade-off between the extra ana-
lytical and numerical work and the much appreciated convergence.

When using stochastic Galerkin-like methods many of the properties from the
deterministic Galerkin method is inherited - e.g. that the representation is op-
timal in the mean-square error [16].

5.2.1 Stochastic Galerkin method

The stochastic gPC Galerkin method (SGM) is a intrusive spectral method that
relies on spectral approximations using generalized Polynomial Chaos (gPC).
The idea of the SGM method is to define a solution in the space of polyno-
mials such that the residue of the system is orthogonal to the space of
polynomials. The general approach is outlined in algorithm

44 Stochastic Spectral Methods

Algorithm 3 Outline for the Stochastic Galerkin Method.

1: Identify the source of uncertainty and compute a set of independent random
variables with an appropriate PDF to represent this.

2: Construct a generalized Polynomial Chaos basis and use this to construct a
gPC expansion to represent the system.

3: Modify the governing system by substituting with the gPC expansion.

4: Apply the Galerkin procedure to obtain a set of coupled deterministic equa-
tions instead of stochastic equations.

5: Use appropriate numerical methods to solve the system of equations.

6: Post-processing - compute the needed statistics from the obtained solution.

For further information about this general outline see [12]. In the general system
the uncertainty has been identified and is described by the independent
parameters Z = (Zy,...,Z) € R? where d > 1.

The gPC basis is chosen so it matches the distribution of the random parameters
Z and this correspondence is outlined for the most common distributions in
Table The gPC basis is denoted {®;(Z)}_, and belongs to the space P4,
that consists of all the polynomials in Z of degree up to N. As described earlier
the gPC basis consists of orthogonal polynomials in the random space which
means that E[®,®;] = 0p;v.

The approximation by a gPC expansion of the solution to can be described

as
N

u(z,t, Z) =~ u™ (x,t,Z) = Z iz, t)Pi(2), (5.5)
li|=0
where 1 is the multi-index described earlier and

Uy (z,t) = lIE[u(a:, t, Z)®;].

Vi

This means that the number of terms in (5.5) is P +1 = ((glbf,))!!. By using the
P+1

single index described earlier and by defining {®,, »—o as the collection of basis
polynomials the gPC expansion of the solution can be expressed as in [12] by

P+1
ulN (2,8, 2) =Y (2, £)0p(2), (5.6)

p=0
where 1
ﬁP(I7 t) = 7]E[u($a t? Z)(I);D]
Tp
Now the Galerkin procedure is performed by a Galerkin projection of (5.5) or

(5.6) onto the space spanned by the polynomial basis. This is done by suc-
cessively applying the inner product between the given equation and each of

5.2 Intrusive methods 45

the basis functions, i.e. evaluating the expectation for each index. By use of
multi-index k where k < N this leads to a new formulation of the system (5.1),
namely

E[gt Nz, t, 2)0(Z)] = E[LuM)®(Z)], DxT xR?
EB(u™)®(Z)] = 0, 9D xT xR? (5.7)
e = Dok, ODx[t=0]xR%

where the gPC projection coefficients 0 i of the initial condition more explicitly
can be written as Jpx = M By evaluation of the expectations the
system is reduced to a set of determlmstlc equations that usually are coupled.
This means that the system is independent of the random parameters Z.

It follows from the gPC theory how to compute the statistics of the stochastic
solution by computing the solution to the deterministic system (5.8)). The mean

and variance can for instance be computed as

N
Hou(z,t) =~ E[UN(xata Z)] = ﬂO(xvt)’ 0—3 ~ 0—7% - Z Pylu12(x t)

lil=1

For further information see [19] and [12].

46

Stochastic Spectral Methods

CHAPTER 6

Test problems

In this section two test problems are introduced. The first is a simple Ordinary
Differential Equation (ODE) known as the (stochastic) Test Equation which will
serve as a toy problem for testing convergence and efficiency of the methods.
The second model problem is the partial differential equation (PDE) denoted
Burgers’ Equation which is more complex and involves a non-linear term. In this
chapter the book [18] is used as a general reference when evaluating integrals.

6.1 Test Equation

In this section the ODE known as the Test Equation is introduced. The ODE
looks like this with deterministic parameters

With stochastic parameters the ODE looks like this

d
%u(hw) = —o(wu(t,w), u(0,w)=L(w). (6.1)

48 Test problems

The analytical solution to the stochastic ODE (6.1)) can be computed as follows
—u(t,w) = —oa(wu(t,w) <

——du(t,w) = —o(w)dte

/u(t,w) 1 () t ()
du(t,w) = / —a(w)dt &
u(0,w) u(t»w) 0

u(t, w)

1 = -

n (0w > a(w)t &
u(taw) — e—(x(w)t o
u(0,w)

u(t,w) = u(0,w)e” @,

Since the initial condition is u(0,w) = B(w) the analytical solution to the ODE

s
u(t,w) = Blw)e @), (6.2)

In the case where the distribution function Fi,5(a,b) = P(a < a, < b) of a and
f3 is known it is possible to compute the statistical moments of the solution (6.2).
When the two parameters o and [are independent the distribution function
simplifies to Fug(a,b) = Fy(a)Fp(b) which means that the expectation of the
solution can be computed as

Elu(t,w)] = E[B]E[e™*"]. (6.3)

The expectation is in general computed as

BX) = [apctnan,

— 00

where fx () is the density function of the given stochastic variable. The variance
of u for independent o and 3 can be found by computing

E[u’] - E[u]® = E[S*]E[(e™*")]* — (E[B)E[c™**))*.

This means that as long as « and 3 are independent the theory outlined here
makes it possible to compute the statistics for the Test equation.

6.1.1 Normal distributed parameters

In this section the stochastic moments of the parameters are computed under the
assumption that they are independent and Gaussian distributed, a(w), 8(w) ~

6.1 Test Equation 49

N (u,0?). The density function for a Gaussian distribution is given as

_ 1 (z —p)?
o) = —==sex [—20] (6.4

—at

The expectation of e can therefore be computed as follows

< 1 s
E[e™] = /_ (™) (Tﬂ e‘zwz(’c—“)Q) dz

> 1 — (2?4 p?—2xp)—at
= e 202 ! TR Qg
—o00 V2702

0o
_ / 1 67ﬁ(m2+#2721”+202xt)d$

oo V2102
— /OO 21 26_%%(I2+“2—2(u—"2t)”)dx. (6.5)
—0oV2To

Now the variable i = u — o2t is introduced. By using this variable it is possible
to rewrite (6.5) in a convenient way when using that by the definition of ji the
following holds.

(r—p)? = 2®+p> =2z
= 2% 4 (u? + (0%t)? = 2uc*t) — 2(u — o*t)x
= 22+ u® =2 — o*t)x + oMt — 2uc’t. (6.6)

It is noticed that the exponent of the exponential function equals except
for 0*t? — 2uc?t. Hence (6.5) can be rewritten as

E[’U,] = /OO ! 6_20%((w_ﬂ)z_(a4t2_2H02t))dx
o V2102

— oot 2u0tt) > 1 e~ 302 (@=1)?) 4
—oo V2702

= 3o tpt (6.7)

In the second equation it is recognized that the expression inside the integral
is a density function for a normal distribution N (ji,0?) and the integral over a
density function equals one. The variance of e~ can be computed as

var(e™*") = E[(e™*")?] — (E[e™™"])?,

and from (6.7) it follows that (E[e=®!])2 = ¢ =24t To compute E[(e~°*)?] =
E[e~2*!] the same procedure as used to compute the expectation will lead to
E[u?] = 20’ =2ut Hence the mean and variance are given as

var(e ") =E [e”*] = ez i mt, (6.8)

50 Test problems

and

E[(efozt)2] _ (E[efat])Q _ 62021‘/272‘” o 602:‘,272“1‘/' (69)

The statistical moments of a Gaussian distributed [-parameter can also be
computed. The mean of 3 is

© 1 (@—w)?
E = / T (e 202 > dx
1] . s

1 o 1o N2

_ ")

= re 202 dx
V2ro? /—oo

B 1 T
V2ro? : o

= M.

The integral in the second equation has been evaluated according to [18] and
the result is in good correspondence with the theory - the mean of a normal
distributed parameter should be equal to the distribution mean. To compute
the variance of § the following from [I8] is used

o0
/ e 4y = \/? (6.10)
—o a

When differentiating both sides of (6.10)) with regard to a the following useful
result is achieved

d [2 > 2 d /m 1 jr
7 —ax d — _ 2 —ax d — _ == —.
da 7006 o /,Oo ve YTV 2a\/;

This means that

> 2 —az? 1 ™
de = —,/—. 6.11
/ xr e x 2 a ()

— 00

In order to compute the variance of 8 the term E [ﬁ2] has to be computed which
can expressed as

> 1 _(@—w)?
E[ﬁ2]=/_ x2(me)d:c.

Now a new variable is introduced, namely £ = x — p which implies z = Z + p.
This also means that

22 = p? + 22+ 2ud. (6.12)

6.1 Test Equation 51

1
202

E 5] /;ﬁ(%;ﬁf%%>m
- / (42 + 22 + 2u8) ———e~o" di

—oo 2702

Furthermore a =
as

is introduced which means that E [BQ] can be expressed

p2 [e A 4 [32 g 4 2u [demF di
_ (6.13)
V2ro?

The last integral in (6.13) can be evaluated to be zero by substituting with
T = x — p which gives

/ (x — u)e*a(‘”*#)z dz = / ze @1’ dg — u/ emalz=m* qg

— 00 — 00 —0o0

I
=
NE
<
|
\
o

The first of the two obtained integrals is the same as appeared in the compu-
tation of the mean and is known to be equal to uv2me2 which is the same as
piy/Z. The last integral is the same as in and therefore evaluates to /Z.
Now it is possible to evaluate since he first integral in is recognized
to be of the type (6.10), the second is the same as in and the last integral
evaluates to zero. Hence becomes

1 202
Vo (5 v)
o

= o’ 4,
where the second equation results from substituting with a = 2%2 This means
that variance of 3 is var(3) = (02 + u?) — p?. The mean and variance of
B~ N(up,03) is therefore
]E[B} = M
var(8) = o2

6.1.2 Uniform distributed parameters

The parameters can also be uniform distributed and in this section the statistical
moments for this case are computed. The density function for the uniform

52 Test problems

distribution is
1

Fxla) = {b—a v fah)

) (6.14)
0 otherwise.

First the statistics of e®* are computed and the expectation can be computed
as

b 1
E[e‘at] = /e‘xt dx
o b—a
1 1 b
= () b
e—bt_e—at
= —W. (6.15)
Now E [(e‘”‘t)Q] is computed as
)2 ’ 9zt 1
— _ —2aT
E[(e)} = /ae 7b—adx
1 1 —2x b
- b—a(—2t> ™,
e—2bt_e—2at
B 6.16
2t(b—a) (6.16)
This means that the variance is
"2 2 e—2bt _ p—2at bt _ p—at 2
A =t
(] B e T G
s R s
~ 2bb—a) 2(b—a)? ‘

The expectation and variance of S when (is uniformly distributed can also be

computed and is
b b
1 1 1,
/a xbfadx_ b—a {236]a

1ot 1
2 b—a 2 b—a

1

E[5]

6.1 Test Equation 53

In order to compute the variance of 3 the term E(32) has to be computed and
it results in
b
1
/ x? dz
e b—a

- [1$3]b
b—a |3 |,
163 —a3
3b—a
1 (6% +a® +ab)(b—a)
3 b—a

1
= g(b2 + a? + ab). (6.19)

E [5°]

In this computation it has been used that

(b*+a®)(b—a) = b +ba®—ab® —d®
= b —a®—ab(b—a)

which means that
v —a® = (b* +a®)(b—a) +ab(b — a) = (b* + a® + ab)(b — a).

The variance of 8 can now be computed as

1 1 2
var(f) = 3(b2+a2+ab)—<2(b+a)>
= %(b2+a2+ab)—i(b2+a2+2ab)
S N
= ﬁ(b +a%) 6(ab)
= %2(1) —a)’. (6.20)

As expected the computation of the mean and variance of the uniformly dis-
tributed S-parameter again yields E[3] = ug and var(5) = ag where p3 and o

are the distribution parameters for p5 which are defined as pg = (b + a) and
2 _ 1 2
05 = 15(b—a)’.

6.1.3 Multivariate Test Equation

The theory outlined earlier makes it possible for computing the statistics for
a multivariate Test equation for independent o and S and either Gaussian or

54 Test problems

uniform distributed. The procedure is the same for all the combinations of dis-
tributions of the two variables and therefore only two cases will be introduced.

6.1.3.1 Gaussian distributed o and

When a and 3 are independent and Gaussian distributed the mean can be com-
puted by use of the terms computed in chapter The mean can therefore
be computed as

Elu] = E[p|E[e™]
— M56502t27#t

The terms for computing the variance can also be reused to computed the vari-
ance of the multivariate ODE. The terms are

E[(e—at)Q] _ 6202t2—2ut

(E[e—at])Q _ eo2t2—2mf
B = ot
EB* = puj

This means that the variance can be computed as

var(u) = (0% + u%)e%zttm‘t - u%e”zttzl‘t. (6.21)

6.1.3.2 Gaussian distributed o« and uniformly distributed

Now it is assumed that « is Gaussian distributed and 3 is uniformly distributed
and that they are mutually independent. The mean and variance can be com-
puted in the same manner as when both of them where Gaussian distributed.
The mean is computed as

E[u] E[S|E[e™]

Mﬁe%a%z—ut.

6.2 Burgers’ Equation 55

Again the terms used for computing the variance has already been computed to
be

]E[(efat)Z] _ 6202t272ut
(]E[efat])Z — 6a2t272,ut
E[3?] = é(b2 + a® + ab)
B = (G0+a)’ =4

This means that the variance can be computed as
var(u) = é(b2 +a®+ ab)62”2t2*2"t — ,u%e”ztzfzﬂt.

In the same way other combinations of the independently distributed variables
« and 3 could be computed.

6.2 Burgers’ Equation

The viscous Burgers’ equation is a classic example of a non-linear PDE and it
is defined as

Ut + ULy = VUgy, € [—1,1],
u(=1) =1, (6.22)
u(l) = —1,

where v is the viscosity and wu is the solution field. Burgers’ equation is an
interesting PDE to study since it contains both time and space derivatives, a
non-linear term and has several interesting properties. One property that is
interesting from an UQ point of view is that the PDE is supersensitive towards
disturbances in the boundary condition [I9]. This feature will be investigated
in the numerical experiments later on.

The solution to Burgers’ equation is plotted in figure [6.1] for ¢ = 0 and it is seen
that it is more or less constant 1 until it reaches a transition layer and shifts to
be close to —1.

56 Test problems

1, |
0.5 i
3 0 |
—0.5| R
1k N

| | | | |

-1 —0.5 0 0.5 1

€T

Figure 6.1: The deterministic solution for Burgers’ equation for ¢t = 0.

The focus of this thesis is on Uncertainty Quantification (UQ) and therefore
a stochastic Burgers’ equation is introduced. The stochastic Burgers’ equation
used in the 1D test cases is formulated as

Up + Uy = VUge, « € [—1,1],
u(=1) =14+ 48(2), (6.23)
u(l) = -1,

where §(Z) is a random perturbation of the boundary. This means that the
left boundary condition has been perturbed by additive noise. The effects of
having a stochastic v and right boundary have also been investigated but these
experiments are conducted later on.

The effects of a stochastic boundary condition is clear when the solution is
plotted for the deterministic system with the left boundary condition u(—1) = 1
and the system with u(—1) = 1.01.

6.2 Burgers’ Equation

57

0.5

—-0.5

Figure 6.2: The deterministic solution for Burgers’ equation with boundary
conditions u(—1) = 1 and u(—1) = 1.01.
Figure [6.2] illustrates that the solution is very dependent on how the boundary

conditions are formulated since the transition layer moves quite a lot even though
the left BC is perturbed by only 1 %.

58

Test problems

CHAPTER 7

Test of UQ methods on the
Test Equation

In this chapter the three UQ methods will be used to solve the Test Equation
and test their qualities and drawbacks. The implementations of the methods
will be outlined here and all the code can be found in appendix [B]

7.1 Monte Carlo Sampling

In this section the results from the Monte Carlo Sampling will be examined.
The approach can be outlined as

Algorithm 4 Pseudocode for Monte Carlo Sampling applied to the Test Equa-
tion

1: Compute N realizations of the stochastic variable a.
2: Solve the deterministic system to obtain the N deterministic solutions wu.
3: Compute mean and variance.

The realizations of the random variables are computed by use of the MATLAB
function RandVar. The code is given below

60 Test of UQ methods on the Test Equation

if strecmp (DistType, 'normal ')

X = mu + sigma.xrandn (row,column M) ;
elseif strcmp (DistType, 'uniform”)

X =a + (b-a).xrand(row,column M) ;
end

The mu and sigma refers to the parameters for the normal distribution and a
and b refers to the parameters of the uniform distribution.

The deterministic solution has been computed by use of the Runge-Kutta method
ERK, which is implemented in ERK.m. This implementation and the implemen-
tation of the statistics can be seen in appendix

7.1.1 Gaussian distributed a-parameter

The first case to be investigated is when the initial condition is assumed to be
deterministic, S(w) =1 and o ~ N (y,0). In the following u refers to the an-
alytical mean, i.e. E[u(t,w)] and @ refers to the estimated mean. Furthermore
u® refers to the i’th deterministic solution and o, is the standard deviation of
the stochastic a-parameter.

The deterministic solutions varies a lot when « is changed which is demonstrated
in the following plot where M = 10 deterministic solutions are plotted together
with the exact mean in figure

8 [7]
1.5 || 8 6] 2
3 T4 2
1 | ol |
! ! ! 0 b ! =
0 0.5 1 0 0.5 1
t t

Figure 7.1: Exact mean, estimated mean and 10 solutions generated by using
a distributed with variance 0.1 and 1.

7.1 Monte Carlo Sampling 61

It is seen that the crude estimate of the mean based on only 10 samples does
not provide a reliable estimate of the solution. In figure [7.2]it is seen how an
increasing number of samples, M, leads to a better estimate of the mean and
variance. The estimated mean based on 100 samples is denoted w199 and the
estimated mean based on 1000 samples is denoted u1g9p- Equivalently 5199 and
5100 denotes the estimated variances for 100 and 1000 samples, respectively.

Mean Variance
- ‘ 3,000 [‘]
] uloo(t) B 5%00
=== 8000
o 6] | §2,000—7 o2 .
< I
[¢B) ot
—
=R 1 = 1,000| .
2 | |
0 | |
| | | | | |
0 2 0 2

Figure 7.2: Estimated means and variances for M = [100, 1000].

In figure it is seen that the variance grows rapidly with time due to the
exponential nature of the analytical variance that is computed to be (6.9). The
estimations of the variance are not very good at time ¢ = 2 but this was expected
since M = 1000 samples only gives crude estimations of the mean and variance
with high uncertainty in the results but it is much better estimates than those
obtained for 10 samples.

In order to get results with high accuracy a much larger number of samples, M,
must be used. In figure [7.3]it is seen how the error between the estimated and
the exact statistics behaves for increasing M.

62 Test of UQ methods on the Test Equation
Error on the mean Error on the variance
LA AL A1 5 53 3 AL AL A1 3 e e 53 3
- e - e~ Error | L e - o~ Error |
[\\\\.\\ ”’M_% B [\\\\.\\ --- M2 |
T Los Ty
R DN - N
1074} ° Wl - 1074} ° W -
[o | [o |
Y Y1 T T B B WY B AW AtiTi Y T 1 N R W Y] B B W T R AW ATt
102 10®° 10* 10° 10° 102 10 10* 10° 10°
M M

Figure 7.3: Error on the mean and variance for increasing M.

In figure [7.3]it is seen that the error on the mean and variance follows the over-
all tendency of ﬁ which was expected. There are some fluctuations in the
result but this is nothing out of the ordinary and there is good correspondence
between theory and practice.

The focus of uncertainty quantification in this thesis is to investigate the uncer-
tainty of the output of a mathematical model. To illustrate the uncertainty of
the stochastic Test equation the mean is plotted together with plus/minus the
standard deviation, i.e. i+ o, in figure

=+ std
i
i U
2, |
O, |
| | |
0 0.5 1
N

Figure 7.4: The estimated mean and the standard deviation.

7.1 Monte Carlo Sampling 63

7.1.2 Uniformly distributed a-parameter

Now it is assumed that « is uniformly distributed, o ~ U(—1,1), and again the
initial condition is assumed to be deterministic, S(w) = 1. This means that
the analytical expectation and variance can be written according to and
(6.17)).

The same overall tendencies and behaviours can be observed when using an
uniformly distributed « as when the parameter is normal distributed.

Figure contains a plot of the mean plus/minus the standard deviation and
it is seen that the standard deviation is much smaller for this test case than for
the case where o was normal distributed.

+ std

15] 1.0 u

0.5 .

Figure 7.5: The estimated mean, the analytical mean and the standard devi-
ation.

In figure [7.6] the convergence of the MC method is plotted and it behaves as ex-

pected. The tendency in the convergence is similar to the theoretical O(M *%)

even though there is large variations in the accuracy of the obtained estimates.

64 Test of UQ methods on the Test Equation

Mean Variance

UL 1 A 1 LA LA o 53|

107 SN - e- Error | 107! Fex._ - o- Error |4
R N el e ot

. 1072 ¢ T~ E L1072 TS E
S 5 ¢ e] S B NN E
= B v lee] E - o Joi,]|
Lﬂ 1073 | \‘/ | ‘l RN | m 10_3 g i I. \ /. E
VL e] g A

i o\ af Y]

1074 = é . 10 E .y E
T 1 T T Y 1 T A V1 N Y WY =

102 10 10* 10° 10° 102 10 10* 10° 10°

M M

Figure 7.6: Error on the mean and variance for increasing M.

7.2 Stochastic Collocation Method

From the theory it is known that the Stochastic Collocation Method should
be much more efficient than the Monte Carlo sampling for the 1D test case.
Therefore the Stochastic Collocation Method (SCM) will be used on the same
problem as before in order to check whether it delivers good results and if it is
more efficient.

The application of the SCM for the Test Equation when « is the only stochastic
parameter is outlined in algorithm

Algorithm 5 Pseudocode for SCM applied to the Test Equation

1: Compute N + 1 quadrature nodes [zi]i]io and weights [w;]Y .
N N
: Compute [a;];_, from [z];_,

: Solve the deterministic system to obtain the N + 1 deterministic solutions
N
[uil;Zo-

4: Compute the mean E[u] = Zfio u;w;

[V V)

5: Compute the variance var(u) = S0 (u; — E[u})zwl

Which quadrature nodes and weights to be used depends on the distribution of
« as outlined in the theory. The deterministic solutions can be found by use
of an appropriate solver in time - e.g. a Runge-Kutta method. The mean and
variance are computed as stated in the pseudocode and other statistics could be
computed as well.

7.2 Stochastic Collocation Method 65

7.2.1 Implementation

In this section some of the implementations used for SCM for Test Equation
are introduced. The computation of the quadrature nodes and weights are
implemented as

if strcmp (DistType, 'normal ”)
% Gaussian Distribution: Hermite Gauss Quadrature.

[z,2W] = HermiteQuadN (zN); % Computing nodes and
weights

7z — mutsigmaxz; % Computing the alpha—parameter
n = 0:zN—-1;
elseif strcmp (DistType, uniform)
% Uniform Distribution: Legendre Gauss Quadrature.

[z,-W] = legendrequad (zN); % Computing nodes and
weights
ZW = 1/2%zW;
end

where zN refers to the number of nodes in alpha. The implementation of the
quadrature functions can be found in appendix
The deterministic solutions are computed by using the Runge-Kutta method
ERK.m. The deterministic solution is computed by

for ti = l:length(tspan)—1

U(:,ti+1) = ERK(tspan (ti),U(:,ti),@QrhsSCMtest,dt,z);
end

where rhsSCMtest is the right-hand-side function implemented as

function un = rhsSCMtest (t,U, alpha)

un = alpha.xU;

The statistics and the exact solutions have been computed as described in the

theory and the implementation can be found in appendix [B| as well as the im-
plementation of a test script.

66 Test of UQ methods on the Test Equation

7.2.2 Gaussian distributed a-parameter

In this section the a-parameter is chosen to be standard normal distributed,
a ~ N(0,1), which means that the Gauss Hermite quadrature rules have been
applied to compute the appropriate quadrature nodes and weights. The errors
in mean and variance have been computed as a function of N, where N is the
number of quadrature nodes and thereby the number of deterministic solutions.
These errors can be seen in figure [7.7] where it is seen that the error of the
estimated mean is not improving when more than 9 quadrature nodes are used.
The error of the estimated variance requires more quadrature nodes to reach its
minimum at about 10~® and reaches this minimum when 15 quadrature nodes
are used. This means that the SCM reaches its best approximation of the mean
with 9 quadrature nodes and of the variance with 15 quadrature nodes at time
t = 1. This is remarkably faster than when using the Monte Carlo Sampling.

TTT T T T T 1]
100*\\\\ Tl N
\\\ \\
\\ A
5 I
g -5 0 N |
m 10 \\ \
\ \
\ \
--- Mean N
_10 ||~~~ Variance N
10 M T T T 111l n
10° 10*
N

Figure 7.7: Error on the mean and variance for increasing N, at time ¢ = 1.

To indicate the uncertainty in the results the mean can be plotted together with
the standard deviation as was seen in figure [7.4] and figure [7.5] The computed
mean and standard deviation are plotted in figure as along with a plot of
the deterministic solutions.

7.2 Stochastic Collocation Method 67

Deterministic solutions Statistics
100 T T T
5 - |
= 50 s
= I
0 [|
=+ std
0 = . — U
| | | I | |
0 0.5 1 0 0.5 1
t t

Figure 7.8: Left: The deterministic solutions. Right: The mean estimated
and standard deviation.

From figure [7.8]it is seen that for time ¢ = 1 there is a lot of uncertainty in the
result. This uncertainty would be increased in time since the variance increases
exponentially in time.

7.2.3 Uniformly distributed a-parameter

In this section it will be investigated how good the SCM is to estimate the
statistics when an uniform distributed a-parameter, a ~ U(—1,1), is used.

In figure [7.9] the errors in mean and variance are plotted as function of the
total number of nodes M and it seen that also for an uniformly distributed
a-parameter the estimates will stabilize - this time at about 8.4 - 1073 and
2.8 - 107!2 for the mean and variance, respectively.

68 Test of UQ methods on the Test Equation

TTT T T T T
10°0 <.
\\\ .
N AY
NN
56 1075, S \\ |
= W
\
\ \
\ \
10710 H--- Mean \\ \\ |
--- Variance | ‘. ----
L TT I I 11l
10° 10!
N

Figure 7.9: Error on the mean and variance for increasing N.

