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Summary (English)

The Danish power production coming from renewable energy, is increasing,
therefore a flexible energy system is needed. In the present Thesis a refrig-
eration load forecasting method is developed, which is an important tool in a
future flexible energy system.

Observed refrigeration load and local ambient temperature from a Danish su-
permarket, Fakta, are used. Numerical weather predictions (NWP) of ambi-
ent temperature, provided by Danish Meteorological Institute (DMI), from the
model DMI-Hirlam-S05, is also used.

A multiplicative seasonal autoregressive model, only based on observations, is
developed and found to be inadequate for refrigeration load forecasting. A pre-
vious developed adaptive linear time-series model is used as basic model, from
that three other adaptive linear time-series models are developed. These are
used for forecasting 1 to 42 hours horizon, which are evaluated and performance
is compared to each other.

The models are fitted using k-step recursive least squares with forgetting, and
includes regime switching, diurnal curve input and low-pass filtered ambient
temperature, modelled with and without basis splines.

The achieved results clearly indicate that these methods are suitable for re-
frigeration load forecasting and that an enhancement of the non-linear effect
from the ambient temperature in the models has occurred with spline fitted
ambient temperature, seeing that the method for implementing B-splines is im-
portant for the performance of the model.
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Finally ideas for further refinements, such as other local inputs i.e. relative
humidity in the Supermarket are discussed. Future use of the method such as
controlling load consumption from a single cabinet or from several Supermarkets
are also discussed.

- Keywords: refrigeration load, prediction, recursive least squares, B-splines



Resumé (Danish)

Den danske el produktion der kommer fra vedvarende energi øger kraftigt, be-
hovet for et fleksibelt energisystem er derved større end nogensinde før. I denne
rapport udvikles en model der kan forudsige køle/frysebokses elforbrug, hvilket
kommer til at være et vigtigt redskab i det fremtidige fleksible energisystem.

Målt elforbrug fra køle/frysebokse og lokal målt udetemperatur fra det danske
supermarked Fakta, bliver brugt sammen med forudsigelser af udetemperaturen
fra modellen DMI-Hirlam-S05 leveret af Dansk Meteorologisk Institut (DMI).

Der er udviklet en multiplikativ autoregressiv model med sæson korrigering,
hvilket kun inkluderer observationer og er fundet utilstrækkelig til brug for for-
udsigelse af køle/frysebokses elforbrug. En tidligere udviklet adaptiv lineære
model bliver brugt som referencemodel, hvorfra tre andre adaptive lineær mo-
deller er blevet udviklet. Disse modeller bliver brugt til at udregne forudsigelser
der består af timeværdier op til 42 timer frem i tiden, som derefter evalueres og
sammenlignes med hinanden.

Modellerne er modelleret med k-step rekursive mindste kvadraters metode med
glemsel og indeholder regime skifte, input fra døgn kurve og lav-pas filtreret
udetemperatur, både med og uden brug af basis splines.

De opnåede resultater indikerer tydeligt, at metoderne der er brugt i disse model-
ler er velegnet til forudsigelse af elforbrug fra køle/frysebokse i et supermarked.
Den ikke-lineære effekt fra udetemperaturen er forklaret bedre i modellerne med
lav-pas filtreret udetemperaturer modelleret med basis splines, hvorfor det be-
mærkes at metoden for implementeringen af basis splines er vigtig for en god
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præstation.

Afslutningsvis bidrager rapporten med en diskussion af idéer til forbedring,
såsom andre lokale målinger som input, f.eks. den relative fugtighed i super-
markedet. Fremtidig brug af metoden, til f.eks. styring af elforbrug for en enkelt
køledisk eller for flere supermarkeder, er også diskuteret.
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equation (4.7), page 40

T a,obst Observed ambient temperature at time t , page 7
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Chapter 1

Introduction

Nowadays there is an increased focus on the studies concerning the integration
of renewable energy sources into existing energy systems. In 2025 it is a goal
that 50% of Denmark’s electricity is coming from wind power, thus a project of
developing a Smart Grid is running in Denmark. This project is going to ensure
greatest coherence between production and energy consumption, on the basis of
this, a platform called iPower is created, which is a collaboration of 32 partners,
universities and research institutions as well as industrial companies from varies
countries.
The idea of iPower is to develop an intelligent and flexible energy system that
can handle a fluctuating power generation. This increased flexibility in power
consumption enables a consumption that follows the generation of wind power
and thus less needs for investment in electric energy distribution. The primary
focus is to develop methods and tools for intelligent control of decentralized
power consumption and production, to manage millions of flexible consumption
units.

One of the challenges for developing the flexible energy system, is to create
application-configurable control schemes for the industrial consumption side.
The ability for the power consumers to contribute with flexibility is key factor
in developing this Smart Grid. An industrial consumer, that could be flexible is
the Danish supermarkets, they are using a large amount of electricity on light-
ning, cashiers, refrigerators and coolers etc.



2 Introduction

The aim of this thesis is to improve the forecast model build in Bacher et al.
(2013), which is able to forecast the load by the refrigerators, display cabinets
and freezers in a supermarket, for short horizons. The purpose of this model is
to be used for a controlling device, which main purpose is to regulate the load
consumption from refrigeration by adjusting the temperature in the coolers, to
a period with low prices, for money saving and to make use of the renewable
energy sources.

To narrow down data complexity, only a short summer period is selected for
modelling in this thesis. Initially a simple linear model solely based on past
observations, will be investigated. Then the adaptive linear time-series model
from Bacher et al. (2013) is recreated with the selected data and after that a
different approach for regime splitting is investigated and the input from the
ambient temperature is implemented with spline functions in two steps; first
step with use of the observations in an off-line setting and second step in a re-
cursive on-line setting. Each model performance is evaluated for 1 to 42 hours
horizons, considering power trading at Nordpool. In the end they are compared
to each other and further improvements are discussed.

1.1 Previous Studies

Before even starting the studies in this thesis, previous studies are investigated,
to see if any useful informations can be obtained. After a significant amount
of time spent on searching for previous studies, with a forecast model for same
purpose, only one similar was found, besides from Bacher et al. (2013), which
will be described later in the thesis.

• An application of neural networks for predicting energy consumption in a
supermarket. An Artificial Neural Network model (ANN) with different
independent input variables was developed at Brunel University (Datta
et al.). The results are presented and also compared to the more traditional
multiple regression techniques. This model is made for predicting the
overall power consumption of the super market, every half hour.
The ANN model is compared with a multiple linear regression model and
a multiple polynomial regression model. This paper concludes that the
ANN-model is better than any of the other, which is compared with a
correlation coefficient, that measures how well the predictions agree with
a target.
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An ANN-model is known as a black-box model, where a system can be viewed
in terms of input and output, without any knowledge of the internal work and
without any opportunity for inspecting the inner components. The disadvantage
for ANN-models is that they need training, that requires large number of input
patterns, from e.g. observations. The model investigated in this thesis is able to
make a prediction with only a small amount of observation data and primarily
information from predicted weather inputs.

1.2 Thesis outline

The Thesis is describing and presenting the forecast models progressively and
the report should therefore be read in succession. The following is a short
presentation of each chapter.

Chapter 2 - Data The data used in the thesis is presented. An exploratory
analysis is carried out, together with the preprocessing of the data before
it is used for the analysis.

Chapter 3 - Autoregressive Integrated Moving Average model A fore-
cast model which only uses observed refrigeration load, is developed. First
the methods used is presented and then the model is developed stepwise
with use of residual analysis. The forecast performance is evaluated.

Chapter 4 - Adaptive Linear Model First an already existing forecast model
is described, evaluated and used as basis model. Then three other forecast
models is developed from the basis model and evaluated.

Chapter 5 - Results The forecast performance of the identified model in Chap-
ter 3 and each model in Chapter 4 are compared to each other and evalu-
ated.

Chapter 6 - Discussion The results and the possibilities of improving the
results through further studies, are discussed.

Chapter 7 - Conclusion Summarizes and concludes on the discoveries in the
thesis.

The thesis is containing an extensively amount of illustrations and plots, so the
reader might find the lists of figures and tables useful as tools for navigation, it
is located after the bibliography. A lot of notation is used and the reader may
need to return to the list of abbreviations and symbols, given before Table of
Contents.
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Chapter 2

Data

In this chapter the data used in the thesis, is presented and the applied pre-
processing is described. Data quality has a significant influence on the modelling
results, therefore the data needs to be investigated and processed to have the
best possible foundation for building a good forecast model.

The measuring of load and ambient temperature were conducted in EUDP-I
ESO2 project, see (Fredslund, 2013) for a detailed description and is presented
in Section 2.1. The weather prediction data are provided by the Danish Me-
teorological Institute (DMI) and is presented in Section 2.2. A pre-processing
of the data is carried out in Section 2.3 and Section 2.4 and at last a small
exploratory analysis is conducted in Section 2.5.

2.1 Data from a Supermarket

The data is acquired from a Danish supermarket, Fakta, located in Otterup,
Fyn. Fakta has opening hours from 8 to 21 and consists of the measured load
from two types of display cabinets (low temperature and medium temperature)
and also the ambient temperature Ta. The low temperature and the medium
temperature consists of several different cabinets, which are listed in Table 2.1
and Table 2.2.
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Table 2.1: List of low temperature cabinets.

Type Model Power (kW)
Frozen basin with glass lid Malmoe 3 1.05
Frozen basin with glass lid Malmoe 3 1.05
Frozen basin with glass lid Malmoe 3 0.68
Frozen storage ECO STE 32BL7 ED 4.80

Table 2.2: List of medium temperature cabinets.

Type Model Power (kW)
Milk cooling room ECO MTE 25L7 1.05
Milk cooling room ECO STE 32BL7 1.05
Cooling rack Lisbona 0.68
Cooling rack Lisbona 4.80
Cooling rack Lisbona 5.77
Vegetable cooler Lisbona 4.60
Cool basin with glass lid Malmoe 3 1.27

The refrigeration load is the sum of all these cabinets and the period acquired
are from November 7th 2011 to November 15th 2012. The load and the ambient
temperature are measured every minute, which is re-sampled to hourly values
as average values and the time stamp for average values are set to end of the
hour, i.e. the load from time 04:00 to 05:00, has the time stamp 05:00.
A time series plot of all the observations are displayed in Figure 2.1.
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Figure 2.1: Top plot is the refrigeration load and bottom plot is the measured
ambient temperature of all observations.

For many days the data is unavailable, there is a large gap in week 6 to 15,
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which is due to a downtime for the logging computer (Fredslund, 2013). The
main reasons for other gaps, large or small are; computer issues, Windows up-
date or rebooting.

The quality of the data acquired from the supermarket, is a major subject with
concern to all the missing data and the gaps. It is desirable to have a period
of data, where there are not too large amounts of data unavailable. A summer
period from May 1st to August 1st 2012, is selected for further processing and
modelling. The refrigeration load is higher in the summer period than in the
winter and is exposed to higher variations in the climate conditions. Therefore
it is found reasonable to focus on a summer period.

The hourly data is in kW and denoted by

{Qt, t = 1, . . . , N}

and the observed ambient temperature is in ◦C and denoted by{
T a,obst , t = 1, . . . , N

}
where N = 2208.

A plot of the selected period is displayed in Figure 2.2.

5
1

0
1

5

Q
t  

(k
W

)
5

1
0

1
5

2
0

2
5

3
0

T
ta

,o
b

s
  

 (°
 C

)

01−05 15−05 29−05 12−06 26−06 10−07 24−07

Figure 2.2: Time series plot of the hourly measurements for the selected pe-
riod, load is the top plot and ambient temperature is the bottom
plot.

It is clear to see, that the system has two regimes; nighttime and daytime, where
at night the load is lower than daytime. This is mainly because the supermarket
is closed at night, and the open cabinets are covered by isolation material. Also,
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some regular peaks can be found, often in the beginning of opening hours, which
are related to defrosting of the low temperature cabinets, example seen in Figure
2.3.
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Figure 2.3: Time series plot of the hourly measurements for three selected
days, for displaying the daily curve.

