Reusable framework for analysing
System Models

Niels Thykier

Kongens Lyngby 2013
IMM-PHD-2013-90

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Abstract

In this day and age, systems and infrastructures are becoming more complex.
Analysing these manually for weaknesses against insiders have become a daunt-
ing task. Accordingly, there has been several attempts to describe these systems
in a way to make them machine analysable.

However, the work so far seems to have been limited to testing the feasibility
and usability of these models. There has been no visible progress in creating an
extensible framework to facilitate future work in this area.

In this project, I will attempt create a framework around these models to assist
future work on these models. Previous work in this area tells us that there is
interest for both static analysis and dynamic analysis

Contents

Abstract i
1 Introduction 1
1.1 Reason for this project L. 1
1.2 Report structure oo 1
2 Background 3
2.1 Why system models 0. 3
3 Problem analysis 7
3.1 Extensible 8
3.2 Starting from what we know 0oL 8
3.3 Definition of a system model 9
3.4 Analysis Conclusion 9

4 Initial framework design 11

iv CONTENTS
4.1 Good APIdesign 11
4.2 Language design 13
4.3 Design conclusions Lo oo 17

5 Implementation 19
5.1 Notable changes to the language specification 19
5.2 Components of the framework 28
5.3 Themodel parser L. 34
5.4 Immutable and NonNull/Optional by default 36
5.5 Static factories vs Constructors 38
5.6 Known issue: inline Predicate (etc.) are messy 38
5.7 Required libraries and platform 39
5.8 Implementation conclusion oL 39

6 Using the framework 41
6.1 Basic usage of the framework 41
6.2 Implementing a fixpoint analysis 44
6.3 Implementing an Al or Jung agent 47
6.4 Risk and time analysis 0oL 53
6.5 Usage conclusion 53

7 Future work 55
7.1 The “exec” action o 55
7.2 Integration of “detection-risk” and “time-cost” 56

CONTENTS v
7.3 Solve the “copy” problem 56
7.4 Revise the “per possessible” access policies 57
7.5 Undo-capable simulator 58
7.6 Mutable and serialisable models 000 59
7.7 Visualisation of models L. 59
7.8 Better support for Als 59
7.9 Make large models maintainable 0000 60
7.10 Future work conclusion. 60

8 Conclusion 61

A Appendix 63
A.1 SimpleReachabilityAnalysis.java. 63

Vi

CONTENTS

List of Figures

2.1

2.2

2.3

4.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

A small example organisation 4
A graph representation of a small organisation 5
A representation of a system model for a small organisation . . . 6
A small model with a minor mistake 14
Example of an actor_roles and actors section. 22

Example showing how to disambiguate credentials in access rules 23

Example showing the syntax of annotations 24
Visual representation of Probst and Hansen model 25
The original model from Probst and Hansen 26

The model from Probst and Hansen rewritten in the next syntax 27
Overview of how the components relate. 28

Example of an access policy in the language 29

viii LIST OF FIGURES
5.9 Pseudo-example of an access policy in the framework 30
5.10 Annotation checkers in the ParserFrontend 35
5.11 Example of Optional, NonNull and Nullable APIs. 36
5.12 Snippet showing that “unmodifiable” does not mean “immutable” 37
5.13 On returning unmodifiableSet vs ImmutableSet 37
5.14 Anonymous classes vs. lambda expressions 39
6.1 Small example showing how to parse a model 42
6.2 Small example transforming an array of Strings to an InputStream 42
6.3 Small example for setting up a simulator with one actor. 43
6.4 Snippet showing how to create an invariant from an “end condi-

tlon™. . .o 43
6.5 The implementation of reanalyseNode 45
6.6 The code for merging new data from predecessors. 46
6.7 obtainACredential from the Thief agent 49
6.8 findPathToPossessible from the Thief agent 50
6.9 Small example model used for testing the thief AT 51
6.10 Visual representation of the example model. 52
6.11 Results for the thief Al in a small model 52
6.12 Example of annotations in the model language 53
6.13 Example showing how to use annotations to get the time-cost for

apath 54

CHAPTER 1

Introduction

This chapter will briefly cover the rationale for this project and the layout of
this report.

1.1 Reason for this project

This project is inspired by previous work in this area. Probst et al. have done
several articles on the usefulness of system models[6, 7, 2]. Lindg also provided
a proof-of-concept static analysis tool for these models[4]. But despite of this,
we are still without a common platform or framework to deal with even the
trivial parts of system models.

The purpose of this project is create such a framework, so that others can
prototype their ideas without having to “reinvent the wheel” first.

1.2 Report structure

The report has the following structure:

Introduction

The Introduction chapter (chapter 1) describes the rationale for the project
and the report layout.

In the Background chapter (chapter 2), I will cover a bit about what a
system model is and why they are useful.

The Problem analysis chapter (chapter 3) describes my analysis of the
problem domain and the requirements for the resulting framework.

In the Design chapter (chapter 4), T will describe my approach to imple-
menting the framework and some desired changes to the model specifica-
tion language.

The Implementation chapter (chapter 5) will cover the implemented frame-
work and the major changes to the model specification language.

In the chapter, Using the framework, (chapter 6), I will present various
examples on how to use the resulting framework.

The Future work chapter (chapter 7) will present some of the areas where
expansion are possible or where the result might need improvements.

The Conclusion chapter (chapter 8) will summarise the outcome of this
project.

CHAPTER 2

Background

This chapter will cover some of the background information about system mod-
els.

2.1 Why system models

When an organisation has been the victim of a cyber crime, the best way of
finding the perpetrator is usually analysing the log files and available records.
However, the log files involved are usually huge, which makes it very hard to
find entries relevant to the attack. This especially true if the attacker was an
insider, whose actions at the surface may be indistinguishable from a regular
daily activity.

As an example, consider the very small organisation shown in figure 2.1 (figure
borrowed from Probst). In this small organisation, there is a secret document
on the computer in the “User Office”. A copy of this document was stolen from
the building at some point.

To prevent a future incident, we would like to ammend the security protocols.
In order to accomplish that we have to find out how someone was able to steal

4 Background

Hallway

Server/Printer User Office Janitor Workshop Reception

Figure 2.1: A small example organisation

the document in the first place. Assuming the thief might have been an insider,
there are actually quite a few possible ways this could have happened.

It could have been so simple that the person working in the “User Office” just
copied the document on to a USB stick, packed up his things and left like he
does at the end of every work day. Or perhaps, he printed the document for
proof-reading. Once done, he discarded the paper copy in the waste basket
inside the server room. Here, the janitor noticed it when emptying the trash
bin and figured it might be a good replacement for that bonus he never got.

To solve problems like this, Probst et al. proposed to describe organisations
via “system models”[7] to make them easier to analyse and reason about. In
layman’s terms, a system model is a mathematical model used to describe a
company or an organisation. The model reasons about the structure of the
organisation in multiple domains, including physical domain (i.e. the buildings
and the rooms inside them) and the virtual domain (e.g. the interconnections
between computers inside the organisation). An important aspect of a system
model is that it also models access control rules. I will cover the more formal
definition in section 3.3.

2.1 Why system models 5

Hallway

]
¥ i
]
WASTE | B PC2 |e4» PC1 | = — = — = — — = »| Ppc3
]
]
E ¥
«»| PRT
Server User Office Janitor Reception
Workshop P

Figure 2.2: A graph representation of a small organisation

Given the sample organisation in figure 2.1, we might describe the organisation
via the graph in figure 2.2 (figure borrowed from Probst). While the graph
representation may assist us, it is still inadequate for automated analysis. It
lacks information about things like access controls. Without these, we cannot
reason about who could have done it (or who could not have done it). Based
on Probst and Hansen’s work|[(], a system model of the same organisation could
look like the one in figure 2.3 (this figure is also borrowed from Probst).

Background

1SRV:i, o

WASTE |

Figure 2.3: A representation of a system model for a small organisation

CHAPTER 3

Problem analysis

In order to develop any tool or framework, it is first necessary to figure out what
problem it should solve. There are more than one way to approach this task,
ranging from trivial “start with coding and see where it goes”-style to writing a
full blown requirements specification. Inspired by “Simon Sinek” talk on “How
great leaders inspire action”[3], I will try to start by answering the “Why”.

I strongly doubt that System Models have reached their full potential yet. As
the world changes and we get better at using these models, new possibilities
and ideas will appear. If these ideas are difficult to implement, some of them
will die without never being tried. Therefore, it is important that we can easily
create prototypes to test new ideas.

In the end, I am doing this project to make it easier to write new and extend
existing tools (if any) related to system models.

8 Problem analysis

3.1 Extensible

It is my goal to make it easy to write prototypes or tools to test new ideas
around system models. The keyword here is “new” - namely, I want the result
to be able to support almost any “crazy” new idea. To me that implies that I
have to create something that can solve problems that I did not imagine existed.

If T cannot imagine the problems, how would I be able to make a tool that
could solve them? Obviously, I cannot. But even if I cannot imagine all of the
problems, I can still prepare a decent toolbox that is useful for solving a subset
of them. In other words, I will be creating a framework or API for working with
system models.

Like a chain being no stronger than its weakest link, so I believe that a tool
(or framework) is no more extensible than its most rigid part. However, if you
sacrifice everything in the name of extensibility, you will never get anywhere.
The key to success is to pick just the right level of extensibility.

Finding that “right level” is possibly more of an art than a skill. Nevertheless,
if this framework is to solve problems I cannot imagine, odds are that I cannot
specify a final language to describe those problems. So the model specification
should definitely be extensible, or failing that, at least replaceable.

To make it easier to write new tools, I intend to write an extensive framework
with some replaceable parts.

3.2 Starting from what we know

I am not inventing an entirely new set of concepts; there is past work for me
to start from. If I seriously want anyone to adopt my framework as the basis
of their work, it must at least be able to solve their problems. A good starting
point is therefore to look at dealing with the problems others had in the past.

System models have long been researched for the purpose of using them to
perform “static analysis” of company (and its access controls). Probst and
Hansen have written several articles on the topic for finding or protecting against
“insiders”[7, 6, 2].

Probst and Hansen also worked on doing “online” analysis of a system [2]. This

3.3 Definition of a system model 9

seems to be more of a dynamic analysis and probably including some form of
simulation.

3.3 Definition of a system model

While the above tells us something about what system models have been used
for (or what they do), it does not say much about what a system model is.

Probst et al. originally defined a system as S =< I, Actors, Data,C, R, ® >
(definition 6) and said it was a variation of a uKlaim Calculus called “acKlaim”.
The individual items of the system tuple are[7]:

I is defined as a directed graph (from definition 2).

e Actors is a set of “actors” (from definition 3). These actors can perform
actions in I'.

e Data is defined as a set of data items and can be stored on both nodes
and actors (from definition 4)

e (is a mapping of an actor to a set of capabilities and R is a mapping
from location or data to a set of restrictions. For each restriction r, the
®,. function maps a capability to either “true” or “false” (from definition
5).

e ® is then the set of all the ®,.2.

So, the gist of it. A system (model) is basically a directed graph with actors
and data. There are restrictions on which actor can do what action (on data at
a given node).

3.4 Analysis Conclusion

In my analysis, I have come to the conclusion that there will be new ideas,
which extend existing research on system models. These extensions may likely

IThe original definition says “move”, but I took the liberty of assuming they could do more
than that.

2As far as I can tell, it is not explicitly listed in any of the definitions. However, it appear
to be used as such so I will go with this definition.

10 Problem analysis

require changes to the code or the model specifications. To support these future
extensions, I believe that either an extensible model specification language is
needed, or alternatively the language needs to be replaceable.

From previous work in this area, I believe that the two major use-cases are static
analysis and dynamic analysis of the models.

CHAPTER 4

Initial framework design

With the general knowledge of what this framework should focus on, I can
continue with actually designing it. A major part of the framework will be
the API exposed to tool writers. Hench, I believe that extra care and thought
should be put into creating the actual API.

