
Expansion of Regularization Tools
with Large-Scale Problems

Agnes Martine Nielsen & Astrid Enslev Vestergård

Kongens Lyngby 2013
B.Sc.-2013-9



Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, Bygning 303 B, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253031, Fax +45 45881399
compute@compute.dtu.dk
www.compute.dtu.dk B.Sc.-2013-9



Summary

The goal with this expansion pack for Regularization Tools has been to create
good, interesting, and easy to use large-scale test problems for testing numer-
ical algorithms in Matlab. We have implemented three different kind of test
problems: 1 ) Gravity Surveying in 2-D and 3-D; 2 ) Seismic Tomography in
2-D and 3-D with Fresnel Kernels; and 3 ) Image deblurring problem. In the
implementation and manual we have focused on consistency and structure. This
means, that all the functions have the same sort of inputs and outputs with few
variations. This should make it easier for the user to use the different test prob-
lems. User-friendliness has also been a focus point for us. We have achieved this
by creating functions that require very few input parameters, but yet still can
be adjusted to a specific need by the advanced user. All the geology problems
have predefined examples, which makes it easy to get started with them. The
image deblurring problem has several standard images that serve in the same
way.
Another common thing for all the functions, is that there is a detailed Matlab
interface available, as well as this manual and demo scripts. We imagine that
many of the users will be using personal computers to test their numerical al-
gorithms. We have therefore sought to make the code as efficient as possible as
well as using sparse matrices, when it was suitable, to minimize the required
memory space.
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Chapter 1

Introduction

Numerical analysis is an important part of modern computer science. It is used
to approximate or recreate solutions of mathematical systems that cannot be
solved analytically. There are many software systems and packages available
that implement different numerical algorithms. One of these, is the Matlab
package Regularization Tools [4], for which this is an expansion pack. Regular-
ization Tools is a package for analyzing and solving discrete ill-posed problems.
This expansion pack adds several test problems to the package, these are de-
signed for testing numerical algorithms that solve discrete linear inverse prob-
lems. An inverse problem is: When we know the output of a system, but we
only know either the system or the exact input and want to find the unknown
of the two, see Figure 1.1. If both the input and the system are known, it is on
the other hand called a forward problem. The test problems are formulated as
forward problems, so the system and input are set up and then the output is
computed. The problems are given to the user to solve as inverse problems, but
where the exact solution is also known. The user can then compare the solution
they find with the given exact solution. This is important when designing an
algorithm, for example regularization algorithms, since it is a way to evaluate
the performance of the algorithm. Comparing the solution also shows the need
for test problems, since we can never get the exact solution to use for evaluation
when working with real data. With test problems, it is possible to generate all
three parts of an inverse problem, that is, the exact data, which is the input,
the system, and the output and compare the computed solution to the exact
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Figure 1.1: The Inverse Problem.

solution.

Test problems can in general be used for several purposes, two of these are
checking whether a physical modeling is done correctly, the other is to test
algorithms. We have focused on the latter in this expansion pack, therefore
the physical models used are simplified and the parameters may not reflect real
physical parameters. The test problems are however designed to reflect the size
of real life problems. This means that all physical modeling is done in two or
three dimensions, which results in very large systems. This is opposed to the
test problems already implemented in Regularization Tools, which are from a
time, where systems of this size were too hard to solve. When dealing with
these large-scale systems there is still a problem of storing the entire system,
therefore minimizing the needed memory space has been a focus in the designs.

The discrete linear problem can be written as

Ax = b, (1.1)

whereA is the system matrix that transforms the exact data, x, to the measured
data, b. The test problems in this expansion pack will all be of this form, that
is, they are all discrete linear inverse problems. These linear inverse problems
can however arise from a variety of different real life problems. Some examples
are: Recreating a sharp image from a blurred image or recreating the mass
distribution in the underground in an area given gravity measurements on the
surface. These are also two of the three cases implemented as test problems,
the third is a problem of recreating an image of the subsurface using seismic
waves.



Chapter 2

Gravity Surveying Problems

In gravity surveying we measure differences in the vertical gravity field on the
surface of the earth and use the measurements to reconstruct the geometry of
the mass densities in the subsurface. This helps geologists understand what is
in the underground. This problem is an inverse problem of the kind in equation
(1.1), and further reading about the topic can be found in [2].

In this section, we will consider a two dimensional version of the problem based
on sections 2.1 and 2.2 in [5]. We need a model that, given the mass density
distribution in the underground, can compute the gravitational field. From
physics we know that the gravitational field due to a point mass is the vector

g = −GM r̂
‖r‖22

, (2.1)

where G is the gravitational constant, M is the strength of the point mass, r is
the vector from the measuring point to the point mass, and r̂ is the unit vector:
r̂ = r/‖r‖2. For our purpose, we will modify the model slightly. Firstly, we
will neglect the gravitational constant and reverse the vertical axis to get rid
of the minus sign. Reversing the axis means that we get a left-hand coordinate
system. Secondly, we are not only interested in one point mass, but many point
masses so we need to integrate over the subsurface.
We imagine that we take a slice of earth so that we have a two dimensional
representation of the underground as shown in Figure 2.1.
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Figure 2.1: Geometry of two dimensional gravity surveying problem.

Given the geometry in the underground, we have to compute the vertical grav-
ity field at a point, s, on the surface. We consider the contribution to the
gravity field, dg, from a source point, (x, z), below the surface. We let the
mass density be a function of the position, so at the point (x, z) it is f(x, z).
The distance between the measuring point s and the source point (x, z) is
‖r‖2 =

√
z2 + (s− x)2. Since we are only interested in the vertical compo-

nent of the gravitational force, we will only use the vertical component of the
unit vector r̂ = [− cos(θ), sin(θ)]T . That is, sin(θ) = z

‖r‖2 , where θ is the angle
in radians as shown in Figure 2.1. We can insert this in equation (2.1),

dg =
sin(θ)

‖r‖22
f(x, z) =

z

‖r‖32
f(x, z) =

z

(z2 + (s− x)2)3/2
f(x, z).

We notice that f(x, z) in the equation above is the mass density (and not the
mass). The mass distribution is found by integrating over the subsurface. The
vertical component of the gravitational field at a point s then becomes,

g(s) =

∫ 1

0

∫ d

0

z

(z2 + (s− x)2)3/2
f(x, z)dzdx. (2.2)

The integration is from 0 to 1 along the x-axis and from 0 to the depth, d, along
the z-axis. Equation (2.2) is a first kind Fredholm integral, where the kernel is

K(s, x, z) =
z

(z2 + (s− x)2)3/2
.
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We are however not interested in a continuous representation of the model, but
a discrete one.
We discretize the area into quadratic pixels with Nx pixels in the x-direction
and Nz pixels in the z-direction. We use the midpoint discretization method
from [8] and represent x and z as follows,

xl =
l − 1

2

Nx
, zk =

(k − 1
2 )d

Nz
, l = 1 . . . Nx, k = 1 . . . Nz,

where l is the index in the x-direction and k is the index in the z-direction of
the subsurface. This gives a kernel that depends on the indices,

K(s, x, z) ≈ Kl,k(s) =
zk

(z2k + (s− xl)2)3/2
.

This leads to the following discretization of the integral (2.2),∫ 1

0

∫ d

0

K(s)f(x, z)dzdx ≈
∫ 1

0

d

Nz

Nz∑
k=1

Kk(s)f(x, zk)dx, (2.3a)

≈ 1

Nx

d

Nz

Nx∑
l=1

Nz∑
k=1

Kl,k(s)f(xl, zk), (2.3b)

=
d

n

Nx∑
l=1

Nz∑
k=1

Kl,k(s)f(xl, zk) = g̃(s), (2.3c)

where n = Nx ·Nz. We discretize the measurement interval into m measurement
points, sx, and let bi = g̃(sx) for i = 1 . . .m. We can now formulate the problem
as the system (1.1), that is,

Ax = b,

where x is a vector of the f(x, z) values in each pixel and this is called the
phantom. The elements of A are given as,

ai,j =
d

n
Kl,k(sx),

where j = k + (l − 1)Nz.
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2.1 geophantoms

Purpose:

Create exact material distributions for geological test problems.

Synopsis:

X = geophantoms(N)
X = geophantoms(N,example)
X = geophantoms(N,example,options)

Description:

Input Parameters
N A vector of length 2 or 3, depending on the desired dimensions

that defines the size of the phantom X. The form should be
N = [Nx Nz] if 2-D or N = [Nx Ny Nz] if 3-D.

example Example number indicating the chosen example. Possible ex-
amples are 1, 2, 3, 4, or empty. If empty, the phantom specified
by the option parameters is created.

options Struct containing the option fields for the test problem, see
below.

Output Parameters
X Phantom matrix of dimensions specified in N.
Option Fields
parameters A vector with the parameters of the wanted phantom.

The first element specifies the type. It can be 1 for a
disk/ball/ellipse/ellipsoid, 2 for a Gaussian object or 3 for a
box.
In 2-D the parameters for the disk/ellipse are:
[1, x0, z0, a1, a2, theta], where (x0, z0) is the center, a1 and a2
are the semi-axes and theta is the rotational angle in radians.
If a1 = a2 the object is a disk.
The parameters for the 2-D Gaussian function are:
[2,mu1,mu2, sigma1, sigma2, cor], where (mu1,mu2) is the
center, sigma1 and sigma2 are the standard deviations and
cor is the correlation.
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The parameters for the 2-D box are:
[3, x0, z0, a1, a2], where (x0, z0) is the center and a1 and a2 are
half the lengths of the sides of the box.
In 3-D the parameters for the ball/ellipsoid are:
[1, x0, y0, z0, a1, a2, a3, theta1, theta2, theta3], where (x0, y0, z0)
is the center and a1, a2, and a3 are the semi-axes and theta1,
theta2, and theta3 are the rotational angles around the x, y,
and z-axes in radians. If a1 = a2 = a3 the ellipsoid is a ball.
The parameters for the 3-D Gaussian function are:
[2,mu1,mu2,mu3, sigma1, sigma2, sigma3, corxy, corxz, coryz],
where (mu1,mu2,mu3) is the center, sigma1, sigma2, and
sigma3, are the standard deviations, and corxy, corxz, and
coryz are the correlations.
The parameters for the 3-D box are:
[3, x0, y0, z0, a1, a2, a3], where (x0, y0, z0) is the center and a1,
a2, and a3 are half the lengths of the sides of the box.

rho The material parameter of the objects. The parameter rho
can either be given as a scalar, where all objects have the
same material value or as a vector, where material values are
assigned from left to right and top to bottom. Default material
value is 1.

gausstol The tolerance for the material parameter of the Gaussian ob-
ject before cut off. The default is set to 0.