This defrosting is scheduled individually for the different type of coolers and cab-
inets, at the same time each day, two times a day, in the morning and evening,
except for the weekend where the evening defrost occurs two hours earlier. For
more detailed information about the system, see (Fredslund, 2013).

It is worth noticing that when ambient temperature increase, then the load
at nighttime and the load in the daytime increases, partly due to the outside
placement of the compressor. The daytime load increases more than the night-
time load, since the air temperature in the supermarket varies more in opening
hours, and has a larger effect, due to people opening the cabinets.

2.2 Numerical weather prediction data

The numerical weather predictions (NWP) used in the models are provided by
Danish Meteorological Institute (DMI). The model used by DMI, to make these
NWPs, is DMI-HIRLAM-S05, which has a 5 kilometers grid and 40 vertical lay-
ers, see homepage (DMI). The NWPs consist of climate variables, with hourly
values, which are updated four times per day and takes 4 hours to complete, i.e.
the forecast starting at 06:00 is available at 10:00.
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The predicted ambient temperature is in ◦C and the kth horizon is denoted
by {

T a,nwpt+k|t , t = 1, . . . , N, k = 1, . . . , 42
}

(2.1)

where N = 2208.

In this thesis the climate variable, ambient temperature, will be used where
horizon k = 1 to k = 42 is available. The NWPs are received in UTC-time and
the observed temperatures are in UTC+1 time (plus 1 hour in summertime), so
to get them in the same time, the NWPs are lagged by 2 hours, see Figure 2.4,
where it is clearly seen that the values fit better when lagged.
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Figure 2.4: Scatterplots of the observed ambient temperature versus NWPs,
to the left is with the NWPs in UTC-time and observed in local
time, to the right the NWPs are lagged to local time.

2.3 Preprocessing and Combining local observa-
tions with forecasts

Due to the fact that the predicted ambient temperature T a,nwpt+k|t is a "global"
temperature for the area where the supermarket is located and the observed
ambient temperature is local, mounted under the compressor, they need to be
adjusted to fit each other. It is clearly seen in Figure 2.5, that the predicted
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ambient temperature has a tendency to always predict a lower temperature,
approximately between 1 to 5 ◦C, than the observed temperature for the same
hour.
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Figure 2.5: Scatterplots of the observed temperature versus the NWP for 1-
step ahead (left plot) and 36-step ahead (right plot), including a
line with the slope of 1 and intercept 0.

The way to handle this, is to fit the NWPs to the observed ambient tempera-
ture, by using the function loess() in the statistic software called R1.

The function loess() fit a non-parametric local polynomial regression model,
using locally weighted least squares, that gives more weight to points near the
point being fitted. The amount of nearby points is determined by the parameter
span, which determines the degree of smoothness.
With the span equal to 0.9, the result displayed in Figure 2.6 is obtained, this
is done for all k, from 1 to 42, the NWPs are further on denoted in the same
way, T a,nwpt+k|t .

When a forecast is calculated at time t, past values of the inputs are being
used, in order to do this, the observed ambient temperature are combined with
the NWPs. The combining is achieved by forming a time series at time t, for a

1R is a free software for statistical computing and graphics, and is available here http:
//www.r-project.org

http://www.r-project.org
http://www.r-project.org
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specific horizon k, denoted{
T at+k|t

}
=
{
. . . , T a,obst−1 , T a,obst , T a,nwpt+1|t , T

a,nwp
t+2|t , . . . , T

a.nwp
t+k|t

}
(2.2)

Now it is possible to include dynamics in the system in an efficient way, i.e. by
being low-pass filtered as explained in Section 4.1.1.

The quality of the predicted ambient temperature is investigated, by deriving
the Root Mean Square Error (RMSE), which is defined as

RMSEk =

√√√√ 1

N

N∑
t=1

ε2t+k (2.3)

The RMSEk that is being investigated, is the Root Mean Square of the differ-
ence between the observed ambient temperature and the predicted k-th horizon
1 to 42. Where the observed ambient temperature has been fitted, as a function
of the NWPs, by loess().

In Figure 2.6 the ambient temperature is plotted against the NWP for k-step 1
and k-step 36, together with the loess fit for three different spans, 0.5, 0.7 and
0.9.
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Figure 2.6: Scatterplot of ambient temperature as a function of predicted am-
bient temperature 1-step ahead to the left and 36-step ahead to
the right, inclusive the loess fitted values, with different spans.
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From this it is seen that, in this case, the span does not have a significant im-
pact on the fit, even if there is a little spread between them in the end, for the
36-step predicted temperature, this is not found to be significant. So the span
is picked to be 0.9.

Then the RMSEk for horizon 1 to 42 are calculated, with the loess fitted
observations from the selected period and displayed in Figure 2.7.
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Figure 2.7: RMSEk for the difference between the loess fitted ambient temper-
ature and predicted temperature from period May 1st to August
1st 2012, for horizon 1 to 42.

It is clearly seen that the predictions, made by DMI, for approximately horizon
20 to 30 have an unexpected decrease in performance, especially considering the
better performance in the longer horizons, such as k-step 34, 35 and 36. This is
presumably a random effect occurring in the three months period, with a couple
of bad predictions, and due to the scheduled time for running the model. The
predictions are updated only four times a day, so the same predictions are used
for some of the same steps, then there will be some correlation between the
RMSE for those steps. To investigate this the same RMSEk calculations are
conducted for all the acquired data and displayed in Figure 2.8
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Figure 2.8: RMSEk for the difference between the loess fitted ambient tem-
perature and predicted temperature from the whole period, for
horizon 1 to 42.

From this it is clearly seen that the odd pattern from before is gone, hence it is
found to be a random effect for the selected period. The selected period from
May 1st to August 1st 2012, will still be used for modelling in this thesis, but
it is kept in mind, that this pattern might show up when evaluating the models
later on.

2.4 Replacements of missing data

As seen in Figure 2.2, there are still data missing, but since the gaps are rather
small and the quantities are small, they are simply replaced.

There are two slightly larger periods, which is a two day period from May 12th
to May 14th and an one day period from June 28th to June 29th, where the load
measurements are missing. These periods are filled with data corresponding
to the same hours and weekdays, from the week before. All the corresponding
weather data is also replaced, so the weather corresponding to the load, are
copied. Then there is approximately 10 small gaps of 1-2 hours length, these
are replaced with the corresponding hour from the day before, and the same
goes for the weather data.
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These replacements, will of course give rise to a slight increase in the fore-
casting error, because they are not the correct measurements, but the amount
is so small compared to the total amount of data, so the error will be insignifi-
cant. In Figure 2.9, data is displayed, with before replacements on top and after
replacements at the bottom.
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Figure 2.9: Time series plots of the load, before gaps are replaced (top) and
after gaps are replaced (bottom).
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2.5 Exploratory analysis

A way to obtain useful information, is to investigate the dependency between
the measured refrigeration load and the ambient temperature. This is carried
out by plotting them against each other with loess fitted red lines, seen in
Figure 2.10, where the load and ambient temperature is divided in opening and
closing hours.

0 10 20 30

0
5

1
0

1
5

2
0

Opening hours

Tt

a,obs   (° C)

Q
t  

(k
W

)

0 10 20 30

0
5

1
0

1
5

2
0

Closing hours

Tt

a,obs   (° C)

Q
t  

(k
W

)

Figure 2.10: Ambient temperature versus load, for opening hours (left) and
closing hours (right), with a loess fit curve.

From these plots a non-linear dependency is clearly seen, especially in closing
hours. This needs to be taking into account when modelling a forecast model.
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Chapter 3

Autoregressive Integrated
Moving Average model

In this chapter a suitable linear stochastic model (i.e. no external inputs) is
identified and based on the observed refrigeration load, described in Section 2.1,
an Autoregressive Integrated Moving Average model (ARIMA), which is called
an adjusted version of random walk and random trend models, is found suitable.
Often it is not possible to describe observations as generated by a stationary
process, due to seasonal trends and general time-varying behaviour, so therefore
the most general class of models for forecasting a non-stationary time series, the
ARIMA model, is applied.
These models needs a stationary time series, which can be obtained by trans-
formations such as differencing and logarithmic transformation and when there
is a seasonal behaviour, a multiplicative seasonal ARIMA model would be suit-
able. From (Madsen, 2008, p. 132), the following definition, for a multiplicative
seasonal model is obtained.
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3.1 Definition (ARIMA(p, d, q)× (P,D,Q)s)
The process {Yt} is said to follow a multiplicative (p, d, q) × (P,D,Q)s
seasonal model if

φ(B)Φ(Bs)∇d∇Ds Yt = θ(B)Θ(Bs)εt, (d,D, s ∈ N) (3.1)

where {εt} is white noise, φ and θ are a polynomials of order p and q,
respectively, and Φ and Θ are polynomials of order P and Q, which have
all the roots inside the unit circle.

B is the backward shift operator, where BkYt = Yt−k.

Lags of the differenced series appearing in the model are called "autoregressive"
terms, p and P , lags of the errors are called "moving average" terms, q and Q,
and the times series differenced to be made stationary is called an "integrated"
version of a stationary series, d and D. The season is denoted by s.

First the methods used for the modelling are presented in Section 3.1, then
in Section 3.2, the model building step by step, are outlined and at last in Sec-
tion 3.3 the selected model is used for forecasting, where the performance is
evaluated.
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3.1 Methods

The procedure used for model building, is a three stage procedure displayed in
Figure 3.1.

Figure 3.1: The model building procedure.

The first stage, is identification, this involves determining the model order, which
is based on information from data together with knowledge about the physics
driving the process. An initial identification is mainly based on the estimated
autocorrelation function, explained in Section 3.1.1, where it is used to detect if
a transformation is needed, see Section 3.1.2, and to investigate if differencing
is needed, hereafter the orders are identified.
Second stage is parameter estimation, after the model order is determined
the parameters are estimated with use of Maximum likelihood methods (ML
method), see 3.1.3.
Last stage is to test the model, to see if it is an adequate model or if something
more can be changed to make it better. There are several number of tools for
testing the model, in this thesis a residual analysis will be conducted, testing
whether the residuals can be assumed to be white noise. This is carried out
by plotting the residuals to check for non-stationarities and outliers, plotting
the autocorrelation function with the 95% confidence interval and test if the
individual autocorrelations are significantly different from zero. The cumulative
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periodogram is calculated and plotted, to check if the residuals can be assumed
to be white noise.

If all tests are acceptable and no further improvement can be achieved, then
the model is used for forecasting.

In this current Section, the relevant tools used for model building and testing,
is presented.

3.1.1 Autocorrelation function and partial autocorrelation
function

The autocorrelation function, ACF, is defined, from (Madsen, 2008, p. 103), as

ρXX(t1, t2) =
cov[X(t1), X(t2)]√

σ2(t1)σ2(t2)
(3.2)

This gives the correlation between lagged values in a time series, which can be
used for detecting seasonal trends, non-stationarity and the order of the model.
Another useful measure, is the Partial Autocorrelation function, PACF, which
is defined as, (Madsen, 2008, p.124)

φkk = Cor[Yt, Yt+k|Yt+1, . . . , Yt+k−1] (3.3)

This is the partial correlation coefficients between the series, which describes
the amount of correlation between a variable and a lag of itself which is not
explained by correlations in all lower order lags. For example, it is expected
that the correlation at lag 1, will propagate to lag 2 and probably to higher
order lags, then the partial autocorrelation at lag 2 is the difference between
the actual correlation at lag 2 and expected correlation due to propagation of
correlation at lag 1.

This is specially useful to identify the order of the autoregressive term needed
in the model.

3.1.2 Box-Cox transformation

The Box-Cox transformation is used to stabilize the variance, so the normality
of data is improved.
This transformation has the form:

Y
(λ)
t =

{
(Y λt − 1)/λ λ 6= 0

lnYt λ = 0
(3.4)
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The method used for examining if this kind of transformation is needed, is a
range-mean plot.