4.1 Good API design

Here I have been greatly inspired by Joshua Bloch, who did a talk on designing
APIs. A couple of points, I took from his talk were (in no particular order):

e “Easy to evolve”. Makes perfect sense for this framework considering I
expect the use of system models to evolve.

e Spend more time on examples. People will “copy-paste” them and any
bugs in the examples will end up in their code as well. [1, at 962s]

e Keep “concept complexity” of the API down.

e Code “against” the APT early and often. [1, at 902s and 685s]

12 Initial framework design

e Use a proper type instead of strings. If only strings are available, their
format becomes the “defacto API”.[1, at 3270s]

e A good name makes it easier to explain. [1, at 1332s]

Bloch makes other recommendations; the list above were merely some I selected
to focus on.

4.1.1 Avoid concept complexity

From my problem analysis, I concluded that I would need to support both static
and dynamic analysis of the models. For me, these two types of analyses are two
very different kinds. It is basically the difference between writing an optimising
compiler and a program debugger.

Static analysis tries to reason about “all possible states” given only the input
model. In contrast, dynamic analysis is based on not only the input model but
also a concrete state.

If a programmer is only interested in doing (e.g) static analysis on the model,
he/she should not have to worry about the dynamic analysis part (and vice
versa). Based on this, it seem reasonable to make two distinct components for
these two analyses. Since they will both work on a system model, it would
probably be prudent to put that in a third component.

4.1.2 Coding against the API

The 3 component setup has another minor advantage. By implementing the
component from “top to bottom”, I get to code against the “lower levels” of the
API before writing it. This means I will naturally force myself to code against
part of my own APIL.

Obviously, this is not a silver bullet. I got nothing depending on the “top” API
itself. There may also be parts in the API that are not used by “higher levels”.
Here I can and hope to compensate by writing examples uses.

As I understand Bloch, this is an iterative process. As such I cannot say what
problems I will fix be using until I actually use it. But I definitely believe that
I will not get everything right the first time. This technique will hopefully help
me to shape the API and weed out design bugs as I discover them.

4.2 Language design 13

4.2 Language design

After having reviewed the existing language[7], I noticed a couple of things that
bugged me:

The language appears to have a lot of “boilerplate” syntax.

Locations being a access granting credential.

The example model have a fair share of nodes with the sole purpose of
being an access control point.

The language does not scale very well.

The boilerplate syntax mostly appeared in the form of having to explicitly state
a lot of things, where omission or/and a good default would do. The rest of the
issues will be covered in the following subsections.

4.2.1 Access rules

Analysing examples of the existing model specification language, I realised that
all access rules were described on “nodes” rather than “edges”. While there
is nothing wrong with that per se, formulating a concise API for them quickly
became hard.

The original access rules specify 3 classes of credentials, which are:

e The actor doing the action.
e The location from which the action is being carried out.

e A credential which the actor possesses.

The “location” credential annoyed me quite a bit, because it effectively changes
with every trivial move action. I suspected it could be an Achilles’s heel in the
resulting API. Taking a step back I realised that a “location” credential could
be described as an edge. Indeed, by pushing access rules to the edges of the
graph I could remove the “location credential”.

A beneficial side-effect is that it removes some redundancy between the “loca-
tions” and “connections” sections. Consider the example model in figure 4.1.

14 Initial framework design

// Small example model with a mistake
locations {

office { *: m } (building);

// Note: No access permitted from pc2.

pcl { U: elog, i, o; } (virtual);

pc2 { pcl: m; U: elog, i, o; } (virtual);
}

connections {
office -> pcl, pc2;
pcl -> pc2;
// REDUNDANT/DEAD EDGE! pcl does not allow any access
// from pc2, so the edge does not serve any function.
pc2 -> pcl;

// [... omitted...]

Figure 4.1: A small model with a minor mistake

This model contains a minor mistake in its access rule for its “pcl” location, so
despite the fact there is a connection beween pcl and pc2, the edge is completely
useless. This model is based on the model by Probst and Hansen[0][p. 241],
which seem to contain this very mistake. The full source of that model (with
my corrections) is also included in figure 5.5.

On the other hand, if the access rules had been on the edges, I think it would
be harder to accidentally declare “dead edges”.

From a language perspective, it would also make nodes used only to restrict
access redundant.

This still left me with some issues.

e What happens with the access rules for accessing a document on the same
node as the actor is on? In the old model specification, the node could
have access rules like “U: i, 0”.

e Documents / credentials on a given node can have access rules. These
rules are “per document”, so they cannot be merged into the edge rules.
Particularly, the specification from Probst and Hansen[6] implies that data
actions can be logged.

4.2 Language design 15

e How do I solve these without forcing the programmer to check access
controls “twice” (i.e. once on the edge and once on the node)?

At first T thought that the first problem was a non-issue. A basic assumption
is that nobody will just leave their credentials or secret documents on the floor.
Forcing the model writer to include a container (e.g. a safe or PC) for these
cases seemed like the way to go.

However, what about “processes”? If somebody starts a process on a given PC,
the assumption will be that it can (of course) read/write things from/to that
PC. It is possible to work around this by either moving the data to an external
device (e.g. adding a “hard disk” node) or by adding a “self-edge” in the model.

As for the access rules on documents. The “i” (read) and “0” (write) rules could
probably just be merged with the access rule from the edge as needed. It would
possibly complicate the implementation, but I believe it should be doable.

Encryption does not prevent people from obtaining the document; it prevents
them from understanding its content. With that in mind, I think it would be
reasonable to consider the decryption rules (i.e. “d”) a property of the document
itself.

However, what about the “log decryption” action (i.e. “dlog”)? On one hand,
it is unreasonable for “dlog” to be retained if I steal an encrypted document
and decrypt it elsewhere (e.g. on my laptop outside the building). Instead it
should be reduced to a regular decryption.

On the other hand, what if the decryption key is protected by higher credentials
than I own, but I am permitted to access the decrypted document. This is quite
common to be allowed to run “higher privileged” programs - e.g. using “su” or
“sudo” on UNIX based systems. Indeed, there are real life examples of trying
to restrict access to an encryption key without preventing employees from using
it to do their job[3]. So the “dlog” access specifier might not be unreasonable
in itself.

4.2.2 Large scale models

I do not believe the original language scales really well. Sure, you can use it for
toy examples. But if you want to describe a complex company there are some
fundamental places, where the model syntax falls short.

16 Initial framework design

First, actors are described on an individual basis. Imagine a company of 200
employees spread across 5-6 departments, where every employee have their own
ID card. That requires at least 400 lines (or statements) to create 200 employees
+ 200 unique keycards. That is without even considering that employees might
have extra credentials based on the department they work in. If an employee is
transferred to a new department (or promoted) you have to manually adjust all
of his/her credentials.

Access rules have a similar issue. How do you specify that everyone in depart-
ment A has access to room X by using their unique keycard. You cannot use
a wildcard, because the other employees do not have access to the room. As
far as I can tell, the only solution is to list each and every permitted keycard.
Another rule you have to remember to update, when a new employee is added
to (or removed from) department A.

It is impractical and a nightmare to keep up to date.

The best (but also the only) idea I had for solving this problem was to include
“actor roles”. The purpose of these roles is to describe “groups” of people in
the model.

An example could be like this: “All employees have a keycard. Some Employees
are Janitors, which also have a janitor key. Some employees are known as
Researches.” This could then be used to describe access rules like “the keycard
of any Researcher” (which is stronger than “the keycard of any Employee”).

This would then be combined with declaring actors as being “a Researcher”, “a
Janitor” or “an Employee”.

These “roles” do not changes the expressive power of the languages. They are
merely here to make larger models more concise and easier to maintain. Indeed,
continuing with my 200 employee example from above; the model could be
reduced to 200 lines to declare the employees plus a small number of statements
for declaring the roles of the employees. Access rules could be similar reduced
from having to list the keycards of all permitted employees to simply stating
the keycard of a respective roles.

I have been trying to come up with a similar thing for the infrastructure graph,
like describing a reusable component. However, I have yet to find the right level
of abstraction for it. In particularly, all my attempts so far have lead to results
resembling the start of a general purpose programming language. But at that
point, people might as well just hand code the infrastructure directly in Java
and be done with it.

4.3 Design conclusions 17

4.3 Design conclusions

In my design, I have decided to follow some of Joshua Bloch’s advise on how
to design APIs. To reduce the concept complexity, I have decided to split the
codebase into “components” based on their purpose.

I have identified some things in the model specification language that I would
like to change. I would like to reduce the amount of boilerplate syntax and
nodes only present to create access controls. Furthermore, I intend to introduce
actor roles and actor role credentials to make it easier to maintain large scale
models.

18

Initial framework design

CHAPTER 5

Implementation

This section will cover what I have implemented. It will not cover the basic use
cases (including some “consumer” APIs). For those, please see section 6, which
has been dedicated for that purpose.

5.1 Notable changes to the language specifica-
tion

Some of these changes have already been mentioned in the design section (see
subsection 4.2). However, I also changed a few things in the language during the
implementation phase. These should be seen in comparison to the specification
used by Probst and Hansen[0].

Note that these sections do not cover changes caused by the implementation
being incomplete. These, where deemed important enough to mention, will be
covered in future works (e.g. subsection 7.4).

20 Implementation

5.1.1 Reduced boilerplate syntax

The revised language features two basic optimisations to reduce the amount of
boilerplate syntax.

First, many access rules can be omitted, which results in default values being
used. For data policies, the default is simply “no restrictions”. For edge/con-
nection policies, the default rule is “unrestricted move” (i.e. “*: m”). However,
this default is only applicable if both nodes are of same domain and the domain
is either “physical” or “virtual”. If these conditions are not met, the access rule
for that connection must be specified.

Secondly, the locations section is now written in a more concise way. Previously,
locations were specified via the syntax:

locations {
nodeA { access-rules } (domainX)
nodeB { access-rules } (domainX)
nodeC { access-rules } (domainY)

}

Now, the same is now written as:

locations {
domainX: [nodeA, nodeB],
domainY: [nodeC]

3

The idea here is to remove the repeated domain specification. This pays off
because there are only 4 domains, but there can be many nodes in any of those
domains.

Note the missing access rules in the revised language have been moved to the
connections section (as debated in subsection 4.2.1).

5.1.2 Credential types

All credentials now have one of the 3 following types:

5.1 Notable changes to the language specification 21

e physical key (“key”) - A physical credential (e.g. a key or an identity
badge).

e pass phrase (“password”) - A “secret” that is known by the owner (e.g. a
pass phrase).

e identity - The identity of the actor. All actors always have exactly one
instance of these, which is implicitly pre-declared.

The “key” and “password” credentials can have any name allowed by the syntax
except for any keyword (“key”, “locations” etc.) or the name “identity”. The
name, “identity”, is exclusively reserved for the “identity” credential (which,
incidentally, can only be referred to by that name).

The type specification can generally be omitted when the name is non-ambiguous.
This means that most access rules will generally be syntactically unaffected by
the introduction of types. Although, when disambiguation is needed, the creden-
tial name is prefixed with its type surrounded by “<>”" (e.g. “name” becomes
“<key>name” or “<password>name”). There is an example of this in figure
5.2.

Note that identical credentials are considered an inherent part of the actor and
cannot be shared in any way. For most parts, they behave like an actor role
credential as well as an actor credential (see subsection 5.1.4).

5.1.3 Actor roles

It is now possible to declare actor roles. While their use is entirely optional,
I believe they will greatly reduce the maintenance burden of any non-trivial
model. These roles are declared in their own section called “actor_roles”, which
(if present) must appear between the “connections” and “actors” sections.

Each role can extend previously defined roles and have 0 or more credentials
associated with them. All credentials from super roles are inherited. An example
“actor_roles” and “actors” section is shown in figure 5.1.

Note that actor role credentials can used both as an actor role credential and
as an actor credential. Please see the next subsection for the details.

22 Implementation

actor_roles {
Employee {
password employee_code;
X
Janitor extends Employee {
key janitor_key;

}

SeniorJanitor extends Janitor {}
}
actors {

U (Employee) @ outside;

SJ (SeniorJanitor) @ outside;
}

Figure 5.1: Example of an actor_roles and actors section

5.1.4 Access rules using role or actor credentials

When the credential is associated with an actor or an actor role, the key name
is prefixed with name of actor (or actor role) followed by a period (e.g. “name”
becomes “actor.name” or “role.name”).

