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Summary (English)

The present thesis deals with implementing, analyzing and comparing random-
ized search heuristics for the traveling salesperson problem. Together with it,
a software application was built, that implements �ve choices of randomized
search heuristics (Genetic Algorithm, (1+1) Evolutionary Algorithm, Random-
ized Local Search, Simulated Annealing and Min-Max Ant System) and the
various implementation choices are discussed throughout the report.

The main goal of this Master Project is implementing and analyzing a system
that allows the �ve algorithms to run in a dynamic environment. Four types
of dynamic changes are implemented: interchanging the positions of two cities
on the input map, having congested roads that get unusable from time to time,
deleting and adding of cities. All these changes occur without restarting the
algorithms, and the application's results on various tests are discussed in the
latter stages of the report.
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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis deals with building a tool for visualizing and testing of randomized
search heurstics on the dynamic traveling salesperson problem. Moreover, it
deals with analyzing and comparing these heuristics on di�erent traveling sales-
person sample problems.

The thesis consists of a report and a software application.

Lyngby, 26-August-2013

Daniel-Cristian Loghin
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Chapter 1

Introduction

A classical problem by now, the �traveling salesperson� (or �traveling salesman�)
problem has raised the interest of many mathematicians and computer scientists
throughout time. Given a number of cities, and knowing the distances between
every two cities, the task is to �nd the shortest route that visits every city exactly
once, and returns to the city of origin. Variations of this problem are known to
date as back as the 1800s, but it was �rst properly formulated in its general form
in the 1930s by mathematicians such as Karl Menger [1]. Traveling salesperson
has become widely known in the 1960s, when the American company Procter &
Gamble[2] launched a contest worth $10.000 for the person who would �nd the
shortest possible route through 33 USA cities, starting and ending in Chicago,
Illinois. A few people, applying various methods and algorithms, were tied for
the �rst place, but no e�cient algorithm for solving the generalized problem
was devised.

Later on, in 1972, the NP-Completeness of the traveling salesperson problem
was shown. A brute-force approach, meant to try every possible arrangement
of cities in a route, has a complexity of O(n!). Other algorithms were devised,
such as dynamic programming, but none yielding a decent result in terms of
computation time.

Another way of solving the traveling salesperson problem (TSP) is using ran-
domized search heuristics, designing algorithms that approximate the optimal
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solution, but o�er no guarantee of �nding the shortest path. The advantages of
this method are speed, having acceptable running times in some implementa-
tions, and the high likeliness for reaching an optimal solution for small instances
of the TSP. The biggest trade-o�s are completeness and optimality, these algo-
rithms o�ering no certainty that the best solution was found, or that all possible
solutions were found along the way. Throughout this thesis a few nature-inspired
algorithms from this class have been selected to be implemented and compared,
as well as tested to see how well they adapt when dynamic changes occur to
the original map: Evolutionary Algorithms (Genetic Algorithm and (1+1)EA),
Simulated Annealing and Ant Colony Optimization. Randomized local search
was also selected due to its similarities to the other algorithms stated.

1.1 Algorithms studied

Evolutionary algorithms use techniques inspired from biological evolution, such
as reproduction, recombination, selection and mutation, techniques that in na-
ture provide an evolution of a species, gradually improving its chances of sur-
vival. When similar behavior is applied to a computer problem, a graduate
progression towards an optimal solution is shown. Solving TSP with a simple
EA, means instantiating a population with random tours around the map, and,
at each step, generating a new population by selecting the best �t individuals,
reproducing, recombining and mutating them according to the selected heuris-
tics, in order to obtain better tours. Two variations of these are studied in this
thesis: (1+1) EA and a standard Genetic Algorithm.

(1+1) EA is perhaps one of the simplest, and most widely used variations of
evolutionary algorithms, as it uses a population size of one � one individual that
generates one o�spring through mutation only. At each step a selection is made
between the parent and the o�spring, the individual with the best �tness being
chosen to propagate the population. Special techniques are deployed either to
the selection or to the mutation mechanism, in order to help the system escape
from local maximum states.

Genetic algorithm (GA), on the other hand, is more complex, using a large pop-
ulation, usually dependent on the size of the problem, and special selection and
reproduction operators. Usually not all the individuals get to generate o�spring;
the partners that mate are usually selected through specialized mechanisms,
such as Tournament Selection or Roulette Wheel Selection. The o�spring's so-
lution to the problem is generated from recombining the solutions of its parents,
and is also subject to eventual mutations.
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Simulated annealing is one of the algorithms that are known to give good results
when applied to the traveling salesperson problem. It was inspired from anneal-
ing metal � heating a material above its critical temperature, and then letting
it cool, in order to alter and improve its physical properties. The algorithm
replicates this method by keeping a temperature variable. Initially the temper-
ature is set as high, and it is gradually decreased according to a selected cooling
schedule. At higher temperatures we allow the program to accept solutions that
are worse than the previous one, with a higher frequency, thus o�ering a good
likelihood that the algorithm escapes from local optimums. Once the tempera-
ture drops, the frequency of accepting bad solutions also decreases, forcing the
solution to be searched around the current optimum and changes to occur at a
lower frequency and scale. During the �rst stages of the algorithm the general
area around the best solution is searched for, and afterwards, once one such
area is selected, the best solution is approximated with small shifts inside the
selected area.

Ant Colony Optimization is another probabilistic algorithm, searching for the
optimal solution of a problem by simulating the way ants �nd their path from
their colony and the source of food. In nature ants rely on pheromones to �nd
their way around obstacles, and to remember the location of their colony. Each
ant moves at random, and while walking it releases an amount of pheromone
to remember its path, and also help other ants follow on the same path. More
pheromones on a trail, the higher the probability that trail will be followed by
any speci�c ant. The algorithm uses a similar process: a number of ants are
�let free� too choose their path at random, releasing pheromones on their way.
At each node reached the ant decides on the next segment of the path based on
the amount of pheromone on each segment. After each run of the algorithm,
pheromones dissipate in a percentage, and the process is repeated until the
method converges to one solution, as some fragments of the path get chosen
more often. Selection mechanism can be added, updating the ant's solution
with the new path, only if this path o�ers better �tness than the old one. For
the purpose of this thesis a variation of ACO was chosen, namely Min-Max Ant
System (MMAS), its major di�erence being having maximum and minimum
values for the pheromones around the map, enabling better results by giving
other paths more chances to get chosen by the ant. This can help avoiding
states where the system is stuck in a local optimum.

A �nal algorithm that is studied in this thesis is Randomized Local Search,
with many similarities to the classical hill-climbing approach. It takes a random
solution, and tries to improve it by applying small changes to it, and testing
to see if it has reached a better �tness. If that is the case, the best-so-far
solution is updated, and the process continues with it. This algorithm has
a high a�nity for local optimums, but has the advantages of simplicity and
speed, giving acceptable results in most of the cases.
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1.2 Motivation

The classical traveling salesperson problem has been intensively studied through
time, and various solutions and optimizations have been designed. The algo-
rithms discussed above have been proven to give good results when applied
to this problem, for static instances of it, but the aspect that hasn't been re-
searched very thoroughly is the way they adapt to a dynamic environment, where
changes of the problem occur whilst they process the data. Various commercial
and non-commercial applications can bene�t from a study regarding the way
these algorithms adapt to changes of the environment, and which adapt better
and faster. For example, a routing mechanism would need to adapt its behavior
if a server disappears from the network, or it would need a way to detect and
compensate a high tra�c on a line that could lead to congestion.

Four dynamic alterations have been chosen to be studies throughout this thesis:
interchanging of the location of two cities, intermittent congestion of a road
between two cities, and deleting, respectively inserting a city whilst the algo-
rithm is still running. The selection criteria were based on the interestingness
of the problem, as well as the level of study that was previously done and its
applicability in real-life situations.

Another interesting aspect of this would be studying the way the moment in
the algorithm's lifetime when the changes occur, in�uences the �nal outcome of
the algorithm. Some algorithms might bene�t from a random congested road
in the beginning of their run, on some input instances, forcing them to �nd
detours around that road, which can prove to be a better solution than the one
previously found. Deleting or adding a city to the problem might be advisable
to occur after a very close to optimum solution was found, requiring only small
changes to return to a high �tness state.

1.3 Structure

The following chapter deals with theory notions providing deeper understanding
of some of the main concepts used throughout this thesis, such as the 2-OPT
operator used as a mutation operator in the implementation of the algorithms,
or the Poisson Distribution, used to determine the scale of mutations that occur
at one stage of the EA.

The theory chapter will provide the background information necessary for the
following chapter, where each algorithm used is described and analyzed. Through-
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out its �ve sections, the general form of the algorithms is displayed, alongside
with various theoretical notions that are used in their implementation.

The next chapter deals with the implementation of the project's application, the
libraries and data structures used the implementation of the algorithms and the
choices made to increase their e�ciency to a dynamic environment, as well as the
motivation behind these choices. This chapter also explains the implementation
of the dynamic changes on the original input map.

The penultimate chapter portrays and analyzes the results of testing the algo-
rithms on several types of input, both with and without dynamic changes of the
environment. Their adaptability to problem changes is compared, thus provid-
ing a ranking of how �t these algorithms are to every speci�c alteration of the
environment.

The �nal chapter will provide conclusions of the study and suggestions for fur-
ther research.
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Chapter 2

Theory notions

2.1 TSP and NP-Completeness

The classical description of the traveling salesperson problem refers to a sales-
man who has a set of cities and is required to visit every one of these cities at
least once, starting from one set city, and returning to it. The requirement is
for the salesman to cover the shortest distance possible.

Mathematically, this can be described as having a complete weighted graph
G(V,E), and �nding the Hamilton cycle with the minimum weight. A Hamilton
cycle is a graph cycle passing through all the vertices once.

As previously said, TSP is a NP-Complete problem, meaning that solving it is
done in a nondeterministic polynomial time. In other words, no algorithm is
known that provides a solution in a fast, constant time, and that the compu-
tation time increases exponentially with small increases of the input size. This
high complexity is the main factor why approximation algorithms are devised
for these kind of problems, such as those described in this thesis. Proving that
TSP is NP-Complete is a two-step phase: proving that the problem belongs to
the NP class, and then proving that it is NP-hard.

Since NP refers to decision problems, we can reduce the classical TSP to a
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Figure 2.1: Better image to follow

decision problem: given a graph G, a maximum weight µ, and a Hamilton path
through this graph, decide if the path is a Hamilton cycle with a total weight
lower than µ. To prove that the TSP belongs to NP, it is su�cient to prove
that this decision version can be solved in a polynomial time. This can easily
be done by done by summing the weights of all the edges along the path, and
then test if the total weight is lower than µ, and that the path goes through all
the vertices, returning to the �rst.