Table 2.1

The Matlab function geophantoms creates a matrix X of the dimensions spec-
ified in N. This phantom can either be one of the predefined examples or a
user customized phantom. The phantom can be used when creating numerical
geological test problems. This function is used in the test problems gravity2D,
gravity3D, fresneltomo2D, and fresneltomo3D.

2-D 3-D
Disk Ball
Ellipse Ellipsoid
Filled box Filled box
2-D Gaussian function 3-D Gaussian function

Table 2.2: Implemented shapes in geophantoms.
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A phantoms is in general a subsurface area that have a material value of zero ex-
cept in some specific areas. These areas are implemented as geometrical shapes.
In geophantoms several geometrical shapes has been implemented, see Table
2.2. Furthermore, four predefined examples are implemented, these examples
consist of one or two kinds of shapes. In 2-D the subsurface area has the length
1 in arbitrary units in the x-direction and the depth in the z-direction is d. This
depth will usually be less than 1. The z-axis points downwards with 0 at the
surface, making it a left-hand coordinate system. In 3-D the subsurface has the
length 1 in arbitrary units in the x-direction, the width in the y-direction is dy
and the depth z-direction is dz. Both dy and dz will usually be less than 1.
Again, the z-axis points downwards with 0 at the surface, making it a left-hand
coordinate system. The four examples implemented in two and three dimensions
are described in Table 2.3.

Ex. 2-D 3-D
1 f(x, z) is two disks of different

sizes. One with center at (0.4,
0.2d) with radius 0.07d and the
other with center at (0.8, 0.4d)
and radius 0.15d.

f(x, y, z) is two balls of differ-
ent sizes. One with center at
(0.4, 0.4dy, 0.2dz) and radius
0.07·min(dy, dz) and the other
with center at (0.8, 0.75dy, 0.4dz)
with radius 0.15·min(dy, dz).

2 f(x, z) is two ellipses and a disk.
The disk has its center at (0.25,
0.15d) and radius 0.05d. The
first ellipse has its center at (0.25,
0.35d) with a1 = 0.07d and a2 =
0.2d and it is rotated −π/4. The
other ellipse has its center at
(0.75, 0.5d) with a1 being 0.07d
and a2 being 0.2d and is rotated
π/3.

f(x, y, z) is two ellipsoids and a
ball. The ball has its center
at (0.25, 0.25dy, 0.15dz) and a
radius of 0.1·min(dy, dz). The
first ellipsoid has its center at
(0.25, 0.50dy, 0.35dz), a1 and
a2 are 0.07·min(dy, dz) in x-
direction and y-direction, and a3
is 0.2·min(dy, dz) in z-direction.
It is rotated −π/4 around the
y-axis. The other ellipsoid has
center at (0.75, 0.75dy, 0.5dz),
a1 and a2 are 0.1·min(dy, dz) in
x-direction and y-direction, and
a3 is 0.25·min(dy, dz) in the z-
direction. It is rotated π/3
around the y-axis.
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3 f(x, z) is a Gaussian object and
a small disk. The disk has its
center at (0.3, 0.2d) and a radius
of 0.05d. The Gaussian object
has its center at (0.4, 0.4d) and
has standard deviations of [0.4,
0.1]·d. The correlation between
x and z is 0.01.

f(x, y, z) is a Gaussian object
and a small ball. The ball has
its center at (0.3, 0.75dy, 0.2dz)
and a radius of 0.1·min(dy, dz).
The Gaussian object has its cen-
ter at (0.4, 0.2dy, 0.4dz) and
has standard deviations of [0.4,
0.1, 0.1]·min(dy, dz). The corre-
lations rxy, rxz, and ryz are re-
spectively 0.7, 0.0, and 0.6.

4 f(x, z) is two long boxes that
overlap vertically. The first box
has its center at (0.35, 0.2d) and
half lengths of [0.25, 0.05d]. The
second box has its center at (0.65,
0.4d) and half lengths of [0.25,
0.05d]. This example is suited for
problems with small depth, i.e.
Nx � Nz.

f(x, y, z) is two flat boxes that
overlap vertically. The first box
has its center at (0.35, 0.35dy,
0.2dz) and half lengths of [0.25,
0.25dy, 0.05dz]. The second box
has its center at (0.65, 0.65dy,
0.4dz) and half lengths of [0.25,
0.25dy, 0.05dz]. This example
is suited for problems with small
depth, i.e. Nx � Nz.

Table 2.3: Implemented examples in geophantoms.

If the implemented examples are not sufficient for the user, then the user can
specify their own phantom by creating a geometric shape with the option field
parameters. To create a phantom consisting of more than one shape, one must
create a sum of individually created shapes, that is for example, X = Xellipse +
Xbox.

When using the option parameters, the box is implemented so the user specifies
the center by (x0, y0, z0) and half the lengths of the box, a1, a2, and a3. The
box has the dimensions of 2 · a1× 2 · a2× 2 · a3. It is assigned the material value
rho. In the 2-D version only (x0, z0) and two half lengths are needed.

An ellipse is implemented with center, c, in (x0, z0), semi-axes a1 and a2. The
parameter θ is the rotational angle in radians. It is a standard ellipse which is
rotated with a rotation matrix [10],

1

a21

(
(x− x0) cos(θ) + (z − z0) sin(θ)

)2
+

1

a22

(
− (x− x0) sin(θ) + (z − z0) cos(θ)

)2 ≤ 1.

(2.4)
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 2.2: The four predefined examples in 2-D.

Every pixel with center (x, z) satisfying equation (2.4), is then given the material
value rho. The disk is just an ellipse with a1 = a2. The ellipse in 3-D is the
ellipsoid and can be found in appendix A. The ball in 3-D is the ellipsoid where
all the semi-axes have the same length.

The 2-D Gaussian function [9] for each point (x, z) is implemented as,

f(x, z) =
1

2πσ1σ2
√

1− r2

· exp

(
−1

2(1− r2)

(
(x− µ1)2

σ2
1

+
(z − µ2)2

σ2
2

− 2r(x− µ1)(z − µ2)

σ1σ2

))
,

with σ = [σ1, σ2] being the variance respectively in the x and z-directions. The
variable r is the correlation between x and z, µ = [µ1, µ2] are the means and the
center of the object. The Gaussian function is assigned the material value rho
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 2.3: The four predefined examples in 3-D.

at the center and it then decays outwards. As for the ellipsoid, the Gaussian
3-D function can be found in appendix A.

Examples:

The 2-D default example, number 1, is set up with a phantom of size 100× 100:
N = [100 100];
X = geophantoms(N);
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and is visualized in Figure 2.2a with:
imagesc(X)
axis image off

Example 2 is chosen and visualized the same way as before in Figure 2.2b:
example = 2;
X = geophantoms(N,example);

Example 3 and 4 in 2-D are displayed respectively in Figures 2.2c and 2.2d.
The same is done for the 3-D examples, just with a phantom of size 100×100×
100 and are displayed in Figure 2.3, they are visualized with the Matlab func-
tion Sliceomatic [6]. For examples of the use of Sliceomatic see gravity3Ddemo
(script).
A user defined phantom can be created using the field parameters in the struct
options. Here a disk with center in (0.3, 0.5) and radius 0.3 and a box with
center in (0.6, 0.5) and half lengths of 0.3 in the x-direction and 0.1 in the
z-direction. They are then added together, such that the overlap between
the shapes has the sum of the material values, and visualized in Figure 2.4.

options.parameters = [1,0.3,0.5,0.3,0.3,0];
X1 = geophantoms(N,[],options);
options.parameters = [3,0.6,0.5,0.3,0.1];
X2 = geophantoms(N,[],options);
X = X1 + X2;
imagesc(X)
axis image off

Figure 2.4: The user defiend phantom.
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For use of phantoms in test problems see sections: 2.2, 2.3, 3.1, and 3.2.

See also:

gravity2D, gravity3D, fresneltomo2D,, fresneltomo3D,
gravity2Ddemo (script), gravity3Ddemo (script), tomo2Ddemo (script),
tomo3Ddemo (script)
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2.2 gravity2D

Purpose:

Test problem: 2-D gravity surveying model problem.

Synopsis:

[A,b,x,sx] = gravity2D(N,m)
[A,b,x,sx] = gravity2D(N,m,options)

Description:

Input Parameters
N An integer or a vector of length 2 that defines the size of the

subsurface area, measured in pixels. If N is given as a scalar, the
area becomes quadratic, N = Nx = Nz. When N is given as a
vector then N = [Nx Nz].

m The number of measurement points on the surface.
options Struct containing the option fields for the test problem, see below.
Output Parameters
A The system matrix of size m× n, where n = Nx ·Nz.
b The right hand-side as a vector of length m.
x The phantom X as a vector of length n = Nx · Nz. The

columns of the phantom are stacked by vec(x) and is reshaped
by X=reshape(x,Nz,Nx).

sx A vector of length m with the x-coordinates of measurement
points.