A notable change from the Probst and Hansen is that an actor is no longer
considered a valid credential[6]. These uses should generally be replaced with
the identity credential of that actor (i.e. “actor” becomes “actor.identity”).

Another change is caused by actor roles. All credentials related to roles can
be used in any of 3 ways. First, the credential can be used with the role that
declared it. Secondly, the credential can be used with any “sub-role” of that
role. Finally, the credential can also be used with an actor possessing that role.

The difference between the two first is similar to that of class inheritance from
Object-Oriented Programming languages. Going from “Set” to “SortedSet” is
more specific and limits the possible choices for implementations. Similarly,
going from “Janitor.janitor_key” to “SeniorJanitor.janitor_key” limits the cre-
dential to any “janitor_key” initially owned by a “SeniorJanitor” rather than
a “Janitor” (reusing the example in figure 5.1). The third way of using these
credentials, would be “SJ.janitor_key”. This simply declares that only the “jan-
itor_key” of the actor “SJ” can be used.

The “identity” credential is (once again) a special case. While it is an actor cre-
dential, it may be used as if it had been an actor role credential. In particular,

5.1 Notable changes to the language specification 23

// "locations {...}" has been omitted
connections {
nl -> n2 { <role>SJ.<key>c: m; }
n2 -> n3 { <actor>SJ.<password>c: m; }
// Not ambiguous; just being explicit for the sake of it.
n3 -> n4 { <actor>J2.<key>k: m; }

}
actor_roles {
J A
password c;
key c;
key k;
}

// Here "J" is not ambiguous (can only be a role)
SJ extends J {}

}
actors {
J (J) @ ni;
// Here, the "(J)" is not ambiguous (can only be a role).
J2 (J) @ ni;
SJ (SJ) @ ni;
}

Figure 5.2: Example showing how to disambiguate credentials in access rules

using “Janitor.identity” means that any actor having the “Janitor” role (possi-
bly indirectly) can use his/her identity credential to satisfy this requirement.

The keen reader might have been wondering up to know “what happens if an ac-
tor role and an actor has the same name”. Technically, this is permitted. Where
this makes references to credentials ambiguous, it is possible to disambiguate
them by prefixing the actor or actor role name with “<actor>” or “<role>”
(respectively). An example of the disambiguation syntax can be seen in figure
5.2.

Note that ambiguity is not allowed, even when either alternative would leave
only one possible credential owned by the same actor.

24 Implementation

// Other sections omitted
connections {

nl -> n2 {
// GOOD: Syntactical and semantically valid example:
*: 1 (1%, 2), // Annotation for "i" is "(%1, 2)"
o (0%); // Annotation for "o" is "(%1, 1"
// (due to time-cost defaulting to 1).
s
nl -> n3 {
// Syntactical valid, but semantically INVALID example
// (Just to show the string syntax)
*: m ("hello world"); // INVALID (semantically)
s
}

Figure 5.3: Example showing the syntax of annotations

5.1.5 Access rule annotations

Another addition to the language is the “access rule annotations”. These anno-
tations provide some additional information about the access rule.

These annotations can be attached to the capabilities of an access rule enclosed
in parentheses. The syntax allows the values of an annotation to be either an
integer, a percentage or an arbitrary string. The syntax is shown in figure 5.3.

Currently, only two annotation values are defined. These are (in order) “de-
tection risk” and “time-cost”. The “detection risk” is a percentage, that is
an integer between 0 and 100 inclusive followed by a “%”. The “time-cost”
value is simply a positive integer. If omitted, they default to “0%” and “1”
(respectively).

As the name might imply, the framework considers these values as “comments”
with no special meaning by default. However, it does provide access to these
values, so consumers can apply any meaning they choose. See also subsection
6.4.

5.1 Notable changes to the language specification 25

Hallway

N
CL_\ . . CL,

SRY, ' £ usr)"TTT JAN [

WASTE -{ PC2 }4--—{ PC1 }4

Server UserOffice Janitor Workshop

Figure 5.4: Visual representation of Probst and Hansen model

5.1.6 Putting it all together

It may be hard to fully appreciate all of these changes. In figure 5.4, you will
find the example model specification from Probst and Hansen[6][p. 237]. That
model corresponds to the textual representation in figure 5.6 (based on [0][p.
241]). T have added some inline comments to the model to clarify where I have
made changes and what those changes were.

In contrast, figure 5.6 contains the same model rewritten in the revised language.
In my rewrite, I have taken a couple of liberties. First, I have promoted all access
controls to use actor role credentials. Assuming I have translated them exactly
as Probst and Hansen had intended them, new agents can be added to the model
without needing any changes to the infrastructure.

Secondly, a lot of access rules are now implicit and quite a few nodes have been
removed. The old model has 14 nodes, while the rewritten model describes the
same with only 9 nodes. Likewise, the number of edges have decreased from 19
to 12 (counting two-way edges as 2 separate edges).

Note that despite the fact that the parser can actually parse the rewritten
variant of the model, the execute (i.e. “e” and “elog”) actions are not actually
supported (see subsection 7.1).

26 Implementation

locations {
outside {} (building);
entry { U: mlog; J: mlog; } (building);
exit { U: mlog; J: mlog; } (building);
hall { *: m; } (building);
lock_jan { key_jan: m; } (building);
jan { *: m; } (building);
lock_usr { code_U: m; } (building);
// NB: original spec used "user" for this node
// but it appears to be referred to as "usr" everywhere else.
usr { *: m; } (building);
// NB: Added "pc2: m;" since there is an "pc2->pcl'"-edge
// and it otherwise seem to serve no purpose (as "U" cannot
// enter "pc2")
pcl { U: elog, i, o; pc2: m; } (virtual);
// NB: fixed missing semi-colon in access rule (after code_J: mlog)
lock_srv { code_U: mlog; code_J: mlog; } (building);
// NB: original spec used "server" for this node
// but it appears to be referred to as "srv" everywhere else.
srv { *: m; } (building);
pc2 { pcl: m; U: elog, i, o; } (virtual);
printer { srv: i; pc2: olog; } (device);
waste { srv: i, o; } (object);

}
connections {
outside -> entry;
entry —-> hall; exit -> outside;
hall -> lock_jan, lock_usr, lock_srv, exit;
lock_jan -> jan; jan -> hall;
lock_usr -> usr; usr -> hall; usr -> pcl;
pcl > pc2; pc2 -> pcl;
lock_srv -> srv;
srv -> hall, waste, pc2, printer;

}

actors {
U @ outside;
J @ outside;

3

data {
code_ U { } @ U;
code_J { } @ J; key_jan { } @ J;
// NB: Replaced an "r" with an "i" (DataActions does not have "r").
secret_file { U: i } @ pcl;

}

Figure 5.5: The original model from Probst and Hansen

5.1 Notable changes to the language specification

27

// Re-written standard example
locations {
physical: [outside, hall, jan, usr, srv],
virtual: [pcl, pc2],
device: [printer],
container: [waste],
}
connections {
outside -> hall { Employee.employee_code:
hall -> outside,
jan { Janitor.janitor_key: m; 1},
usr { User.employee_code: m; 1},

mlog; };

srv { Employee.employee_code: mlog; };
usr -> pcl { User.identity: elog, i, o; 1},

hall;
pcl -> pc2;
pc2 -> pcl,

printer { *: olog; };
srv -> waste { *: i, o; I,
printer { *: i; },

hall;
}
actor_roles {
Employee {
password employee_code;
}
User extends Employee {}
Janitor extends Employee {
key janitor_key;
}
}
actors {
U (User) @ outside;
J (Janitor) @ outside;
}

documents {
secret_file { User.identity: i; } @ pcl;
}

Figure 5.6: The model from Probst and Hansen rewritten in the next syntax

28 Implementation

****** =

|
[}
: examples |

______/"_

algorithm simulation analysis

Figure 5.7: Overview of how the components relate. Solid boxes are main com-
ponents, dashed boxes are non-API/consumers. Solid arrows represent strong
dependencies, dashed arrows are dependencies only used during “testing”.

5.2 Components of the framework

The framework is split into 4 “main” components. There are also a couple of
extra components, which will briefly be mentioned in the end of this section.

Figure 5.7 provides a quick overview of how the components relate with each
other. Each box in that figure represents a compontent. Solid boxes are part
of the “main” framework and the dashed boxes are “other” components (see
subsection 5.2.5). A solid arrow represent that source node has a strong de-
pendency on the target node. The dashed arrows are dependencies only used
during testing of the component.

5.2.1 “model” component

The “model” component is the main component. It contains the most basic
parts of the framework including the representation of the model as well as the
model parser.

Currently, the only way of obtaining a SystemModel is by parsing a specifica-

5.2 Components of the framework 29

connections {

hallway -> office // Edge (source/dest)
{ key: // Requirement 1
mlog (0%, 2) // Action, log info plus risk/time annotation 1
*: // Requirement 2
m (10%, 5) // Action, plus risk/time annotation 2
s

Figure 5.8: Example of an access policy in the language

tion using a SystemModelParser. The SystemModel itself is implemented as a
Graph, where the nodes (SystemGraphNode) stores documents and credentials
while the edges (SystemGraphEdge) contains the access policies.

In the language specification, an access policy is described as requirement that

maps to capabilities (see 5.8). But when parsed, these access rules are remapped

in quite a different way. Namely, edges map a desired capability to an SystemAccessPolicy,
which consists of 1 or more SystemAccessPolicyComponents. These compo-

nents then contain information about credential requirements, logging and the
annotations (the latter being described in 5.1.5).

The rationale for this consists of several reasons. For one, I felt that a set of
requirements made a really poor choice for the key in a key-value mapping. Es-
pecially with actor roles, it could be really difficult for consumers to “construct”
these keys, which I felt would make them useless as a key.

Secondly, I believed that most consumers would generally be more interested
in what capabilities were possible and then in what were required for those
capabilities. In a more informal tone, I prioritised the “I want to do X, what
does that require?” use case over the “I have the set of credentials S, what does
that allow me to do?” use case.

So to describe the re-mapped setup as it looks in the framework using a “model
language”-like syntax, it would be something like the pseudo-example in figure
5.9.

Log rules Another change between the language and the framework is that
the framework allows more fine-grained rules about that is logged. All logged
capabilities (e.g. “mlog”) are simply mapped to a pre-defined set of logging

30

Implementation

/* PSEUDO example of how access rules are structured in the framework.
* NB: This uses a "pythonesque" syntax, so {x:y, z:a} is a

* mapping from x to y and from z to a. [x,y] is a

* list consistent of the elements x and y. set([x, y]) is
* a set consisting of the elements x and y. Special-case,
* set() is the empty set.

*/

connections {
hallway -> office
{ m:
set ([
{ "restrictions": set([keyl),
"annotation": (0%, 2),
"log-rules: set([...]),

"restrictions": set(),
"annotation": (10%, 5),
"log-rules: set(),

//
//
//
//
//
//

//
//
//

Edge (source/dest)

Action

Set of components
Restrictions 1 (component)
Annotations 1 (component)
Non-empty set of Log rules

Restrictions 2 (component)
Annotations 2 (component)
Empty set of log rules

Figure 5.9: Pseudo-example of an access policy in the framework

5.2 Components of the framework 31

rules - these are marked with a * in the list below. The implemented logging
rules are:

e action taken * - The action that triggered the log entry (e.g. “move”)

e source node * - The source node of the actor performing the action.

e target node *

any).

- The target node of the action performed by the actor (if

e possessible * - The possessible involved (e.g. being read) in the action (if
any).

e all-credentials * - All the credentials used to authorise this action (if any).

e the actor - The actor performing the action.

The “model” component also contains a number of auxiliary classes for repre-
senting and creating “traces” and “log files”. At first, I thought they might be
better suited for the “simulation” component. However, on second thought I
realised it could make sense for an analysis to use those utilities to represent its
findings.

5.2.2 “algorithm” component

The “algorithm” component contains a few utilities related to path finding. It
has two different types of path finders. The first is a standard “find a path”-
path finder. The other “path finder” will find all simple paths from A to B.
The former is called PathFinder and the latter a PathLister (in the lack of a
better name for it).

The PathFinder was implemented as a “breadth-first” path finder, so it always
finds the shortest path between the two nodes. The PathLister uses a “depth-
first” approach to finding all the simple paths. These implementations are
hidden away and their capabilities are simply documented as a part of the API.