In order to prove NP-hardness, we need to reduce another problem, known to
be NP-hard, to our traveling salesperson problem. A suitable problem for this
is the Directed Hamilton Cycle Problem. Given a directed �nite graph G, this
problem asks whether G has a directed cycle going through all vertices exactly
once. Reducing TSP to the Directed Hamilton Problem has a straight-forward
process: given a graph G(V,E), with a total number of vertices ν, for each pair
of vertices x and y, if there exists an edge between x and y, then the distance
between the two is 1, else the distance is 2. Then we need to prove that G
contains a Hamilton Cycle if and only if there is a route of distance at most ν:

�⇒� Suppose the graph has a Hamilton Cycle (this means that there is a cycle
going through each vertex exactly once), since there are ν vertices, the total
weight of this cycle is exactly ν.

�⇐� Suppose there is a route going through all the cities, and its total weight
is ν, we need to prove that the graph contains a Hamilton Cycle. If the length
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of the route is ν, and it goes through ν cities, it means that every edge has a
weight of 1. By de�nition this concludes that these edges belong to the edge set
of the graph E. If all edges of the route belong to G, and all vertices are visited,
this means that the graph contains at least one Hamilton Cycle, in the form of
the input route.

2.2 2-OPT move

First suggested by Flood in 1956, the 2-OPT move works by removing two edges
from a path previously constructed, and then reconnecting the two halves of a
path obtained. When disconnecting the tour by removing two edges, there is
only one option of reconnecting the nodes that creates a valid path.

Figure 2.2: Fig 1. 2-OPT move example

This kind of move inspired Croes in 1958 [3] to devise an algorithm called 2-
OPT (2-Optimization), algorithm that relies on repeatedly applying the 2-OPT
move, if by doing so the total length of the path is decreased. When no more
2-OPT moves are left, that can improve the solution, the algorithm stops, and
the tour obtained is called 2-optimal.

Similarly, a 3-OPT move exists, disconnecting three edges, and reconnecting
the path, and a 3-OPT algorithm based on it. Recently there have been many
studies focusing on k-OPT moves and algorithms, in order to decide whether in-
creasing the size of the operator (the number of edges disconnected) will increase
the success rate of the algorithms; combining multiple types of OPT moves in
the same algorithm is another focal point for researchers studying the traveling
salesperson problem.

For the purpose of this thesis, only the 2-OPT move is take into consideration.
It is used as a mutation operator for the (1+1) EA and GA algorithms, as well
as the path alteration method for the Randomized Local Search and Simulated
Annealing.
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No. of events µ=1
0 0.368
1 0.368
2 0.184
3 0.061
4 0.015
5 0.003

6 or more 0.001

Table 2.1: Table 1. Poisson Table

2.3 Poisson Distribution

The Poisson Distribution, named after the French mathematician Simeon Denis
Poisson, is a probabilistic distribution describing the number of events that
could occur within a time interval [4]. Having an environment where a number
of identical events happen within a time frame, the events being independent
from each other, and the average frequency of the event is known, the Poisson
distribution models the probability that N events will happen within the next
time frame. The variable N is a natural number [0 : ∞].

Figure 2.3: Fig 2. Poisson formula

Computing the Poisson Distribution is done using the Poisson Formula shown
above. Knowing the average number of occurrences, we can interrogate the
likelihood that N events will happen in the next time frame. The symbol N
represents the number of occurrences we would like to determine the probability
and µ is the average number of event occurrences. Repeating the process for
multiple values of N, we construct the Poisson Distribution for the selected
values. This can be displayed in a Poisson Table:

Such a table is constructed within this project's implementation of the (1+1)
EA, for determining how many 2-OPT mutations will occur to the individual
at each step of the algorithm. The average number of mutations at every step
is considered to be 1, and using this value for µ, a table of values similar to the
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one above is constructed (stored in an array). A random number between 0 and
1 is generated at every step, and the number of mutations applied corresponds
to the �rst probability higher than the generated number. For example, if the
random number is 0.16, the �rst probability higher is 0.184, corresponding to
two occurrences of the event.

In order to ensure that at least one change is applied in every step (since there
is a high probability that the random number will be higher than the Poisson
Probability that one event occurs � 0.368), one extra mutation is added to the
previously computer number.
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Chapter 3

Algorithms

3.1 Randomized Local Search

One of the simpler randomized search heuristic, randomized local search (RLS),
and based on the classical local search algorithms, works by trying to improve
the current solution during each iteration, and hoping that going through better
and better solutions, it will reach the best possible solution. Starting from an
initial random solution, it generates new solutions at each step, one per step,
by applying a small change to the previous one. If the newly found solution
provides a better �tness, being closer to the global optimum, it is kept as the
�best-so-far� solution to the problem, replacing the old. If the �tness of the new
result is equal or worse than the current one, it is ignored. Being mostly used
to generate bit-string solutions, RLS mutation for each step means �ipping a
randomly chosen bit; a more complex mutating operator is used in this thesis,
the 2-OPT operator discussed above.

Using a random initial solution and having a random mutation operator to
improve the solutions found at each step, is what di�erentiates RLS from the
classical local search algorithm. Another aspect that could di�erentiate it is the
stopping criterion. Based on the problem itself, if the �tness of the best solution
is known from the start, and only the path to obtaining it is required, a stopping
point could be reaching the solution with this �tness. When looking for the
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optimum solution only, this algorithm provides no guarantee for ever stopping.
If an approximation of the optimum is required, other stopping criteria could
be allowing the algorithm to only run for a set number of steps, in cases where
speed is a lot more important than accuracy, or stopping the algorithm when
no new improvements to the solution are found after a set time limit.

Algorithm 1 Randomized Local Search

choose solution ∈ {0,1}n randomly
while (stopping point not reached) do

newSolution = solution
choose K ∈ [1,n] randomly
�ip bit K in newSolution
if (�tness(newSolution) > �tness(solution)) then

solution = newSolution
end if

end while
return solution

The main advantage of RLS is speed and the relative small use of computer
resources, at each step only holding two data structures (usually arrays) in
memory, to store the current and the new solution. The main disadvantage of
the algorithm is its high a�nity for remaining stuck in states of local maximum,
or a plateau, due to its search for new solutions in a very small neighborhood of
the current best. In some instances of the input problem, with particular state
space landscapes, one mutation per turn might not be su�cient to escape these
states. Since reaching a local optimum state is mostly dependent of the initial
random solution, some implementations of the algorithms use the technique of
restarting the RLS with a new initial solution, for a number of times, and then
taking the maximum over all the runs. Other algorithms (such as (1+1) EA
and Simulated Annealing, that will be discussed in later chapters) extend the
RLS functionality by allowing some worse �t solutions to be accepted, or doing
more than one mutation at each step.

3.2 (1+1) EA

Being one of the simplest and more robust versions of evolutionary algorithms,
(1+1) EA can also be seen as an expansion of RLS, due to its similar hill-
climbing behavior. Evolutionary Algorithms, in general, represent the solutions
to the given problem in the form of chromosomes of speci�c individuals of a
population. Each such individual holds a possible solution to the input problem
in its �genetic material�, and new individuals with new solutions are generated



3.2 (1+1) EA 15

at each step of the algorithm, as children of the old population. The population
evolves gradually, mimicking natural evolution and providing improved solutions
as the population is regenerated and enriched using genetic-inspired operators,
such as cross-over, mutations and selection.

(1+1) EA implements the same functionality, but for a population size of one:
at each step only one individual with one solution exists, in the form of the
�best-so-far� answer to the problem. A new individual is generated at every
step, as an o�spring of the current optimal individual, through mutation of its
chromosomes. The �tness of the o�spring is then compared to the parent's, and,
similarly to RLS, a selection is made between the two, the individual with the
better result being selected for further improvements.

Stopping criteria of (1+1) EA are similar to those in RLS: either when a solution
is found satisfying a �tness criteria, or the actual �tness of the optimum is
reached, if it is known from beginning, or a set maximum number of generations
have been generated. Another stopping criterion, which is also investigated in
this thesis, is stopping the algorithm when no improvements to the current best
solutions are found in a set number of tries.

Algorithm 2 (1+1) EA � General Scheme

choose solution ∈ {0,1}n randomly
set p(n) ∈ (0, 1

n ].
while (stopping point not reached) do

newSolution = solution
Flip each bit in newSolution independently with probability p(n)
if (�tness(newSolution) > �tness(solution)) then

solution = newSolution
end if

end while
return solution

The main di�erence between (1+1) Evolutionary Algorithm and Randomized
Local Search, besides the obvious population-based approach, is the way it tries
to deal with local optimums and plateaus in the state space landscape. While
RLS does nothing to prevent getting stuck in these states, (1+1) EA allows
a bigger scale of their mutations, or even multiple mutations during the same
algorithm phase, with a given probability, thus giving the application a chance to
escape such states. For example, in the classical bit-string representation of the
solution, a classical mutation for the (1+1) EA is �ipping each bit independently,
with a probability of P(n) = 1/n as suggested by [5]. Having this probability, the
algorithm provides an average of 1 bit �ip per mutation, similarly to RLS, but
allows the opportunity for multiple bit �ips to occur, which can draw the result
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closer to the global optimum. Because of this, 1/n is the most recommended
mutation probability for (1+1) EA, throughout many studies, such as [5].

The advantage of using this type of mutation behavior is, as stated above, the
ability of the algorithm to escape some local optimal states, but the trade-o� is
an overhead to the expected running time: Garnier, Kallel and Schoenauer [7]
have shown that the expected running time of (1+1) EA with the probability
P(n)= 1

n is
2n

1−e−1 ≈ 1.582 • 2n. This is larger than the expected running time of
random search, by a constant factor.

The current project uses a di�erent type of data structure for storing a solution
to the Traveling Salesperson Problem (a list integer values, representing the
indexes of cities, in the order they are visited), and a di�erent mutation operator,
the 2-OPT move. Due to these di�erences, a di�erent mutation mechanism and
probability: the Poisson Distribution is used for determining the amplitude of
the mutations � a random number in the interval [0,1] is generated, and it is used
in conjunction with the Poisson Distribution to determine how many 2-OPT
mutations are applied to the o�spring. Having an expected number of event
occurrences, µ, in the Poisson Formula, an average of one 2-OPT mutations
is insured for each step, similar to the 1

n probability in the original (1+1) EA
implementation.

3.3 Genetic Algorithm

Genetic Algorithms are devised to mimic the natural evolution process �rst de-
scribed by Charles Darwin in his �Theory of evolution�. In nature species evolve
to better �tness through natural selection, sexual reproduction and mutation.
At each point of natural evolution the individuals from a species that are bet-
ter �t to survive the environment, get to live and produce o�spring carrying
their genetic material, while the ones with less adaptation skills perish. When
two highly �t individuals mate, their genetic material get carried on to their
o�spring, usually leading to children with a high �tness, sometimes even higher
than their parents', through combining the good genes from both. From time
to time an individual su�ers a random mutation that boosts the survival skills
of that individual. These mutations also get to be passed to the individual's
children, becoming gradually blended in the species' overall genes.

