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Abstract

The aim of this project was to improve the filtering and modeling of PET data, to
better handle the high noise level present in such data. It should lessen the artifacts
of conventional volume-based spatial filtering with a Gaussian kernel. The focus
was on the cerebral cortex due to its highly-folded and thin structure, which makes
it particularly unsuited for the conventional approach to filtering.

A surface-based approach was developed, which took the highly folded intrinsic
geometry of cerebral cortex into account in the filtering and modeling by the mul-
tilinear reference tissue method MRTM2. A surface representation of the cerebral
cortex was obtained by the software package FreeSurfer. By smoothing across
the surface of the cortical layer the data was less affected by edge artifacts, as
the smoothing is done between more functionally connected regions with simi-
lar neuronal density. The approach was contrasted with the conventional volume-
based approach with good results. In addition, the surface-based statistical tools
of FreeSurfer for group analysis between brains was evaluated with the use of this
model.

Furthermore, a Bayesian framework was used to directly incorporate the data filter-
ing into the mathematical model. This model was based on MRTM2 and assumed
that close regions have similar parameters and regularized the data on this assump-
tion. This model was shown to handle high levels of noise better than the ordinary
surface-based approach, while at the same time retaining a higher resolution and
detail. In addition, it resulted in a higher repeatability between scans on a vertex
level in a test-retest setting. Furthermore, attempts were made to treat the data in
a fully Bayesian approach by including optimization of the hyperparameters of the
model.

keywords: positron emission tomography, magnetic resonance imaging, multi-
modality, FreeSurfer, Bayesian modeling, regularization, cerebral cortex, MRTM2,
serotonin transporter, reference tissue.

i





Preface

This thesis was prepared at the department of Applied Mathematics and Computer
Science at the Technical University of Denmark in fulfillment of the requirements
for acquiring a M.Sc. in Mathematical Modeling and Computation. It was written
in collaboration with the Neurobiology Research Unit (NRU) at the Copenhagen
University Hospital.

The work was carried out from February to August 2013. The project was su-
pervised by Ph.D. Koen Van Leemput, Associate Professor at DTU Compute, and
Ph.D. Claus Svarer, Chief Engineer and Research Associate at NRU.

The thesis deals with the filtering and modeling of functional positron emission to-
mography data. The aim is to improve the handling of the high noise level present
in such data. It focuses on the special challenges of the highly-folded cerebral
cortex and to further develop the well-known and often used multilinear reference
tissue model by the use of a Bayesian framework and structural magnetic resonance
imaging.

Lyngby, August 19, 2013

Mikael Agn

iii





Acknowledgments

I would like to thank my internal supervisor Koen Van Leemput for his competent
supervision and the very giving theoretical discussions about mathematical mod-
eling approaches, especially within the field of Bayesian modeling. Futhermore, I
would like to thank my external supervisor Claus Svarer for his always engaging
daily supervision, his guidance into the field of neuroimaging and for allowing me
to carry out this project at NRU.

I want to direct special thanks to Vibe G. Frøkjær for being able to use her study
in my thesis and for all the help and encouragement. I also want to thank Gitte
Moos Knudsen for valuable comments on the progress of the project and all other
colleagues at NRU for their friendly and helpful attitude.

I want to thank Douglas N Greve for the discussions and inspiration about the im-
plementation in FreeSurfer and his always fast and relevant answers to any question
I had about FreeSurfer. In addition, I want to thank the professors and fellow stu-
dents at the image analysis section at DTU Compute for the constructive weekly
meetings.

Lastly, I would like to thank my family and friends for their love, patience and
support throughout the project.

v





Contents

1. Introduction 1

2. Theoretical background 3
2.1. Serotonergic transmitter system . . . . . . . . . . . . . . . . . . 3
2.2. Cerebral cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Positron emission tomography . . . . . . . . . . . . . . . . . . . 6

2.3.1. Regional averaging to improve signal-to-noise ratio . . . . 7
2.3.2. Smoothing to improve signal-to-noise ratio . . . . . . . . 8

2.4. Magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . 8

3. Related works 10

4. Materials and methods 12
4.1. Kinetic analysis with a one-tissue compartment model . . . . . . 12

4.1.1. Linearization of the one-tissue compartment model . . . . 13
4.1.2. Modeling with a reference tissue . . . . . . . . . . . . . . 14
4.1.3. The multilinear reference tissue method MRTM2 . . . . . 15

4.2. Data set - A sex-hormone fluctuation study . . . . . . . . . . . . 17
4.2.1. Image acquisition . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2. Radiotracer [11C]DASB . . . . . . . . . . . . . . . . . . 19
4.2.3. Initial results for the sex-hormone fluctuation study . . . . 19

4.3. Parametric imaging with FreeSurfer . . . . . . . . . . . . . . . . 22
4.3.1. Boundary-based registration of multimodal data . . . . . . 25
4.3.2. Group analysis with the general linear model . . . . . . . 26
4.3.3. Correction for multiple comparisons . . . . . . . . . . . . 27

4.4. Surface-based MRTM2 pipeline by using FreeSurfer . . . . . . . 29
4.5. Incorporating MRTM2 into a Bayesian framework . . . . . . . . 31

4.5.1. Regularized MRTM2 . . . . . . . . . . . . . . . . . . . . 32
4.5.2. A move towards a fully Bayesian approach . . . . . . . . 34

4.6. Repeatability Analysis . . . . . . . . . . . . . . . . . . . . . . . 38

5. Results 40
5.1. Validation of surface-based vertexwise MRTM2 . . . . . . . . . . 40
5.2. Between-brain analysis in FreeSurfer . . . . . . . . . . . . . . . . 44

5.2.1. General linear model . . . . . . . . . . . . . . . . . . . . 45
5.2.2. Problems with registration to common space . . . . . . . 48

5.3. Editing of surface segmentation . . . . . . . . . . . . . . . . . . 51
5.4. Regularized MRTM2 compared to MRTM2 with pre-smoothing . 53

5.4.1. Visualization and exploratory analysis . . . . . . . . . . . 53
5.4.2. Repeatability analysis on vertex level for all subjects . . . 61

5.5. Regional repeatability analysis . . . . . . . . . . . . . . . . . . . 65
5.6. Fully Bayesian approach . . . . . . . . . . . . . . . . . . . . . . 68

vii



Contents

6. Discussion 70

7. Conclusions and Outlook 73
7.1. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75

A. MATLAB function for vertex-by-vertex MRTM2 80

B. MATLAB function for regularized MRTM2 81

C. MATLAB function for Bayesian MRTM2 using fminsearch 83

D. Cost function for fminsearch 85

viii



1. Introduction

To enable communication between nerve cells or neurons in the human body, a
chemical substance called neurotransmitter is necessary. One of the most important
neurotransmitters is serotonin. Serotonin is involved in a wide range of processes
in the brain such as behavior, cognition, mood, memory processing and response to
stress. One important component of the serotonergic transmitter system is the sero-
tonin transporter, which transports released serotonin back to the releasing cell.
It is the most important element in controlling the strength and duration of sero-
tonergic neurotransmission. The serotonin transporter is used as target in treating
major depression and anxiety disorder and has been linked to many other disorders.

A widely used technique to measure functional processes in the brain is positron
emission tomography (PET). The image acquisition process of an individual starts
by injecting a radioactive substance called a radiotracer into the blood stream.
[11C]DASB is a radiotracer which binds selectively to the serotonin transporter. At
each radioactive decay event, two rays are released in opposite directions to each
other. The rays are detected by sensors in the PET scanner and the origin of the
signal will thus be somewhere on the line between the two detecting sensors. With
enough lines collected, a reconstruction process can reconstruct a 3-dimensional
image of the signals in the brain. In a typical PET scan several such frames are
reconstructed in a time interval. PET includes many sources of noise, e.g. rays can
be scattered or even lost before reaching the sensor and multiple rays can reach the
sensors at the same time. Also, the injected dose is usually small. This means that
the signal-to-noise ratio is low.

The frames show counts of radioactive events, but a desirable measurement should
be more directly linked to concentration of serotonin transporters. Therefore, the
time frames are modeled to obtain a measurement called binding potential. This is
called parametric imaging, as the binding potential will be obtained through the es-
timated model parameters. One such modeling method is the multilinear reference
tissue method MRTM2 which can be solved by linear least squares, on a voxel level
or a larger regional level. Most of these models are sensitive to high noise levels
because they involve noisy predictors, which means that they will be unstable when
using the highly noisy data from PET at voxel level.

The traditional way of improving the signal-to-noise ratio in PET data and making
the noise more normally distributed is to spatially smooth the data with an Gaus-
sian filter. The motivation for smoothing in space is that close regions in the brain
often exhibit similar characteristics and brain functions are assumed to be clustered
in the brain. There are however some significant drawbacks, with the most impor-
tant one being edge artifacts. Several functional regions of the brain have abrupt
borders. Especially at the outer border of the brain, the change is rapid between the
cerebral cortex with a high concentration of neurons and cerebrospinal fluid with
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no neurons. Cerebral cortex is also connected to white matter that mainly contains
axions connecting neurons from the cortex to other neuron rich areas of the brain.
Also in the folds of the highly-folded cortex, close regions will lack physiological
connections. If the filter smooth across these borders, the resulting signal will be
inaccurate. The Gaussian filter also reduces the spatial resolution. Furthermore,
there is a risk at high noise levels that some noise will not be effectively reduced
but instead will spread to surrounding areas.

The aim of this project is to improve the filtering and modeling of PET data. It
should lessen the mentioned artifacts and improve the statistical power of the brain
mapping of the serotonin transporter. The focus will be on the outer layer of the
brain – the cerebral cortex. A reconstruction of the surface of cerebral cortex is
obtained by the software package FreeSurfer which has been developed with this
task in mind. FreeSurfer uses structural magnetic resonance scans to segment the
brain and reconstruct the cortical surface. A surface-based approach will be devel-
oped, which will take the highly folded intrinsic geometry of cerebral cortex into
account in the filtering and MRTM2 modeling process. By smoothing across the
surface of the cortical layer the data should be less affected by edge artifacts, as the
smoothing is done between more functionally connected regions with similar neu-
ronal density. The approach will be contrasted with the conventional voxel-based
approach. Furthermore, a Bayesian framework will be used to address the other
mentioned issues of spatial smoothing and to directly incorporate the data filter-
ing into the mathematical model. This model will be based on MRTM2 and will
assume that close regions have similar parameters and regularize the data on this
assumption. The approach can potentially filter out the noise more effectively than
Gaussian pre-filtering, because it assumes that the physiologically interpretable pa-
rameters themselves should be similar instead of assuming that the event count rate
at each time frame should be similar. In addition, the surface-based statistical tools
of FreeSurfer for group analysis between brains will be evaluated.

The project is a collaboration between the image analysis section at DTU Com-
pute at the Technical University of Denmark and the Neurobiology Research Unit
(NRU) at Copenhagen University Hospital. A human in-vivo brain study of 61 sub-
jects has been provided from NRU. It is a woman sex hormone fluctuation study,
with 31 subjects given sex hormone treatment and 30 subjects given placebo. The
study contains brain PET scans and external mood measurements before and after
treatment. The time between the baseline and followup scans are for most subjects
around one month. The PET scans are performed with the [11C]DASB radiotracer
and a structural high resolution T1-weighted MR scan is also provided for each
subject. This study will be statistically analyzed to evaluate the tools of FreeSurfer
and the placebo group will be used as a test-retest data set when comparing different
filtering and modeling approaches.
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2. Theoretical background

In section 2.1, the serotonergic transmitter system will be explained in more de-
tails and in section 2.2. the functionality and structure of cerebral cortex will be
described. In section 2.3, theory about the positron emission tomography will be
presented including the conventional ways of handling the high noise level present
in such data. Lastly, in section 2.4 some theory on magnetic resonance imaging
will be explained.

2.1. Serotonergic transmitter system

Neurons are the core cells of the nervous system in the human body. Their main
function is to send fast electrical signals as communication throughout the body
and especially in the brain. A simplified illustration of a neuron cell is shown in
figure 2.1.1. It involves a cell body from which dendrites and an axon extend. Other
neurons connect to the neuron at the dendrites or less commonly directly to the cell
body or the axon. The axon can extend to up to a meter and the primary direction
of the electrical signal is from the cell across the axon to another cell’s dendrites.
The electrical signal will however not go directly from one neuron to the other. The
transmission of the signal between two neurons happens in a synapse, by a chemical
compound called a neurotransmitter. When an electrical signal reaches the presy-
naptic part, the neurotransmitter will be released into the synaptic cleft and travel
to the postsynaptic part which often is a dendrite. There, receptors will receive
the neurotransmitter and thus be activated and trigger an electrical signal. Unused
neurotransmitters can be removed from the cleft back to the presynaptic part by
transporters. The neurotransmitter which is studied in this report is serotonin.
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2.1. SEROTONERGIC TRANSMITTER SYSTEM
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Figure 2.1.1. Neuron cell and synapse.

Serotonin or 5-hydroxytryptamine (5-HT) is mainly located in the gut, where it
regulates intestinal movements, but there are also large concentrations in the brain.
It regulates functions related to mood, appetite, memory processing, learning, be-
haviour, cognition and sleep. As seen in figure 2.1.2, it is produced in the raphe
nuclei in the brain stem and from there transported within axons to other parts
of the body. The upper raphe nuclei transports serotonin to most parts of the
brain (Bue Klein, 2010).

Figure 2.1.2. Pathways of serotonin transmission.

There are one serotonin transporter (SERT) and a number of different serotonin re-
ceptors with similar but somewhat differing functions. This thesis concentrates on
the serotonin transporter. As its function is to transport serotonin back to the presy-
naptic part, it has a key role in regulating the duration and strength of transmission
between serotonergic neurons. Therefore, it is commonly used as the target of an-
tidepressant drugs. Is has been linked to many neurological disorders such as major
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2.2. CEREBRAL CORTEX

depression, bipolar disorder, obesity, substance abuse, eating disorders, obsessive
compulsive disorder, cognitive impairment, primary insomnia, Parkinson’s disease
and autism (Charnay and Léger, 2010; Daws and Gould, 2011).

The concentration of serotonin transporters is highest in subcortical regions such as
the raphe nuclei, thalamus, hypothalamus, amygdala, putamen and caudate. Cere-
bral cortex is also a significant region with the highest concentrations in the cin-
gulate cortex and insular cortex and moderate to low concentrations in other areas.
The lowest concentrations are found in cerebral white matter and cerebellum, both
the cerebellar cortex and cerebellar white matter (Saulin et al., 2012; Kish et al.,
2005).

2.2. Cerebral cortex

The cerebral cortex is the outermost layer of each hemisphere of the human brain.
It contains gray matter with a high density of neural cell bodies. The cerebral cor-
tex is connected to white matter, which mainly contains axions connecting cortical
neurons to neurons deeper within the brain and to neurons in other parts of cerebral
cortex. Cerebrospinal fluid outside of the brain acts as a buffer and protection for
the cortex, and contains no neural activity. The cortical layer is important for many
functional processes of the brain. It plays a key role in most higher functions such
as how we think, speak, associate, move, process memory and perceive the world
around us. It is divided into six major lobes: the frontal lobe, the temporal lobe, the
parietal lobe, the occipital lobe, the insular lobe and the limbic lobe. The five first
lobes are together called the neocortex, the newest developed part of the brain.

The functions of some areas of the cortical layer are well-known, such as the pri-
mary visual cortex in the occipital lobe, the primary auditory cortex in the temporal
lobe, primary motor cortex in the posterior part of the frontal lobe and many more.
However, much knowledge is yet to be discovered about many cortical functions
and the complex interconnections between areas and this is intensely researched
upon.

The cortical layer is continuous and highly folded with a thickness of 1 to 5 mm.
The ridge of a fold is called a gyrus and the valley between two gyri is called a
sulcus. The many folds and complicated geometry of the cortical layer makes it
hard to visualize and compute statistics on this layer. Regions physiologically far
apart with few connections lies spatially close together and the extent of the layer
can not simply be measured in one direction in voxel space. The thin structure of
the layer in combination with the rather low resolution of most imaging techniques
makes partial volume effects an important issue. Furthermore, the variability of
the geometry between brains is rather large. Some larger gyri are present in every
brain, but many smaller structures varies considerably. This makes the cerebral
cortex a particular challenge in a statistical analysis between brains.
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2.3. POSITRON EMISSION TOMOGRAPHY

2.3. Positron emission tomography

Positron emission tomography (PET) is a technique used to acquire three dimen-
sional images of functional processes in the body. The procedure starts by injecting
a radioactive substance into the blood stream of the subject. The substance is called
a radioligand or a radiotracer and contains a type of molecules which are used in
the functional process of interest. To measure the serotonin transmission in the
brain, it could be a compound which binds to a serotonin receptor or transporter.
A positron-emitting isotope is attached to these molecules. One such isotope is
carbon-11 (11C). It is unstable and decays to stable boron-11 with a half-life of
around 20 minutes. In the decay process a proton in the nucleus converts into a
neutron. In this process a positron is released with a kinetic energy. It loses the
energy when interacting with atoms in the surroundings and eventually, when it is
essentially at rest, it combines with an electron also at rest. In this combination,
called annihilation, they cease to exist and two gamma ray photons are emitted in
opposite direction to each other, at 180 degrees. This is the basis of PET, where
several rings of gamma sensors measures the impact of both photons and the line of
response (LOR) can be computed. In some cases, the kinetic energy of the positron
and electron will not be exactly zero and the photon pair will in that case not be
emitted exactly at 180 degrees. This fact and the short distance traveled by the
positron before annihilation (under 1 mm) contributes to an uncertainty in PET.