From figure it is seen that for 7 quadrature nodes the error in the mean is
minimized and equivalently for the variance for 8 quadrature nodes. This differs
from the results obtained for a normal distributed a-parameter and it seems like
the choice of distribution effects both the statistics and the efficiency of SCM.
In figure[7.10]9 deterministic solutions and the corresponding mean and variance
are plotted.

Deterministic solutions Statistics
T | ‘ ‘ ‘
1.5 |
| 1= | 0.5 |
\ :l: Std
\ \ | = ‘ |
0 0.5 1 O | |
t t

Figure 7.10: Left: The deterministic solutions. Right: The estimated mean
and standard deviation.

Hence the SCM is more efficient than the MC and obtains quite good results
for even for a small number of deterministic solutions.

7.3 Stochastic Galerkin Method 69

7.3 Stochastic Galerkin Method

It is interesting to see how well an intrusive gPC Galerkin Method works com-
pared to the MC method and the SCM. From the theory it is clear that for
complicated problems this method can be very cumbersome to apply, since it
requires a lot of analytical derivation and extra implementations. However for
the simple Test equation this does not pose problem.

The stochastic parameter « can be represented by the following univariate gPC
projection.

N
aN(2) =) aii(2), (7.1)
=0

where the coefficients a; are to be determined. Similarly can the initial condition
B be represented by a gPC projection.

BN (Z) = Zb@i(Z),

where b; are the coefficients. The gPC approximation, vy, of the solution w is
formulated as

N
Nt Z) =) 0;9,(2),
=0

It is assumed that that « is stochastic and g is deterministic. Applying the gPC
Galerkin procedure leads to

dvN N N
E Wq)k :E[—a v (Pk}, k=0,...,N. (7.2)

By substituting the expressions for vy and ap into (7.2) and evaluating the
expectations the following result is obtained.

N N
don 1
— = a;v;eiik, k=0,...,N, 7.3
dt Py’“;jz::o 1VjCijk ()

where v, = E[®?] and e;j; = E[®;(2)®;(Z)®x(Z)] with 0 < 4,5,k < N. The
orthogonality of the gPC basis polynomials is utilized when computing the left-
hand side of . Usually 7 is computable or at hand when choosing basis
functions ® but an expression for e; ;1 is not always at hand which means that
quadrature rules at times are used for approximating this constant.
The system can be represented by use of vector notation,

dv T

S =ATv, v(0)=b,

70 Test of UQ methods on the Test Equation

where b = (b, ...,bx)7 is the deterministic initial condition and the matrix A
is defined by A = (A;j)v; k, where A;; is defined by

N
1
Aij = —— Zaieijk.
R

This means that A is a (N +1) x (N + 1) matrix. The system is a system
of N + 1 ordinary differential equations for the unknown coefficients {0y} with
initial condition 05(0) = bx. A pseudocode for the implementation of the gPC
Galerkin Method can be seen in algorithm [6]

Algorithm 6 Pseudocode for SGM applied to the stochastic Test Equation

Compute the initial condition b.

Compute the coefficient vector a.

Compute the matrix A.

Use a deterministic solver to solve system in time and hereby obtaining a
solution vector U.

The mean is contained in the first column of the solution U.

. N
6: Compute variance var(u) = > ., %Ufwl
- K

a

Here U; refers to the i’th column of the solution U.

7.3.1 Implementation

The computation of the initial condition and the coefficient vector follows the
theory described previously and the implementation can be seen in appendix [B]
The computation of the matrix A is implemented as

A = zeros (N+1N+1);

for j = 0:N
for k=0:N
[e,gamma] = TestGalPar(j,k,N);
A(j+1,k+1) = —1/gammax(a’*xe) ;
end
end

where TestGalPar is implemented as

function [e,gamma] = TestGalPar(j,k,N)

7.3 Stochastic Galerkin Method 71

% Pre—allocation
e = zeros (N+1,1);

% Computation of a vector containing the e—values.
for i = 0:N
s = (i+j+k)/2;

if s<i || s<j || s<k || mod((i+j+k),2)"= 0
e(i+1) = 0;
else
e(i+1) = factorial(i)*factorial(j)xfactorial (k)

/(factorial (s—i)xfactorial (s—j)=
factorial (s—=k));
end
end

% Computation of the normalization factor gamma.
gamma = factorial (k);

The deterministic system is solved by use of the implemented function ERK.

7.3.2 (Gaussian distributed a-parameter

Now the a-parameter is assumed to be Gaussian distributed, a ~ N (p, o),
which implies that the gPC basis, {®4}2_, is chosen to be Hermite polynomials,
{HL(Z2)},, and Z ~ N(0,1). Since « can be represented as a = i + 0 Z the
gPC representation can be expressed as

N
aN(2) = a;Hi(Z),
=0

where
ap =
ay =0 (74)
a; = 0 2 > 2

In this case o

the case. Furthermore v

is an exact representation of o for N > 1 which is not always
N can be represented as

N
=0

72 Test of UQ methods on the Test Equation

By using Hermite polynomials the constants in (7.3]) can be expressed as

iljlk! (7.5)

— k> k
e”kzm SZi,j,kand252i+j+kiseven.

The convergence of the estimated mean and variance is illustrated by plotting
the errors as functions of N as seen in figure [7.11]

1 T T 17T |
10 ‘\\ | --- Mean

N - - - Variance

1077 | - 1

10° 10*

Figure 7.11: Error of the estimated mean and variance for increasing V.

It is seen that for the SCM 6 and 10 basis polynomials are needed for obtain-
ing the minimum error of the estimated mean and variance respectively. The
number of polynomials used also corresponds more or less to the number of
deterministic solutions that have to be computed. This means that the SGM
results in slightly less deterministic solutions to be computed than the SCM. It
is however worth to note that for this test case, the rhs of the SCM is simpler
and faster to evaluate than the rhs for the SGM.

7.3.3 Uniformly distributed a-parameter

Now the « parameter is assumed to be uniformly distributed, o ~ U(a, b), with
a = —1 and b = 1. This means that another the gPC basis, {®;}_,, has to
be used, namely Legendre polynomials, {Ly(Z)}_, with Z ~ U(a,b). The ap-
proximation of o can be expressed by an expansion with Legendre polynomials,
L(Z), as

7.4 Conclusion 73

where
ap = ZFTa, (76)
a; =0 1> 2.

Again oV is an exact representation of a for N > 1. The representation of vV

can with Legendre polynomials be expressed as

N
oN(t,Z) =) 0iLi(2).

=0

By using Legendre polynomials the constants in (7.3) can be expressed as -y, =
ﬁ and e;;;, is approximated by Gauss Legendre quadrature.

The convergence plot can be seen in figure [7.12]

-1 1|
10 ol --- Mean
“~. "~_|--- Variance
5 N
— —6 \
= 10 7 N N |
\
\ \\
\ ~
\ -
\,/
10_11 L L TR R R
10° 10*

Figure 7.12: Error on the mean and variance for increasing N.

It is seen that 5 and 6 polynomials are needed for obtaining the minimum error
of the estimated mean and variance respectively. Again this is slightly less than
for the SCM but with this simple test case the difference in efficiency is not
that important since both are very fast and easily evaluated. The SGM does
however require a little more analytical work and some more implementation.

7.4 Conclusion

In this section it has been established that it is possible to obtain good esti-
mates of the statistics with all three methods. Furthermore the Monte Carlo

1

method has a convergence rate which fits the theoretical M~z and the SCM

74 Test of UQ methods on the Test Equation

and SGM shows spectral convergence. The numerical tests conducted in this
section demonstrates why the spectral methods are an attractive tool to use in
the context of UQ.

CHAPTER 8

Burgers' Equation

Burgers’ equation has been described previously and with a stochastic left
boundary condition it can be formulated as . In this chapter the re-
sults from the numerical tests with the stochastic Collocation method and the
stochastic gPC Galerkin method will be presented. In the following it will be as-
sumed that 6(Z) ~ U(—1, 1) and thus the polynomials used in the gPC Galerkin
method will be Legendre polynomials and the collocation points and weights will
be computed from a Gauss Legendre quadrature.

8.1 Stochastic gPC Galerkin method

In order to apply the Galerkin method a one dimensional gPC expansion is
formulated as

(x,t,7) Zvj x,t)P (8.1)

This expansion is substituted into and the Galerkin procedure is applied
which leads to

aN NavN aQN

76 Burgers’ Equation

By substituting with the expression (8.1) for vy the orthogonality of the basis
functions can be applied. This means that the first term in the left-hand-side
(lhs) of (8.2) can be rewriting as

ov 811]
E [atfbk} Z Dy, (8.3)
- Z 8%@ O; Py
(%
= 8tj ’7k5] k
. a’l)k
- a Yk

where §;;, is the Kronecker delta function and v, = E [®7]. The non-linear
term in the lhs can be rewriting as

N O AR
IE{ axcbk} = E gvi@;a—fb Dy (8.4)

= E b =L ®;P,;P
| i=0 j=0 Oz ’
XL 90,

= b =L [®;D; D)
JZZ(:)ZZ:; Ox F
& 0

@
I

<
=
I

=

where e; j , = E[®;®;®]. The rhs of (8.2) can be rewriting as

82’UN N A
V]E|: " @k} = Z J¢> Dy, (8.5)

7=0

= VZBQA E[®;Py]

0?0
= VZaQ’ykéjk?

a%k
02 g

= vV

8.1 Stochastic gPC Galerkin method 77

This means that the system can be defined as

N N
0y, 1 Aaf}j 82@]6
P S S .7 8.6
ot +7k;j§00 az Sk T Vg2 (8.6)

8.1.1 Numerical approximations

This section contains a description of how to approximate differentiation in space
and time numerically. In space there will be used central difference schemes and
in time an explicit four step Runge-Kutta method will be applied. The central
approximation for differentiation in space is given as

w(zip1,ty) —u(wi—1,t;)
oz Tinti) = ’ 26, —

where §, is the distance between the points in the space grid. The second order
derivative is estimated by the following 3-point central difference approximation

9?2 w(xivr, ty) +ulwi_1,t;) — 2u(zg, t;)
@u(l'mtj) = . (5% s . .

In both central approximations it has been assumed that the space grid points
are equidistant. If this is not the case the 26, and 62 should be replaced with
|z; — 21| + |vip1 — 24| and |z; — @;—1||2i41 — 4], respectively.

These central difference approximations leads to the following stencils

-1 0 1 0
) 1o =10 1 o0
0O -1 0 1
and
1 -2 1 0
1o 1 =2 1 o0
Adz2 = 57 (88)

x

There is N, + 1 space points and N + 1 polynomials in the expansion. In order
to cope with the multiple sums in a Kronecker product can be used to
obtain the following matrices

78 Burgers’ Equation

-2 1 0
60,0,kAs 60,1,kAs €0,N,kAs 1) 1
e10rkds e kAs - el nkAs 1
Ay = and By = =
: : o7
enokAs enirAs o enNEAs
where
0 1 0
) -1 1 0
Ay = — .
20, :
0 1
-1 0
By introducing these matrices the system can be written as
ov 1 _
Sk VB — —TALY g, k=0,...,N. (8.9)
ot Yk

where V and © are all the interior points of v and g, is a vector added to the
solution to apply the boundary condition and is defined as

1
E Vk 25 Zz 02] =0 11}]61,37]@

1, Na 1 N.
Evk 'Yk 25 Zz OZ] oY v] €i,j.k

where vg is the left boundary point of the k’th expansion and v,iv'” is the right
boundary point of the k’th expansion. The matrix V and the vector v can be

represented as

V1,0
V2,0

V1,0 U1,N 0 UN,—1,0

0 V2.0 e V2 N 0 N V1,1
and U=

<
I

0 wo ... wvonN UN,—1,1
V1,2

LUN,—1,N

8.1 Stochastic gPC Galerkin method 79

The computation of the IC is outlined in the next section about the imple-
mentation. To solve the problem the implemented ERK-method is used and
post-processing consists of computing the interesting statistics from the com-
puted solution.

The SGM for Burgers equation is outlined in the pseudocode in algorithm [7]

Algorithm 7 Pseudocode for SGM applied to the stochastic Burgers Equation

Compute the points in space x.
Compute the initial condition.
Solve the system in time (reach steady state).
Compute the mean E[u] = Uy
2

Compute the variance var(u) = Zfil ~i (U;)*.

8.1.2 Implementation

All the implementations for SGM used on Burgers’ equation can be found in
appendix and in this section some of the the implementation are introduced.
First the implementation of the initial condition is outlined and it yields

% Mean and standard deviation.
b _mean = (1.1-1)/2; std = sqrt(1/12%(1.1-1)"2);

% Boundary conditions
bl = 14+b_mean; b2 = —1;

V=1IX;

v(1)=bl; v(xL)=b2;

% Initial condition for all N
Ul = zeros ((xL—2)*(N+1) ,1);
Ul(1:xL—2)=v(2:xL-1);

The initial condition is established by computing a zero-vector U1l of length
(N +1)- (N, —2) which corresponds to having a space vector containing all the
interior points for each of the N + 1 polynomials.

This vector is modified by replacing the first N, — 2 elements with the interior
space points with reversed sign.

A test script have been implementation and can be seen in appendix This
implementation relies heavily on the rhs-function rhsGalBurg which get the
current solution and the matrices described in the previous section as input and

80 Burgers’ Equation

then computes . The implementation is seen in appendix

The computations outlined in this section have been based on computing the
solution in each time step for the interior points. To compute the values in
the end points for each of the N terms in the gPC expansion the following
implementation is applied

U = zeros(size(v));
for iB = 0:N
U(xLxiB+1) = bl;
U(xL*(iB+1)) = b2;
U(xL#iB+2:xL*(iB+1)—1) = Ul((xL—2)*iB+1:(xL—2)*(iB+1)
)5

end

where U1 refers to the computed solution in the interior points and b1l and b2
refers to the values in the left and right boundary, respectively.

8.1.3 Numerical experiments

When solving Burgers’ equation a steady state solution has to be obtained -
this holds for both the deterministic and stochastic case. As an illustration the
deterministic Burgers’ equation is solved with initial condition —x for different
times.

Solutions
o
T
|

Figure 8.1: The computed solutions for different bounds on the integration in
time.

It is seen that the further out in time the deterministic system is solved the
closer it comes to the steady state solution which was plotted in figure
The SGM has been used in a setting with N, = 41 space points and with

8.2 Stochastic Collocation Method 81

N +1 = 4 terms in the gPC expansion. The estimated mean and variance
have been plotted in figure 822 These statistics have been plotted together
with upper and lower bounds on the deterministic solutions and the standard
deviation has been plotted around the mean to indicate the uncertainty in the
mean.

0] Std 8
—— Var
— n
_11||--- Bound |
T | |
—1 0 1

Figure 8.2: The mean, variance and bounds for the computed solution.

The statistics have naturally been computed such that steady state is reached.

8.2 Stochastic Collocation Method

The stochastic Collocation method is applied to the stochastic Burgers’ equa-
tion. As mentioned earlier the collocation points and weights used for are com-
puted by use of Gauss Legendre quadrature and the used deterministic solver
is the ERK-method in combination with a deterministic spectral Collocation
method for solving the spatial part of the PDE.

As described earlier a deterministic Collocation method can involve computing
differential matrices in order to handle the differentiation in space. To handle
this a set of deterministic collocation points has to be chosen and the Vander-
monde matrices V and V, has to be computed.

This setup means that there will be two sets of collocation points involved -
the stochastic Gauss Legendre collocation points z and the deterministic Gauss
Lobatto collocation points, x.

The polynomials used in the Vandermonde matrices V and V, are Legendre

82 Burgers’ Equation

polynomials which means that the matrices can be expressed as

Li(z1) Li(z2) - Li(zn)
| Lele) Le(wz) o La(zn)
Ln(r) Ln(zs) - Ly(ew)
and
Li(z1)" La(zo)’ Li(zn)
La(x1)" La(xg) Lo(zn)
v, = . ‘
LN<$1)/ LN(‘372)/ e LN(:TN)/

From the theory it is known that the differentiation matrix can be expressed
as D = V,V~!. This means that a discrete representation of Burgers equation
(6.22) can be expressed as

0
a—? =vD?*u —uDu, z€[-1,1], (8.10)

The rhs function either consists of a loop that does the matrix vector multipli-
cation for each i = 1,..., V., that is

vD?u; — w;Du;, 1=1,...,N,

or by constructing two big, sparse matrices Dy, and Dimn that are the com-
puted by taking the Kronecker product between an identity matrix of appropri-
ate size and D and D2, respectively. This leads to a rhs function that does the
following computation

VD3t — uDgyontt

The post-processing of the deterministic solutions follows from the theory and
the statistics are computed as seen in Algorithm [§ that outlines SCM For Burg-
ers’ equation.

Algorithm 8 Pseudocode for SCM applied to the stochastic Burgers’ equation

Compute the collocation points x.

Compute the parameters for the rhs, i.e. D and D2.

Compute the initial condition /C and quadrature weights w.

Use a deterministic solver to solve the system in time (reach steady state).
Compute the mean E[u] = Zﬁio w; pW;

Compute the variance var(u) = va:o (u; — E[u})zpwi.

All the code for SCM for Burgers’ equation can be seen in Appendix [B]and the
most important parts are outlined in the following section.

8.2 Stochastic Collocation Method 83

8.2.1 Implementations

The collocation points are computed by use of quadrature and the implemen-
tation can be seen in Appendix [B] The implementation of the Vandermonde-
matrices and the differentiation matrices are also included in the appendix. The
initial condition is implemented as

The stochastic collocation points, z, are used for computing an initial condition.
The implementation can be found in Appendix [Bl The deterministic solutions
are computed in the MATLAB function BurgDetSolv which is implemented as

function [U,t,time] = BurgDetSolv(U,dt,param, ErrorBar,
MaxIter)

t = zeros (MaxlIter,1);

iter = 0;

diff = 1;

tic

while diff > ErrorBar && iter <= MaxlIter
UTemp = U;

U = ERK(t (iter+1),U,@QrhsColBurg,dt ,param) ;
t(iter+2) — t(iter+1)+dt;
diff = max(abs(UTemp-U)) ;
iter = iter+1;
end
time = toc;

It is seen that the deterministic solutions are computed by using a while-loop
where the function ERK is called in each iteration.

The while-loop is used to ensure that a state "close" to the steady state is
reached. The assumption is that the less change in the computed solutions the
closer are the solutions to steady state and the difference between two consec-
utive solutions is therefore used as a measure for how close to steady state the
current solution is.

The boundary conditions are applied in the rhs-function by setting the end-
point values for each solutions to zero. The implementation of the rhs is seen
in appendix [B] as well as the rest of the implementations.

84 Burgers’ Equation

8.2.2 Numerical experiments

As mentioned in the implementation it is important to reach steady state and a
user-specified bound has been introduced to ensure that the maximum difference
between the elements in two consecutive solutions is smaller than this.

In the numerical test with SCM a bound of 10~% was used as well as N, = 46
deterministic collocation points and N, = 10 stochastic collocation points. This
resulted in a series of deterministic solutions plotted in figure [8:3]

Solutions
o
T

Figure 8.3: The 10 deterministic solutions used to compute the statistics for
Burgers Equation.

In figure the mean, variance and standard deviation have been plotted to-
gether with upper and lower bounds for the solution. The bounds for the solution
corresponds to the deterministic solution for the minimum and maximum values
of the stochastic left boundary, hence §(Z) =0 and §(Z) = 0.1.

0n Std a
Var
—
_11!|--- Bound |
T | |
-1 0 1

Figure 8.4: The mean, variance and bounds for the computed solution.

8.2 Stochastic Collocation Method 85

It is seen from figure [8:4] that the solution of Burgers’ equation is very sensitive
towards disturbances in the boundary since the transition layer moves quite a
lot. The upper and lower bounds gives a good impression of the span of the
solution when the boundary is disturbed with between 0 and 10 percent noise.
The steady-state estimation of the mean is also quite different from the unper-
turbed solution (the lower bound) and this illustrates that even though errors
on the estimations are small and the estimated variance is relatively small as
well, the computed statistics does not give an especially good impression of the
noise-free solution.

It is worth to note that this is another dimension to the UQ analysis. There
are errors on the computed estimates and when the estimates are accurate the
variance might be very large and thereby make the solutions very uncertain.
Furthermore if UQ is conducted to get an impression of the unperturbed deter-
ministic solution it should be noted that the computed statistics might deviate
a lot from this solution.

86

Burgers’ Equation

CHAPTER 9

Discussion: Choice of
method

The methods used in this thesis is the Monte Carlo Sampling, the stochastic
Galerkin method and the stochastic Collocataion method and these will in the
following be compared.

From the outlined theory and the numerical experiments it is clear that the
Monte Carlo sampling has relatively slow convergence compared to the two
other methods for low dimensional problems and it can be cumbersome to use
when the deterministic system is very time consuming to solve.

It is however an interesting method since it can be used as a reference when
exploring new problems and since its convergence rate is independent of the
number of stochastic variables. As mentioned in the theory the computational
effort of the stochastic gPC Galerkin method and especially of the stochastic
collocation method grows rapidly as the number of stochastic variables in the
system is increased. This means that at a certain point the Monte Carlo Sam-
pling will become more efficient than the two spectral methods.

The difference in accuracy is also one of the distinctions between the Galerkin
method and the Collocation method. The Galerkin method is based on minimis-
ing the residue of the stochastic governing equations. The collocation method
is based on a different approach namely to introduce a set of nodes and ensure
that the error in these nodes are zero. When using this approach there will
be problems with aliasing errors which means that the collocation method in
general is less accurate than the Galerkin method. This is especially true for

88 Discussion: Choice of method

multidimensional spaces. In the univariate case the aliasing error can be kept
at the same order as the finite order Galerkin method [19].

This means that based on an accuracy perspective the Galerkin method is to
be preferred over the Collocation method but there is another important aspect
namely the implementation.

The Galerkin method implies derivation of a gPC Galerkin system where the
equations for the expansion coefficients are coupled. This usually means that
new implementations have to be made in order to cope with the coupled sys-
tems. Furthermore the derivation of the gPC equations can be very tricky and
in some cases it is not possible to make the derivations [19].

This is very different from the Collocation method where the deterministic sys-
tems solved for each node are decoupled and could be solved with parallel pro-
gramming [19]. The Collocation method is relatively easy to implement as long
as there exists decent deterministic solvers for the problem at hand. When
this criteria is fulfilled the Collocation method can be boiled down to choosing
the set of collocation nodes, solve the deterministic problem at each node and
perform post-processing by applying either the interpolation approach or the
discrete projection approach described earlier.

A consequence of this is that even though the original problem might be non-
linear or complex problem it is still relative straight forward to solve as long
as a deterministic solver is at hand or can be derived. This means that the
Collocation method might be less accurate than the Galerkin method but it is
much easier to apply and for this reason the Collocation method is very popular.

The Galerkin method is the most accurate and involves the least number of
equations in a multidimensional space. But the Collocation method is much
easier to implement and the derivation of the gPC Galerkin equations can be
very difficult and even impossible in some cases [19]. This means that the choice
of method is not trivial since each method has its strengths and weaknesses and
the choice depends a lot on the dimensionality and complexity of the problem.

The SCM is interesting because of the ease of implementation and if the curse
of dimensionality could be reduced it would be a useful tool in high dimensions.
Therefore the rest of the thesis will involve the SCM for multivariate problems.

CHAPTER 10

Literature Study

As introduced in earlier the stochastic Collocation method has some nice proper-
ties but it also has some drawbacks with regard to the amount of computational
work. Due to this a literature study has been conducted with focus on how to
optimize the use of SCM.

In section [10.1] a brief outline of the studied topics is given and in the following
sections of this chapter some of the topics are introduced more thoroughly.

10.1 Brief Introduction to topics and articles

Some of the effects of the curse of dimensionality can be reduced by use of sparse
grids instead of a full tensor product grid. The Smolyak grids are widely used in
the field of UQ and they will be introduced later in the thesis. Some interesting
work worth noting is the MATLAB scripts and the documentation in [14] and
[13], respectively. This work makes it possible to easily access implementation
of different sparse grids and to compare them. Furthermore the work of John
Burkardt [2] with regard to MATLAB implementation of the Gauss Legendre
sparse grid is also very useful as well as the work of Florian Heiss and Viktor
Winschel [IT] which contains implementation of Smolyak sparse grids. Inter-
ested readers can learn more about the topic in e.g. [3], [5], [L6] and [19].

90 Literature Study

The article [5] claims that the common way of using the sparse grids might not
be optimal and introduces another way of using the sparse grids such that the
errors in the coefficients to the higher order polynomials are reduced. The new
approach is denoted Sparse Pseudospectral Approximation Method (SPAM) and
is outlined in section [[0.2]

Two articles introducing an interesting approach to minimize the size of the
systems to be solved and thereby avoiding the curse of dimensionality are [6]
and [21]. In these articles an approach known from signal processing is applied
in the field of Uncertainty Quantification.

The approach is called Compressive Sensing - or Compressive Sampling - and is
based on constructing an approximation to the solution by use of an orthogonal
projection. The main idea is that this orthogonal projection in some cases will
form a sparse system which can be utilized to minimize the computational effort
[6]. The approach is outlined in section [10.3]

A well-known topic from the statistical modelling is the analysis-of-variance
(ANOVA) which also have been used in UQ. ANOVA is a method where the total
variance is investigated by decomposing the original problem into subproblems
and then computing the variance for each subproblem. It is a method often
used adaptively in UQ to reduce the computational work as in introduced in
[O] or [22]. The interested reader can find an overview of some relevant and
recent articles and topics within ANOVA for uncertainty quantification in the
introduction of [23] .

10.2 Sparse Pseudospectral Approximation Method

The method outlined here is described in the article [5] and it is an alterna-
tive way of utilizing the sparse grid procedure introduced earlier. The alterna-
tive procedure is introduced to avoid errors in the coefficients of the high-order
polynomials which is a result of the usual application of the Smolyak method
according to [5].

The reason why these errors emerge is according to [5] that the coupling between
the nodal Lagrange representation and the modal polynomial representation in
multiple dimensions - which is described for the one-dimensional case in chapter
2]- does not hold in the sparse settings.

In some notation and concepts are introduced and the new approach is
outlined in [[0:2.2

10.2 Sparse Pseudospectral Approximation Method 91

10.2.1 Introduction of notation and concepts

In this section some concepts and definitions from [5] are introduced. In the
following a pseudospectral projection refers to a projection where the integrals
are approximated by numerical integration rules, e.g. quadrature rules. In
chapter [a truncated polynomial projection of a multivariate function f was
introduced as

PNf Z Zle, Jid ’Ll 51) zd sd Z fl

i1=1 ig=1 lilel;
where s = (s1,...,54) refers to a d-dimensional point, I; = {i]i € N4 1 < i, <
ng, k =1,2,...,d} is the set of admissible multi-index and f; are the coefficients

defined as [5]

1 .
— g/f(s)q)i(s)w(s)ds, V|i] < N.