In Computer Science, Genetic Algorithms, �rst devised in the 1970s by John
Holland, replicate this natural evolution process: they model the possible so-
lutions to the problem as genetic material (chromosomes), and store them in
the attributes of a virtual species, a population of possible solutions. Based on
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the �tness of the solutions, some individuals of this population get selected to
mate, and generate new possible solutions, in the form of o�spring. When two
individuals mate, their chromosomes get combined, in the attempt to gather the
better genes from both individuals' chromosome, and to provide better solution;
the techniques of doing this recombination vary from algorithm to algorithm,
but carry the generic name of �cross-over�.

When new o�spring are generated, they might su�er mutations, with a small
probability, mutations that allow the algorithm to escape local optimum states,
and improve its solutions. Repeating these operations, and regenerating the
population at each step, usually leads to a convergence towards one solution
over the entire population, the solution that approximates the general optimum
best.

3.3.1 Chromosomes

In biology, a chromosome is an organized structure of DNA, protein and RNA,
uniquely describing every individual. These chromosomes hold the genes, every
gene corresponding to a various biological peculiarity of the individual: from
eye color to number of limbs, blood type, etc.

Chromosome A 0111001011
Chromosome B 1100000101

Table 3.1: Bit-string chromosome samples

In Computer Science chromosomes (sometimes called genomes) is modeled as a
set of genes, every such gene representing an independent variable of a legal so-
lution to the proposed problem. A chromosome as a whole represents a possible
solution to the input problem, and also an individual of a speci�c generation
of the genetic algorithm. The encoding of a chromosome depends on the prob-
lem itself. Binary encoding is most frequent, mainly because the �rst studies
of GA were using it, and most GA literature refers to it, but other encodings
can be used: permutation encoding (as strings of numbers), value encoding
(as a list of numbers, strings or complex objects, answering the given question
together), or even tree encoding. [http://www.obitko.com/tutorials/genetic-
algorithms/encoding.php]
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3.3.2 Selection

The main purpose of selection is giving higher changes to better �t individuals
to mate and to pass their genes to the next generations, but also preventing
non-adapted individuals to propagate their genes in the detriment of the entire
population. In nature, individuals with good genes are found more attractive
by partners, and get higher chances to select the mates they �nd better �t, and
multiple chances to reproduce. The bad genes naturally perish, �rst because
the individuals carrying them lack the necessary survival skills, but also because
they get limited or null chances to mate.

When devising a genetic algorithm, there are many options of selection operators
to choose from [I-JEST11-03-05-190.pdf]. These usually operate at the level
of chromosomes, evaluating the chances of each individual to reproduce based
on the �tness of their genes. The selection method controls the diversity of
the population, and thus the convergence speed of the algorithm towards the
global optimum, as well as having a big in�uence on the ability of the algorithm
to escape local maximum states. The two best known selection operators are
�Roulette Wheel Selection� and �Tournament Selection�.

Algorithm 3 Roulette Wheel Selection

Set FS = Σ �tness(i) for all i ∈ population
R = random number ∈ [0,FS]
sum = 0
for all (individual i ∈ population) do

sum = sum + �tness(i)
if (sum ≥ R) then

return i
end if

end for

In the Roulette Wheel Selection, each individual gets a chance at becoming a
parent, proportional to its �tness. The way it works can be seen as having a
roulette wheel with all the individuals in the population, each slot representing
one of them, and each slot having the size proportional to the �tness of the
individual it represents; the higher this �tness, the bigger the slot. This method
allows for seemingly bad solutions to be selected, with a low probability, but
also allows individuals with bigger slots to get chosen to mate repeatedly.
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Algorithm 4 Tournament selection

Tournament[] = select K individuals from the population, at random
maxFit = -∞
parent = null
for all (individual i in Tournament[]) do

if (�tness(i) > maxFit) then
maxFit = �tness(i)
parent = i

end if
end for
return parent

The Tournament Selection method o�ers a higher weight to the �tness of in-
dividuals than Roulette Wheel. It works by randomly selecting a K number
of individuals (usually two), and comparing their �tness. The individual with
the highest �tness is then selected to reproduce. Compared to the Roulette Se-
lection, this method has lower probabilities that a seemingly bad solution gets
selected (for example the individual with the worst �tness in the set could never
get selected). Based on the size of the tournament, and the way the solutions
get selected to be compared, some individuals can get chosen repeatedly, but
the method usually ensures a high diversity of mating options.

3.3.3 Crossover

Crossover is a genetic operator that allows generating new chromosomes, and
new individuals (children), by combining the chromosomes of multiple parents.
In nature, two parents generate one or more children that share a set of charac-
teristics (genes) from both parents. In Computer Science the operator is used
to create new chromosomes from the parents', and new individuals; the main
advantage of this method is the fact that the crossover may select the best genes
from each parent, generating a better solution in the o�spring.

Usually, for the genetic algorithm, only two parents are mating at a time, the
crossover generating two new children. Some of the more frequent operators are
the �one point crossover�, �two point crossover� and uniform crossover.
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Parent 1 0111‖001011
Parent 2 1100‖000101

O�srping 1 0111‖000101
O�spring 2 1100‖001011

Table 3.2: One point crossover

k The one point crossover generates a random split point and splits the two
parent's chromosome into two sections. The �rst o�spring shares the �rst section
of the �rst parent, and the second chromosome section of the second parent,
while child number two has the �rst section of the second parent, and the second
section of the �rst parent.

Parent 1 011‖1001‖011
Parent 2 110‖0000‖101

O�srping 1 011‖0000‖011
O�spring 2 110‖1001‖101

Table 3.3: Two point crossover

The two point crossover randomly selects two points within the chromosome,
and interchanges the section between the two points in the parents' chromo-
somes, to generate two new children.

The uniform crossover decides at the level of each gene (bit) of the child's chro-
mosome, whether it will come from the �rst or the second parent. So this method
uses a for-loop to go through all the genes from left to right, and decides with
a probability of 50% if the gene of the �rst o�spring comes from the �rst or
the second parent; the remaining bit, from the unselected gene is added to the
second child.

Selecting the right crossover operator depends on the problem itself, and on
the chosen encoding for the chromosome. The operators presented above work
well for bit-string representation of the solution, but many more options are
available. Crossover is used at every step of the GA - the process of selecting
parents, and applying crossover to generate o�spring is repeated until a new
generation of the same population size is obtained.
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3.3.4 General Form

Algorithm 5 Genetic Algorithm

population[] = N randomly generated individuals, with independent solutions
while (stopping point not reached) do

o�spring[] = empty population set
for (i = 1:n 2) do

parent1 = individual ∈ population[] according to selection method
parent2 = individual ∈ population[] according to selection method
child1, child2 = Crossover(parent1,parent2)
Mutate(child1) with a set probability
Mutate(child2) with a set probability
Add(child1, o�spring[])
Add(child2, o�spring[])

end for
population[]=o�spring[]

end while
return best �t solution from population[]

The genetic algorithm starts o� with a randomly generated set of solutions, in
the form of a population of individuals. At each step of the algorithm a new
generation of the population is created, by repeatedly selecting two parents,
according to the selection method, and applying the crossover operator to them,
in order to obtain two new individuals; these children can then su�er mutations,
according to a set probability (usually 1/N probability, so that only one mutation
appears per generation). After this, the two new individuals are added to the
new population, and the process is repeated until the new generation has the
same size as the initial population.

The main advantage of GA is its ability to search di�erent neighborhoods of
the solutions space, at the same time, and to merge multiple such solutions,
from di�erent areas, into new solutions, closer to the optimum. This can dra-
matically decrease the chance of the algorithm to get stuck in local maximum
states, and also increase the probability of reaching the area of the global opti-
mum. From this point of view, crossovers can be seen as informed moves in the
state space, while mutations can be seen as explorations of unknown regions.
Another advantage of GA is the relative easiness to be converted into a parallel
algorithm, where operations such as selection, crossover and mutation can be
done simultaneously, in order to improve its running time.

The main disadvantage of GA is its high complexity, both temporal and spatial,
using many computer resources, and using a large amount of time to apply the
various operations, and to deal with the large number of individuals.
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3.4 Simulated Annealing

As previously discussed, the main problem of RLS is getting stuck in local
optimal states, sometimes never reaching the maximal solution due to the small
size of its mutation. (1+1) EA is one of the algorithms devised to prevent,
when possible, this problem, by implementing a greater scale of its mutations.
Another algorithm extends randomized local search, by providing a nature-
inspired technique for escaping local maximums � Simulated Annealing.

In metal works annealing is the process of improving a metal's structural prop-
erties, by repeatedly heating and cooling it. When metal reaches temperature
higher than its critical point, its internal structure get altered, and when let to
cool, these alterations get �xed as permanent characteristics. A similar heating-
cooling o� mechanism is used by the algorithm, by instantiating a variable with
a high temperature, and then gradually decreasing it at each run. When the
temperature is high, greater variations of the solution are allowed, by allowing
seemingly worse solutions to be accepted; as temperature decreases this behav-
ior is hindered, only better �tness being chosen. In the solutions space this
technique can be seen as exploring the space for the general region where the
optimum is located, by allowing bad solutions to get selected, at greater tem-
peratures. Once the system cools o�, as we have found a proper region, the
variation rate decreases, smaller steps are taken in order to look for the max-
imum in that speci�c area. The algorithm start with an initial temperature,

Algorithm 6 SA � General Scheme

solution = initial solution, randomly chosen
t0 = initial temperature as a high number
alpha(t) = temperature cooling function
while (stopping point not reached) do

newSolution = mutate(solution)
di� = �tness(newSolution) � �tness(solution)
if (di� > 0)) then

solution = newSolution
else

choose random R in (0,1)
if R then < exp(−diff

t0 )
solution = newSolution

end if
end ift0 = alpha(t0)

end while
return solution

t0, that is gradually decreased according to a function alpha, called �cooling
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schedule�; multiple forms of cooling schedules have been proposed, from con-
stant cooling factors, to methods that take into consideration the size of the
problem or the number of steps computed so far.

alpha(t) =


a ∗ t, with a = (0.8, 0.99)

t
(1+b∗t) , with b small ≈ 0

c
log(1+k) , where c constant and k the number of steps

A new solution is generated at each step, according to the selected mutation op-
erator. On bit string encoding, this operator could be the classical RLS �ipping
of one random bit. The �tness of the new solution is compared to the previous,
and if it shows an improvement, the new solution is kept. If that is not the case,
a random number R is generated between 0 and 1, and is compared to the expo-
nential of the �tness di�erence over the current temperature (R < exp(−diff

t0 )).
This formula was suggested by one of the inventors of simulated annealing, Scott
Kirkpatrick, corresponding to the Metropolis-Hastings algorithm, and it is used
to determine whether the current temperature allows a bad move.