After the annihilation event, the photons might in some cases interact with the
tissue, which can result in a change of direction or that the photon do not reach
the sensors. The change of direction causes a scatter event. Photons from different
events can also reach the sensors at the same time, this is then called a random
event. The event detection in PET relies on electronic collimation and collects
events with (1) two photons detected within a predefined time window, (2) the line
of response between the photons are within a valid angle for the tomograph and (3)
the energy of the photons are within a selected energy window. All events are col-
lected in an ordered list over the whole time of the PET scan, which is in the case
of the study used in this report 90 minutes. The duration of a scan depends on the
characteristics of the kinetic process of the radiotracer and the functional system
that is being scanned. It also depends on the decay rate of the radioactive isotope.
At some point the detected events will be too low for a reliable measurement.

The events are then reconstructed to 3-dimensional frames. For the 90 minutes
scan time, 38 dynamic frames will be reconstructed with varying time intervals
between the frames. In the beginning of the scan the event detection rate will be
high and a short interval between the reconstructed frames is possible, but as the
radioactive isotope decays fewer and fewer events will be collected. There are sev-
eral methods for reconstruction, but in all methods the data has to be corrected for
geometrical distortion because of the circular shape of the detector rings, attenu-
ation of the photons and dead time of the detectors. The approach can either be
analytical or iterative. The iterative approach usually employs a type of Expecta-
tion Maximization algorithm (Bailey et al., 2005). Each reconstructed frame will
be a 3-dimensional volume with voxels as discrete units. The voxel size equals
the full width half maximum of the estimated spatial resolution, which depends on
the properties of the scanner, tracer and the reconstruction algorithm in use. One
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2.3. POSITRON EMISSION TOMOGRAPHY

of the more advanced PET scanners on the market, the high resolution research
tomograph (HRRT), can have a spatial resolution of full width half maximum 1.2
mm in all three directions. The 38 values of one voxel is called a time activity
curve (TAC). An example of a TAC can be seen in figure 2.3.1. It should be noted
though that this is an averaged TAC on a larger region, with significantly less noise
than can be observed at voxel level. The noise level of a PET scan at voxel level
is high due to the many sources of noise, the low dose of radioactive tracer and the
complicated reconstruction procedure. Furthermore, the reconstruction procedure
often results in an unpredictable noise distribution.

Figure 2.3.1. Example of a time activity curve (TAC).

2.3.1. Regional averaging to improve signal-to-noise ratio

Voxels in a region of interest is for many analyses averaged to a regional TAC,
which will improve the noise properties of the data. Averaged TACs of pre-defined
regions can give a good overview of the data and is quite often used as the main
input in a statistical analyses between brains. Cortical regions are usually defined
anatomically by main gyral structures, such as the middle temporal gyrus or su-
perior frontal gyrus. An analysis can also be performed on the cortical lobes. The
selected regions differ between studies, but are usually quite consistent. The advan-
tages of such an analysis are that it is easy to compare it between studies and only a
few tests needs to be performed. With just a few test, it is easier to get an overview
and the question of correction for multiple comparisons is easier to handle. Instead
of correcting for individual tests on a large set of voxels, one can correct only for
a few regions of interest. It is also easier to account for the variability between
individual brains. The main difficulty with this approach is that the anatomically
defined cortical regions may not be functionally appropriate. The functional mea-
surements do more often than not vary just as much within a region as between
regions. To average distinctively different voxel TACs might alter the output in
unexpected ways and significant areas within a region might not be discovered.
Functionally interesting patterns might also be overlooked (Poldrack, 2007).
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2.4. MAGNETIC RESONANCE IMAGING

2.3.2. Smoothing to improve signal-to-noise ratio

A common way of improving the noise properties on a voxel level is to spatially
filter the data within each time frame with a Gaussian filter, i.e. convolution with a
Gaussian-shaped kernel. The true or desired signal component of a measured data
set is usually changing rather smoothly, while the noise often is seen as rapid ran-
dom changes both in space and in time. If this assumption is true, a smoothing of
the data can improve the signal to noise ratio and sensitivity, by removing the high
frequencies in the data. The motivation for spatially smoothing brain data is that
close regions in the brain often exhibit similar characteristics and brain functions
are assumed to be clustered in the brain. Another reason for spatially smoothing
the data can be to account for subject variability in a group analysis at voxel level.
To register subjects to a common space is a difficult process as there are high vari-
ability in the structure of brains, so voxels with similar function will quite possibly
not be exactly aligned.

The spatial smoothing does have some drawbacks, with the most important one
being edge artefacts. Several functional regions of the brain have rather abrupt bor-
ders. Especially at the border of the whole brain, the change between the highly
functional cerebral cortex and cerebrospinal fluid with no neural functionality is
rapid. Cerebral cortex also borders to white matter, which has a low concentration
of neurons. Another problematic area is in the folds of the cortex, where close re-
gions will lack direct physiological connections. If the filter smooth across these
borders, the resulting signal will be inaccurate (Hagler et al., 2006).

It is clear that spatial smoothing also reduces the spatial resolution. In addition,
signal peaks can be displaced. One situation when this can occur is when there
are two neighboring regions with high amounts of signal. A smoothing might then
result in a displaced peak between these regions instead of one peak for each re-
gion. In the presence of high noise levels such as in PET data, smoothing might not
effectively remove high frequencies. If the signal of a data point is very large due
to noise, a Gaussian smoothing will spread this signal to neighboring data points
instead of filtering it out (Reimold et al., 2006; Sacchet and Knutson, 2013).

2.4. Magnetic resonance imaging

Magnetic resonance imaging uses magnetic resonance of protons in the brain to
get highly detailed structural 3D images of the brain. All protons have a weak
magnetic moment. The subject is placed in a scanner with a large magnetic coil
surrounding the subject. In the strong magnetic field, many of the protons in the
body gets aligned. A varying electromagnetic field is briefly produced with a spe-
cial frequency called the resonance frequency, which makes the protons spin. The
radiofrequency is turned off and the protons aligns again with the magnetic field.
In this relaxation, the protons themselves produce radio frequency signal which
is measured by a receiver coil. By using gradient coils, the strength of the mag-
netic field can be varied to different locations, which also makes the released radio
frequency vary predictably dependent on location. The measured frequencies are
collected in k-space, which is in frequency domain. This holds the raw data of a
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2.4. MAGNETIC RESONANCE IMAGING

MR session. The 3D volume can then be reconstructed by an inverse Fourier trans-
form.

Protons in different tissues have different relaxation rates and will therefore get
different intensities in the reconstructed image. By varying different parameters
that have different effects on the relaxation time of different tissue types, the inten-
sity distribution will differ. The two most common intensity distributions are T1

weighted and T2 weighted images. The MR scans for this report are T1 weighted.
In T1 weighted images fat appears brighter than water, which has the result that
white matter is brighter than gray matter. In T2 weighted images, the opposite is
true.

The process of MR imaging is fast and, therefore, several volumes can be recovered
for noise reduction. It is also harmless for the patient. (Hanson, 2009). Structural
MRI has a good contrast between different important structures of the brain, such
as between white matter and gray matter. As it images structural information of
the brain rather than functional information it is superior to PET when it comes
to segmenting the cerebral cortex and other regions. Futhermore, it has a superior
resolution and significantly lower noise level than PET.

9



3. Related works

Many approaches have been developed to improve the low signal-to-noise ratio in
PET data. Basic methods focuses on the processing step of spatially smoothing the
time frames after the reconstruction procedure and previous to the kinetic analysis
of the time frames. One of the problems with filtering by convolution with a Gaus-
sian kernel, i.e. Gaussian filtering, is the introduction of edge artifacts between
regions of high signal and regions of low signal.

General edge preserving low-pass filters exist and some have been evaluated for
use with PET data, like the bilateral filter which is a locally adaptive smoothing
filter with edge-preserving and noise-reducing qualities (Hofheinz1 et al., 2011).
Wavelet denoising has been proposed by Lin et al. (2001), which uses wavelet
transform that transforms the data into a multiscale representation where noise ide-
ally can be more easily removed and the issue with peak shifts present in Gaussian
filtering can be reduced. Another such method by Turkheimer et al. (2008) uses
structural information from MRI together with PET data together with wavelet
transform. A spatial filtering procedure can also be incorporated in the reconstruc-
tion procedure, such as anisotropic diffusion for use of anatomical priors (Chan
et al., 2009). With the use of a surface representation of the cortical layer obtained
from structural MRI, as in this thesis, the problem with edge artifacts is not as
critical, because the smoothing is preformed only across the cortical surface where
neighboring regions will be similar in signal strength and the properties of regions
can be assumed to vary rather smoothly in comparison to the boundaries between
different tissue types. The signal will however still be affected by noise.

An issue with these methods is that they concentrate on the spatial resolution at
each time frame without regarding the other time frames simultaneously. If the dif-
ference in activity between two regions and the noise level are of the same order of
magnitude, such a method could risk to introduce an unwanted bias. Some methods
have been developed to regularize both across time and space. One such method
for post-reconstruction filtering is based on spatio-temporal anisotropic diffusion
without the use of a certain kinetic model (Tauber et al., 2011).

A focus of this thesis is the regularization of the model MRTM2 in the kinetic
analysis by using a Bayesian framework. Earlier methods using MRTM or similar
models without the second step of MRTM2 includes regularizing on pre-computed
estimates from smoothed data (Zhou et al., 2002) and regularization by truncated
singular value decomposition, boundary constraints and Tikhonov regularization
(Buchert et al., 2003). A Bayesian approach to kinetic analysis using wavelets has
been developed by Turkheimer et al. (2006) and a data-driven approach with the
use of Sparse Bayesian Learning has been developed by Peng et al. (2008). Some
methods, such as Global-Two-Stage filtering, use a population-based prior for the
kinetic analysis that assumes that voxels within regions have similar charasteris-
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tics (Tomasi et al., 2011). Another method using this a-piori assumption working
on multiple scales has been developed by Rizzo et al. (2012). The regions are seg-
mented from structural MRI data. However, the requirement of a a-priori knowl-
edge of the functionality of such regions is an issue with these methods, especially
within the cortical layer. Another approach uses prior voxel-by-voxel information
from other brains (Fang et al., 2012), which can be problematic because the regis-
tration between brains is rarely perfect. Some recent papers have proposed direct
parameter estimations on the raw PET data, i.e. combining the reconstruction pro-
cess and the kinetic analysis (Wang and Qi, 2012). The idea of incorporating the
whole data analysis process into one model is tempting, but the actual performance
of these models have not yet been compared to other more complicated models. All
these models have been validated on volume data.

The conventional approach to the statistical comparison of parameters between
brains is to independently fit a general linear model at each vertex or voxel. This
is the approach used in FreeSurfer and that will be evaluated in this thesis. The
amount of independent tests considered at once will be high, which inflates the risk
of finding significant areas where there actually are none. This is often handled
by techniques to correct for multiple comparisons which threshold the already es-
timated p-values, often with the result of a lack of power. However, other models
have been developed within the Bayesian framework that model the between-brain
data of all vertices or voxels simultaneously, with a regularization on sparsity and
coherence. Two such model are the MVB scheme(Friston et al., 2008) and the
relevance voxel machine(Sabuncu and Van Leemput, 2013). The last model was
validated by using FreeSurfer’s cortical surface representation and between-brain
mapping which yielded reasonably good results.
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4. Materials and methods

In this chapter the specific models developed and tools used and assessed in this
thesis will be described. In section 4.1 the mathematical framework leading up
to the Multilinear Reference Tissue Model (MRTM2) will be described, including
the one-tissue compartment model, model linearization and the use of a reference
tissue. In section 4.2, the study used in this thesis will be described and some ini-
tial results from the study will be presented. In section 4.3, the software package
FreeSurfer will be described together with its tools and specific capabilities. In
section 4.4, the pipeline for a surface-based MRTM2 using FreeSurfer will be de-
scribed. In section 4.5, the incorporation of MRTM2 into a Bayesian framework
will be explained which includes the development of the regularized MRTM2 and
further attempts to move MRTM2 into a fully Bayesian framework. Lastly, in sec-
tion 4.6, some statistical tools for evaluating the repeatability of a model will be
described.

4.1. Kinetic analysis with a one-tissue
compartment model

The goal of a PET data analysis is to measure the density of a certain substance
within a tissue of interest. In the case of this thesis, the tissue of interest is the
neural tissue of the brain and we want to measure the concentration of serotonin
transporters. This can be measured for a smaller tissue region as a voxel or a larger
region as the frontal cortex or the whole cerebral cortex. The measured quantity is
called binding potential (BP) and is the ratio between the available transporters and
a dissociation constant. The dissociation constant describes how tightly the injected
radioactive tracer binds to the serotonin transporters. More than one scan session
has to be conducted to directly measure the concentration of available transporters,
but this is usually not necessary as the dissociation constant often can be considered
the same across subjects. BP can be estimated from a PET time activity curve by
setting up a mathematical model that describes the kinetic process of the tracer’s
path from the blood to the neural tissue and back to the blood.

The circulatory system of the human body continuously supply the brain with oxy-
gen and other vital substances with blood as the transporting liquid. A substance
enters and leaves the brain tissue through a semipermeable blood-brain barrier. The
process of blood flow can be modeled by compartment models, where one compart-
ment corresponds to a physiologically separate section of the injected tracer. The
tracer concentration within each compartment is assumed to be homogeneous with
rapid transfer between compartments. Neuronal activity, such as serotonin trans-
mission, has been shown to be closely coupled with the blood flow. Therefore, a
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4.1. KINETIC ANALYSIS WITH A ONE-TISSUE COMPARTMENT MODEL

one-tissue compartment model is usually sufficient. This has been shown to be the
case for the tracer used in this thesis, DASB (Ginovart et al., 2001). Other func-
tional activities might require more compartments, e.g. metabolism is modeled by
a two-tissue compartment model because the radiotracer stays a while in mitochon-
dria to be metabolised (Maguire, 2007).

The one-tissue compartment model is based on the Fick principle. This princi-
ple says that the change in concentration of a substance in brain tissue is given
by the difference of substance concentration in arterial blood and in venous blood
multiplied by the rate that the substance is able to move through the blood-brain
barrier. If this rate is assumed to be constant through the whole PET procedure,
The Fick princple can be expressed as

dCt
dt

= K1Ca −K1Cv, (4.1)

where K1 is the rate constant for transfer from blood to tissue (ml g−1 min−1), Ct
is the radioactivity concentration in tissue, Ca is the radioactivity concentration in
arterial blood and Cv is the radioactivity concentration in venous blood (Bq/ml).
The decay corrected radioactive counts from PET data is assumed to be equivalent
to the substance concentration in the tissue. The ratio between Ct and Cv is called
a distribution volume Vd(ml ml). Inserting this ratio in equation 4.1 we get the
differential equation

dCt
dt

= K1Ca −
K1

Vd
Ct. (4.2)

The ratio K1/Vd is treated as one parameter called the clearance rate constant k2.
Assuming that 1 ml of tissue corresponds to 1 g, k2 has the unit min−1. This model
is shown in figure 4.1.1, together with the (Maguire, 2007).

Ca C t

K 1

k 2

Figure 4.1.1. One-tissue compartment model.

When estimating the parameters of the model, the process is assumed to be in a
constant state, without a change in transfer or clearance rate.

4.1.1. Linearization of the one-tissue compartment model

To ease computation of the parameter estimates, compartment models are often
linearized so they can be solved by linear least-squares fitting. Least squares is
much faster to solve than a direct kinetic analysis of a compartment model. The
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linearization is done by simply integrating the differential equation (Van den Hoff,
2007). Integrating the one-tissue compartment model in equation 4.2 between zero
and a variable time yields

Ct(T ) = K1

∫ T

0

Ca(t)dt− k2
∫ T

0

Ct(t)dt. (4.3)

This relationship will be linear at every time point starting from T=0 for a tracer
with one-tissue compartment kinetics. The parameters of the model can then be
estimated by setting up a system of equation, with one equation for each time frame
of a TAC, and solving it with a multilinear least squares method. However, this
method assumes that the predictors are noiseless and is thus bad at handling noisy
predictors.