Option Fields
groups The number of groups the measurement points should be divided

into. See Figure 2.5.
mspace The number of skipped potential measuring points in an equidis-

tant grid. The default value is set to 2, and is only applicable
when the number of groups is greater than 1. See Figure 2.5.

offset A symmetric extension of the measuring interval. The parameter
offset is the length which is added to both sides of the interval.
It can also be negative, in which case the measuring interval is
shortened. Default value is set to 0. See Figure 2.5.
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example A number specifying the phantom example. Valid example num-
bers are 1 to 4, see section 2.1.

rho The mass density of the objects. The parameter rho can either
be given as a scalar, where all objects have the same mass density
or as a vector, where densities are assigned from left to right and
top to bottom. Default density is 1.

gausstol The tolerance for the mass density of the Gaussian object before
cut off. The default is set to 0.

Table 2.4

The Matlab function gravity2D creates a mass density distribution, x, the
system matrix, A, and the gravity measurements, b. It furthermore gives the
coordinates of the measurement points in sx. The mass distribution is created
using the function geophantoms, see section 2.1.

The problem is modeled by a first kind Fredholm integral with the kernel,

K(sx, x, z) =
z

(z2 + (sx − x)2)3/2
,

and it is discretized using the midpoint method, see the beginning of section 2.
This results in the elements of A being of the form,

ai,j =
d

n

zk
(z2k + (sx − xl)2)3/2

,

where n = Nx ·Nz, j = k + (l − 1)Nz, and,

xl =
l − 1

2

Nx
, zk =

(k − 1
2 )d

Nz
, l = 1...Nx, k = 1...Nz.

The function has several options regarding the measurement points, see Table
2.4 and Figure 2.5. The first option field is groups, which specifies the number of
groups that the measurement points are divided into. Each group has the same
number of measurement points if possible, otherwise the last groups, i.e. the
ones with the highest x-coordinates, have one more point than the first groups.
The space between the groups are defined using mspace. The option mspace
defines the number of measurement points there could be in the gap, if these
potential measurement points also were equidistant. The interval, in which the
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Figure 2.5: Illustration of the options. Herem = 11, groups = 3 and mspace =
1. Notice that the last groups have one more point.

measurements are taken, can be extended using offset. The option offset gives
the length that the measurement interval will be extended with to each side.
The measurement interval is as default set to [0, 1] and a positive offset will
make it larger and a negative smaller, that is, [0−offset , 1+offset ]. All of these
options are illustrated in Figure 2.5.

The rest of the options are regarding the phantom, that is, example, rho, and
gausstol. For the use of these, see the function geophantoms in section 2.1.

Examples:

The problem is set up with a subsurface area of size 100× 50 and 100 measure-
ment points.

N = [100 50];
m = 100;
[A,b,x,sx] = gravity2D(N,m);

The phantom, x, and the right-hand side, b, of the problem can be visualized
with the following code:

imagesc(reshape(x,N(2),N(1)))
axis image off
figure
plot(sx,b,’o’);

and are displayed in Figure 2.6.
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(a) Exact phantom, phantom example 1 (b) Right-hand side

Figure 2.6

The number of measurement groups are changed by changing the option field
groups,

options.groups = 3;
[A,b,x,sx] = gravity2D(N,m,options);

The other fields in options can be changed and applied in the same way.

See also:

geophantoms, gravity3D, gravity2Ddemo (script)

References:

Hansen, P. C., Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
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2.3 gravity3D

Purpose:

Test problem: 3-D gravity surveying model problem.

Synopsis:

[A,b,x,sxy] = gravity3D(N,m)
[A,b,x,sxy] = gravity3D(N,m,options)

Description:

Input Parameters
N An integer or a vector of length 3 that defines the size of the

subsurface volume. If N is given as a scalar, the volume becomes
cubic, N = Nx = Ny = Nz. When N is given as a vector then
N = [Nx Ny Nz].

m An integer or a vector of length 2 that defines the number of
measurement points in each direction. If m is an integer then
m = mx = my and if it is given as a vector then m = [mx my].

options Struct containing the option fields for the test problem, see below.
Output Parameters
A The system matrix of size (mx ·my)× n, where n = Nx ·Ny ·Nz.
b The right-hand side vector of length mx ·my.
x The phantomX as a vector of length n = Nx·Ny ·Nz. The columns

of the phantom are stacked with x = vec(X) and is reshaped by
X=reshape(x,Ny,Nx,Nz).

sxy A matrix of size 2 × (mx ·mz) with sxy= [sx, sy], which are the
coordinates of measurement points.

Option Fields
groups An integer or a vector of length 2 that defines the number of

groups the measurement points should be divided into. If groups
is a vector, the first element defines the number of groups in the
x-direction and the second element in the y-direction. If it is an
integer there will be the same number of groups in each direction.
The default value is 1. See Figure 2.7.



2.3 gravity3D 19

mspace An integer or a vector of length 2. It defines the number of skipped
potential measuring points in an equidistant grid. If it is a vector
the first element defines the number of skipped points in the x-
direction and the second element in the y-direction. The default
value is set to 2, and is only applicable when the number of groups
is greater than 1. See Figure 2.7.

offset A symmetric extension of the measuring interval. The parameter
offset is the length which is added to all four sides of the interval.
It can also be negative, in which case the measuring intervals are
shortened. Default value is set to 0. See Figure 2.7.

example A number specifying the phantom example. Valid example num-
bers are 1 to 4, see section 2.1.

rho The mass density of the objects. The parameter rho can either
be given as a scalar, where all objects have the same mass density
or as a vector, where densities are assigned from left to right and
top to bottom. Default density is 1.

gausstol The tolerance for the mass density of the Gaussian object before
cut off. The default is set to 0.

Table 2.5

The Matlab function gravity3D creates a mass density distribution, x, a system
matrix, A, and the gravity measurements, b. It also gives the coordinates of
the measurement points out as a matrix, sxy. The mass density distribution is
constructed using geophantoms, see section 2.1.

The problem is modeled by a first kind Fredholm integral with the kernel,

K(sx, sy, x, y, z) =
z

(z2 + (sy − y)2 + (sx − x)2)3/2
,

and it is discretized using the midpoint method [8]. This results in the entries
of A being of the form,

ai,j =
dy · dz
n

zk3
(z2k3 + (sy − yk2)2 + (sx − xk1)2)3/2

,

where n = Nx ·Ny ·Nx, j = k1 + (k2 − 1)Nx + (k3 − 1)NxNy, and,

xk1 =
k1 − 1

2

Nx
, yk2 =

(k2 − 1
2 )dy

Ny
, zk3 =

(k3 − 1
2 )dz

Nz
,
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where k1 = 1...Nx, k2 = 1...Ny, k3 = 1...Nz.

The function gravity3D has several options regarding how to place the mea-
surement points, see Table 2.5 and Figure 2.7.

Figure 2.7: Illustration of the options. Here mx = 8, my = 6, groups = [3, 2]
and mspace = 1. Notice that the last two groups have one more
point in each line in the x-direction.

The first option field is groups, which specifies the number of groups the mea-
surement points are divided into both in the x-direction and the y-direction.
Each group in the x-direction has the same number of points if possible. If this
is not possible, the last groups, i.e. the ones with the highest x-coordinates, will
have one more row of points than the firsts. This is the same for the y-direction,
where the last groups have the highest y-coordinates.
The option mspace defines the space between the groups. That is, the number
of measurement points there could be in the gap, if these potential measurement
points also were equidistantly placed in both dimensions. The interval, in which
the measurements are taken, can be extended using offset. The option offset
gives the length that the measurement interval will be extended with in both
ends of the x and y-intervals. The measurement interval is as default set to
[0, 1] × [0, dy], and a positive offset will make it larger, and a negative smaller,
that is, [0− offset, 1 + offset]× [0− offset, dy + offset], where dy = Ny/Nx. All
of these options are illustrated in Figure 2.7.

The rest of the options are regarding the phantom, that is, example, rho, and
gausstol. For the use of these, see the function geophantoms in section 2.1.
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Examples:

The problem is set up with subsurface volume of size 35 × 25 × 15 and 30
measurement points in the x-direction and 20 y-direction.

N = [35 25 15];
m = [30 20];
[A,b,x,sxy] = gravity3D(N,m);

Since our coordinate system has 0 at the surface the z-axis is flipped in the
illustration. The phantom, x, is reshaped and flipped to be visualized in Figure
2.8a.

sliceomatic(flipdim(reshape(x,N(2),N(1),N(3)),3))

We use the Matlab Package Sliceomatic for 3-D visualizations [6].

The right-hand side, b, of the problem can be visualized with the following code
surf(reshape(sxy(:,1),m(2),m(1)),reshape(sxy(:,2),...
m(2),m(1)),reshape(b,m(2),m(1)));

and can be seen in Figure 2.8b.

(a) Exact phantom, phantom example 1 (b) Right-hand side

Figure 2.8

The field offset is activated and set by,
options.offset = 0.2;
[A,b,x,sxy] = gravity3D(N,m,options);

The other fields in options can be changed and applied in the same way.
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See also:

geophantoms, gravity2D, gravity3Ddemo (script)

References:

Hansen, P. C., Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.



Chapter 3

Seismic Tomography

To perform tomography is to create images of sections of the insides of an ob-
ject by using waves to penetrate it. In this section, we will create test problems,
where seismic waves are used to reconstruct an image of the subsurface of the
earth. We consider a setup of sources and receivers. The sources send out seis-
mic waves and the receivers are seismographs, which detect the waves arriving
at their positions and measure the travel time of the waves. An example of a
setup can be seen in Figure 3.1. Here, the sources are marked as stars, and
have coordinates (sx, sz), and the receivers with crosses, and have coordinates
(px, pz). The coordinate system has (0, 0) at the upper left corner of the sub-
surface area with x-axis to the right and and the z-axis downwards, making it
a left-hand coordinate system. The sources and half of the receivers are located
in boreholes and the rest of the receivers on the surface.