This process is repeated, and as the temperature slowly drops, Simulated An-
nealing transforms into a classical randomized local search algorithm. Stopping
criteria are similar to those in RLS or (1+1) EA.

3.5 Ant Colony Optimization

Invented in 1992 by Marco Dorigo et al, Ant Colony Optimization (ACO), is
another nature inspired randomized search heuristic performing well for path
�nding problems, such as TSP; in fact, the authors �rst implemented it for the
traveling salesperson problem, due to the natural similarities to the way ants
�nd sources of food. In nature ants, when leaving their colony to �nd food,
�rst walk randomly in search for food. Once the goal was reached, they return
home, but leave a pheromone trace on their way back. The ants that follow will
then sense this pheromone trace, and knowing it leads to food, are more prone
to follow it.

The process repeats, and the more ants that use the same road, the more intense
the level of pheromones gets, on that speci�c road. Another important aspect
of this behavior is evaporation: in time the pheromones evaporate, and the
tendency of ants following that trail drops. This is very important for escaping
local optimum roads, as the length of the road in�uences directly the pheromone
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intensity on it � the longer it takes an ant to complete the road, the more
evaporation occurs on it. Experiments have shown that given the same source of
food, and multiple paths to it, the ants' behaviors converge towards the shortest
road. In one particular experiment, two roads were built between the colony
and the food source, one shorter than the other; the ants going towards the goal
on each road were counted, and the results showed an astounding number of 80

The ACO algorithm implemented multiple techniques similar to the ants' behav-
ior. It is designed to work well on problems where the solutions can be divided
into multiple sub-goals that the ants can discover and solve incrementally, such
as path and route �nding problems. A pheromone map is generated for all the
possible segments of solution, initially having equal values. Then, a population
of ants is generated, usually having di�erent starting points, and then let to
�roam free� in order to discover the solution asked for. At every intersection
reached (every sub-goal met), the ant randomly decides the next segment it will
take towards reaching the solution. When an algorithm step was �nalized, and
all ants have found their solution, the pheromone map is updated, increasing
the pheromone levels on the segments chosen by the ants, and evaporating it
on the rest. The ant population is then reset, and the process repeats itself,
with the addition that when an ant reaches an intersection, it will have a higher
probability to select the segments with the higher values of pheromones.

Algorithm 7 Ant Colony Optimization

ant[] = ant population
τi,j = initialize pheromone map
while (stopping point not reached) do

for all (ant A in ant[]) do
set k current location of the ant
set u current walk of the ant � empty list
while (solution u is not complete AND there are still feasible contin-

uations of u) do
select next node l with probability pkl(n)

pkl(n) =

{
0, if (k, l) is not feasible

g(τkl(n),ηkl(u))∑
(k,r) g(τkr(n),ηkr(u))

, over all possible continuations r

k = l
append l to u

end while
end for
Update Pheromones

end while
return solution

In the algorithm above, nij(u) is called heuristic information value, and is a
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problem speci�c heuristic, dependent on the partial road u selected (as discussed
in [6]) . It is also possible to construct an algorithm that doesn't use this kind
of heuristic information values. The function g combines the pheromone trail
and the heuristic information values, and usually represents a multiplication
between the pheromone trail and the heuristic information, each with di�erent
exponents.

As the algorithm shows, at each step, it loops through each ant, every ant con-
structing its own possible solution. After all solutions for a speci�c step were
found, the pheromone map is updated as described above, based on the gen-
erated roads. In time the algorithm converges towards on single solution that,
based on the heuristics and pheromone scheme used, can be a good approxima-
tion of the global optimum.

Generally the mechanisms of selecting the next solution segment in ACO allow
a degree of randomness. This, together with the pheromone evaporation rate, is
a very important means of avoiding reinforcements of local optimums, allowing
the algorithm to explore di�erent regions of the solutions landscape, sometimes
avoiding getting frozen plateaus and local maximum states. Termination of ACO
is similar to the algorithms described above, either looking for a set �tness of
the solution, or a set number of steps, or stopping it when no improvements get
generated.

3.5.1 MMAS

Di�erent variations of ACO were proposed throughout time, and this thesis im-
plements one of these variations, named Min-Max Ant System (MMAS). This
extension was proposed by Stytzle and Hoos, and it brings two main improve-
ments to ACO.

While ACO allows all ants to deposit pheromones on their roads, MMAS allows
only particularly good solutions to be reinforced. Usually this is implemented
by only reinforcing the best solution/solutions found during one step, improving
the convergence rate of the algorithm. Other implementations only reinforce the
best found solution, throughout all the steps taken.

Another change from the classical algorithm is forcing a more balanced pheromone
trail, between good and bad solutions; for this, MMAS proposes a minimum and
maximum value that the pheromones can take.

This thesis uses 1
n2 as the lower bound, and 1 − 1

1−n2 as the upper bound for
pheromones. And, for simplicity, as the requirements of TSP allow, it imple-
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ments a population of one ant starting from the same city at every step. Having
one ant, this will be the ant providing the best solution of every step.



Chapter 4

Implementation

The following chapter will provide details about the choices made throughout
the implementation of the projects' software application. The purpose of this
application is providing a graphical interface to visualize the way the �ve algo-
rithms selected (randomized local search, (1+1) EA, genetic algorithm, simu-
lated annealing and min-max ant system) �nd their solutions to the traveling
salesperson problem. The interface allows the user to choose the input problem
and one of the �ve algorithms to solve it, and to visualize, step by step, the
construction of the solution. The user is also given the option to choose one of
the four implemented dynamic changes to be applied to the input TSP map.

The application was developed under Windows 7 Ultimate x86, using Microsoft
Visual Studio 2010. The selected programming language is C#, using a .NET
framework to construct a Windows Forms Application. The main motivation
behind this choice is the graphics libraries built for this programming language
that ease the process of building user interfaces and two-dimensional drawings.
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4.1 User Interface

When opening the application executable, the user is shown the main (and only)
window of the visualization of randomized search heuristics for dynamic TSP.
This window has two points of focus: a vertical strip on the left side, allowing the
user to select and input the running parameters of the application, and starting
the run of the chosen algorithm; the other point of focus is the right side, where
a two-dimensional graphic display of the solutions found by the algorithm is
shown, in real time.

The �rst input that the user needs to provide is the traveling salesperson map
instance that the algorithms need to study. The application has an in-built input
map generator, called circle generator, which creates a new map by setting a
given number of cities on a circular map. Another option provided to the user
is the input of a �le containing the map to be studied, with the number of cities
and their coordinates.

Secondly, the user needs to select the algorithm to be run and whose process
of solutions discovery will be displayed. For this, the application provides �ve
radio buttons, marked with the names of the algorithms (GA, RLS, SA, (1+1)
EA and MMAS), only one of them being selectable at each time.

Thirdly, the user can select one of four dynamic changes to be applied to the
initial input problem: interchanging of two cities, forcing a road between two
cities to su�er from congestion, deleting a city, or adding a new city. Only one
of the four options is selectable at each time, but choosing a dynamic change is
optional � if no option is selected, the algorithm will run on the static version
of the input TSP map.

Finally, the user can press the �Start� button to initiate the selected algorithms,
and to view the algorithms at work. Every accepted solution for every step of
the algorithm is displayed, allowing the user to see the gradual improvements
and the convergence towards the global optimum solution. Underneath the
start button the user is shown the �tness of the solutions found throughout the
exploration of the state space landscape.

When the run of an algorithm is started, the frame of the right side of the ap-
plication displays a two dimensional representation of the inputted map, scaling
the coordinates of the entire map to the size of the frame, and showing the cities
as red squares on it. Every tour through the cities found and accepted as possi-
ble solution to the input problem is displayed in the same frame, every segment
of the road being shown as a blue line between two cities. Additional visual cues
are displayed when dynamic changes occur, but this will be discussed at a later
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stage.

4.2 Classes and methods

The application developed for visualizing and testing randomized search heuris-
tics applied to the traveling salesperson problem uses several classes and meth-
ods that will be brie�y discussed in the current section.

4.2.1 Form

This class deals with the user interface of the project, controlling the graphical
layout, setting up the main window of the application, and ensuring a bidi-
rectional communication with the users. It is also in charge with instantiating
other classes, and starting the user selected algorithm as well as launching the
dynamic changes and displaying the solutions found on the two dimensional
map.

Methods:

• pictureBox_Paint� this function deals with updating the two-dimensional
representation of the TSP map according to the new solutions found

• button1_Click - launched when the user clicks the �Start� button, this
function initializes the variables necessary and parses the user input, in
order to launch one of the �ve algorithms implemented. It holds the �ve
algorithms themselves, using the help of other classes to construct the
solutions. Also launches the dynamic changes.

• resetAll � resets the all the objects and variables that were previously used
by one algorithm, after it has �nished its run.

• applyDynamicChange � deals with applying a dynamic changes; has three
inputs that help control the type of change to be applied and the moment
of its initialization: a random number generator, the step count of the
algorithm, and the step at which the dynamic change is applied. This
function reads the selection of the radio buttons, to decide which type of
change to enforce.

• getpoisson � generates the Poisson Distribution for 1 to 10 events, return-
ing it as an array of doubles.
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• applyInterchange � randomly interchanges the location of two cities.

• copyCity� creates a copy of the given City object.

• applyCongestedRoad � applies the congested road dynamic change of the
problem, �ipping the state of the road between the two cities in gets as
parameters, from usable to unusable.

• removeCity � randomly deletes a city from the map, making it unusable
by the algorithms; it does so by removing the city from the solutions found
by the algorithms.

• addCityBack � to simulate the apparition of a new city, the application
removes that city before an algorithm is launched, adding it back to the
cities list, and algorithm's solutions when the dynamic change is enforced.

4.2.2 City

This class holds the information regarding one city of the TSP input map. Every
city is assigned an ID, which uniquely identi�es the city. The position on the
map is represented with two coordinates, X and Y; since these coordinates need
to be scaled to the size of the pictureBox where the city will be printed as a
square, the class also holds this information. Finally, a variable of the type
Brush is stored, indicating which color with which the city will be drawn on the
map.

Methods:

• City � class constructor, creating a new city, and setting its ID and coor-
dinates, according to the given parameters.

• setScaledXY � sets the values for the scaled coordinates to the parameters
given.

• getScaledX � returns the scaled X coordinate.

• getScaledY � returns the scaled Y coordinate.

• getId � returns the ID of the city.

• getX � returns the value of the X coordinate.

• getY � returns the value of the Y coordinate.

• getColor � returns the color with which the city will be drawn.
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• setColor � sets the color with which the city will be drawn.

• cityUpdate � updates all the class variables to the new values.