∫ T
0
Ct(t)dt will contain high levels of noise for smaller regions and at

voxel-level. Neither
∫ T
0
Ca(t)dt will be noise free.

4.1.2. Modeling with a reference tissue

To continuously draw blood samples during a PET scan is a difficult and invasive
procedure. A common way to avoid this is to instead use a reference tissue. For
SERT analysis, the reference tissue should ideally have no serotonin transporter, so
the radioactive signal only comes from nondisplaceable tracer, i.e. free and non-
specifically bound tracer. Furthermore, the reference tissue should ideally have
similar free and non-specific properties and similar density to the tissue of interest.
A reference tissue model can then compare the distribution volumes of the refer-
ence region and the region of interest, resulting in the binding potential on the form

BPnd =
Vt − Vnd
Vnd

=
Vt
Vnd
− 1, (4.4)

where Vt is the total distribution volume of the tissue and Vnd is the distribution
volume of nondisplaceable tracer. The amount of nondisplaceable tracer is assumed
to be the same in the reference region and the region of interest. With the reference
tissue only containing nondisplaceable tracer, its total distribution volume will be
equal to the nondisplaceable distribution volume. The reference tissue model is
illustrated in figure 4.1.2 with a prime sign denoting reference tissue (Lammertsma,
2007).

C t

K 1

k 2
Ca

C’t

K’1

k’2

Figure 4.1.2. Reference tissue model, reference tissue with prime sign.
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As the distribution volume Vt = K1/k2 the binding potential will be

BPnd =
K1k

′
2

K ′1k2
− 1. (4.5)

One method that uses reference tissue together with the one-tissue compartment
model is the non-linear simplified reference tissue model SRTM. There are no re-
gions in the brain that completely lack serotonin transporters, but white matter in
both cerebellum and cerebrum and cerebellar cortex have very low concentration
of transporters. Cerebellar cortex is usually chosen as it has similar properties to
e.g. the cerebral cortex (Kish et al., 2005).

An example of the TACs included in a reference tissue model at a voxel or ver-
tex level is shown in figure 4.1.3.

Figure 4.1.3. Reference tissue TAC.

4.1.3. The multilinear reference tissue method MRTM2

The multilinear reference tissue method combines the use of a reference tissue with
linearization. Mathematically, the linearization of a reference tissue model can be
obtained by solving equation 4.3 for

∫ T
0
Ca(t) for the target tissue, which yields

∫ T

0

Ca(t)dt =
k2
K1

∫ T

0

Ct(t)dt+
1

K1
Ct(T ), (4.6)

and for the reference tissue, which yields

∫ T

0

Ca(t)dt =
k′2
K ′1

∫ T

0

C ′t(t)dt+
1

K ′1
C ′t(T ). (4.7)
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The blood concentration term Ca can then easily be eliminated by combining equa-
tions 4.6 and 4.7. The resulting equation is then rearranged to make Ct the depen-
dent variable, which yields

C(T ) =
K1

K ′1
k′2

∫ T

0

C ′(t)dt− k2
∫ T

0

C(t)dt+
K1

K ′1
C ′(T ). (4.8)

By dropping the subscript of the tissue concentrations in equation 4.8 and defining
the relative radioligand delivery R1 as K1/K

′
1 the following equation is obtained:

C(T ) = R1k
′
2

∫ T

0

C ′(t)dt− k2
∫ T

0

C(t)dt+R1C
′(T ). (4.9)

This is the multilinear reference tissue model (MRTM), which can be solved as a
three-parameter multilinear least-squares problem for the whole time activity curve
at once for a voxel’s or an averaged ROI time activity curve. The ordinary least
squares assumes that the independent variables of the model are noise free. The
time activity concentration curve C(T ) at each voxel will be a noisy measurement
and the integral of it is present as an independent variable. However, the integral of
a noisy time curve will at least be less noisy than the curve itself.

Another problem with this model is that the reference tissue’s clearance rate k′2
will be estimated as a different value at each voxel. The reference tissue’s time
curve C ′ should be the same at each voxel and therefore should its clearance rate
also be constant. To deal with this problem MRTM is only used for a preliminary
analysis of the data with the only output being a fixed value of k′2. In this analysis
only high binding regions are used as target tissue. The equation is then rearranged
to the two-parameter multilinear reference tissue model MRTM2 on the form

C(T ) = R1k
′
2

(∫ T

0

C ′(t)dt+
1

k′2
C ′(T )

)
− k2

∫ T

0

C(t)dt. (4.10)

The binding potential can then be obtained by the relationship

BPnd = R1k
′
2/k2 + 1. (4.11)

For improved readability, BPnd will be referred to as simply BP throughout this
work. The whole multilinear model can be formulated in matrix form for a voxel n
with K time steps as

cn = Xnwn + εn, (4.12)

where

cn =

 Cn(T1)
...

Cn(TK)

 ,
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Xn = [x1,n,x2,n] =


∫ T1

0
C ′(t)dt+ 1

k′2
C ′(T1) −

∫ T1

0
Cn(t)dt

...
...∫ TK

0
C ′(t)dt+ 1

k′2
C ′(TK) −

∫ TK

0
Cn(t)dt

 ,
wn =

[
R1,nk

′
2

k2,n

]
,

and εn contains noise. The unknown parameters in wn have to be estimated with
w1,n ≥ 0 and w2,n ≥ 0.

MRTM2 has been shown to be a useful method for estimating BP in larger regions
with a good control of the noise levels of PET data with [11C]DASB. The model
does however still contain noisy predictors. In the paper of Ichise et al. (2003)
that introduced the method, it was shown that the two-step procedure effectively
reduces the bias and variability of regional estimates in a simulation study and is
stable for high-binding areas and mid-binding areas, such as cerebral cortex, in a
study with data from the ECAT 47 scanner with a spatial resolution full width half
maximum of 9.3 mm. It did however have problems in regions with lower binding,
such as white matter. This is perhaps not surprising, as cerebral white matter has
been shown to have almost as low binding as cerebellum (Kish et al., 2005). In the
simulation study it was shown that the accuracy is comparable to that of the non-
linear method SRTM with the same two-step procedure and direct kinetic analysis
on the one-tissue compartment model with radioactivity data from blood. At the
same time, it is more computationally efficient to compute.

In a test-retest study by Kim et al. (2006) the method has been shown to have
high reliability in most regions when comparing the regional BP estimate from an
average ROI TAC or when averaging voxel level BP estimates over a region. The
reliability measure was ICC(3,1) and the scanner used was GE Advance with a re-
constructed voxel size of 6 mm. A slight negative bias was present at all reported
regions, perhaps due to the short time between test and retest scan of 1 hour. The
effect of noise at individual voxels were however not reported in detail, but seems
to have been stable.

With a higher scan resolution, such as the 1.2 mm resolution of the scans used
in this thesis, MRTM2 is unstable at voxel level. This is conventionally handled by
reducing the spatial resolution of the data by spatially smoothing each volume with
a Gaussian filter previous to MRTM2 estimations.

4.2. Data set - A sex-hormone fluctuation study

The examined data set of 61 healthy female volunteers is from an ongoing project
at NRU, headed by Vibe G. Frøkjær (MD,PhD). The project examines the neu-
ropsychobiological effects of pharmacologically introduced sex-hormone fluctua-
tions. It has previously been shown in epidemiological studies that there is an in-
creased vulnerability to neuropsychiatric disorders directly after a pregnancy and in
the menopausal transition period (Munk-Olsen et al., 2006; Freeman et al., 2006).
Both these events are characterized by sex-hormone fluctuations in terms of a rapid
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decline in sex-hormone production from late pregnancy to post partum and of a
period of increased fluctuation in ovarian sex-hormone production that ultimately
ceases when menopause is reached. Because sex hormone levels has been shown to
be linked to the serotonergic transmitter system (Frøkjær et al., 2010) and the sero-
tonin transporter function as a key regulater of the serotonergic signaling is linked
to depression and many other neuropsychiatric disorders, the project includes imag-
ing of the serotonin transporter. The hypothesis of the study was that sex hormone
fluctuation provokes depressive symptoms and that the emergence of depressive
symptoms would be coupled to a change in this marker of serotonergic signaling.
Thus one of the goals is to address if one of the pathways by which sex-hormone
fluctuations provokes mood changes could be over serotonin signaling. The study
was approved for NRU by the Regional Ethics Committee in Copenhagen and data
acquisition was finalized by the end of 2012.

Two PET scans were acquired for each subject: a baseline and a follow-up scan.
Between the two scans, 31 subjects were given a GnRH-agonist treatment to obtain
a transient stimulation and a subsequent downregulation of ovarian sex-hormone
production, while the remaining 30 were given placebo injections of saline. The
study design was doubleblinded. Furthermore, Hamilton rating scale for depres-
sion was used to characterize the change in the subjects’ depressive symptoms from
baseline. The Hamilton score is determined by a semistructured interview where
the interviewing doctor follows a questionnaire to score different symptoms, such
as anxiety, feelings of guilt, insomnia and agitation. The scores are then weighted
together to give an overall score; a lower score means less depressive symptoms
and a higher score more depressive symptoms. A score of 0-7 is considered normal
and a score of 20 or higher indicates moderate to severe depression. One Hamilton
score was assessed at baseline and one at follow-up.

The follow-up scan was acquired as close as possible to the same time in the
menstrual cycle as the baseline scan for the placebo group. The baseline scan
was acquired at cycle day 5-8, GnRHa intervention was started on cycle day 22
and the follow-up scan was acquired 14-19 days after intervention. For most sub-
jects the scans were acquired one cycle apart, i.e. roughly one month apart (N =
50, 32.6 ± 3.4 days), while some were 2 cycles apart (N = 8, 64.5 ± 7.5 days), 3
cycles apart (92 days) or 4 cycles apart (133 and 122 days). The follow-up scan in
the placebo group was on average acquired slightly later in the cycle than the base-
line scan. The subjects were screened for variables that could alter the serotonin
transmitter system, such as past or present psychiatric or neurological disorders and
substance abuse. As none of these variables were present, they were regarded as
healthy. Further demographics is shown in table 4.2.1. The age, body mass index
and Hamilton score at baseline are fairly similar between the groups. Additionally,
no difference between groups in baseline sex hormones was observed.

Table 4.2.1. Demographics of the 61 subjects enrolled in the study (mean± SD).

Active group, N = 31 Placebo group, N = 30

Age (years) 23.3 ± 3.3 25.2 ± 5.9
Body mass index (kg/m2) 23.2 ± 2.3 23.4 ± 3.9
Hamilton score baseline 1.2 ± 1.5 1.6 ± 2.2
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The PET scans and Hamilton scores at baseline and follow-up will be examined
in this thesis to compare the results of surface-based analysis with FreeSurfer to
the initial results of the study obtained on a regional level of analysis. This will
serve as a basis to discuss the capabilities, advantages and issues with the tools
of FreeSurfer and an overall surface-based approach. Moreover, 24 subjects from
the placebo group will be used in a pseudo test-retest analysis to conclude on the
repeatability of the different modeling approaches. The 24 selected subjects are
the placebo subjects whom were scanned with one month in between baseline and
follow-up (32.9± 3.1 days).

4.2.1. Image acquisition

The list-mode data from the HRRT PET scanner was reconstructed to 38 dynamic
time frames by the iterative ordinary Poisson ordered-subset expectation maximiza-
tion (OP-OSEM) 3D method with resolution modeling (Hong et al., 2007; Comtat
et al., 2008; Sureau et al., 2008). The 38 frames had the sequence 6× 5 s, 10× 15
s, 4× 30 s, 5× 2 min, 5× 5 min and 8× 10 min. The total acquisition time was 90
min. The mean intravenously injected dose of [11C]DASB was 577 ± 43 MBq for
the active group and 591± 11 MBq for the placebo group. The reconstructed voxel
size was 1.2188× 1.2188× 1.2188 mm. The radioactive decay was accounted for
and the dynamic frames were motion corrected. The motion between frames was
estimated by the automatic image registration routines from Woods et al. (1998).

Each subject was also scanned by a 3T Verio Siemens Medical Inc scanner to ac-
quire a structural T1-weighted magnetic resonance scan, which was corrected for
field inhomogenities bias field intensities previous to the analysis in this report.

4.2.2. Radiotracer [11C]DASB

The radioactive tracer [11C]DASB is used in this study to image the serotonin trans-
porter binding by PET. The tracer was introduced by Houle et al. (2000) and is re-
garded as one of the superior tracers for this purpose. [11C]DASB binds with high
selectivity to the serotonin transporter and has been shown to correlate well with re-
gional post-mortem receptor densities and distribution pattern. Furthermore, it has
been shown to give reliable results when used with MRTM2 (Ichise et al., 2003).

4.2.3. Initial results for the sex-hormone fluctuation study

The study was successful in inducing an initial rise followed by a downregulation
of sex-hormones by the time of the follow-up scan in the treated group. It did also
provoke a rise in Hamilton score on average in this group, as seen in figure 4.2.1.
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Figure 4.2.1. Difference in Hamilton score from baseline to follow-up in the
placebo and active group.

The PET data was automatically segmented into cortical and subcortical regions
and averaged time activity curves were obtained for these regions. This auto-
matic segmentation is based on the segmentation by Svarer et al. (2005). The
segmentation method used was the one in the software Statistical Parametric Map-
ping (SPM5) by the Wellcome Trust Centre for Neuroimaging, London, which uses
structural information from MRI data. Regional BP estimates were by modeling the
regional averaged TACs by MRTM2 in PMOD version 3.0 by PMOD Technologies
Ltd.

The data was analyzed with the general linear model

∆Hamilton = β0 + β1 group + β2 ∆BP + β3 group ∆BP, (4.13)

where group is a categorical variable for group belonging (treated or placebo),
DeltaHamilton is the change in Hamilton score between baseline and follow-up
and ∆BP is the change in binding potential between baseline and follow-up. This
model is set up to measure how significant the difference in slope is between the
treated group and the placebo group, i.e. the interaction between group and ∆BP.
The global result on BP from the total neocortical region is shown in figure 4.2.2.
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Figure 4.2.2. Change in Hamilton score plotted against change in global neo-
cortical BP. Red shows active group and blue shows placebo group. The lines
corresponds to the fit of the general linear model.

The significance of the difference in slope within neocortex is consistent with the
hypothesis that an acute change in sex-hormonal levels is coupled with the sero-
tonergic signaling system in the brain. However, two remarks could be made: the
slope of the placebo group is slightly negatively correlated to the change in BP al-
though not significantly, and there is one subject who drives the slope of the treated
group. The negative slope of the placebo group might have to do with the time of
acquisition of the follow-up scan, which was on average slightly later in the men-
strual cycle than the baseline scan. That one subject who is driving the active slope
does make the conclusions that can be drawn from the study less certain. Never-
theless, it is consistent with previous studies where there are only a limited number
of women in a population that develop neuropsychiatric disorders after pregnancy
or in the menopausal transition period. The development of the other active sub-
jects do follow the same trend as the driving subject, but to a lower degree. With
a higher number of subjects within the study, the statistical power would of course
have been greater. It is however rarely plausible in a neurobiological study, due to
the cost and complexity of conducting PET studies and in the case of this study
the ethics in pharmacologically challenging healthy women. 61 subjects is a rather
high number for these kind of studies. The significance in some other regions is
shown in figure 4.2.2.
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Table 4.2.2. Significance of difference in slope for some brain regions.

Region p-value

Neocortex 0.003
Prefrontal 0.03
Pallidostriatum 0.21
Midbrain 0.12

The difference in slope between the active group and the placebo group is signif-
icant in the whole neocortex and prefrontal cortex, but not in subcortical regions.
Thus, the effect seems to be a cortical phenomenon which motivates a further ex-
ploratory analysis of the cortical layer with a surface-based analysis.

4.3. Parametric imaging with FreeSurfer

FreeSurfer is an open-source software package for automatic analysis of the hu-
man brain developed by the Athinoula A. Martinos Center for Biomedical Imaging
at Massachusetts General Hospital. It has been developed especially for taking
the highly-folded structure of cerebral cortex into account in statistical analysis of
structural or functional measurements. FreeSurfer version 5.1 for Linux-based op-
erating systems was used in this thesis.

FreeSurfer automatically segments the borders of the cortex, the inner boundary
to white matter and the outer boundary to cerebrospinal fluid, and constructs sur-
faces at these borders so statistics can be computed in-between these two sur-
faces. The segmentation is done on a T1-weighted MR image. Non-brain tissue
is first removed in the MR image using a hybrid watershed/surface deformation
procedure (Segonne et al., 2004) and the image’s intensity is normalized (Sled
et al., 1998). The boundary between white matter and cortical gray matter is seg-
mented and a surface tessellation of this segmentation is performed for each hemi-
sphere (Dale et al., 1999). The surface of a hemisphere is inflated by a procedure
that is driven by the convexity or concavity of the surface. A spring term smooths
the surface while a second term preserves a desirable amount of the original metric
properties (Fischl et al., 1999a). Topological defects will be identified by itera-
tively mapping the inflated surface to a sphere, where the defects will make the
mapping non-continuous, and will be corrected by locally retessellating the origi-
nal surface (Fischl et al., 2001; Segonne et al., 2007). After topological correction,
a final inflated surface and a final spherical surface are produced.