Range-mean plot method

First the data is divided sequentially into groups consisting of n observations,
e.g. monthly data is divided into month groups; May, June etc. or hourly data
is divided into hour groups; 01:00, 02:00 etc.

Then the range Ymax − Ymin and the mean value are calculated in each group.
These are plotted in a range-mean plot.
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Figure 3.2: Box-Cox transformation patterns.

In Figure 3.2, the Box-Cox transformations for different range-mean relations
are illustrated. If the range and mean values are independent then no transfor-
mation is needed (λ = 1), but if any dependency is detected a transformation
should be considered. A (positive) linear dependency indicates that a loga-
rithmic transformation (λ = 0) should be applied, and upwards or downwards
curvature indicates that, λ = −1/2 and λ = 1/2 should be applied, respectively,
(Madsen, 2008)
If the curvature, up or down, are more extreme than displayed in Figure 3.2,
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then λ should be decreased or increased, respectively.

3.1.3 Parameter estimation method

The method used, for estimating the parameters in an ARIMA model is the
Maximum Likelihood method (ML method). The method requires an assump-
tion of the distribution, which in general is that {εt} is I.I.D normally distributed
(i.e. white noise) with variance V ar[εt] = σ2

ε .

All observations and a given set of parameters are denoted YN and θ respec-
tively.
The loglikelihood function is then (Madsen, 2008)

logL(YN ;θ;σ2
ε ) = −N − p

2
log(σ2

ε )− 1

2σ2
ε

N∑
t=p+1

ε2t (θ) + c (3.5)

where c is constant, the minimum is obtained for

σ̂2
ε =

(
N∑

t=p+1

ε2t (θ)

)
/(N − p) (3.6)

inserting into (3.5) gives

logL(YN ;θ; σ̂2
ε ) = − (N − p)

2
log

(
N∑

t=p+1

ε2t (θ)

)
+ c (3.7)

This yields that the ML estimates is obtained by minimizing

S(θ) =

N∑
t=p+1

ε2t (θ), (3.8)

where the ML estimate for σ2
ε is obtained by

σ̂2
ε =

S(θ̂)

N − p
(3.9)

One of the properties for the MLE (Maximum Likelihood Estimator) is consis-
tency, which means that with a sufficiently large number of observations N , it
is possible to find estimates that is close to the true value, i.e. when N goes to
infinity the estimator converges in probability to its true value.

This method is conducted in the statistical program R1, with the use of the
function arima().

1http://www.r-project.org

http://www.r-project.org
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3.1.4 Test for lower order model

When estimating a model parameter, the variance of the estimate is also deter-
mined. Since the estimated parameters can be assumed to be asymptotically
normally distributed, it is possible to test whether a parameter θi is significantly
different from zero. This is conducted by testing the hypothesis

H0 : θi = 0 against H1 : θi 6= 0 (3.10)

with the test statistic

F = T 2 =
θ̂i
σ̂θ̂i

(3.11)

which under H0 follows a F (1, f)-distribution with f = N − p − q degrees of
freedom, where N is the number of observations used in the estimation of θi,
for further details (see Madsen, 2008).

3.2 Model identification, estimation and evalua-
tion

When identifying a model for a linear stochastic process, it is vital that the ob-
servations are stationary. It is observed in Figure 2.2, that the variance in the
observations are not constant and there is a small increase in the mean value,
which indicates non-stationarity. From this, it will be ideal to first examine if a
Box-Cox transformation is needed, which will establish a constant variance, see
Section 3.1.2.

First a range-mean plot is created, with groups of each hour, i.e. all obser-
vations from hour 01:00 are in a group and hour 02:00 are in a group, etc. Then
the mean value and the range are calculated for each group, and gives the plot
in Figure 3.3
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Figure 3.3: Range-mean plot, with 24 groups.

From this plot, a linear relationship between the range and the mean value of
the power load, is observed, which indicates that a logarithmic transformation
should be considered, see Figure 3.2.
So the observations are transformed{

QTt = ln(Qt), t = 1, . . . , N
}

where N = 2208.

The variance are more constant now, still a little increase in the mean value, see
Figure 3.4, due to this increase, the autocorrelation function, ACF, is estimated.
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Figure 3.4: The upper figure is with the originally observed hourly load con-
sumption and the lower figure are the logarithm of the hourly load
consumption.

The estimated ACF for a sub-part and the entire series, are shown in Figure 3.5
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Figure 3.5: The upper figure shows the ACF for 72 lags and the lower figure
shows for the entire series.

The ACF is characterized by a period of 24 hours, and the values moves slowly
towards 0, which indicates that the series is still non-stationary and that a
differencing is needed. So the first differencing of the observations are as follows

∇QTt = QTt −QTt−1

This differencing is shown as the plot at the top left corner of Figure 3.6, to-
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gether with the corresponding ACF (top right corner). It is seen that the non-
stationarity has been removed with the differencing, but a seasonal differencing,
by lag 24, is needed to remove the spikes at lag 24, 48, 72,. . . etc. Which is
calculated as

∇∇24QTt = (QTt −QTt−1)−QTt−24

The seasonal differencing is displayed in Figure 3.6 as the two plots in the
bottom.
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Figure 3.6: Plots of a sub-part of the differenced series and corresponding ACF
plot.

Now the series ∇∇24QTt is found to be stationary, the next step is to deter-
mine the orders of the polynomials in the autoregressive model. There are
two large values of the ACF, for ∇∇24QTt , in lag 1 and lag 24, which implies
that the series is slightly over-differenced, this will be partly cancelled out by
a MA(1) and MA(1)24 term. So initially the following model, denoted by
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ARIMA(0,1,1)×(0,1,1)24 , is applied.

∇∇24Q
T
t = (1 + θ1B)(1 + Θ1B

24)εt (3.12)

Where B is the backward shift operator defined in the beginning of Chapter
3, the parameters are estimated with the ML method and displayed in Table
3.1, see 3.1 for more detailed description of method. This model has a standard
deviation of σ̂2 = 0.0133.

Table 3.1: Parameter estimates and standard errors for model
ARIMA(0,1,1)×(0,1,1)24 .

Parameter Value σ̂

θ̂1 -0.6492 0.0176
Θ̂1 -0.9512 0.0135

When doing a lower order test, explained in Section 3.1.4, the test statistic
should be F (1, 2006)-distributed, ie. T 2 < F0.05(1, 2006) ≈ 3.84. The test
values for θ1 and Θ1 are 36.886 and 70.459 respectively, so the null hypothesis
is rejected and the parameters are accepted in to the model.
The residuals are now analysed, to see if they satisfy the criteria of being white
noise and if there is any unexplained correlation. In Figure 3.7 these residuals
are plotted, together with the corresponding ACF, PACF and a cumulative
periodogram.
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Figure 3.7: Residuals, cumulative periodogram, ACF and PACF plot for
ARIMA(0,1,1)×(0,1,1)24 .

From this it is seen that, there is still some correlation not being described by
the model in lag 24, even though the residuals looks like white noise with only
two potential outliers, and the cumulative periodogram of the residuals is within
the bands. Which leads to model, ARIMA(0,1,1)×(1,1,1)24 , where a seasonal AR
term is added to the model:

(1− Φ1B
24)∇∇24Q

T
t = (1 + θ1B)(1 + Θ1B

24)εt (3.13)

The standard deviation are now σ̂2 = 0.0130 with the parameter estimates,
listed in Table 3.2.
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Table 3.2: Parameter estimates and standard errors, for model
ARIMA(0,1,1)×(1,1,1)24 .

Parameter Value σ̂

Φ̂1 0.1476 0.0229
θ̂1 -0.6619 0.0176
Θ̂1 -0.9796 0.0120

Checking this model for lower order, gives the test statistics 6.445, 37.608 and
81.633 for the parameters respectively, which is larger than F0.05(1, 2005) ≈ 3.84
and are therefore accepted into the model.
There is a very small improvement in the standard deviation compared to
ARIMA(0,1,1)×(0,1,1)24 , and when looking at the residuals analysis in Figure
3.8 it is seen that the significant large spike in lag 24 are now small enough to
conclude being described by the model. The residuals are white noise like, and
the cumulative periodogram shows that the model is adequate.
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Figure 3.8: Residuals, cumulative periodogram, ACF and PACF for
ARIMA(0,1,1)×(1,1,1)24 .

There is still some significant spikes in the ACF and PACF, there is a sharp
cutoff from lag 6 to 15 in the PACF, so a AR(6) term would be appropiate to
test, next model to be tested is ARIMA(6,1,1)×(1,1,1)24

φ(B)(1− Φ1B
24)∇∇24Q

T
t = (1 + θ1B)(1 + Θ1B

24)εt (3.14)

where φ(B) = 1− φ1B − φ2B
2 − φ3B

3 − φ4B
4 − φ5B

5 − φ6B
6.

The standard deviation has decreased with approximately 4%, to σ̂2 = 0.0125.
The parameter values are estimated and displayed in Table 3.3 below.
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Table 3.3: Parameter estimates and standard errors, for model
ARIMA(6,1,1)×(1,1,1)24 .

Parameter Value σ̂

Φ̂1 0.1427 0.0229
θ̂1 -0.9416 0.0134
Θ̂1 -0.9861 0.0150
φ̂1 0.2355 0.0249
φ̂2 0.2113 0.0237
φ̂3 0.1270 0.0232
φ̂4 0.0924 0.0229
φ̂5 0.0266 0.0225
φ̂6 -0.0733 0.0222

The previous parameters are still significant, a lot of the new parameter values
also looks acceptable, except for φ̂5, here the parameter value are only a little
higher than the standard error and φ̂6 is also close to being unacceptable. So
there is a large possibility that these parameters does not increase the perfor-
mance of the model, and therefore a great potential for excluding these.
When looking at the residual analysis in Figure 3.9, it looks acceptable.
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Figure 3.9: Residuals, cumulative periodogram, ACF and PACF for
ARIMA(6,1,1)×(1,1,1)24 .

There is still some correlation in lag 23, but it is very small and it will be very
difficult to do something about that correlation. The cumulative periodogram
looks better, where the small "waves" in the beginning are reduced, so now it
looks more like white noise, than the previous model. It would be a good thing to
test for lower order model now, because the simplest model possible, without too
much disruption in the residuals, is prefered to ensure computational efficiency.
The test is explained in Section 3.1.4 and in this case the null hypothesis is
rejected if the test statistic is larger than F0.05(1, 2201) ≈ 3.84.
The results are presented in Table 3.4
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Table 3.4: Results from the test for lower order model, with parameters from
ARIMA(6,1,1)×(1,1,1).

Parameter Test statistic H0 : θi = 0

Φ̂1 F = 0.1427
0.0229 = 6.231 reject

θ̂1 F = 0.9416
0.0134 = 70.269 reject

Θ̂1 F = 0.9861
0.0150 = 65.740 reject

φ̂1 F = 0.2355
0.0249 = 9.458 reject

φ̂2 F = 0.2113
0.0237 = 8.916 reject

φ̂3 F = 0.1270
0.0232 = 5.474 reject

φ̂4 F = 0.0924
0.0229 = 4.035 reject

φ̂5 F = 0.0266
0.0225 = 1.182 accept

φ̂6 F = 0.0733
0.0222 = 3.302 accept

From this test, it is concluded that φ̂5 and φ̂6 should be excluded from the
model, because they do not increase the performance significantly, φ̂4 is also
very close to being accepted as zero, so this will also be excluded, for more
simplicity. The model now identified is ARIMA(3,1,1)×(1,1,1)24

φ(B)(1− Φ1B
24)∇∇24Q

T
t = (1 + θ1B)(1 + Θ1B

24)εt (3.15)

where φ(B) = 1− φ1B − φ2B
2 − φ3B

3.

This model has a standard deviation of 0.01267, which is a small increase from
the last model. The parameter estimates together with the lower order test, are
displayed in table 3.5.

Table 3.5: Parameter estimates, standard deviation and test statistics for
model ARIMA(3,1,1)×(1,1,1)24 .