These path finding tools work on models as simple directed graphs. Even if the
SystemModel interface revised, path finders will not need to be revised as long
as the revised model interface is (or contains) a Graph. To make this possible,
some decision logic has deferred to Predicates. These predicates are used to
determine whether a given edge be crossed or not.

32 Implementation

The component also includes a number of utilities related to path finding and
the resulting paths. It is quite possible that eventually the number of these
utilities will grow to better reflect the future use-patterns.

5.2.3 “analysis” component

The “analysis” component is intended for static analysis. It features a fixpoint
analyser and an abstract fixed-point analysis.

The abstract fixpoint analysis provides a basic implementation to facilitate writ-
ing of new analyses. It expands a basic interface and solves a lot of the ground
work. This include things like associating nodes with data from the analysis
and keeping track of which nodes have been analysed (successfully).

As with the path finding, these analysis tools currently work with models as
directed graphs. So they are also reusable on a revised SystemModel interface
as long as it remains (or contains) a graph. Of course, individual analyses that
rely on the current semantics of the models would still be affected. But the
effects would hopefully be limited.

5.2.4 “simulation” component

The “simulation” component concerns itself with analysing the models via Als
or Jung agents. Its main purpose is to provide the SystemModelSimulator as
well as an interface between the simulator and the Als.

The simulator itself will maintain a SystemModelTrace and SystemModelLog of
all actions occurred in the simulator. The trace records all actions that occurred,
as if there had been perfect surveillance of all actors. The log will only contain
the subset of all traced actions that are actually logged. Furthermore, entries
of the log file will omit details based on the logging rules (described earlier in
5.2.1). Thus, if every action is vigorously logged down to every last detail, the
trace and the log will basically contain the same information.

The simulator also provides support for event listeners. The events emitted
by the simulator are mostly in a 1:1 correspondence with the traced actions.
Though there are a few simulator events that describes “meta” changes to the
state of the simulator (e.g. the “start of simulation” event).

In the simulation, the ordering between the actions of any actors are not actually

5.2 Components of the framework 33

defined. This in turn provides a source of non-determinism. In the simplest case,
assume two agents (“A” and “B”) reach for the same credential. In this simple
situation, there are 3 possible resolutions.

1. “A” succeeds in taking the credential and the action of “B” fails.
2. “B” succeeds in taking the credential and the action of “A” fails.

3. Both agents fail to carry out their actions.

When such non-determinism is detected, the simulator defers the problem to the
a conflict handler (SimulatorActionConflictHandler). The conflict handler
can then resolve the problem by choosing an ordering of the actions and (at its
discretion) unconditionally fail any actions of its choosing.

Once the problem has been resolved by the conflict handler, the simulator plays
out the “surviving” actions in the order chosen. Note that the simulator may
still fail some of the surviving actions, if it turns out the actions cannot be
carried out anyway. This has the benefit of avoiding unnecessary logic in the
conflict handler (e.g. for checking whether actions would eventually succeed or
not).

5.2.5 Other (non API) components

There are a few other very small components in the source tree of the framework.
These are not actually part of the framework as much as they are example
consumers or extensions of the framework.

e ai - This component contains a few Al/Jung agents implemented by Emil
Gurevitch

e modelfuzzer - This component contains a tool to auto-generate random
models for “fuzz” testing. This was also implemented by Emil Gurevitch.
Since it is written in mostly python, it is the only component that does
not depend on any of the “main” components.

e graphviz - A component by Emil Gurevitch to transform simulated models
to DOT graphs.

e examples - A component containing a small set of example code snippets
demonstrating how to use the framework.

34 Implementation

5.3 The model parser

The default implementation of the SystemModelParser is split into 3 parts.
Each part handles one or more “phases” in the parsing. The first two parts are
basically (and unsurprisingly) a lexer and an abstract syntax tree (AST) genera-
tor. These two parts are auto-generated from an ANTLR specification. Finally,
the last part handles checking of the semantics and constructing a SystemModel.

Originally, I had envisioned a two-phase parsing, where the AST generation was
skipped. However, in the end I realised including the AST step was a better idea.
First of all, interleaving Java code into the parser-specification greatly increased
the complexity of many of the grammar rules. Especially, if the input context
(e.g. line number of the input) were to be retained. On the other hand, the
AST generated by ANTLR included line information without any extra work.

The second major problem was producing useful error messages. Personally,
I am not too happy with some of the default error messages in the generated
parser. I solved most (but not all) of that by making the lexer more lenient
than it ought to be. As an example, the lexer accepts any valid “name” (e.g.
“ingolf”) in place of a capability (like “m” or “mlog”). Invalid capabilities are
then rejected during the third phase, where the semantics are verified.

This may seem like a lot of extra work at first, but it meant that I could
replace a lot of ANTLR’s “no viable alternative” error messages with a more
human readable one. Sadly, it is still possible to trigger some of the “no viable
alternative” error messages. This usually occurs when the punctuation is wrong
(e.g. a “” that should been a “”).

Thanks to ANTLR’s tree-rewrite support, it was possible to reduce the complex-
ity of the generated AST. It also allowed the semantic checker to visit various
parts of the tree in the order desired rather than in the input order. As an
example, the checks of the “connections”’-section are run last despite it being
the second section parsed. At that time, the “credentials”, “actors” and “ac-
tor_roles” sections have already been processed allowing the access rules to be
checked in a single pass.

5.3.1 Adding new annotation

Another convenient side-effect is that adding support for a new annotation is
quite trivial. It can even be done without regenerating the auto-generated parts
of the parser. In the ParserFrontend class, there is an array annotation checkers

5.3 The model parser 35

// PERCENTAGE and POSITIVE_INT is a Function<String, AnnotationValue>
// (i.e. they map a String to an AnnotationValue)

static final PolicyChecker [] ANNOTATION.CHECKS =
new PolicyChecker [] {

checkedAnnotationValue (
SystemAccessPolicyComponent . ANNOTATION_KEY_DETECTION_RISK,
”Detection.risk omust_be_a_percentage. ([...])”,
”0%” , PERCENTAGE) ,

checkedAnnotationValue (
SystemAccessPolicyComponent . ANNOTATION_KEY_ACTION_TIME,
”Time—cost -must_be_an_integer._greater_than._.0”,

”1”, POSITIVE.INT),

Figure 5.10: Annotation checkers in the ParserFrontend

(see figure 5.10).

To add a new annotation, one simply needs to add a new value to the end of that
array. As seen in the example, this is done by calling checkedAnnotationValue
with 4 arguments.

1. “key” name of the annotation. This is used by consumers to access the
value.

2. A human readable description. This is the error message provided if the
parsed annotation is not semantically valid.

3. A default value provided as a String. This will be passed to the converter
function (the next argument) as-is.

4. A converter Function that maps a String to an AnnotationValue. If
the input is not valid, the converter should simply return null.

With that, the parser frontend will handle the rest.

5.3.2 Auto-generated models

The model parser also supports two “special” comment tokens. These tokens
can be used to change the parsers idea of what the current “file name” or “line
number” is. The first is the “#line” directive used by many C/C++ compilers.
The other is the line directive left behind by the GNU GCC Preprocessor. These
look like this:

36 Implementation

// 1. With null return

// — getNodeByName will return null if node is unknown
// (Similar to Map. get(Object))

public @Nullable N getNodeByName (String name);

// 2. Without null return with “hasX”’—test method
// — getNodeByName will throw an ezception if node is unknown
// — hasNode will return true if node is known
public boolean hasNode(String name);
public N getNodeByName(String name)
throws IllegalArgumentException;

// 8. With Optional
// — Returns Optional.absent () if node is unknown
public Optional<N> getNodeByName (String name);

Figure 5.11: Example of Optional, NonNull and Nullable APIs

#line 314 "some-other-file"
314 "some-other-file"

With these tokens, it is possible to create models from other “higher level”
specifications and still have the model parser provide correct error information.
Even if this “higher level” is simply just running it through a C-preprocessors
to get “#include” or macros, which the current parser does not support.

5.4 Immutable and NonNull/Optional by default

Very early in the development, I remembered the two most common source of
bugs in my own programs. These can basically be summed up as “null pointers”
and “state”. When I adopted the Guava libraries, I revised my approach and
my API to avoid these problems preemptively.

On the “null pointer” front, I plugged every part of the API to never return
“null” pointers. This was possible due to the Optional from the Guava libraries
and sometimes even made the API simpler. Figure 5.11 is an example of this
based on the getNodeByName from the Graph API.

Similarly, I stopped allowing “null” arguments in all public parts of the API.
In my experience, this greatly reduced the “cognitive load” of implementing the
code. Internally, there are some places where “null” is used or even passed to or
returned from methods. Examples include objects that are lazy loading some

5.4 Immutable and NonNull/Optional by default 37

Set<Object> mutable = new HashSet <>();

Set<Object> unmodifiableView = Collections.unmodifiableSet (mutable);
assert unmodifiableView.size () = 0;

mutable . add (new Object ());

/* Holds because unmodifiableView is a view and therefore

x indirectly mutable x/

assert unmodifiableView.size () = 1;

Figure 5.12: Snippet showing that “unmodifiable” does not mean “immutable”

// Without ImmutableSet

Vax

x @return A {@link Set} of the credentials. This set is
immutable and cannot be modified. The only problem is
that you will forgot this fact in five minutes and will
have to review this piece of documentation to remind
yourself that is was not actually a view.

* ¥ X ¥

*/

public Set<SystemCredential> getCredentials ();

// With ImmutableSet
/% @return An {@link ImmutableSet} of the credentials.
* If you store this in wvariable with type “ImmutableSet”,
* you can immediately see it is mot a view.
*
/

public ImmutableSet<SystemCredential> getCredentials ();

Figure 5.13: On returning unmodifiableSet vs ImmutableSet

of their fields.

The second problem, “state”, is a bit harder to deal with (at least in an imper-
ative language like Java). For most parts, I had been trying to solve this by
using things like unmodifiableSet. But here, the Guava libraries came to my
aid again with its ImmutableCollections.

To the untrained, this may not be obvious but the Set returned by unmodifiableSet
can still mutate. Figure 5.12 features a small snippet demonstrating how to do
this.

Accordingly, in my API I had to add a lot of boilerplate comments about whether
a given set could be a view or not. With an ImmutableCollection this problem
disappears, because it is an immutable copy of the original collection. A lot of
those boilerplate comments could go away by promoting types (see the example
in figure 5.13).

38 Implementation

5.5 Static factories vs Constructors

Throughout the framework, I have strongly preferred static factories to “public”
constructors in all of the API. My rationale is that it allows the underlying
implementation to be replaced without affecting any consumers.

During the development of the framework, I exploited this to replace the under-
lying implementation of several classes. Even now, these static factories provides
a mean to change the default implementation for many common classes like path
finding.

Another bonus of this is that allows the static factory to optimise some special
cases, like giving a different type of object depending on the arguments. When
dealing with immutable objects, such optimisations are actually fairly trivial to
exploit.

As an example of these optimisations, the current implementation of the “Breadth-
first” path finder happens to be “reentrant”. Thus, the static factories currently
provide the path finder as a singleton object.

That said, when the framework is more mature, it might make sense to ex-
pose some of these implementations and their constructors in the API to allow
subclassing.

5.6 Known issue: inline Predicate (etc.) are
messy

Currently, the use of Predicates, Functions and the likes are a bit “heavy”
on the syntactical side. This problem is not limited to this framework per se.
However, since the framework promotes the use of predicate functions in its
API, users of the API are likely to be affected by it.

The problem is a consequence of the Java syntax itself. Java insists on predicate
functions being declared as a full class (even if anonymous). This causes a one-
line predicate to result in about 4-5 lines of Java boilerplate code.

Allegedly, Java 8 will have better support for this via its “Lambda” enhancements|5].
The (expected) reduction in boilerplate syntax can be seen in figure 5.14.