The original surface is then deformed following intensity gradients to place the
outer and inner border at the location where the greatest shift in intensity consti-
tutes the optimal change in tissue type (Dale et al., 1999; Fischl and Dale, 2000).
This produces the outer and inner surface, that are shown together with the inflated
surface in figure 4.3.1. As seen in this figure, the inflated surface can be used for
a better visualization of measurements in deep sulcus structures. The measurement
in the figure in red to green is the measurement of convexity acquired from the
inflation procedure.
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Figure 4.3.1. Important outputs from the cortical surface reconstruction proce-
dure: The inner and outer surfaces and the inflated surface.

As the inner, outer, inflated and spherical surfaces all originates from one original
surface, they will have vertex correspondence. The vertex correspondence of a
small part of an inner and outer surface is shown in figure 4.3.2, in a simplified
2D setting. For functional measurements, where the functional image has been
registered to the MR image, the value for a vertex is chosen as the value of the
voxel coinciding with the middle of the inner-outer vertex pair, i.e. the middle of the
blue lines in the figure. A vertex value could also be averaged from several voxels
coinciding with the vertex-pair line. However, regarding segmentation issues and
varying layer thickness the middle voxel is a good choice.
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Figure 4.3.2. Vertex correspondence between inner and outer surface. The func-
tional data for a vertex is taken from the voxel at the middle of this line.

To perform a vertex- or voxelwise analysis between brains, the individual brains
have to be registered to a common space. This is a difficult procedure due to the
high structural variability between brains. As mentioned before, the highly folded
cortical layer is a particular challenge. This is one of the main issue to motivate the
use of FreeSurfer, where the surface-based representation makes it possible to use
detailed structural information in a mapping procedure. In FreeSurfer, the map-
ping is done in spherical space, as seen in figure 4.3.3. An average subject has
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already been pre-computed in FreeSurfer based on several brains. Each subject of
the analysis can thus be directly registered to this average subject. The registra-
tion procedure uses a measurement of convexity and is performed across multiple
scales. The measurement of convexity, seen as red to green in the figure, is ob-
tained in the inflation procedure. Convexity reflects an average property of an area
and is therefore less noise-prone than e.g. mean curvature. This also means that
it emphasizes the consistent folding patterns over more variable patterns. It has
been shown that this method results in a greater accuracy than e.g. non-linear inter-
subject mapping in voxel space to an MNI atlas, as both topological structures and
sulci patterns of the cortex are specifically taken into account (Fischl et al., 1999b).

Figure 4.3.3. Spherical non-linear registration to common space.

The average subject has also been labeled with the Desikan-Killany Atlas for stan-
dard structural regions, such as superior frontal gyrus. These labels can easily be
back-projected to the space of each subject (Fischl et al., 2004).

Another motivation for using FreeSurfer is the issue of spatially smoothing the
data. As described in section 2.3.2, a Gaussian filtering of the data in voxel-space
will result in a mixture of signal between the cerebral cortex and surrounding tissue
with less or no neuronal activity. In addition, a greater level of smoothing might be
desired in a between-brain analysis because the registration of brains to a common
space is often far from perfect. A filter for this purpose typically has a full width at
half maximum (FWHM) of 5 to 10 mm. Because the thickness of the cortical layer
ranges between 1 and 5 mm, it is quite clear that smoothing neighboring voxels

24



4.3. PARAMETRIC IMAGING WITH FREESURFER

with a filter of such an extent will result in severe edge artifacts. In FreeSurfer the
smoothing can instead be done in the direction of the surface, illustrated in figure
4.3.4. This results in a mixing of only close cortical, which can be assumed to have
similar amounts of activation. The smoothing process in FreeSurfer is an iterative
process that yields an approximate FWHM (Hagler et al., 2006).

Figure 4.3.4. 2D illustration of the principle difference in smoothing across vox-
els and across a surface.

4.3.1. Boundary-based registration of multimodal data

An algorithm for multimodel co-registration has been developed for FreeSurfer,
called boundary-based registration (BBR), that make use of the reconstructed sur-
faces of the cortical layer. It is used to rigidly transform a volume with functional
data, such as PET, to the structural MR volume. It initializes the registration pro-
cedure by performing a registration in SPM or FSL. In the case of this thesis the
method of SPM5 is used as initialization. The method of SPM tries to maximize
the normalized mutual information to make the joint histogram of the two volumes
as compact as possible. This method usually works well when two intra-subject
volumes are close from the beginning, but do have a risk of ending up in a local
minimum if the noise level is high in local regions, the intensity distribution is very
different between the two volumes or some parts are missing in one volume.

In contrast to the method in SPM, BBR treats the reference and input volume dif-
ferently and can thus make the whole registration procedure more robust. The input
volume can be of any modality with some tissue contrast, while the reference vol-
ume is represented by the inner and outer cortical surface. The cortex boundaries
are used because the cortex is highly folded and a good registration to it is assumed
to also result in a good registration of the whole volume. The cost function in-
volves the local intensity differences within inner-outer vertex pairs. The intensity
of a vertex is computed from the intensities of the input volume’s voxels which
for the moment corresponds to the vertex and a small distance inwards towards the
center of the brain. The optimization of the cost function is either a minimization
or maximization problem, depending on if white matter is lighter or darker than
gray matter in the input volume. The optimization problem is solved by a search
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function and gradient descent in different steps (Greve and Fischl, 2009). In the
case of PET data, a good input volume is the mean volume of the time frames. The
early and late time frames are excluded as they are more error prone. An example
of a registered mean PET volume together with the inner cortical surface is shown
in figure 4.3.5.

Figure 4.3.5. FreeSurfer registration.

4.3.2. Group analysis with the general linear model

The general linear model(GLM) is the most commonly used model for testing the
significance of different hypotheses from a data set. It assumes that the errors
follow a Gaussian distribution. In FreeSurfer the testing is done independently
at each single vertex, a univariate test, without including informations from other
vertices. Information from neighbouring vertices will of course be included in the
model when the surface has been smoothed. The GLM is defined as

y(s×v) = X(s×p)B(p×v) + U(s×v), (4.14)

where y is the dependent variable matrix, X is the design matrix containing in-
formation on each subject, B is the parameter matrix and U contains the residual
error. s is the number of subjects, v is the number of vertices and p is the number
of regression parameters. The number of parameters depend on the independent
variables: for each combination of levels in categorical variables there will be one
intercept and one parameter for each continuous variable. E.g. for two categorical
variables with two levels and two continuous variables, there would be 12 parame-
ters. The parameters are estimated with

B = (XTX)−1XTy. (4.15)

The residual error is then computed as

U = y −XB. (4.16)
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To measure the significance of different combinations of parameters, a contrast ma-
trix C(j×p) is used to compute a F-value

F =
GT

(
C
(
XTX

)−1
CT
)−1

G

jvar(U)
, (4.17)

which is used in an F-test to get a p-value. A low p-value means a high significance
of the parameter combination. If the contrast matrix only contains one row (j = 1),
then F = t2 where t is used instead in a two-tailed t-test (Smith, 2013).

As described in section 4.2.3, the initial results of the study that will be exam-
ined in this thesis showed one subject that has a high influence on the result of a
GLM on the global neocortical region. It can therefore be interesting to see what
influences it has on a vertex level. One method to measure the influence of one data
point on a GLM analysis is Cook’s distance (Cook, 1977). It measures the effect
on an estimated parameter when deleting a data point by combining the studen-
tized residual distance and leverage into one measurement. Cook’s distance can be
defined as

Di =
r2i hi

p(1− hi)2σ̂2
(4.18)

where ri is the residual of data point i, hi is the leverage of data point i, p is the
number of parameters of the model and σ̂2 is the estimated variance of the fit. The
leverage is the i:th diagonal elements of the hat matrix X(XTX)−1XT. A Cook’s
distance greater than 1 is a good indication of a influential data point that can be
worth looking into. Another proposed value is a Cook’s distance greater than 4/n
where n is the number of subject, which would equal 0.07 for the sex-hormone
study.

4.3.3. Correction for multiple comparisons

In a statistical analysis, two types of errors are important: type I and type II errors.
A type I error is when a test shows a statistical significance where there is no true
significance: a false positive. A type II error is the opposite: a false negative. An
often used threshold for p-values is 0.05, which corresponds to a 95% confidence
interval. This means that there is a 95% chance that the tested condition is signifi-
cant. In brain imaging it is common to test the statistical significance independently
at each vertex. To use a 0.05 threshold for so many simultaneous tests might result
in a high number of false positives, which inflates the risk of finding significant
areas where there actually are none. Therefore, several different approaches have
been developed to control the probability of false positives. This is referred to as
correcting for multiple comparisons. Early methods, such as Bonferroni correction,
focuses only on the probability of false positives with the result of an increased risk
of false negatives. It is important that the method does not introduce too many false
negatives, as this will reduce the statistical power of the analysis and actual signif-
icant areas might be overlooked. Two methods for multiple comparisons that have
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been implemented in FreeSurfer will be assessed in this thesis.

One simple and often used approach is to find a p-value threshold with a procedure
that controls the false discovery rate (FDR). The false discovery rate is the pro-
portion of false positives among the results over a chosen threshold in a data set,
whether the data set is the whole brain or only a region of the brain. This method
was introduced to have a better control over the probability of false negatives than
Bonferroni correction. First, the vertex p-values are ordered from smallest to largest
as

p(1) ≤ p(2) ≤ · · · ≤ p(V ). (4.19)

The threshold is then chosen to be the p-value with the largest i for which

p(i) ≤
i

V

q

c(V )
, (4.20)

where V is the total number of vertices and q is a value from 0 to 1 corresponding
to the maximum tolerated FDR. It can be set to a conventional value as 0.05, but
could also be larger in some cases. c(V ) is a constant which is chosen depend-
ing on assumptions about the distributions of p-values across vertices. A generally
suitable formula is c(V ) =

∑V
i=1 1/i. A problem with this approach is that it

becomes more conservative as correlations between the tests increases (Genovese
et al., 2002). With the often high amount of smoothing in a between-brains analy-
sis, this method might lack the needed statistical power. Nevertheless, it is an often
used method in these settings as it is easy to implement and understand.

A more advanced approach is the clusterwise correction by Monte Carlo simu-
lation. This method assumes that significant areas in the brain will be clustered and
focuses on finding sufficiently large and significant clusters in a p-value map. The
output will be a number of clusters with clusterwise p-values. It starts by generating
random maps of the same size as the p-value map and with independent normally
distributed noise. The residual smoothness level of the p-map is estimated and
the simulated maps are smoothed to this level. At each simulation the simulated
map is thresholded to a user-defined p-value threshold and the maximum cluster
size is recorded. After many map generation, a distribution of cluster sizes is ob-
tained. The original p-map is then thresholded at the same p-value and the size of
the obtained clusters is compared to the distribution, which results in a clusterwise
p-value that is regarded as corrected for multiple comparisons as the distribution
will show how often a cluster of that size can appear by chance. To get a reliable
estimation from the Monte Carlo simulation, several thousand generated maps have
to be produced which can take several hours. In FreeSurfer this process have been
pre-computed for different levels of smoothing and can be transformed to a new
case by the use of z-statistics, so for every new case it is just a matter of looking up
the cluster-sizes and their corresponding p-values in a table (Hagler et al., 2006).
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4.4. Surface-based MRTM2 pipeline by using
FreeSurfer

To get more stable binding potential estimates when using MRTM2 for parametric
imaging, the data can be spatially smoothed with a Gaussian filter previous to the
modeling of the data. As described in section 4.3 the spatial smoothing in voxel
space results in partial volume effects by mixing in signal or lack of signal from
white matter and cerebrospinal fluid. It also mixes signal in cortical folds between
spatially close areas with no direct functional connections. This is the motiva-
tion for implementing a surface-based method for MRTM2. The smoothing can
thus be done across the surface between vertices that are functionally closer. A
pipeline was developed for a full across-brain analysis using the FreeSurfer soft-
ware together with version 8.1 of the numerical computing environment MATLAB
developed by MathWorks. The pipeline was inspired by the yet unpublished work
of Douglas N Greve at the Athinoula A. Martinos Center for Biomedical Imaging
at Massachusetts General Hospital (Personal communication, spring 2013). The
pipeline is shown in figure 4.4.1.

high-binding TAC

reference tissue TAC

baseline

PET volume

follow-up

PET volume

ΔBP-map

k2’

follow-up BP-map baseline BP-map

subcortical
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MRTM
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cortical surfaces
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Figure 4.4.1. Pipeline of surface-based MRTM2.

The lilac boxes represents steps performed in FreeSurfer. The inner, outer, spheri-
cal and inflated surfaces are obtained from the baseline MR volume for each sub-
ject, as described in the previous section. Both the baseline scan and the follow-up
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scan are registered to the baseline MR volume and surfaces, to obtain baseline-
follow-up vertex correspondence. The mean PET volume of time frames 7 to 32
is used for the registration. Earlier and later time frames are excluded due to their
higher level of noise. The registration is done by the boundary-based registration
method with initialization by SPM5’s co-registration method. The rigid transfor-
mation matrix obtained by this registration is then used to transform all the time
frames. They are then projected onto the cortical surface and mapped to the aver-
age subject where they are smoothed prior to vertexwise modeling by MRTM2. A
high level of smoothing is used to account for the imperfections in the mapping to
the average subject, typically 10 mm.

To obtain the regional averaged reference tissue TAC and high-binding tissue TAC
for the modeling with MRTM, a subcortical segmentation is needed. The subcor-
tical segmentation in FreeSurfer could be used for this purpose. However, it is not
as good as the cortical segmentation which is FreeSurfer’s specialty. Therefore, the
subcortical segmentation that was used for the previous results of the sex hormone
study is used also here, described in section 4.2.3. In addition, the surface-based
results can then be better compared to previous results. The subcortical regions
used can be seen in figure 4.4.2. The reference region in orange is cerebellar cor-
tex, which is used without vermis. The high-binding regions are thalamus in green,
caudate in blue and putamen in pink.

Figure 4.4.2. High-binding regions and reference region.

Subsequently, the estimation of a constant reference tissue clearance rate k′2 is
done by MRTM. The input for the vertexwise MRTM2 is the spatially smoothed
time frames, the regionally averaged reference tissue TAC and the reference tissue
clearance rate k′2. The output of the MRTM2 is a map of BP values. The baseline
BP-map is subtracted from the follow-up BP-map to obtain the ∆BP-map. The
∆BP-maps of all subjects are collected and the between-brain statistical analysis
can start.

The general linear model is fitted independently at each vertex and generates a
map of p-values. This p-map can then be corrected for multiple comparison.

The MATLAB implementation of MRTM2 can be seen in appendix A.
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4.5. Incorporating MRTM2 into a Bayesian
framework

When pre-smoothing the data previous to parametric imaging, it is assumed that
vertices close to each other will have similar characteristics. This assumption
makes it possible to lend information from neighboring vertices to improve the
signal to noise ratio at each vertex position. The spatial smoothing is done at each
frame, so the assumption is more specifically that the radioactivity at a certain time
point should be similar at close vertices. However, the distribution between blood
vessels and neuronal tissue might differ between neighboring vertices and thus their
contribution to the overall radioactivity. Furthermore and more importantly, with
a high noise level such as in PET data the noise might not get effectively reduced
by Gaussian filtering. A high noise peak at one vertex will be reduced in height by
filtering but it will also spread to neighboring vertices. If the peak is high enough,
this might result in a larger area having severe errors in the estimated parameters.

A more reasonable approach might be to instead assume that the parameters them-
selves should be similar at neighboring vertices. With the parameter estimated by
MRTM2, this means that the rate of delivery and the rate of clearance of radioli-
gand should vary smoothly across the tissue. To be able to use this assumption
in the modeling procedure, it has to be directly incorporated into the model. A
pre-processing step as pre-smoothing is not an option. This is also a more sound
approach, to incorporate the assumptions you make on the data in a mathematical
model rather than pre-processing the data. Of course, the dynamic frames are al-
ready modeled from the raw list-mode data of a PET acquisition procedure. As
mentioned in chapter 3 some recent attempts have been made to combine this and
estimate the parameters directly on list-mode data. However, many more aspects
of the data have to be incorporated in the model for such an approach to work and
it can become difficult to handle, especially when interested in the highly-folded
cortical layer.