When modeling the travel time of a wave from one source to a receiver, a simple
model of the path being a ray is often used as in section 7.7 in [5]. The model
can be derived as follows. We let f(x, z) be a material parameter describing
how much the material slows down the wave, and dτ be an infinitesimal small
part of the ray at a point (x, z). Then the travel time of the wave is f(x, z)dτ .
The travel time along an entire ray i between one pair of sources and receivers
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Figure 3.1: Geometry of a two dimensional seismic tomography problem.

are,

bi =

∫
ray i

f(x, z)dτ, (3.1)

where (x, z) = (x0, z0) + τdi. The sources have the positions (x0, z0), and di
is a unit vector in the ray direction. If we discretize this problem into N × N
pixels, as shown in Figure 3.1, and let f(x, z) = fk,l be constant in each pixel
(k, l), then this gives the travel time for each ray i,

bi =
∑

(k,l)∈ray i

fk,l∆τ
(i)
k,l , (3.2)

where ∆τ
(i)
k,l is the length of ray i in pixel (k, l).

In these test problems, we will model the area in which the wave travels by a
wider shape than a ray. This is done since it is a more accurate approximation
to the natural seismic wave according to [11]. This path is defined in two
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dimensions as the following Fresnel kernel [7],

K(∆t, w, α) = cos

(
2π∆t

w

)
exp

(
−
(
α∆t

w/4

)2)
, (3.3)

where
∆t =

1

N

(√
(sx − x)2 + (sz − z)2

+
√

(px − x)2 + (pz − z)2

−
√

(sx − px)2 + (sz − pz)2
)
.

(3.4)

The square roots in (3.4) are divided by N , so that the width of the kernel does
not depend on the discretization. The parameter w determines the width of
the kernel in arbitrary units together with the parameter α that determines the
exponential decay. A high value of w gives a wide kernel, and a high value of
α gives a high exponential decay, i.e. a more narrow kernel. The coordinates x
and z are the coordinates for each center of the pixels (k, l). An example of the
shape of this wave path with width w = 0.2 and α = 70 can be seen in Figure
3.2.

Figure 3.2: The Fresnel kernel of the 2-D problem.

We calculate the wave path for one pair of sources and receivers for all the
pixels in the subsurface. This corresponds to sending one wave from a source to
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a receiver. The value assigned to each pixel in the subsurface matrix is a weight
of how much of the wave that passes through the pixel, this is corresponding to
∆τ

(i)
k,l in the simple ray model in equation (3.2). The pixel matrix, as the one

in Figure 3.2, is then vectorized to be a row in the system matrix A. When we
have gone through all possible pairs of sources and receivers we have the entire
system matrix of size (s · p)×N2 in 2-D and (s · p)×N3 in 3-D.

The input, x, of the inverse system is a geological phantom created with
geophantoms, see sections 2.1. It represents the slowness of the subsurface in
each pixel. That is, how much it slows down the wave when it penetrates the
pixel and it is corresponding to f(x, z) = fk,l in equation (3.2). The output,
b, of the system (1.1) is found by the matrix-vector multiplication, Ax = b.
It represents the travel time between each source-receiver pair, so each element
corresponds to a bi in equation (3.2).
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3.1 fresneltomo2D

Purpose:

Test problem: 2-D seismic tomography problem.

Synopsis:

[A,b,x,sxz,pxz] = fresneltomo2D(N)
[A,b,x,sxz,pxz] = fresneltomo2D(N,s)
[A,b,x,sxz,pxz] = fresneltomo2D(N,s,p)
[A,b,x,sxz,pxz] = fresneltomo2D(N,s,p,options)

Description:

Input Parameters
N An integer specifying the size of the square subsurface grid. The

grid will be of size N ×N .
s An integer specifying number of source points. The default value

is N.
p An integer specifying number of receiver points. The default

value is N.
options Struct containing the option fields for the test problem, see below.
Output Parameters
A The system matrix of size (s · p)×N2.
b The right-hand side column vector of length s · p.
x The phantom X as a column vector of length N2, where the

columns are stacked with x = vec(X), i.e. X = reshape(x,N,N).
sxz A matrix with coordinates of the source points. The x-

coordinates are in the first column and z-coordinates in second
column.

pxz A matrix with coordinates of the receiver points. The x-
coordinates are in the first column and z-coordinates in second
column.

Option Fields
width Specifies the width of the Fresnel kernel in arbitrary units. Should

be a positive scalar and we recommend values between 0 and 1.
Default is 0.2.
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alpha Positive exponential decay parameter as a scalar. It influences
the width of the kernel. We recommend values higher than 20.
Default is 70.

kerneltol Tolerance on the kernel before cut off. Default is 10−6.
example Number that specifies the phantom example. Valid example num-

bers are 1 to 4, see geophantoms in section 2.1 for details. Default
is 1.

rho Parameter describing the slowness of objects, can be a scalar or
a vector. If rho is a vector, the different slowness parameters are
assigned to the objects from left to right and top down. Default
is 1.

gausstol Tolerance on slowness for Gaussian objects before cut off. Default
is 0.

Table 3.1

The Matlab function fresneltomo2D creates a representation of a subsurface
area with a phantom stacked in a vector, x, with length N2, the system matrix,
A, of the size s · p × N2, and the right-hand side, b, with length s · p. The
test problem is used to model how a wave travels from a source point, s, to
a receiver, p, through areas of different slowness distributions. The subsurface
is represented by a N × N grid of pixels, where the sources are equidistantly
placed along the right edge and the receivers are equidistantly placed along the
left edge and on the surface. The geological phantom is placed in the grid, and
the possible phantoms are described in sections 2.1.

If the Matlab function is called without specifying the number of sources, s,
and receivers, p, then they will respectively be set to N . The used phantom is
specified in example in options, see Table 3.1. If no phantom is specified, then
a phantom of two disks of different sizes is used, which is example 1, see section
2.1.

In this implementation the 2-D wave path from one source to one receiver is
modeled by a shape wider than a ray. This shape is made with the kernel [7]

K(∆t, w, α) = cos

(
2π∆t

w

)
exp

(
−
(
α∆t

w/4

)2)
, (3.5)
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where

∆t =
1

N

(√
(sx − x)2 + (sz − z)2

+
√

(px − x)2 + (pz − z)2

−
√

(sx − px)2 + (sz − pz)2
)
.

(3.6)

The square roots in equation (3.6) are divided by N , so that the width of the
kernel does not depend on the discretization. The parameter w is the width
of the kernel in arbitrary units and is called width in Matlab. The parameter
α influences the exponential decay and is called alpha in Matlab. A high α
gives a high decay, i.e. a more narrow kernel. The coordinates x and z are the
coordinates for each center of the pixels. The default values of width and alpha
are chosen because they give a sparsity of the matrix A of about 5%. To see
how the matrix A is constructed see section 3.

Examples:

The problem is set up with a subsurface area of size 100×100, that is, N = 100,
and 10 sources and 15 receivers.

N = 100;
s = 10;
p = 15;
[A,b,x,sxz,pxz] = fresneltomo2D(N,s,p);

The phantom, x, and the sources and receivers can be visualized with the fol-
lowing code:

imagesc(reshape(x,N,N))
axis(’image’,[0 100 0 100],’off’)
hold on
plot(sxz(:,1),sxz(:,2),’g*’,’MarkerSize’,20,’linewidth’,2);
hold on
plot(pxz(:,1),pxz(:,2),’mx’,’MarkerSize’,20,’linewidth’,2);

and are displayed in Figure 3.3.

The exponential decay parameter alpha is changed by
options.alpha = 30;
[A,b,x,sxz,pxz] = fresneltomo2D(N,s,p,options);

The other fields in options can be changed and applied in the same way.
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Figure 3.3: Exact phantom with sources (*) and receivers (x), phantom ex-
ample 1.

See also:

geophantoms, fresneltomo3D, tomo2Ddemo (script)

Limitations:

If width is set too high, above 1, and alpha is set too low, below 20, then A will
not be sparse and the function will be slow.

References:

Hansen, P. C., Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
Jensen, J. M., B. H. Jacobsen, and J. Christensen-Dalsgaard, Sensitivity kernels

for Time-Distance inversion, Solar Phys.: SOHO9 topical issue (2000), pp.
231-239
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3.2 fresneltomo3D

Purpose:

Test problem: 3-D seismic tomography problem.

Synopsis:

[A,b,x,sxyz,pxyz] = fresneltomo3D(N)
[A,b,x,sxyz,pxyz] = fresneltomo3D(N,s)
[A,b,x,sxyz,pxyz] = fresneltomo3D(N,s,p)
[A,b,x,sxyz,pxyz] = fresneltomo3D(N,s,p,options)

Description:

Input Parameters
N An integer specifying the size of the cubic subsurface grid.

The grid will be of size N ×N ×N .
s An integer specifying number of source points. The default

value is N.
p An integer specifying number of receiver points. The default

value is N.
options Struct containing the option fields for the test problem, see

below.
Output Parameters
A The system matrix of size (s · p)×N3.
b The right-hand side column vector of length s · p.
x The phantom X as a column vector of length N3, where

the columns are stacked with x = vec(X), i.e. X =
reshape(x,N,N,N).

sxyz A matrix with coordinates of the source points. The x-
coordinates are in the first column, y-coordinates in the second
column, and z-coordinates in third column.

pxyz A matrix with coordinates of the receiver points. The x-
coordinates are in the first column, y-coordinates in the second
column, and z-coordinates in third column.
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Option Fields
width Specifies the width of the Fresnel kernel in arbitrary units.

Should be a positive scalar and we recommend values between
0 and 1. Default is 0.5.

alpha Positive exponential decay parameter as a scalar. It influences
the width of the kernel. We recommend values higher than 2.
Default is 10.

sourceHoles The number of boreholes, can either be 1 or 2. The default is
1.

kernel The kernel type used to construct A. Can either be solid or
hollow. The default kernel type is solid.

kerneltol Tolerance on the kernel before cut off. Default is 10−6.
example Number that specifies the phantom example. Valid example

numbers are 1 to 4, see geophantoms in section 2.1 for details.
Default is 1.

rho Parameter describing the slowness of objects, can be a scalar
or a vector. If rho is a vector, the different slowness param-
eters are assigned to the objects from left to right and top
down. Default is 1.

gausstol Tolerance on slowness for Gaussian objects before cut off. De-
fault is 0.