Parameter Value σ̂ Test statistic
Φ̂1 0.1451 0.0228 6.364
θ̂1 -0.9374 0.0127 73.811
Θ̂1 -0.9873 0.0161 61.323
φ̂1 0.2419 0.0252 9.599
φ̂2 0.2207 0.0241 9.158
φ̂3 0.1366 0.0233 5.862
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Now all parameters are rejected to be zero, so they will be kept in the model,
even though the standard deviation of the model increased slightly, it is better
to have a simpler model, with less parameters. From the residual analysis,
displayed in Figure 3.10, it is seen that they still look like white noise, there are
now some small correlation in lag 4 and 5, but it is known that they will not
have any positive effect on the model.
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Figure 3.10: Residuals, cumulative periodogram, ACF and PACF for
ARIMA(3,1,1)×(1,1,1)24 .

There is no clear way, from the analysis, to improve this model, hence the
model selection is ended and the model ARIMA(3,1,1)×(1,1,1)24 is selected as the
most suitable autoregressive model for this data, and then used for prediction
in Section 3.3.
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3.3 Model performance

Now that a model has been identified and the parameters have been estimated,
the model is applied for forecasting. The forecast is carried out up to 48 steps
ahead, for the period from August 1st to 3th. The result, after being transformed
back to load, is listed in Table 3.6 and displayed in Figure 3.11

Table 3.6: Predicted load in kW, for horizon 1 to 48.

Step Load Step Load Step Load Step Load
k Q̂t+k|t k Q̂t+k|t k Q̂t+k|t k Q̂t+k|t
1 3.91 13 9.39 25 3.92 37 9.42
2 3.80 14 9.29 26 3.79 38 9.14
3 3.72 15 9.90 27 3.76 39 10.03
4 3.66 16 9.97 28 3.64 40 9.94
5 3.63 17 9.95 29 3.63 41 9.96
6 3.84 18 9.47 30 3.73 42 9.65
7 4.01 19 9.08 31 4.22 43 8.97
8 5.97 20 10.30 32 6.10 44 10.21
9 6.78 21 8.88 33 6.87 45 8.84
10 10.07 22 5.96 34 10.05 46 5.97
11 8.99 23 4.18 35 9.03 47 4.21
12 8.65 24 4.05 36 8.68 48 4.06
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Figure 3.11: The predicted refrigeration load and the observed refrigeration
load.
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From this it is seen that the prediction error, increases with the predicted hori-
zon, since the observation inputs are replaced with predictions, when longer
horizons are predicted. This gives a high uncertainty and therefore larger resid-
uals, the further away from the newest observations, the horizon gets.

No NWPs are used as external input, because when adding an external in-
put to an ARIMA model, it is added as a linear regression and from Section 2.5,
it was discovered that there is no linear dependency between the load and the
NWPs, therefore no improvement in the performance will be seen, from adding
NWPs as external input.

If this model should be an adequate model, for forecasting of refrigeration load,
then the newest observations should be available and uploaded into the model
very often, almost every hour or every second hour, this is time demanding and
computational heavy. Therefore a more non-linear approach, with grey model
(a linear model with non-linear inputs), will be tested, to see if these are able
to make a more stable forecast on larger horizons.



Chapter 4

Adaptive Linear Model

In this chapter an adaptive linear time-series model is presented and used as
basis for three other adaptive linear time-series models. Each model is fitted
with a computationally efficient recursive least squares scheme. With a starting
point in the model studied by Bacher et al. (2013), presented in Section 4.2, the
other three models takes there origins and are presented in Section 4.3, 4.4 and
4.5. All models have regime switching and a diurnal curve in common, and then
the dynamic relations between the ambient temperature and the refrigeration
load is modelled in different ways, in order to find the best suitable model for
the refrigeration load forecasting.

The chapter is structured in the following way; first the methods used for the
modelling is presented, then each model is presented in separate sections, in
which each model is described and evaluated. This evaluation will then be
followed up by Chapter 5 and 6.

4.1 Methods

In this Section the methods used for the adaptive linear time-series models are
presented.
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4.1.1 First order low-pass filtering

The heat dynamics of a building can be described by lumped parameter RC-
models, see for example Madsen and Holst (1995), Braun and Chaturvedi (2002)
and Jiménez et al. (2008). Due to the fact that the refrigerators and coolers
are placed inside a building, the response in the load to changes in the climate
variables can be modelled with rational transfer functions. The following is a
description of the low-pass filtering effect of the building with an RC-model.
The simplest first order low-pass filter, with a stationary gain of one, is a model
of the building heat dynamics formed by an RC-model with a single resistor
and a single capacitor. A low-pass filter is a filter where the slow variations pass
undisturbed, while the fast variations are damped. As an example the transfer
function from the ambient temperature to the refrigeration load is

Qt = αaHa(q)T at (4.1)

with

Ha(q) =
1− aTa

1− aTaq
−1

(4.2)

and where q−1 is the backward shift operator, defined by Equation (3.1), page 18,
αa is the stationary gain from the ambient temperature to load and aTa

∈ [0, 1]
is a parameter which is corresponding to the time constant for the part of the
system affected by change in ambient temperature. If the system has a high
thermal mass and good insulation, a relatively high aTa is expected, thus the
filter parameter needs to be adapted for each system in order to describe the
dynamics properly. These filters are adapted to match the response of the
system to each effect separately.

4.1.2 Recursive Least Squares with forgetting

As time passes and more information becomes available, it is often preferred to
be able to update the model parameter estimates. A way to do this is to use a
recursive least squares (RLS) scheme with forgetting, as described in the article
from Bacher et al. (2009), this makes it possible for the parameters to change
over time and adapt to changing conditions. It is a recursive implementation of a
weighted least squares estimation, where the weights are exponentially decaying
over time. The algorithm used to update the parameters is defined as (Madsen,
2008, page 317)
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4.1 Definition (RLS algorithm with forgetting)

θ̂t = θ̂t−1 + R−1
t Xt[Yt −XT

t θ̂t−1] (4.3)
Rt = w(∆t)Rt−1 + XtX

T
t (4.4)

where w(∆t) = λ∆t, with ∆t as the age of the data in hours and λ is the
forgetting factor.

With Xt as the regressor vector, θt as the parameter vector and Yt is the de-
pendent variable (observations), the k − step prediction at t is

Ŷt+k = XT
t θ̂t (4.5)

The weights w(∆t) = λ∆t implies that for λ = 0.95 they will be halved in 13
hours, for λ = 0.998 they are halved in 346 hours (∼14 days).

With this algorithm only a few matrix operations are needed to compute the up-
dated parameters and the associated forecast, which makes it a computationally
light scheme.

4.1.3 Diurnal curve

The diurnal curve is a function applied to describe the systematic diurnal pat-
terns in the load. This curve is modelled as a harmonic function using a Fourier
series.

A Fourier series dissolves periodic functions into the sum of a set of oscillat-
ing functions, especially sines and cosines. These are very useful as a way to
break up an arbitrary function into a set of simple terms that can be solved in-
dividually and then recombined to obtain the solution to the original problem.
In this Thesis the following Fourier series are defined

δ(ttod, nhar, αdiu) =

nhar∑
i=1

αdiui,1 sin

(
ttodiπ

12

)
+ αdiui,2 cos

(
ttodiπ

12

)
(4.6)

where ttod is the time of day in hours at time t, nhar is the number of harmon-
ics used in the Fourier series and αdiu is the coefficient vector for the included
harmonics.

This can give the Fourier series for a square wave, which has the form simi-
lar to the one displayed in Figure 4.1.
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Fourier series square wave

Figure 4.1: An example of a square wave Fourier series made from
4
π

∑11
n=1,3,5..

1
n sin( ttodnπ12 ).

4.1.4 Basis splines

Splines are a very effective tool for a number of approximation cases such as
interpolation and data fitting. A spline is a piecewise-defined smooth polynomial
function. From de Boor (2001) page 93, the following definition is obtained

4.2 Definition (Spline function)
A spline function of order p with knot sequence z is any linear combination
of B-splines of order k for the knot sequence z. The collection of all such
functions is denoted by Sp,z and defined as

Sp,z =

∑
j

αjBj,p,z , αj ∈ R for ∀ j

 . (4.7)

B-spline is short for Basis spline and is a piecewise-polynomial function that
has minimal support with respect to a given order p and the knot sequence
z = {zj}pj=1, the B-spline will further on be denoted by Bj,p. The B-spline has
the property of being positive in the given interval (de Boor, 2001, p. 91).
The knots zj , is where the polynomial pieces connect, few knots makes the
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splines smoother than with many knots, however increasing the amount of knots,
makes the splines more flexible to fit to data.

The B-splines of order 1 for a given knot sequence are the characteristic functions
(de Boor, 2001, p.89)

Bj1(x) = Xj(x) =

{
1, if zj ≤ x < zj+1

0, otherwise (4.8)

With the constraint that the B-splines should form a partition of unity, i.e.∑
j

Bj1(x) = 1. (4.9)

In particular,
zj = zj+1 =⇒ Bj1 = 0

From the first-order B-splines, the higher-order B-splines are obtained by recur-
rence relation (de Boor, 2001, p.90)

Bj,p = ωjpBj,p−1 + (1− ωj+1,p)Bj+1,p−1 (4.10)

with
ωjp(x) =

x− zj
zj+k−1 − zj

(4.11)

for p > 0.
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Example 4.1 (Third-order B-spline) An example of a third-
order B-spline is given by

Bj,3 = ωj3Bj2 + (1− ω1+j,3)Bj+1,2

= ωj3ωj2Xj + (ωj3(1− ωj+1,2) + (1− ωj+1,3)ωj+1,2)Xj+1

+(1− ωj+1,3)(1− ωj+2,2)Xj+2 (4.12)

Figure 4.2: Example of a quadratic B-spline with a triple knot.

The Example 4.1 shows that Bj3 consists of three quadratic pieces, which is
joined smoothly at the knots to form a piecewise quadratic function that is zero
outside the interval.
After k-1 steps of the recurrence, Bjk is obtained in the form

Bjp =

j+p−1∑
i=j

bipXi (4.13)

where bip are polynomials of order p.

In Figure 4.3, an example of a spline function is displayed, which is created
from 1000 simulated values from the uniform distribution with a random spread,
B-splines are created by the R-function bs().



4.1 Methods 43

Spline function

0
.0

0
.4

0
.8

B−splines

B1

B2

B3

Figure 4.3: Spline function with three B-splines, from 1000 simulated values
from the uniform distribution with a random spread.

In this thesis, a basis matrix Bjp with all the B-spline functions, will be calcu-
lated with the R-function bs() from the package splines.

4.1.5 Parameter optimization

In the following models, the parameters needs to be fitted for each prediction
horizon k. The fitting is carried out in an off-line setting by minimizing RMSEk,
stated in Equation (2.3), page 11, for each horizon k = 1, . . . , 42.
This is conducted with the use of the R-function optim(), which is an opti-
mization based on the quasi-Newton algorithm, this algorithm searches for the
parameter values that give the smallest RMSEk by finding the stationary point
of a function, where the gradient is 0.

To make the optimization calculations faster, a simple arrangement has been
applied, where performing a low-pass filtering of the inputs is only carried out
once for the parameter values in a given range, these series can then be used for
optimization for all horizons.

In this thesis the following parameters are optimized:

• The forgetting factor from Section 4.1.2: λ
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• The coefficient for the low-pass filtering from Section 4.1.1: aTa

The properties of the optimization is not studied in further details in this Thesis.