In a Bayesian framework, the assumption that parameters should vary smoothly
across the cortical layer can be built into a model as prior knowledge by using
Bayes’ rule presented in equation 4.22. As presented in section 4.1.3, MRTM2 can
be written in matrix form for one vertex n as

cn = Xnwn + εn, (4.21)

where the data consists of the response vector cn, the predictors in matrix Xn and
the parameters in the parameter vector wn. For a whole PET scan there are N
vertices, K timesteps and M = 2 parameters at each vertex. The whole problem
can be written as

X ∈ RK×M×N with slices X1, . . . ,XN ,

C = [c1, . . . , cN ] ∈ RK×N

and
W = [wn=1, . . . ,wn=N ] = [wm=1,wm=2]T ∈ RM×N .

Bayes’ rule can be written as
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p(W|C,X ) =
p(C|W,X ) p(W)

p(C,X )
. (4.22)

The denominator will be constant and can thus be removed from the calculations.
We then have that the likelihood function p(C|W,X ) times the prior probability
p(W) equals the posterior probability p(W|C,X ).

The likelihood is simply the model of MRTM2 in equation 4.21 collected for all
vertices, with the assumption of equal and independently distributed noise. The
joint probability is then the product of the probability of each event, i.e.

p(C|X ,W, β) =

N∏
n=1

N (cn|Xnwn, β
−1I) (4.23)

with the hyperparameter β introduced as the precision term, the inverse of the vari-
ance. To find the mean of this distribution is equivalent to performing multilinear
least squares at each vertex independently.

4.5.1. Regularized MRTM2

The prior probability should reflect the made assumption that parameters of neigh-
boring vertices should be similar in value. This is the prior assumption that we
want to incorporate into the model. An easy way is to start with the squared dis-
tance between two parameters of neighboring vertices, i.e.

(wn=1 − wn=2)2 (4.24)

This is the distance that we want to regularize. The parameter differences of all
neighboring vertices can be collected in a matrix Γ, with as many columns as the
number of vertices and as many rows as the number of pairs of neighboring ver-
tices. The row corresponding to one vertex pair will contain zeros everywhere
except for the column corresponding to the first vertex which will contain 1 and
the column corresponding to the second vertex which will contain -1. The squared
distances for all vertices can then be summarized as wmΓTΓwT

m for parameter m.
A hyperparameter α is introduced to govern the amount of regularization. A prior
probability can then be written as

p(W|α) =

2∏
m=1

N (wm|0, (αΓTΓ)−1) (4.25)

for the two independently distributed parameters of MRTM2. To make further
calculations easier, the likelihood and prior are rewritten for a common parameter
vector w = [wT

m=1,w
T
m=2] of length NM . Setting

G =

[
ΓTΓ 0

0 ΓTΓ

]
(4.26)
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the prior probability becomes

p(w|α) = NNM (w|0, (αG)−1), (4.27)

To be able to rewrite the likelihood function we vectorize C as

c = [cT1 , . . . , c
T
N ]T (4.28)

and introduce a matrix equivalent to the tensor X on the form

X =


x1,1 0 . . . 0 x1,2 0 . . . 0
0 x2,1 . . . 0 0 x2,2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . xN,1 0 0 . . . xN,2

 , (4.29)

where the first half of the matrix includes the predictor vectors belonging the first
parameter and the second half includes the predictor vectors belonging to the sec-
ond parameter. The likelihood can then be rewritten as

p(c|X,w, β) = NNK(c|Xw, β−1I). (4.30)

We now assume that the hyperparameters β and λ are known so we can regard them
as constants. The posterior probability can then be obtained as

p(w|c,X) = N (w|m,S−1) (4.31)

with
m = βS−1XTc (4.32)

S = βXTX + αG. (4.33)

This is a conditional distribution of w given c and can be derived from the marginal
distribution of w as in equation 4.27 and the conditional distribution of c given w
as in equation 4.30. This has been derived for two general Gaussian distributions
by Bishop (2006). The maximum a posteriori probability (MAP) estimate is then
on the form

wMAP =
(
XTX + λG

)−1
XTc. (4.34)

where λ = α/β. This approach can be called the regularized MRTM2. The hyper-
parameter λ can be set by the user to reach a desired level of regularization, much
as setting the desired level of pre-smoothing in the conventional approach. It could
be interesting to note that if λ is set to zero, the equation does become equivalent
to a least squares fit at each vertex independently.

To directly implement this equation would be computationally demanding. The
matrices X and Γ are sparse, but will still have a dimension of NK × 2N and
the number of vertex pairs ×N , respectively. A brain hemisphere contains above
100 0000 vertices with each vertex has on average 6 neighbors. However, some the
structural characteristics of the involved products can be observed:
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• The matrix ΓTΓ will have the dimensionsN×N . The diagonal of this matrix
will contain the total number of neighbors of each vertex. If the first indexed
vertex has 5 neighbors, the first value of its column will be 5. The rest of the
elements of the column will be zero, except for the rows corresponding to its
neighbors which will contain -1.

• The matrix XTX will have the structure

xT
1,1x1,1 . . . 0 xT

1,1x1,2 . . . 0
...

. . .
...

...
. . .

...
0 . . . xT

N,1xN,1 0 . . . xT
N,1xN,2

xT
1,1x1,2 . . . 0 xT

1,2x1,2 . . . 0
...

. . .
...

...
. . .

...
0 . . . xT

N,1xN,2 0 . . . xT
N,2xN,2


. (4.35)

• XTc will have the structure[
xT
1,1c1 . . . xT

N,1cN , xT
1,2c1 . . . xT

N,2cN
]T
. (4.36)

• The problem that has to be solved will consist of a sparse inverse of dimen-
sion N × N multiplied by a vector with the dimension N × 1. This can
be efficiently solved by MATLABs backslash operator and sparse matrix ca-
pabilities. The whole problem can be solved in under 2 seconds on NRUs
servers with Xeon 5690 3.47GHz CPUs.

The implementation in MATLAB can be seen in appendix B.

4.5.2. A move towards a fully Bayesian approach

For the regularized MRTM2, the hyperparameters are considered known and can
be chosen by the user. However, the optimal parameters are of course not known.
For a fully Bayesian treatment of the data, the optimal hyperparameters should
be estimated from the data. Such a procedure would also relieve the user from
making a subjective decision without having much to go on. When treating the
hyperparameters as unknown, the full posterior probability p(w|c,X) will become
an integration over all possible values of the hyperparameters. A problem arises
when using the prior developed for regularized MRTM2, because the prior is not
proper. As seen in figure 4.5.1, the prior has an infinite distribution. This might not
be a problem when regarding the problem as a user-defined regularization problem,
but it becomes problematic when we need to integrate over all possible values of
the hyperparameters to obtain the posterior probability of w given the data.
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w

likelihood

prior
n=1

wn=2

Figure 4.5.1. Improper prior used in regularized MRTM2.

To make the prior distribution proper, a bound has to be set on the distribution. This
can be done by introducing a second hyperparameter, with the relationship

α1(wn=1 − wn=2)2 + α2(wn=1 + wn=2)2. (4.37)

This will lead to a proper prior distribution with zero mean, shown in figure 4.5.2
for one parameter pair.

w

likelihood

prior
n=1

wn=2

Figure 4.5.2. A proper prior.

To make the prior more adaptive, the mean of the distribution could also be es-
timated instead of assuming that it would be zero. To not inflate the number of
hyperparameters needed to be estimated, one mean for each parameter type could
be introduced. This yields the prior distribution

p(w|θ) = NNM (w|µ, (α1G + α2F)−1), (4.38)

with F being similar in structure to G, but with 1 instead of -1 at the relevant off-
diagonal elements. µ will necessarily be a vector of the same length as w, but will
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be µ1 for all values of the first parameter type and µ2 for all values of the second
parameter type. For an easier notation, all hyperparameters of the prior probability
is collected in a hyperparameter vector θ. The posterior is then on the form

p(w|c) =

∫
θ,β

p(c|w, β)p(w|θ)p(θ, β|c) dθ dβ. (4.39)

For a more readable notation the dependencies on X have been omitted. This inte-
gration is difficult to solve, but an often used approximation framework called the
evidence approximation treats the distribution p(θ, β|c) as sharply peaked around
some estimated values θ∗ and β∗ (Bishop, 2006). The posterior distribution of w
can then be written on the familiar form

p(w|c) ≈ p(w|c,θ∗, β∗) = p(c|w, β∗)p(w|θ∗). (4.40)

The posterior distribution for θ and β is given by

p(θ, β|c) ∝ p(c|θ, β)p(θ)p(β). (4.41)

If the prior distributions of the hyperparameters can be assumed to be relatively flat,
the values θ∗ and β∗ can thus be obtained by maximizing the marginal likelihood
p(c|θ, β).

When having a Gaussian likelihood function as in equation 4.30 and a Gaussian
prior distribution as in equation 4.27, the marginal distribution of c can be derived
as

p(c|θ, β) = N (c|Xµ, β−1I + X(α1G + α2F)−1XT), (4.42)

which has been showed by Bishop (2006). This probability will thus be maximized
to obtain the optimal hyperparameters. For an easier maximization process, the
logarithm of this distribution will be maximized. To maximize the logarithm of a
function is equivalent to directly maximizing the function, but makes the process
easier. With such a large data set, the probability for the optimal solution will can
be so small that an underflow problem can occur if the logarithm is not used. Thus,
the logarithm of the function is

ln p(c) = −NK
2

ln 2π − 1

2
ln ‖β−1I + XH−1XT‖−

1

2
(c−Xµ)T

(
β−1I + XH−1XT

)−1
(c−Xµ). (4.43)

where H = α1G + α2F. With the use of the matrix determinant lemma for an
invertible square matrix on the form

‖β−1I + XH−1XT‖ =
‖β−1I‖‖βXTX + H‖

‖H‖
, (4.44)
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the Woodbury matrix identity

(β−1I + XH−1XT)−1 = βI− βX(βXTX + H)−1XTβ (4.45)

and some rearranging the final equation can be written as

ln p(c) =
1

2
( −NK ln 2π+NK lnβ−ln ‖U‖+ln ‖H‖−β(c−Xµ)(c−Xµ)T+

β2((c−Xµ)X)TU−1((c−Xµ)X) ), (4.46)

with U = βXTX + H. This function has to be maximized. Partial first order
derivatives of this function can be derived for each hyperparameter without too
much trouble and used in e.g. a Gradient descent algorithm. However, they will
involve the computation of several traces of large systems of equations with the size
M−1

2N×2NN2N×2N , where N is the number of vertices. The number of vertices in
one hemisphere is above 100 000, so even if the system of equations will be sparse
the computation time will be vast.

A simpler approach could be to use a non-derivative optimization function, which
usually needs many more iterations but works well for a small number of parame-
ters. In this thesis, the MATLAB function fminsearch is used to directly opti-
mize on the cost function− ln p(c). fminsearch uses the Nelder-Mead Simplex
Method (Lagarias et al., 1998). The heaviest computational task at each iteration
will be to compute the logarithm of the determinants of the huge matrices (size
2N × 2N ). The determinants will be too large to be represented as a standard
double-precision floating-point number. Fortunately, the logarithm of such a de-
terminant will be possible to represent and can be computed without explicitly
computing the determinant. Futhermore, the matrices will be sparse and symmet-
rical positive definite. The process starts by performing the LDL-decomposition
of the matrix, which is the most efficient decomposition for large sparse symmet-
rical matrices, in comparison to e.g. Cholesky decomposition. The variant of the
decomposition for sparse matrices is on the form

PTMP = LTDL = (LD
1
2 )TLD

1
2 (4.47)

where P is a permutation matrix, L is a lower unitriangular matrix and D is a
diagonal matrix. It is related to the original matrix’s logarithm as

ln ‖M‖ = 2
∑

ln diag(LD
1
2 ) (4.48)

This decomposition can also be used for a fast computation of U−1((c−Xµ)X),
with the decomposition already obtained for the computation of the log determi-
nant. The solution is computed with MATLAB’s backslash operator as

P * (L’ \ (D \ (L \ (P’ * (c - X*mu)))))

One issue with most optimization algorithms is the possibility to end up in a lo-
cal minimum and thus not find the true optimal values. Therefore, it is important
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to choose a plausible starting point for the algorithm. Another issue is the issue of
what data to optimize the parameters on, e.g. to obtain different hyperparameters
for different hemispheres of a brain or different subjects in a study might make
them less comparable. However, the relationship between number of samples and
computation time is non-linear. More samples from e.g. different subjects in one
optimization scheme makes the computation time higher than optimizing each sub-
ject separately.

The MATLAB implementation of the MRTM2 function with fminsearch can
be seen in appendix C and the cost function can be seen in appendix D.

4.6. Repeatability Analysis

The comparison of different mathematical models and the assessment of the quality
of a certain model’s outcome can be done in various ways. Three related standard
terms can be used: accuracy, trueness and precision (JCGM, 2012). For a model to
be valuable it should be accurate, meaning a high trueness and a high precision. A
low accuracy can be due to poor trueness although it is precise, or to low precision
although it is on average true. To measure trueness is obviously more difficult in
PET modeling than to measure precision. The true concentrations are not known.
Post-mortem analyses can give an insight into the serotonin concentrations, but are
typically carried out on a small portion of the brain to say something about the
larger region. How much the concentration can vary on smaller regions such as
voxels or vertices is hard to say. This is also the problem in doing simulated stud-
ies, as the trueness of the simulation will be hard to assess. The precision of a study
is easier to assess and can be done on a test-retest study, but also for these studies it
is an issue with not knowing in very much detail how the binding potential can vary
spatially but perhaps more importantly over time. The precision of model on a data
set that has been acquired over a short period of time and with the same instruments
to keep conditions constant is often called the repeatability of the model. In this
thesis, the repeatability of the surface-based vertexwise MRTM2 and the regular-
ized MRTM2 will be evaluated by the use of the psuedo-test-retest data set. As this
data set is part of a placebo group, placebo effects might be present. Furthermore,
the time between the test and retest scan was around one month which might result
in a true inaccuracy between the scans. However, this could also be the case for
sessions closer together. The models will be compared on a vertex-level and on a
regional level where the vertex-wise BP will be averaged on a larger region. In the
regional comparison the models will also be compared to MRTM2 modeling on
regional averaged TACs, both from FreeSurfer regions and from the results of the
initial PMOD analysis. Apart from exploratory analyses, two statistical measure-
ments will be used.

A simple procentual measurement of bias will be used on the form

retest− test

test
. (4.49)

On the regional analysis, the average between subjects will serve as a measurement
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of bias and the standard deviation will serve as a measurement of variability of a
model. On the vertex analysis, the measurement is less ideal because of the pres-
ence of negative values. Therefore, the denominator will be changed to its absolute
value.

Furthermore, the reliability of the models will be assessed by the intraclass correla-
tion coefficient (ICC). This coefficient is often used when measurements have been
obtained from different observers measuring the same quantity. There are several
types of ICC whereof two will be used in this thesis. They employ a two-way ran-
dom effects model to compare the within-sample variance to the between-sample
variance. ICC(2,1) with absolute agreement will be used for a within-subject anal-
ysis of repeatability between vertices of the test and retest scan. It is on the form

ICC(2, 1) =
BMS − EMS

BMS + (k − 1)EMS + k(JMS − EMS)/n
, (4.50)

where n is the number of vertices, k is the number of scans, BMS is the between-
vertex mean square, EMS is the residual mean square and JMS is the between-
scans mean square. For the regional analysis, the ICC(3,1) for consistency will be
used used to measure the repeatability between subjects. It is on the form

ICC(3, 1) =
BMS − EMS

BMS + (k − 1)EMS
, (4.51)

where BMS is the between-subject mean square (Shrout and Fleiss, 1979; Rae-
maekers et al., 2007).
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5. Results

For visualization of the results, the results of the first subject in the study will serve
as an example to be able to show some of the advantages and disadvantages of the
different approaches. The subject, with CIMBI number 50584, is from the placebo
group and had 36 days between the baseline and the follow-up session. It is a rather
average subject so the conclusions that can be drawn from this subject can be gener-
alized to the whole population. Although, it should be mentioned that it is slightly
more well-behaved than the average, meaning less negative and overly large BP
estimates. For the presented results, the automatic surface segmentation of each
subject in the study was carefully inspected and manually edited where deemed
necessary. In section 5.1, the results of the surface-based vertexwise MRTM2 will
be compared to the conventional voxel-based approach. In section 5.2, the results
of the vertexwise GLM with and without correction for multiple comparisons will
be shown and the ability of the between-brain registration of FreeSurfer will be val-
idated. In section 5.3, the results of the edited data set will be compared to results
of the original non-edited data set for a brief discussion on FreeSurfer’s automatic
segmentation algorithm and the need for manual editing. In section 5.4, the reg-
ularized MRTM2 will be compared to vertexwise MRTM2. First, the results of
an exploratory analysis will be presented on a few subjects, followed by measure-
ments on all subjects. Furthermore, averaged mean BP for some regions will be
compared to the initial results of the study which includes MRTM2 estimations on
regional averaged TACs. Finally, a few results of the attempt to treat the data in a
fully Bayesian way will be shown in section 5.5.