The pseudospectral projection is defined equivalently but the coefficients are
defined by use of numerical integration rules and yields

fi Z Zf s Z)@il(sl)...q)id(sd)il...i

=1 a1 Yiy Vig
= Z f()\l (I)I)\1 *
lilel; !

where {\;} refers to the chosen quadrature points. The article also refers to La-
grange interpolation and introduces that the correspondence between the nodal
and modal representations introduced in chapter 2| can be expanded to the mul-
tidimensional case when using the tensor grid representations [5].

The approach of using the pseudospectral projection combined with the Smolyak
sparse often consist of first making the truncation of the spectral projection and
then compute the approximations of the coefficients by use of a sparse grid
quadrature rule [5]. According to [3] this leads to errors in the coefficients be-
cause with sparse grid integration the truncated pseudospectral approximation
is not equivalent to the Lagrange interpolating polynomial as was the case when
using the tensor product approximation.

92 Literature Study

10.2.2 Overall approach

The idea of sparse pseudospectral approximation method (SPAM) is that since
the sparse grid is introduced as a linear combination of tensor product quadra-
ture rules the same can be applied to compute a linear combination of tensor
product pseudospectral expansions [5]. This is the concept of the sparse pseu-
dospectral approximation.

When introducing the Smolyak sparse grid a set of admissible indices I and a
coefficient function ¢(i) is introduced as well. The set I is defined as [5]

I={ieN'|I+1<Ji| <l+d},

where [is an integer called the level parameter. The coefficients can be defined

as d
C(i) _ (_1)l+d—|i‘ < - d_—1|i|) .

These are used in SPAM as well. The approximation of a multivariate function
f(s) can be expressed as

Flo) = Ap(f) = e(d) fil ®i(s).
iel

where coefficients fi and the polynomials ®; are defined as for the pseudospectral
projection introduced in section [10.2.1] The set of polynomials {®;(s)} can be
used to create a set of basis polynomials for A, by defining

P = J{®i(s)}-
iel
With this definition of the basis the A,(f) can be written as
A = 3 Jad(s),
o;€eP
where the coefficients fq> are formulated as
fo =" ci) fim:
icl
Furthermore the coefficients fi,m are defined as
Ao fi if ®(s) =di(s) andiel
10 otherwise.
In [5] there is a theorem stating that this approximation is equivalent to the
sparse grid interpolation approximation and there are numerical experiments
which indicates that SPAM might be better than the usual pseudospectral pro-

jection approach when it comes to computing the coefficients for the high order
polynomials

10.3 Compressive sampling: Non-adapted sparse approximation of PDES93

10.2.3 Further reading

For a more thorough introduction to SPAM and the theory behind it the inter-
ested readers are referred to the article [5]. The article also contains numerical
tests that should illustrate the purpose and advantages of SPAM.

10.3 Compressive sampling: Non-adapted sparse
approximation of PDES

As mentioned previously in the literature study the compressive sampling is an
approach used in signal processing and recently it has been applied in the field
of UQ. The introduction given here is mainly based on the articles [6] and [21].
Compressive sampling is an interesting and flexible approach that is based on
representing the solution by an expansion and then utilize the sparsity of the
expansion.

The main assumption is that the expansion is sparse in the sense that relatively
few coefficients are significant such that an underdetermined system can repre-
sent the actual system accurately or even exactly. It is an approach that is well
suited for the cases where not enough data is available and for high dimensional
multivariate problems.

One of the very interesting aspects of the approach is that it is non-adapted
in the sense that there is no tailoring of the sampling process and thereby no
structuring of the nodes. This is an advantage since the structuring of the nodes
is often what leads to a rapid growth in the total number of nodes when the
dimensionality of the problem is increased.

10.3.1 Overall approach

The approach outlined here is based on approximation of the solution to a
system of the type outlined in The approach outlined here is an interpo-
lating collocation type of method and is based on constructing a multivariate
polynomial expansion that approximates the solution u(z,t, Z). The truncated
expansion can be expressed as

uy = Y i®(Z"), m=1,..,M, (10.1)
lil<N

where Z refers to the set of multivariate samples introduced in chapter ®;(2)
are the multivariate polynomials also introduced in chapter [and the coefficients

94 Literature Study

can be computed as

T B Y
ui—,yi [uds] %/ (2)®i(2)dFz(z), V|i| <N.

by use of the multivariate expectation introduced previously.

Such a system can be expressed in vectorized form by introducing a Vander-
monde like matrix V € RP*M where M is the number of samples and P is
the cardinality of the space spanned by the orthogonal basis polynomials ®;(2).
The matrix V consists of V,, ,, = @5, (Z™) forn=1,...,Pand m=1,...,M.
This means that the vectorized representation is on the form

Vec=u,

where ¢ € R” is a coefficient vector consisting of the coefficients 7; and u € RM
is a vector containing the solutions u(x,t, Z™) for each of the M samples of the
random variables.

The main idea in the compressive sampling approach is to solve an under-
determined system by use minimization to reduce the number of samples M.
This means that the number of samples M is reduced to be far smaller than
the cardinality P of the expansion, i.e. M < P. The minimization acts as a
regularization in order to achieve a well-posed solution to the underdetermined
system [6] and takes the form

min ||| subject to Ve =u (10.2)

where £k = 0,1. The norms used for the minimizations can be formulated as

leflo=#{i: @ #0} and ||y = Y |i|

lij<nN

The minimization using k£ = 0 generally leads to a global minimum solution
which is not unique and where the cost of a global search is exponential in P
[6]. The ¢;-minimization is a relaxation of the {y-minimization ([6], [21]) and is
usually the one pursued in practice.

Instead of using an interpolation strategy it can sometimes be useful to relax
the constraints in the minimizations in the sense that some error is allowed

min ||c||o subject to [Ve —ullz <4,

min ||c||; subject to Ve —u|2 <.

This relaxation can be used for several reasons and one of them is that the
truncated expansion often is not an exact representation of the solution
u(x,t, Z) due to truncation errors and this is reflected in the minimizations by
introducing a non-zero residual [6].

10.3 Compressive sampling: Non-adapted sparse approximation of PDES 95

10.3.1.1 Weighting of the /;-minimization

It is worth to note that the ¢;-minimization is sometimes modified by a diag-
onal weight matrix W where the n’th diagonal element is the />-norm of the
n’th column of V [6]. This means that the modified ¢;-minimization can be
formulated as

min |[Wel|; subject to Ve =u,

or in relaxed form
min ||[We||; subject to ||[Ve —ul| < 6.

The introduction of the weight W is to make sure that the optimization does
not lead to a solution that is biased towards the ¢ which are non-zero and whose
corresponding columns in 'V have a large norm [6].

10.3.2 Recoverability

This is only meant as a brief introduction and therefore most of the theoretical
background is not included here. Readers who are interested in the theoretical
background and the stability of the relaxed minimizations can read more in [6].
One of the main results in [2I] is the recoverability in the high dimensional case
d>1and d > N where N is the highest polynomial order in one dimension of
the polynomial basis. In order to introduce the result the following definition
of s-sparse is necessary [21].

DEFINITION 10.1 (s-SPARSE) The vector v is called s-sparse if

[vllo = {#m : vn #0 < s},

which means that if there is no more than s non-zero elements in the vector v
then v is s-sparse.

The article [21] is based on a Legendre polynomial expansion which means that
the main result cited in theorem ((10.2) is based on Legendre polynomials but it
could be expanded to cover other polynomial bases as well [21].

THEOREM 10.2 (RECOVERABILITY FOR {;-MINIMIZATION) Ford > N
where d is the number of i.i.d. stochastic variables and N is the highest polyno-
mial order in one dimension. Let Z be a sample of M independent draws from
the uniform distribution [—1,1]%. The number of samples M fulfill the boundary

M Z 3% slog?(s)log(P)

96 Literature Study

where P is the cardinality of the polynomial space P} introduced in chapter
with d > N and s is the sparsity level of a vector ¢ € R™. The Legendre
polynomials are chosen as basis polynomials for a polynomial approzimation

w € P4 of the type which yields

\

i<N

where ¢ is the coefficient vector. This system is solved with regard to ¢ by use of
{1 -minimization of the type and the data vector w= Ve. For a universal
constant vy the introduced settings leads to ¢ being recoverable with probability
1 — P=7198%() to within a factor of its best s-term approzimation, i.e.

65,1(é)
/s

where 05 ,(v) = inf)y,<s |y — vl is the the error of the best s-term approzima-
tion of a vector v € RY in £p-norm.

le— el 5 (10.3)

The proof and theory behind theorem can be found in [21].

10.3.3 Further reading

The outline of the method is given here and readers who are interested are
recommended to read more in [6] and [21]. The interested reader can besides
numerical results and a more thorough introduction of the theoretical back-
ground be introduced to Chebyshev Preconditioning of the ¢;-minimization in
[21] and how to choose the truncation error tolerance ¢ in [6].

The choice of ¢ is naturally an interesting topic when using the relaxed mini-
mization and the Chebyshev preconditioning yields some interesting results as
well. For d > P the preconditioning of the ¢;-minimization yields a number
of points that scales with 2¢ where the direct ¢;-minimization scales with 3°.
This means that for large dimensions d and moderate polynomial order P the
direct minimization is the most efficient while in e.g. one dimension, d = 1, the
preconditioned ¢;-minimization is the most efficient.

CHAPTER 1 1

Multivariate Collocation
Method

In this chapter the theory for the stochastic collocation method will be expanded
and the theoretical background for using a multivariate SCM is given. The in-
troduced theory will be based on the interpolation approach of the collocation
method.

11.1 Tensor Product Collocation

With the theory introduced so far the a straight forward approach for applying
SCM in multiple dimensions is to apply the univariate expansions in each of
the stochastic dimensions and then use tensor products to combine these to a
multivariate SCM.

First a set of d > 1 independent variables is introduced as Z = {Z1,..., Z;} and
for each variable a set of m; collocation nodes is established as Z; = Zil, Sz
By use of Kronecker products this yields a total set of nodes Z defined as

Z=Z7Z)y =71 x---x1Zyg

where M is the total number of nodes in the set and can be computed as
M =my X --- x mgq. The interpolating polynomial operator Z,,, in one variable

98 Multivariate Collocation Method

is introduced as

for 1 <4 < d such that Z,,,[f] is an interpolating polynomial of order m; in the
i’th Z-variable equivalently to the univariate definition (5.2). This operator can
be used to construct the multivariate interpolation operator by tensor product

IN[:Im1®®Imd

By using tensor products to expand the dimensionality of the space some of
the properties from one dimension is valid for the multivariate case as well.
This is true for the convergence rate as well. For simplicity but without loss of
generality it is here assumed that m; = --- = mg = m. For the ¢’th dimension
the one dimensional convergence rate is

(I = Zm,)[f] occm™?,

where « is constant that depends on the smoothness of the function f - the
smoother a function the faster convergence, see e.g. [19]. This property still
holds in the multivariate case which yields the convergence rate

(I —Za)[f] x m™.

It is a nice feature that this property holds in the multivariate case but apply-
ing M = m? and expressing the convergence rate in terms of M results in a
convergence rate of

(I = Zn)[f] o M1,

This means that the convergence can be very slow if there is many stochastic
variables d. Furthermore the total number of points grows exponentially with
d,i.e. M = m® which means that the computational effort becomes very large
for large d. This is due to the fact that for each node a deterministic system
is solved, which could be very problematic in higher dimensions and is often
referred to as the curse of dimensionality [19].

11.2 Multivariate expansions and statistics

The multivariate SCM can be formulated in much the same way as the univariate
SCM as will be outlined here. The interpolation of a solution u to a multivariate
PDE with d stochastic variables can be formulated as

W(2) = Tas(w) = Ty @+ €L)W) = Y - Zu(zgl, LI (20 ha(Z3)),

11.2 Multivariate expansions and statistics 99

where h; refers to the Lagrange polynomial in i’th stochastic dimension. This
notation is widely adopted and is a bit more intuitive than the notation using
multi-index. The multi-index and the corresponding single index does however
allow a more compact notation, i.e.

lij<n

where h;(Z) is the multidimensional Lagrange Polynomial in Z. By the defi-
nition of the multivariate Lagrange polynomials they have the same qualities
as the univariate polynomials with regard to attaining zeros and ones in the
interpolation points.

The connection between the univariate SCM and the multivariate SCM is easier
seen when using the single index since the multidimensional interpolation can

be expressed as
M

Ty(u) = u(Ze)hi(Z), (11.2)

k=1
where the correspondence between the multi-index and the single index is as
outlined in Table [f.I] The computation of the statistics, e.g. the expectation
and the variance, can be conducted in much the same way as in the univari-
ate case. The interested reader can read more about the application of the
multidimensional cubature rules in [16], which leads to the following expression

Qu) = (@1 @ ®Qu)(u Z Z (28 Zi) (1wl - paw),

where @; refers to the 1D quadrature applied in the i’th dimension, p; is the
integration weight of the integral in the i’th dimension, i.e. the PDF of the i’th
variable Z;, and w] refers to the j’th quadrature weight of the ¢’th stochastic
variable.

By use of the tensor product the notation can be simplified when an appropriate
index is used. The tensor product of the variables, Z, has already been intro-
duced and likewise the weights can be expressed by use of a tensor product.
First the weights w] = pzwj are introduced to simplify notation and then the
tensor product is computed as

W=W1®: - @Wy

where W; = {@},...,w¢}. This means that the numerical integration by use of
quadrature can be expressed as

M
= u(Zx) Wy, (11.3)
k=1

100 Multivariate Collocation Method

where the index used is the appropriately chosen single index. Now the mean and
variance can be computed since they are based on integration of the interpolation
%. The mean can be computed as

M

E[ﬂ] = Z U(Zk)wk,

k=1
and the variance of the multivariate interpolation can be computed as

M
varli] = Y (u(Zy) — Eli])* Wi
k=1

It is seen that there is a correspondence between computing the statistics of the
univariate SCM and the multivariate SCM. The computations of the statistics
have been implemented in MATLAB in the function ColStat which can be seen

in appendix

11.3 Smolyak Sparse Grid Collocation

There exists many methods to reduce the impact of the curse of dimensionality.
Here one approach will be outlined and in the literature study some other ap-
proaches will be introduced. The introduction given here is only an outline of
the method and for further information see e.g. [19]

The approach introduced here is also based on tensor products but the trick is
to only use a subset of the full tensor grid. This naturally leads to fewer nodes
and hence less computational work since the deterministic system is solved fewer
times.

The Smolyak’s method is introduced in 5] as

Qn = Zc(i) (Qiy ® -+ ®Qiy),
iel
where [is the set of admissible multi-indices and c¢(i) is the corresponding
coefficients. The set I is defined as [9]
I={ieN|l+1<Ji|<l+d},

where [is an integer called the level parameter. The coefficients can be defined

as
C(i) _ (_1)l+d7|i‘ < l-:ld_—llil > .

11.3 Smolyak Sparse Grid Collocation 101

By using the set I the appropriate quadrature nodes and weights can be chosen
from the full tensor grid computed previously. Another definition is given in
[I9] where the Smolyak construction is expressed as

Qv= Y <—1)N'“(ﬁjfn)-(Qi1®~-~®Qid>,

N—d+1<Ji|<N

where the integer NV > d denotes the level of the construction. The Smolyak
sparse grid can be computed by the following union of the subsets of the full
tensor product
Zy = U @y x-xzi). (11.4)
N—d+1<Ji|<N

In contrast to applying the full tensor product there is no general expression or
formula to compute the total number of nodes M in terms of d and N [19].

Different approaches for choosing I and ¢(i) can be applied depending on the
given multivariate problem. Furthermore adaptive methods might be very useful
in some cases. But in general the Smolyak Sparse Grids can be described as a
linear combination of tensor products that seek to ensure that the number of
nodes does not grow too much [3].

The approach outlined here can be even more effective when the chosen nodes
are nested which means that the one-dimensional nodal sets satisfies [19]

ZICZf j<k (11.5)

More information about nested nodal sets can be found in e.g. [5] and [19].

11.3.1 Clenshaw-Curtis: Nested sparse grid

The Clenshaw-Curtis nodes are a popular choice when computing a nested
sparse grid. The nodes are computed by finding the extrema of the Cheby-
shev polynomials which are a sub-class of the Jacobi polynomials. The zeros of
the Chebyshev polynomials can be computed as [19]

s(——2), j=1,...,m}, (11.6)

where 1 < ¢ < d, k is referred to as the level and mf often is chosen as mf =

2F=1 4 1. The grid that follows from this definition will be a nested grid [19]
and the level k£ defines how many points there are in the grid, i.e. the higher k
the more nodes.

102 Multivariate Collocation Method

CHAPTER 12

Numerical tests for

multivariate stochastic
PDEs

This chapter will investigate the effects of having multiple random variables in
the two problems previously investigated. The tests conducted in this section
will be based on the stochastic Collocation method and will not involve tests
with the Monte Carlo Sampling and the stochastic Galerkin method.

12.1 Test Equation with two random variables

In this section a brief introduction will be given to how to solve the multivariate
Test equation and how to compute the statistics.

The approach is similar to the one described in Algorithm [5] and is outlined in
Algorithm [0

5

7

8

104 Numerical tests for multivariate stochastic PDEs

Algorithm 9 Pseudocode for SCM applied to the Test Equation

1: Determine the distributions of o and 8 and the number of quadrature nodes

to be used in each variable, N, + 1 and Ng + 1.

2: Compute the quadrature nodes [za]fv:“o and [Zg]fv:ﬁ() and the weights [wa] <)

Npg
i=0"

and [wg]
3: Compute the Kronecker product of the random variables and of the corre-
sponding weights.
4: Compute the dot product of the N = (Ny+1)(Ng+1) weights W = W, «Wpg

5: Solve the deterministic system to obtain the N deterministic solutions wu.
6: Compute mean E[u] = vazl u; Wi

7: Compute variance var(u) = Zio (u; — E[u])zwi.

As outlined in the theory the choice of quadrature rules depends on the distri-
butions of the stochastic variables and the deterministic system has been solved
by use of the function ERK implemented in MATLAB.

12.1.1 Implementation

The implementation of Algorithm [J] is seen in the appendix and some of the
details are outlined here. The tensor product of the nodes and weights are
computed by use of the MATLAB function meshgrid.

The right hand side function is implemented in the function rhsSCMtest and
looks like this

function un = rhsSCMtest (t,U,alpha)

un = alpha.xU;

The statistics of the solution are computed as described in the theory and is
implemented in TestEqStat which yields

function [Umean, Uvar| = TestEqStat (U,zW,zN, tspan)

% Computing mean:
Un = zeros (zN,length (tspan));
for zi = 1:zN

Un(zi,:) = U(zi,:)*W(zi);
end
Umean = sum (Um,1) ;

12.1 Test Equation with two random variables 105

% Computing variance:
Uv=zeros (length (tspan) ,zN) ;
for zi = 1:2N
Uv(:,2zi) = (U(zi,:)—Umean(end,:))."2%xzW(zi);
end
Uvar = sum(Uv,2); Uvar = Uvar’;

The computation of the exact mean and variance have been outlined in the
theory and the implementation TestEqEx can be seen in appendix [B]

12.1.2 Gaussian distributed a-parameter and initial con-
dition [

The multivariate Test equation is solved for the case where o and § are both
Gaussian distributed. The a-parameter is chosen to be standard normal dis-
tributed, i.e. o ~ N(0,1), and the initial condition is distributed as 8 ~ N (1,1).
Due to the distribution of the stochastic parameters the Gauss Hermite quadra-
ture is chosen and six points are chosen in each dimension which leads to 36
deterministic solutions due to the tensor product of the grid points.

In figure the 36 deterministic solutions are plotted.

100 -

50 |-

Solutions

Figure 12.1: The N = 36 deterministic solutions.

It is seen that there is big variations in the 36 solutions. A difference from the
univariate case is that now there are negative solutions which was not obtained
previously and this means that a single deterministic solution can differ a lot
from the computed mean since it could be different in sign and very different
in size. The negative solutions are obtained since some of the computed initial

106 Numerical tests for multivariate stochastic PDEs

conditions are negative which leads to negative solutions.

The 36 deterministic solutions have been used to compute the statistics. The
estimated mean @ can be seen in figure with an error bound computed by
@+ & as well as the exact mean.

Std
4 [{—— Mean 2

- n
% 27M7

=

o B
=20 ! L
0 0.5 1

Figure 12.2: The estimated mean with the computed standard deviation and
the exact mean.

From figure it is seen that the mean has not changed a lot in comparison
with the mean in figure [7.8]

In figure[I2:2]it is seen that the stochastic initial condition introduces a lot more
uncertainty in the solution in the first half of the time domain compared to[7.8
With time the effects of the stochastic initial condition becomes less dominant
since the variance introduced by the a-parameter increases exponential with
time.

The errors in mean and variance have been computed for different M and in
figure the errors have been plotted as function of M, where m, =mg =m

which means that M = m2.

12.1 Test Equation with two random variables

107

Error

L 1 1
Tl -e- Mean
e _ ~ 4~ Vari
\.\ 4 - +- vVariance
1072 . 1
0\ N
o s
106 | Q\ K N
o
\\ \\4» —_ 4 — 4+ -4
L]
— “7.*. o0o- 0-0
10 |- -
10 T A Y
10° 10t 102 10% 10*
M

Figure 12.3: Error on the mean and variance for increasing M at time ¢ = 1.

From the errors in figure it is seen that the errors converge like it did in
the univariate case except that now it is a function of M instead of just m;.
Unless the stochastic § reduces the effects of the stochastic « it is expected
that at least M = 81 is needed for achieving the smallest error in the mean
since M = m? and m, = 9 was needed to minimize the error in .. Apparently
M = m? = 81 is the optimal choice with regard to the error in the mean. This
indicates that either is the effects of the parameter o reduced or else it holds
that the best approximation in the mean can be obtained with mg < my,.

A simple test of this assumption is to maintain m, = 2 while increasing mg and
vice versa. This results in the error-plots in figure [12:4]

Error

10°

10—t

mg = 2

i e e e e et I

o - 0-00000MED -0 000090
Ll L

10!
M

102

Error

My = 2
T LU T T T TTTTT T
R _e-
100,.\ ., M.e&n L
¥, |-+- Variance
L
0
o
10—5, \. * N
Vo
o\
\ S 4 44— o
¢
—10 | S o 000-00 |
10 L] Ll [
10! 102
M

Figure 12.4: Error on the mean and variance at time ¢ = 1 for increasing M.
Left: mg = 2 and increasing m,. Right: m, = 2 and increasing

mg.

108 Numerical tests for multivariate stochastic PDEs

From the two plots it is seen that it is the number of quadrature points for
representing « that makes a difference with regard to the convergence of the es-
timated mean and variance. The number of quadrature points used to represent
the S-parameter does not have a great impact on the quality of the estimates.
This means that instead of using M = 9 -9 = 81 deterministic solutions it is
sufficient to compute M = 9 -2 = 18 deterministic solutions as long as my =9
and mg = 2 and not the other way around.

This means that the a-parameter has much more influence on accuracy of the
approximations of the statistics than the S-parameter. This is a good example
on how a smart choice of quadrature nodes in each stochastic dimension can
lead to much more efficient computations without compromising the quality of
the approximations.

12.1.3 Gaussian distributed o and uniformly distributed
initial condition f.

In this section it has been investigated how it affects the statistics of the solution
to have two stochastic variables with different distributions namely o ~ A/(0,1)
and 8 ~ U(0,2). Since 8 is uniformly distributed the quadrature chosen for this
variable is Gauss Legendre quadrature. There are again 6 quadrature nodes and
weights for both o and 8 which by use of tensor product leads to 36 deterministic
solutions. Like in the previous test case the deterministic solutions are plotted
and can be seen in figure [12.5

40 +

20 +

Solutions

t

Figure 12.5: 12 of the N = 36 deterministic solutions.

12.1 Test Equation with two random variables 109

The deterministic solutions in figure [I2.5] are different from the ones in figure
[12.3] since none of them are negative and they do not grow as much as when
B was Gaussian distributed. This is because the quadrature nodes are strictly
limited to be in the interval [0, 2] in contrast to the other test case where § was
not limited in this way.

A comparison of the deterministic solutions in figure [I2.5] with the ones in
figure[12.1] yields that it can have a great impact on the individual deterministic
solution whether £ is Gaussian or uniformly distributed. This difference is
however not so visible when looking at the statistics as illustrated in figure [12.6]
where the estimated mean, the std-bound and the exact mean are plotted.

I
A Std |
—— Mean
.
| M |
0l N
| | | |

| |
0 02 04 06 08 1
t

Figure 12.6: The estimated mean with the computed standard deviation as
well as the exact mean.

It is seen that the mean is not greatly affected by the distribution of 8 but
the standard deviation is different than the one seen in figure It is smaller
when £ is uniformly distributed than when g is Gaussian distributed. Especially
in the first half of the time domain the difference in the standard deviation is
visible.

For this choice of parameters the error has been plotted in figure[12.7]as function
of M =m? where m = m, = mg.

110

Numerical tests for multivariate stochastic PDEs

- o-

Mean

- +- Variance

S e 4 4

%o -0 000-0-0 |
Ll

T T T T T
\\.\
1072 L)
8
4
1076 [
10710 7\\\\\\ Ll
10° 10

1

102 10° 10

M

Figure 12.7: Error on the mean and variance for increasing M at time ¢ = 1.

The tendency in the error in figure is the same as was seen in figure [12.3]
Again the optimal choice seems to be M = 81 which could indicate that the
error is not greatly affected by the choice of distribution of 5. But it worth
to remember that the S-parameter apparently has much less influence on the
accuracy than the a-parameter which means that with 9 quadrature points to
represent 3 the shift in distribution should not change a lot.

To investigate this further the same simple test as was conducted in the previous
section is conducted here. This means that m, = 2 is maintained while mg is
increased and vice versa. This resulted in the error-plots visualized in figure

1z8

mg = 2

10°

Error

107t

oo b — - A -

o - 0-00000MD -0 000 -0 0
Ll L

10! 102

M

My = 2
T T T T T T T
ol -e- Mean
100*‘ 3+ * .
S M - +- Variance
N
LI
5 ®
A
ss:: 10757 .\ \ -
£a) o
\ +
e i
\ S 4
[]
107107 bf...*.,
Ll Lol L
10t 102
M

Figure 12.8: Error on the mean and variance at time ¢t = 1 for increasing M.
Left: mg = 2 and increasing m,. Right: m, = 2 and increasing

mg.

12.2 Multivariate Burgers’ Equation 111

From the error plots it seems that the a-parameter is still the most dominant
parameter when computing the statistics of the multivariate Test equation.
Furthermore the change in distribution of 8 does not seem to have changed the
optimal number of quadrature points to represent « and 5 which means that
me = 9 and mg = 2, and 18 deterministic solutions are sufficient to obtain a
reasonable approximations of the mean.