4.2 Basic Model

A previous work has been reported by Bacher et al. (2013), as mentioned in
Section 1.1. The model from this study, will form the starting point for the
present model identification. The model is based on the models used by Nielsen
and Madsen (2006) for forecasting of district heating and by Bacher et al. (2012)
for forecasting of the heat load in single family houses. These models are based
on prior physical knowledge of the heat dynamics, which coupled with statistical
time series models creates a grey-box modelling approach. The model selection
method used, is a forward selection approach, by first fitting the simplest model
without external input from weather forecasts and then add inputs until no clear
improvement is found.
The identified model by Bacher et al. (2013), will further on be referred to as
modelbasic and is defined as

Qt+k = Q̂t+k|t + εt+k (4.14)

where,
Q̂t+k|t = Qwd +Qra (4.15)

Here Qwd is a diurnal curve, one used for workdays and another for weekends,
defined as

Qwd =

{
δ(ttod, nhar, αworkday) for workdays
δ(ttod, nhar, αweekend) for weekends (4.16)

where δ(ttod, nhar, α) is a harmonic function as described in section 4.1.3. Qra
is the ambient temperature effect divided in two regimes, determined by the
opening and closing hours, where 7 to 22 is the opening hours.
The effect is defined as

Qra =

{
αi,open + αa,openHa(q)T a,opent+k|t for opening hours
αi,close + αa,closeHa(q)T a,closet+k|t for closing hours

(4.17)

where Ha(q)T at+k|t is the ambient temperature entered through a low pass filter,
see section 4.1.1 for further details and αa,open is the coefficient for opening
hours and αa,close is the coefficient for the closing hours. The model is fitted
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with the k-step recursive least squares scheme described in Section 4.1.2 and
the parameters optimized in the model from Bacher et al. (2013) are

• The forgetting factor, λ

• The number of harmonics in the diurnal curve, nhar

• The coefficients for input low-pass filters, aTa

Parameters are optimized in an off-line setting by minimizing the RMSE for
each horizon k = 1, . . . , 42 separately, as described in 4.1.5. The filtering of the
inputs are performed only once for parameter values in a given range, and then
used for optimization for all the horizons.
In the model by Bacher et al. (2013) all data available, from November 2011 to
November 2012, is used. The period before the November 15th 2011 is used as
a burn-in period, which is excluded from the RMSEk calculation and the large
gaps in data is also removed. The local observations are combined with the
weather forecasts as described in Section 2.3.

4.2.1 Previous tests

Bacher et al. (2013) carries out a model identification to identify which inputs
significantly improves the performance. Solar radiation and wind speed where
included in the model, in varies combinations, both where let through a low-
pass filter, neither one of them improved the forecasting performance. These
will therefore not be tested again and the conclusion drawn in the report, is that
some non-linear effects in the ambient temperature are not described sufficiently,
especially for the longer horizons, where the non-linear effects not included in
the model are more clearly seen. This model is very suitable for load forecasting,
for supermarket refrigeration, however further improvement can be achieved.

4.2.2 Model evaluation

This basic model is tested with the selected data, described in Section 2.1, for
the period from May 1st to August 1st. First the parameters are optimized and
afterwards forecasts is conducted for 1-step horizon up to 42-step horizon. The
parameters fitted are:

• The forgetting factor, λ
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• The coefficients for input low-pass filters, aTa

The number of harmonics nhar is not optimized in this Thesis, nhar = 10 is cho-
sen, since it otherwise complicates the optimization and causes computational
difficulties.

The fitted values for the parameters listed above, is plotted in Figure 4.4 for
each horizon k.
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Figure 4.4: The fitted model parameters as a function of horizon k for
modelbasic.

The optimized values for λ are between 0.993 and 0.996, which corresponds to
a halving time of the weights in the recursive least squares algorithm, from 95
hours (∼ 4 days) to 175 hours (∼ 7 days) respectively and the coefficient aTa , for
the low-pass filter, varies between 0.401 and 0.703. The forgetting factor shifts
to a higher level from horizon 24 to 25 and the pattern in the long horizons are
recognized from 2.3, which is discussed later in the Thesis.
The regime splitting done by the model is displayed in the scatter plot in Figure
4.5, opening regime is chosen to be from 7 to 22 and closing regime from 23 to
6, since staff is present in the supermarket, removing the isolation before the
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supermarket opens for the customers. It can be seen that some overlap does
occur, i.e. some observations from opening hours have a low level compared to
the established level of the opening hours, and the other way around, with the
majority of observations from opening hours in the low level. It is not possible
to completely split in opening and closing hours with no overlap, so this seems
to be a good split.
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Figure 4.5: Scatter plots of the load versus the ambient temperature, showing
the splitting with opening and closing hours. The black points is
the opening regime, the red points indicates the closing regime.
In the left plot the closing regime is plotted on top of the opening
regime and vice versa in the right plot.

The calculated RMSEk for each horizon is displayed in Figure 4.6. It is noted
that the period before the 15th of May 2012 is used as burn-in period, and is
therefore excluded from the calculations of RMSEk.

The RMSEk has an unusual shift in level from RMSE24 to RMSE25. Notice
the pattern in the high steps, it is recognized as the pattern discussed in Section
2.3 and is therefore accepted as an effect from external part (DMI) combined
with a short period of data (3 months). This also explains the pattern in the
fitted parameter λ, seen in Figure 4.4.
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Figure 4.6: RMSEk for each horizon k = 1 to k = 42 for modelbasic.

These RMSEk are discussed more in Chapter 5.

The model performance is analysed using the residuals together with the RMSEk.
The focus will be on two horizons k = 1 and k = 36, a short and a longer horizon,
this is to give a more manageable overview of the performance. The residuals for
horizon k = 1 and k = 36 are displayed in Figure 4.7, where the same burn-in
period used in the calculations of RMSEk, is excluded from the plot.
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Figure 4.7: Residuals from 1-step ahead predictions (to the left) and 36-step
ahead predictions (to the right) for modelbasic.

From this plot it is seen that there is one large residual and another one also a
little far from the other residuals. This could be an outlier in the data, which
needs to be investigated. Besides from that, there seems to be some weak pat-
tern in the 1-step ahead residuals, which is more clearly seen in the residuals
from the 36-step ahead residuals, but they are nicely distributed around zero,
which makes them unbiased like white noise.

To investigate the the two large residuals, the forecast and the refrigeration
load for a short period from 21st of May to the 22nd of May included, is plotted
in Figure 4.8.
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Figure 4.8: First plot shows the 1-step ahead forecast and the refrigeration
load for the 21st of May and 22nd of May 2012, bottom plot is the
corresponding residuals, for modelbasic.

It is clear that something unusual is happening, with the sudden dive in the
morning ramp-up hours, maybe a shut down, or a software issue, mostly lean-
ing towards the shut down for the compressor, due to the high spike in the hour
afterwards, which could indicate a need for extra cooling after a shut down. No
matter what caused this, it does not look like normal behaviour, so therefore
these two residuals is excluded from further analysis. It could be considered
excluded from the data before running the model, calculating estimates and
making forecast, but when it only concerns two hours, they will not have a
significant impact on the fitting and forecast. However, they are disturbing the
plots and the residual analysis, and therefore makes it more difficult to spot real
patterns and occurrences.

The 1-step residuals and 36-step residuals are plotted in Figure 4.9, without
the two excluded values.
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Figure 4.9: Residuals frommodelbasic for 1-step ahead predictions (to the left)
and 36-step ahead predictions (to the right) without the two ex-
cluded residuals.

Now it is easier to see that there is some pattern in the 1-step ahead residuals
and they can not be completely considered as white noise. The 36-step ahead
residuals has similar pattern, it is just more clear, which is expected. The ACF
is estimated for the 1-step ahead residuals, see 3.1.1 page 20, for further descrip-
tion, which is plotted in Figure 4.10, together with a histogram and QQ-normal
plot. The QQ-normal plot is a Quantile-Quantile normal plot, which is a graph-
ical method for comparing the probability distribution for the residuals against
a theoretical normal distribution, done by plotting their quantiles against each
other.
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Figure 4.10: The ACF, histogram and QQ-normal plot for the 1-step ahead
residuals, for modelbasic.

From the ACF it is clearly seen that some correlations are left for the first
lags, also a seasonal pattern around 24 lags is detected. The histogram shows
a non-skewed distribution of the residuals, which indicates that the residuals
could be normally distributed, the QQ-normal plot, on the other hand, reveals
a bit heavy tails compared to the normal distribution. Hence it is found that
the residuals are not white noise. Some improvement of the performance can be
achieved.

With focus on a shorter period, namely July, the fitted coefficients for the ambi-
ent temperature inputs, αa is plotted in Figure 4.11 for both the opening regime
and the closing regime, together with the low-pass filtered ambient temperature
input for the 1-step ahead forecast and the corresponding forecast performance.
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Figure 4.11: First plot is the forecast versus the refrigeration load, next plot is
the observed ambient temperature and the last plots is the fitted
coefficients for the ambient temperature input, first the intercept
and slope for the open regime and the corresponding plots for
closing regime, for modelbasic.

These plots display that the coefficient estimates of the inputs varies according
to the changes related to the ambient temperature. It is easily seen in the coef-
ficient estimates for the slope αa, that they increases when there is warm days
and decreases again when it gets colder, for example from July 24th and for-
ward, where the temperature is increasing, same is the slope coefficient and the
intercept is decreasing. This shows how the model is able to adapt to changing
conditions, however the conditions are changing much faster than described by
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the model.

The analysis of the residuals is finished with a comparison of the residuals versus
the ambient temperature input for 1-step ahead prediction and 36-step ahead
predictions. This is plotted in Figure 4.12 where smoothed local kernel regres-
sion estimates, calculated with the R-function loess(), are added on top as red
lines.
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Figure 4.12: 1-step and 36-step ahead residuals versus the predicted ambi-
ent temperature used as input, with smoothed local regression
estimates as red lines, for modelbasic.

Here it is seen that the conditional mean of the residuals increases with the
increase in ambient temperature, and the smoothed estimates shows that the
residuals is biased for degrees of the ambient temperature higher than approx-
imately 17◦C, it is even more clear in the 36-step residuals. This implies that
the model is not describing the non-linear effect from the ambient temperature,
sufficiently.

All the discoveries made in this analysis corresponds well to the discoveries
made in Bacher et al. (2013), which ensures that the identified model in Bacher
et al. (2013) and modelbasic is the same model. In the following sections, differ-
ent approaches will be tested, to try an improve the handling of the non-linear
effects from the ambient temperature, which is presumed to improve the model
performance.
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4.3 Basic model with regime from diurnal curve

One way to improve the basic model, can be to divide the ambient temperature
into two regimes by use of the diurnal curve, instead of simply the fixed opening
and closing hours.

The approach for calculating the diurnal curve used for the regimes, is in an off-
line setting, by first running the model with diurnal curve and low-pass filtered
ambient temperature, but without regime.

Qt+k = Q̂t+k|t + εt+k (4.18)

Q̂t+k|t = αi +Qwd +Qa (4.19)

where Qwd is a diurnal curve for weekends and another for workdays, as in
Equation (4.16) and Qa = Ha(q)T at+k|t, is the effect from the ambient temper-
ature put through a low-pass filter. This diurnal curve with fitted parameters,
δ̂(ttod, nhar, αdiur), is then used for estimating the regime by the sign of the
diurnal curve, e.g. negative sign equal night regime and positive, day regime.

The model, modeldiur is then defined as

Q̂t+k|t = Qwd +Qra (4.20)

Here Qwd is a diurnal curve, as explained in equation (4.16) and Qra is now
defined as

Qra =

{
αi,day + αa,dayHa(q)T a,dayt+k|t for δ̂(ttod, nhar, αdiu) ≥ 0

αi,night + αa,nightHa(q)T a,nightt+k|t for δ̂(ttod, nhar, αdiu) < 0
(4.21)

This way of determining the regimes is more dynamic, which makes it possible
for the model to adapt to changes in the day and night regime, if e.g. the
supermarket changes the opening and closing hours or if they just are different
within the week. It gives the splitting of the regimes as displayed in Figure 4.13.
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Figure 4.13: Scatter plots of the load versus the ambient, showing the splitting
with the diurnal curve. The black points is the positive values
indicating day regime, the negative values are the red points
indicating the night regime. In the left plot the night regime is
plotted in top of the day regime and vice versa in the right plot.

Comparing this to Figure 4.5, an overlap is also occurring here, but unlike the
regime split by the fixed opening hours, the majority of the overlap are now
from the observations of night regime with high level, i.e. overlapping the day
regime. At first glance the splitting from opening and closing hours seems better
with fewer overlaps, but maybe the adaptivity will give some advantages.