5.7 Required libraries and platform 39

// Without lambda support
final Set<SystemCredential> creds = ...;
new Predicate<SystemGraphEdge>() {
@Override
public boolean apply(@Nullable SystemGraphEdge e) {
return Objects.requireNonNull(e)
.hasSufficientCredentials(t, creds);

s

// With the (proposed) lambda support
final Set<SystemCredential> creds = ...;
(e) —> Objects.requireNonNull(e). hasSufficientCredentials(t, creds);

Figure 5.14: Anonymous classes vs. lambda expressions

5.7 Required libraries and platform

The framework is written entirely in Java 7 (using OpenJDK-7). T also used the
“Null-Analysis” annotations from Eclipse (org.eclipse.jdt.annotation) to assist
with find possible null pointer issues. The framework also exposes some of the
classes from the Guava libraries in the API.

Furthermore, there are a couple of extra requirements, which are not visually
exposed in the API. The parser implementation uses ANTLR 3.2 and the Als
implemented by Emil Gurevitch uses Log4J. Finally, JUnit4 was used for testing.

5.8 Implementation conclusion

The revised language has quite a few changes, including actor roles, typed cre-
dentials and annotations.

The implemented framework features 4 major components, which are called
“model”, “algorithm”, “analysis” and “simulation”. The latter 3 component are
generally dedicated to path finding, static analysis and dynamic analysis/simu-
lation (respectively). The “model” component provides most of the underlying
API needed or shared by the other components.

The API exposed by the framework generally prefers immutable objects and
disallows null pointers in ever place where it is feasible.

40

Implementation

CHAPTER 6

Using the framework

This section contains examples of how to accomplish various tasks with the
framework.

6.1 Basic usage of the framework

In this subsection, I will briefly cover some of the basics of how this framework
can be used. It involves mostly use-cases and example solutions to them.

6.1.1 Parsing models

Almost any task using this framework will start with the need for parsing a
model. This is especially true since there is currently no way to programmati-
cally generate a new model (see 7.6).

Parsing a model requires a SystemModelParser and an input source (i.e. an
InputStream, a File or a Path). Figure 6.1 shows an example of how to do
this.

42 Using the framework

ZanEEy.

public static final SystemModel parseModel(String filename)
throws IOException, SystemModelSerializationException {
SystemModelParser parser =
SystemModelParsers.newDefaultModelParser ();
SystemModel model;

if (filename.equals(”=")) {
model = parser.parse (System.in, "<stdin>”);

} else {
model = parser.parse (new File(filename));

}

return model;
}

/L]
Figure 6.1: Small example showing how to parse a model

protected final static InputStream asStream(String... s) {

return new ByteArrayInputStream (
Joiner.on(”\n”).join(s).getBytes(StandardCharsets .UTF.8));

Figure 6.2: Small example transforming an array of Strings to an InputStream

If the model specification is given in a String or an array of Strings, it is still
possible to parse the specification by turning the (array of) String(s) into an
InputStream. This technique was readily deployed for testing purposes (see
figure 6.2).

6.1.2 Running simulations

Running a simulation on a model requires a bit more code than simply parsing
a model. The main source of complexity in this task is setting up the actors.

Figure 6.3 contains an example of setting up and running a simulator with a
single agent in it. The particular example assumes that it is possible to describe
the desired outcome via an invariant (implemented as a Predicate).

It may be easier to describe the “end condition” and then turn that into an
invariant. Usually, this is as simple as negating the end condition. The template
in figure 6.4 might be useful for this purpose.

6.1 Basic usage of the framework 43

SystemModel origModel = ...

SystemModelSimulator simulator =
SystemModelSimulators . newSystemModelSimulator (origModel);
SimulatedSystemModel simModel = simulator.getSimulatedModel ();

ActorAl ai = ...
Predicate<SimulatedSystemModel> invariant =
int limit = 100;

/% Create a simulated actor for ”john” (in the origModel) and
* let him start at the node ”outside”.

*/

simulator.createSimulatedActor (”john”, ”outside”). attachAI(ai);
simulator.startSimulation ();

B

/* Let the AI perform a fized number of steps */
if (SimulatorUtil.runWhile(simulator, invariant, limit)) {
/* Invariant held for 7limit” calls to stepTime() x/

/o
} else {
/* Invariant violated before 7limit” x/
SystemModelTrace trace = simulator.viewCurrentTrace ();
SystemModelLog log = simulator.viewCurrentLog ();
// Review the trace or/and the log
/1

Figure 6.3: Small example for setting up a simulator with one actor. The “...;”’-
parts are to be filled out by the consumer of the example.

/* Returns true when the actor has completed his objective
* or a policy violation has occurred etc.

*/
Predicate<SimulatedSystemModel> endCondition = ...;
/* ... negating endCondition check turns it into an invariant. */

Predicate<SimulatedSystemModel> invariant =
Predicates.not (endCondition);

Figure 6.4: Snippet showing how to create an invariant from an “end condition”.

44 Using the framework

It is also possible to control the simulation more finely grained by using the
simulator’s stepEvent and stepTime methods.

6.2 Implementing a fixpoint analysis

All fixpoint analyses in the framework should implement the FixPointAnalysis
interface. It is basically implemented as a “visitor” (as in “visitor-pattern”).
The basic setup is as the following.

The analysis has to provide the fixpoint analyser with two things. First, a collec-
tion of start nodes and secondly, a direction (either “forwards” or “backwards”).
From there on the analyser will make analysis will visit related nodes one or
more times. Finally, the analyser will inform the analysis when the fixpoint has
been reached, so it can do any final processing.

However, most analysis implementations are probably going to do one or more
of the following;:

e Associate each (visited) node with some data.
e Special-case the first visit to a given node (especially true for start nodes).

e Keep track of “reachable” nodes (the code refers to these as “successfully
visited nodes”).

Therefore, the framework also provides an AbstractFixPointAnalysis class,
which provides these features.

6.2.1 A simple reachability analysis

I have implemented a “simple” reachability analysis, which is based on the
AbstractFixPointAnalysis. I write “simple” because it turns out that “cor-
rect” handling of reachability is not actually really simple.

The full code of the class is far too long to be embedded here, but is available in
the appendix A.1. As I decided to use it as an example, it has been extensively
documented with corner cases and rationales for pretty much every case I could
think of. There are even some corner cases it handles poorly performance-wise,
which I have left as-is for now.

6.2 Implementing a fixpoint analysis 45

@Override
protected NodeAnalysisResult reanalyseNode(SystemGraphNode node,
Optional<ReachabilityData> optData) {
/* We have processed this node before (successfully).
* One of our predecessors must have learned something new. */
ReachabilityData data = optData.get ();
NodeAnalysisResult res = updateDataFromPredecessors(node, data);
/% Even if our predecessors learned something new, we are not
actually guaranteed thats its knowledge will reach this mnode.
Ezample :

predecessor —— (impassible edge) —> current node

whether a mode is reachable or not, so it just submits the
node for us to process and let us deal with it.

/
/

*
*
*
*
*
x The fixpoint analyser does mot know our criteria for
*
*
*
if

res = NodeAnalysisResult .CHANGED) {
If we learned something new (likely) try to see if we
can obtain more data on this mnode.

(
*
*
*
* XXX: Technically, we only meed to do this if we obtained
* a new credential from our predecessors (since documents
* do mot "unlock” access to nodes). This optimisation is
* left as an exercise to the reader of this comment.

*/

updateDataFromSuccessors (node, data);

}

return res;

Figure 6.5: The implementation of reanalyseNode

The implementation relies on AbstractFixPointAnalysis to keep track of
which nodes are reachable. As a side effect, it also keeps track of the nodes
for which the analysis have data. This means that reanalyseNode is basically
reduced to 5 lines of code with a single if-statement (see figure 6.5).

The analysis works by processing each node in basically two steps. First it
looks “backwards” from the current node to see what data is available from the
direct predecessors. This is done by the method updateDataFromPredecessors,
which is included in figure 6.6. This step also doubles as reachability test for
new nodes.

If this step concludes that new data is available, then the analysis will see what
possessibles can be read from successor nodes of the current node. This is done
in a method called updateDataFromSuccessors.

46

Using the framework

private final NodeAnalysisResult updateDataFromPredecessors(
SystemGraphNode node, ReachabilityData data, boolean newNode){
NodeAnalysisResult res = NodeAnalysisResult .NOT.CHANGED;
Predicate<SystemGraphNode> reachablePred =
getSuccessfullyVisitedNodesPredicate ();
Iterable <? extends SystemGraphNode> predecessors =
Iterables. filter (node.getPredecessorNodes (), reachablePred);

for (SystemGraphNode predecessor : predecessors) {
SystemGraphEdge e = predecessor.getOutgoingEdge (node);
ReachabilityData srcData = getNodeData(predecessor).get ();

if (!canMoveToTarget(e, srcData.credentials)) {
/* Not possible to move across this edge */

continue;

}
if (newNode) {

/* This case may seen a bit weird, but it is a special case
for when there are mno initial credentials. In a graph
like

outside —> hall_way —>

Then if outside is the start position, then it will be
unconditionally be marked as changed (for being the start
position).

*
*
*
*
*
*
*
*
*
* But hall_way will not be marked as changed if there are
x no reachable credentials/documents at ”outside”. The

* problem is, if there are no credential requirements for
* going from outside to hall-way, then we still want to see
* what we can reach from hall_way.

*/

res = NodeAnalysisResult .CHANGED;

if (data.credentials.addAll(srcData.credentials)
|| data.documents.addAll(srcData.documents)) {
res = NodeAnalysisResult .CHANGED;
}
}
return res;

}

Figure 6.6: The code for merging new data from predecessors.

6.3 Implementing an Al or Jung agent 47

That makes up the basics behind the simple reachability analysis provided by
the framework.

The not so simple part. Unfortunately, the second step is where the analysis
stops being simple. The basic problem is that if a new credential becomes
reachable, it may make another credential reachable. So to do this correctly,
one has to do a fixpoint computation to find all newly available credentials.

It is not difficult to do, but it is definitely a bit more complex than I wanted it to

be. The relevant code parts can be found in the methods updateDataFromSuccessors
and findNewCredentials (see the full source in appendix A.1). These methods

also include inline comments describing the cases where the fixpoint computa-

tion is needed.

6.3 Implementing an AI or Jung agent

The simulator interfaces with all agents via the ActorAI interface. The imple-
mentation “simply” has to provide a suitable implementation for pollAction
and actionFailed.

pollAction is invoked by the simulator once every time step and the Al have
to return the action (i.e. an ActorAction) it wishes to perform in this time
step. All actions are created via the static factory class ActorActions.

If the action fails, actionFailed is invoked to inform the agent for the failure.
Regardless of whether the action failed or not, pollAction will be called next
time the agent can perform a move.

The agent can also install a SimulationUpdateEventListener in the simulator,
which will provide it access to all events that happen in the simulator as they
are played out. For added realism, the agent might filter out the events that it
“could not have reasonably known about”.

Agents that are willing to cooperate with others can also implement the CooperativeActorAI
interface. This gives other agents a simple standardised interface for sharing
possessibles between each other.

48 Using the framework

6.3.1 A document stealing thief

I had the pleasure of working with Emil Gurevitch, who implemented the first
non-trivial agent in this framework. The implementation features an (almost)
deterministic and memory-less prototype agent capable of stealing documents
and credentials.

The agent generally have 3 major active states, which are:

1. Find the document
2. Find a credential

3. Move to a pre-defined “extraction” point

Once it is at the extraction point with the document or it concludes it cannot
accomplish its mission, it goes to a passive “do nothing” state!. But as men-
tioned, the agent is memory-less, so it always have to recompute its current
intention from its current state. Accordingly, it never remembers paths. These
are recomputed between any two calls to pollAction. Admittedly, here the
framework lacks a few utilities (see subsection 7.8).

On the plus side, this means that the agent will automatically get “unstuck” if
another agent provides it with an opportunity to continue its mission.

As mentioned, it is mostly deterministic, which makes it easier to debug. The
only source of non-determinism (that I am aware of) is that it relies on the
determinism of path finders. It uses the built-in “breadth-first” path finder,
which is deterministic only if there is exactly one “shortest path”. This is
usually pretty easy to accommodate during tests and most debugging sessions.

The agent is not smart, but does not try to be it either. The agent will basically
start in state 1 (“find document”) and then go to state 3 (“go to exit”) once it
has the target document. State 2 (“find a credential”) is only used if it cannot
complete its current state.