Table 3.2

The Matlab function fresneltomo3D creates a representation of a subsurface
volume with a geophantom stacked in a vector, x, with length N3, the system
matrix,A, of the size (s·p)×N3, and the right-hand side, b, with length s·p. The
test problem is used to model how a wave travels from a source point to a receiver
through areas of different slowness distributions. The subsurface is represented
by a N ×N ×N grid of voxels, where the sources are equidistantly placed and
send waves through the subsurface to the equidistantly placed receivers. If the
option sourceHoles is set to 1, the sources are placed in a column at (N,N/2, z)
as in Figure 3.4a. If sourceHoles is set to 2, the sources are placed in two
columns at (N, 0, z) and (N,N, z) as in Figure 3.4b. The receivers are always
placed in two columns at (0, 0, z) and (0, N, z) each with 1

6p. The remaining 2
3p

is placed in a grid-like pattern on the surface, see Figure 3.4. The phantom is
placed in the voxel grid, and possible phantoms are described in sections 2.1.

If the Matlab function is called without specifying the number of sources, s,
and receivers, p, then they will respectively be set to N . The used phantom is
specified in example in options, see Table 3.2. If no phantom is specified, then
a phantom of two balls of different sizes is used, which is example 1, see section
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(a) One source hole (b) Two source holes

Figure 3.4: The placement of the 10 sources and 14 receivers.

2.1.

In this implementation, the 3-D wave path from one source to one receiver is
modeled by a shape wider than a ray. This shape can be modeled by two
different kind of Fresnel kernels. The option kernel specifies if the kernel is solid
or hollow.
The solid kernel is of the following form [7]

K(∆t, w, α) = cos

(
2π∆t

w

)
exp

(
−
(
α∆t

w/4

)2)
, (3.7)

and is a direct expansion of the one used in 2-D, see section 3. An example of
the kernel can be seen in Figure 3.5a. The hollow kernel is of the following form
[7]

K(∆t, w, α) = sin

(
4π∆t

w

)
exp

(
−
(
α∆t

w/4

)2)
, (3.8)

and is a more accurate model of the actual 3-D wave path and an example can
be seen in Figure 3.5b. In both cases

∆t =
1

N

(√
(sx − x)2 + (sy − y)2 + (sz − z)2

+
√

(px − x)2 + (py − y)2 + (pz − z)2

−
√

(sx − px)2 + (sy − py)2 + (sz − pz)2
)
.

(3.9)

The square roots in equation (3.9) are divided by N , so that the width of the
kernel does not depend on the discretization. The parameter w is the width
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of the kernel in arbitrary units and is called width in Matlab. The parameter
α influences the exponential decay and is called alpha in Matlab. A high α
gives a high decay, i.e. a more narrow kernel. The coordinates x and z are the
coordinates for each center of the voxels. The default values of width and alpha
are chosen because they give a sparsity of the matrix A of about 5%. To read
more about the structure of the matrix A see section 3.

(a) Solid kernel (b) Hollow kernel

Figure 3.5: Illustration of the two kernel types.

Examples:

The problem is set up with a subsurface volume of size 100× 100× 100, that is,
N = 100, and 10 sources and 15 receivers.

N = 100;
s = 10;
p = 15;
[A,b,x,sxyz,pxyz] = fresneltomo3D(N,s,p);

The phantom, x, and the sources and receivers can be visualized with Sliceo-
matic [6] in the following code,

sliceomatic(flipdim(reshape(x,N,N,N),3))
hold on
plot3(sxyz(:,1),sxyz(:,2),N-sxyz(:,3),’g*’,’MarkerSize’,20,...
’linewidth’,2);
hold on
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plot3(pxyz(:,1),pxyz(:,2),N-pxyz(:,3),’mx’,’MarkerSize’,20,...
’linewidth’,2);

and are displayed in Figure 3.6. The number of source holes is changed by
options.sourceHoles = 2;
[A,b,x,sxyz,pxyz] = fresneltomo3D(N,s,p,options)

The other fields in options can be changed and applied in the same way.

Figure 3.6: Exact phantom with sources (*) and receivers (x), phantom ex-
ample 1.

See also:

geophantoms, fresneltomo2D, tomo3Ddemo (script)

Limitations:

If width is set too high, above 1, and alpha is set too low, below 2, then A will
not be sparse and the function will be slow.
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References:

Hansen, P. C., Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
Jensen, J. M., B. H. Jacobsen, and J. Christensen-Dalsgaard, Sensitivity kernels

for Time-Distance inversion, Solar Phys.: SOHO9 topical issue (2000), pp.
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Chapter 4

Image Deblurring Problems

When taking a picture with a camera, it is inevitable that it gets more or
less blurred. This means that it is important to have deblurring algorithms to
recreate sharp images that are a good representation of the actual scene. In this
section, we will set up a test problem for the deblurring problem based on [3].

4.1 Blurring an Image

A digital image is represented by a number of pixels, that is, small squares
assigned values representing a color. Here, we will only consider gray scale
images, which means that each pixel can be represented by one number between
0 and 1. The blurring of digital images is, that one point in the scene affects
not only the pixel representing it, but also neighboring pixels. Deblurring an
image is solving an inverse problem (1.1).

4.1.1 Point Spread Functions and Boundary Conditions

A point spread function (PSF) is introduced to model the blurring of the picture.
It models how one single pixel will be blurred over the surrounding pixels, and
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it can either be represented by a function or an array. The array can be the
same size as the image or smaller. If a point spread function array has even
dimensions, then the center is placed in the pixel to the right of and below
the actual middle of the array. If only one of the dimensions is even, this only
applies to that one. If it has uneven dimensions, then the center pixel is at the
actual middle.
In this expansion pack four point spread functions have been implemented:

Motion blur: The first point spread function is motion blur. It represents the
blurring occurring when the camera is moved while taking a picture, that
is, the blurring along a straight line. This can be seen in Figure 4.1a,
where the center pixel is blurred to both sides.

Out of focus: The second point spread function represents the camera being
out of focus. It is modeled by averaging a pixel value in a disk shape as
shown in Figure 4.1b.

Gaussian: The third implemented is a Gaussian point spread function. It blurs
a pixel value by the rotationally symmetric Gaussian function, this means
that the elements, pij , in the point spread function array are of the form,

pij = exp

(
− 1

2

[
i− k
j − l

]T [
s2 0
0 s2

]−1 [
i− k
j − l

])
,

where i and j are the indices in the PSF array, k and l is the center of
the PSF array, where a point source is located. The parameter s is the
standard deviation. This can be seen in Figure 4.1c.

Moffat: The fourth and final point spread function is the Moffat function. It is
mostly used in astronomy and models the blurring of the stars when seen
through a telescope. The elements, pij , of the point spread function array
is given as,

pij =

(
1 +

[
i− k
j − l

]T [
s21 r2

r2 s22

]−1 [
i− k
j − l

])−β
,

where i and j are the indices in the PSF array, k and l is the center of the
PSF array where a point source is located. The three parameters s1, s2,
and r determine the width and orientation of the point spread function.
And this can be seen in Figure 4.1d.

Blurring the image means that information about objects near the edge of the
image is lost outside of the boundary. It also means that objects just outside the
boundary can affect the image. This leads to the need of boundary conditions,
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(a) Motion blur (b) Out of focus

(c) Gaussian (d) Moffat

Figure 4.1: Point Spread Function arrays.

both for blurring the images for test problems, but also for recovering the sharp
images. The boundary conditions implemented here, see section 4.2, are zero,
periodic, and reflexive boundaries. For blurring the images, we also have the
option of using the actual boundaries given by an image.
The condition of zero boundaries means that the image is padded with zeros
around the edges. Periodic boundaries mean that the image is repeated beside
itself, such that, what is outside the boundary is what is inside the boundary in
the opposite side of the image. Finally reflexive boundaries mean that the image
is mirrored in the boundary, and the mirrored image is used as the boundary
condition.

This leads to setting up the linear system of equations (1.1). The exact image is
vectorized and stored in x, and b is the vectorized blurred image. It is blurred
using the PSF array and the boundary condition, which is structured in A.
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4.1.2 Applying the PSF: 2-D Convolution

Blurring an image is a discrete 2-D convolution between the exact image and the
point spread function array as explained in chapter 4 in [3]. The convolution is
most easily explained with an example. First we set up a 3× 3 example, where
X is the sharp image matrix, P is the PSF array, and B is the blurred image
matrix:

X =

x11 x12 x13
x21 x22 x23
x31 x32 x33

 , P =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 , B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 .
We use X and P to compute the blurred element b22. We rotate the matrix P
180 degrees due to the 2-D convolution:

y
P =

p33 p32 p31
p23 p22 p21
p13 p12 p11

 ,
and place the PSF matrix on top of X, so the center element of

y
P is on top of

the element in X corresponding to the element in B, we wish to compute. Then
we multiply and sum

y
PX =



x11 x12 x13
p33 p32 p31

x21 x22 x23
p23 p22 p21

x31 x32 x33
p13 p12 p11


, B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 .

The element b22 then becomes,

b22 = p33x11 + p32x12 + p31x13

+ p23x21 + p22x22 + p21x23

+ p13x31 + p12x32 + p11x33.

To see how the boundary conditions affect the blurred image, we need to com-
pute an element closer to the edge, for example b11. We again place the rotated
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PSF array on top of X,

y
PX =

p33 p32 p31



x11 x12 x13
p23 p22 p21

x21 x22 x23
p13 p12 p11

x31 x32 x33

, B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 ,

and the element b11 then becomes,

b11 = p33 + p32 + p31
+ p23 + p22 x11 + p21 x12
+ p13 + p12 x21 + p11 x22,

(4.1)

where the empty spaces, represent the influence from the image boundaries. If
zero boundaries are chosen, the empty spaces become zeros and the elements
close to the boundary will have a low value. If periodic is chosen, they take the
value of pixels at the opposite side of the image, and if reflexive is chosen they
are the mirrored pixel value. To clarify the last two boundary conditions, the

periodic and reflexive matrices are written together with
y
P as,

y
PperX =

x33 x31 x32 x33
p33 p32 p31



x13 x11 x12 x13
p23 p22 p21

x23 x21 x22 x23
p13 p12 p11

x33 x31 x32 x33

,
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y
PrefX =

x11 x11 x12 x13
p33 p32 p31



x11 x11 x12 x13
p23 p22 p21

x21 x21 x22 x23
p13 p12 p11

x31 x31 x32 x33

.