4.2.3 CircleGenerator

This class deals with generating a number of cities on a circular map. Given an
integer number N, it generates N points on the circumference on a circle with
radius 1 and the center having the coordinates (2,2); it does so by slicing the
360 degrees space into N regions, according to the formula:

{
x = R ∗ cos(t) +Xc;

y = R ∗ sin(t) + Y c;

Where R represents the circle radius, (Xc, Yc) the coordinates of the circle
center, and t is the angle at which the new city is located in reference to the
center.

The class generates the cities one by one, by splitting the 360 degrees space
to the number of cities required. It then stores these cities in a list of cities
(List<City>), and also creates a two dimensional matrix holding the distances
between each cities. Finally, it stores the maximum and minimum values for
each both X and Y coordinates, in order to scale the entire map to the size of
the printing area.

Methods:

• CircleGenerator � class constructor, that generates the cities, the distance
matrix and also scales the coordinates, according to the given parameters.

• getCities � returns the list of cities (objects of type City);

• getDistanceMat � returns a matrix with the distances between all the cities
generated

4.2.4 ReadFile

This class deals with reading a TSP instance from the user given �le, construct-
ing a list of objects City, and a distance matrix, similarly to the circle generator
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class discussed above. The input �les should be formatted according to the
TSPLIB [8] library; more precisely the formats that provide the coordinates of
each city (types GEO or ATT), and not those that provide the distance matrix.
This library was chosen since it has a huge amount of TSP instances that can
be downloaded and tested, some of these instances being used throughout the
development of the current project.

Methods:

• readFile � given a �lename, and the size of the drawing area, reads the
TSP instance �le, creating the list of cities, and the distance matrix, and
also scales the cities coordinates according to the drawing area. Returns
the obtained list of cities.

• setCities � updates the list of cities to the new list given as parameter.

• scaledCities � built for testing purposes, it returns a list of cities as the
scaled version of the list the class already holds.

• getDistanceMat � returns the distance matrix.

• getCities - returns the list of cities.

4.2.5 Tour

This class holds a possible solution to the given TSP instance, as a list of integers,
each integer representing the ID of a city. The order in which the IDs appear
in the list, gives the order in which the cities are to be visited in the solution,
going through each city only once, and returning to the initial city.

Methods:

• Tour � class constructor; when run with no parameter, an empty list is
instantiated, the other option being having a list of integers as parameter,
to override the current list of city IDs.

• getTour � returns the tour held within the object.

• setTourFromCities � constructs the list of city IDs from a given array of
integers.

• shu�eTour � randomly shu�es the list of city IDs.

• normalize � rotates the list of integers so that the ID given as parameter
is the �rst integer in the list.
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4.2.6 Individual

The class represents a population individual, as instructed by the evolutionary
algorithms described in the previous chapter. Being a solution to the problem
studied, in our case a route through all the cities of the map, it holds an object
of type Tour representing one such solution. This class is also responsible with
the main operators of the evolutionary algorithms - crossover and mutation �
updating the Tour with the result of these operations.

Methods:

• Individual � constructor; creates a new object of type Individual, with
the tour given as parameter; it can also be run without a parameter,
constructing an empty tour.

• getTour � returns the solution as an object of type Tour.

• getTour � returns the �tness of the tour.

• getcost � returns the total length of the tour.

• crossover � returns two objects of type Tour, obtained by breeding (crossover)
of the current individual with the individual given as parameter. This pro-
cess will be discussed at a later stage.

• mutate � returns an array of integers (city IDs) by applying the 2-OPT
mutation operator to another array of integer given as input.

4.2.7 PheromoneMap

The implementation of the Min-Max Ant System algorithm requires that all the
roads between the cities of the TSP instance maintain a level of pheromones,
which should be updated according to the solution generated by the ant/ants.
This class holds a matrix of doubles, every value representing the pheromone
level on the road between two cities. The coordinates of the value in the matrix
are the IDs of the cities themselves.

The class is in charge of initializing the pheromone matrix (every road holding
the same initial level of pheromones) and updating it with the new values.

Methods:
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• setPheromone � initializes the pheromone matrix, every road between two
cities having the same value.

• getPheromone � returns the entire pheromone matrix.

• getOnePher � given the IDs of two cities, it returns the pheromone level
on the road between them.

• updatePher � receiving a list of tours found by the ants at a speci�c time
of the algorithm, it updates the pheromone levels of the entire map, de-
creasing it on the roads not passed by the ants, and increasing it on the
selected edges.

4.2.8 Ant

This class represents a solution found by the MMAS algorithm to the traveling
salesperson problem, so an individual of the ant population. For this it holds
a list of integers, each integer representing the ID of one city, and the list as
a whole the order at which the cities are visited in the solution. This could
have similarly been done using an object of type Tour, but it would have added
unnecessary computational overhead to the solution construction process that
the class is responsible for.

For easiness of constructing new solutions, the class also maintains a list of
integers that holds the last feasible and complete solution found by the ant.
Most of the time the two lists are identical, the only time they are di�erent is
when one class instantiation is in the process of constructing a new solution.

Methods:

• setTour - initializes the two lists of integers to the list given as parameter

• constructTour � constructs a new tour through all the cities, returning to
the initial city, according to the ACO algorithm, using the PheromoneMap
given as input, and returns it as a list of city IDs; will be discussed at a
later stage.

• getLastTour � returns the last solution found by the ant.

• getFitness � returns the �tness of the latest solution found.



4.3 Data representation 35

4.3 Data representation

Various features and data structures were used in the implementation of the
project's software application. These choices are brie�y discussed in the current
section.

Solutions for the input traveling salesperson problem are, as stated above,
represented as a list of integers, generically named �Tour�, each integer being
the ID of one city. The order at which these cities appear in the tour is the
order in which the cities are to be visited, according to the proposed solution,
and returning to the initial city. This data type was used because, due to its
implementation in C#, allows it to be traversed both as an array, with indexes
of the value's position in the array, and also as a linked list, going through each
element from �rst to last.

Similarly to routes, the population of individuals, respectively ants, are stored
as a list of objects of type Individual or Ant, for easiness of access.

Cities hold their coordinates in the two-dimensional space, and are uniquely
identi�ed by an ID. Another possible option could have been a graph-like imple-
mentation, only storing the distances between the cities, but this option was not
chosen due to the di�culties it presents when it comes to the graphical display
of the map.

The distances between cities are computed based on the cities coordinates,
using the Euclidian distance formula, and stored in a matrix of doubles; the
value at position [1][2], for example, represents the distance between the city
with ID �1� and the city with ID �2�. The same data structure is used for storing
the values that represent pheromone levels on each road of the map, an array
of double values in the (0,1) interval.

Fitness, being a representation of how good a provided solution is, needs to
have higher values for better solutions. Since, in the case of TSP, the total
distance of the route through all the cities represents the quality of a solution,
and the shorter the length, the better the solution, the choice was made that
�tness is implemented as the negative value of the total distance. The closer
the �tness value is to zero, the better the solution.

Generating random initial solutions for the evolutionary algorithms, and also
for SA and RLS, is done by creating a list with all the cities in the system, and
then shu�ing it for each random solution needed. Shu�ing is done by randomly
selecting a position from the list, removing the city at that position, and adding
it to the resulted list, and repeating this process until the initial list is empty.
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4.4 Algorithms

4.4.1 Genetic Algorithm

All algorithms are implemented in the onClick function of the �Start� button of
the application, and they are run according to the selection of the radio buttons
of the user interface. All the algorithms have a similar initialization phase, and
share some of the data structures, in order to maintain consistency across them,
and to reduce the usage of computer resources.

The prerequisites of the Genetic Algorithm are constructing the population of
randomly generated solutions. A number of 100 such individuals were chosen to
represent the population, each being an object of type Individual, and having
a random initial solution to the problem at hand, in the form of a Tour object.
Constructing such a tour is done by taking the list of cities that was given
as input of the problem, and building a new list of integer values, each value
representing the ID of a unique city. After this list is constructed, it is used
for instantiating a new Tour object. The tour is then shu�ed, according to the
method described in the previous section, and is added to the new individual.
The process is repeated for each of the 100 individuals of the population, thus
having 100 randomly generated solutions to feed the algorithm itself.

At every step of the algorithm an entire new population is created, with possible
new solutions, is created with the aid of the selection, crossover and mutation
operators. Selection of the individuals that get to mate and produce o�spring
was implemented using the Tournament Selection technique. Two such Tourna-
ment Selection processes are ran, for choosing the two individuals that repro-
duce. The size of a tournament is 10, and the best �tted solution out of the 10
solutions is chosen to become a parent. A starting position in the population
list is selected, and the tournament selection is applied to the �rst 10 individuals
after that starting point, using a for-loop that goes through the 10 individuals,
�nds the �tness of each, and selects the best one. Two parents are selected with
this method, and then they are bread, generating two new o�spring, by the use
of the crossover operator. The process is repeated N/2 times, where N is the
population size, generating an entire new population, with the same size as their
parents'.

Crossover tries to use as much of the parent's genes as possible, by using
the permutation crossover [10]. It is implemented similarly to the classical Two
Point Crossover, by randomly selecting a section from one parent's solution. Two
random integers are generated, representing the start and end points in the �rts
parent's solution, so that the selected section length is at least a third of the
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initial list's length. This section is then copied in the �rst child's chromosome,
and then the empty spaces left in the chromosome (to the left and right of the
section) are �lled with cities from the second parent (in the order they appear
in its chromosome), cities that haven't yet been included in the solution. The
second child is created using the same process, copying the section from the
second parent, and then �lling with the genes of the �rst parent.

Each newly constructed child can su�er a mutation, with a probability of 1%.
This probability was selected because, since there are 100 new individuals gen-
erated, it respects the algorithm's directions that an average of one mutation
occurs at each step. The 2-OPT Mutation described in the �rst part of this
thesis removes two edges from a route, and the reconnects the two obtained
tour halves in the only feasible way remaining. On a representation of routes
as lists of cities, this mutation is implemented as follows: two distinct cities
are randomly selected, and then it is decided which city comes �rst and which
comes last in the input tour. The section of tour contained between the two
selected cities (the road between �rst and last city) is inverted in the �nal so-
lution, to represent the road back from the last city towards the �rst city. The
remaining sections (the ones before and after the inverted section) are copied as
they appear in the initial tour.

Once an entire new population is created, it will replace the population from
the previous step. All the solutions generated are then analyzed in terms of
�tness, the best �tness being printed out to the user, so that he can notice the
convergence of the method. Moreover, this best �tness is used in the stopping
criterion: the algorithm stops when M2 consecutive algorithm steps were �-
nalized without providing an improvement to the solution, where M represents
the total number of cities in the input problem. After the algorithm stops, the
best �tted solution is selected and printed to the user.