The lack of “smartness” becomes strikingly obvious once you realise that “find
a credential” is literally “find any credential” rather than “find this credential
that I need” (see figure 6.7). Admittedly, this keeps the agent fairly simple as it
does not have to compute which credentials are needed. This can in theory be

ITechnically, internally these are 2 distinct states, but the difference between the two is
not interesting to understand the agent

6.3 Implementing an Al or Jung agent 49

private ActorAction obtainACredential(final SimulatedActor actor){

/% Sort it in order to take the same credential each time. x/
List <? extends Possessible> allCreds = new ArrayList<>(
model. getAllKnownCredentials ());
if (allCreds.isEmpty()) {
throw new IllegalStateException (”no_known_credentials._found”);
}
Collections.sort (allCreds, new StringCompare ());
for (Possessible cred : allCreds) {
try {
return obtainPossessible (actor, cred);
} catch (IllegalStateException exc) {
continue;
}

}

throw new IllegalStateException (”could_not._find_an_allowed”
+ 7.path_.to_any_of._the.” + allCreds.size ()
+ ”_credential (s)._found.”);

Figure 6.7: obtainACredential from the Thief agent

a rather daunting task and I suspect the framework could use an improvement
of some of its utilities to make this easier.

With this simple approach, the code determining if the agent can obtain a given
Possessible is basically reduced to finding a path to the Possessible. This
implementation is shown in figure 6.8. If that fails, the agent simply ignores the
Possessible for the moment and tries to obtain a (different) credential.

6.3.1.1 Result of using the agent on a simple model

Using the SimulatorExample program from the “examples” component, I ran
the thief Al on a very simple model. The specification of the model is available
in figure 6.9. The output of the program, including the trace and the log file, is
available in figure 6.11.

A visual representation of the model is available in figure 6.10. The visual
representation was generate with graphviz component by Emil Gurevitch with
a few minor manual changes.

On that model, the thief will manage to enter the building, steal the “doc”
document and escape outside in 5 steps. Thanks to the trace, we can see every
step the thief takes. Furthermore, we see one log entry when the thief enters

50 Using the framework

private List<SystemGraphEdge> findPathToPossessible(
final SimulatedActor actor, Possessible possessible ,
Set<SystemGraphNode> possessibleLocations) {
SystemGraphNode actPos = actor.getPosition ();
Multiset<SystemCredential> actCred = actor.getCredentials ();

/* Find mneighbor nodes to each possessible node, ignoring nodes

* where it is mot possible to perform the requested actions.
Set<SystemGraphEdge> targetEdges = new HashSet <>();
for (SystemGraphNode posLoc : possessibleLocations) {
Iterables.addAll(targetEdges, Iterables. filter (
posLoc. getIncomingEdges (),
PathFinderPredicates. hasSufficientCredentials (
possessibleActions , actCred.elementSet ())));

Set<SystemGraphNode> targetLocations = new HashSet <>();

for (SystemGraphEdge edge : targetEdges) {
targetLocations.add(edge.getSourceNode ());

}

if (targetLocations.isEmpty()) {
throw new IllegalStateException (”not_currently_possible”
+ "_to._get_access_to_this_possessible:_empty_set._of”
+ ”_reachable_neighbor_candidates”);

}

/* Find path to a mneighbor node. x/
GraphPath<SystemGraphNode, SystemGraphEdge> pathToTarget =
finder . findPathEdgesToAnyDest (
actPos,
targetLocations ,
PathFinderPredicates. hasSufficientCredentials (
ActorActionType .MOVE,
actCred.elementSet ())).orNull ();
if (pathToTarget = null) { // no path could be found.
throw new IllegalStateException (”search.yielded_no.path.to”
+ ”_possessible:.” + possessible);

}

return pathToTarget.getTraversedEdges ();

*/

Figure 6.8: findPathToPossessible from the Thief agent

6.3 Implementing an Al or Jung agent 51

locations {
container: [safe],
physical: [outside, hall, office],

}

connections {
outside -> hall {*: m};
hall -> office {*: mlog};
office -> safe {*: r, o};
office -> hall {*: m};
hall -> outside {*: m};

}

actors {
thief @ outside;

}

documents {
doc Q@ safe;

3

Figure 6.9: Small example model used for testing the thief Al

the office.

The log entry tells us that “an unknown actor” moved from the “hall” node
to the “office” node. This action did not involve any credentials or documents
being moved or shared (“[no-possessible]”).

What may come as a surprise, is that the thief attempts to use a credential to
enter the office. The model does not require any credentials for this action. This
is an artefact of the thief using every credential it possesses in every action it
takes. But it is also an artefact of the framework logging all credentials thrown
at it, even where it might not make sense to log these credentials.

The simple logging format from the program does not actually say which cre-
dential was used. However, in this model, there is only one credential - the
identity credential of the thief. In other words, the thief effectively exposed
itself directly in the log.

52 Using the framework

0! <ho-regs, O: <no-reqs, I <no-req>

m: <no-reg>

outside
thief [id:identity] [1

m: <no-reg> <lLogRules: [ACTION_TAKEN, ...]>

Figure 6.10: Visual representation of the example model. Auto-generated from
Emil Gurevitch’s graphviz component with a few manual changes

thief obtained doc in 5 time steps
[1] move from outside to hall
[2] move from hall to office
[3] read (copy) doc from safe
[4] move from office to hall
[6] move from hall to outside
Format of the log entries:
[<time>] Entry: <actor> || <action-type> || <source-node>\
|| <target-node> || <possessible> || <credentials-used>
Log file contained:
[2] Entry: [actor N/A] || MOVE || hall\
|| office || [no-possessible] || 1 credential used

Figure 6.11: Results for the thief Al in a small model. Long lines have been
wrapped. Where this occurs, a “\” will occur where the line was split.

6.4 Risk and time analysis 53

// [... all locations ...]
connections {
office -> safe {
U.safe_key: i (0%, 1);
*: 1 (10%, 3);
};
// [... more connections ...]
}
// [... rest of the model specification ...]

Figure 6.12: Example of annotations in the model language

6.4 Risk and time analysis

The extended version of the model language supports annotations on the access
control specification. These annotations can be used to describe “detection risk”
and “time-cost” of actions. A small example of the syntax can be seen in figure
6.12:

This particular example declares that there are two ways to access the safe from
the office. One is if you have “U.safe_key” - in this case, there is a detection risk
of 0% and a time-cost of 1. Alternatively, you can access the contents of the
safe without using a key, but then you have 10% detection risk and time-cost of
3.

These values are only informative, in the sense that nothing in the framework
enforces these values. This is also why they are referred to as “annotations” in
the actual framework. Integrating this better has been left as future work (see
7.2).

While they are only informative, they can still be used for any kind analysis like
creating plans for “minimal risk” or “least time spent”. As an example, figure
6.13 shows how to sum up the time-cost for a given path.

6.5 Usage conclusion

This section showed various examples of what this framework can be used for
and how to do it. Ranging from simple things like parsing models to static
fixpoint analysis and risk/time analysis.

54 Using the framework

GraphPath<SystemGraphNode, SystemGraphEdge> movePath =
Iterable <? extends SystemAccessPolicy> movePolicies

= PathUtilities . mapPathToMovePolicies (movePath);
Iterable <? extends SystemAccessPolicy> nonEmptyMovePolicies

= Iterables. filter (movePolicies ,

PathFinderPredicates.nonEmptyPolicyPredicate ());

String k = SystemAccessPolicyComponent . ANNOTATION_KEY_ACTION_TIME;
int timeCost = movePath.size (); /+* One for each edge x/
for (SystemAccessPolicy policy : nonEmptyMovePolicies) {

ImmutableSet<SystemAccessPolicyComponent> comps

= policy.getPolicyComponents ();
SystemAccessPolicyComponent comp
= [... choose one from comps ...];

SystemComponentAnnotation anno = comp.getAnnotation ()7

/* Get the cost of this particular edge which may be more

* expensive than a regular edge. We substract one to

x avoid over—counting (we already ”paid” 1 for all edges

* before the loop).

*/

timeCost += anno.getValueAsInt(k, 1) — 1;

Figure 6.13: Example showing how to use annotations to get the time-cost for
a path

CHAPTER 7

Future work

This section covers some of the things that are not (fully) implemented in this
framework. It also mentions a couple of things that could be useful to add in
the future.

7.1 The “exec” action

I deliberately left out full support for the “execute” action. The most important
reason for leaving it out was that its semantics were not clear to me. At the
moment, a large part of the framework knows that the execute action exists,
but none of the code knows what to do when it sees such an action.

To my knowledge, support for the “execute” action requires a minimum of three
changes:

e An ActorAction to support the “execute” action needs to be imple-
mented.

e A static factory method in ActorActions for instantiating the action.

e Implementation of its semantics in the simulator.

56 Future work

From there, agents will be able to use the “execute” action as they please.
There may be other parts of the code needing updates, like SimulatorExample.
However, these should be easy to find as they will generally start to throw
UnsupportedOperationException or AssertionError when faced with an “ex-
ecute” action.

7.2 Integration of “detection-risk” and “time-
cost”

At the moment, this extra information is just attached on top of the mod-
els. Most of the existing implementation simply ignores this information. This
(among things) allows “time-skew” in the simulator, where actors always com-
plete their actions in one time-step regardless of what the “time-cost” says.

For proper integration of these values, their semantics need to be defined. Like
how is “detection-risk” aggregated over a sequence of actions? It is also quite
possible that it is better to leave these under specified at the moment. This
would at least allow people to apply their own interpretation of them and see
where it leads them.

7.3 Solve the “copy” problem

Currently every actor is trivially able to copy any document or credential via
a non-destructive read, write or share action. The latter does require a col-
laborating agent, but that agent need not realise that it is used as a “moving
copier”.

For digital media and passwords, this makes sense (within a reasonable limit).
Coping a computer file to an USB stick or writing down a password on a piece
of paper is usually fairly trivial. However, when dealing with a physical media
this copying becomes somewhat awkward.

For a physical document, one could in theory write a manual copy of it (although
it will take some time and possibly quite a bit of paper). Alternatively, in this
day and age, one could assume they had a small camera that could take pictures
of each piece of paper. I suspect the latter is a reasonable interpretation of how
an agent can copy a physical document. Admittedly, it does not explain how
they are later able to put that copy on a desk in physical form without passing

7.4 Revise the “per possessible” access policies 57

by a printer first. ..

But the true problem is physical credentials. Your average “John Doe” does not
carry a device to make copies of a physical key or a keycard in his pocket. Or
a device to copy an ID badge but replace the picture on it. But in the current
model, they can.

A “quick fix” to this, might be to simply disallow any copy operation on physical
credentials. It would not change the current semantics for documents, but they
are probably “mostly fine” (or at least, they seem more reasonable).

7.4 Revise the “per possessible” access policies

Currently the “per possessible” access policies have the same capabilities as their
“per edge” counterparts. Here I diverge from Probst and Hansen, who had a
separate set of “DataActions” [0, p. 240 (fig. 5)]. The major deficiency is that
the decrypt actions are not supported. But also many of the “per edge” access
rules do not make a lot of sense in an access rule for a possessible. I think the
parser would do well to reject e.g. a “move” capability in an access rule for a
possessible.

This difference started as an artefact from the implementation and I simply
never allocating the time to deal with it. By now, changing it will probably
break some parts of the current APL.

If T had to solve this myself, I would probably change the SystemGraphEdge
API. Namely, replace (or deprecate):

public Iterable <? extends SystemAccessPolicy> getRequiredPermission (
ActorActionType t, Possessible data)
throws IllegalArgumentException;

public boolean hasSufficientCredentials (ActorActionType t,
Possessible data, Collection<SystemCredential> cred)
throws IllegalArgumentException;

with something like:

public Iterable <? extends SystemAccessPolicy> getRequiredPermission (
ActorActionType t, DataActionType dt,
Possessible data)
throws IllegalArgumentException;

58 Future work

public boolean hasSufficientCredentials (ActorActionType t,
Possessible data, DataActionType dt,
Collection<SystemCredential> cred)
throws IllegalArgumentException;

// either
/* Map an ActorActionType to a set of possible DataActionType

for that ActorActionType x/
public ImmutableSetMultimap<ActorActionType, DataActionType>
getPossibleActionsForPossisble (Possible data)
throws IllegalArgumentException;

// or
/* Return a (possibly empty) set of possible DataActions */
public ImmutableSet<DataActionType> getPossibleDataActions (
ActorActionType t, Possible data)
throws IllegalArgumentException;

And then introduce a DataActionType enum to enumerate all the possible data
actions. For decryption, it may need some changes to the SystemDocument
interface to allow actors to obtain an encrypted document.