12.2 Multivariate Burgers’ Equation

In this chapter it will be investigated how the statistics of the stochastic Burgers’
equation will be affected by introducing uncertainty in both boundary condition
and in the v-parameter. The uncertainty in the BC’s will be assumed to be
uniformly distributed and therefore Gauss Legendre quadrature will be used to
compute the quadrature nodes.

12.2.1 Burgers’ Equation with stochastic boundary con-
ditions

The 2-variate stochastic Burgers’ equation is solved in this section and the effects
of having stochastic BC’s are investigated. First the outline of how the SCM is
used on the multivariate Burgers’ equation is outlined in Algorithm

Algorithm 10 Pseudocode for SCM applied to the 2-variate stochastic Burgers’
equation

1: Compute the spatial collocation points x.

2: Compute the differential matrices D and D?.

3: Compute the quadrature nodes z, and z,, and the corresponding weights
wp, and wp,.

4: Compute the tensor product of the weights and nodes to obtain Z;,, Z,

and W.

Compute the initial condition IC.

Use a deterministic solver to solve the system in time (reach steady state).

Compute the mean E[u] = Zi]\io u; Wi

Compute the variance var(u) = Zﬁo (u; — E[u])2Wi.

In general the approach is very similar to the approach used for the univariate
Burgers’ equation. The main difference is the computation of the stochastic

© W N e A W N

LI T R N T N N T T = T I ~ S = S S
S © ®» 9 & o A& W K = O © ®» N O G A W N R O

w
ot

112 Numerical tests for multivariate stochastic PDEs

grids and weights as well as the initial condition. Therefore the implementation
of this is outlined in section [2.2.1.11

12.2.1.1 Implementation

In this section the implementations that are significantly different than the im-
plementations in univariate case is outlined. The rest of the code can be found
in appendix

The interesting part is implemented in the MATLAB function InitBurg2D which
looks like this

function [InitCond ,U,Z,ZW]| = InitBurg2D (zN,alpha , beta,nu,
x,dStart ,dEnd)

ck=0; xL = length(x);
Uexact = @Q(x,t,nu) —tanh ((x—t)/(2*nu))+ck;

[21,z21W] = JacobiGQ(alpha ,beta ,zN—1);
[22,22W] = JacobiGQ (alpha ,beta ,zN—1);

% Scaling the weights
7zIW = 7z1W /2;
22W = 722W /2;

% Scaling the disturbances.
z1 = ((2z141)/2)%x(dEnd(1)—dStart (1))+dStart(1);
72 = ((2241)/2) x(dEnd(2)—dStart (2))+dStart (2);

[Z1,7Z2] = ndgrid(zl,2z2);
[Z1W,Z22W] = ndgrid (z1W,z22W) ;

721 = Z1(:); 722 = 7Z2(:);
7 - |21 72];

ZIW = ZIW () ; Z2W = Z2W (:) ;
IW = Z1W . x72W;

% Initialization and pre—allocation.
deltal = 71;

delta2 = 72;

ZN = length (Z1);

InitCond = Uexact(x,0,nu);

33

34

35

36

37

38

39

12.2 Multivariate Burgers' Equation 113

U = zeros (xL*ZN,1) ;

for i = 1:ZN
InitTemp = InitCond;
InitTemp (InitTemp >0) = InitTemp (InitTemp >0)x(1+deltal
(1)) ;
InitTemp (InitTemp <0) = InitTemp (InitTemp <0)x(1+delta?2
(1))
U(xL*(i—1)+1:xL*(i)) = InitTemp;
end

The BC’s are uniformly distributed which means that Gauss Legendre quadra-
ture is used.

The function ndgrid is used to compute all combinations of the nodes and of
the weights. Then the weights are multiplied to attain the tensor product.

The initial condition is computed by using the exact solution and then change
the values that are higher or lower than zero according to the grid of stochastic
B(C’s. This is not strictly necessary in order to obtain good results but it speeds
up the iteration process.

12.2.1.2 Tests

In this test a space grid of 31 points have been used and boundary conditions
are distributed with u(—1) ~ #(1,1.1) and u(1) ~U(-1,-1.1).

The tests have been conducted with 4 quadrature points in each stochastic di-
mension which means that 16 deterministic solutions have been computed.
The one dimensional differentiation matrix D and its square D? are of dimen-
sion 31 x 31 which means that the differentiation matrix for all the deterministic
solutions is a (18-31) x (18-31) matrix. In this matrix 5’th of the elements are
non-zero which means that the sparse structure of the matrix is definitely worth
to utilize. If there had been used more quadrature points the system would have
been even more sparse which is worth to note when solving the deterministic
system.

The 18 deterministic solutions are plotted in figure [12.9] and have some inter-

esting characteristics.

114 Numerical tests for multivariate stochastic PDEs

Solutions
o
T

Figure 12.9: The M = 18 deterministic solutions for Burgers’ Equation.

From figure [12.9] it is seen that the deterministic solutions are characterized
by three different behaviours. The first kind of deterministic solutions are the
ones recognized from the previous univariate test case where the transition layer
is shifted to the far right in the plot due to a positive disturbance in the left
boundary. This was the tendency that was observed in the univariate case and
it is not surprisingly also present in this multivariate test since some of the
deterministic solutions are characterized by disturbances in the left boundary
but (almost) none in the right boundary.

The second type of deterministic solutions are when there are disturbances in
both BC’s and the transition layer is located in at x = 0. This means that
some of the deterministic solutions have the same characteristics in terms of
the transition layer as the unperturbed deterministic solution but with shifted
boundary values such the values in u(—1) are a bit higher than the original
deterministic solution and the values in u(1) are a bit lower.

The last kind of deterministic solutions are the opposite of what was observed in
the univariate test case, namely that there is disturbance in the right boundary
and (almost) none in the left boundary which means that the transition layer is
shifted to the far left.

The multivariate Burgers’ equation yields deterministic solutions that are much
different from the ones obtained in the univariate case since some of the solutions
are very similar to the unperturbed deterministic solution and since there is
solutions where the transition layer is shifted both to the left and to the right.
The statistics of the multivariate Burgers’ equation have also been computed
and in figure the mean and variance can be seen.

12.2 Multivariate Burgers' Equation 115

+std
1 -+- Var
B | | — Mean
--- Bound
g
o) 0 .
=
1k |
| | | | |

Figure 12.10: The estimated mean and variance and bounds on the solutions.

In figure [I2.10] it is seen that the behaviour of the mean is very different from
the mean computed for the univariate Burgers’ equation and the solution of the
deterministic Burgers’ equation. Instead of having one transition layer where
the mean goes from 1 to —1 it is divided into three.

It is also seen that there is a large variance and the uncertainty of this solutions
is greater than seen for the other test cases.

12.2.2 3-variate Burgers’ equation

Now the v-parameter is chosen to be stochastic as well as the BC’s. This
means that it is now a three dimensional stochastic system and due to the
tensor product of the stochastic variables this results in a potentially very large
system. The overall approach is very similar to the 2-variate case and is outlined
in Algorithm

116 Numerical tests for multivariate stochastic PDEs

Algorithm 11 Pseudocode for SCM applied to the 3-variate stochastic Burgers’
Equation

1: Compute the spatial collocation points z.

2: Compute the differential matrices D and D?.

3: Compute the quadrature nodes 2y, , 2, and z,, and the corresponding weights
Wy, , Wp, and w,.

4: Compute the tensor product of the weights and nodes to obtain Z,, Zp,,

Z, and W.

Compute the initial condition IC.

Use a deterministic solver to solve the system in time (reach steady state).

Compute the mean Efu] = Zf\io u; Wi

Compute the variance var(u) = Ziﬂio (u; — IE[uDZVV7

By comparison of the pseudocodes in algorithm [10] and [I1] it is seen that most
of the steps are the same and some of the implementations can be reused. In
the tests presented here the BC’s are again chosen to be uniformly distributed
as well as the v-parameter.

The v-parameter is very interesting since it is the viscosity of the Burger’s equa-
tion and determines the smoothness of the PDE. If v = 0 there would be a shock
discontinuity instead of a transition layer [19].

The polynomial representations used in the spectral methods are not well suited
for describing discontinuities and v = 0 would therefore pose a serious problem.
During the numerical tests a small v was chosen which could not be solved with
the current settings. This problem might be dealt with by using some other
representations than the orthogonal polynomials but it is outside the scope of
this thesis to investigate that.

If the v-parameter is increased the solution of Burgers’ equation becomes smoother
and the transition layer would not be a region of such rapid change. It would in
other words result in a very different solution which will be seen in the numerical
experiments.

12.2.2.1 Implementation

The interesting part of the implementations compared to the earlier implemen-
tations is where the quadratures are used and the initial condition is computed.
This is done in the MATLAB function InitBurg3D that is included here while
the rest of the implementation is in appendix [B]

1 function [InitCond ,U,Z,ZW] = InitBurg3D (zN,alpha ,beta,nu,
x,dStart ,dEnd)

12.2 Multivariate Burgers’ Equation 117

ck=0; xL = length(x);

Uexact = @Q(x,t,nu) —tanh ((x—t) /(2*nu))+ck;

N o o A W N

% Computing the quadrature weights and nodes for the
random BC’s

[21,21W] = legendrequad (zN);

o [22,22W] = legendrequad (zN);

1 % Scaling the weights
12 zIW = z1W /2;
1 22W = 22W /2;

15 % Scaling the disturbances.
w6 z1 = ((2141)/2)*(dEnd(1)—dStart (1))+dStart (1) ;
v 22 = ((22+1)/2) *(dEnd(2)—dStart (2))+dStart (2) ;

19 % Computing the nodes and weights for the nu paremeter
I g g I
20 if stremp(nu.t, uniform’)

21 [23 ,z3W] = JacobiGQ (alpha ,beta ,zN—1);
22

23 % Scaling the weights and nu

24 z3W = Z3W/2;

25 73 = ((2341)/2) x(nu.par(2)—nu.par (1))+nu.par(1);
26

27 elseif strecmp(nu.t, 'normal’)

28 [23 ,23W] = HermiteQuadN (zN) ;

29

30 % Scaling nu

31 z3 = nu.par(1)+nu.par(2)=*z3;

32 end

ss %z3 = 0.05; z3W = 1;
sa [Z1,Z22,723] = ndgrid(z1,22,23);
s |ZIW,Z2W,Z3W| = ndgrid (zIW,z2W,z3W) ;

36

sr Z1 = Z1(:); 22 = Z22(:); Z3 = Z3(:);
38 L = [Zl 72 Z3],

39

aw ZIW = ZIW(:); Z2W = Z2W (:) ; Z3W = Z3W (:) ;
a1 IW = ZIW . xZ2W . xZ3W;

s % Initialization and pre—allocation .
aa deltal = Z1; delta2 = Z2; ZN = length(Z1);

45

46

47

48

49

50

51

52

53

54

118 Numerical tests for multivariate stochastic PDEs

nuEst = sum(z3) /zN;
InitCond = Uexact(x,0,nuEst);
U = zeros (xL*ZN,1) ;

for i = 1:ZN
InitTemp = InitCond;
InitTemp (InitTemp >0) = InitTemp (InitTemp >0)*(1+deltal
(1));
InitTemp (InitTemp <0) = InitTemp (InitTemp <0)x(1+ delta2
(1))
U(xL*(i—1)+1:xL*(i)) = InitTemp;
end

The implementation is very similar to the code used in the two dimensional case
and the interesting part is the computation of the tensor grids.

It might seem like an innocent extension of the code used previously but it leads
to a very increased computational effort. This is due to the fact that M = m3
if mpe, = mpc, = m, = m which means that the differentiation matrices are
increased very much in size which makes the deterministic system much more
costly to solve.

In the tests there are used 61 space points and m = 4 for each stochas-
tic dimension which means that the differentiation matrices are of the size
(61 - 43) x (61 -4%) = 3904 x 3904. This means that the two matrices con-
tains 15,241,216 elements. Only a fraction of & of these elements are non-zero
which is about 1.5 % but it is still a large system that potentially has to be
solved many times - depending on the solver - in order to reach steady state.
Assuming that m = 5 quadrature points are needed in each dimension to obtain
the desired accuracy it will result in a much larger to system. Instead of hav-
ing 64 deterministic solutions there is now 125 and the differentiation matrices
are now of the size (61 -5%) x (61 -53) = 7625 x 7625 and contains 58,140,625
elements. Even though "only" 465,125 elements are non-zero it is still a large
system and it shows how important it is not to use too many quadrature points
if it is not needed. It also demonstrates that when the dimensionality of a prob-
lem is increased the computational effort can be increased very much.

This example is a three dimensional stochastic problem and many of the stochas-
tic PDE’s to be solved have 50 or 100 which illustrates that the growth in the
computational effort is a real problem in practise.

It is clear that sparsity has to be utilized when it is possible - both when solving
the deterministic system but also - if possible - when computing the quadrature

12.2 Multivariate Burgers' Equation 119

nodes since fewer quadrature nodes in each dimension can significantly reduce
the number of deterministic solutions.

12.2.2.2 Tests

The BC’s have been chosen to be the same as those in the test of the 2-variate
Burgers’ equation and the v-parameter is chosen to be univariate as well with
the distribution v ~ U(0.05,0.5). This means that there is a large uncertainty
in the v-parameter but it results in some interesting results and demonstrates
the effects of the viscosity of the Burgers’ Equation.

There are m = 4 quadrature points and weights to represent each stochastic
variable which means that M = 43 = 64 deterministic solutions are computed.
The 64 solutions have been plotted in figure

Figure 12.11: The deterministic solutions for the multivariate Burgers’ Equa-
tion.

It is seen that the v-parameter has great influence on the shape of the solutions
and the transition layer. Theoretically it would require less quadrature points
to represent the solution for increasing v since the solution becomes smoother.
Besides a smoothing effect it also effects the significance of the perturbed BC’s.
When v is high the realizations of the stochastic Burgers’ equation are less
effected by the stochastic BC’s. The stochastic v is therefore a significant pa-

120 Numerical tests for multivariate stochastic PDEs

rameter when conducting UQ for Burgers’ equation.
The effect on the statistics of having three stochastic variables have also been
investigated. In figure [12.12] the mean and variance are plotted.

1 - |
0.5 n
g
o 0 8
=
—0.5 |- B
1k i
I I ! ! !
-1 —0.5 0 0.5 1
X

Figure 12.12: The mean, variance and bounds by standard deviation for the
computed solution.

It is seen that the variance is relatively small compared to the one obtained in
the 2-variate case and the transition layer in the mean is much smoother than
previously which means that the stochastic v-parameter has a smoothing effect
on the mean and dampens the variance.

It seems like the stochastic v-parameter decreases the variance of the solution
but as seen from figure there are larger variations in the deterministic
solutions. Hence the smaller variance is not a result of very similar solutions
but of the fact that the steep solutions have less influence on the statistics than
the smooth solutions.

It is worth to note that the transition layer of the estimated mean is centred
around x = 0 as it is for the unperturbed solution. The transition layer in
the estimated mean does not give an exact representation of the solution to
the unperturbed problem but it gives a better impression of the location of
the transition layer than e.g. the estimated mean for the univariate Burgers’
equation.

12.2 Multivariate Burgers’ Equation 121

12.2.2.3 Test with a different right BC

In this section the right BC have been changed such that it is distributed as
u(1) ~U(—0.9,—1). The rest of the settings are the same as before and m =4
for each stochastic variable which implies that 64 deterministic solutions have
been computed. These solutions have been plotted in figure [12.13

e 08 06 04 02 o 0z 04 06 08 1
x

Figure 12.13: The deterministic solutions for the multivariate Burgers’ Equa-
tion.

In figure it seen that that there are no deterministic solutions which have
a transition layer shifted to the left and that there are more solutions which are
shifted to the right than previously. This will naturally affect the statistics as
seen in figure where the estimated mean and variance are plotted.

0 TTITETENRE 3

Mean

+std
-+- Var

—— Mean
B I R | | |

-1 -0.5 0 0.5 1
T

Figure 12.14: The estimated mean and variance.

122 Numerical tests for multivariate stochastic PDEs

The estimated mean and variance are skewed to the right in figure [12.14] com-
pared to the results plotted in figure [I2.12] and the transition layer is steeper.

Based on the investigations of the multivariate problems it safe to say that the
stochastic parameters have a great influence on the solutions of the problems.
Furthermore the effects of a stochastic parameter might be lessened or increased
if another stochastic parameter in introduced and UQ is definitely a useful tool
when working with e.g. stochastic PDEs. But as outlined in this chapter there
are some difficulties that need to be solved and one of the main problems is
the growth in computational effort when the number of stochastic variables is
increased.

CHAPTER 13

Tests with Smolyak sparse
grids

From the theory outlined previously it follows that each collocation node implies
to compute a deterministic solution to the system at hand. This means that the
sparse grids potentially implies a significantly reduction in the computational
work and it is therefore lucrative to use sparse grids instead of the full tensor
grids.

It is furthermore to be noted that the use of sparse grids becomes increasingly
beneficial for increasing dimensions. The decreased computational effort and
time consumption motivates the use of the sparse grids even though it should
be noted that the sparse grids are not a cure to the curse of dimensionality but
only a remedy to ensure a lessened impact.

The implementations made by John Burkardt [2] are used to conduct tests with
the sparse Gauss Legendre (SGL) grid and the sparse Clenshaw-Curtis (CC)
grid.

Both types of sparse grids are often used to represent uniformly distributed
stochastic variables. The relationship between the grids and the distribution of
the variables is similar to the relationship between the orthogonal polynomials
and the distributions outlined in Table This means that the two types of
grids should be optimal when used to represent uniformly distributed variables

124 Tests with Smolyak sparse grids

but they can be used for stochastic variables with other distributions.

It should be noted that the Smolyak grids in general are not restricted to repre-
sent uniformly distributed variables and there are many types of Smolyak sparse
grids that can be applied.

13.1 Introduction of the sparse grids

The two sparse grids will be introduced further in this section and in the follow-
ing sections they will be used to estimate the statistics of the stochastic solutions
of the Test equation and the stochastic Burgers’ equation.

13.1.1 Sparse Gauss Legendre grid

The sparse Gauss Legendre (SGL) grid is based on 1D Gauss Legendre quadra-
ture rules which are combined, as introduced in section [11.3

According to [2] the total number of nodes M in the sparse Gauss Legendre
grid is coupled to the level and the stochastic dimension d as illustrated in table

IENI)

Level /d | 1 2 3
0 1 1 1
1 3) 7
2 9 21 37
3 23 73 159
4 53 225 597
) 115 | 637 | 2031
6 241 | 1693 | 6405

Table 13.1: Total number of points in the sparse Gauss Legendre grid.

The level here refers to the maximum attained level in the sparse grid which is
represented by N in and .

It should be noted that according to [2] the sparse Gauss Legendre grid is weakly
nested in the sense that all the odd levels contain the value X = 0.0.

This is reflected in the outcome of the implementations since this point is re-
peated once for each odd level and once for level 0. This means that the two-
dimensional SGL grid with level 2 contains 22 points where 21 are unique and
with level | = 3 there are 75 points in the returned grid and 73 of these are
unique. The grid points for level [= 2 which contains 21 unique points is plot-

13.2 Sparse Clenshaw-Curtis grid 125

ted in figure [I3:1] The SGL grid has been plotted as well as a full tensor grid
based on Gauss Legendre quadrature with 7 nodes in each stochastic dimension.
The numerical tests for the Test equation includes a comparison of the accuracy
of the estimates based on these two grids.

Full grid SGL grid
2*‘00 ° ‘ ° oo‘* 1p ‘ B
o o0 ° ° ° o 0 L (] L
e o o ° e o o °
NN 1F-e e o ° e o o | N Ofee® o [o ®eo |
e o o ° e o o °
e o o ° e o o ° (] °
0,‘0 e o ? e o o‘, _1,‘ ? B
—1 0 1 -1 0 1
Z1 Zl

Figure 13.1: Left: A full tensor grid with 7 Gauss Legendre quadrature points
in each dimension. Left: The SGL grid with level [= 2 and 21
unique nodes.

13.2 Sparse Clenshaw-Curtis grid

A major difference between the Clenshaw-Curtis (CC) grid and the SGL grid is
that the Clenshaw-Curtis grid is nested. This means that the grid at a certain
level is contained in a grid of a higher level. Another important difference be-
tween the two types of grids is that CC contains nodes on the boundary where
the SGL only contains interior points. This can make a big difference can be
seen in the numerical tests for Burgers’ equation.

The CC grids does not follow the same correspondence between total number of
nodes in the grid and the level [and dimension d, as was introduced in Table|13.1
In [4] this relationship is outlined for the CC grid and it can be seen in Table[13.2

126 Tests with Smolyak sparse grids

level / d | 1 2 3
0 1 1 1
1 3 5 7
2) 13 25
3 9 | 29 | 69
4 17| 65 | 177
5 33 | 145 | 441

Table 13.2: Total number of nodes in the sparse Clenshaw-Curtis grid.

It is seen that for the same level the CC grid contains fewer points than the SGL
grid. But the SGL grid has higher accuracy if the same level is applied. The
accuracy of the two grids for specific levels will be investigated in the numerical
tests for the Test equation.

It should be noted that the higher the dimension the larger is the difference in
the number of points. This means that even though the SGL grid should be
more efficient than CC for a certain level, the CC grid might be worth to use in
high dimensions since the computational effort is much smaller.

A plot of the 65 grid points for a level 4 sparse CC grid is plotted in figure
as well as a full tensor grid of 17 points in each dimension.

Full grid CC grid

T
o 13
a@e o o
a@e o o
a@e e o
L X N J

$s
o0
o0
o0
o0
Ny O eseeo o @
o0
()
o0
o0
i

a@e o o
a@e o o
| B

-1

° ooe® o o
“‘.‘7 —17*0 °

1 -1

= XN N NNNNZXT B

O "0 00000

N
N

Figure 13.2: In this figure a full tensor grid is illustrated to left the and to the
right a sparse CC grid is plotted.

In figure[I3.2)it is seen that the sparse CC grid corresponds to a subset of the full
tensor grid. The application of the sparse CC grid can be seen in the following
sections.

13.3 Smolyak sparse grid applied 127

13.3 Smolyak sparse grid applied

In this section the results of the numerical tests with the two sparse grids are
presented. The numerical tests involve the 2-variate Test equation and the 2-
variate Burgers’ equation.

The implementations for this section are very similar to the ones used in the
previous multivariate tests with the only difference that the tensor grids of
quadrature points have been replaced with the sparse grids. This means that the
rhs-function, the deterministic solver etc. are the same as previously. Because
of this the implementations have not been included here but the test scripts can
be found in appendix [Bl For the implementations of the sparse grid the reader
is referred to [2].

13.3.1 The 2-variate Test Equation

The stochastic Test equation with uniform « and £ has been investigated using
the two sparse grids. The two variables are distributed with o ~ U(—1,1) and
B8 ~U(0,2).

The SGL grid and CC grid with level 3 have been used to estimate the statistics
for the stochastic Test equation and the results can be seen in the following
sections. Since the estimates of the statistics are very similar to the ones ob-
tained with the full tensor grids the numerical tests in this section will be an
investigation of the errors. Furthermore the accuracy of the the grids have
been compared with the accuracy obtained with the full tensor grid in section

M3.313

13.3.1.1 Sparse Gauss Legendre grid

In this section the SGL grid is applied and the error of the obtained estimates
have been computed. The errors have been plotted as functions of the total
number of grid points, M. The correspondence between number of points and
the levels can be seen in table[I3.1] The grids have been computed for the levels
[=0,1,...,6 and the errors for the corresponding grid sizes have been plotted

in figure [I3:3]

128

Tests with Smolyak sparse grids

Error

10!

107°

107°

10—13

T T T T 11711
-

| e TR
N

el |

\
®--0- -0 -0 -9
Ll

T T T TTTT7 T T
Mean
- +- Variance

- o-

¥
S - 4

Lol L

10° 10*

102 103

M

Figure 13.3: Error of the estimated mean and variance for increasing M at
time ¢t = 1.

It is seen that the error drops rather quickly and the error reaches a minimum
which is equivalent to the minimum error obtained in the previous tests of the
multivariate Test equation at level [= 3 where the grid contains 21 unique

points.

13.3.1.2 Sparse Clenshaw-Curtis grid

The sparse Clenshaw-Curtis grid has been use to estimate the statistics for the
multivariate Test equation. The errors using the CC grid have been plotted in
figure as function of the total number of grid points, M.

13.3 Smolyak sparse grid applied 129

TTTTT T T T TTTTT T T T TTTT] T T T
- - o- Mean
1071 [@& _ Tkl . |
R ~\ |-+~ Variance
. N
\ N
N N
\ \
5 107° | ® a
—~ \ \
~ \ \
€3 \ .
' y
\
10797 \ \\ n
\ \
\ \
‘\\ prEp———
o--0--0
10713 T Eu| Ll Lol L1
109 101 102
M

Figure 13.4: Error of the estimated mean and variance for increasing M at
time ¢ = 1.

It is seen that the convergence of the errors when using the CC grid is not
impressive compared to the convergence obtained previously using full tensor
grids. This means that the CC grid might not be suited for estimating the
statistics of this problem.

13.3.1.3 Comparison of the errors on the estimated statistics

As illustrated in figure and figure the two sparse grids can be used
as collocation points for the stochastic Collocation method which leads to fair
results when the stochastic variables are uniformly distributed. In this section
the accuracy of the SCM used with SGL and CC grids is investigated further. As
a comparison the SCM has been used with full tensor grid on the same problem
and the errors are included in Table 3.3

The full tensor grids are computed from 1D Gauss Legendre quadrature and
the same number of quadrature nodes has been used in each dimension, i.e.
the total number of nodes is M = mq X ms = m? where m is the number of
quadrature nodes in each dimension.

130 Tests with Smolyak sparse grids

M | Error in the mean | Error in the variance
1 1.75-10~1 1.04

4 3.85-1073 8.34-1072
9 3.28-107° 2.98-1073
16 1.48 .10 5.39-107°
25 4.13-10710 5.98-10~7
36 1.63 - 10712 4.52-1079
49 8.43.10713 2.91-10"10
64 8.41.-10713 4.50- 10712
81 8.42.10713 4.49.10~12
100 8.41-10713 4.49.10~12

Table 13.3: The errors in the estimated statistics and the corresponding num-
ber of nodes in the full tensor grid.

From table [[3.3]it is seen that the minimum error in the mean is obtained for
49 grid points and 64 grid points for the variance. This corresponds very well
with the investigations made previously for the univariate Test equation with
uniformly distributed «. In this case 7 quadrature nodes was needed to obtain
the minimum error in the estimated mean and 8 quadrature nodes to obtain the
minimum error in the estimated variance.

Furthermore the previous numerical tests with the 2-variate stochastic Test
equation indicated that the a-parameter was more dominant than S in terms
of the error in the estimated statistics. This corresponds very well with the
optimal number of tensor grid points for the full tensor grid since it corresponds
to chose the optimal choice of quadrature nodes for « in each dimension.