In the next section the model is evaluated by investigating the fitted param-
eters and analysing the residuals.

4.3.1 Model evaluation

When evaluating the model, the first thing investigated is the fitted parameters
λ and aTa

, which is plotted for each horizon k in Figure 4.14. The parameters
is fitted in the same way as mentioned in Section 4.1.5, with the R-function
optim().
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Figure 4.14: The fitted model parameters as a function of horizon k, for
modeldiur.

Seen in the plot, the optimized values for λ are between 0.994 and 0.997, which
corresponds to a halving time from approximately 110 hours (∼ 4.5 days) to
216 hours (∼ 9 days) respectively and the coefficient aTa , for the low-pass filter,
varies between 0.500 and 0.862. λ does not change much in the first horizons
from k = 1 to k = 24, then it jumps to another level and stays on that level until
k = 32 and then drops to approximately the same level as before just to increase
again for the rest of the horizons. This pattern is recognized from Section 2.3
page 9, which will be discussed in Chapter 6. The coefficient aTa

increases from
k = 1 to k = 33 and then drops to another level around 0.49, for three horizons,
k = 34 to k = 36, the rest of the horizons are increasing.

The RMSEk is calculated from the residuals, for each horizon k = 1 to k = 42
and plotted in Figure 4.15.
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Figure 4.15: RMSEk for each horizon k = 1 to k = 42, for modeldiur.

These shows the same pattern as seen for the basic model, with longer horizons
performing better than shorter one, which was mentioned earlier in Section 2.3.
The RMSEk will be discussed later, when they are compared with the other
models presented in this Thesis.

Now the residuals are analysed, first the same two outliers as detected in Figure
4.7 is removed before investigating the residuals, then the residuals is plotted in
Figure 4.16, with 1-step ahead residuals to the left and 36-steps ahead residuals
to the right.
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Figure 4.16: Residuals from modeldiur for, 1-step ahead predictions (to the
left) and 36-step ahead predictions (to the right).

For the 1-step ahead residuals it is evenly distributed around zero, with few high
residuals. There appears to be a weak pattern in the 1-step ahead residuals,
which becomes more clear in the 36-steps ahead residuals, which also was de-
tected in modelbasic. The ACF, histogram and QQ-normal plot are displayed in
Figure 4.17, to help with the analysis of white noise properties of the residuals.
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Figure 4.17: The ACF, histogram and QQ-normal plot for the 1-step ahead
residuals, for modeldiur.

The ACF plot has correlation at the first lags, approximately until lag 10. The
seasonal pattern is more unclear now, which is assumed to be due to a better way
of dividing the model in day and night regimes. The histogram has a slightly
right-skewed bell shape and much density around zero, this is acceptable for a
white noise conclusion. The QQ-normal plot on the other hand still has heavy
tails compared to the normal distribution. So still not completely white noise
residuals, but a slightly improvement in the seasonal correlation, compared to
modelbasic.

The behaviour of the fitted coefficients for the ambient temperature inputs (the
slope αa) are analysed for July. These are plotted in Figure 4.18 together with
the forecast, the observed refrigeration load and the observed ambient temper-
ature, all plots is for 1-step ahead horizon, except for the observed ambient
temperature.
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Figure 4.18: First the forecast versus the refrigeration load, next plot is the
observed ambient temperature and the last plots is the fitted
coefficients for the ambient temperature input, first the intercept
and slope for the day regime and the corresponding plots for
night regime, for modeldiur.

In this Figure, it is clearly seen that the slope coefficients adapt to changes in
the ambient temperature, whenever the temperature goes up, the same does the
slope coefficients and when the slope increases, the intercept decreases, indicat-
ing the non-linear effect in the ambient temperature. It is easily seen in the
day-regime (αa,day), but also the night-regime (αa,night) reacts to changes in
the temperature at night. For example the 8th, there is an increase in the day
ambient temperature above 25 ◦C then the coefficient αa,day increases signifi-
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cantly and the day after, the ambient temperature has dropped to under 20 ◦C,
the coefficient also drops, but with a little delay. Which shows that the model is
able to adapt to the changing conditions, but since the non-linear effect from the
ambient temperature is linear locally in time, it is not able to adapt fast enough.

Clearly, as concluded before, the refrigeration load is highly dependent on the
ambient temperature. The residuals is plotted against the 1-step ahead pre-
dicted ambient temperature and 36-steps ahead predicted ambient temperature,
with loess fitted red lines, in Figure 4.19.
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Figure 4.19: 1-step and 36-step ahead residuals versus the predicted ambi-
ent temperature used as input, with smoothed local regression
estimates as red lines, for modeldiur.

The residuals increases as the ambient temperature increases and the loess-
fitted red lines shows that the residuals is biased for degrees of the ambient
temperature above approximately 17 ◦C, it is more clear in the 36-step ahead
residuals, where the residuals is also slightly biased for degrees of the ambient
temperature under approximately 7 ◦C.
It is expected that this bias is still present, due to the input for the ambient
temperature is unchanged compared to the basic model, it is only the method
for deciding the regime that has been change. Improvement is found, therefore
this way of determining the regimes is kept in the following models.
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4.4 Basic model with splines in off-line setting

The main issue in the current model, modeldiur, is the non-linear effect from
the ambient temperature, especially above 17 ◦C, so instead of using the low-
pass filtered ambient temperature as direct input, then the low-pass filtered
ambient temperature is modelled with a spline function. This is done, to see if
this model will react better to the non-linear effect seen between the ambient
temperature and the refrigeration load, which was discussed in the evaluation of
previous model in Section 4.3.1. With modeldiur from Section 4.3 as reference,
the following model, modelsp,off is defined as

Qt+k = Q̂t+k|t + εt+k (4.22)

Q̂t+k|t = Qwd +Qoff
rs (4.23)

where Qwd is the diurnal curve defined in Equation (4.16), and Qoff
rs is the spline

function for the ambient temperature, divided in two regimes in the same way
as in modeldiur, with day and night regime from diurnal curve, (4.17). Qoff

rs is
defined as,

Qoff
rs =

 αi,day + αa,day(βi,day +
∑

j β
day
j Bday

j,p ) for δ̂(ttod, nhar, αdiu) ≥ 0

αi,night + αa,night(βi,night +
∑

j β
night
j Bnight

j,p ) for δ̂(ttod, nhar, αdiu) < 0

(4.24)
with Bj,p = bjpHa(q)T at+k|t, see Section 4.1.4 for further details.

This model is conducted in an off-line setting, which means that the ambient
temperature is estimated with the spline function (Qrs) as input to the model.
This estimation of all βj and βi are executed with the R-function lm(), which
is used for linear regression, where the input to this function is the B-spline ma-
trix and the refrigeration load Qt for the whole period and βi is the intercept.
After that the R-function predict() is used to calculate the estimated ambient
temperature. This way of implementing splines into the forecast model, is not
realistic for an operation of the forecast model, due to the use of observations
that is in the future. However, it is an efficient way to see if spline functions
can improve the model performance. Only a few degrees of freedom are used
and with use of historical data instead, the performance will only be marginally
worse.

An important subject to consider, is the choice of order and knots for the spline
function. As mentioned in Section 4.1.4, the B-splines is calculated with the
use of the R-function bs(), in this function it is possible to specify the order p
as degree and then there is two options for choosing the knots together with
the degree. Either they can be specified via a degrees-of-freedom argument df,
which is an integer, or via a knots argument knots, which is a vector giving
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the desired placements of the knots. If the degrees-of-freedom argument is used
then the knots is selected based on quantiles of the data input, in this case
the ambient temperature. There is also the choice of adding an intercept. An
example is given below.

Example 4.2 (Knots selection in the R-function bs())
If bs(x, degree=2,df=5) is called, then the basis includes:

• 2 boundary knots - default at minimum and maximum of x

• 3 interior knots (df-degree) - placed at quantile 25%, 50% and 75%

in total 5 knots. This will give five B-spline functions (interior knots +
degree).

The question is now, what is a good choice of degree and knots? This depends
on what the spline function should be able to do and on the data it is fitted on.
A good rule of thumb is to have the spline function obtain a curve estimate that
does not display too many fluctuations., which can not be seen in the data
Two examples are given in Figure 4.20, containing the 1-step ahead predicted
ambient temperature T at+1 versus the refrigeration load Qt from the day regime,
with what could be concluded as, a good choice (to the left) and a bad choice
(to the right).
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Figure 4.20: Examples of a good choice of knots (to the left) and a bad choice
of knots (to the right).

In modelsp,off , degree is chosen to be 3 and df is 5, for both the day regime
and night regime, made for the 1-step predicted ambient temperature. The in-
tercept is chosen to be included by lm() when the coefficients are estimated and
not included in the B-splines, it is possible to do it with intercept from B-spline
and no intercept from lm() and it will not give completely the same result, but
the difference in the final spline fitted ambient temperature is marginal. The
calculated B-splines are displayed in Figure 4.21.
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Figure 4.21: The B-splines used as input for 1-step prediction plotted against
the low-pass filtered ambient temperature input, divided in the
day and night regime, for modelsp,off .

In this model it is not taken into consideration, if other choices of knots are
better for other k-step predicted ambient temperatures, because the k-step pre-
dicted ambient temperature are not far from each other and will therefore not
effect the spline function sufficiently. The same choice is used for each k-step,
k = 1, . . . , 42, since it is found to be a good choice.

In the next section the model performance and properties are evaluated.

4.4.1 Model evaluation

Before analysing the residuals, the fitted coefficients, forgetting factor λ and the
input coefficient for the low-pass filter aTa

, is analysed in Figure 4.22.
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Figure 4.22: The fitted model parameters as a function of horizon k, for
modelsp,off .

The optimized values for the forgetting factor λ are varying between 0.994 and
0.998, which gives a halving time of approximately 117 hours (∼ 5 days) to 336
hours (∼ 14 days). It is decreasing a little from k = 1 to k = 24, then it jumps
to a level around 0.998 for the next eight horizons, k = 25, . . . , 32 and drops
again, for increasing in the end towards k = 42. This pattern is recognized
from previous and will be discussed in Chapter 6. The input coefficient for the
low-pass filter is fluctuating between 0.499 and 0.902. This is a relatively large
range and large parts of the horizons for the low-pass filtered input are staying
at a value close to 0.5, this behaviour should be investigated in future work.

The forecast performance is measured by calculating the RMSEk (from Equa-
tion (2.3)) for each horizon k, these are plotted in Figure 4.23.
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Figure 4.23: The RMSEk for each horizon k, for modelsp,off .

The jump in the RMSE from k = 24 to k = 25 seen in modelbasic and modeldiur
is not present in this model. But there is still some pattern with the RMSEk
decreasing from k = 26 to k = 30, this is a very small decrease, which presum-
ably is caused by the predicted ambient temperature from DMI, seen in 2.3.
The RMSEks for this model is compared with the other models in Chapter 5.

The model is evaluated by a residual analysis carried out in the following.
The residuals for horizon k = 1 and k = 36 is plotted in Figure 4.24 and the
same outliers as mentioned in the evaluation of modelbasic are removed from the
residual analysis.
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Figure 4.24: The residuals for horizon k = 1 (to the left) and k = 36 (to the
right), for modelsp,off .

The residuals for horizon k = 1 is nicely spread around zero, though a small
curving pattern is faintly showing, which is more clear in the residuals for horizon
k = 36, but for k = 1 it is very close to being unbiased like white noise. To
investigate the residuals further, the ACF, histogram and QQ-normal plot is
displayed in Figure 4.25, for horizon k = 1.
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Figure 4.25: The ACF, histogram and QQ-normal plot for the 1-step ahead
residuals, for modelsp,off .

In the ACF plot correlation are seen in the first lags, which is decaying quickly.
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There is a small wavy pattern, which is decaying. The histogram has a non-
skewed bell, which could indicate normal distributed residuals (white noise).
The QQ-normal plot is closer to being on a straight line, than seen in the two
earlier models, but still with some heavy tails. The residuals looks more satis-
fying, but also kept in mind that there is used informations that would not be
available in practice.