This would definitely also have consequences for the parser and the SystemModelBuilder.
Fortunately, those changes are completely “internal” to the implementation and
should not affect the consumers of the framework.

At the same time, it might be prudent to add support for actors starting with
documents. This is currently not supported either.

7.5 Undo-capable simulator

I originally envisioned the simulator being able to go backwards as well. That
is, allow undo actions. This would require all Als to support the notion of being
“rewinded”. I would not require them to do exactly the same actions as they
did before - that would “just” be a “replay” of the trace.

Rather, I would want to allow them to try something else when steps were un-
done. Admittedly, this probably makes more sense for Als that are (partially)
guided by humans (or maybe those that rely on machine learning). Alterna-
tively, it could allow one to try the same scenario again but change the outcome
of “conflicts” differently.

However, I never got around to implement the undo-capable simulator. Fur-

7.6 Mutable and serialisable models 59

thermore, the interface to the AI might need to be revised for this to fully
work.

7.6 Mutable and serialisable models

Currently, the only (supported) way of obtaining a model is by parsing it from a
specification. This is trivial to do - in fact it is so easy that most of the included
tests cases involves parsing a new model. But there is one major use-case not
supported by this. Creating of new models from scratch.

There is absolutely no support for creating a “model editor”, i.e. a program to
help users build models. Basically, two things are required (besides the program
itself). One is an implementation of a “mutable” model and the other is a
serialiser for said model. Possibly a parser/deserialiser and a less rigid model
format for these incomplete models would be useful as well.

Technically speaking, the “unfinished” model need not implement the SystemModel
interface. However, it would naturally allow the editor trivial access to all the
existing tools if the unfinished model reused the same interface.

7.7 Visualisation of models

A very useful feature, which is sadly not present, is to visualise the models. It
would make a lot of things easier to review (for humans) and is quite possibly
required for writing a graphical interface for tools working on these models.

Here, it might be possible to merge back some of the utilities Emil Gurevitch
created. API-wise they do leave a bit to be wanted, but they do look promising
at first glance.

7.8 Better support for Als

Currently Als have a paper thin interface between them and the simulator.
While it works fine, it means that most agents will probably be implemented
inefficiently or re-implement the same utilities (e.g. for maintaining plans).

60 Future work

As an example, when going from node A to node B the path finder will provide
a list of edges to traverse. The agent then has to transform this list of edges
into actions. But when it has the list of actions, it also has to maintain the list
over repeated calls to pollAction. Since the latter inherently involves fiddling
with state, some of these “reimplementations” are bound to have bugs.

If this plan-maintenance was supported by the framework, all agents could reuse
it. Furthermore, the bugs (if any) would only need to be fixed once.

7.9 Make large models maintainable

As mentioned in subsection 4.2.2, I believe the model language is insufficient for
describing and maintaining very large models. It is a short-coming for which I
have not been able to find a full solution.

It could be worth it to split such models across multiple files. It might also be
worth it to look into creating a more specialised language for the infrastructure
part.

For prototyping, the current parser should be sufficient as long as the revised
language can be rewritten into the current model format. That said, since the
current parser constructs a full abstract syntax tree, it might consume very large
amounts of memory for very large models.

7.10 Future work conclusion

This section has elaborated on some of the major areas, where the framework
is currently feature incomplete. It also mentioned some places where there are
unresolved issues with the model semantics. This includes problems such as
missing support for the “exec” action, the missing “data actions” for access
rules on possessibles and the “copy” problem.

CHAPTER 8

Conclusion

I believe that system models have yet to reach their full potential yet. My
analysis of the current situation led me to conclude that system models needed
an extensible framework to facilitate new work in this area.

Leveraging on the experiences of Joshua Bloch, I setup some guidelines for how
I wanted to develop the framework. I also noticed some aspects of the current
model specification language that I found inadequate.

From this I implemented a framework to work on and with system models. The
framework features a parser for a revised model specification language that fixes
some of the inadequacies in its predecessor. In particular, a lot of the boilerplate
syntax was reduced and actor roles were added to make large scale models easier
to maintain. The new language also features annotations to declare e.g. “time-
cost” of actions.

Using the framework, I wrote a static reachability analysis. Emil Gurevitch
wrote a simple document stealing AI. Furthermore, I wrote several basic exam-
ples for solving common use cases as well as a demonstration of how to use the
“time-cost” annotation value.

While the implementation provides a foundation for working with system mod-
els, it still leaves some features to be implemented, like the “execute” action

62 Conclusion

and visualisation of the models. There are also a couple of inadequacies in the
language like missing data access rules and the “copy” problem.

APPENDIX A

Appendix

A.1 SimpleReachability Analysis.java

This is full code for the “SimpleReachability Analysis” class with the exception
of the import-section being filtered out.

package dk.dtu.imm.sysmodel.analysis;

/]

VAT

* <p>This is a simple reachability analysis. Given a set of

x credentials and a starting position, this analysis will deduce
* what positions are reachable from that starting position.

* Furthermore, at each reachable position, it will determine

* which credentials and documents are reachable there.</p>

*

* XXX: Currently this analysis only considers move actions and read
* actions.

*/

@NonNullByDefault

public final class SimpleReachabilityAnalysis extends
AbstractFixPointAnalysis<SystemGraphNode, SystemGraphEdge,
/* Marker to keep indentationx/ SystemModel, ReachabilityData> {

VAT
* Value for denoting that no credentials to be obtained. This
* is a value (namely, 0) and not a bit flag.

*/

64 Appendix

private static final int NONEW_CREDENTIALS ON.TARGET = 0x00;

VAT

* Bit flag that denoting that the target mnode had new

* credentials , but they were not reachable.

*/

private static final int FLAGHAD_UNREACHABLE.CREDENTIALS = 0x02;

/%%

* Bit flag that denoting that the target contained new

* credentials and at least one of them were reached.

*/

private static final int FLAG.OBTAINED NEW_CREDENTIALS = 0x01;

VAT

* The minimum credentials available on the starting positions

*/

private final ImmutableSet<SystemCredential> initialCredentials;

VAT

x Create a new reachability analysis

*

* @param initialCredentials The credentials available at
* the starting position.

* @param startPosition The starting position.

*/
public SimpleReachabilityAnalysis(
Iterable<SystemCredential> initialCredentials ,
final SystemGraphNode startPosition) {
super (ImmutableSet . of (startPosition),
AnalysisDirection .FORWARDS) ;
this.initialCredentials =
ImmutableSet.copyOf(initialCredentials);
}

@Override
protected NodeAnalysisResult analyseNewNode(SystemGraphNode node,
Optional<ReachabilityData> inData) {
/% We are wisiting a node for the first time x/
ReachabilityData data;
NodeAnalysisResult res;
assert !inData.isPresent ();

if (startNodes.contains(node)) {
/% It is a start position */
data = new ReachabilityData(initialCredentials);
/% If start node has other start nodes as neighbours,
* updatelnputData might learn something new.
* (Unlikely, but we need it for correctness)

*/

if (startNodes.size() != 1) {
/* Technically, this analysis only have one start node,
* so this case is impossible. But this is an example

* and someone will probably copy—waste it as—is, add
x multiple start nodes and forget about this case.

A.1 SimpleReachabilityAnalysis.java 65

*
* To "that copy—wasting someone”: You are welcome. :)

*/

updateDataFromPredecessors(node, data, true);

/* We always consider the start node as having changed
* when we wvisit it the first time.
*/
res = NodeAnalysisResult .CHANGED;
} else {
/% This is a node we have not seen before and it is not
* a start position x/
data = new ReachabilityData ();
/* We may not be able to wisit this mnode yet. In that case,
* updateDataFromPredecessors will return NOT-CHANGED and
* we will just return that. Our parent class will then
* "unmark” the node. See the documentation of the parent
* class for more information .
*/
res = updateDataFromPredecessors(node, data, true);

}

if (res = NodeAnalysisResult .CHANGED) {
/* We are able to wisit this node, so insert the data x/
setNodeData (node, data);
/* With the initial credentials obtained via our
* predecessors, see what we can obtain from this
* node.
*/
updateDataFromSuccessors (node, data);

}

return res;

}

@OQOverride
protected NodeAnalysisResult reanalyseNode (SystemGraphNode node,
Optional<ReachabilityData> optData) {
/* We have processed this node before (successfully). One
x of our predecessors must have learned something new. %/
ReachabilityData data = optData.get ();
NodeAnalysisResult res = updateDataFromPredecessors(node,
data, false);
Even if our predecessors learned something new, we are
not actually guaranteed thats its knowledge will reach
this node. Ezample:

S
*

predecessor —— (impassible edge) —> current node

The fizpoint analyser does not know our criteria for
whether a mnode is reachable or not, so it just submits
the node for wus to process and let us deal with it.
/

(res = NodeAnalysisResult .CHANGED) {

/% If we learned something new (likely) try to see if we

X X X ¥ X ¥ X ¥ ¥

-

Appendix

can obtain more data on this node.

a new credential from our predecessors (since documents
do mot ”"unlock” access to nodes). This optimisation is
left as an exzercise to the reader of this comment.

*
*
* XXX: Technically, we only need to do this if we obtained
*
*

*

*/
updateDataFromSuccessors (node, data);

}

return res;

}
/

*

Check predecessors of a node for mew credentials or documents

<p>When visiting a node, its predecessors will determine which
credentials and documents are available at this node. The sole
exception to this rule are starting positions (which always
have the imitial credentials available regardless of its
predecessors).

</p>
<p>Since this is a fizpoint analysis, new knowledge is
propagated via mnodes over multiple iterations. This method

takes care of reviewing the predecessors for initial or mew
knowledge and inserting it into the data element for this
node.

</p>

@param node The node being wvisited.

@param data The analysis data for this node. This may be
updated by this call.

@param mnewNode True if this is a new node. In this case, it
will be marked as {@link NodeAnalysisResult#CHANGED}, if it

is reachable from any predecessor (even if it provides no new
data).

@return {@link NodeAnalysisResult#CHANGED} if one (or more) of
predecessors of this mnode provided a new credential or document
to become awvailable on this node. Returns

{@link NodeAnalysisResult#NOT_.CHANGED} otherwise.

¥ K K K X X K X K X X X X X X X X X X X X X X ¥ X ¥

*

*/
private final NodeAnalysisResult updateDataFromPredecessors(
SystemGraphNode node, ReachabilityData data,
boolean newNode) {
NodeAnalysisResult res = NodeAnalysisResult .NOT.CHANGED;
Predicate<SystemGraphNode> reachablePred =
getSuccessfullyVisitedNodesPredicate ();
Iterable <? extends SystemGraphNode> predecessors =
Iterables. filter (node.getPredecessorNodes (),
reachablePred);

for (SystemGraphNode predecessor : predecessors) {
SystemGraphEdge e = predecessor.getOutgoingEdge (node);
ReachabilityData srcData = getNodeData(predecessor).get ();

if (!canMoveToTarget(e, srcData.credentials)) {

A.1 SimpleReachabilityAnalysis.java 67

/* Not possible to move across this edge */
continue;

}
if (newNode) {
/* This case may seen a bit weird, but it is a special

* case for when there are no initial credentials.

* In a graph like

*

* outside —> hall_way —>

*

* Then if outside is the start position, then it will
x be unconditionally be marked as changed (for being
x the start position).

*

* But hall_way will not be marked as changed if there
* are no reachable credentials/documents at ”outside”.
* The problem is, if there are no credential

* requirements for going from outside to hall_way,

* then we still want to see what we can reach from

* hall_way.