The structures of A therefore depend on both the point spread function and the
boundary condition. Each row of A multiplied by x then results in an element
of b. The structure of A therefore needs to give the convolution shown above.
More about these structures can be found in appendix C.
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4.2 imageblur

Purpose:

Test problem: Image deblurring problem.

Synopsis:

[A,b,x,m,n] = imageblur()
[A,b,x,m,n] = imageblur(X)
[A,b,x,m,n] = imageblur(X,options)

Description:

Input Parameters
X A gray scale image. If no input or an empty matrix is

given then the default image is used, that is, the small
standard image.

options Struct containing the option fields for the test problem,
see below.

Output Parameters
A The system matrix of size (m · n)× (m · n).
b The blurred image as a column vector of length m ·n, i.e.

B = reshape(b,m,n).
x The sharp image as a column vector of length m · n, i.e.

X = reshape(x,m,n).
m Number of rows in the output images X and B.
n Number of columns in the output images X and B.
Option Fields
standardImage Indicates the size of the chosen standard image. The

options are: ’small’, which is 300 × 400 pixels, ’medium’
of 600×800 pixels, and ’large’ of 1200×1600 pixels. The
default size is small.

psf The point spread function. The options are: ’motion-
Blur’, ’outOfFocus’, ’gaussian’, and ’moffat’. The default
is ’outOfFocus’.
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blurBoundary The boundary condition used to blur the image to ob-
tain b. The options are: ’zero’, ’periodic’, ’reflexive’, and
’true’. The default setting is ’zero’.

modelBoundary The boundary condition used to constructA. The options
are: ’zero’, ’periodic’, and ’reflexive’. If nothing is given,
the model boundary is set to blurBoundary, that is unless
blurBoundary is set to ’true’, in which case the default is
used. The default is ’zero’.

cropSize The size of the image blurred with true boundary condi-
tions. It is given in the form [m n]. If cropSize is not
given, the size is defined based on the PSF size.

theta A ’motionBlur’ option. The parameter theta is the angle
in degrees in a counterclockwise direction of the blurring
line. The default angle is 0.

len A ’motionBlur’ option. The parameter len is the length of
the blurring line in pixels. The default length is 9 pixels.

radius An ’outOfFocus’ option. The parameter radius is the
radius of the disk used in out of focus in pixels. The
default size is 5 pixels.

sigma A ’gaussian’ option. The parameter sigma is the standard
deviation of the Gaussian function in pixels and must be
a positive scalar. The default is 2.

beta A ’moffat’ option. The parameter beta is a positive pa-
rameter that controls the decay of the PSF. The default is
set to 1.15. The default value is chosen so the distribution
has a suitable size.

r A ’moffat’ option. The parameter r determine the width
and orientation of the Moffat function together with s.
The default value is 0.

s A ’moffat’ option. The parameter s determine the width
and orientation of the Moffat distribution together with
r. It can either be given as a vector s = [s1 s2] or a scalar,
then s = s1 = s2. The default value is 2.4. The default
value is chosen so the distribution has a suitable size.

Table 4.1

The Matlab function imageblur creates a system matrix, A, the sharp image
as a vector, x, and the blurred image as a vector, b. It furthermore gives the
number of rows and columns in the image as output, they are respectively m
and n. The vectorized image x, given as output, is either the input image or a
cropped version of the input image. The image is cropped, when the blurring
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boundary option of true boundaries is used, see more below.
The input image can be provided by the user, otherwise one of the standard
images is used. If the function is called without inputs, the small standard
image is used. If the input X is given as an empty matrix, this is also the case,
unless otherwise specified in the option standardImage. In this option, the user
can choose between three sizes of the standard image: A small of size 300× 400
pixels, a medium of size 600× 800 pixels, and a large of size 1200× 1600 pixels.
These are only used, if the input X is an empty matrix.

Point Spread Functions: The model used to blur the image is a point spread
function, PSF. It is a model of how one pixel is blurred, and it is applied to
all pixels in the image. The implemented PSF’s are the options motionBlur,
outOfFocus, gaussian, and moffat blurring. The PSF motionBlur models the
camera being moved while the picture is taken, and each pixel is blurred as
a straight line. The PSF outOfFocus models the camera being out of focus
and each pixel is averaged over a disk shape. The PSF gaussian models the
blurring of each pixel as a Gaussian distribution. The PSF moffat models the
blurring of each pixel as a Moffat distribution, see the beginning of section 4.
The Gaussian and the Moffat PSF arrays are cropped, such that, the elements
with lowest values are higher than 5% of the highest values. This is done to
limit the size of the PSF arrays.

Boundary Conditions: In this function, there are two types of boundary
conditions: The blurring boundary, which is used to blur the image and create
b, and a model boundary, which is used to create A, and thereby can be used
to recreate the sharp image.
For blurring the image, the blurBoundary is used. Here, the user can choose
between four boundary conditions: Zero boundaries, periodic boundaries, re-
flexive boundaries, and true boundaries. The zero boundary option, zero, sets
everything outside the image to zero. The option periodic lets the image be
repeated besides itself, such that, the pixels outside the image are the same as
the pixels in the opposite side of the image. The option reflexive sets the the
boundary to be a reflection of the image. The last option for blurring boundary
is using the true boundaries. This means, that the input image is blurred, but
only the center part of the image is returned to the user as output. The center
part is of the size specified in the option cropSize. If no size is specified, then it
is as large as possible without being affected by any boundary condition applied
to the large image. If the given crop size is large, then the center part is affected
by the zero blurring boundary condition. If this happens a warning is given.
To create the matrix A the modelBoundary is used. It can be one of three
boundary conditions: Zero boundaries, periodic boundaries, or reflexive bound-
aries. The matrix is created to perform the blurring using the boundary and
PSF specified. To see more about the structure of the matrix A, see appendix
C.
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If only one of the two types of boundary conditions is given by the user, the
other is set to the same, unless the blurring boundary is chosen to be ’true’.
If this is the case, the model boundary is set to zero. If none of the boundary
conditions are specified the default is zero boundaries.

Remaining Options: The rest of the options for the test problem are options
regarding the PSF’s. These are: theta, len, radius, sigma, beta, r, and s. They
are specific for one PSF and for which is shown in Table 4.1.

Examples:

The problem is set up with default parameters.
[A,b,x,m,n] = imageblur();

The default standard image is shown with the following code,
imagesc(reshape(x,m,n))
axis image off
colormap gray

and is displayed in Figure 4.2. The blurred image, which is blurred with the
default out of focus filter, is visualized and shown in Figure 4.3b:

imagesc(reshape(b,m,n))
axis image off
colormap gray

The point spread function is changed to motion blur and the blurred image is
visualized the same way as before in Figure 4.3a.

options.psf = ’motionBlur’;
[A,b,x,m,n] = imageblur([],options);

The rest of point spread functions applied to the standard image is displayed in
Figure 4.3c and 4.3d, that is, respectively the Gaussian function and the Moffat
function.

See also:

imageblurdemo (script)
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Figure 4.2: The standard image.

(a) Motion blur (b) Out of focus

(c) Gaussian (d) Moffat

Figure 4.3: The standard image blurred with various point spread functions
and zero boundary conditions.

Limitations:

If the user chooses a large PSF array, by setting the length of motion blur, the
radius of out of focus, the standard deviation of the Gaussian distribution, or
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r and s in the Moffat distribution high, then the system matrix A, will not be
very sparse and the function will be slow.
If the image is very large then the function will also be slow.

References:

P. C. Hansen, J. G. Nagy and D. P. O’Leary, Deblurring Images: Matrices,
Spectra and Filtering, SIAM, Philadelphia, 2006.



Chapter 5

Reflections on the
Expansion Pack

This expansion pack to Regularization Tools [4] is a product of a bachelor thesis
at the Technical University of Denmark in the spring of 2013. The idea was
to design good test problems for testing large-scale regularization algorithms in
Matlab. We have focused on making the test problems user-friendly, so users
with various backgrounds can use the functions.

To make it possible for a user with only little knowledge in the field to use the
function, we have minimized the number of required inputs. This means that
the functions in this expansion pack at most requires two inputs, but can be
given more. It is also an option to provide a range of parameters. This is done
by having most of the input parameters as fields in an option struct. Then the
user can choose to set the parameters or ignore the option struct completely.
The latter will result in use of the default values. This way, it is easy to use
the functions without knowing what the different parameters do. The advanced
users however still have the options of tweaking the test problem to fit their
particular problem.

The two types of geological test problems use a subsurface phantom, that is
generated using a special function. This phantom-function was originally a
build-in function in the different test problem functions, but we chose to make
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it an independent function to create more flexibility in the uses of the expansion
pack. This way, the advanced user can create their own specialised phantoms.

Another thing, we have learned during the project is regarding the output pa-
rameters. In the beginning of the project, all the test problem functions only
had A, b, and x as outputs. However, throughout this project it became clear
that some of the functions should have more output parameters, some examples
are the coordinates for the measurements in the gravity surveying problems and
the coordinates for the sources and receivers in the seismic tomography prob-
lems. This makes it easier for the user to visualize the problems and understand
the physical structure.

For each test problem function there is a demo script related to it. These demo
scripts are intended as further introduction on how to use the functions and
visualize the outputs and make it easy to begin using our functions. In the
demo scripts it is possible to change the setup of a problem without having to
write everything from scratch.