With focus on July, the fitted coefficients for the spline functions, modelled
on the low-pass filtered ambient temperature is plotted in Figure 4.26, together
with the forecast, refrigeration load and the observed temperature, with the
purpose of analysing the behaviour of the coefficients.
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Figure 4.26: First plot shows the forecast versus the refrigeration load, next
plot is the observed ambient temperature and the last plots is
the fitted coefficients for the ambient temperature input, both
the intercept and the slope for the day and night regimes, for
modelsp,off .

From this plot it is seen that the slope coefficient is adapting to changes in the
ambient temperature. It is more clear in the day-regime (diurnal positive), due
to the more varying temperatures. The intercepts are changing opposite of the
slope, which is expected. If the spline input describes the non-linear effect per-
fectly, the slope coefficient would be constantly 1, it is seen that the coefficient
values for the slope have increased so they are closer to 1, which indicates that
the spline fitted ambient temperature is describing the non-linear effect better
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than modeldiur.
To see if the model is handling the non-linear effects from the ambient tempera-
ture sufficiently, a plot of the residuals versus the predicted ambient temperature
for 1-step horizon and 36-step horizon, with loess fitted red lines, are displayed
in Figure 4.27.
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Figure 4.27: 1-step prediction errors and 36-step prediction errors with loess
fitted red lines, for modelsp,off .

The conditional mean of the residuals is increasing as the ambient temperature
is increasing, the bias seen in the previous models is lesser for the 1-step predic-
tions, the 36-steps predictions are still slightly biased for degrees above 17◦C.
The improvements in the residuals, encourage to implement the splines, without
using unknown refrigeration load.

4.5 Basic model with splines in on-line setting

As mentioned before in Section 4.4, the off-line method for implementing splines
is a bit optimistic, since data from the whole period is used. A way to outcome
this is to input the B-splines directly into the model, i.e. by adding them to
the regressor vector, described in Section 4.1.2, so it becomes recursively and is
not created on unknown observations. This method of implementing splines is
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in on-line setting and is defined as modelsp,on;

Qt+k = Q̂t+k|t + εt+k (4.25)

Q̂t+k|t = Qwd +Qon
rs (4.26)

with Qwd still being the same diurnal curve as defined in Equation (4.16) and
Qon
rs is the B-splines for the low-pass filtered ambient temperature input, divided

in the regimes; day and night regime as defined in modeldiur.
Qon
rs is defined as

Q̂on
rs =

 αi,day + βi,dayB
day
int,p +

∑
j β

day
j Bdayj,p for δ̂(ttod, nhar, αdiu) ≥ 0

αi,night + βi,nightB
night
int,p +

∑
j β

night
j Bnightj,p for δ̂(ttod, nhar, αdiu) < 0

(4.27)
with Bj,p = bjpHa(q)T at+k|t, see Section 4.1.4 and nhar = 10. The knots choice is
the same as in the previous model, modelsp,off , which was degree=3 and df=5
and Bint,p is the B-spline for an intercept. In Figure 4.28 the B-spline input
for 1-step ahead prediction is displayed, plotted against the low-pass filtered
ambient temperature input.
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Figure 4.28: The B-splines used as input for 1-step prediction plotted against
the low-pass filtered ambient temperature input, divided in the
day and night regime, for modelsp,on.

It is expected that this model will perform slightly worse than modelsp,off ,
because of the missing information from the refrigeration load, though it will be
a more realistic model, to use.
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4.5.1 Model evaluation

In this section the model is evaluated, by looking at the fitted model parameters,
the RMSEk of the prediction errors and a residual analysis is conducted.

First the fitted model parameters is displayed in Figure 4.29, which is obtained
from the R-function optim() as described in Section 4.1.5. Due to some compu-
tational difficulties, with the optimization algorithm hitting some values making
a matrix in RLS singular, some programming has been done so that optim()
skips these.
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Figure 4.29: The fitted model parameters as a function of horizon k, for
modelsp,on.

The optimized forgetting factor λ is varying between 0.995 and 0.998, which
gives a halving time of approximately 140 hours (∼ 6 days) to 327 hours (∼
14 days). The forgetting factor is increasing a little in the beginning, then it is
staying stable around 0.996 until k = 30, then it is fluctuating a little, thus to
become stable again around the 0.996. The coefficient for the low-pass filter is
fluctuating a lot, especially in long horizons. The impact from this coefficient is
not as significant as in modelbasic and modeldiur, due to low-pass filtered ambi-
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ent temperature is only used for calculating the splines, which are not changing
drastically for different filtered ambient temperatures.

The forecast performance is measured by the RMSEk, which is calculated for
horizon k = 1 to k = 42 with Equation (2.3) and plotted in Figure 4.30.
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Figure 4.30: The RMSEk for each horizon k, for modelsp,on.

The RMSEk is increasing slightly from k = 1 to k = 24, a large jump from
k = 24 to k = 25 is seen and then it is fluctuating a little with a slight increase
for k = 26 to k = 42. Further discussion and evaluation is conducted in Chapter
5, where it will be compared to the other models in this thesis.

The residual analysis is the next thing investigated, first the residuals for a
short horizon k = 1 and a long horizon k = 36 is plotted in Figure 4.31
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Figure 4.31: The residuals for horizon k = 1 (to the left) and k = 36 (to the
right), for modelsp,on.

From these plots it is seen that the residuals is nicely distributed around zero,
but weak pattern is detected in the 1-step residuals, which is more clear in the
36-steps residuals. So from this it can not be concluded that the residuals is
unbiased like white noise, but it is not far from. To investigate this further the
ACF, histogram and QQ-normal plot is displayed in Figure 4.32.
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Figure 4.32: The ACF, histogram and QQ-normal plot for the 1-step ahead
residuals, for modelsp,on.

The ACF plot here shows correlation in the first approximately 30 lags, the wavy
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pattern seen in the previous models is more unclear. The histogram shows a
non-skewed bell, which indicates that the residuals is close to white noise. The
QQ-normal plots has heavy tails, but compared to modelbasic and modeldiur
there is a small improvement. The coefficients for the B-splines for July is
investigated in Figure 4.33.
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Figure 4.33: Plots of each coefficients for the B-splines, in the day and night
regime respectively, the first in each column, the B-spline B1 day
and B1 night corresponds to the B-spline βi for the intercept,
together with the B-spline inputs, for modelsp,on.

The coefficient estimates have very high values, either positive or negative, com-
pared to the other models, which is due to the B-spline inputs are of value be-
tween 0 and 1. It is seen that the coefficients are fluctuating in a relatively large
range, which were not expected, they should be more stable, if they should be
able to describe the non-linear effect from the ambient temperature sufficiently.
The sudden change in the coefficient values around 8th of July, seems like they
are learning from the high ambient temperatures for the first time. To make
the coefficients more stable, fitting with more data could be worth trying.
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The last analysis of the residuals is displayed in Figure 4.34, which is a plot of
1-step residuals versus 1-step predicted ambient temperature with a smoothed
local kernel regression estimates calculated with the R-function loess(), added
as a red line and a corresponding plot for horizon k = 36. It is for the period
from 15th of May to 1st of August.
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Figure 4.34: 1-step residuals and 36-step residuals versus the ambient temper-
ature input with loess fitted red lines, for modelsp,on.

The plots reveals that the conditional mean of the residuals increases with the
ambient temperature. When comparing to modelbasic it is less increasing and
less spread out. The smoothed estimation shows almost a straight line for
the 1-step horizon plot, which means that the bias seen in the other models
is removed, the residuals are still biased in the high horizons (k = 36), but
slope of the red line has decreased significantly. This indicates that this model,
modelsp,on is describing the non-linear effect from the ambient temperature bet-
ter than all the other models, but the peaks in the RMSEk is showing otherwise.

It can be concluded that there is some non-linear effect to recover from the
spline functions, but if the forecasting performance is better will be discussed
in the next Chapter, where all model performance is compared and evaluated.



Chapter 5

Results

In this chapter the forecast results from the five different models, described
and evaluated in this Thesis, are compared and analysed. The four models,
described in Chapter 4, the modelbasic, modeldiur. modelsp,off and modelsp,on,
are analysed by calculating the RMSEk, see Equation (2.3), for 42 horizons,
{k = 1, . . . , 42}.

The performance of the model presented in Chapter 3, ARIMA(3,1,1)×(1,1,1),
is calculated as RMSE1 for 1-step ahead residuals, which is compared to the
other models by the RMSE1, which is listed in Table 5.1 for each model.

Table 5.1: The RMSE1 per model.

Model RMSE1

ARIMA(3,1,1)×(1,1,1) 1.0125
Modelbasic 0.8772
Modeldiur 0.8476
Modelsp,off 0.8233
Modelsp,on 0.8181

It is clearly seen that the ARIMA-model performs worse than the adaptive linear
time-series models, due to the higher RMSE1 value. Considering the refriger-
ation load having a range from approximately 2 kW to 19 kW, then a RMSE1
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of 1.0125 is not a bad performance, but modelbasic performs significantly better
with approximately 13% improvement and at the same time, recalling from Sec-
tion 3.3, the performance of the ARIMA-model is not good for long horizons.
Hence it is concluded that a simple linear ARIMA-model is not forecasting re-
frigeration load sufficiently, thus it should not be preferred over the other models
and it is therefore not considered in the remaining analysis.

With the ARIMA-model out of the picture, the adaptive linear time-series mod-
els are compared by each horizons (k = 1, . . . , 42), displayed in Figure 5.1.
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Figure 5.1: Plot of the RMSEk from each model, for horizon {k = 1, . . . 42}.

From this it is clearly seen that there is an significant improvement in the fore-
casting performance from modelbasic to modeldiur, so no doubt that the regime
splitting from the diurnal curve is better in this case, maybe it is a coincidence
and tested on more data might give another conclusion. Nevertheless the diur-
nal curve is a more dynamic method and is able to adapt to different opening
and closing hours, which makes to model usable for other supermarkets than
this Fakta.

As found in the previous chapter, modelbasic, modeldiur and modelsp,on have
a jump in the RMSEk from k = 24 to k = 25, the same jump is not present in
modelsp,off , which is investigated further i Chapter 6

When comparing modeldiur with modelsp,off , there is improvement in the first
horizons from k = 1 to k = 14, then up to k = 24 the performance is approx-
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imately equal, for then again being better. The performance from modelsp,off
is a bit optimistic, due to the use of all observations for the period modelled,
but only a few degrees of freedom are used. In the long horizons around k = 36
the same pattern as mentioned in Section 2.3 is not showing here, but it is
showing just right after horizon k = 25, where the performance for k = 26 is
better than the previous one. To investigate if this is a coincidence or if it is
just better in those horizons, the model should be modelled on a larger set of
data. This is presumably caused by the pattern mentioned before in Section 2.3.

The last performance to evaluate, is formodelsp,on, comparing this withmodeldiur,
modelsp,on is performing better in horizon k = 1 and k = 2 and are worse the
rest of the horizons. Some unusual large spikes are detected in horizon k = 25
and k = 33, these are discussed further in Chapter 6.

Beside from the spikes, the pattern is close to follow the pattern of modelsp,off ,
which makes sense because the B-splines are modelled in the same way, it was
also expected that modelsp,off would perform better than modelsp,on, due to
the use of unknown refrigeration load in modelsp,off .

Even though modelsp,on is performing worse thanmodeldiur, there are still some
non-linear effect from the ambient temperature that is explained better, see Fig-
ure 4.34 in Chapter 4, which is worth investigating further.

The results presented in this chapter are discussed in Chapter 6, together with
future work for refrigeration load forecasting models.
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Chapter 6

Discussion

From the results presented in the previous chapter it is found that the methods
used for modelbasic, modeldiur, modelsp,off and modelsp,on are all suitable for
refrigeration load forecasting, and the ARIMA(3,1,1)×(1,1,1) was found inade-
quate, the model is therefore not discussed further. In this chapter the models
and results are discussed and suggestions for further improvement are presented.