The SGL grid is used as collocation points for the SCM for the stochastic Test
equation. The grids with level [= 0,1,...,6 are used and the errors of the
estimated statistics are outlined in table [I3:4 A comparison of Table [13.4]
efficiency of the SCM is higher when using the SGL grids than when using full
tensor grids in the sense that the same accuracy is obtained using SGL grids
but with fewer grid points.

13.3 Smolyak sparse grid applied 131

Level M Error in the mean | Error in the variance

0 1 1.75-1071 1.037

1 5 3.27-107° 2.73-107"
2 22 8.42.10713 7.65-1074
3 75 8.42.10713 1.06 - 10~
4 224 8.40-10713 4.39-10712
5 613 8.40-10~13 4.39-10~12
6 1578 8.48 10713 4.39-10712

Table 13.4: The errors in the estimated statistics and the corresponding levels
and total number of nodes in the SGL grid.

Numerical tests are conducted using the CC grids as well and this resulted in
computation of the errors of the estimated mean and variance which can be seen

in Table I35

Level | M | Error in the mean | Error in the variance

0 1 1.75-1071 1.04

1 5 5.83-1073 1.78 - 1071
2 13 1.35-107° 3.49-1072
3 29 1.11-10711 3.06-10~*
4 65 8.39-10713 3.81-107°
5 145 8.39-10713 4.39.10712
6 321 8.40-10713 4.39.10712

Table 13.5: The errors of the estimated statistics and the corresponding levels
and number of nodes in the CC grid.

The accuracy of the CC grids is lower than the accuracy obtained using the SGL
grids on this particular test problem. This is not necessarily true in general but
it still yields an interesting result. It seems like fewer grid points are needed
when using the full tensor grid than when using the CC grid to obtain the
minimum error. But this is might just be due to the fact that the CC grid has
29 grid points in the level 3 grid and 65 grid points for level 4. This means that
because the optimal choice of level is not level 3 at least 65 nodes are used to
obtain the best estimates which is more than in the full grid.

It is furthermore to be noted that the CC grid might be much more useful in
higher dimensions than 2 since the sparse grids are introduced to reduce the
effects of the curse of dimensionality in high dimensions.

132 Tests with Smolyak sparse grids

13.3.1.4 Discussion

The sparse grids seems to be very useful and the use of the SGL grid definitely
demonstrates that a high accuracy can be obtained with fewer nodes in com-
parison to the full tensor grid.

It should be noted that for the stochastic Test equation it seems like « is more
dominant in terms of influence on the error than (3. Therefore a full tensor
grid might involve fewer quadrature nodes to represent 8 and thereby lead to
a smaller number of total nodes, while maintaining a high accuracy. Therefore
the sparse grids are more efficient than the full tensor grids investigated in this
section but smarter grids might be applied which are full tensor grids but still
involves relatively few grid points.

This is one of the reasons why a method like ANOVA can be very useful since
ANOVA can be used to investigate which of the stochastic variables that have
a great influence on the statistics and which of them are less important.

13.3.2 The 2-variate Burgers’ Equation

The SCM is tested for the stochastic Burger’ equation using the two Smolyak
sparse grids introduced previously. The tests are conducted for the case where
the BC’s are stochastic and distributed as u(—1,t) ~ U(1,1.1) and u(1,t) ~
U(-1,-0.9).

13.3.2.1 Sparse Gauss Legendre grid

In this section SGL is used as collacation points when computing estimates of
the statistics for the Burgers’ equation with stochastic BCs.

The SGL grid with level | = 2 and a total of 21 unique nodes results in the
estimates of the statistics plotted in figure [I3.5]

13.3 Smolyak sparse grid applied 133

1 | |
0 | Lo -T<
+std
—— Mean
-1 777 Var | L
-1 0 1

xT

Figure 13.5: The estimated mean with the computed standard deviation as
well as the variance.

The estimates seem to correspond very well to the results obtained previously
where the full tensor grid was used. A comparison with figure [12.10] shows that
the estimated statistics are much alike. The difference between the case where
a full tensor grid with 9 quadrature points in each stochastic dimension, i.e. 81
grid points, and the case with a level [= 2 SGL grid has been plotted in figure
115.0l

1073
—— Mean |
o var [
8 "l
= "
(<] [
E-‘) 2 I |
A \
0 ! ! S L
-1 0 1

Figure 13.6: The difference between the estimated statistics.

It is seen that SCM used on the SGL grid with level [= 2 does not reproduce
the same results as the SCM used with the full tensor grid with 81 nodes. But
they are very similar.

Since the differences in figure [I3.6] are the differences between two sets of es-
timates of the statistics it does not say anything about the accuracy of the
estimates - only that they differ. In this context it does not matter that much

134 Tests with Smolyak sparse grids

which of the two grids that produces the most accurate estimates since the es-
timates are so close and it demonstrates that the sparse grids could be used
instead of a full tensor grid and it could reduce the computational effort.

13.3.2.2 Sparse Clenshaw-Curtis grid

In this section the CC grid is used as collocation points and the level of the
CC grid is chosen to be 2 which means that 13 grid point are used. The 13
collocation points implies the computation of 13 deterministic solutions, which
are plotted in figure [13.7]

Solutions
o
T

Figure 13.7: The 13 deterministic solutions for a level 2 CC grid.

It is seen that since the CC grids include boundary points the solution with the
unperturbed BC’s, i.e. u(—1) =1 and u(1) = —1, is among the deterministic
solutions. This has not been the case when using the SGL grid and the full
tensor grid and might have a great effect on the estimated statistics - especially
since the estimates are based on only 13 deterministic solutions.

The approximated statistics can be seen in figure [I3.8] where it is seen that the
statistics are very different from the estimates based on the full tensor grid and
the SGL grid as seen in figure

13.4 Conclusion 135

+std

1 -+ |—— Mean

2 --- Var
Z o0l .

n
_1 L | | | |
-1 0 1
T

Figure 13.8: The estimated statistics computed by using a CC grid with level
2.

It is interesting to see how the estimates have changed due to the inclusion of
the unperturbed solution and it demonstrates that it can make a great difference
which collocation points are used when computing the estimates.

This illustrates that the CC grids has some different qualities than the SGL
grids and the choice of grid is therefore not only a choice based on accuracy but
also based on the special characteristics of the grids.

13.4 Conclusion

The tests in this chapter have illustrated that the sparse grids can be used to
obtain high accuracy results and that they can decrease the number of nodes
needed to obtain these results. Fewer nodes means less deterministic solutions
and thereby less computational effort.

The tests with the sparse grids yields some interesting results, but the sparse
grids are designed to be used in high dimensions. This means that the tests of
2-variate differential equations might not illustrate all the benefits of using the
sparse grids.

As outlined in the beginning of the chapter the two sparse grids have different
properties, which has been confirmed in the tests. In order to choose which
sparse grid that is best suited to a given problem the user has to consider both
accuracy and the properties of the sparse grids.

Furthermore the user has to consider whether the use of sparse grids is the
optimal choice of method to reduce the computational effort. Other methods
might be more efficient in some cases e.g. ANOVA. There are many aspects to

136 Tests with Smolyak sparse grids

consider when handling UQ and the sparse grids is a useful tool that should be
considered when solving high dimensional problems.

CHAPTER 14

Discussion

The focus in this thesis has been to investigate spectral methods for Uncertainty
Quantification and in particular an investigation of the stochastic Collocation
method. As a reference the Monte Carlo sampling has been introduced and
applied on the Test equation.

The test cases in this thesis has been low dimensional problems which have rel-
atively smooth solutions and under these conditions the spectral methods have
proved efficient and accurate.

The numerical tests and the outlined theory has definitely motivated the use of
spectral methods which have a much higher convergence rate than the Monte
Carlo sampling. But it has also been discovered that the spectral methods has
some weaknesses. One of them is the computational work of especially the Col-
location method when applied to problems of higher dimensions. The Galerkin
is more efficient than the Collocation method but it comes at the cost of much
more work in terms of derivations and implementations.

Another perspective of the two methods is that the stochastic Galerkin method
usually is based on solving a system of coupled equations whereas the solutions
computed in the stochastic Collocation method are de-coupled. The de-coupling
of the solutions could be utilized by introducing parallel programming. In this
way the computation time could be greatly reduced.

The computational work of the spectral methods can be lessened by use of

138 Discussion

e.g. Smolyak sparse grids. The introduction sparse grids is a useful tool that
even for 2-variate problems can lead to high accuracy and relatively low com-
putational effort. In higher dimensions the gain in terms of less computational
effort is even greater. Other methods to achieve the spectral convergence of the
spectral methods and decrease the computational effort can be applied like the
compressive sampling method. This means that the spectral methods can be
a useful tool not only in low dimensions but potentially in very high dimensions.

The thesis does not include numerical tests in high dimensions and the efficiency
of the spectral methods combined with e.g. sparse grids has not been established
for high dimensional problems. This means that even though the sparse grids
decrease the computational effort the Monte Carlo sampling could potentially
still be more efficient in high dimensions than the spectral methods.

Another strength of the Monte Carlo sampling is that the convergence and ac-
curacy of the method is independent of the characteristics of the solutions. The
spectral methods introduced in this thesis are based on polynomial representa-
tions which means that the solutions should be smooth in order to obtain good
representations. This could pose a considerable problem and for example the
solution of the stochastic Test equation could be difficult to represent by use
of spectral methods if the v-parameter is too low, i.e. the solutions become
non-smooth.

14.1 Future work

The thesis has focused on one type of method to reduce the effects of the curse
of dimensionality which is the use of Smolyak sparse grids. The next step would
be to take these investigations further by numerical tests in higher dimensions.
These tests could reveal the full potential of the sparse grids and might demon-
strate unforeseen qualities or flaws of the sparse grids.

Another natural step would be to do some numerical tests with the ANOVA,
the non-adapted sparse method and the sparse pseudospectral approximation
method. These tests could be conducted as well as the sparse grid tests in
high dimensions and a comparison of the accuracy and efficiency of the meth-
ods could be done. This would be a very comprehensive task if the tests where
to be conducted on several advanced problems in high dimension but it could
reveal some interesting guidelines to when to use which methods.

Another interesting perspective could be to utilize that the stochastic Colloca-
tion method is based on uncorrelated deterministic solutions by computing the
deterministic solutions by use of parallel programming.

Finally it could be interesting to investigate if it is possible to estimate the

14.1 Future work 139

statistics of non-smooth solutions efficiently and accurately. Potentially the
investigations could involve high dimensional problems with non-smooth solu-

tions.

140 Discussion

CHAPTER 15

Conclusion

This thesis introduce and tests three different methods for Uncertainty Quan-
tification. The Monte Carlo Sampling proved to have slower convergence for
the univariate Test equation but the method is relatively easy to apply and the
convergence is independent of the dimensionality of the problem at hand. The
stochastic Galerkin method and the stochastic Collocation method have greater
convergence rate for the univariate Test equation but both methods requires
more computations when the dimensionality is increased.

Furthermore it is to be noted that the Monte Carlo sampling is independent
of the structure of the solutions - it basicly just requires that enough solutions
can be computed. This is a strength compared to the spectral methods due to
the computational effort in high dimensions for these methods and the fact that
they are based on approximations with polynomials implies that they can have
difficulties with representing e.g. non-smooth solutions.

The stochastic Galerkin method is in general more accurate than the stochastic
Collocation method but requires a lot more work in terms of derivations and
implementation. The stochastic Collocation method is easier to apply but suf-
fers under the curse of dimensionality.

Due to the relative ease of use and the spectral convergence the stochastic Col-
location method is a popular choice of UQ method. The curse of dimensionality
has led to a lot of research to minimize the effects. This includes the studies of

142 Conclusion

Smolyak sparse grids and the application of these.

The sparse grids can assure high accuracy with a relatively low number of nodes
which means that the computational effort of the stochastic Collocation method
is greatly reduced since the computational effort of the method is related to the
number of deterministic solutions which is equal to the number of nodes.

Two different types of grids have been used in this thesis and they have different
characteristics. The Clenshaw-Curtis grid is nested and contains the boundary
nodes while the sparse Smolyak Gauss Legendre grid is not nested and does not
contain the boundary nodes. The sparse Gauss Legendre grid is more accurate
for a given level than the Clenshaw-Curtisg grid but the Clenshaw-Curtis grid
contains fewer points for each level. This means that in many cases the optimal
choice of sparse grid could be problem dependent.

The Uncertainty Quantification is definitely a useful tool which can be applied
in many different settings since uncertainty is present whenever measurements
are made and parameters are estimated. This thesis has introduced spectral
methods for Uncertainty Quantification and tested one method to reduce the
effects of the curse of dimensionality but there is without a doubt much more
within the field which is worth to study further. Tests in higher dimensions
seems like a natural step from here and the application of other methods as
well could very likely be lucrative. The ANOVA and the compressive sampling
definitely seems like interesting alternatives to the Smolyak grids in order to
avoid the effects of the curse of dimensionality.

APPENDIX A

Supplement to the
mathematical background

A.1 Orthogonal Polynomials

Here an introduction to an alternative definition of the Hermite Polynomials is
given.

A.1.1 Alternative definition of the Hermite polynomials

The alternative definition of the Hermite Polynomials is denoted H,(z) and is
based on the following weight functions

(0) = =
wy(z) = ﬁe
Furthermore the definition of H,, () is
[n/2]
1 dr 2 1
Hy(z)=—————[e%]| = !E (22",
@) = ez g 17 2 U i (30)

k=0

144 Supplement to the mathematical background

The three-term recurrence relation is
Hy1(x) =2¢H,(z) — 2nH, (), (A1)

with Hy(z) = 1 and H;(z) = 2z. The square norm of the polynomials are given
as

Yo = (Hy (), () = % / ¥ He () da = 2.

A.2 Probability theory

In this section some basic concepts within probability theory which can be useful
in UQ is introduced.

A.3 Random fields and useful spaces

The UQ discussed in this thesis is based on uncertainty in the input to a model
which means that the deterministic systems to be solved become stochastic since
some or all of the input parameters are stochastic. To cope with this a descrip-
tion of the stochastic parameters is needed.

Generally speaking the stochastic inputs and outputs of a mathematical model
can be classified as random fields which are denoted X (w). A random field is a
mapping from the probability space 2 to the function space V,ie. X : Q — V.
In the case where V =R the X (w) is called a random variable and when V is a
function space over a space and/or time interval X (w) is called a random field
or a stochastic process.

The w € Q is generally called an outcome and 2 is the outcome space. Fur-
thermore it can be useful to introduced the space of all relevant events denoted
Y, where events are subsets of 2. An event could be {w : X(w) = ¢} or
{w: X(w) < k}. The X is called a o-algebra and is in [I9] defined as

DEFINITION A.1 A collection of subsets of Q denoted X is a o-algebra if it
satisfies the conditions

e Y is not empty, i.e. f € ¥ and Q € X.

e If A € X, then so is the complement set as well, Al ey,

A.4 Convergence and Central Limit Theorem 145

o If {A;} € X then

GAiGE and ﬁAZEE

i=1 =1

Two examples of o-algebras - or o-fields as they are also called - are
¥ = {wa Q}
Y = 29={A:ACQ}

where ¥; is the smallest o-algebra on € and 35 contains all subsets of 2 and is
thereby is the largest o-algebra. X5 is often referred to as the power set of 2 [19].

Two other useful concepts are probability measure and probability space. The
probability measure used in this context can be defined as

DEFINITION A.2 For a countable event space, €, and the o-algebra on €,
¥y = 292, P is a probability measure if

e 0<P(A)<1,VAEY.
e P(Q)=1.
e For {A;} € ¥ and A, N A; =0, Vi # j, it holds

The probability measure is also referred to as a probability. By using 2, ¥ and
P as defined in definition [A22] the probability space can be defined as the triplet
{Q, %, P}

A.4 Convergence and Central Limit Theorem

When working with stochastic variables it is often useful to use other conver-
gence definitions than for instance the mean square convergence. Therefore a
definition of a weak convergence will be given here.

The weak convergence called convergence in distribution can be very useful when
a strong convergence can not be established. The definition of the convergence
follows [19] and yields

146 Supplement to the mathematical background

DEFINITION A.3 (CONVERGENCE IN DISTRIBUTION) Convergence in dis-

tribution of a sequence {X,} to a random variable X is denoted X, 4 x
and is fulfilled if for all bounded and continuous functions, f, it holds that
E[f(X,)] = E[f(X)] for n — .

The convergence in distribution holds if and only if there is convergence in the
distribution function, Fx, for all continuous points = € Ix, i.e. Fx, (z) —
Fx(x) for n — oc.

Another useful definition is the Central Limit Theorem (CLT) which is used in
many applications of probability theory and is the base for numerical tools as
the Monte Carlo Sampling which will be introduced later on.

THEOREM A.4 (CENTRAL LimMiT THEOREM) Let {X}Y | be independent

and identically distributed (i.i.d.) random variables with mean u and variance
o2. Then the cumulative density function (CDF) of

1 N
Y=— X; A2
F X (A2

will converge to a normal distribution, N (u, ﬁ), for N — oco. Furthermore it
follows that the CDF of

Yx/N(Y“>, (A.3)

g

converges towards a standard normal distribution, N(0,1).

For more information and the proof of CLT see e.g. [§], [16] or [19].

A.5 Introduction of strong and weak gPC ap-
proximation

In this section both the strong and weak gPC approximations are introduced.

A.5.1 Strong gPC approximation

A strong gPC approximation can be defined as in [19] like

A.5 Introduction of strong and weak gPC approximation 147

DEFINITION A.5 (STRONG GPC APPROXIMATION) Let Z be a random
variable with support Iz and probability distribution Fz(z) = P(Z < z). Fur-
thermore let f(Z) be a function of Z and Px(Z) be the space of polynomials
in Z of degree up to N > 0. A strong gPC approximation is fn(Z) € Pn(Z)
such that for a proper norm, || - ||, defined on the support Iz it holds that
1f(Z) = fn(Z)| converges towards 0 for N — oco.

One type of strong gPC approximation is the gPC projection, where the N’th
degree gPC orthogonal projection for a function f € LZFZ (Iz)is

N

A A 1

Pyf(Z2)=)_ fi®:i(2Z), fi= ~Elf(2)%:2],

i=0 §
where {v;} are the normalization factors. From approximation theory the ex-
istence and convergence follows, see [I9], which means that the mean-square
convergence, ||f — Pn(f)|| 1z, — 0for N — oo, holds. Furthermore this ap-

zZ

proximation is the optimal approximation of f with a polynomial of order up
to N.

The convergence of the orthogonal projection follows from the theory but the
convergence rate depends heavily on the smoothness of f [19]. The smoother f
is the faster the convergence.

A.5.2 Weak gPC approximation

The strong gPC approximation is a very useful tool but it requires knowledge of
how f depends on Z, i.e. the explicit form of f in terms of Z, which is not always
at hand. It is not unusual that in practice it is only the probability distribution
of f that is known which leads to a weak gPC approximation instead of a strong
gPC approximation. This can be defined as in [I9] which defines the weak gPC
approximation as

DEFINITION A.6 (WEAK GPC APPROXIMATION) Let Z and Y be aran-
dom variables with support Iz and I, respectively and probability distribution
Fy(z) = P(Z < 2) and Fy(y) = P(Y < y), respectively. Furthermore let
Pn(Z) be the space of polynomials in Z of degree up to N > 0. A weak gPC
approximation is Yy € Py(Z) such that Yy converges towards Y in a weak
sense, e.g. in probability.

148 Supplement to the mathematical background

It is to be noted that a weak gPC approximation is not unique and that the
strong gPC approximation implies weak approximation but not the other way
around.

The weak gPC approximation when Y is an arbitrary random variable and only
the probability distribution is known generally takes the form

N
Yy =Y ai®i(Z), a;= %E[Y@i(z)]. (A.4)
i=0 v

where {v;} are the normalization factors. This is the general form but since
only the probability distribution of Y is known it is not possible to evaluate the
integral of the expectation since the dependence between Z and Y is not known.
This means that the integral has to be evaluated in an alternative way namely by
using a uniformly distributed variable, U, or by utilizing that Y = Fy. ' (Fz(Z)).
The details of the inverse probability distribution F~! and how to approximate
it can be found in [19].

The basis for the two approaches is that the probability distribution for Z and
Y map the variables to a uniform distribution in [0, 1], i.e. Fy : Iy — [0,1] and
Fy:.1; — [0,1]

The first approach utilizes the fact that Z and Y can be mapped into a uniform
parameter, U = Fy(Y) = Fz(Z) ~ U(0,1), and that Y = F},'(U) and Z =
Fgl(U). This means that the coefficients can be computed as

ai = %EU[F;%U)@(F;(U»] - vi / i (u) @4 (Fy () du,

where Ey; is the expectation operator for the random variable U.

The second approach is to use the fact that Y = Fy,' (Fz(Z)) and to computed
the coefficient as

0 = Bl (FAZ2)(2) = - [7 (Pal2)i()ie

The two new expressions for the coefficients are mathematical equivalent and

can be approximated by e.g. Gauss quadrature. The results can be formulated
in a theorem as in [I9].

THEOREM A.7 Let Z and Y be a random variables with probability distribu-
tion Fz(2) = P(Z < z) and Fy(y) = P(Y < y), respectively and E[Y?] < cc.
Furthermore let E[|Z|*™] < oo for Vm € N such that the gPC basis functions
exist and Ez[®;(Z2)®;(2)] = 6, jvi for Vi, j € M. Let

N
Yy =) ai®i(Z), a;i= %]EU[Fgl(FZ(Z))@(Z)]. (A.5)
i=0 v

A.5 Introduction of strong and weak gPC approximation 149

Then the weak approximation Yy converges in probability, i.e. Yn Ly for
N — o0, and convergence in distribution, i.e. Yy 4y,

The proof of the theorem can be found in [19].

150 Supplement to the mathematical background

APPENDIX B

Matlab

This appendix contains the Matlab implementations used in the thesis. The
implementations follows the theory and the algorithms described in the thesis.

B.1 Toolbox

B.1.1 Polynomials and quadratures
B.1.1.1 Implementation of polynomials
The Hermite polynomials are implemented as

function [HerPolEx,w] = HermitePol(x,n,type)
(%‘

% Syntax: [HerPolEx ,w| = HermitePol(x,n,type)
%\
% Purpose: Compute the n’th order Hermite polynomial in

the nodes x.
(%

% input :

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

152

Matlab

%
%
%
%
%
%
%
%
%
%

n Order of the Hermite polynomial.

X The nodes in which the Laguerre
poynomial is to be
evaluated .

type The type of Hermite polynomial to be
used. type =1
refers to He(x) which is the most
relevant for this
thesis.

% Output

%

%
%

HerPolEx A vector containing Hermite
polynomial of order n
evaluated in the nodes x.

[a b] = size(x);
if a>b

end

X = X';

if type =1

w = 1/sqrt (pix*2)xexp(—x."2/2);

m= [0:floor(n/2)]’; nMinus2m = n—2%m;

fraction = (—=1)."m./(factorial (m).*2. " m.x factorial(
nMinus2m)) ;

XRep = (repmat (x,length (fraction) 1)) ’;

XRepFixed = zeros(size (XRep));

for i =1 : length(fraction)
XRepFixed (:,i) = XRep(:,1)." nMinus2m (i) ;

end

HerPolEx = factorial (n)*XRepFixed«fraction ;

else

w = 1/sqrt (pi)*exp(—x."2);

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

B.1 Toolbox 153

X2 = 2%X;
m = [0:floor(n/2)]’; nMinus2m = n—2mn;
fraction = (—1)."m./(factorial (m).*xfactorial (nMinus2m

));
XRep = (repmat (x2,length (fraction) 1)) ’;
XRepFixed = zeros(size (XRep));

for i =1 : length(fraction)
XRepFixed (:,i) = XRep(:,1). " nMinus2m(i);
end

HerPolEx = factorial (n)*XRepFixed«fraction ;

end

A recursive implementation have been made that returns Hermite all the Her-
mite polynomials in a range of polynomial orders. This has been implemented
as

function [HerPolEx] = HermitePolRec(x,type ,From,To)

%

% Syntax: [HerPolEx|] — HermitePolRec(x,type ,From,To)
%

% Purpose: Compute the Hermite polynomial from order
From to order To in

% the nodes x.

% input :

% X The nodes in which the polynomials
are to be

% evaluated .

% type The type of Hermite polynomial to be
used. type = 1

% refers to He(x) which is the most
relevant for this

% thesis .

%

% From The lowest order polynomial to be

evaluated.

%

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

154 Matlab

% To The highest order polynomial to be
evaluated .

%

% Output

% HerPolEx A matrix containing Hermite
polynomials

% evaluated in the nodes x.

%

% Help variables
Dif = To—From+1;
xL = length (x);

% Initial Polynomial
HerPolEx = zeros (xL,Dif);
if From <=1
k=1,
if From < 1
HerPolEx (:,1) = ones(xL,1);

k=k+1;
end
if Dif>1
if type ==
HerPolEx (:,k) = x;
else
HerPolEx (:,k) = 2xx;
end
end
else
n = From-+2;
if Dif>=2

[w,HerPolEx (:,1)] = HermitePol(x,From,type);
[w,HerPolEx (:,2)]

else
[w,HerPolEx (:,1)] = HermitePol(x,From,type);

end
end
n = From+1;
if Dif>2

for k = 3:Dif

HermitePol (x,From+1,type) ;

HerPolEx (:,k) = x’.xHerPolEx (: ,k—1)-nxHerPolEx (:,

k—2);
n = n+1;
end

59

20

21

22

23

24

B.1 Toolbox 155

end

The Legendre polynomials are implemented as

function [Le] = LegendrePol(x,n)

%

% Syntax: [Le] = LegendrePol(x,n)

%

% Purpose: Compute the n’th order Legendre polynomial in
the nodes x.

%

% input :

% n Order of the polynomial.

%

% X The nodes in which the Legendre
poynomial is to be

% evaluated .

O0

% Output

% Le A vector containing Legendre
polynomial of order n

% evaluated in the nodes x.

%

n2 = floor(n/2);

Le = zeros(size(x));

for 1 = 0:n2
Le = Le + (—1)." I1xnchoosek (n,l)*nchoosek ((2+n—2x1) ,n)

xx." (n—2x1) ;
end

Le = 1/(2°n)x*Le;

The Legendre polynomials can also be computed recursively which is imple-
mented as

function [Le|] = LegendrePolRec(x,Start ,End)

%

% Syntax: [Le] = LegendrePolRec(x,Start ,End)

%

% Purpose: Compute the Legendre polynomial from order
From to order To in

% the nodes x.

%

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

156 Matlab

% input :

% X The nodes in which the polynomials
are to be

% evaluated .

%

% Start The lowest order polynomial to be
evaluated .