5.1. Validation of surface-based vertexwise
MRTM2

The mean PET volume of each subject and session was registered to the corre-
sponding MR volume at baseline by the Boundary-Based Registration method of
FreeSurfer. An example of the registration is shown in figure 5.1.1 for three slices
of the baseline scan of the first subject. By closer visual inspection of some sub-
jects, it proved to be a robust method. The cost function gave a value in the close
proximity of 0.3 for each scan.
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5.1. VALIDATION OF SURFACE-BASED VERTEXWISE MRTM2

Figure 5.1.1. Mean PET volume of time frame 7 to 32 registered to MR volume
by BBR (first subject at baseline).

Figure 5.1.2 shows the BP-maps estimated on raw data and smoothed data with a
FWHM 5 mm volume-based Gaussian kernel. It is clear that MRTM2 is highly un-
stable on raw data, e.g. with high values at unexpected places such as the skull and
white matter. However, it should be noted that rather few values are estimated as
negative within the cortical layer. In contrast, the smoothed BP-map is more stable
and as expected white matter voxels are generally lower than cortical voxels which
in turn are lower than voxels in the high-binding subcortical regions. However, it
is clear that many outer cortical voxels have been affected by CSF signal. Another
thing to note is that voxels with low or no signal have been estimated as negative,
which is incorrect.

Figure 5.1.2. BP-maps estimated by MRTM2 on raw data and data smoothed by
a volume-based Gaussian filter, FWHM 5 mm, overlayed on the MR volume.

To compare to the surface-based smoothing, the raw data was also modeled by
MRTM2 on the cortical surface (figure 5.1.3). The result seems rather noisy and
many vertices have been estimated as negative.
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5.1. VALIDATION OF SURFACE-BASED VERTEXWISE MRTM2

Figure 5.1.3. Raw BP-map on the outer surface and the inflated surface. Lateral
and medial view.

The volume-based smoothed BP-map was projected onto the cortical surface (fig-
ure 5.1.4). By projecting it onto the cortical surface, it becomes even clearer how
the volume-based smoothing affects the cortical region. The BP in gyrus regions
are systematically lowered compared to the raw BP-map.

Figure 5.1.4. BP-map (FWHM 5 mm) estimated on volume-based smoothed data
on the outer surface and the inflated surface. Lateral and medial view.

The BP-map estimated on data smoothed across the surface is shown in figure 5.1.5.
Comparing this to the volume-based smoothing, it can be seen that the volume-
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based smoothing results in lowered BP in deep folds and a mirror effect at the walls
of the folds. Unsurprisingly, the volume-based smoothing mixes signal between
different tissue types and between the walls of a fold. When comparing surface-
based smoothing to the estimation on raw data, it can be seen that surface-based
smoothing results in fewer negative values and a less noisy appearance but also a
loss in resolution.

Figure 5.1.5. BP-map estimated on data smoothed across the cortical surface (ap-
proximately FWHM 5 mm). Visualized on the outer surface and the inflated sur-
face. Lateral and medial view.

In table 5.1.1, some statistics are shown comparing the three BP-maps on the cor-
tical surface. The main findings are that MRTM2 on raw data results in vastly
too high and low BP values, while the volume-based smoothing results in more
reasonable values but with an average lowering of BP and many negative values.
In contrast, surface-based smoothing results in few negative values. However, the
minimum BP is lower than the one obtained through volume-based smoothing.

Table 5.1.1. Comparison between BP estimations on raw data, data smoothed on
voxel level and data smoothed on surface (first subject at baseline). Implausible
estimates refers to the number of vertices that have BP estimates that are either
negative or above 10.

BP estimations mean ± SD max min implausible estimates

On raw data 0.51 ± 0.33 20.11 -10.72 1028
FWHM 5 mm - in volume 0.36 ± 0.24 2.66 -0.39 3254
FWHM 5 mm - on surface 0.49 ± 0.24 3.64 -0.48 161

Two rather large areas still had negative BP after 5 mm surface-based smoothing.
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One is seen on the medial view in figure 5.1.5 and the other one was in the back
of the occipital lobe at the same height as the first one. To see if there are any
segmentation issues involved within these areas, figure 5.1.6 shows the two areas
on a slice of the MR volume. The inner area is a typical segmentation issue for
FreeSurfer and was present in almost all subjects, which resulted in a presence of
negative BP. In the areas where the two hemispheres are connected to each other,
the MR intensity between different tissue types becomes blurred. Thus, it becomes
difficult to correctly segment these areas. The other area, in the back of the brain,
is correctly segmented. This is a part of the occipital lobe which includes regions
with low concentration of serotonin transporters.

Figure 5.1.6. Cortical segmentation at areas that still had negative BP after
surface-based smoothing of 5 mm FWHM in the back of the brain.

5.2. Between-brain analysis in FreeSurfer

For the between-brain analysis, the subjects were mapped to the average subject and
the baseline and follow-up scan were smoothed with FWHM 10 mm in common
space before the modeling with MRTM2. The resulting ∆BP-map for the first
subject is shown in figure 5.2.1. It can be seen that the level of smoothing is rather
high. Also 5 mm and 15 mm smoothing were tried, with less significant result in
the between-brain analysis, which could suggest that 10 mm is the required level
of smoothing to account for the variability between brains.
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Figure 5.2.1. ∆BP-map for first subject in common space with 10 mm smooth-
ing.

5.2.1. General linear model

The general linear model in equation 4.13 was fitted at each vertex independently to
find the local significance of the difference in slope between the treated group and
the placebo group. The uncorrected p-maps for both hemispheres thresholded at
p = 0.05 are shown on the outer surface in figure 5.2.2 and on the inflated surface
in figure 5.2.3.

Figure 5.2.2. Uncorrected p-maps for both hemispheres with the threshold p =
0.05. Lateral and medial view.
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Figure 5.2.3. p-values hamilton.

The most significant areas seems to be in the occipital and parietal lobe. Unfortu-
nately, these regions are not of interest in the sex-hormone study. These are also
the regions that show most coherence between the two hemispheres. Coherency be-
tween the hemispheres is important because functional differences between them
are not expected. The frontal cortex, a region of interest in the analysis, did show a
significant effect in the initial regional analysis but seems virtually unsignificant in
this more local analysis.

The p-map was corrected for multiple comparisons by FDR with a q-value of 0.05,
shown in figure 5.2.4, and with clusterwise correction with a vertexwise threshold
at p = 0.01 and a clusterwise threshold of 0.05, shown in figure 5.2.5. The FDR
procedure leaves very few and small areas as significant. The areas do not have any
coherency between the hemispheres. As the p-map is smooth, this shows the appar-
ent conservatism of the FDR procedure when it comes to correlated data. It could
of course also mean that the GLM does not have any strong significant results, but
in any case, FDR does not in this case yield any useful results.

In contrast, the clusterwise correction does result in some interesting clusters. Es-
pecially the highly significant cluster in lower parietal lobe shows some interesting
coherent characteristics between the hemispheres. Other significant clusters with
some coherency are located at the top of the postcentral gyrus and at the medial end
of occipital lobe. However, these do not seem to be exactly at the same location in
both the hemispheres. Unfortunately, these areas is not interesting in the study at
hand, but do show that the clusterwise correction can be a valuable method for find-
ing patterns on the cortical surface. However, the uniform clusters lacks detailed
information and the their boundaries seem rather arbitrary. This could make it hard
in many cases to draw conclusions from such an analysis alone.
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Figure 5.2.4. False Discovery Rate, q=0.05. Contours of clusters from the clus-
terwise correction are overlayed on the surface. Left and right hemispheres in lat-
eral and medial view.

Figure 5.2.5. Cluster analysis for a vertexwise p-value threshold of 0.01 and a
clusterwise threshold of 0.05. Left and right hemispheres in lateral and medial
view.

In the initial analysis described in section 4.2.3, one subject was present that showed
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a great influence on the outcome of the model on regional averaged TACs of neo-
cortex. For that test, the subject had a Cook’s distance of 0.27. The visualization
capabilities of FreeSurfer makes it easy to visual this subjects’ Cook’s distance
across the surface. This is shown in figure 5.2.6. Compared to other subjects, this
subject does have a very large Cook’s distance in many regions of the cerebral cor-
tex. However, when comparing to the significance map in figure 5.2.3 it can be
noted that the subject does not have a very large Cook’s distance at the significant
areas. This suggests that these areas can be more certain in their significance.

Figure 5.2.6. Cook’s distance for driving subject on global neocortical level on
left hemisphere.

5.2.2. Problems with registration to common space

As described in section 4.3, individual brains are mapped to the average subject by
fitting patterns of convexity. It is therefore interesting to examine these patterns and
to see how well they are mapped to the average subject. In figure 5.2.7, 8 subjects
convexity patterns are shown mapped to the average subject in lateral view. The
first brain shows the average convexity patterns that they are mapped to. It can
be seen that the main gyrus structures of the brain are well mapped to the average
subject, such as pre- and postcentral gyrus and superior and medial temporal gyrus.
However, many areas seems to have less clear patterns that are more difficult to
map, such as in the frontal lobe and between occipital lobe in the back of the brain
and surrounding regions. Futhermore, many smaller structures do not seem to be
well-mapped.

In figure 5.2.8, the convexity patterns are shown on the medial view. Mapping
problems can be seen in the upper region in the back of the brain. Many smaller
patterns are also not well-mapped. It seems clear that the high level of smooth-
ing for the between-brain analysis is necessary in the present general linear model
framework, despite other issues with spatial smoothing. It should be noted that the
FreeSurfer between-brain registration algorithm has been validated and compared
to other registration methods with good results.
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Figure 5.2.7. Convexity patterns on the average subject, left hemisphere lateral
view. On the first brain the average convexity pattern is shown that is used as the
reference when mapping individual brains to the average surface. The convexity
patterns of the 8 first subjects of the sex-hormone study is shown mapped to the
average subject.

Figure 5.2.8. Convexity patterns on the average subject, left hemisphere medial
view. The convexity patterns of the 8 first subjects of the sex-hormone study is
shown mapped to the average subject. First subject shows the average convexity
patterns that are mapped to
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To further investigate the performance of the mapping to average space and to gen-
eralize the findings of visually comparing 8 subjects convexity patterns, the stan-
dard deviation was computed for the mapped convexity patterns of all subjects in
the sex-hormone study, shown in figure 5.2.9. It can be seen that the most severe
differences are in sulcus regions in the transition from occipital lobe to temporal
lobe, and in the parietal lobe. Also middle frontal gyrus is affected.

Figure 5.2.9. Standard deviation of the mapped convexity patterns, n = 61.
Outer surface and inflated surface of left hemisphere, lateral and medial view

To examine the results of these registration issues on a group analysis, the convexity
standard deviation map was overlayed on the p-map in figure 5.2.3. The continuity
between the measurements are quite striking. The p-values in frontal cortex follows
the line of the standard deviation convexity area at its immediate proximity. In
occipital to temporal cortex a p-value cluster goes right between two areas with
high standard deviation of convexity. Furthermore, a highly significant p-value
area in parietal cortex also goes between two areas of high standard deviation of
convexity. If this is due to the worse between-brain mapping in these areas or have
other structural explanations is hard to say. Notice also that the ∆BP-maps in the
GLM have been smoothed after brain mapping, which might be why the p-value
clusters seem to extend slightly into affected areas.
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Figure 5.2.10. Standard deviation of the mapped convexity patterns overlayed
on the p-map of the general linear model performed in this thesis, thresholded at
p=0.05. Outer surface and inflated surface, lateral and medial view.

5.3. Editing of surface segmentation

The cortical segmentation of FreeSurfer was checked and manually edited where
deemed necessary. The segmentation was checked by two persons, whereof one
was a medical doctor with experience of neuroimaging data. The segmentation
was carefully edited and reviewed to be able to assess the effect of manual smooth-
ing. The automatic segmentation of FreeSurfer works well, but as any automatic
segmentation it does result in quite a few errors in a surface reconstruction pro-
cedure on average. Only two subjects were judged to not need manually editing
and most subjects were quite significantly edited. Some areas were systematically
segmented with errors, such as the upper central medial area of the brain, lower
frontal cortex and at the very back of occipital cortex. Most issues regarded the
outer surface. An example of a typical notch before and after editing at a upper
central medial area can be seen in figure 5.3.1, together with a more rare problem
with the inner surface.

Figure 5.3.1. Editing segmentations.

Many subjects were edited, but the question is to what extent segmentation issues
actually affects a statistical analysis. Obviously, most segmentation issues will be
at different areas for different subjects and with the 61 subjects in the study, the
study can be seen as rather robust even if one or two subject would have a bad
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segmentation at one vertex. In figure 5.3.2, negative correlations and paired t-tests
of differences in volume between the edited and non-edited data set can be seen
for each vertex. Most areas are well correlated and had no significant statistical
difference. There are however some areas with significant difference, most notably
in the areas which we could see had systematic errors.

Figure 5.3.2. Negative correlation of cortical volume between edited and non-
edited data sets, and significance of the difference in cortical volume.

The areas most affected by segmentation issues were not significant in the general
linear model, so conclusions about the effect of segmentation errors on a statistical
group analysis are hard to draw from this study. A small change in p-value did
however change the result of the clusterwise analysis on the left hemisphere, as
seen in figure 5.3.3. The change in p-value was quite small, so this result might
say more about the cluster analysis and p-value thresholding than about the effect
of segmentation issues. Nevertheless, segmentation issues will give a higher level
of noise and uncertainty that under some unfortunate coincidences might effect the
outcome of a statistical analysis.

Figure 5.3.3. Difference between edited data set and non-edited data set on clus-
ter analysis.
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5.4. Regularized MRTM2 compared to MRTM2
with pre-smoothing

The results of regularized MRTM2 compared to the vertexwise MRTM2 with a pre-
smoothing step will first be presented by visualization and an exploratory analysis
on a few subjects. A repeatability analysis on vertex level will then draw conclu-
sions on the whole test-retest data set, followed by a regional analysis.

5.4.1. Visualization and exploratory analysis

The results will first be presented and visualized on the first subject of the sex-
hormone study. Three levels of smoothing and regularization will be compared.
To find a level of regularization that is directly comparable to a level of smoothing
is difficult due to the quite different characteristics of the two models. However,
with three levels the progress from a low level of regularization to a high level of
regularization can be shown. The range of smoothing and regularization has been
chosen to be as comparable as possible when taking all aspects into account. A
visualization of the result on the baseline scan is shown in figure 5.4.1.

Figure 5.4.1. baseline BP for different levels of smoothing and regularization.
Left hemisphere, lateral view.
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Regularized MRTM2 seems to retain a higher resolution than the pre-smoothed
vertexwise MRTM2, even at the highest regularization level. It is sharper and more
detailed, without appearing noisy. The 15 mm smoothed BP-map is highly blurred
and also the 10 mm is quite blurry. The 5 mm smoothed map contains a small neg-
ative area in occipital cortex, while the map with the lowest level of regularization
is able to produce a positive result in that area. The result of the left hemisphere in
medial view is shown in figure 5.4.2.

Figure 5.4.2. baseline BP for different levels of smoothing and regularization -
Medial view.

The same conclusions can be drawn from this view as for the lateral view. However,
a negative area close to the medial wall is larger for all regularization levels than
for the smoothed maps. As shown earlier, this area is often segmented too far into
other tissue types. Although the area is larger in the regularized maps, it is moved
closer to the medial wall which might be reasonable. This move could be due to
the fact that it is regularizing on neighboring vertices but not vertices within the
medial wall. This means that vertices close to the wall will have less neighbors to
regularize to. Another characteristic of the regularization noticeable in this figure
is that a higher regularization yields a slightly higher signal on average.

Some statistics on the first subject is shown in figure 5.4.1. Both models works
fairly well on the baseline scan but the regularized MRTM2 is superior on the
follow-up scan. The number of vertices outside the plausible range is lower for
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the regularized case and it’s range is shorter, even though it retains a higher resolu-
tion. It should be noted that even BP values of 3 is quite high for the cortical layer.
Furthermore, the standard deviation is comparable between the two models and the
mean value becomes slightly higher for higher levels of regularization, but stayes
the same for different levels of smoothing.

Table 5.4.1. Comparison between BP estimations with vertex-by-vertex MRTM2
on pre-smoothed data and BP estimations with regularized MRTM2. Implausible
estimates refers to the number of vertices that have BP estimates that are either
negative or above 10.

