

Clean Room Monitoring
System for Pharmaceutical

Companies

Anastasia Mourka

Kongens Lyngby 2013
 IMM-MSc-2013-94

 2

Technical University of Denmark
Informatics and Mathematical
Modelling, DTU Compute
Building 321, DK-2800 Kongens Lyngby,
Denmark Phone +45 45253351, Fax +45
45882673 reception@imm.dtu.dk
www.imm.dtu.dk IMM-MSc-2013-94

 3

Summary

Many pharmaceutical companies, nowadays, are using Facility Monitoring
Systems to have an overview of the environmental conditions inside clean
rooms, where the pharmaceuticals production takes place. Their conditions
are measured with sensors and they are transferred through an FMS system,
such as SCADA, to a log server, where they are saved. This network
architecture is wired, soft-real time and its components are coupled. This
doesn’t allow the system to scale easily, because we need to perform
validation to all the components of the system, new and old ones, to ensure
they comply with FDA regulations.
The goal of the thesis is to propose a solution to the above problem, which
would allow the system to scale easily, without requiring extensive re-
validation of the entire system. For this purpose, we chose the decoupled
architecture of publish-subscribe paradigm, where the sensors publish their
measurements in an event bus, and the server log subscribes to them.
Instead of an FMS system, we suggest a decoupled Alarm System, which
also subscribes to the sensors’ data and publishes an alarm event, when the
data exceed a threshold. After transferring the data to the server, we apply a
security scheme to them, which saves them in an encrypted way and detects
when an attacker tampers with the log files. This way we ensure the safety of
the data, after being received at the server.

4

ii

 5

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling or DTU Compute at the Technical University of Denmark in
fulfillment of the requirements for acquiring an M.Sc. in Computer Science
and Engineering. The work on this thesis was conducted under the
supervision of Associate Professor in DTU Christian Damsgaard Jensen and
of Automation Specialist in NNE Pharmaplan Stig Allan Poulsen

The thesis deals with proposing a solution for pharmaceutical companies,
which want to measure the environmental conditions in clean rooms, but the
systems they are using are coupled and, thus, difficult and costly to scale,
because their systems need to comply with the FDA regulations. The solution
we describe considers a decoupled system architecture to facilitate the
message exchange between the sensors, the alarm system and the log
server. Furthermore, we apply a security scheme in the log server, so that the
data it receives are saved in an encrypted way, easy to detect changes on
them.

The thesis consists of an introduction presenting the problem, the proposed
solutions and how we plan to solve it (Chapter 1); the state-of-the-art to the
current message exchange methods and secure logging schemes (Chapter
2); an analysis of the FDA regulations, user requirements and sensor
specifications (Chapter 3); a problem analysis which led us to choosing the
appropriate solutions for it (Chapter 4); a description of the system
architecture of our solution (Chapter 5); a description of the implementation of
the prototype we built to demonstrate the functionality of our proposed
solution (Chapter 6); the evaluation of the prototype performance and security
efficiency (Chapter 7); the conclusion we extracted (Chapter 8); and possible
future developments for our prototype (Chapter 9).

 6

Lyngby, 09-August-2013

Anastasia
Mourka

7

vi

 8

Acknowledgements

I would like to thank the people who helped in completing this master thesis;
my supervisors, Associate Professor in DTU, Christian Damsgaard Jensen
and Automation Specialist in NNE Pharmaplan Stig Allan Poulsen for their
continuous feedback regarding the overall guidance directions on the thesis
and their advice for the implementation challenges; my family and friends for
their support and understanding.