The jump seen in the RMSEk from k = 24 to k = 25, for modelbasic, modeldiur
andmodelsp,on, but not formodelsp,off , is interesting and therefore investigated
further. Looking at the different inputs for the models, it is found that the diur-
nal input is the cause of this jump, which is displayed in Figure 6.1, where the
diurnal input for k = 24 and k = 25 from modeldiur, is plotted together with the
observed refrigeration load, predicted refrigeration load and the corresponding
residuals for the period 19th to 27th of May.
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Figure 6.1: Plot of the observed and the predicted refrigeration load, for k =
24 and k = 25, together with the corresponding residuals and
diurnal input, in period 19th to 27th of May for modeldiur.

When looking at the last day, Sunday May 27th, it is clearly seen that for k = 24
the diurnal is responding to the errors from the days before, by increasing the
coefficients, which changes the diurnal input. For k = 25 there is almost no
respond to the error, the diurnal input from the day before, a Saturday, is al-
most the same. This is presumable due to the daily pattern in the data and
modelsp,off is describing the ambient temperature from the splines better, which
makes the errors smaller and therefore less need for the diurnal input to change,
this makes the difference between k = 24 and k = 25 smaller. This behaviour is
also seen in the forgetting factor λ, which is having the same jump from k = 24
to k = 25. The behaviour of the diurnal curve could be investigated further to
improve the diurnal curve input.

Considering the RMSEk only, modelsp,off is the best model, but because of
the fact, that there have been used data, which in principle are not available at
the time t, where the forecasts are calculated, the result is a bit optimistic. It is
not possible to implement this model operationally, however using only histori-
cal data from previous years, it is presumed that nearly the same performance
can be achieved, since the non-linearity of the system most likely changes very
slow.
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The second best model, when looking at the RMSEk is modeldiur, in the very
short horizon (k = 1, 2) modelsp,on is better than modeldiur, but in the longer
horizons from k = 13 to k = 42, modeldiur are performing best. Even though
modeldiur are better for the majority of horizons, the RMSEk are only in av-
erage 3% lower than modelsp,on for horizon {k = 13, . . . , 42}, which might not
seem as a significant improvement, but considering the average magnitude of the
residuals for modelsp,on are between 0.82 and 1.15, compared to refrigeration
load being between 2.3 kW and 19.1 kW, the residuals are small and therefore
more difficult to reduce, so therefore modeldiur are a somewhat significant bet-
ter model than modelsp.on. Even though modelsp,on 1-step prediction residuals
shows almost white noise, it seems to be unstable and over-parametrized, con-
sidering the peaks in the RMSEk and further development must be carried out.

The RMSEk are not the only factor used when deciding which model are the best
suited for refrigeration load forecasting. There should also be a focus on how the
model is handling the non-linear effect from the ambient temperature, due to
the highly dependency between the ambient temperature and the refrigeration
load. In Figure 6.2, the 1-step ahead residuals is plotted against the 1-steps
ahead ambient temperature, with a loess fitted red line, and corresponding for
36-step horizon, for both modeldiur and modelsp,on.
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Figure 6.2: Plot of residuals versus ambient temperature for 1-step horizon
(top) and 36-step horizon (bottom), to the left modeldiur, to the
right modelsp,on.

Here it is clearly seen that modelsp,on is handling the non-linear effect from the
ambient temperature better than modeldiur, both models are increasing in the
conditional mean of the residuals, but when temperature is above approximately
17 ◦C in long horizons modeldiur is more biased than modelsp,on.

It is found, that the performance increases by modelling the ambient tempera-
ture with splines, the downside is that the long horizon forecasts does not have a
stable performance, for when the splines is modelled in an on-line setting, which
could indicate that the model is over-parametrized. Taking modelsp,off into
account the splines do have a positive impact on the forecasting of refrigeration
load. Something needs to be done with the way it is implemented or handled
in the model, to make the performance more stable.

One way to do this, is to implement the splines in the same way as inmodelsp,off ,
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with the refrigeration load used as input for estimating the spline parameters
used with linear regression lm(), but instead of using refrigeration load for the
same period as forecasting, which is unknown, then it could be tested with re-
frigeration load from the same period the year before or the same weekday from
the week before, still with predicted low-pass filtered ambient temperature used
for making the splines. This method for implementing non-linear effect in an
off-line setting is a widely used method for Wind Power Forecasting, see Nielsen
et al. (2006)

The harmonics made from Fourier series is very useful, because of the daily
pattern with the day and night regime and it is easy to implement. The num-
ber of harmonics nhar could be optimized too, this was done in the report by
Bacher et al. (2013) where it was optimized to the highest possible amount of
harmonics, nhar = 11 for each horizon, which indicates that high frequencies
are needed in the diurnal curve. When optimizing the parameters with optim
as mentioned in Section 4.1.5, for the two models with splines input, some com-
putational difficulties occurred in the optimization algorithm, with some matrix
operations failing due to singularity, nhar was then chosen to 10 for all models,
so the models were compared on equal terms, it was onlymodelsp,on that needed
some small programming fixing as mentioned in the beginning of Section 4.5.1.

The forecasting model developed in this Thesis is able to forecast the aggregated
refrigeration load consumption for all coolers and display cabinets in the super-
market Fakta in Otterup, where the coolers and display cabinets are maintained
at a fixed temperature with varying external factors, such as ambient temper-
ature. As mentioned in Chapter 1, it is desired to develop a controller that is
able to regulate the temperature in the coolers and cabinets, so that more load
is consumed when the power is at a low price, i.e. when there is large amount
of wind power in the energy system. In that sense, it is useful to know how
much load the coolers and cabinets consume for a given temperature, inside the
coolers and cabinets.

Having in mind that there is a large probability, that this controlling device
is going to be operated by the supermarket it self, it could be an issue that the
predicted ambient temperature (NWP’s) might not be available or difficult to
get hands on, other models without the predicted ambient temperature should
then be tested. It could be relevant to test if other local measurements as solar
radiation and wind speed, could improve performance without NWP’s, maybe
using relative humidity in the supermarket as input, could give similar informa-
tion as the predicted ambient temperature, see Fredslund (2013). This could
also lead to a possibility of testing other methods for refrigeration load forecast-
ing, such as a Continuous Time Stochastic Modelling (CTSM-R, see homepage
www.ctsm.info). CTSM is a modelling of a dynamical system based on stochas-
tic differential equations, which is determining the states in the system.
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If the model is going to be used for one specific cabinet, i.e. a cooling basin
with glass, then other conditions should be considered, as the placement of the
cabinet in the store, see Fredslund (2013) page 12, which could have more spot-
lights making the temperature drop faster in the cabinets when it is opened and
the defrost cycles, which has a large impact on the daily pattern for the load
consumption.

6.1 Future work

Further work and experiments should be done to improve the forecasting model.
Below is listed some of which should be tested, or considered in the future work.

• Data from more years should be tested on the models with spline input,
to see how it performs, especially the off-line spline model.

• Implementing humidity as input: in the report Fredslund (2013), the re-
frigeration load is detected to have high non-linear dependency with the
relative humidity in the supermarket.

• Coefficients for the low-pass filter could be optimized separately for both
regimes, in order to include different dynamical relations in the regimes.

• Modelling the forecast uncertainties: this will give valuable information
for the operation of the energy systems, based on fluctuating renewable
energy production.

• Include more local observations like solar radiation and wind speed, to
determine, if performance improves with use of more local observations

• Develop a model with CTSM.

This is just to mention some of the things that could be tested, to improve the
forecasting model, however it is also found that it will be difficult to improve
the performance much, due to residuals being very close to white noise.

Further studies could also be, to test the model on other supermarkets, to see
if the model is able to adapt to different systems and conditions, or to build
a model which enfolds the aspects of many different refrigeration systems and
conditions.



Chapter 7

Conclusion

A method for forecasting refrigeration load in a Supermarket is developed. It
issues refrigeration forecast with hourly values at horizon 1 to 42 hours. Ob-
served refrigeration load and local measured ambient temperature for the period
May 1st to August 1st 2012 is used. The method is going to be used as part of
the development of a controlling device, which helps making the Supermarket
flexible in the energy system.

Initially a simple linear multiplicative seasonal ARIMA model is fitted, with
use of only observed refrigeration load. First the data is transformed with the
logarithm and differenced twice, with lag 1 and lag 24, then a suitable ARIMA
model is identified with use of residual analysis. The most suitable model found
was ARIMA(3,1,1)×(1,1,1).
This model is found inadequate for forecasting refrigeration load, especially for
longer horizons, since observations are replaced with predictions, when longer
horizons are predicted and the non-linear dependency of the ambient tempera-
ture is not included in the model.

An adaptive linear time-series model from the report Bacher et al. (2013) is
reconstructed and evaluated for the chosen period. This model is a regime
switching model, with the opening and closing hours of the Supermarket as the
regimes. The input for this model is a harmonic curve from a Fourier-series
and a low-pass filtered predicted ambient temperature, where the model coef-
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ficients are fitted in an adaptive recursive least squares with forgetting. The
coefficients for the forgetting and low-pass filtering is fitted in an off-line setting
by minimizing the RMSEk for each horizon k. With this model used as foun-
dation, three other adaptive linear time-series models are developed, one with
the regime splitting determined by a diurnal curve made from the harmonics,
another with the low-pass filtered ambient temperature modelled with splines
in an off-line setting, where the ambient temperature is fitted with splines and
added to the regressor vector in the RLS algorithm. In the last model the low-
pass filtered ambient temperature is modelled with splines in an on-line setting,
where the B-splines are added as input to the regressor vector.

The performance of these models are measured by calculating the RMSEk for
each horizon k. RMSEk for these models have a range of approximately 0.81-
0.87 to 1.05-1.12, with the refrigeration load ranging between 2.3 kW and 19.1
kW, it is a relatively small forecasting error. The RMSEk shows a jump in
performance from k = 24 to k = 25 for all models except modelsp,off , the jump
is caused by the diurnal pattern in the data, the models are using the diurnal
curve to compensate for increase in the ambient temperature and are not com-
pensating enough in k = 25. For modelsp,off , the better input from the spline
fitted ambient temperature, evens out the behaviour from the diurnal curve.
Further investigation should be made for improvement of the diurnal input.

The model with regime from a diurnal curve is better than the basic model
from Bacher et al. (2013), with approximately 3 % in average per horizons,
but non-linear effect from the ambient temperature is not described sufficiently.
Modelling the ambient temperature input with splines improves the handling of
the non-linear effect from ambient temperature.

The model with splines in an on-line setting is performing worse than the model
with diurnal regime, because of the method for implementing the splines are
making the model over-parametrized. The best model for forecasting of refrig-
eration load is found to be the model with splines created in an off-line setting,
but due to use of unknown data some modifications needs to be done before it
can be applied in operational environments. One idea for modification of the
model with splines in an off-line setting, is to use data from the year before, or
the same weekday from the week before.

The estimates for the model coefficients shows great adaptability to changing
conditions, but lagging a little on the respond time. From report Bacher et al.
(2013), the number of harmonics where optimized to be 11, indicating high fre-
quency is needed, they were not optimized in this Thesis, these models used 10
harmonics, due to some computational difficulties with the splines. The residu-
als for all models shows close relation to white noise, but also some small bias
with the ambient temperature, especially in long horizons. For the models with
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splines no bias with the ambient temperature are showing in the residuals for
horizon k = 1.

It has been found that this method is suitable for forecasting refrigeration load
in a Supermarket, improvement is possible and different ideas for improvements
is presented. But improvements are difficult to achieve, since the 1-step ahead
predictions for model with off-line splines shows residuals close to white noise.

Further work on this model is to fit it with more data and to test if the relative
humidity in the Supermarket will have a positive effect on the forecasting per-
formance. Implementing separately low-pass filter coefficients for each regime is
also a relatively easy approach for further work.

Other methods besides the adaptive linear time-series model can be tested,
i.e. CTSM, which is Continuous Time Stochastic Modelling.
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