MRTM2 with pre-smoothing mean ± SD max min not in range

baseline
FWHM 5 mm 0.49 ± 0.24 3.64 -0.48 161
FWHM 10 mm 0.49 ± 0.23 3.33 -0.36 86
FWHM 15 mm 0.49 ± 0.22 3.15 -0.26 70

follow-up
FWHM 5 mm 0.50 ± 0.31 38.81 -0.49 507
FWHM 10 mm 0.50 ± 0.24 8.37 -0.43 205
FWHM 15 mm 0.49 ± 0.23 5.38 -0.38 123

Regularized MRTM2 mean ± SD max min not in range

baseline
λ =10e13 0.54 ± 0.25 3.45 -0.42 131
λ =24e13 0.56 ± 0.23 3.00 -0.30 84
λ =40e13 0.57 ± 0.21 2.71 -0.23 55

follow-up
λ =10e13 0.55 ± 0.25 3.49 -0.44 194
λ =24e13 0.57 ± 0.22 2.62 -0.35 108
λ =40e13 0.58 ± 0.21 2.33 -0.28 71

∆BP-maps for different levels of smoothing and regularization are shown in figure
5.4.3 on the left hemisphere in lateral view. This is the baseline BP-map subtracted
from the follow-up BP-map. The average value is comparable between the equiv-
alent level of regularization and smoothing. However, some noticeable differences
can be observed. The general structures of the signal are obtained through dif-
ferent levels of regularization, with only a lowering of the average signal and a
more coherent result with higher levels of regularization. In contrast, the smoothed
BP-maps get noticeably smoothed out with higher level of smoothing, spreading
strong signals to neighboring areas. Furthermore, the some rather large differences
between the smoothed BP-maps and the regularized BP-maps can be observed in
insula and in the front of temporal cortex.
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Figure 5.4.3. ∆ BP for different levels of smoothing and regularization. Left
hemisphere, lateral view.

∆BP-maps for different levels of smoothing and regularization are shown for the
left hemisphere in medial view in figure 5.4.4 in order for completeness. The same
conclusions can be drawn from this as for the lateral view. The signal is different
especially in frontal cortex, where a big blob of signal appears in the pre-smoothed
maps in comparison to only very low signal in the regularized maps.
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Figure 5.4.4. ∆BP for different levels of smoothing and regularization. Left
heimsphere, medial view.

The regularized MRTM2 regularizes the estimated parameters k2 and R1 to be
similar to the parameters of neighboring vertices. To visualize the effect this reg-
ularization has on the parameters, a scatter plot on vertex pairs for each parameter
is shown in figure 5.4.5 for the mid-level of regularization. It is contrasted with the
estimations on raw data and on smooth data with 10 mm FWHM.

Figure 5.4.5. Parameter estimates for neighboring vertices comparing the λ24e3
regularization level to 10 mm smoothing level and estimations on raw data.
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This figure shows that the smoothing have a similar effect on the distribution as in
the regularized case, bringing neighboring vertices closer together, but to a lesser
degree. The regularization is high and more importantly seems to draw the mean
of the distribution closer to zero compared to the other distributions. This is some-
what surprising, but could be the reason why the model seems to result in a slightly
higher average BP value with increased level of regularization. However, only the
contour of the distributions can be seen in the figure, the mean of the distribution
might still be similar across the distributions. Importantly, the high regularization
do not result in a lowering of the variance of the BP estimations compared to a high
smoothing level.

The parameter k2 is plotted against the parameter R2 in figure 5.4.6. The various
lines spreading out from the origo shows combinations of k2 and R1 that results
in a certain BP value. All vertices above the line of BP equal to zero will be neg-
ative. It is clear that the regularization approach treats the parameters differently
than the pre-smoothing approach, with the result of a more dense distribution. This
is expected as it is regularizing directly on the parameters. It seems to lower the
mean of the distribution, but again only the border of the distribution is shown. It
does however alter at least the range of R1 in a way that is not consistent with the
literature, e.g. in the paper by Kim et al. (2006) the regional average of R1 was for
many regions around 1, while 1 actually is outside of the range of this distribution.
However, this does not alter the range of BP in a similar way and the variance of
BP is not significantly lowered compared to the pre-smoothing approach.

Figure 5.4.6. k2 estimates against R1 estimates for MRTM2 with pre-smoothing
and regularized MRTM2. Black lines show different BP levels. All vertices above
the BP= 0 line will have negative BP.

In figure 5.4.7, scatter plots between baseline and followup BP for the 5 first sub-
jects are shown for the different levels of regularization and smoothing. This clearly
shows that the regularized MRTM2 handles extreme noise better than the pre-
smoothed approach. As described earlier, the smoothing of data with high levels of
noise might not be able to effectively filter out the noise, but might instead spread
out the a noisy value of a data point to neighboring vertices. This does in fact seem
to be the case. In addition, the regularization results in a better consistency between
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hemispheres, with an equal range of values and a more similar shape.
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Figure 5.4.7. Scatter plot between baseline and followup BP for the first 5 sub-
jects with different levels of smoothing. Right and left hemisphere are shown sep-
arately.

In figure 5.4.8, the scatter plot has been zoomed in and FreeSurfer regions have
been colored. Only the highest level of smoothing and regularization is shown.
Mainly regions with a high average BP is involved in the extremely high values in
the scatter plots from pre-smoothed data, such as insular. Also here it is clear that
the regularized MRTM2 handles extreme noise better and yields a more coherent
result.
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Figure 5.4.8. Zoom-in on a scatterplot between baseline and followup BP for the
first 5 subjects and the highest level of smoothing and regularization. FreeSurfer
regions have been colored. Right and left hemisphere are shown separately.

In figure 5.4.9, the scatter plot is shown for values around zero. Especially isth-
mus cingulate is a problematic regions for both methods, but mainly for the pre-
smoothing approach. Isthmus cingulate is the region close to the medial wall that
was previously seen to give negative results in the visualization of the first subject.
Some other regions are also problematic for the pre-smoothing approach, but not
for the regularized MRTM2.
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Figure 5.4.9. Zoom-in on a scatterplot to the proximity of 0 between baseline
and followup BP for the first 5 subjects and the highest level of smoothing and
regularization. FreeSurfer regions have been colored. Right and left hemisphere
are shown separately.

5.4.2. Repeatability analysis on vertex level for all
subjects

To be able to draw conclusions for all subjects in the test-retest data set some
measurements have been performed on vertex level for each subject and level of
smoothing and regularization. These measurements have been computed for the
whole brain. In figure 5.4.10, the number of vertices that have negative BP or a BP
above 10 have been plotted for each subject with smoothing levels on the x-axis
and regularization levels on the y-axis. On average, an increased level of regular-
ization and smoothing results in less vertices that are not in the range. Regularized
MRTM2 outperforms MRTM2 with pre-smoothing for almost all subjects. Also
when comparing the highest level of smoothing with the mid-level of regulariza-
tion, the regularization approach performs better on average.
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Figure 5.4.10. Number of vertices for each subject that have negative BP or a BP
above 10. Levels of smoothing plotted against levels of regularization.

An inappropriately high level of regularization or smoothing could result in a good
agreement between test and retest scan simply because of a very low variance
within each scan. Therefore, the variance of all vertices for each subject has been
calculated, which is shown in figure 5.4.11. The figure shows that the variance
on average goes down both for increasing level of smoothing and regularization.
Furthermore, the variance is slightly higher on average for the two higher levels of
regularization compared to the two higher levels of smoothing, which shows that a
high agreement between the scans would not come from a very low variance.
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Figure 5.4.11. Standard deviation of all vertices of a subject. Level of smoothing
plotted against level of regularization.

In figure 5.4.12, an estimation of the procentual bias between test and retest is
shown for each subject. The absolute value of the bias was taken to be able to more
clearly see which method gives a higher or lower bias. The measurement does not
give any conclusive results, with an equal amount of bias on average. However, this
measurement is not very suitable for a vertex-by-vertex estimation as the vertices
can vary greatly and a procentual measurement can thus become misleading. An
interesting observation can be made though, that the different levels of smoothing
does not result in any significant change in bias while a change in regularization
does change the bias, although not always in the same direction. Nevertheless,
some systematic patterns seems to be present. A certain amount of bias is also
expected with a month between the test and retest session, so it is hard to say which
level of bias is appropriate.
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Figure 5.4.12. Absolute value of the procentual bias between test and retest scan
for each subject. Levels of smoothing plotted against levels of regularization.

In figure 5.4.13, the ICC(2,1) is shown, measured on all vertices in the brain within
each subject, with levels of smoothing plotted against levels of regularization. Only
5 subjects obtain a higher ICC with the smoothing approach, the rest have a higher
ICC with the regularization approach. With lower levels of smoothing and regu-
larization this trend is even more pronounced. This shows that the regularization
MRTM2 is a repeatable method with good vertex-level precision.
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Figure 5.4.13. ICC(2,1) between test and retest scan for each subject. Levels of
smoothing plotted against levels of regularization.
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5.5. REGIONAL REPEATABILITY ANALYSIS

5.5. Regional repeatability analysis

The repeatability was also assessed on a regional level to be able to compare to the
methods used in the initial analysis of the sex-hormone study. Six regions were
chosen for this analysis on the basis of finding FreeSurfer regions that could be
compared to regions used in the initial analysis with PMOD. The regions, except
for neocortex, can be seen in figure 5.5.1. Brown represents the frontal cortex,
lilac represents parietal cortex, green represents occipital cortex, red represents the
superior temporal gyrus and yellow represents insula.

Figure 5.5.1. Regions used in regional analysis.

The ICC(2,1) was performed on the vertices of these regions, which can be seen
in figure 5.5.2. It gives similar results as ICC(2,1) on all brain vertices, except for
superior temporal gyrus where the ICC is equal for regularization and smoothing
on average. However, the results of the other regions shows that the global results
can be generalized to smaller regions.
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Figure 5.5.2. Vertexwise ICC(2,1) for different regions.

Regional data was obtained from the vertex-based approaches by averaging BP of
all vertices within a region, to be able to compare the smoothing and regularization
approach to results from averaged regional TACs. The ICC(3,1), measuring con-
sistency across subjects on regional data, is shown in table 5.5.1. Both increased
level of regularization and smoothing yielded a slightly lower but not significantly
lower ICC. The ICC(3,1) is comparable across methods.

Table 5.5.1. ICC(3,1) on regional data measuring the consistency across subjects
for two levels of regularization and smoothing compared to MRTM2 estimates on
averaged regional TACs for FreeSurfer regions and in PMOD.

Region λ1013 λ4013 5 mm 15 mm ROI PMOD

Insula 0.92 0.92 0.92 0.92 0.91 0.92
Occipital 0.93 0.91 0.92 0.91 0.91 0.91
Parietal 0.80 0.78 0.82 0.82 0.81 0.79
Sup.temporal 0.88 0.89 0.90 0.89 0.88 0.89
Frontal 0.87 0.86 0.88 0.88 0.87 0.86
Neocortex 0.91 0.89 0.91 0.90 0.89 0.89

In table 5.5.2 the results of mean procentual bias across subjects is shown, obtained
from regional data. For most regions the regularization resulted in a slightly higher
mean bias, but still showed a reasonably low bias.
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5.5. REGIONAL REPEATABILITY ANALYSIS

Table 5.5.2. Mean of estimated procentual bias on regional data across subjects
for two levels of regularization and smoothing compared to MRTM2 estimates on
averaged regional TACs for FreeSurfer regions and in PMOD.

Region λ1013 λ4013 5 mm 15 mm ROI PMOD

Insula -0.53 -0.82 1.30 -0.22 -0.49 -0.47
Occipital 0.82 0.81 -0.20 -0.26 -0.26 -0.07
Parietal 1.90 1.78 1.30 1.23 1.33 1.34
Sup.temporal 0.31 0.30 -0.51 -0.61 -0.63 -0.90
Frontal 1.97 1.81 1.04 1.00 1.00 1.24
Neocortex 0.84 0.78 0.23 0.08 0.08 0.20

Also the variability, measured as the standard deviation of the procentual bias,
showed comparable results across methods, as seen in table 5.5.3.

Table 5.5.3. Variability measured as the standard deviation of the procentual bias
on regional data across subjects for two levels of regularization and smoothing
compared to MRTM2 estimates on averaged regional TACs for FreeSurfer regions
and in PMOD.

Region λ1013 λ4013 5 mm 15 mm ROI PMOD

Insula 5.39 5.21 6.01 5.95 6.20 6.12
Occipital 8.65 9.68 8.55 8.67 8.85 8.58
Parietal 10.59 10.78 11.26 11.37 11.70 17.19
Sup.temporal 7.00 6.84 6.83 6.95 7.40 7.07
Frontal 8.82 9.14 8.88 9.00 9.27 9.67
Neocortex 6.71 7.23 7.10 7.33 7.73 8.28

The general linear model used for the sex-hormone study was fitted on neocortex
for the different types of regional data, showed in figure 5.5.3.
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Figure 5.5.3. GLM fitted on neocortex for different types of regional data.

The regularized MRTM2 gave the least significant result. It can be seen that ∆BP
for some subjects are rather different from the other methods.

5.6. Fully Bayesian approach

The developed model for a fully Bayesian treatment of the data was tried. The
process with fminsearch was run for several different starting points, to be able
to assess the models behavior and robustness against ending up in a local minima.
The different starting points can be seen in table 5.6.1. A reasonable starting value
for β was chosen as

1

var(c)
= 3.36e− 9.

A reasonable starting value for α1 was chosen to a level that would be equivalent
to a λ of 24e13 in the regularized MRTM2 approach, and a starting value for α2

was chosen as a value considerably less than this. µ1 and µ2 got starting values
by averaging the results of a MRTM2 on raw data. The starting points were then
varied to different degrees, including only estimating on β, α1 and α2.

Table 5.6.1. Starting points for fminsearch

Starting points nr. 1 2 3 4 5

β 3.36e-9 3.36e-9 3.36e-9 1 3.36e-9
α1 1e6 1e6 1e3 1 1e10
α2 1e2 1e2 1e5 1 1e7
µ1 0.09 - 0.09 1 0.09
µ2 0.06 - 0.06 1 0.06
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The first, second and third search went fastest with around 300 iterations and took
around 1 hour to complete. The first search resulted in the lowest cost, although
not significantly lower than the second and third search, while the last two searches
resulted in a higher cost. The third and last search took a bit longer than 2 hours to
complete. The resulting optimized hyperparameters can be seen in table 5.6.2.

Table 5.6.2. Resulting optimized hyperparameters and range of estimated BP

Starting points nr. 1 2 3 4 5

β 8.67e-9 8.67e-9 8.67e-9 8.64e-9 4.49e-9
α1 1.30e4 1.30e4 1.30e4 3.02 1.83e10
α2 3.38e-3 1.35e-4 1.40e-7 1.9 3.78e-4
µ1 0.09 - 3.06 0.01 0.01
µ2 0.05 - 1.57 0.16 3.34e-10
min BP 6.49 6.49 6.49 15.74 0.71
max BP -0.58 -0.58 -0.58 -10.64 0.68

Unfortunately, none of the results gave a reasonable regularization of BP. In par-
ticular, α2 was estimated so low that it did not significantly contribute to the result
and subsequently did µ1 and µ2 not contribute significantly either. The varying of
the starting points also showed the presence of local minima.

The obtained result for the first set of starting points is showed in figure 5.6.1, a
result only slightly more regularized than estimating directly on the raw data.

Figure 5.6.1. Result from fminsearch.
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6. Discussion

The pipeline for a surface-based application of MRTM2 proved successful. The
cortical segmentation enabled the smoothing of the data on the cortical layer and
thus the structure of cerebral cortex could more accurately be taken into account
compared to volume-based smoothing that was shown to introduce severe mixing
of particularly non-cortical signal. However, many areas surrounding cerebral cor-
tex were estimated to have negative BP, which is inaccurate. This is probably due
to the use of a reference region with a very low but still present concentrations of
serotonin transporters. Also some cortical areas were estimated to have negative
BP without any segmentation issues involved and with a surface-based smoothing
of FWHM 5 mm. One investigated area was in the occipital lobe, which does con-
tain areas with a low concentration of serotonin transporters. It could be that some
areas do have a natural occurring signal that is lower than the signal in cerebellum.
This is problematic for the reference tissue approach and could also mean that other
areas are estimated as lower than they truly are. This might not be a problem when
equally lowered values are compared to each other, but still shows a significant
flaw in the reference tissue approach. It also raises a question about how to treat
negative BP. In this thesis it has been treated as a indicator of the presence of noise
as they do stand out in the visualization of BP-maps. This treatment might not be
totally accurate.