%

% End The highest order polynomial to be
evaluated.

%

% Output

% Le A matrix containing Legendre
polynomials

% evaluated in the nodes x.

%

Len = abs(End—Start)+1;

Le0 = ones(size(x));
Lel X;

)

Le = zeros(length(x) ,Len);
if Start = 0
Le(:,1) = Le0;
if Len >= 2
Le(:,2) = Lel;
end
elseif Start —
Le(:,1) = Lel;
if Len >= 2
Le(:,2) = 1/2%(3xx"2-1);
end
else
Le(:,1) = LegendrePol(x,Start);

if Len >=2
Le(:,2) = LegendrePol(x,Start+1);
end
end
if Len>=3

for k = 2:Len-—1
n = Start+k—1;

48

49

50

22

23

24

B.1 Toolbox

157

Le (: ,k+1)=(2%n+1) /(n+1).xx’.xLe(: ,k)—n/(n+1)*Le
(:,k=1);
end
end

The Laguerre polynomials are implemented as

function [Le] = LegendrePol(x,n)

%

% Syntax: [Le] LegendrePol (x,n)

%

% Purpose: Compute the n’th order Legendre polynomial
the nodes x.

%

% input :

% n Order of the polynomial.

%

% X The nodes in which the Legendre
poynomial is to be

% evaluated .

%

% Output

% Le A vector containing Legendre
polynomial of order n

% evaluated in the nodes x.

%

n2 = floor (n/2);

Le = zeros(size(x));
for 1 = 0:n2
Le = Le + (—1)." l*nchoosek (n,1)*nchoosek ((2xn—2x1) ,
*xx. " (n—2x1);
end

Le = 1/(2"n)xLe;

A recursive computation of the Laguerre polynomials is implemented as

function [Le] = LegendrePolRec(x,Start ,End)
%

% Syntax: [Le] — LegendrePolRec(x,Start ,End)
%
% Purpose: Compute the Legendre polynomial from order

From to order To in

in

n)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

158 Matlab

% the nodes x.

%

% input :

% x The nodes in which the polynomials
are to be

% evaluated .

%

% Start The lowest order polynomial to be
evaluated.

%

% End The highest order polynomial to be
evaluated .

%

% Output

% Le A matrix containing Legendre
polynomials

% evaluated in the nodes x.

%

Len = abs(End—Start)+1;

Le0 = ones(size(x));
Lel

X5

Le = zeros(length(x) ,Len);

if Start =— 0
Le(:,1) = Le0;
if Len >= 2
Le(:,2) = Lel;
end
elseif Start — 1
Le(:,1) = Lel;
if Len >— 2
Le(:,2) = 1/2%(3%x"2-1);
end
else

Le(:,1) = LegendrePol(x,Start);

if Len >=2
Le(:,2) = LegendrePol(x,Start+1);
end
end

if Len>=3

46

47

48

49

50

20

21

22

23

24

25

27

28

29

30

B.1 Toolbox 159

for k = 2:Len—1
n = Start4+k—1;
Le (: ,k+1)=(2%n+1) /(n+1).%x’.*xLe(: ,k)—n/(n+1)*Le
(: 7k_1);
end
end

The derivatives of the Jacobi polynomials are implemented as

function [Pm] = GradJacobiPoln(x,alpha, beta,N)

%

% Syntax: [Pm] = GradJacobiPoln(x,alpha,beta ,N)

%

% Purpose: Compute the gradiant to the n’th order Jacobi
polynomial

% in the nodes x.

%

% input:

% N Order of the polynomial.

%

% X The nodes in which the Legendre
poynomial is to be

% evaluated .

%

% alpha The alpha value used to define the
Jacobi polynomial

%

% beta The beta value used to define the
Jacobi polynomial

%

% Output

% Pm A vector containing gradiant
polynomial evaluated in

% the nodes x.

%

if N==0;
Pm = zeros(size(x));

else

[P] = JacobiPolNorm (x,alpha+1,beta+1,N-1);
Pm = zeros(length(x));
for ni = 1:N
Pm(:,ni+1) = sqrt(ni*(nitalphat+beta+1))*P(:,ni);
end

31

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

160 Matlab

end

The normalized Jacobi polynomials are used and the implementation for these
are given in

function [p] = JacobiPolNorm (x,alpha ,beta ,N)
%

% Syntax: [p] = JacobiPolNorm (x,alpha ,beta ,N)

%

% Purpose: Compute the the n’th order normalized Jacobi
polynomial

% in the nodes x.

%

% input :

% N Order of the polynomial.

%

% x The nodes in which the Legendre
polynomial is to be

% evaluated .

%

% alpha The alpha value used to define the
Jacobi polynomial

%

% beta The beta value used to define the
Jacobi polynomial

%

% Output

% p A vector containing polynomial
evaluated in

% the nodes x.

%

% Ensure that x is a column and not a row vector.
x = x(:);

P = zeros(length(x) ,N+1);
PN = P;

P(:,1) = 1;

gammal — 2~ (alpha+beta+1)xfactorial (0+alpha)xfactorial (0+
beta) ;

gamma2 = factorial (0)*(0+alpha+beta+1)xfactorial (0+alpha+
beta);

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

B.1 Toolbox 161

gammalnv) = gamma2/gammal ;

PN(:,1) = sqrt(gammalnv0)=«P(:,1);

if N—20
p = PN(:a]-);
return

elseif (N==-1)
p = PN(:,1) %0;
return

end

P(:,2) = 1/2«(alpha—beta) + 1/2x(alpha+beta+2)s*x;

gammal = 2~ (alpha+beta+1)xfactorial(l4+alpha)«factorial (1+
beta) ;

gamma2 = factorial (1)x(2+alphat+beta+1)xfactorial(l+alpha+
beta) ;

gammalnv = gamma2/gammal ;

PN(:,2) = sqrt(gammalnv)«P(:,2);

if N ==
p = P;
return;
end

for n = 1:N-1
re — 2xntalphatbeta; % Factor computed once and
reused .
Pnl = 2x(n+alpha)*(n+beta) /((re+1)xre)«P(:,n);
Pn = ((alpha~2—beta~2)/((re+2)*re) + x).*xP(:,n+1);
InvFac = ((re+2)x(re+1)) /(2x(n+1)*(re—n+1));

P(:,n+2) = InvFacx(Pn — Pnl);

n2 = n+1;

gammal = 2~ (alpha+beta+1)xfactorial (n2+alpha)=x
factorial (n2+beta) ;

gamma2 = factorial (n2)=*(2xn2+alpha+beta+1)xfactorial(
n2+alpha+beta) ;

73

74

75

76

78

79

80

81

10

11

12

13

14

15

16

17

18

19

20

162 Matlab

gammalnv = gamma2/gammal;

size (P(:,n+2));

size (PN);

PN(:,n+2) = sqrt(gammalnv)«P(:,n+2);
end
p = PN;
end

B.1.1.2 Implementation of quadratures

A general function that can call the other quadrature functions has been imple-
mented as

function [x,w] = Quadrature(n,type)

%

% Syntax: [x,w] = Quadrature(n,type)

%

% Purpose: Generate nodes and weights for different
quadratures

%

% input :

% n Order of the polynomial. Which also
means the

% number of nodes and weights.

%

% type Defines which kind of quadrature that
is used and

% contains extra parameters if these
are needed.

%

% Output

% X A vector containing the nodes (
abscissas) of the

% Hermite polynomial.

%

% w A vector containing the weights
corresponding to the

% computed nodes.

%

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

B.1 Toolbox 163

if stremp(type(l), hermite’)
[x,w] = HermiteQuad (n);

elseif strcmp(type(l),’laguerre’)
[x,w] = laguerrequad(n);

elseif strcmp(type(1l), legendre’)
[x,w] = legendrequad(n);

elseif stremp(type(l),’legendreshift)
[x,w] = legendrequad01(n);

elseif stremp(type(l),’jacobi’)

[x,w] = JacobiGQ(type(2),type(3),n);
end

The Gauss Hermite quadrature is implemented as

function [x,w] — HermiteQuad (n)

%

% Syntax: [x,w| = HermiteQuad(n)

%

% Purpose: Generate nodes and weights for Gauss Hermite
quadrature .

%

% input :

% n Order of the polynomial. Which also
means the

% number of nodes and weights.

%

% Output

%o X A vector containing the nodes (
abscissas) of the

% Hermite polynomial.

%

% w A vector containing the weights

corresponding to the
% computed nodes.

17

18

19

20

21

22

23

24

25

10

11

12

13

14

15

16

17

18

19

20

21

22

23

164 Matlab

%

nV = 1:n—1;

BetaSqrt = sqrt (nV./2);

J = diag(BetaSqrt ,1)+diag(BetaSqrt,—1);
[V.D] — eig(J);

[x,ind] = sort(diag(D));

wTlemp = sqrt (pi)«V(1l,:)."2;

w = wTemp(ind) ;

The computation of the Gauss Legendre quadrature nodes and weights is im-
plemented as

function [x,w] = legendrequad (n)

%

% Syntax: [x,w] = legendrequad(n)

%

% Purpose: Generate nodes and weights for Gauss Legendre
quadrature .

%

% input :

% n Order of the polynomial. Which also
means the

% number of nodes and weights.

%

% Output

% X A vector containing the nodes (
abscissas) of the

% Hermite polynomial.

%

% w A vector containing the weights
corresponding to the

% computed nodes.

%o

u = sqrt(1./(4-1./[1:n=1].72)); % upper diag.
[V,Lambda] = eig(diag(u,1)+diag(u,—1));

[x,i] = sort(diag(Lambda));

Vtop = V(1,:);

Vtop = Vtop(1i);
w = 2xVtop. " 2;

The implementation of the shifted Gauss Legendre quadrature nodes and weights
is

22

23

24

25

10

B.1 Toolbox 165

function [x,w]| = legendrequadO1l(n)

%

% Syntax: [x,w] = legendrequadO1l (n)

%

% Purpose: Generate nodes and weights for the shifted
Gauss Legendre

% quadrature i.e. in the interval [0,1].

%

% input:

% n Order of the polynomial. Which also
means the

% number of nodes and weights.

%

% Output

% X A vector containing the nodes (
abscissas) of the

% Hermite polynomial.

%

% w A vector containing the weights
corresponding to the

% computed nodes.

%

a = repmat(1/2,1,n); % main diagonal of J

= sqrt (1./(4*%(4—-1./[1:n—1].72)));
[V,Lambda] = eig(diag(u,l)+diag(a)+diag(u,—1));
[x,i] = sort(diag(Lambda)) ;

Vtop = V(1,:);

Vtop = Vtop(l);

w = Vtop. 2;

=

The Gauss Laguerre quadrature rule is implemented as

function [x,w] = laguerrequad(n)

%

% Syntax: [x,w] = laguerrequad (n)

%

% Purpose: Generate nodes and weights for Gauss Laguerre
quadrature.

%

% input :

% n Order of the polynomial. Which also
means the

% number of nodes and weights.

%

11

12

13

14

15

16

17

18

19

20

21

22

23

24

10

11

12

13

166 Matlab

% Output

% X The nodes (abscissas) of the Hermite
polynomial .

%

% w The weights corresponding to the
computed

% nodes .

%

a = 2x%[0:n—1]4+1; % diagonal of J
[1:n—1]; % upper diagonal of J
[V, Lambda] = eig(diag(u,1l)+diag(a)+diag(u,—1));
[x,i] = sort(diag(Lambda));
Vtop = V(1,:);
Vtop = Vtop(l);
w = Vtop."2;

The Gauss-Lobatto nodes are implemented as
function [x] = JacobiGL(alpha,beta ,N)
% function [x] = JacobiGL(alpha ,beta N)

% Purpose: Compute the N’th order Gauss Lobatto
quadrature

% points , x, associated with the Jacobi
polynomial ,
% of type (alpha,beta) > —1 (<> —0.5).

x = zeros (N+1,1);
if (N==1) x(1)=-1.0; x(2)=1.0; return; end;

[xint ,w] = JacobiGQ (alpha+1,beta+1,N-2);
x = [-1, xint’, 1]’;
return;

The implementation of the Gauss-Lobatto nodes relies on the implementation
of the Gauss Quadrature points implemented as

function [x,w] = JacobiGQ(alpha,beta ,N)

% function [x,w] = JacobiGQ(alpha,h beta N)

% Purpose: Compute the N’th order Gauss quadrature points
X7

% and weights, w, associated with the Jacobi

© o N e Tk W N e

[
o

11

B.1 Toolbox 167

% polynomial , of type (alpha,beta) > —1 (<>
-0.5).

if (N==0) x(1)=(alpha—beta) /(alphat+beta+2); w(1l) = 2;
return; end;

% Form symmetric matrix from recurrence.
J = zeros (N+1);
hl = 2x(0:N)+alpha+beta;
J = diag(—1/2x«(alpha~2—beta~2)./(h1+2)./hl) + ...
diag (2./(h1(1:N)+2).xsqrt ((1:N).x((1:N)+alpha+beta)

((1:N)+alpha) .+ ((1:N)+beta)./(h1(1:N)+1)./(hl (1:N)=3)
)1) 5
if (alpha+beta<10xeps) J(1,1)=0.0;end;
FIE A A

%Compute quadrature by eigenvalue solve

[V,D] = eig(J); x — diag(D);

w = (V(1,:)’).72«2"~(alpha+t+beta+1)/(alpha+beta-+1)+gamma(
alpha+1) ...
gamma(beta+1)/gamma(alpha+beta+1);

return;

B.1.2 Vandermonde-like matrices.

The implementation of the Vandermonde-like matrix V is given by
function D = JacobiDn(x,alpha,beta)

% Compute the generalized Vandermonde matrices V and Vx
N = length (x);

%V = JacobiPolNorm (x,alpha , beta ,N—1);

V = JacobiPolNorm (x,alpha ,beta ,N—1);
Vx = GradJacobiPoln (x,alpha ,beta ,N—1);

% The inverse matrix of V is computed

D = Vx/V;

© W N o ;A W N e

L e
w N = O

-
'S

168 Matlab

B.1.3 ERK

The implementation of the explicit Runge-Kutta method is given here

function U = ERK(t,U, fun,dt,param)

G =1;

P = feval (fun,t,U,param);
U=U+ 0.5xdt*P;

G = P;

P = feval (fun,t+0.5%dt,U, param) ;
U=U+ 0.5xdt*(P-G);

G = (1/6)+G;

P = feval (fun,t+0.5%dt,U,param) — 0.5%P;
U =TU + dt«P;

G=G-P;

P = feval (fun,t+dt,U,param) +2+P;
U="U+ dt*(G + (1/6)=P);

B.2 Test Equation

B.2.1 Monte Carlo

A test script for the Monte Carlo simulation for the Test Equation has been
implemented as

%77 Monte Carlo Script

YIS T
Wiy Version 1.0
ST TS
Wer//% Author: Emil Brandt Kaergaard
VAL
%

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

B.2 Test Equation 169

% Parameters: The size of the dataset, the weight of the
solutions ,

% the number of datasets, the type of distribution and
parameters specific

% for the distribution .

close all; clear all;

% Number of realizations , time—endpoint
N = [100 1000 5000 10000 30000 50000 80000 100000 150000
300000 500000 800000 1000000];

Ns = 1./sqrt (N);
tend = 1; tN = 45;

% Computing the parameters for generating the random
variables.

mu = 0; sigma = sqrt (0.25);

Alpha.DistType = ’'normal’;

Alpha.Dim = [1,1];

Alpha.Par = [mu,sigma|;

Beta = 1;
RealSol = 2;
MuEx = exp(tend ~2/2);

% Pre—allocation

Mu = zeros (tN,length (N));

Sigma = zeros (tN,length (N));
MuExact = zeros (tN,length (N));
SigmaExact zeros (tN,length (N)) ;
MuErr = zeros (tN,length (N));
SigErr = zeros (tN,length (N));
Time = zeros(1,length(N));

for k =1l:length (N)

[Mu(:,k),Sigma(:,k),CI,Exact,Err,Time(k)] =
MCTestEqSolv (Alpha ,Beta, tend ,tN,N(k),RealSol);

MuExact (: ,k) = Exact.MuExact;
SigmaExact (: ,k) = Exact.SigmaExact ;
MuErr (: ,k) = Err.MuErr;
SigErr (:,k) = Err.SigErr;
Time (k)

47

48

49

50

51

52

53

54

55

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

170 Matlab

end
t = linspace (0,tend ,tN);

figure (1)

hold on

plot (t ,Mu(:,end), ’b—x’,t,CI.UB, k-« ,t ,CI.LB, "k—x")

plot (t,MuExact, 'r—o’,t,Exact.UBExact, "g—o’,t,Exact.
LBExact, 'g—0")

hold off

Much of the computations have been implemented in

function [Mu,Sigma,CI,Exact,Err,Time,t] = MCTestEqSolv(
Alpha ,Beta, tend ,tN,M, RealSol)

%

% Function for using Monte Carlo method on Test Equation.

% Version 1.0

% Author: Emil Brandt Kaergaard

%

% Syntax:

% [Mu, Sigma , CI, Exact , Err] = MCTestEqSolv (Alpha,
Beta , tend ,tN ,M)

%

0
0

% Computing the parameters alpha and beta.
alpha = RandVar(Alpha.DistType, Alpha.Dim,M, Alpha.Par) ;
if length (Beta) =—

beta = Betaxones(1,M);
else

beta = RandVar(Beta.DistType,Beta.Dim,M, Beta.Par) ;
end

% Computing the tspan and preallocating a matrix U for
the solutions u for

% the deterministic solution of each realization of the (
pseudo —)random parameters.

tspan = linspace (0,tend ,tN);

dt = abs(tspan(2)—tspan(1));

U = zeros(length (tspan) M) ;

if RealSol — 1

3

t = tspan ’;

28

29

30

31

32

33

34

35

36

38

39

40

41

42

43

44

45

46

B.2 Test Equation

171

tic
for i=1:M
U(:,i) = exp(—alpha(i).xt);
end
Time = toc;
elseif RealSol — 0
tic
for i=1M
[t,U(:,i)] = oded45(@QTestEq,tspan,beta(i) ,[],alpha
(1))
end
Time = toc;
else
t = zeros(size (tspan));
tic
for i=1:M
U(1,i)=beta(i);
for ti = 2:length(tspan)
U(ti,i) = ERK(tspan (ti),U(ti—1,i),@TestEq,dt,
alpha(i));
t(ti)=t(ti—1)+dt;
end
end
Time = toc;
t =t
end
% Computing modes: Mean and variance.

Mu = sum(U,2) /M;

Sig = zeros(length (tspan)
for k = 1:M

M) ;

Sig (:,k) = (U(:,k)-Mu)."2;

end

Sigma = sum(Sig,2) /(M=1);

UB = Mu + 1.96xsqrt (Sigma)/sqrt (M) ;
IB = Mu — 1.96xsqrt (Sigma) /sqrt (M) ;

CI.UB = UB;
CI.LB = LB;

% Coumpitng exact values

if these

are known.

73

74

75

76

7

78

79

81

172 Matlab

if strcmp (Alpha.DistType, 'normal ")
MuExact = exp(1/2.x(Alpha.Par(2).xt).”2—Alpha.Par(1)
x5
SigmaExact = exp (2% (Alpha.Par(2).xt).”2—2xAlpha.Par
(1) .xt)—exp ((Alpha.Par(2) .xt)."2—2xAlpha.Par (1) .xt
)5

UBExact = MuExact + 1.96xsqrt (SigmaExact) /sqrt (M) ;
LBExact = MuExact — 1.96xsqrt (SigmaExact)/sqrt (M) ;

MuErr = abs (Mu — MuExact) ;
SigErr = abs(Sigma — SigmaExact);
elseif strcmp (Alpha.DistType, uniform)

MuExact = —(exp(—(Alpha.Par(2).xt))—exp(—(Alpha.Par
(1).%xt)))./(t.x(Alpha.Par(2)—Alpha.Par(1)));

SigmaExact = —(exp(—2*(Alpha.Par(2) .xt))—exp(—2x%(
Alpha.Par(1).%t)))./(2xt.x(Alpha.Par(2)—Alpha.Par
(1)))—MuExact. " 2;

UBExact = MuExact + 1.96xsqrt (SigmaExact) /sqrt (M) ;
LBExact = MuExact — 1.96xsqrt (SigmaExact)/sqrt (M) ;

MuErr = abs (Mu — MuExact) ;
SigErr = abs(Sigma — SigmaExact);

else

MuExact = 0;
SigmaExact = 0;

UBExact = 0;
LBExact = 0;
MuErr = 0;

SigErr = 0;

end

Exact . MuExact = MuExact ;
Exact.SigmaExact = SigmaExact;
Exact . UBExact = UBExact;
Exact.LBExact = LBExact;

Err . MuErr = MuErr;
Err.SigErr = SigErr;

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

B.2 Test Equation 173

The random variables are computed by using the following implementation

function X = RandVar(DistType ,Dim,M, Par)
%

% Random Variabel Script

% Version 1.0

% Date: December 2012

% Author: Emil Brandt Kaergaard

%

% RandVar:

% This function computes M random variables of
dimension Dim. The

% type of distribution used to generate the
variables is defined

% in DistType and by the parameters in Par.

%

% Syntax:

% X = RandVar(DistType ,Dim,M, Par)

%

% Input:

% DistType: The type of distribution used to
generate the

% variables .

% Dim: Dimension of the variables.

% M: Number of random variables.

% Par: The parameters of the chosen
distribution of the variables.

%

% Output:

% X: A Dim x M matrix containing M (pseudo—)
random variables of dimension Dim.

%

% Defining row— and column—length .
row = Dim(1);
column = Dim(2);

% Initialize parameters
if length(Par) = 1 % Use default distribution parameters

if strcmp (DistType, 'normal ')
mu = 0;
sigma = 1;

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

10

11

12

13

14

15

16

17

18

174 Matlab
elseif strcmp (DistType, uniform’)
a = —1;
b = 1;
end
elseif length(Par) = 2 % Use user—defined parameters
if stremp (DistType, 'normal’)
mu = Par(1);
sigma = Par(2);
elseif strcmp(DistType, uniform’)
a = Par(1);
b = Par(2);
end
end

% Generating random samples

if strcmp (DistType, 'normal ')

X = mu + sigma.xrandn (row,column M) ;
elseif strcmp (DistType, 'uniform”)

X =a + (b-a).xrand(row,column M) ;
else

error ('Wrong type of distribution’)
end

The rhs-function has been implemented as

function du = TestEq(t,u,alpha)
%

% Test Equation Script.

% Version 1.0

% Date: December 2012

% Author: Emil Brandt Kaergaard
%

% TestEq:

%

% Syntax:

% du = TestEq(t,u,alpha)
%

% Input:

%

% Output:

%

du = —alpha.xu;

20

21

22

23

24

25

26

27

28

B.2 Test Equation 175

B.2.2 Stochastic Collocation Method

A test script computing following the pseudocode [5| have been implemented as

%
TIISTISTISTISTISTISTISTISTISTISI IS SIS SIS SIS TS SIS SIS TSI TS SIS TSI

WITIITIS Stochastic Collocation method on the Test

Equation . TITTSSTTSo
WITSITIS Version 1.0

PITTSSIISo
YIIIIIIIS Date: February 2012
KITTIIIISo

WITIIIIS Author: Emil Brandt Kaergaard
%

YT TTISTIISTTISSTIISSTTISSTIISSTTISSSTITSSTSISSSTIISSTSISSSTISISSTTISSTISSISS

% Constants:
zN = 9;
dt = 0.05:

tBeg = 0; tEnd = 1;
tspan = tBeg:dt:tEnd;

DistType = ’uniform ’;

if strcmp (DistType, 'normal ’)
% Gaussian Distribution: Hermite Gauss Quadrature
nodes.
mu = 0; Var = 1; sigma
parl = mu; par2 = sigma;

sqrt (Var) ;

[z,2W] = HermiteQuadN (zN); % Computing nodes and
weights

z = mutsigmaxz; % Computing the N(mu,sigma)
distributed alpha—parameter
n = 0:zN-1;
elseif strcmp (DistType, "uniform)
% Uniform Distribution: Legendre Gauss Quadrature
nodes .

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

176 Matlab

[2z,2W] = legendrequad (zN); % Computing nodes and
weights
W = 1/2%2W;
a= —1; b=1;
parl = a; par2 = b;
end

% Pre—allocation and initial condition.
U = zeros (zN,length (tspan));
U(:,1) = ones(zN,1);

% Solving deterministic system.
tic
for ti = 1:length (tspan)—1
U(:,ti+1) = ERK(tspan (ti),U(:,ti),@QrhsSCMtest,dt,z);
end
time = toc;

figure
plot (tspan ,U’)

[Umean, Uvar, MuExact, SigmaExact, MuErr, SigErr| =
TestEqX (DistType , parl,par2 ,U,zW,zN, tspan) ;

figure

hold on

plot (tspan ,Umean(end ,:) ,’b’)
plot (tspan ,MuExact, 'r—.")
hold off

iz

%
TSISSTSSTISSTISSTISSTIS SIS TSI SIS TSI TSI TS TISTISTIS SIS TSI TSI IS SIS TSI TIS TS

Y9 7% Computing errors for different zN for SCM on the
Test Equation. %%%%%
Wersk Version 1.0

VAU
977 % Date: February 2012

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

B.2 Test Equation 177

W77 % Author: Emil Brandt Kaergaard
VA
V4
0
0/'0%0 OO OO OO OO OO OO OO OO OO OO OO OO OO OO O%OA)OA)O OO 00 OO 00 OO OVO%.%O/C%%O/OO/'OO/'O OO OO OO OO OO OO OO OO OO OO OO OO OO OO OO O%OA)OA)OA)O 00 0O O(yo OVO%O/C%%%O 0(;

% Constants:
ZIN = 16; % Maximum number of nodes and weights in z.
dt = 0.005;

tBeg = 0; tEnd = 1;
tspan = tBeg:dt:tEnd;

DistType = ’normal’; % Choice of distribution of z.