4.4.2 (1+1) EA

(1+1) EA is a version of Genetic Algorithms that uses a population size of one,
one individual that is repeatedly mutated to create new solutions. Due to this
population size, the algorithm doesn't provide any selection or crossover opera-
tors, relying solely on mutations. Even though it also uses the 2-OPT mutation
operator, (1+1) EA has a di�erent behavior than GA: it allows for multiple
mutations to occur in the same algorithm step, using Poisson Distribution to
determine the number of their number.

Data initialization is similar to GA; a population of random initial solutions is
generated. This time, a single array with all the cities is created, then randomly
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shu�ed, and used to create an object of type Tour. Then, one individual is
instantiated with this Tour. The Poisson Distribution for 10 events, with one
average event per turn, is also computed and stored into an array at this phase.
The Poisson Distribution array is composed of values in the [0,1] interval, more
precisely the �rst value representing the probability that one event occurs at a
set time � 0.36 � and the following values decreasing abruptly.

Once these prerequisites are met, the algorithm is then run. At each step a
new individual is created as a copy of the individual from the previous step.
A random number in the [0,1] interval is created, and then used to determine
how many mutations should be applied consecutively. This is done by deter-
mining under which interval the random value falls, in the [0,0.36] space split
into smaller intervals by the Poisson Distribution values. For example, if the
random number is 0.30, this falls into the interval (0.18, 0.36] represented by
the probabilities that one, respectively two events will occur; in this case, one
mutation will be applied. If the value falls between 0.06 and 0.18, then two
mutations are applied, and so one.

Since the random number generator can return values higher than 0.36, and we
want to ensure that at least one mutation is enforced at each run, one extra
mutation is applied at each step, regardless of the random number.

Once the new solution is created, its �tness is determined. If the new solution
has a better �tness than the previous, if the newly created o�spring has a
shorter route through all the cities than its parent, than the parent individual
is replaced by the child, the algorithm continuing its run with the new solution.
If that is not the case, and the child is worse �t than its parent, the parent's
the algorithm continues with the parent's tour, ignoring the newly created one.
Stopping criterion is the same as GA's.

4.4.3 Randomized local search

The simplest algorithm implemented for this project, for comparison purposes,
randomized local search, can be seen as a simpler version of (1+1) EA, a random
initial solution is created, and new solutions are generated through mutations
only; RLS has one important di�erence: only one mutation is applied at each
step.

Due to these obvious similarities, the implementation of RLS uses the same data
structures and objects as (1+1) EA and GA. A random initial solution is created
by storing all the IDs of all the cities in the input problem in an array, then
shu�ing this array, creating an object of type Tour from it, and assigning this



4.4 Algorithms 39

Tour to an Individual object. This represents the prerequisite of the algorithm.

At each step of the �while� loop of the algorithm, a new Tour is created as a
copy of the solution from the previous steps. One 2-OPT mutation is applied
to the new Tour, using the same method as the two algorithms above. This
solution is then compared to the previous solution, in terms of �tness. If the
new route through the cities has a better �tness (a shorter length), it will replace
the previous solution, and it will be used for the following steps. If not, then
this route is ignored. As we can see, RLS has a classical hill-climbing behavior,
having no means of escaping states of local optimum.

The algorithm stops when no better �t solutions are found during M2 consec-
utive steps, where M represents the total number of cities in the given input.

4.4.4 Simulated Annealing

Simulated annealing is also very similar to (1+1) EA, as it works with only
one solution at each time, and tries to improve on through 2-OPT mutations
only. But SA is more focused on escaping local maximum states, and does it
by allowing seemingly bad solutions to be accepted. It does so by replicating
the annealing process of metal works, more precisely by storing a variable called
temperature, which starts o� with high values and it is then gradually increased;
when the temperature is still high, solutions that are worse �t than the previous
ones are accepted with a higher probability. Once the temperature cools o�,
taking bad solutions becomes almost impossible.

Before actually running the algorithm, an initial solution is selected randomly,
using the same process as (1+1) EA or RLS. A variable called �temperature�
is also created, having a very high initial value - M2 where M represents the
number of cities.

At each step the algorithm creates a new solution by applying a 2-OPT mutation
to the previous tour. If the new tour is shorter than the old, it will overwrite
it, and the algorithm continues to the next step. If the �tness is worse, then
the �tness di�erence between the old and new solutions is computed. A random
number R, in the [0,1] interval is generated, and if R is lower than the exponential
function applied to the division of the �tness di�erence over the temperature (if
R < exp( difference

temperature ) ), then the old solution is overwritten with the new one.
If this also fails, the algorithm continues with the old solution.

After each new solution was generated, and the comparisons from above were
applied, the temperature is decreased: temperature = temperature∗(1− 1

M )step,
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where �step� is the step count of the algorithm (the number of generations
created so far), and M is still the cities count.

4.4.5 Min-Max Ant System

Ant Colony Optimization (and its extension MMAS) generate solutions by sim-
ulating the way ants �nd their way towards food sources and back to their
colony. In the initial phase random walks are made, constructing a solution
step by step. Once a solution was found, the �road� towards that solution is
marked with pheromones. The next walks get guided by these pheromone trails,
making it more probable that each ant reuses segments of the solutions with
high concentration of pheromones. In time the algorithm converges towards one
solution that closely approximates the global optimum.

In the beginning the ant population is initialized. In the case of MMAS, only
one ant is used, and it is instantiated with a randomly selected solution, in a
similar way as the evolutionary algorithms; this will represent the �last tour�
� each ant stores the previously found tour, to know the IDs of the cities that
it needs to pass through. A pheromone map is also created at this phase, as
an array of double values, each value representing the pheromone level on the
direct road between two cities; the initial value of pheromones, on all the direct
roads between cities, is 1

M , M being the number of cities.

The algorithm creates a new ant at each step, and calls for it to �nd a new walk
through all the cities of the input problem. This new solution is generated as
follows: a starting city is selected, and then removed from the list of cities to be
visited. For the remaining cities the pheromones of the roads between the cur-
rent city and them are summed. Using this sum and the weight each pheromone
has in constructing this pheromones sum, the [0,1] interval is split into multiple
segments, each segment having its size proportional to the pheromone level of
the road it represents. A random number R is generated in the [0,1] interval,
and then the algorithm looks for the segment R falls into on the [0,1] split in-
terval. Once the correct interval is found, the correspondent road is added to
the solution, the newly visited city being removed from the list of cities to be
visited, and becomes the current location. The process then repeats itself, from
the new location, until the solution contains all the cities of the problem, and
the list of cities to be visited is empty.

When the new ant has �nished constructing its solution, the �tness of this
route is computed and compared to the best solution found so far, replacing
it if it represents a shorter tour through the cities. Regardless of the result
of this comparison, the pheromone map is updated as follows: the pheromone
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level of each segment contained in the newly found solution is increased by a
constant value ρ, and the pheromones of the rest of the segments are decreased
by multiplying the previous value with (1− ρ). In this project, through testing,
the best value for ρ was found to be 0.05.

As previously said, MMAS has a minimum and maximum value for the pheromone
concentration on each direct road between two cities. Because of that, when up-
dating the pheromones, its values are limited to the minimum and maximum
allowed levels: 1

M2 as the lower boundary, and (1− 1
M2 ) as the upper boundary;

again, M represents the number of cities.

Pheri,j =

{
Max(((1− ro) ∗ Pheri,j), 1

M2 ), segment not in solution

Min((Pheri,j + ro), (1− 1
M2 )), segment in solution

The algorithm continues with the new pheromone map until the stopping crite-
rion is reached - when no better �t solutions are found.

4.5 Dynamic changes

4.5.1 Interchange cities

This mutation swaps two cities, the �rst city taking the location of the second
city, and the other way around, and what interests us is analyzing the way
the algorithms adapt to this change, and how quick they can adapt to this new
situation, and �nd the optimum, when starting from a solution to the unchanged
problem.

The implementation of this mutation is quite simple: the coordinates of the two
cities are interchanged, with the use of an auxiliary object of type City. Then
the matrix containing the distances between each of the two cities, and the rest
of the cities are also updated to the new locations, by interchanging the line and
column representing the �rst city, with the line and column of the second city.

4.5.2 Congested road

The �congested road� tries to simulate a real-life situation, where a road gets
so much tra�c during some time intervals, that it can no longer be used, and
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has normal tra�c during other intervals. What interests is if the algorithms
decide to ignore the set road, due to its lack of dependency, or they choose to
select it because it is contained in the shortest route, and is sometimes usable.
Another point of interest is how the percentage of time that the road is unusable
in�uences if the algorithm chooses it for the solution or not.

The way this dynamic change is implemented is that it selects two cities, c1 and
c2, and a frequency of congestion appearance. For example, the road becomes
congested at every 10 steps of the algorithm, 90% of the time being usable.
Computing the remainder of the division between the step count and 10, if the
remainder is 0, for example, the road gets congested. What that means is that
the direct road between cities c1 and c2, in the distance matrix, is set to a very
high value (the maximum value of a double number, in our case), when the road
is congested, and to its normal values, when it is not.

4.5.3 Deleting a city

One of the dynamic changes that are particularly useful for computer related
problems is deleting a city while the algorithm is still running. A common
problem in network routing is the failure of one network node (a server, for
example). The algorithm should be able to adapt to this, by �nding di�erent
ways of getting the information through the network, e�ciently.

Removing a city from the cities list is done as follows: a random number is
generated, between 1 and M, and the city with the ID corresponding to that
speci�c number is removed from the list of cities of the initial problem. To
prevent any failures of the algorithm that is currently running, the ID of the
city is also removed from any current solutions of the algorithms, removing it
from the chromosomes of the GA population, for example, or from the last tour
of the ant.

4.5.4 Adding a city

Another dynamic change that is useful in computer related problems is the
apparition of a new city, like, for example, adding a new server to the network.
In order to have a city to be added, the software application of this thesis �rst
removes a random city from the list, before the algorithm is launched, then
launches the algorithm, and inserts the city back, at the appropriate time.

The initial removal of the city is done using the same technique as the �Deleting
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a city� dynamic change from above, with the addition that the removed city
is stored in a variable, to be added back. Actually adding the city while the
algorithm is running, involves �rst putting the city back in the initial list of
cities, but also adding it to the solutions found by the algorithm, so that it can
continue improving on them.

As suggested by authors [9], the algorithms can react better to this dynamic
change if the new city is added to their solutions in the right place � meaning in
the position where the resulting tour has the highest �tness. To replicate this,
every possible position where the city can be added to the tours are tested, one
by one, and their �tness is computed, storing along the way only the position
providing the maximum �tness. After all possibilities were tested, the new city
is added to the position providing the highest �tness.
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Chapter 5

Test results

The present chapter deals with the testing part of the project, discussing the
various tests applied to the software application, the implementation choices
made, and the results found. The chapter is split into two sections, dealing
with the two di�erent testing phases of the application: testing the way the
algorithms work in a static environment, with no dynamic changes, and then
testing the results they generate for the four dynamic changes.