*/
res = NodeAnalysisResult .CHANGED;

if (data.credentials.addAll(srcData.credentials)
|| data.documents.addAll(srcData.documents)) {
res = NodeAnalysisResult .CHANGED;
}
}
return res;

}

Var:

* Check if new data can be obtained from successor mnodes

*

* <p>When it has been determined that the current node has
* obtained a new credential, this method will check for new
* reachable {@link Possessible}s in successor nodes. It does
x not return a {@link NodeAnalysisResult}, because when this
* 18 called it has already been determined that the current
* node has changed.

* </p>

*

* @param node The node being visited.

* @param data The analysis data for this mnode. This may be
* updated by this call.

*
/
private static final void updateDataFromSuccessors(
SystemGraphNode node, ReachabilityData data) {
Iterable <? extends SystemGraphEdge> edgesToCheck =
node. getOutgoingEdges ();
boolean recheck = false;

do {
/% Do a little fizpoint analysis to obtain all credentials
* from successors. This little fizpoint runs in

68

Appendix

O(|E| * R), where |E| is the number of outgoing edges
and R is the number of iterations mneeded to reach a
fixz point. Worst case, R will be the number of
credentials reachable from this node.

However, the assumption is that credentials are not lying
around in big piles (with incremental access controls).
So in practise, R will be fairly low. Worst case
scenarios looks something like this:

safel contains the key for safe2
safe2 contains the key for safed

All safes are reachable from the same node and we
always process the safes in the worst possible
order (e.g. starting from safeN to safel).

key for safel is readily available from the same mnode.

It seemed like a ridiculously case, so I have not
bothered optimising the algorithm for it.

*
*

*

*

*

*

*

*

*

*

*

*

* safe (N—1) contains the key for safeN
*

*

*

*

*

*

*

*

*

*

* XXX: Optimising this code so it less wvulnerable to the
* above case is an exercise left to the reader.

*
i

List<SystemGraphEdge> nextRecheckList = null;

for (SystemGraphEdge e : edgesToCheck) {
int result = findNewCredentials (e, data.credentials);
if ((result & FLAGHAD.UNREACHABLE.CREDENTIALS) != 0) {
/* There were credentials left on the target node.
Remember the edge so we can re—process it again
if we find a new credential later.

*
*
*
* Note we do this even if
* FLAG_.OBTAINED_NEW_CREDENTIALS is set. This is
* because findNewCredentials does mnot compute a
* fizpoint (and we are already set up for doing
* 1t anyway, so we might as well do it here)
*/
if (nextRecheckList = null) {

nextRecheckList = new ArrayList <>();
}
nextRecheckList.add(e);

}

if ((result & FLAG.OBTAINEDNEW_CREDENTIALS) != 0) {
/* We obtained a mew credential, schedule a re—check
if we had any edges with unreachable credentials.

unreachable credentials. (See the "unreachable

*
*
* NB: We deliberately do this after the check for
*
* credentials” case above).

A.1 SimpleReachabilityAnalysis.java 69

*/

recheck = nextRecheckList != null;

}

/* remember to update edgesToCheck x/
edgesToCheck = nextRecheckList;
} while (recheck && edgesToCheck != null);

/* Now that we obtained all the new credentials, look at what
* documents we can reach. We do not need all the heavy
* lifting of the above, since documents do mot grant access
* to anything.
*/
for (SystemGraphEdge e : node.getOutgoingEdges()) {

SystemGraphNode target = e.getTargetNode ();

for (SystemDocument d : target.getDocuments()) {

if (data.documents.contains(d)) {
continue;

}

if (canRead(e, d, data.credentials)) {
data.documents.add(d);

}

-

Vix:

* Get the awvailable credentials at a given mnode

*

* <p>This method returns the resulting </p>

*

* @param node A given node

x @return A {@link Set} of the {@link SystemCredential} that can
* be obtained at the given node. The set is unmodifiable. It
* 48 may or may not be a view.

*
/
public Set<SystemCredential> getObtainableCredentialsAtNode (
SystemGraphNode node) {
Optional<ReachabilityData> data;
Preconditions.checkState (hasStarted (),
"The_analysis_has_not_started._yet”);
data = getNodeData(node);
if (!data.isPresent ()) {
return ImmutableSet. of ();

return Collections.unmodifiableSet (data.get (). credentials);

N

* ¥ ¥ X * %

Get the available documents at a given node

@param node A given mnode
@return A {@link Set} of the {@link SystemDocument} that can
be obtained at the given mnode. The set is unmodifiable. It

70 Appendix

* 1S may or may not be a view.
*/
public Set<SystemDocument> getObtainableDocumentsAtNode (
SystemGraphNode node) {
Optional<ReachabilityData> data;
Preconditions.checkState (hasStarted (),
?The_analysis_has_not_started._yet”);

data = getNodeData(node);
if (!data.isPresent ()) {

return ImmutableSet. of ();

return Collections.unmodifiableSet (data.get ().documents);

—

*

NS

¥ X K X X ¥ X X X ¥

Test if a possessible can be read from an edge.

<p>Helper method to keep length of lines down and conditions
simple.</p>

@param e An edge

@param p A possessible on the target mnode of the edge

@param creds A set of credentials

Q@return true if p can be read over e with the given credentials
*/

private static final boolean canRead(SystemGraphEdge e,
Possessible p, Set<SystemCredential> creds) {

boolean copy = e.hasSufficientCredentials (
ActorActionType .INPUT_COPY, p, creds);
if (copy) {

return true;

}

return e.hasSufficientCredentials (
ActorActionType .INPUT_.ORIGINAL, p, creds);

—

VAT

x Test if it is possible to move over a given edge

*

x* <p>Helper method to keep length of lines down and conditions
x simple.</p>

*

* @param e An edge

* @param creds A set of credentials

* @return true if it is possible to move over e with the given
* credentials

*/
private static final boolean canMoveToTarget(SystemGraphEdge e,
Set<SystemCredential> creds) {
return e.isActionTypePossible (ActorActionType .MOVE)
&& e.hasSufficientCredentials (
ActorActionType .MOVE, creds);

A.1 SimpleReachabilityAnalysis.java 71

N

* X X X ¥ X X K X X ¥ X X X ¥ X ¥
*

Check a target mode for new credentials

@param e The between the current node (source) and the target

node possibly containing new credentials.

@param creds A mutable set containing the current available

credentials. It will be updated if new credentials become

available.

@return Either {@link #NONEW_CREDENTIALS_.ON.TARGET} or a bit

mask of containing one or more of

{@link #FLAG_.OBTAINED_.NEW_CREDENTIALS} and

{@link #FLAG-HAD_.UNREACHABLE_CREDENTIALS} .

<p>Note: If both

{@link #FLAG-HAD_.UNREACHABLE_CREDENTIALS} and

{@link #FLAG-OBTAINED_.NEW.CREDENTIALS} are set in the return

value, it may be possible that a repeated call to this method

will obtain another credential.</p>

*/

private static final int findNewCredentials (SystemGraphEdge e,
Set<SystemCredential> creds) {

SystemGraphNode target = e.getTargetNode ();

int result = NONEW_CREDENTIALS ON_TARGET;

for (SystemCredential ¢ : target.getCredentials()) {
if (creds.contains(c)) {
continue;

if (canRead(e, ¢, creds)) {

/* This credential could give us access to another
credential accessible from this node (i.e. we ought
re—check all unreachable credentials on this mnode).
Though credentials are unlikely to lie around in
big piles, so we rely on our caller(s) to call us
again until they are happy.

They pretty much have to any way, since someone
could write a model where like this:

safel contains all odd numbered keys between
1 and N

safe2 contains all even numbered keys between
1 and N

To reach keyX, you need key(X—1).
Agent starts with keyO.

In this case, you would (still) need N calls to
this method to obtain them all. I believed this
case was pretty "unlikely” in any "real” use, s
I have not optimised for it. See also the comment
worst case runtime in updateDataFromSuccessors.

¥ X X X ¥ X X X X X X X X X ¥ X ¥ X ¥ ¥ ¥ *

*
creds.add(c);
result |= FLAG.OBTAINED NEW_CREDENTIALS;

72 Appendix

} else {
result |= FLAGHAD_UNREACHABLE CREDENTIALS;
}
}

return result;

}
}

/* Class holding the data obtained for a given node. Its wvisibility
outside this class file is mot needed (in particular, our
consumers need not know of it.

Since it is an implementation detail , the class above gets to
access the members directly instead of wusing ”“accessors”.

* X X ¥ *

*

/

final class ReachabilityData {
/* reachable/obtainable documents at this node */
final Set<SystemDocument> documents = new HashSet <>();
/* reachable/obtainable credentials at this node x/
final Set<SystemCredential> credentials;

ReachabilityData () {
credentials = new HashSet <>();

}

ReachabilityData (Set<SystemCredential> initialCredentials) {
credentials = new HashSet<>(initialCredentials);
}
}

Bibliography

(1]

Joshua Bloch. How to Design a Good API and Why it Matters. http:
//www . youtube . com/watch?v=aAb7hSCtvGw, 2007. [Online; accessed 2013-
07-10].

C. W. Probst and R. R. Hansen. Analysing access control specifications. In
Systematic Approaches to Digital Forensic Engineering, 2009. SADFE’09.
Fourth International IEEE Workshop on, pages 22-33. IEEE, 2009.

Tollef Fog Heen. Sharing an SSH key, securely. http://err.no/personal/
blog/tech/2013-03-22-09-45_sharing_an_ssh_key_securely, 2013.
[Online; accessed 2013-07-29).

Tobias Stig Lindg. Policy invalidation in system models. (IMM-PhD-2012-
89), 2012.

Oracle and/or its affiliates. Lambda Expressions (The Java(tm) Tutorials -
Learning the Java Language - Classes and Objects). http://docs.oracle.
com/javase/tutorial/java/java00/lambdaexpressions.html#syntax,
2013. [Online; accessed 2013-07-29].

Christian W. Probst and René Rydhof Hansen. An extensible analysable
system model. Information Security Technical Report, 13(4):235-246, 2008.
M3: 10.1016/j.istr.2008.10.012.

Christian W. Probst, René Rydhof Hansen, and Flemming Nielson. Where
can an insider attack. 2008.

Simon Sinek. How great leaders inspire action. http://www.ted.com/
talks/simon_sinek_how_great_leaders_inspire_action.html, 2009.
[Online; accessed 2013-08-02].

http://www.youtube.com/watch?v=aAb7hSCtvGw
http://www.youtube.com/watch?v=aAb7hSCtvGw
http://err.no/personal/blog/tech/2013-03-22-09-45_sharing_an_ssh_key_securely
http://err.no/personal/blog/tech/2013-03-22-09-45_sharing_an_ssh_key_securely
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax
http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html#syntax
http://www.ted.com/talks/simon_sinek_how_great_leaders_inspire_action.html
http://www.ted.com/talks/simon_sinek_how_great_leaders_inspire_action.html

	Abstract
	1 Introduction
	1.1 Reason for this project
	1.2 Report structure

	2 Background
	2.1 Why system models

	3 Problem analysis
	3.1 Extensible
	3.2 Starting from what we know
	3.3 Definition of a system model
	3.4 Analysis Conclusion

	4 Initial framework design
	4.1 Good API design
	4.2 Language design
	4.3 Design conclusions

	5 Implementation
	5.1 Notable changes to the language specification
	5.2 Components of the framework
	5.3 The model parser
	5.4 Immutable and NonNull/Optional by default
	5.5 Static factories vs Constructors
	5.6 Known issue: inline Predicate (etc.) are messy
	5.7 Required libraries and platform
	5.8 Implementation conclusion

	6 Using the framework
	6.1 Basic usage of the framework
	6.2 Implementing a fixpoint analysis
	6.3 Implementing an AI or Jung agent
	6.4 Risk and time analysis
	6.5 Usage conclusion

	7 Future work
	7.1 The ``exec'' action
	7.2 Integration of ``detection-risk'' and ``time-cost''
	7.3 Solve the ``copy'' problem
	7.4 Revise the ``per possessible'' access policies
	7.5 Undo-capable simulator
	7.6 Mutable and serialisable models
	7.7 Visualisation of models
	7.8 Better support for AIs
	7.9 Make large models maintainable
	7.10 Future work conclusion

	8 Conclusion
	A Appendix
	A.1 SimpleReachabilityAnalysis.java