MuErr = zeros (ZN,length (tspan));
SigErr = MuErr;

for zN = 1:ZN

if strcmp (DistType, 'normal ')
% Gaussian Distribution: Hermite Gauss Quadrature

nodes.
mu = 0; Var = 1; sigma = sqrt(Var);
parl = mu; par2 = sigma;

[z,2W] = HermiteQuadN (zN) ;

Z = musigmaxz;
n = 0:zN—-1;
elseif strcmp (DistType, uniform)
% Uniform Distribution: Legendre Gauss Quadrature
nodes.
alpha = 0; beta = 0;
[z,2W] = JacobiGQ (alpha ,beta ,zN—1);

% Pre—allocation and initial condition.
U = zeros(zN,length (tspan));
U(:,1) = ones(zN,1);

104

105

106

107

108

109

110

111

112

113

114

116

117

10

11

12

13

14

178 Matlab

% Solving the deterministic system.
tic
for ti = 1:length (tspan)—1
U(:,ti+1) = ERK(tspan(ti),U(:,ti),@QrhsSCMtest,dt,
z);
end
time = toc;

[Umean, Uvar, MuExact, SigmaExact, MuErr(zN,:) ,
SigErr (zN,:)] = TestEqX(DistType,parl,par2,U,zW,zN
,tspan);
end

figure
semilogy (1:ZN,MuErr (: ,end),’b.’ 1:ZN,SigErr (: ,end), ’ro’);

figure
semilogy (1:ZN, SigErr (:,end));

The rhs-function has been implemented as

function un = rhsSCMtest (t,U,alpha)

un = alpha.xU;

The approximated and exact statistics are computed in TestEqX which is im-
plemented as

function [Umean, Uvar, MuExact, SigmaExact, MuErr, SigErr
] = TestEqX (DistType,parl,par2,U,zW,zN, tspan)

t = tspan;

% Computing mean:
Uw = zeros (zN,length (tspan));
for zi = 1:zN

Uw(zi,:) = U(zi,:)=W(zi);
end
Umean = sum (Uw,1) ;

% Computing variance:
Uv=zeros (length (tspan) ,zN);
for zi = 1:zN

23

24

25

26

27

28

29

30

31

B.2 Test Equation 179

Uv(:,2zi) = (U(zi,:)—Umean(end,:)). 2%xzW(zi);
end
Uvar = sum(Uv,2); Uvar = Uvar’;

% Computing exact mean and variance
if strcmp (DistType, 'normal 7)

MuExact = exp(1/2.%x(par2.xt).”"2—parl.xt);
SigmaExact = exp(2*(par2.+t).”"2—2xparl.xt)—exp ((par2
kt)."2—2xparl.*xt);
elseif strcmp (DistType, uniform)
MuExact = —(exp(—(par2.xt))—exp(—(parl.xt)))./(t.*(
par2—parl));
SigmaExact = —(exp(—2*(par2.xt))—exp(—2x(parl.*xt)))
./ (2%t .x(par2—parl))—MuExact." 2;
end
% Computing errors on mean and variance

MuErr = abs(Umean — MuExact) ;
SigErr = abs(Uvar — SigmaExact) ;

B.2.3 Stochastic Galerkin method
A test script computing following the pseudocode [5| have been implemented as

%

YTITITITITITITS Stochastic Galerkin Method: Test
Equation WS SITITITITITI
%
TSI TSI T TSI T TSI T TSI TSI TSI TSI TSI TSI T TSI T TSI T TSI TTSITTSITTSITTSITS

% Distribution parameters
DistType = ’normal’;

mu = 0; var = 1;

sigma = sqrt(var);

parl = mu; par2 = sigma;

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

180 Matlab

beta = 1; % Initial condition.

% Initial parameters:

N = 4;

a = zeros(N+1,1);
a(l) = mu;

a(2) = sigma;

b = zeros (N+1,1);
b(1l) = beta;

% Parameters (the matrix A) for the solver:
A = zeros(N+1,N+1);

for j = 0:N
for k=0:N
[e,gamma] = TestGalPar(j,k,N);
A(j+17k+1) - —l/gamma*()7
end
end

% tspan and rhs for the solver.

dt = 0.01;
tStart = 0;
tEnd = 1;

tspan = tStart:dt:tEnd;
rhsTestEq = @Q(t,v) A’'xv;

[t,V] = oded45(rhsTestEq,tspan,b);

% Using ERK:

% rhs for ERK
rhsTestEQERK = @Q(t,v,A) (A'xv’) ’;

% Allocation

U = zeros(length (tspan) ,length(b));
MuExact = zeros (length (tspan) ,1);
U(1,:)=b;

tspan2 = zeros(size (tspan));

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

B.2 Test Equation 181

tspan2(1l) = tStart;
MuExact (1,:) = (exp(1/2.x(sigma.xtspan2(1))."2—mu.x*tspan?2
(1)) 7%

for ti = 2:length (tspan)
U(ti,:) = ERK(tspan2(ti—1),U(ti —1,:),rhsTestEqERK ,dt,
A);
tspan2(ti) = tspan2(ti—1)+dt;
MuExact (ti) = exp(1/2.%(sigma.xtspan2(ti)). 2—mu.x
tspan2 (ti));

end

[Uvar, MuExact, SigmaExact, MuErr, SigErr] = TestEqX(
DistType ,parl ,par2 ,U /N, tspan ,V(:,1));

figure

hold on

plot (t ,MuExact)
plot (t,U(:,1), rx")
plot (¢, V(:,1),’k—.")
hold off

figure

hold on

plot (t ,MuExact)

plot (t,U(:,1), rx")

plot (t,U(:,1)+Uvar, 'r—")
plot (t,U(:,1)—Uvar, 'r—")
hold off

T

%

TSI TSI T TSI TTSIT TSI TTSIT TSI TS ITSSTTSISTTSSTTSST TSI TTSIT

YT TTITTTITTTITS Stochastic Galerkin Method: Test
Equation WOSSIISIIITITSTIS S
%

JITSTTTSS

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

182 Matlab

% Distribution parameters
DistType = ’'normal’;
if strcmp (DistType, 'normal ’)

mu = 0; var = 1;

sigma = sqrt(var);

parl = mu; par2 = sigma;
elseif strcmp (DistType, 'uniform)

a= —-1; b = 1;

parl = a; par2 = b;

mu = 1/2x(a+b); sigma = 1/2x(b—-a);
end

beta = 1; % Initial condition.

% tspan and rhs for the solver.
dt = 0.01;

tStart = 0; tEnd = 1;

tspan = tStart:dt:tEnd;

% Initial parameters:

Nmax = 14;

MuErr = zeros(length (tspan) ,Nmax) ;
SigErr = MuErr;

for N = 1:Nmax;

a = zeros(N+1,1);
a(l) = mu; a(2) = sigma;

b = zeros (N+1,1);
b(1) = beta;

% Parameters (the matrix A) for the solver:
A = zeros (N+1,N+1);

for j = O:N
for k=0:N
[e,gamma] — TestGalParDT (] ,k,N,DistType);
A(j+1,k+1) = —1/gammax(a’xe);
end
end

rhsTestEq = @Q(t,v) A’xv;
[t,U] = ode45(rhsTestEq,tspan,b);

137

138

139

141

142

143

145

146

147

148

150

151

153

154

155

156

158

159

B.2 Test Equation

[Uvar, MuExact, SigmaExact,

= TestEgqX (DistType, parl
end

figure

semilogy (1:Nmax, MuErr(end ,:) ,’b

ro’);

figure

hold on

plot (t ,MuExact)
plot (t,U(:,1), rx")
hold off

figure

hold on

plot (t,SigmaExact)
plot (t,Uvar, 'r—")
hold off

znV = 1:Nmax;

ErrGalMN = [znV’ ,MuErr(end ,:) ’,SigErr(end,:) ’];
dlmwrite ("ErrGalMN . txt ', ErrGalMN ,

precision’, 10, ’newline’,

The approximated and exact statistics are computed in TestEqX which is im-

plemented as

function [Uvar, MuExact, SigmaExact, MuErr, SigErr| =

MuErr (: ,N), SigErr(:,N)]
,par2 ,U,N, tspan) ;

.7 ,1:Nmax, SigErr(end,:) ,’

"pc’)

TestEqX (DistType , parl ,par2 ,U,N, tspan)

t = tspan;
Umean = U(:,1) ;

% Computing variance :
if strcmp (DistType, 'normal ”)
Uv = zeros(size (U));
for vi = 1:N
gamma = factorial (vi

)
Uv(:,vi+1) = gamma.xU(:

,vi+1).~2;

"delimiter’

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

184 Matlab

end
Uvar = sum(Uv,2) ;
elseif strcmp (DistType, 'uniform”)
Uv = zeros(size (U));
for vi = 1:N
gamma — 1/(2xvi+1);
Uv(:,vi+l) = gamma.*U(:,vi+1)."2;
end
Uvar = sum(Uv,2) ;
end

% Computing exact mean and variance
if strcmp (DistType, 'normal ')
MuExact = exp(1/2.x(par2.xt).”2—parl.*xt);
SigmaExact = exp(2*(par2.xt).”"2—2xparl.*xt)—exp ((par2
kt)."2—2xparl.xt);

elseif strcmp (DistType, 'uniform”)

MuExact = —(exp(—(par2.xt))—exp(—(parl.xt)))./(t.x(
par2—parl));
SigmaExact — —(exp(—2x(par2.xt))—exp(—2x(parl.xt)))

./ (2%t .x(par2—parl))—MuExact. " 2;
end

% Computing errors on mean and variance

MuErr = abs(Umean — MuExact’) ;
SigErr = abs(Uvar — SigmaExact’) ;

B.3 Burgers’ Equation

B.3.1 Stochastic Collocation Method

The following function generates the initial condition used by SCM for Burgers’
Equation.

function [InitCond ,U,z,zZW| = InitBurg(zN,nu,x)

ck=0; xL = length(x);
dStart = 0.0; dEnd = 0.1;

B.3 Burgers’ Equation 185

Uexact = @(x,t,nu) —tanh ((x—t)/(2*nu))+ck;
[7z,”W] = legendrequad (zN) ;

% Scale weights and disturbances.
delta = ((z+1)/2)*(dEnd—dStart)+dStart ;
W = zW/2;

InitCond = Uexact(x,0 ,nu);

U = zeros (xLx*zN,1) ;
for i = 1:zN
InitTemp = InitCond;
InitTemp (InitTemp >0) = InitTemp (InitTemp >0)x(1+delta (
i));
U(xL*(i—1)+1:xL*(i)) = InitTemp;
end

This function generates the Gauss-Lobatto nodes in the z-vector and the pa-
rameters for the right-hand-side (rhs) function.

function [x,param,paramKron] = xParBurg(alpha,beta xN,zN,
nu)

%

%

%

[x] = JacobiGL (alpha ,beta ,xN);
D = JacobiDn(x,alpha,beta);

D2 = D«D;

xL = length(x);

% Saving the parameters in two structs.
param.D = D; param.D2 = D2; param.nu = nu; param.zN = zN;

param .xL = xL;

kronD = kron (speye(zN) ,D);
kronD2 = kron(speye(zN) ,D2);

paramKron.D = kronD; paramKron.D2 = kronD2;
paramKron.nu = nu; paramKron.zN = zN; paramKron.xL = xL;

The rhs function is implemented as

12

13

14

12

13

14

15

16

17

186 Matlab

function [un] = rhsColBurg(t,U,param)

% Renaming input—parameters
nu = param.nu; D = param.D; D2 = param.D2;
xL = param.xL; zN = param.zN;

% Pre—allocation

un = zeros (size (U));

% Compute solutions

for k =0:z2N—-1
un (xLxk+1:xLx(k+1) ;1) = nuxD2xU(xLxk+1:xLx(k+1) ,1)-U(

xLxk+1:xLx(k+1) ,1) . % (D+U(xLxk+1:xL*(k+1),1));

un(xLxk+1,1) = 0;
un (xLx*(k+1),1) = 0;

end

The deterministic solution to Burgers’ equation is computed in the following
implementation

function [U,t,time] = BurgDetSolv(U,dt,param,ErrorBar,
MaxIter)

t = zeros(MaxIter,1);

iter = 0;

diff = 1;

tic

while diff > ErrorBar && iter <= MaxIter
UTemp = U;

U = ERK(t (iter+1),U, @rhsColBurg ,dt ,param) ;
t(iter+2) = t(iter+1)+dt;
diff = max(abs(UTemp-U));
iter = iter+1;
end
time = toc;

The script for solving the Stochastic Burgers’ equation is

%

G L L

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

B.3 Burgers’ Equation 187

WITTTSIS Stochastic Collocation Method on Burgers’
Equation . TITTSSTTSo
WSS TS Author: Emil Brandt Kaergaard
TSSSTTT IS

%
TITISSTTTTSTSSSITTTSSSSITTISSSITTTSISSSTITTISSSSITTISSSSITTISSSSITTITSS
% Constants:
a = 0.0; nu = 0.05;
alpha = 0; beta = 0;
xN = 45;

zN = 10;
ErrorBar = 0.2e-5;
MaxIter = 5000000;

dt = 0.0005;

% The parameters for rhs and the Gauss—Lobatto nodes.
[x,param ,paramKron]| = xParBurg(alpha,h beta ,xN,zN,nu);

% Initialcondition
[InitCond ,U,z,zW] = InitBurg(zN,nu,x);

% Solve the deterministic system
[Usol,t,time] = BurgDetSolv(U,dt,param,ErrorBar, MaxIter) ;

xL=param .xL;

figure
hold on
for zi = 0:zN-1
plot (x,Usol (zi*xL+1:xLx(zi+1),1), b—")
end
hold off

xRep = repmat(x,1,zN);

UsRep — reshape(Usol ,xL,zN);
figure

plot (xRep, UsRep)

% Computing statistics .
UTemp=zeros (xL,zN) ;
for zi = 0:z2N-1

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

188 Matlab

UTemp (:,zi+1) = Usol(zi*xL+1:xLx(zi+1))+W(zi+1);
end
Umean = sum (UTemp,2) ;

UvTemp=zeros (xL,zN) ;
for zi = 0:z2N-1
UvTemp (:,zi+1) = (Usol(zi*xL+1:xLx(zi+1))—Umean)." 2%
ZW(zi+1);
end

Uvar = sum (UvTemp,2) ;

mean—sqrt (Uvar) ;
yU mean+sqrt (Uvar) ;
X =[x’ fliplr(x’)];

Y = [yU’' fliplr(yL’) |;

<
=8

I
aa

figure

hold on

plot (x,Umean, 'r—’, linewidth ’ 2)

plot (x, sqrt (Uvar) , ’b—.7 ’linewidth ’,2)
fill (X g’)

plot (x Umean ‘r—’, ’linewidth ’,2)

plot (x,sqrt (Uvar) , b—.7 7linewidth ’ ,2)
hold off

xlabel ('x’, fontsize ’,12)

ylabel ("u’, fontsize’,12)

legend ("mean’, ’std ’, ’bound ")

figure

hold on

%fill (X,Y,’g’)

plot (x,Umean, 'r—’, linewidth ’,2)

plot (x,sqrt (Uvar), ' b—.", linewidth ’,2)
hold off

xlabel ('x’, fontsize ’,12)

ylabel ("u’, fontsize’,12)

legend ("mean’, ’std’, ’bound)

© W N e o A W N

B.4 Burgers’ Equation 2D 189

B.3.2 Stochastic Galerkin method

B.4 Burgers’ Equation 2D

The following function generates the initial condition used by SCM for Burgers’
Equation.

function [InitCond ,U,Z,ZW] = InitBurg2D (zN,alpha,beta ,nu,
x,dStart ,dEnd)

ck=0; xL = length (x);
Uexact = @(x,t,nu) —tanh ((x—t)/(2%nu))+ck;

[2z1,21W] = JacobiGQ (alpha ,beta ,zN—1);
[22,22W] = JacobiGQ (alpha ,beta ,zN—1);

% Scaling the weights
AW = 21W/2;
722W = 72W / 2;

% Scaling the disturbances.
z1 = ((2z141)/2)x(dEnd(1)—dStart (1))+dStart (1);
z2 = ((22+1)/2)*(dEnd(2)—dStart (2))+dStart (2);

[Z1,Z2] = ndgrid(z1,22);
[ZIW,Z2W] = ndgrid (z1W,z2W) ;

Z1 = Z1(:); 722 = Z2(:);
7 - [71 72];

AW = ZIW(:) ; Z2W = 72W (:) ;
IW = 7ZIW . xZ72W

% Initialization and pre—allocation.
deltal = Z1;

delta2 = 7Z2;

ZN = length (Z1);

InitCond = Uexact(x,0,nu);

U = zeros (xL*ZN,1) ;

34

35

36

37

38

39

® N o o

10

11

12

13

14

15

16

17

190 Matlab

for i = 1:ZN
InitTemp = InitCond;
InitTemp (InitTemp >0) = InitTemp (InitTemp >0)*(1+deltal
(1))
InitTemp (InitTemp <0) = InitTemp (InitTemp <0)x(1+delta2
(1))
U(xL#*(i—1)+1:xLx(i)) = InitTemp;
end

This function generates the Gauss-Lobatto nodes in the x-vector and the pa-
rameters for the right-hand-side (rhs) function.

function [x,param,paramKron]| = xParBurg(alpha,h beta ,xN,zN,
nu)

[x] = JacobiGL (alpha,beta ,xN);
D = JacobiDn(x,alpha,beta);

D2 = D+D;

xL = length (x);

% Saving parameters in structs.
param.D = D; param.D2 = D2; param.nu = nu; param.zN = zN;
param .xL = xL;

kronD = kron(speye (zN) ,D);
kronD2 = kromn(speye (zN) ,D2);

Nu=repmat (param.nu’ ,xL,1); Nu=Nu(:) ;

paramKron.D = kronD; paramKron.D2 = kronD2; paramKron.nu
= nu;
paramKron.Nu = Nu; paramKron.zN = zN; paramKron.xL = xL;

The rhs function is implemented as

function [un] = rhsColBurg(t,U,param)

% Input parameters are renamed
nu = param.nu;

D = param .D;

D2 = param.D2;

xL = param .xL;

zN = param.zN;

© W N o v ok W N

B.4 Burgers’ Equation 2D 191

% Pre—allocation
un = zeros (size (U));

% Rhs is evaluated for each random variable
for k =0:z2N-1
un (xLxk+1:xLx(k+1),1) = nu.«*D2«U(xLxk+1:xLx(k+1),1)-U
(xLxk+1:xLx(k+1),1) . % (D+U(xLxk+1:xL*(k+1),1));
un(xLxk+1,1) = 0;
un(xLx(k+1),1) = 0;
end

The deterministic solution to Burgers’ equation is computed in the following
implementation

function [U,t,time] = BurgDetSolv(U,dt,param, ErrorBar,

MaxIter)

t = zeros (MaxlIter,1);

iter = 0;

diff = 1;

tic

while diff > ErrorBar && iter <= MaxlIter
UTemp = U;
U = ERK(t (iter+1),U,@QrhsColBurg,dt,param) ;
t(iter+2) = t(iter+1)+dt;
diff = max(abs(UTemp-U));
iter = iter+1;

end

time = toc;

The script for solving the Stochastic Burgers’ equation is

%

TITISTISTISTISTISTISTISTISTISTSSISS TS STISSTSSSTISTISTISTTSTH

WITTIIS Burgers Equation: Collocation method with random
BC’ s WIATSTTTTTT o
%

ITTSTISTISTISTISTISTISTSSTSS TSI IS IS TSI SIS TSI IS S IS SIS SIS

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

192 Matlab

% Constants:

nu = 0.05;
alpha = 0; beta = 0;
xN = 30;

zN = 3; ZN = zN"2;
ErrorBar = 0.8e—-5;
MaxIter = 5000000;

dStart = [0,0];
dEnd = [0.1,0.1];

dt = 0.0001;

% The parameters for rhs and the Gauss—Lobatto nodes.
[x,param ,paramKron| = xParBurg(alpha ,beta ,xN,ZN,nu);

%dt = 0.95%xabs(x(2)—x(1))"~2/(2*nu);

% Initial condition
[InitCond ,U,7,zW]| = InitBurg2D (zN,alpha ,beta ,nu,x,dStart ,
dEnd) ;

% Deterministic solution
[Usol ,t,time] = BurgDetSolv (U, dt,param, ErrorBar , MaxIter) ;

xL=param .xL;

xRep = repmat(x,1,ZN);

UsRep = reshape(Usol ,xL,ZN);
figure

plot (xRep, UsRep)

% Computing statistics.
UTemp=zeros (xL,ZN) ;
for zi = 0:ZN-1
UTemp (:,zi+1) = Usol(zi*xL+1:xLx(zi+1))+2W(zi+1);
end
Umean — sum (UTemp,2) ;

UvTemp=zeros (xL,ZN) ;
for zi = 0:ZN-1
UvTemp (:,zi+1) = (Usol(zi*xL+1:xLx(zi+1))—Umean)."2x
W (zi+1);
end

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

B.5 Burgers’ Equation 3D

193

Uvar = sum (UvTemp,2) ;

yL = Umean—sqrt (Uvar) ;
yU = Umeantsqrt (Uvar) ;
X =[x fliplr(x’)];

Y = [yU’ fliplr (yL7) |;

% Plotting results

figure

hold on

plot (x,Umean, 'r—", ' linew 1(1th’,)
plot (x, sqrt(Uvar), 'b—.7, linewidth”’
Fi11 (X,Y, g ")

plot(x Umean ‘=’ ’linm\idth’,)
plot (x, sqrt(Uvar) 'b—.7, linewidth’

hold off

xlabel ('x’, fontsize’,12)
ylabel ("u’, fontsize’ ;12)
legend ('mean’,’std’, ’bound’)

figure

hold on

%till (X,Y,’g”)

plot (x,Umean, 'r—’, 'linewidth *,2)

plot (x,sqrt (Uvar), b—.",'linewidth’

(
plot (x,Ulow, 'k—", ’linewidth ' ,2)
plot (x,Uup, 'k—", linewidth ' ,2)
hold off

xlabel ('x’, fontsize’ ,12)
ylabel ('u’, fontsize *,12)
legend ('mean’,’std ', ’bound’)

B.5 Burgers’ Equation 3D

,2)

))

72)

The following function generates the initial condition used by SCM for Burgers’

Equation.

function [InitCond ,U,Z,ZW] = InitBurg3D (zN,alpha,beta ,nu,

x,dStart ,dEnd)

194 Matlab

ck=0; xL = length(x);

Uexact = @Q(x,t,nu) —tanh ((x—t)/(2*nu))+ck;

N o s W N

% Computing the quadrature weights and nodes for the
random BC’s

s |z1,21W] = legendrequad (zN);

o [22,722W] = legendrequad (zN);

10

11 % Scaling the weights

12 zIW = z1W /2;

13 22W = 22W /2;

14

15 % Scaling the disturbances.

16 21 = ((z1+41)/2)*(dEnd(1)—dStart (1))+dStart (1) ;

1w 22 = ((22+41)/2)*(dEnd(2)—dStart (2))+dStart (2) ;

18

1v % Computing the nodes and weights for the nu paremeter

20 if stremp(nu.t, uniform’)

21 [23,23W] = JacobiGQ(alpha ,beta ,zN—1);
22

23 % Scaling the weights and nu

24 z3W = Z3W/2;

25 7z3 = ((z3+1)/2) *(nu.par(2)—nu.par (1))+nu.par(1);
26

27 elseif strcmp(nu.t, 'normal)

28 [23,23W] = HermiteQuadN (zN) ;

29

30 % Scaling nu

31 z3 = nu.par(1l)4nu.par(2)=*z3;

32 end

ss %z3 — 0.05; z3W — 1;
sa [Z21,722,73] = ndgrid(zl,22,23);
w |ZIW,Z2W,Z3W| = ndgrid (zIW,z2W,23W) ;

36

sr Z1 = Z1(:); Z2 = Z2(:); Z3 = 7Z3(:);
38 L = [Z]. 72 Z3],

39

a0 ZIW = ZIW(:); Z2W = Z2W (:) ; Z3W = Z3W (:) ;
a IW = ZIW.+72W.+73W;

42

s % Initialization and pre—allocation.

e deltal = Z1; delta2 = Z2; ZN = length(Z1);

45

46

48

49

50

51

52

53

54

B.5 Burgers’ Equation 3D 195

nuEst = sum(z3)/zN;
InitCond = Uexact(x,0,nuEst);
U = zeros (xL+ZN,1) ;

for i = 1:ZN
InitTemp = InitCond;
InitTemp (InitTemp >0) = InitTemp (InitTemp >0)*(1+deltal
(1))
InitTemp (InitTemp<0) = InitTemp (InitTemp <0)x(1+ delta?2
(1))
U(xL*(i—1)+1:xL*(i)) = InitTemp;
end

This function generates the Gauss-Lobatto nodes in the z-vector and the pa-
rameters for the right-hand-side (rhs) function.

function [x,param,paramKron]| = xParBurg3D (alpha , beta ,xN,
zN)
nu = 0.05; alpha = 0; beta = 0; N = 50;

[x] = JacobiGL(alpha ,beta ,xN);
D = JacobiDn(x,alpha,beta);

D2 = D«D;

xL = length (x);

param.D = D; param.D2 = D2; param.zN = zN; param.xL = xL;

kronD = kron(speye(zN) ,D);
kronD2 = kron(speye(zN) ,D2);

paramKron.D = kronD; paramKron.D2 = kronD2;
paramKron.nu = nu; paramKron.zN = zN; paramKron.xL = xL;

The rhs function is implemented as

function [un]| = rhsColBurg3Ds(t,U,param)

% Input parameters are renamed
nu = param.nu;

D = param.D;

D2 = param.D2;

xL = param.xL;

zN = param.zN;

NUD2 = param .NUD2;

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

© W N e U oA W N

e e e =
o A W M = O

-
ey

196 Matlab

% Pre—allocation
Yun = zeros (size (U));

% Rhs is evaluated for each random variable

%for k =0:zN—1

% un(xLsxk+1:xLx(k+1),1) = nu(k+1)«D2+U(xLxk+1:xLx(k+1)
,1)—U(xLsk+1:xLx(k-+1) ,1) . (D«U(xLxk+1:xLx(k+1),1));

% un(xLxk+1,1) = 0;

% un(xLx(k-+1),1) = 0;

%end

%unsl — D2xU;

Nu=repmat (param.nu’ ,xL,1); Nu=Nu(:) ;

uns2 = U.x(D«U);
uns3 = NUD2xU;
un = uns3—uns2;

for i = 0:zN-1
un (i*xL+1)

un ((i+1)*xL) =

0;
end

The deterministic solution to Burgers’ equation is computed in the following
implementation

function [U,t,time] = BurgDetSolv3D (U, dt,param, ErrorBar ,

MaxIter)

t = zeros(MaxIter,1);

iter = 0;

diff = 1;

tic

while diff > ErrorBar && iter <= MaxIter
UTemp = U;
U = ERK(t (iter+1),U,@QrhsColBurg3Ds,dt ,param) ;
t(iter+2) = t(iter+1)+dt;
diff = max(abs(UTemp-U)) ;
iter = iter+1;

end

time = toc;

24

25

26

27

28

29

30

31

32

33

34

35

B.5 Burgers’ Equation 3D 197

The script for testing the Stochastic Burgers’ equation is

ISTISTISTISTISTISTISTISTISTISTISISSSTSSSTISSTSS SIS TSI TS TSSTISTIS TS TS

%%7% Burgers Equation: Collocation method with random BC’s
and random nu %%%
%

% Constants:

nu.t = ‘uniform’; nu.par = [0.05 0.051];
alpha = 0; beta = 0;

xN = 40;

zN = 3; ZN = zN"3;

ErrorBar = 0.1e-5;