For speed and convenience, some changes were applied to the software applica-
tion, enabling it to do batch testing, running the same test, on the same input
problem, multiple times. For each test con�guration from those that will be dis-
cussed in this chapter, 100 runs were made to the same input problem, for each
algorithm. The changes made to the application enabled it to store the results
in a �le, one �le for each algorithm, listing the solutions found at each run, the
length of each solution, and also the number of steps it took the algorithm to
reach it.

For testing in a dynamic environment, the same changes were applied, with the
addition that the output �le contains the tour, length and step count for the
best solution found before applying the change, and also the tour, length and
step count of the best solution found after the change occurred.

This chapter brie�y discussed the results of each of the tests the application was
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subjected to, but all the results found are displayed in a graphical nature in the
appendices of the present report.

5.1 Static environment

The �rst phase of testing is responsible with �nding out how good solutions
the �ve algorithms o�er, when run in on a static problem, with no dynamic
changes occurring. This gives a good basis for comparison of the accuracy of
the solutions the algorithms provide in the present implementation, allowing
them to be ranked on how �t they are to the traveling salesperson problem.
This phase can also give good indications of how well the algorithms will adapt
to the dynamic environment.

Four tests were run, using the circle generator tool: 100 test runs for each algo-
rithm, on circles with 10, 25, 50 and 100 cities created along the circumference of
a circle. The circle generator was preferred for this phase, because the optimum
tour is known beforehand, thus allowing us to compute how close the solutions
found are to this optimum.

The type of results that were searched for were the success rate of the algorithms
to �nd the optimum solution, the average distance from this optimum, and also
the number of steps it took the algorithm to �nd the best solution, at each step.

The overview these tests provide is that RLS and SA provide better solution
in the longer run, and for bigger maps, remaining with a high success rate to
hitting the optimum as the problem size increases. Genetic Algorithm proves
to be very good on smaller instances, but its performance drops importantly as
the number of cities increases. Min Max Ant System, even though it provides
decent approximations for smaller problems, proves to be in the last place when
it comes to performance, at least in this implementation.

5.1.1 Circular map with 10 cities

The �rst and simplest of the tests run in the static environment analyzes the
solutions found by the algorithms on a map containing 10 cities positioned on
the circumference of a circle. The optimal solution is known, and has a total
length of the rout of 6.19345368405876.

Appendix I shows the success rate of each algorithm to reach the optimum solu-
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tion. In this case Genetic Algorithm o�ers the best results, �nding the optimum
89% of the time. Simulated Annealing follows in the top, with 85% of successful
hits. Surprisingly Randomized Local Search outranks (1+1) Evolutionary Al-
gorithm, by a big margin: it �nd the optimum solution 84% of the time, whilst
(1+1) EA �nds it in only 76 runs out of 100.

The implementation of MMAS shows its limitations, only hitting the correct
answer 42% of the time.

When we look on the average length of the best solutions found by the algorithm,
shown in Appendix II we see that the di�erences are not so high: except for
MMAS, which o�ers a somewhat bad average approximation of the optimum,
the results of the other four algorithms only di�er by approximately 0.1, 0.2 in
their average tour lengths. Moreover, this graph shows the same ranking as the
average hit rate.

Looking at the average distance from the optimum solution graph (Appendix
III ), we again see that Genetic Algorithm is the algorithm having the closest
solutions to the optimum. Even though Simulated Annealing has a bigger suc-
cess rate than Randomized Local Search, on average its solutions are farther
away from the optimum then RLS.

The average number of steps to �nd a solution, presented in Appendix IV shows
GA to be the fastest algorithm, from a step count point of view, needing only
an average of 61.02 steps to �nd its �nal solution. RLS follows in the top, with
132.25 steps, and the other three algorithms average around 140 steps.

Appendix V displays a graphical representation of the variation of lengths in the
solutions provided by the algorithms, over the �rst 50 runs. The most often, and
biggest spikes in the graph (showing a high length of the tour) is corresponding
to GA. Simulated Annealing shows bigger spikes (worse �tness) than (1+1) EA,
but the second algorithm has more frequent, smaller, spikes.

5.1.2 Circular map with 25 cities

The second test was made on another circular map, containing 25 cities. The
best tour length is 6.26556527863881.

The �rst surprise of this second test is increase in success rate for Randomized
Local Search, while the success rate of all the other algorithms drop(Appendix
VI ). RLS manages to gain the �rst rank, with a staggering success rate of 90%,
followed by Genetic Algorithm, who found the optimum only 84% of the times.
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Simulated Annealing and (1+1) Evolutionary Algorithm follow, only �nding the
optimum 81, respectively 73 times out of 100. The biggest drop is present for
MMAS, which only found the optimum 17 times during this test.

The average tour length (Appendix VII ) shows a big increase in the length of
the solutions found by MMAS, and a di�erence of lengths similar to the 10 cities
test, for the rest of the algorithms.

The average distance from optimum (Appendix VIII ) shows RLS to having only
an average distance of 0.06 from the optimum, followed by Genetic Algorithm
with 0.177. MMAS o�ers solutions with an average length almost double than
the optimum.

Genetic Algorithm has again found its solutions in the lowest number of steps
(Appendix IX ), 924.7 on average. RLS and SA closely follow, with around 1140
steps. (1+1) EA and MMAS took a lot longer, 1475.88 for the �rst, and 1865.93,
double than GA, for Min-Max Ant System.

The tour length variation over the �rst 50 steps (Appendix X ) shows a leveling
of results for RLS, (1+1) EA, and SA, with few spikes from GA. MMAS displays
a high variation, and a bigger di�erence from the optimum, than the previous
steps.

Overall, we see a drop in performance from all algorithms, except RLS, which
manages to o�er better solutions for this bigger map. The performance drop of
MMAS is the most worrying, its solutions being almost double in length than
the optimum.

5.1.3 Circular map with 50 cities

The next tests are run on a map consisting of 50 cities generated along the
circumference of a circle, and having an optimum length of 6.2787345387654.

This time it was SA's turn to increase its success rate (Appedix XI ), reaching
the optimum solution 84% of the time. Tying with SA on the �rst place, RLS
again provides good solutions, showing a success rate of 84% as well. GA and
(1+1) EA follow, in this order, dropping their rate to 79, respectively 67 hits of
the optimum. MMAS again shows the biggest performance drop, only reaching
the optimum 8% of the time.

Except MMAS, who shows and average tour length (Appendix XII ) of almost
triple to the size of the optimum, the other algorithms level up on their solutions,
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their lengths di�ering by less than 0.1.

RLS provides the closest solutions to the optimum, as Appendix XIII shows, its
average tour length being higher than the optimum with only 0.082821. Simu-
lated Annealing is also very close, with 0.112337, followed by Genetic Algorithm
and (1+1) EA.

The average number of steps graph (Appendix XIV ) again shows GA to be
the fastest from this point of view (even though its actual running time is a
lot higher than the other algorithms), �nding its solutions in around 4643.99
steps. Randomized Local Search closes its distance from GA, with 4950 steps.
Min-Max Ant System shows a bad performance, having an average step count
almost triple than GA.

5.1.4 Circular map with 100 cities

The last test is also the most time consuming and largest in the number of cities:
a map consisting of 100 cities positioned in a circle. The length of the optimum
solutions is 6.28206967118347.

The success rate of the algorithms (Appendix XV ) drops again, but shows a
constant trend, similar to the previous tests: Simulated Annealing remains the
algorithm with the most optimum solutions found, 83 out of 100, followed by
Randomized Local Search with 78. (1+1) EA manages to outrank GA this time,
having a success rate of 65%, whilst the Genetic Algorithm only 62%. This time
MMAS doesn't manage to �nd the optimum at all, never reaching the tour with
the shortest length.

The average tour length displayed in Appendix XVI shows another decrease
of performance for MMAS, this time not as abruptly as the previous steps:
21.443484 average lengths. The other four algorithms show average lengths
of around 6.4, GA providing the smallest lengths, followed by SA and RLS.
Appendix XVII, the average distance from optimum, backs up this data, having
the same ranking of the algorithms.

Finally, the average number of steps to �nd the solution (Appendix XVIII ) shows
RLS to �nd its solutions the quickest (around 24888.89 steps), followed by SA
and GA. Min Max Ant System is very close to them, this time not having such a
big increase in the number of steps. (1+1) EA provides the worst performance,
taking around 37668 steps to decide on one solution.
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5.2 Dynamic Environment

The second phase of the tests consisted in determining how well the algorithms
adapt to the four dynamic changes implemented, when these occur when the
algorithm is still running.

A set number of 100 tests were run for each algorithm, for each dynamic change.
Two sets of 100 tests were run for the congested road and the interchanges of
cities dynamic changes, and only one set for adding and deleting a city.

The time of applying a dynamic change was set to be the time when the algo-
rithm has reached a �nal solution according to the static implementation (N*N
steps passed without an improvement to the solution, where N is the number of
cities). One such dynamic change is applied at that moment, with the excep-
tion of congested road, which has a di�erent behavior: after the algorithms has
reached N*N steps without improving on the solution, one road begins to su�er
from congestion every 10th step.

Di�erent algorithms o�er di�erent behavior, as the following results will show.

5.2.1 Interchange cities on a circle map of 10 points

The �rst dynamic change that was tested is the interchanging of locations of
two cities. One such change is applied per run, and what the tests try to �nd
is whether the algorithms manage to adapt to this change that increases the
length of its tour, if the tour is close to optimum.

The test consists in a map of 10 cities positioned around a circle, with a optimum
tour length of 6.19345368405876.

Appendix XIX shows the success rate of the algorithm to reach the optimal solu-
tion, after two cities have swapped places. The results show Genetic Algorithm
to be the highest adaptable, with 91% success rate, followed by Simulated An-
nealing with 88% and (1+1) EA, respectively RLS, which are tied for the third
place, with 85 optimum solutions found. MMAS performs badly, only hitting
the optimum 15% of the time.

Appendix XX and Appendix XXI show the average distance from the optimum
before the change was applied, respectively the average distance after the change
was applied. Simulated Annealing and Randomized Local Search show a large
increase of their distance from the optimum, after the two cities were inter-
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changed. Genetic Algorithm also provides worse solutions after the change, but
at a lower increase level. (1+1) EA and Min Max Ant System provide a surpris-
ingly decrease of their average length after the change was applied, which could
suggest that the change itself improved on their solutions some of the time.

The di�erence between the best solutions found before and after the dynamic
change was applied can be seen more accurately in Appendix XXII.

5.2.2 Interchange cities on a circle map of 25 points

Another test for adaptability of this dynamic change was made, using a map of
25 cities in a circle, with the shortest tour having a length of 6.2655652786388.