A problem with using a surface-based approach is the dependence on a well- seg-
mented cortical representation. The FreeSurfer segmentation algorithm did result
in some segmentation issues in most segmented subjects, even though it is a rather
robust method. These segmentation errors are both time consuming to correct and
sometimes hard to find. In this thesis, each segmentation was carefully reviewed
multiple times by two persons, including a medical doctor with experience of neu-
roimaging data, and manually edited where deemed appropriate. Still, some errors
where not found, even systematic errors like the shown error in isthmus cingulate.
In this thesis, the lengthy editing process did not give any significant results in the
study at hand in the statistical group analysis. However, it did change the outcome
of the clusterwise correction for multiple comparisons due to a small change in p-
value. This probably says more about the problem with thresholding p-maps than
about the need for manual editing. It should be noted though, that the areas shown
to be most affected by systematic segmentation errors where not part of the signifi-
cant areas of the statistical group analysis, which means that conclusions about the
need for manual editing are difficult to draw from this study. A paired t-test of the
difference of volume between the edited and non-edited data set did show signif-
icance in some areas. However, many subjects had large errors in these areas, so
it might be enough to look through the segmentation in search for these fewer and
more easily noticeable large errors. It is of course always recommended to quickly
look through a segmentation for large errors. In general, the FreeSurfer algorithm
does a reasonably good job at segmenting the cortical layer.
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The between-brain analysis of FreeSurfer involved some issues. The mapping of
individual brains to a common space showed some registration issues that seemed
to have quite significant effects on the outcome of the general linear model and had
the magnitude to possibly change interpretations of the performed statistical anal-
ysis. These registration issues were worse in some particular areas, such as middle
frontal gyrus, parietal cortex and in the sulcus between occipital cortex and other
regions. The non-linear procedure of registering highly variable structures of indi-
vidual brains to a common space will be bound to have registration issues. Often,
the registration irregularities are accounted for by smoothing with a rather large
Gaussian filter, which also was done in this thesis. However, the presented findings
suggests that such a filtering procedure does not accurately account for these irregu-
larities. Another related problem is the correction for multiple comparisons. There
are many more methods for correcting for multiple comparison, but at least the two
methods assessed in this thesis did both have their shortcomings, with a lack of
power contrasted with a lack of detail, and a general problem of thresholding at
a certain value. The whole procedure of smoothing the data equally in every di-
rection to account for the problem with imperfect vertex-by-vertex correspondence
between individual brain and then performing a test at each vertex independently
and then correct for the many performed independent tests seems like a problematic
pipeline. The need of developing a more sophisticated but still efficient procedure
seems evident.

The developed regularized MRTM2 seems to handle high levels of noise better
than the pre-smoothed vertexwise MRTM2, while retaining a higher resolution and
detail, even at high amounts of regularization. It resulted in a higher repeatability
between scans on a vertex level both at the whole cerebral cortex and at different
regions of the cortical layer, without lowering the within scan variance. It showed
better coherence between hemispheres and did not significantly depart from the
other modeling approaches on a regional level. It did however slightly but consis-
tently increase the average BP with increased regularization. One issue that would
need further attention is the effect on the range of the parameters R1 and k2, which
has not been fully examined in this thesis. Another issue is that it changed some
∆BP values in the general linear model so it resulted in a less significant result. It
is hard to say what should be the true values, as the regularized MRTM2 treats the
data in quit a different way. But this could suggest that some bias is introduced in
the modeling and would need further examination.

The attempt to treat the data with MRTM2 in a fully Bayesian approach with opti-
mization of the hyperparameters was not successful. The resulting optimal values
did not result in an adequate regularization of the BP estimations and the risk of
getting caught in a local minimum in the optimization procedure was also clearly
present. However, the final optimization procedure together with the use of LDL-
decomposition to solve the determinant of huge matrices present in the cost func-
tion was computationally rather efficient. Clearly more prior knowledge needs to
be incorporated into the model. A possible prior knowledge is the bounds on BP.
The presence of too high values and negative values are known to be implausi-
ble and this knowledge could thus be incorporated into the model. The problem
with that approach is that the binding potential is not directly a part of the model.
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However, the bounds on BP can be translated to a relationship between the two
parameters in the model. As seen in figure 6.0.1, a negative BP is equivalent to the
first parameter being smaller than the second parameter. A BP of above e.g. 10 is
equivalent to the first parameter being larger than 11 times the second parameter.
These two relationships create a bounded area of appropriate values. A change of
coordinate system makes it possible to only regularize one parameter which could
make it easier to incorporate this information into the model.

w2

w1

w1 < w2

w1 > 11w2
ν1

ν2

Figure 6.0.1. Bounds related to BP limits and change of coordinate system.

Furthermore, the parameter in the new coordinate system it could be limited by a
function such as in figure 6.0.2.

Figure 6.0.2. Possible way to limit the range.
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7. Conclusions and Outlook

The aim of this project was to improve the filtering and modeling of PET data, to
better handle the high noise level present in such data. It should lessen the artifacts
of conventional volume-based spatial filtering with a Gaussian kernel. The focus
was on the cerebral cortex due to its highly-folded and thin structure, which makes
it particularly unsuited for the conventional approach to filtering.

For this purpose a pipeline for a surface-based approach to the modeling with the
multilinear reference tissue method MRTM2 was developed. The surface repre-
sentation of the cerebral cortex was obtained by the use of the software package
FreeSurfer. The cortical representation enabled the smoothing of the data on the
cortical layer and thus the structure of the cerebral cortex could more accurately
be taken into account in the filtering procedure. In contrast with the conventional
volume-based approach it proved successful with less edge artifacts. To assess the
developed models, a baseline-follow-up study was used that images the sertonin
transporter. Some problems where seen both in the volume-based approach and the
surface-based approach with the presence of estimations of negative binding po-
tential, which is improbable. This is probably due to the reference tissue approach
with the use of cerebellum as a reference tissue, which does have some concentra-
tion of serotonin transporters.

Furthermore, the statistical tools for between-brain analysis of FreeSurfer was eval-
uated with the surface-based MRTM2. A group analysis was performed between
the subjects of the study, with some apparent issues. The mapping of individual
brains to a common space showed some registration issues that seemed to have
quite significant effects on the outcome of the statistical group analysis and had the
magnitude to possibly change interpretations of the performed analysis. These reg-
istration issues were worse in some particular areas, such as middle frontal gyrus,
parietal cortex and in the sulcus between occipital cortex and other regions. Con-
ventionally the discontinuity from a brain mapping to common space is accounted
for by a large Gaussian filter previous to modeling in common space. However,
the presented findings suggests that such a filtering procedure does not accurately
account for the registration irregularities. Another related problem is the correc-
tion for multiple comparisons. Two methods were assessed with some problems
observed such as a lack of power for one method contrasted with a lack of details
for the other method, and a general problem of thresholding at a certain value.

A Bayesian framework was used to directly incorporate the data filtering into the
mathematical model. The model was based on MRTM2 and assumed that close
regions have similar parameters and regularized the data on this assumption. It was
shown to handle high levels of noise better than the vertexwise surface-based ap-
proach with pre-smoothing, while at the same time retaining high resolution and
detail, even at high amounts of regularization. In addition, it resulted in a higher re-
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peatability on a vertex level between baseline and follow-up scan within a subject,
both on the whole cerebral cortex and different regions of the cortical layer, without
lowering the within scan variance. This was measured by the intraclass correlation
coefficient with absolute consitency ICC(2,1). It showed better coherence between
hemispheres and did not significantly depart from the other modeling approaches
on a regional level. It did however slightly but consistently increase the average BP
with increased regularization. When used on a general linear model of the study in
the report, it showed less significance than the other methods, including estimation
on regional averaged TACs and the vetexwise surface-based approach which all
yielded rather similar significant results. It was not clear why it performed worse,
if it was due to a higher specificity or just introduced bias.

Futhermore, an attempt was made to treat the data in a fully Bayesian approach
by further developing the previous model and to including optimization over the
hyperparameters of the model. The resulting optimal hyperparameters did not re-
sult in an adequate regularization of the BP estimations and the risk of getting
caught in a local minimum in the optimization procedure was also clearly present.
However, the final developed optimization procedure together with the use of LDL-
decomposition to solve the determinant of huge matrices present in the cost func-
tion was computationally rather efficient. Clearly more prior knowledge needs to
be incorporated into the model.

7.1. Outlook

The regularized MRTM2 using a Bayesian framework showed some nice results
compared to the surface-based pre-smoothed model. However, it also showed some
characteristics that could be further examined, e.g. the fact that the average bind-
ing potential went slightly up with increased regularization. To be able to use the
model in a fully Bayesian approach, it needs further development to result in useful
optimized results, which could include the incorporation of the prior knowledge of
bounds on the binding potential.

The group analysis that was carried out showed some problems with registration
irregularities when brains were mapped to the common space and issues with the
need of having to correct for multiple comparison. A more sophisticated model for
group analysis could be developed with the Bayesian framework that do not assume
vertex-to-vertex correspondence and that can adapt to different levels of coherence
between the subjects, for example by using the measure of convexity currently used
for mapping between brains in FreeSurfer.
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A. MATLAB function for
vertex-by-vertex MRTM2

function [BP,R1,k2] = MRTM2(C,refC,refk2,timestep)
% R1 and BP_nd estimated with MRTM2.
% INPUT
% C : Matrix of tissue tracer concentrations, col: time, row: sample
% refC : Vector of reference tissue tracer concentrations
% refk2 : Tracer clearance rate constant of reference tissue
% timestep : vector of time steps between frames
% OUTPUT
% BP : Binding potential
% R1 : Relative tracer delivery

nSamp = length(C);
nTime = length(timestep);
BP = zeros(1,nSamp);
R1 = zeros(1,nSamp);
k2 = zeros(1,nSamp);

% Cumulative trapezoidal numerical integration
cumintC = cumtrapz(timestep,C,1);
cumintRef = cumtrapz(timestep,refC);

disp(’start’)
% MRTM2
for v=1:nSamp

if ~mod(v,1000)
fprintf(’\b. ’);

end
if cumintC(nTime,v)>0

X = [cumintRef + (1/refk2)*refC, cumintC(:,v)];
param = X\C(:,v);
BP(v) = -((param(1)/param(2)) + 1);
k2(v) = -param(2);
R1(v) = param(1)/refk2;

else
BP(v) = NaN;
k2(v) = NaN;
R1(v) = NaN;

end
end
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B. MATLAB function for
regularized MRTM2

function [BP,R1,k2] = rMRTM2(C,refC,refk2,timestep,nbrs,lambda)
%Regularized MRTM2. N : number of vertices,
% K : number of time steps.
%----Input-------------------------
% C : Matrix of tissue tracer concentrations, size(C) = [N,K]
% refC : Reference tissue TAC, size(refC)=[1,K]
% refk2 : Reference tissue clearance rate constant,
% estimated by MRTM
% timestep : Time steps between frames,size(timestep) = [1,K]
% nbrs : Each row contains the indices to a vertex’s
% neighbors, NaN at remaining elements if not max number
% of neighbors. size(nbrs) = [N,(max number of neighbors)]
% lambda : Regularization parameter, e.g. 10e13.
%----Output--------------------------
% BP : Binding potential
% R1 : Relative tracer delivery
% k2 : Tracer clearance rate constant

N = size(C,1);
cumintC = cumtrapz(timestep,C,2);
cumintRef = cumtrapz(timestep,refC,2);
X1 = repmat(cumintRef + (1/refk2)*refC,N,1);
X2 = -cumintC;

%Computes regularization matrix G
ind = ~isnan(nbrs);
vert = repmat((1:N)’,1,size(nbrs,2));
diagG = sum(ind,2);
diagG = [diagG; diagG];
offdiagG = -ones(sum(diagG),1);
gm = [1:2*N, vert(ind)’, vert(ind)’+N];
gn = [1:2*N, nbrs(ind)’, nbrs(ind)’+N];
G = sparse(gm, gn, [diagG; offdiagG], 2*N, 2*N);

%Computes X’*X and X’*c
diagX2X1 = repmat(sum(X2.*X1,2),2,1);
X = [X1;X2];
diagXX = sum(X.^2,2);
dm = [1:2*N, 1:2*N];
dn = [1:2*N, N+1:2*N, 1:N];
XX = sparse(dm, dn, [diagXX; diagX2X1], 2*N, 2*N);
Xc = sum([C;C].*X,2);
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%Computes W
S = XX + lambda*G;
W = S\Xc;
R1 = W(1:N)/refk2;
k2 = W(N+1:end);

%Computes BP
BP = R1*refk2./k2 - 1;
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C. MATLAB function for
Bayesian MRTM2 using
fminsearch

function [BP,R1,k2,fval,exitflag,output,hp] = ...
bMRTM2(C,refC,refk2,timestep,nbrs,hp0)

%Bayesian MRTM2 using fminsearch. N : number of vertices,
% K : number of time steps.
%----Input-------------------------
% C : Matrix of tissue tracer concentrations, size(C) = [N,K]
% refC : Vector of reference tissue tracer concentrations, size(refC)=[1,K]
% refk2 : Tracer clearance rate constant of reference tissue
% timestep : Vector of time steps between frames, size(timestep) = [1,K]
% nbrs : Each row contains the indices to a vertex’s neighbors, NaN at
% remaining elements if not max number of neighbors.
% size(nbrs) = [N,(max number of neighbors)]
% hp0 : Starting point for hyperparameters,
% i.e. [beta,alpha1,alpha2,mu1,mu2] = [1\var(C(:)),1e5,1e2,0.09,0.06]
%
%----Output--------------------------
% BP : Binding potential
% R1 : Relative tracer delivery
% k2 : Tracer clearance rate constant
% other outputs from the fminsearch procedure

N = size(C,1);
K = size(C,2);

cumintC = cumtrapz(timestep,C,2);
cumintRef = cumtrapz(timestep,refC,2);
X1 = repmat(cumintRef + (1/refk2)*refC,N,1);
X2 = -cumintC;

%Computes regularization matrices G and F
ind = ~isnan(nbrs);
vert = repmat((1:N)’,1,size(nbrs,2));
diagG = sum(ind,2);
diagG = [diagG; diagG];
offdiagG = -ones(sum(diagG),1);
gm = [1:2*N, vert(ind)’, vert(ind)’+N];
gn = [1:2*N, nbrs(ind)’, nbrs(ind)’+N];
G = sparse(gm, gn, [diagG; offdiagG], 2*N, 2*N);
F = sparse(gm, gn, [diagG; -offdiagG], 2*N, 2*N);

%Computes X’*X and X’*c
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diagX2X1 = repmat(sum(X2.*X1,2),2,1);
X = [X1;X2];
diagXX = sum(X.^2,2);
dm = [1:2*N, 1:2*N];
dn = [1:2*N, N+1:2*N, 1:N];
XX = sparse(dm, dn, [diagXX; diagX2X1], 2*N, 2*N);
Xc = sum([C;C].*X,2);

%Searches for optimal hyperparameters
options = optimset(’PlotFcns’,@optimplotx);
[hp,fval,exitflag,output] ...

= fminsearch(@costfun,hp0,options,G,F,XX,C,X,N,K);

%Estimates MRTM2 parameters
if length(hp)==3

hp(4) = 0;
hp(5) = 0;

elseif length(hp)==4
hp(5) = hp(4);

end

Hmu = sparse(N*2,1);
H = hp(2)*G + hp(3)*F;
Hmu(1:N) = sum(hp(4)*H(1:N,1:N),2);
Hmu(N+1:end) = sum(hp(5)*H(N+1:end,N+1:end),2);
S = (hp(1)*XX + H);
W = S\(hp(1)*Xc+Hmu);
W = [W(1:N),W(N+1:end)]’;
R1 = W(1,:)/refk2;
k2 = W(2,:);

%Computes BP
BP = W(1,:)./W(2,:) - 1;
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D. Cost function for fminsearch

function cost = costfun(hp,G,F,XX,C,X,N,K)
%costfunction to be used with fminsearch and bMRTM2 to find optimal
%hyperparameters

%Checks if any hyperparameter is negative, if so return NaN
if sum(hp<0)>0

cost = NaN;
return

end

%Orders hyperparameters
beta = hp(1);
alpha1 = hp(2);
alpha2 = hp(3);
if length(hp)==3

mu1 = 0;
mu2 = 0;

elseif length(hp)==4
mu1 = hp(4);
mu2 = mu1;

else
mu1 = hp(4);
mu2 = hp(5);

end

%Computes determinant of H
H = alpha1*G + alpha2*F;
[L,D,~] = ldl(H);
diagLD = diag(L*D);
if sum(diagLD < 0) > 0

logdetH = NaN;
else

logdetH = 2*sum(log(sqrt(diagLD)));
end

%Computes determinant of S
S = beta*XX + H;
[L,D,P] = ldl(S);
diagLD = diag(L*D);
if sum(diagLD < 0) > 0

logdetS = NaN;
else

logdetS = 2*sum(log(sqrt(diagLD)));
end

%Computes cost function
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CXmu = C - X(1:N,:)*mu1 - X(N+1:end,:)*mu2;
cXmu2 = sum(sum(CXmu.^2));
cXmuX = sum([CXmu;CXmu].*X,2);

cost = .5*( N*K*log(2*pi) - N*K*log(beta) + logdetS - logdetH + ...
beta*cXmu2 - beta^2*cXmuX’*(P * (L’ \ (D \ (L \ (P’ * cXmuX))))) );
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