In the implementation of the test problems, we have focused on making it pos-
sible to run on a laptop computer. This means minimizing the memory space
needed for storing the problems, as well as efficient code. We have used sparse
matrix structure to store the system matrices for the image deblurring problem
and the seismic tomography problem. This is done, because the matrices are
intended as being sparse. The default parameters have all been chosen, such
that, the system matrices have a sparsity of around 5%. If the parameters are
of the recommended size, the sparsity will be at most around 10%. It is however
possible to make full matrices, but doing this in a sparse matrix structure, will
make the functions run slow.

We hope, that if Regularization Tools is expanded further with more linear test
problems, these problems will follow same structure as in this pack, since a lot of
thought have gone into structuring the problems in a user-friendly and logical
setup. This means, that the output parameters will always be A, b, and x
together with a few parameters needed for visualization. The input parameters
should be as few as possible, but with further parameters in an option struct
for the advanced user.
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More Geo-phantoms

In this section, the interested reader can find the rest of the formulas referred
to in section 2.1, which is the ellipsoid and the Gaussian function i 3-D.

The ellipsoid formula in 3-D with a center in (0, 0, 0) can be found in [10] and
is

x̃2

a21
+
ỹ2

a22
+
z̃2

a23
≤ 1. (A.1)

The ellipsoid has the semi-axes a1, a2, and a3 and (x̃, ỹ, z̃) are the translated and
rotated ellipsoid coordinates. The rotational parameters θ1, θ2, and θ3 are the
angles in radians the ellipsoid is rotated around the x, y and z-axes respectively,
and is rotated in a left-hand coordinate system using the rotation matrices,

Rx(θ1) =

1 0 0
0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)

 , (A.2)

Ry(θ2) =

 cos(θ2) 0 sin(θ2)
0 1 0

− sin(θ2) 0 cos(θ2)

 , (A.3)

Rz(θ3) =

cos(θ3) − sin(θ3) 0
sin(θ3) cos(θ3) 0

0 0 1

 . (A.4)
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The relation between (x̃, ỹ, z̃) and the coordinates (x, y, z) is,x̃ỹ
z̃

 = Rz(θ3)Ry(θ2)Rx(θ1)

x− x0y − y0
z − z0

 . (A.5)

The (x, y, z), whose translated and rotated coordinates (x̃, ỹ, z̃) satisfy (A.1),
are assigned the material value rho to obtain the ellipsoid object. The ball is
an ellipsoid with a1 = a2 = a3.

The 3-D Gaussian function is implemented with σ = [σ1, σ2, σ3] being the vari-
ance in the x, y, and z-directions. The correlations are r = [rxy, rxz, ryz]; rxy is
the xy-correlation, rxz is the xz -correlation, and ryz is the yz -correlation. The
mean is µ = [µ1, µ2, µ3]. The Gaussian density function in 3-D is, a generaliza-
tion of [9],

f(x, y, z) =
1

(2π)3/2
√

det(Σ)
exp

(
− 1

2
(x− µ)>Σ−1(x− µ)

)
, (A.6)

where x = [x, y, z] and Σ is,

Σ =

 σ2
1 rxyσ1σ2 rxzσ1σ3

rxyσ1σ2 σ2
2 ryzσ2σ3

rxzσ1σ3 ryzσ2σ3 σ2
3

 .
The Gaussian density function is then normalized and assigned the value of rho
in the center, and the density then decays outward.
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Gravity Surveying Model in
Three Dimensions

In this appendix, we will derive the system for the three dimensional gravity
surveying problem, as we did for the two dimensional problem in section 2. As
in 2-D, we have from physics that the gravitational force due to a point mass
is,

g = −GM r̂
‖r‖22

, (B.1)

where G is the gravitational constant, M is the strength of the point mass, r is
the vector from the measuring point to the point mass, and r̂ is the unit vector,
r̂ = r/‖r‖2. The only difference from the 2-D problem is that the vectors in
equation (B.1) are now three dimensional. As in section 2, we will neglect the
gravitational constant and reverse the vertical axis to get rid of the minus sign.
Reversing the axis means that we get a left-hand coordinate system. Again, we
are not only interested in one point mass, but many point masses so we need to
integrate over the subsurface.

We want to compute the vertical gravity field at a point, s = (s1, s2), on
the surface. We consider the contribution to the gravity field, dg, from a
source point, (x, y, z), below the surface with the mass density f(x, y, z). The
distance between the point s on the surface and the source point (x, y, z) is
‖r‖2 =

√
z2 + (s1 − x)2 + (s2 − y)2. Since we are only interested in the vertical
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component of the gravity field, we only need the vertical component of the unit
vector r̂, that is, z

‖r‖2 . We insert all this into equation (B.1),

dg =

z
‖r‖2
‖r‖22

=
z

‖r‖32
f(x, y, z) =

z

(z2 + (s1 − x)2 + (s2 − y)2)3/2
f(x, y, z).

We notice that the formula depends on the mass density and not the mass.
The mass distribution is found by integrating over the subsurface. The vertical
component of the gravitational field at a point s then becomes,

g(s) =

∫ 1

0

∫ dy

0

∫ dz

0

z

(z2 + (s1 − x)2 + (s2 − y)2)3/2
f(x, y, z)dzdydx, (B.2)

where 1 is the length in the x-direction, dy is the width in the y-direction, and
dz is the depth in the z-direction all of the subsurface volume. The equation
(B.2) is a first kind Fredholm integral with the kernel

K(s, x, y, z) =
z

(z2 + (s1 − x)2 + (s2 − y)2)3/2
.

As in 2-D, we are not interested in the continuous representation, but a discrete
one. We therefore need to discretize the subsurface into cubic voxels with Nx
in the x-direction, Ny in the y-direction, and Nz in the z-direction. We use the
midpoint method from [8] and get,

xk1 =
k1 − 1

2

Nx
, yk2 =

(k2 − 1
2 )dy

Ny
, zk3 =

(k3 − 1
2 )dz

Nz
,

where k1 = 1 . . . Nx, k2 = 1 . . . Ny, k3 = 1 . . . Nz. This leads to the following
kernel that depends on the indices,

K(s, x, y, z) ≈ Kk1,k2,k3(s) =
zk3

(z2k3 + (s1 − xk1)2 + (s2 − yk2)2)3/2
,



55

which furthermore leads to the following discretization of the integral (B.2),∫ 1

0

∫ dy

0

∫ dz

0

K(s)f(x, y, z)dzdydx, (B.3a)

≈
∫ 1

0

∫ dy

0

dz
Nz

Nz∑
k3=1

Kk3(s)f(x, y, zk3)dydx, (B.3b)

≈
∫ 1

0

dy
Ny

dz
Nz

Ny∑
k2=1

Nz∑
k3=1

Kk2,k3(s)f(x, yk2 , zk3)dx, (B.3c)

≈ 1

Nx

dy
Ny

dz
Nz

Nx∑
k1=1

Ny∑
k2=1

Nz∑
k3=1

Kk1,k2,k3(s)f(xk1 , yk2 , zk3), (B.3d)

=
dy · dz
n

Nx∑
k1=1

Ny∑
k2=1

Nz∑
k3=1

Kk1,k2,k3(s)f(xk1 , yk2 , zk3), (B.3e)

= g̃(s), (B.3f)

where n = Nx · Ny · Nz. We discretize the measurement interval into a grid
of measurement points with mx points in the x-direction and my points in the
y-direction. The measurement points are of the form s̃ = (sx, sy) and the z-
coordinate is zero. We let bi = g̃(s̃) for i = 1 . . . (mx ·my).

We can now formulate the problem as the system (1.1), Ax=b, where x is a
vector of the f(x, y, z) values in each voxel of the phantom. The elements of A
are given as,

ai,j =
dy · dz
n

zk3
(z2k3 + (sx − xk1)2 + (sy − yk2)2)3/2

,

where j = k1 + (k2 − 1)Nx + (k3 − 1)NxNy. The right-hand side b is a vector
containing the elements bi.
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Appendix C

Image Deblurring System
Matrix

The structure matrix, A, for image deblurring problems are of the size (m ·
n) × (m · n), for an image of size m × n and depends on the chosen model
boundary condition. The structure of A has to have a form, such that, the
matrix multiplication, Ax = b, is equivalent to a two dimensional convolution
between X and the PSF array, and is best explained by an illustrative example.
We have designed the test problem to be able to take in non-quadratic images,
we have therefore investigated how the structures of A look for such problems.
A simpler example of a 3× 3 image can be found in [3]. Let us look at a 3× 5
example:

X =

x11 x12 x13 x14 x15
x21 x22 x23 x24 x25
x31 x32 x33 x34 x35

 , P =

p11 p12 p13 p14 p15
p21 p22 p23 p24 p25
p31 p32 p33 p34 p35

 ,
B =

b11 b12 b13 b14 b15
b21 b22 b23 b24 b25
b31 b32 b33 b34 b35

 .
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To set up the problem Ax = b, the images X and B must be vectors. Therefore
they are vectorized, and look like

x =
[
x11 x21 x31 x12 x22 x32 x13 x23 x33 x14 x24 x34 x15 x25 x35

]>
, (C.1)

b =
[
b11 b21 b31 b12 b22 b32 b13 b23 b33 b14 b24 b34 b15 b25 b35

]>
. (C.2)

The rotated point spread function matrix becomes,

y
P =

p35 p34 p33 p32 p31
p25 p24 p23 p22 p21
p15 p14 p13 p12 p11

 .
We know from section 4 that when applying

y
P to X, element b11 looks like,

b11 = p35 + p34 + p33 + p32 + p31
+ p25 + p24 + p23 x11 + p22 x12 + p21 x13
+ p15 + p14 + p13 x21 + p12 x22 + p11 x23.

(C.3)

The empty spaces represent the influence from the boundary condition. This
influence defines the structure of A. Each row, i, in A is the weights of the PSF
for a given pixel, bi, in the blurred image. Each column, j, in A is the weight of
how xj in x influence b. When multiplying A and x, the inner product becomes
the blurred image vector b. Because the different boundary conditions define
how A looks like, we will consider the different model boundaries individually.
That is, zero boundaries, periodic boundaries, and reflexive boundaries.