Appendix XXIII shows the average success rate for hitting the optimum solution
after the cities swapping change occurred. Simulated Annealing is the leader of
this ranking, proving to be highly adaptable, and �nding the optimum 92% of
the times, even though two cities were interchanged. GA and RLS also show
good adaptability, with 81% success rate both, being closely followed by (1+1)
EA with 76 hits. MMAS again performs badly, �nding the optimum only 5
times. The average distances from the optimum, before and after the change
was applied (Appendix XXIV and Appendix XXV ) show distances from the
optimum comparable to the tests on the same map, in a static environment, all
of the showing high adaptability. Simulated Annealing, as expected from the
previous graph, has the closest distance from the optimum, around 0.11, showing
an improvement from the �rst part of the run, before the change. RLS and
GA also provide close solutions, both before and after the dynamic change was
applied. Appendix XXVI shows the average di�erence in tour lengths before and
after the interchange was applied. The graph shows and increase in length for
(1+1)EA, GA and RLS, a minor decrease in length for SA. More importantly, it
again shows a very high decrease in length for the solutions provided by MMAS.

5.2.3 Congested road on a circle map of 10 points

Testing the congested road dynamic change tries to determine whether the algo-
rithms can adapt to having a road being congested one every K runs (K was set
to 10 in this testing phase), and if it �nds decent detours, or it gets stuck with
that road, even though it gets unusable from time to time. Also, it interests the
number of steps it takes each algorithm to decide to select or not that speci�c
road.
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The road to be congested was closely selected to ensure it in�uences the outcome:
a segment of the optimum tour was selected to be congested for these tests.

Appendix XXVII shows the percentage of time an algorithm chose to include
the congested road in their optimal solution. (1+1) EA and MMAS showed to
be more inclined to choose detours than the congested road, only selecting it 6/

The average step to �nd a solution graph (Appendix XXVIII ) shows Genetic
Algorithm and Simulated Annealing, the two algorithms, which decided to in-
clude the congested road most often, also managed to make this decision the
fastest: 130, respectively 131 steps. (1+1) EA, on the other hand, took the
longest number of steps to �nd its solutions, an average of 754.72 steps. RLS
took around 429 steps, and MMAS 226 steps.

5.2.4 Congested road on a circle map of 25 points

The second test for the congested road dynamic change was run on the 25 cities
circular map.

Appendix XXIX shows the number of times an algorithm included the congested
road in their solution. Remarkably, (1+1) EA and MMAS continued on their
detour-preferring behavior, and none of their solutions included that road. The
proportions remain the same as the previous step; GA leads with 32% of the
time including the road, SA with 24% and RLS with 5%.

The average step count (Appendix XXX ) shows the same proportions as the 10
cities test: GA and SA were the quickest to �nd their solutions, in approximate
803 steps the �rst and 717 the second. The longest number of steps was used by
(1+1) EA (6176.66 on average), followed by RLS and MMAS (3448, respectively
1732 steps on average).

5.2.5 Deleting a city

The next test deals with determining the adaptability of the algorithms to the
case where one city disappears from the map, while the algorithm is still running.
Implementing this dynamic change on a circular map would have given no useful
results, as applying it to an already optimal solution, leaves the system with
another optimal solution, and the algorithms have no adapting to do.

In order to avoid this situation, a di�erent input problem was used, one that
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Figure 5.1: Optimum tour with the city to be deleted

provides a di�erent optimal tour when a city is deleted. When deleting the city
from the image, if the algorithm has previously found the optimal solution, it
needs to change it in order to �nd the new optimal solution, that doesn't include
that speci�c city. The same thing applies to the case where this speci�c city is
added to the map while the algorithm is still running.

Figure 5.2: Optimum tour without the city

Appendix XXXI shows the average success rate of �nding the optimal solution
after the city was deleted. This graph shows Genetic Algorithm to be the highest
adaptable algorithm, having a success rate of 43%. Simulated Annealing, (1+1)
EA, and Randomized Local Search follow, �nding the optimum around 30 times
out of 100. MMAS performs extremely bad, having a success rate of 2%. This is
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also expressed in the graph showing the di�erence from the optimum solution,
after the city was deleted (Appendix XXXII ): MMAS o�ers solutions far away
from the optimum, whilst the closest solutions are o�ered by GA and SA.

The average length decrease between the solutions found before and after the
deletion of a city is expressed in Appendix XXXIII. The highest decrease is
present for MMAS, approx. 4.05, the decrease of the other algorithms varying
from 2.319, for GA, to 2.64 for (1+1) EA.

The step count graphic in Appendix XXXIV shows algorithms to have similar
steps to �nding a new solution, after the dynamic change was applied. SA, GA
and RLS all have an average step count, from the moment the dynamic change
was applied, to the moment a solution was selected, of around 277. At the
bottom of the scale, (1+1) EA needs 303 steps.

5.2.6 Adding a city

Testing the addition of a city was made using the same map, and the same city
as the deletion of a city dynamic change. The city is initially deleted, before the
algorithm starts, and then is added back in when the algorithm decides on one
solution.

All the algorithms showed a very low success rate of reaching the optimal so-
lution after the dynamic change was applied (below 4% ), thus a graph for it
was not needed. Only (1+1) EA and GA managed to �nd the optimal, the �rst
algorithm �nding it 2 times out of 100, the second �nding it 4 times.

The length di�erence from the optimum (Appendix XXXV ) , after the change
was applied, shows that the algorithms have performed in a similar fashion,
except MMAS. Min Max Ant System showed a di�erence of 3.68158, while the
other algorithms having longer tours than the optimum, with only around 1.1.

The length increase between the solutions found before, and the ones found after
adding a new city (Appendix XXXVI ) shows MMAS to have the smallest tour
length increase 0.979. Genetic Algorithm's solutions were the ones that su�ered
the highest length increase, on average 2.933633.

Appendix XXXVII shows the number of steps it took an algorithm to decide
on a new solution, after the dynamic change was applied. The lowest number
of steps were used by MMAS (around 253), and the highest by (1+1) EA, 285
steps.
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Conclusions

The software application implemented throughout this project allows users to
test the �ve implemented algorithms (Genetic Algorithm, (1+1) Evolutionary
Algorithm, Simulated Annealing, Randomized Local Search and Min-Max Ant
System), with user-selected input problems, or with generated circular maps.
The application allows the user to select whether the algorithm will run in a
static or a dynamic environment, and it o�ers both a graphical display of the
tours found, and also the length of each solutions found along the way.

The present report also deals with analyzing and comparing the �ve algorithms.
On a static environment, Genetic Algorithm o�ers good solutions for small scale
problems, and in a relatively low number of steps. As the scale of the problems
increases, the performance of each algorithm drops, but two algorithms maintain
a decent success rate of �nding the optimum solution, and o�er a decent ap-
proximation of the solution at every run: Simulated Annealing and Randomized
Local Search. RLS seems actually to perform better on larger-scale problems
then smaller scale.

In a dynamic environment, when interchanging of cities occurs, Simulated An-
nealing and RLS also have a good adaptability rate, being able to react to the
change and �nd the good approximations once more. They, together with GA,
are the best options for such an environment.
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When congestion of roads occur, RLS and (1+1) EA have the highest rate
of �nding a decent detour around that congested road, as they seem to take
consider consistency more important than tour length. Even though its solutions
don't approximate the optimum so well, MMAS also has a good rate of �nding
such detours.

In an environment where cities might get deleted, Genetic Algorithm seems to
be the best solution, as it has a very good rate of �nding the optimum, or at least
a good approximation of it, even after such a change occurs. Except MMAS,
the other algorithms also show decent adaptability to this change.

Adding a new city to the problem seems to be a problem too complex for the
�ve algorithms. Even though the algorithms are helped by inserting the city in
the place that seems the best option, they only manage to �nd decent approxi-
mations of the optimum after a new city is added, but no the actual optimum
solution. Genetic Algorithm and Simulated Annealing are again very adaptable,
as they o�er the best approximation.
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Figure I.1: Static environment - Circle 10 - success rate



Appendix II

Appendix II



60 Appendix II

Figure II.1: Static environment - Circle 10 - average tour length
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Figure III.1: Static environment - Circle 10 - average distance from optimum
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Figure IV.1: Static environment - Circle 10 - average number of steps
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Figure V.1: Static environment - Circle 10 - length variation over 50 steps
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Figure VI.1: Static environment - Circle 25 - success rate
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Figure VII.1: Static environment - Circle 25 - average tour length
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Figure VIII.1: Static environment - Circle 25 - average distance from opti-
mum



Appendix IX

Appendix IX



74 Appendix IX

Figure IX.1: Static environment - Circle 25 - average step count
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Figure X.1: Static environment - Circle 25 - tour length variation over 50 steps
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Figure XI.1: Static environment - Circle 50 - sucess rate
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Figure XII.1: Static environment - Circle 50 - average tour length
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Figure XIII.1: Static environment - Circle 50 - average distance from opti-
mum
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Figure XIV.1: Static environment - Circle 50 - average step count
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Figure XV.1: Static environment - Circle 100 - sucess rate
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Figure XVI.1: Static environment - Circle 100 - average tour length
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Figure XVII.1: Static environment - Circle 100 - average distance from opti-
mum
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Figure XVIII.1: Static environment - Circle 100 - step count
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Figure XIX.1: Interchange Cities - Circle 10 - sucess rate
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Figure XX.1: Interchange Cities - Circle 10 - average distance from optimum
before change
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Figure XXI.1: Interchange Cities - Circle 10 - average distance from optimum
after change
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Figure XXII.1: Interchange Cities - Circle 10 - average distance between so-
lutions before and after the change
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Figure XXIII.1: Interchange Cities - Circle 25 - sucess rate
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Figure XXIV.1: Interchange Cities - Circle 25 - average distance from opti-
mum before change
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Figure XXV.1: Interchange Cities - Circle 25 - average distance from opti-
mum after change
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Figure XXVI.1: Interchange Cities - Circle 25 - average distance between
solutions before and after the change
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Figure XXVII.1: Congested Road - Circle 10 - number of times congested
road was included in solution
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Figure XXVIII.1: Congested Road - Circle 10 - step count
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Figure XXIX.1: Congested Road - Circle 25 - number of times congested road
was included in solution
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Figure XXX.1: Congested Road - Circle 25 - average step count
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Figure XXXI.1: Delete city - success rate
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Figure XXXII.1: Delete city - average distance from optimum, after dynamic
change
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Figure XXXIII.1: Delete city - average length decrease between solutions
found before and after deletion
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Figure XXXIV.1: Delete city - average step count
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Figure XXXV.1: Add city - average distance from optimum, after dynamic
change
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Figure XXXVI.1: Add city - average length decrease between solutions found
before and after insertion
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Figure XXXVII.1: Add city - average step count
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