MaxIter = 5000000;

dStart = [0,0];
dEnd = [0.1,0.1];

dt = 0.00002;

% The parameters for rhs and the Gauss—Lobatto nodes.
[x,param,paramKron| = xParBurg(alpha , beta ,xN,ZN,nu);

% Initial Condition
[InitCond ,U,z,zZW] = InitBurg3D (zN,alpha,beta ,nu,x,dStart ,
dEnd) ;

param.nu = z(:,3); paramKron.nu = z(:,3);

NUdiag = spdiags(param.nu,0,length (param.nu) ,length (param
-nu));
NU = kron(NUdiag, ones (size (param.D)));

NUD2 = NU.xparamKron.D2;
paramKron .NUD2 = NUD2;
param.zN = length(z(:,3));
ZN = length(z(:,3));

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

198 Matlab

[Usol ,t,time] = BurgDetSolv3D (U, dt,paramKron, ErrorBar ,
MaxlIter) ;

xL=param .xL;

% Computing statistics.
UTemp=zeros (xL,ZN) ;
for zi = 0:ZN-1
UTemp (:,zi+1) = Usol (zi*xL+1:xLx(zi+1))+2W(zi+1);
end
Umean = sum (UTemp,2) ;

UvTemp=zeros (xL,ZN) ;
for zi = 0:ZN-1
UvTemp (:,zi+1) = (Usol(zi*xL+1:xLx(zi+1))—Umean)."2x
ZW(zi+1);
end

Uvar = sum (UvTemp,2) ;

yL = Umean—sqrt (Uvar) ;
yU Umeantsqrt (Uvar) ;
X =[x’ fliplr(x’)];

= [yU” fliplr (yL') |;

<

% Plotting the solutions
xRep = repmat(x,1,ZN);

UsRep = reshape(Usol ,xL,ZN);
figure

plot (xRep, UsRep)

xlabel ('x7)

ylabel ('u’)

figure

hold on

plot (x,Umean, 'r—’, linewidth ’ 2)

plot (x sqrt (Uvar) , b—.7 ’linewidth ’,2)

(
(
£i11 (X,Y, g ")
(
(

plot (x Umean ‘r—’, ’linewidth ’ ,2)
plot (x,sqrt (Uvar) , b—.7 ’linewidth ’ ,2)
hold off

xlabel ('x’, fontsize ’,12)
ylabel ("u’, fontsize ’,12)

78

79

80

81

82

83

84

85

86

87

88

89

B.6 Numerical tests with sparse grids 199

legend ('mean’,’std ', ’bound”)

figure

hold on

plot (x,Umean, 'r—’, linewidth ’,2)

plot (x,sqrt (Uvar), ' b—.", linewidth ’,2)

(
(
plot (x,Ulow, 'k—", linewidth ’ ,2)
plot (x,Uup, 'k—", linewidth ' ,2)
hold off

xlabel ('x’, fontsize ’,12)
ylabel ('u’, fontsize ’,12)
legend ('mean’,’std ', ’bound”)

B.6 Numerical tests with sparse grids

B.6.1 Numerical tests for the multivariate Test equation

The script for testing the sparse grid is implemented as

%

% 9% Test—equation: Multidimensional Collocation Method
SCL Y%/7676%
%
TTTTTTTTTTS TSI TSI SSSSSSSSSSSSSS IS TS

% Constants:
dt = 0.05:

tBeg = 0; tEnd = 1;
tspan = tBeg:dt:tEnd;

d=2;
level = 2;

AlpDist = ’uniform ’;
BetDist = ’uniform ’;

% Parameters for computing the random variables alpha

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

200 Matlab

a=—1; b = 1;
AlpPar = [a,b];

% Parameters for computing the random variable beta
a=0; b = 2;
BetPar = [a,b];

% Computing the number of grid points
Pn = sparse grid gl size (d, level);

% Computing sparse grid

[gw, gp] = sparse grid gl (d, level, Pn);
gp = gp’;

z1 = gp(:,1); 22 = gp(:,2);

% Scaling the disturbances.
Alp = ((2z1+41)/2)*x(AlpPar(2)—AlpPar (1))+AlpPar(1);
Bet = ((2z2+1)/2)*(BetPar(2)—BetPar(1))+BetPar(1);

% Scaling the weights.
IW = gw/(2°d);

AN = length (gw);

% Solving deterministic system.
U = zeros (AN, length (tspan)); % Pre—allocation.
U(:,1) = Bet; % Initial Condition

for ti = 1:length (tspan)—1
U(:,ti+1) = ERK(tspan(ti) ,U(:,ti),@rhsSCMtest,dt,Alp)
end

% Computing the statistics.
[Umean, Uvar] = TestEqStat (U,ZW,AN, tspan);

% Computing the exact mean and variance as well as the
errors.

[MuExact, SigmaExact, MuErr, SigErr] = TestEqExact(
AlpDist , AlpPar,BetDist , BetPar ,tspan ,Umean, Uvar) ;

figure
plot (tspan ,Umean, 'b—")

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

97

B.6 Numerical tests with sparse grids 201

figure
plot (tspan ,Uvar, 'r—")

figure

plot (tspan ,Umean, 'b—’ tspan ,MuExact, 'r— ")
figure

plot (tspan ,Uvar, 'b—’ tspan , SigmaExact , 'r— ")
VA

%
TISTSTTSISISTTTISISISIISIS TSI IS IS IS TTSIS TSI SSISSSTSSISISTTTIS TS o

% 9% Test—equation: Multidimensional Collocation Method
CC %755 S
%
SIS TSI TSI SSSSSSSSSSSSSITSTTSo

% Constants:
dt = 0.05:

tBeg = 0; tEnd = 1;
tspan = tBeg:dt:tEnd;

d=2;

level = 5;

AlpDist = ’uniform ’;
BetDist = ’uniform ’;

% Parameters for computing the random variables alpha
a=—1; b = 1;
AlpPar = [a,b];

% Parameters for computing the random variable beta
a=0; b = 2;
BetPar = [a,b];

% Computing the number of grid points
Pn= sparse grid cc_size old(d, level);

% Computing sparse grid
[gw, gp] = sparse grid cc(d,level ,Pn);

98

929

100

101

102

104

105

106

107

108

109

110

111

112

125

126

127

129

130

131

132

134

135

136

137

202 Matlab

)

gw = gw’; gp = gp’;
z1 = gp(:,1); 22 = gp(:,2);

% Scaling the disturbances.
Alp = ((z1+41)/2) x(AlpPar(2)—AlpPar (1))+AlpPar(1);
Bet = ((z2+1)/2)«(BetPar(2)—BetPar (1))+BetPar(1);

Z = [Alp Bet];

% Scaling the weights.
IW = gw/2°d;

AN = length (gw) ;

% Solving deterministic system.
U = zeros (AN, length (tspan)); % Pre—allocation.
U(:,1) = Bet; % Initial Condition

for ti = 1:length (tspan)—1
U(:,ti+1) = ERK(tspan(ti) ,U(:,ti),@rhsSCMtest ,dt,Alp)

?

end

% Computing the statistics.
[Umean, Uvar] = TestEqStat (U,ZW,AN, tspan);

% Computing the exact mean and variance as well as the
errors .

[MuExact, SigmaExact, MuErr, SigErr] = TestEqExact (
AlpDist ,AlpPar , BetDist , BetPar , tspan ,Umean, Uvar) ;

figure

plot (tspan ,Umean, 'b—")
figure

plot (tspan ,Uvar, 'r—")

figure

plot (tspan ,Umean, 'b—’ tspan ,MuExact, 'r— ")
figure

plot (tspan ,Uvar, 'b—’ tspan ,SigmaExact , 'r— ")

140

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

B.6 Numerical tests with sparse grids 203

%
TTISTISTISTISTISTISTISTISTISTISIIS SIS SIS SIS TSI SIS TISTSSTISTISTIS TS

WY % Test—equation: Multidimensional Collocation Method
— error plot %%
%
YSITTTTTTTTTTTTTTTTTTSIITI TSI SIS SIS SIS SIS SIS SIS SIS SIS SIS SIS ST

% Constants:
dt = 0.005;

tBeg = 0; tEnd = 1;
tspan = tBeg:dt:tEnd;

d=2;

AlpDist = ’uniform ’;
BetDist = ’uniform ’;

% Parameters for computing the random variables alpha
a=—1; b = 1;
AlpPar = [a,b];

% Parameters for computing the random variable beta
a=0; b = 2;
BetPar = [a,b];

% Initialization and pre—allocation .
aN = 1:12; aN = [aN 20 50 80];

ANV = zeros(size (aN));

UM = zeros(length(tspan),length (aN));
UV = UM; MuE = UM; SigE = UM;
Time=zeros (length (aN) ,1);

% Looping to compute the errors for different full tensor
grids .

for i = 1l:length(aN)
alphaN = aN(i); betaN = aN(i);

% Computing the random variables alpha and beta
[alpha ,alphaW]= RandVar(AlpPar (1) ,AlpPar(2) ,alphaN,
AlpDist);

177

178

179

181

182

183

184

185

186

187

188

189

190

192

193

194

195

197

198

199

201

202

203

204

206

207

208

209

210

211

212

204

Matlab

end

[beta ,betaW]|= RandVar(BetPar(1) ,BetPar(2) ,betaN,
BetDist) ;

% Computing the grid of random variables
[Alpha,Beta] = meshgrid(alpha,beta);
[AlphaW ,BetaW] = meshgrid (alphaW ,betaW) ;

% Vectorizing the matrices with the meshgrids of
variables and weights.

AlpW = AlphaW (:) ; BetW = BetaW (:) ;

Alp = Alpha(:); Bet = Beta(:);

AN = length (Alp);

ANV(i) = AN;

% Computing the product of the weights which will be
used for computing the

% statistics of the solution.

ABW = AlpW.xBetW;

% Solving deterministic system.
U = zeros (AN, length (tspan)); % Pre—allocation.
U(:,1) = Bet; % Initial Condition
tic
for ti = 1:length (tspan)—1
U(:,ti+1) = ERK(tspan(ti),U(:,ti),QrhsSCMtest,dt,

Alp);
end
time = toc;
Time(i,1) = time;

% Computing the statistics.

[Umean, Uvar| = TestEqStat (U,ABW,AN, tspan) ;
UM(:,1) = Umean’;

UV(:,i) = Uvar’;

% Computing the exact mean and variance as well as
the errors.

[MuExact, SigmaExact, MuErr, SigErr] = TestEqExact(
AlpDist , AlpPar ,BetDist , BetPar,tspan ,Umean, Uvar) ;

MuE(:,i) = MuErr’;

SigE (:,1) = SigErr’;

B.6 Numerical tests with sparse grids

205

Level = 0:6;

% Pre—allocation for CC grid

UMCC = zeros(length (tspan),length (Level));
UVCC = UMCC;

MuECC = UMCC;

SigECC = UMCC;

CCN = zeros(length (Level) ,1);

TimeCC = zeros (length (Level) ,1);

% Pre—allocation for SGL grid
UMSGL — UMCC;

UVSGL = UMCC;

MuESGL = UMCC;

SigESGL = UMCC;

SGLN = zeros (length(Level) ,1);
TimeSGL= zeros (length (Level) ,1);

for i = 1l:length(Level)
level = Level(i);

WIASII% CC grid TIIIIIIS,

% Computing the number of grid points
Pn= sparse grid cc_size old(d, level);

% Computing sparse CC grid
[gw, gp| = sparse grid cc(d,level ,Pn);

gw = gw’; gp = gp’;
z1 = gp(:,1); 22 = gp(:,2);

% Scaling the disturbances.
Alp = ((#z1+1)/2)«(AlpPar(2)—AlpPar (1))+AlpPar (1) ;
Bet = ((z2+1)/2)«(BetPar(2)—BetPar(1))+BetPar(1);

% Scaling the weights.

259

260

261

262

264

265

266

267

268

269

270

271

272

273

274

276

277

278

279

280

281

282

284

285

286

287

289

290

291

292

294

295

296

297

206

Matlab

IW = gw/2°d;
AN = length(gw);
CCN(i) = AN;

% Solving deterministic system.

U = zeros (AN, length (tspan)); % Pre—allocation.
U(:,1) = Bet; % Initial Condition

tic

for ti = 1:length(tspan)—1

U(:,ti+1) = ERK(tspan(ti) ,U(:,ti),@rhsSCMtest,dt,

Alp);
end
time = toc;

TimeCC(i,1) = time;

% Computing the statistics.

[Umean, Uvar| = TestEqStat (U,ZW,AN, tspan) ;
UMCC(:,i) = Umean’;

UVCC(:,i) = Uvar’;

% Computing the exact mean and variance as well as
the errors.

[MuExact, SigmaExact, MuErr, SigErr] = TestEqExact (

AlpDist , AlpPar , BetDist , BetPar,tspan ,Umean, Uvar) ;

MuECC(:,i) = MuErr’;
SigeCC(:,i) = SigErr ’;

% Computing the number of grid points
Pn = sparse grid gl size (d, level);

% Computing sparse grid
[gw, gp| = sparse grid gl (d, level, Pn);

gp = gp
z1 = gp(:,1); 22 = gp(:,2);

% Scaling the disturbances.

)

300

301

302

303

305

306

307

308

309

310

311

312

313

314

315

316

318

319

320

322

323

324

325

327

328

329

330

331

332

333

B.6 Numerical tests with sparse grids 207

end

Alp = ((z1+41)/2)*(AlpPar(2)—AlpPar (1))+AlpPar(1);
Bet = ((z2+1)/2)«(BetPar(2)—BetPar (1))+BetPar(1);

Z = [Alp Bet];

% Scaling the weights.
IW = gw/2"°d;

AN = length (gw) ;
SGLN(i) = AN;

% Solving deterministic system.
U = zeros (AN, length (tspan)); % Pre—allocation.
U(:,1) = Bet; % Initial Condition

tic
for ti = 1l:length(tspan)—1
U(:,ti+1) = ERK(tspan(ti) ,U(:,ti),@rhsSCMtest,dt,
Alp);
end
time = toc;

TimeSGL(i,1) = time;

% Computing the statistics.

[Umean, Uvar] = TestEqStat (U,ZW,AN, tspan);
UMSGL(:,i) = Umean’;

UVSGL(:,i) = Uvar’;

% Computing the exact mean and variance as well as
the errors.

[MuExact, SigmaExact, MuErr, SigErr] = TestEqExact(
AlpDist , AlpPar,BetDist , BetPar,tspan ,Umean, Uvar) ;

MuESGL(:,i) = MuErr’;

SigESGL (:,i) = SigErr’;

The sparse grid functions can be found at [2] and the rest of the functions have
been included previously.

© W N e oA

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

208 Matlab

B.6.2 Numerical tests for the multivariate Burgers’ equa-
tion

The script for testing the sparse grid is implemented as

%

TSITTTSTTTSTTSST TSI TSI TSI TSI TTSTTISTTIST TSI TSI TSI SIS T TSSTTSSTTSISTTS

WSS 7SS Burgers Equation: Collocation method with sparse

grids YIITTTTTTISo

%
YT TI TSI TSI TSI TI TSI TTITSTTITSITITTITI TS IS TSI TTITSITITSTITITTS
% Constants:
nu = 0.05;
alpha = 0; beta = 0;
xN = 30;
ErrorBar = 0.1e—6;

MaxIter = 5000000;

level = 2;

ZN — sparse_grid gl size (d, level);
dStart = [0,0];

dEnd = [0.1,0.1];

dt = 0.002;

% The parameters for rhs and the Gauss—Lobatto nodes.
[x,param ,paramKron| = xParBurg(alpha ,beta ,xN,ZN,nu);

% Initial condition
[InitCond ,U,z,zZW]| = InitBurg2DSparse(level ,nu,x,dStart
dEnd) ;

% The determinstic solutions are computed
[Usol ,t,time] — BurgDetSolv (U,dt,param, ErrorBar , MaxIter) ;

xL=param .xL;

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

B.6 Numerical tests with sparse grids 209

% Computing the mean.
UTemp=zeros (xL,ZN) ;
for zi = 0:ZN-1
UTemp (:,zi+1) = Usol(zisxL+1:xLx(zi+1))+«W(zi+1);
end
Umean = sum(UTemp,?2) ;

% Computing the variance
UvTemp=zeros (xL,ZN) ;
for zi = 0:ZN-1
UvTemp (:,zi+1) = (Usol(zi*xL+1:xL*(zi+1))—Umean)." 2x
W (zi+1);
end

Uvar = sum (UvTemp,2) ;

The script for computing the initial condition is implemented as

function [InitCond ,U,Z,ZW] = InitBurg2DSparse(level ,nu,x,
dStart ,dEnd)

d = 2;
ck=0; xL = length (x);
Uexact = @(x,t,nu) —tanh ((x—t)/(2*nu))+ck;

% Computing the number of grid points
Pn = sparse grid gl size (d, level);

% Computing sparse grid

[gw, gp| = sparse grid gl (d, level, Pn);
gw = gw’; gp = gp’;

z1 = gp(:,1); 22 = gp(:,2);

% Scaling the disturbances.
z1 = ((2z141)/2)*(dEnd(1)—dStart (1))+dStart (1);
72 = ((722+1)/2) *(dEnd(2)—dStart (2))+dStart (2) ;

71 = z1; 72 = z2;
Z = |71 72];

% Scaling the weights

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

210 Matlab

IW = gw/2"°d;

% Initialization and pre—allocation.
deltal = Z1;

delta2 = Z2;

ZN = length (Z1);

InitCond = Uexact(x,0,nu);

U = zeros (xL*ZN,1);

for 1 = 1:ZN
InitTemp = InitCond;
InitTemp (InitTemp >0) = InitTemp (InitTemp >0)*(1+deltal
(1))
InitTemp (InitTemp <0) = InitTemp (InitTemp <0)x(1—delta?2
(1))
U(xL*(i—1)+1:xL*(i)) = InitTemp;
end

The sparse grid functions can be found at [2] and the rest of the functions have
been included previously.

Bibliography

[1] P. Beckmann. Orthogonal polynomials for engineers and physicists. 1973.

[2] J. Burkardt. Sparse grids based on the gauss-legendre rule.
http://people.sc.fsu.edu/”jburkardt/m_src/sparse_grid_gl/
sparse_grid_gl.html.

[3] J. Burkardt. Slides: Sparse grid collocation for uncertainty quantification.
2012.

[4] J. Burkardt and C. Webster. Slow exponential growth for clenshaw curtis
sparse grids. September 2012.

[5] P. G. Constantine, M. S. Eldred, and E. T. Phipps. Sparse pseudospec-
tral approximation method. Computer Methods in Applied Mechanics and
Engineering, 229-232, 2012.

[6] A. Doostan and H. Owhadi. A non-adapted sparse approximation of pdes
with stochastic inputs. Journal of Computational Physics, 230(8):3015—
3034, 2011.

[7] A.P. Engsig-Karup. Slides for dtu course 02689 in spectral methods. 2011.
[8] Y. Filmus. Two proofs of the central limit theorem. February 2010.

[9] J. Foo and G. E. Karniadakis. = Multi-element probabilistic colloca-
tion method in high dimensions. Journal of Computational Physics,
229(5):1536-1557, 2010.

[10] J. A. Gubner. Gaussian quadrature and the eigenvalue problem. September
2009.

http://people.sc.fsu.edu/~jburkardt/m_src/sparse_grid_gl/sparse_grid_gl.html
http://people.sc.fsu.edu/~jburkardt/m_src/sparse_grid_gl/sparse_grid_gl.html

212 BIBLIOGRAPHY

[11] F. Heiss and V. Winschel. Quadrature on sparse grids: Code to generate
and readily evaluated nodes and weights. http://www.sparse-grids.de/,
2007.

[12] J. Jakeman. Polynomial chaos, uncertainty quantification. 2008.

[13] A. Klimke. Sparse Grid Interpolation Toolbox — user’s guide. Technical
Report TANS report 2007/017, University of Stuttgart, 2007.

[14] A. Klimke and B. Wohlmuth. Algorithm 847: spinterp: Piecewise multilin-
ear hierarchical sparse grid interpolation in MATLAB. ACM Transactions
on Mathematical Software, 31(4), 2005.

[15] D. A. Kopriva. Implementing Spectral Methods for Partial Differential
Equations, Algorithms for scientists and Engineers. Springer, 2009.

[16] O.Le Maitre and O. Knio. Spectral Methods for Uncertainty Quantification.
Springer, 2010.

[17] E. Morey. Joint density functions, marginal density functions, conditional
density functions, expectations and independence. 2002.

[18] M. R. Spiegel and J. Liu. Mathematical Handbook of formulas and tables.
Schaum’s, 1999.

[19] D. Xiu. Numerical methods for stochastic computations: a spectral method
approach. Princeton University Press, 2010.

[20] D. Xiu and J. S. Hesthaven. High-order collocation methods for differential
equations with random inputs. SIAM Journal on Scientific Computing
(SISC), 27(3):1118-1139, 2005.

[21] L. Yan, L. Guo, and D. Xiu. Stochastic collocation algorithms using
{1—minimization. International Journal for Uncertainty Quantification,
2(3):279-293, 2012.

[22] X. Yang, M. Choi, G. Lin, and G. E. Karniadakis. Adaptive anova de-
composition of stochastic incompressible and compressible flows. Journal
of Computational Physics, 231(4):1587-1614, 2012.

[23] Z. Zhang, M. Choi, and G. E. Karniadakis. Error estimates for the anova
method with polynomial chaos interpolation: Tensor product functions.
SIAM Journal on Scientific Computing (SISC), 34(2):A1165—A1186, 2012.

http://www.sparse-grids.de/

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Uncertainty Quantification
	1.2 Motivation and goals for the thesis
	1.3 Basic literature
	1.4 Outline of thesis

	2 Mathematical background
	2.1 Hilbert space and inner products
	2.2 Orthogonal Polynomials
	2.2.1 Three-term Recurrence relation
	2.2.2 Example: Hermite Polynomials
	2.2.3 Example: Jacobi polynomials
	2.2.4 Example: Legendre Polynomials

	2.3 Gauss Quadrature
	2.3.1 Computing nodes and weights for Gauss Quadrature
	2.3.2 Example: Gauss Hermite Quadrature
	2.3.3 Gauss-Lobatto Quadrature

	2.4 Polynomial Interpolation
	2.4.1 Relationship between nodal and modal representations

	2.5 Spectral methods
	2.6 Numerical solvers
	2.6.1 Solver for differential equations in space
	2.6.2 Solvers for time dependent problems

	3 Basic concepts within Probability Theory
	3.1 Distributions and statistics
	3.1.1 Example: Gaussian distribution
	3.1.2 Example: Uniform distribution
	3.1.3 Multiple dimensions
	3.1.4 Statistics
	3.1.5 Inner product and statistics

	3.2 Input parameterizations

	4 Generalized Polynomial Chaos
	4.1 Generalized Polynomial Chaos in one dimension
	4.2 Multivariate Generalized Polynomial Chaos
	4.3 Statistics for gPC expansions

	5 Stochastic Spectral Methods
	5.1 Non-intrusive methods
	5.1.1 Monte Carlo Sampling
	5.1.2 Stochastic Collocation Method

	5.2 Intrusive methods
	5.2.1 Stochastic Galerkin method

	6 Test problems
	6.1 Test Equation
	6.1.1 Normal distributed parameters
	6.1.2 Uniform distributed parameters
	6.1.3 Multivariate Test Equation

	6.2 Burgers' Equation

	7 Test of UQ methods on the Test Equation
	7.1 Monte Carlo Sampling
	7.1.1 Gaussian distributed -parameter
	7.1.2 Uniformly distributed -parameter

	7.2 Stochastic Collocation Method
	7.2.1 Implementation
	7.2.2 Gaussian distributed -parameter
	7.2.3 Uniformly distributed -parameter

	7.3 Stochastic Galerkin Method
	7.3.1 Implementation
	7.3.2 Gaussian distributed -parameter
	7.3.3 Uniformly distributed -parameter

	7.4 Conclusion

	8 Burgers' Equation
	8.1 Stochastic gPC Galerkin method
	8.1.1 Numerical approximations
	8.1.2 Implementation
	8.1.3 Numerical experiments

	8.2 Stochastic Collocation Method
	8.2.1 Implementations
	8.2.2 Numerical experiments

	9 Discussion: Choice of method
	10 Literature Study
	10.1 Brief Introduction to topics and articles
	10.2 Sparse Pseudospectral Approximation Method
	10.2.1 Introduction of notation and concepts
	10.2.2 Overall approach
	10.2.3 Further reading

	10.3 Compressive sampling: Non-adapted sparse approximation of PDES
	10.3.1 Overall approach
	10.3.2 Recoverability
	10.3.3 Further reading

	11 Multivariate Collocation Method
	11.1 Tensor Product Collocation
	11.2 Multivariate expansions and statistics
	11.3 Smolyak Sparse Grid Collocation
	11.3.1 Clenshaw-Curtis: Nested sparse grid

	12 Numerical tests for multivariate stochastic PDEs
	12.1 Test Equation with two random variables
	12.1.1 Implementation
	12.1.2 Gaussian distributed -parameter and initial condition
	12.1.3 Gaussian distributed and uniformly distributed initial condition .

	12.2 Multivariate Burgers' Equation
	12.2.1 Burgers' Equation with stochastic boundary conditions
	12.2.2 3-variate Burgers' equation

	13 Tests with Smolyak sparse grids
	13.1 Introduction of the sparse grids
	13.1.1 Sparse Gauss Legendre grid

	13.2 Sparse Clenshaw-Curtis grid
	13.3 Smolyak sparse grid applied
	13.3.1 The 2-variate Test Equation
	13.3.2 The 2-variate Burgers' Equation

	13.4 Conclusion

	14 Discussion
	14.1 Future work

	15 Conclusion
	A Supplement to the mathematical background
	A.1 Orthogonal Polynomials
	A.1.1 Alternative definition of the Hermite polynomials

	A.2 Probability theory
	A.3 Random fields and useful spaces
	A.4 Convergence and Central Limit Theorem
	A.5 Introduction of strong and weak gPC approximation
	A.5.1 Strong gPC approximation
	A.5.2 Weak gPC approximation

	B Matlab
	B.1 Toolbox
	B.1.1 Polynomials and quadratures
	B.1.2 Vandermonde-like matrices.
	B.1.3 ERK

	B.2 Test Equation
	B.2.1 Monte Carlo
	B.2.2 Stochastic Collocation Method
	B.2.3 Stochastic Galerkin method

	B.3 Burgers' Equation
	B.3.1 Stochastic Collocation Method
	B.3.2 Stochastic Galerkin method

	B.4 Burgers' Equation 2D
	B.5 Burgers' Equation 3D
	B.6 Numerical tests with sparse grids
	B.6.1 Numerical tests for the multivariate Test equation
	B.6.2 Numerical tests for the multivariate Burgers' equation

	Bibliography