C.1 Zero Boundary Condition

Zero boundary condition is when the image X is padded with zeros around the
boundaries, more about this can be found in section 4.1.1. The structure of
A is found by computing each element in b as done for b11 in equation (C.3).
To find the pattern of A, we will compute the first couple of rows. The empty
spaces in (C.3) are replaced with zeros. We then get:

b11 = p23 x11 + p22 x12 + p21 x13 + p13 x21 + p12 x22 + p11 x23.

This becomes the first inner product between the first row of A and x. The
next couple of elements of b take the form:
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b21 = p33 x11 + p32 x12 + p31 x13 + p23 x21 + p22 x22
+ p21 x23 + p13 x31 + p12 x32 + p11 x33,

b31 = p33 x21 + p32 x22 + p31 x23 + p23 x31 + p22 x32
+ p21 x33.

The computation of b continues until you can insert the pij into A, in such a
way that Ax = b. For zero boundaries A has the form,



p23 p13 p22 p12 p21 p11
p33 p23 p13 p32 p22 p12 p31 p21 p11

p33 p23 p32 p22 p31 p21
p24 p14 p23 p13 p22 p12 p21 p11
p34 p24 p14 p33 p23 p13 p32 p22 p12 p31 p21 p11

p34 p24 p33 p23 p32 p22 p31 p21
p25 p15 p24 p14 p23 p13 p22 p12 p21 p11
p35 p25 p15 p34 p24 p14 p33 p23 p13 p32 p22 p12 p31 p21 p11

p35 p25 p34 p24 p33 p23 p32 p22 p31 p21
p25 p15 p24 p14 p23 p13 p22 p12
p35 p25 p15 p34 p24 p14 p33 p23 p13 p32 p22 p12

p35 p25 p34 p24 p33 p23 p32 p22
p25 p15 p24 p14 p23 p13
p35 p25 p15 p34 p24 p14 p33 p23 p13

p35 p25 p34 p24 p33 p23



(C.4)

The matrix in (C.4) has a block Toeplitz Toeplitz block structure (BTTB). That
is, it has five blocks of 3× 3 each with a Toeplitz structure, and they are again
placed in a Toeplitz structure. More about Toeplitz matrices can be found in
[1].

C.2 Periodic Boundary Condition

Periodic boundary condition is when the pixel values are repeated periodically
both horizontally and vertically with a period length of the number of pixels
respectively in the rows and columns, more about this can be found in section
4.1.1. When applying periodic boundary conditions, the elements of b are
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computed as in equation (C.3). Let us look at the first couple elements in b,

b11 = p35 x34 + p34 x35 + p33 x31 + p32 x32 + p31 x33
+ p25 x14 + p24 x15 + p23 x11 + p22 x12 + p21 x13
+ p15 x24 + p14 x25 + p13 x21 + p12 x22 + p11 x23,

b21 = p35 x14 + p34 x15 + p33 x11 + p32 x12 + p31 x13
+ p25 x24 + p24 x25 + p23 x21 + p22 x22 + p21 x23
+ p15 x34 + p14 x35 + p13 x31 + p12 x32 + p11 x33,

b31 = p35 x24 + p34 x25 + p33 x21 + p32 x22 + p31 x23
+ p25 x34 + p24 x35 + p23 x31 + p22 x32 + p21 x33
+ p15 x14 + p14 x15 + p13 x11 + p12 x12 + p11 x13.

This continues, and A is constructed with the elements of P arranged in such
a way that Ax = b. The matrix A for periodic boundaries becomes,

p23 p13 p33 p22 p12 p32 p21 p11 p31 p25 p15 p35 p24 p14 p34
p33 p23 p13 p32 p22 p12 p31 p21 p11 p35 p25 p15 p34 p24 p14
p13 p33 p23 p12 p32 p22 p11 p31 p21 p15 p35 p25 p14 p34 p24
p24 p14 p34 p23 p13 p33 p22 p12 p32 p21 p11 p31 p25 p15 p35
p34 p24 p14 p33 p23 p13 p32 p22 p12 p31 p21 p11 p35 p25 p15
p14 p34 p24 p13 p33 p23 p12 p32 p22 p11 p31 p21 p15 p35 p25
p25 p15 p35 p24 p14 p34 p23 p13 p33 p22 p12 p32 p21 p11 p31
p35 p25 p15 p34 p24 p14 p33 p23 p13 p32 p22 p12 p31 p21 p11
p15 p35 p25 p14 p34 p24 p13 p33 p23 p12 p32 p22 p11 p31 p21
p21 p11 p31 p25 p15 p35 p24 p14 p34 p23 p13 p33 p22 p12 p32
p31 p21 p11 p35 p25 p15 p34 p24 p14 p33 p23 p13 p32 p22 p12
p11 p31 p21 p15 p35 p25 p14 p34 p24 p13 p33 p23 p12 p32 p22
p22 p12 p32 p21 p11 p31 p25 p15 p35 p24 p14 p34 p23 p13 p33
p32 p22 p12 p31 p21 p11 p35 p25 p15 p34 p24 p14 p33 p23 p13
p12 p32 p22 p11 p31 p21 p15 p35 p25 p14 p34 p24 p13 p33 p23



. (C.5)

The matrix in (C.5) has the structure of five 3 × 3 blocks each with circulant
matrix structure, where the the diagonal and the two bidiagonals are the same
as in (C.4), but with added weight in the corners. The meta-structure of these
blocks is also circulant. More about circulant matrices can be found in [1].

C.3 Reflexive Boundary Condition

Reflexive boundary condition is when the pixel values are mirrored in the edges,
see section 4.1.1. This creates a very complex structure matrix that consist of
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four different types of matrices. As in the sections C.1 and C.2, we start by
computing the first couple of elements of b,

b11 = p35 x12 + p34 x11 + p33 x11 + p32 x12 + p31 x13
+ p25 x12 + p24 x11 + p23 x11 + p22 x12 + p21 x13
+ p15 x22 + p14 x21 + p13 x21 + p12 x22 + p11 x23,

b21 = p35 x12 + p34 x11 + p33 x11 + p32 x12 + p31 x13
+ p25 x22 + p24 x21 + p23 x21 + p22 x22 + p21 x23
+ p15 x32 + p14 x31 + p13 x31 + p12 x32 + p11 x33,

b31 = p35 x22 + p34 x21 + p33 x21 + p32 x22 + p31 x23
+ p25 x32 + p24 x31 + p23 x31 + p22 x32 + p21 x33
+ p15 x32 + p14 x31 + p13 x31 + p12 x32 + p11 x33.

Here, we see that each element in A becomes a sum of several PSF weights. If
we rearrange them according to xj it is even clearer and we get:

b11 = x11 (p34 + p33 + p24 + p23) + x21 (p14 + p13)
+ x12 (p35 + p32 + p25 + p22) + x22 (p15 + p12)
+ x13 p21 + x23 p11,

b21 = x11 (p34 + p33) + x21 (p24 + p23) + x31 (p14 + p13)
+ x12 (p35 + p32) + x22 (p25 + p22) + x32 (p15 + p12)
+ x13 p31 + x23 p21 + x33 p11,

b31 = x21 (p34 + p33) + x31 (p24 + p23 + p14 + p13)
+ x22 (p35 + p32) + x32 (p25 + p22 + p15 + p12)
+ x23 p31 + x33 (p21 + p11).

This continuous until all the elements have been computed. Then we have
separated the weights according to their structure. We find that as for the
quadratic matrices in [3], A is a sum of a block Toeplitz Toeplitz block (BTTB)
matrix, a block Toeplitz Hankel block (BTHB) matrix, a block Hankel Toeplitz
block (BHTB) matrix and finally a block Hankel Hankel block (BHHB) matrix.
More about these matrix structures can be found in [1]. The four matrices
written out can be seen respectively in (C.6), (C.7), (C.8), and (C.9). The
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matrix A for reflexive boundaries is the sum of the following four matrices,

p23 p13 p22 p12 p21 p11
p33 p23 p13 p32 p22 p12 p31 p21 p11

p33 p23 p32 p22 p31 p21
p24 p14 p23 p13 p22 p12 p21 p11
p34 p24 p14 p33 p23 p13 p32 p22 p12 p31 p21 p11

p34 p24 p33 p23 p32 p22 p31 p21
p25 p15 p24 p14 p23 p13 p22 p12 p21 p11
p35 p25 p15 p34 p24 p14 p33 p23 p13 p32 p22 p12 p31 p21 p11

p35 p25 p34 p24 p33 p23 p32 p22 p31 p21
p25 p15 p24 p14 p23 p13 p22 p12
p35 p25 p15 p34 p24 p14 p33 p23 p13 p32 p22 p12

p35 p25 p34 p24 p33 p23 p32 p22
p25 p15 p24 p14 p23 p13
p35 p25 p15 p34 p24 p14 p33 p23 p13

p35 p25 p34 p24 p33 p23



+ (C.6)



p24 p14 p25 p15
p34 p24 p14 p35 p25 p15

p34 p24 p35 p25
p25 p15
p35 p25 p15

p35 p25

p21 p11
p31 p21 p11

p31 p21
p21 p11 p22 p12
p31 p21 p11 p32 p22 p12

p31 p21 p32 p22



+ (C.7)
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p33 p32 p31

p13 p12 p11
p34 p33 p32 p31

p14 p13 p12 p11
p35 p34 p33 p32 p31

p15 p14 p13 p12 p11
p35 p34 p33 p32

p15 p14 p13 p12
p35 p34 p33

p15 p14 p13



+ (C.8)



p34 p35

p14 p15
p35

p15

p31

p11
p31 p32

p11 p12



. (C.9)

Here, it can be noticed that the first matrix (C.6) is the same as the structure
matrix (C.4) for zero boundary conditions. The rest of the matrices are due to
the fact that the pixel values are mirrored.
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