9

viii

 10

Table of Contents

Contents
Summary ...3
Preface ..5
Acknowledgements ...8
Introduction .. 12
State of the Art .. 14

2.1 Message exchange methods ... 14
2.2 Publish-Subscribe .. 16

2.2.1 Event Bus .. 16
2.2.2 Java Messaging Service (JMS) ... 21

2.3 Secure Logging ... 24
System Analysis .. 38

3.1 FDA Regulations ... 38
3.1.1 Part 11 – Electronic Records; Electronic Signatures 39
3.1.2 Part 820 - Quality System Regulation ... 41
3.1.3 Part 210 – Current Good Manufacturing Practice in
Manufacturing, Processing, Packing, or Holding of Drugs; General 42
3.1.4 Part 211 – Current Good Manufacturing Practice for Finished
Pharmaceuticals .. 42

3.2 User Requirements .. 44
3.3 GAMP ... 49
3.4 Sensor Requirements .. 56

Problem Analysis .. 60
4.1 Problem Overview ... 60
4.2 Possible Solution .. 62

4.2.1 Network .. 62
4.2.2 Secure Logging .. 63

4.3 Requirements Analysis .. 65
System Design .. 68

5.1 Network ... 68

 11

5.1.1 Architecture .. 68
5.1.2 Components ... 69
5.1.3 Interfaces .. 71
5.1.4 Interactions ... 72

5.2 Secure Logging ... 73
Implementation .. 75

6.1 Network (JMS) ... 75
6.1.1 SimpleSensor.java ... 75
6.1.2 SerialMsgObject.java .. 80
6.1.3 SensorwithAlarm.java ... 80
6.1.4 DoubleSensor.java .. 81
6.1.5 ServerObject.java ... 81
6.1.6 AlarmObject.java .. 83

6.2 Security .. 86
6.2.1 Package: com.Security.UntrustedServer 86
6.2.2 Package: com.Security.TrustedServer .. 94
6.2.3 Package: com.Security.AutomatedSigning 98
6.2.4 Package: com.Security.RegulatoryAuthority 100
6.2.5 Package: com.Security.EncryptDecryptAlgorithms 102

6.3 Application Set-Up ... 105
6.3.1 Installation .. 105
6.3.2 JMS Configuration .. 105
6.3.3 Running the applications .. 106

Evaluation .. 107
7.1 Performance .. 107

7.1.1 Speed/ Latency ... 108
7.1.2 Throughput ... 116

7.2 Security .. 116
Conclusions ... 124
Future Work ... 127
Abbreviations ... 129
Bibliography ... 130
Appendix .. 133

A.1 Output of the Evaluation Tests ... 133
A.1.1 Performance ... 133
A.1.2 Security Attacks .. 142

 12

CHAPTER 1

Introduction

Clean rooms are rooms where products highly sensitive to environmental
conditions are produced and, therefore, these conditions need to be
monitored. Clean rooms are used extensively by pharmaceutical companies
for the production of medical products which should be very accurate and
controlled. For this purpose the clean rooms contain sensors which measure
the environmental values that are of interest for each production. Usually
these are Temperature, Pressure Difference (between the inside and the
outside of the room), humidity and number of particles. When an undesirable
measurement appears then an alarm or a warning is raised, depending on
how much the value change can affect the drug production. The
measurements as well as the alarms are logged in a database for future
reference.
The architecture used by many pharmaceutical companies nowadays
includes the sensors connected to PLCs and through them sending their
measurements to the monitoring system, usually a SCADA system. This
system evaluates the values and raises the alarms if necessary. Furthermore,
it sends the final data to the database to be saved. The systems used
normally are wired, time-triggered, soft-real time systems and some of them
involve a lot of additional costs and paper work when the system needs to
scale. More specifically, the transferring and logging procedures of the sensor
data should comply with the FDA regulations suitable for pharmaceutical
companies producing drugs and medical devices. Therefore, extending the
current network with adding new sensors includes evaluation/validation in
terms of compliance with the FDA regulations. This evaluation applies not
only to the new sensor, but also to the SCADA system as it part of the data
transferring. This procedure takes a lot of time and paper work and is costly.

The solution we propose in this thesis is a decoupled system network that
doesn’t include the monitoring SCADA system between the sensor – server
communication and therefore its FDA validation. A decoupled network has
the advantage that can be easily extended with new sensors, without
affecting the rest of the system architecture and functionality. The new

 13

network will also avoid the SCADA interference in the data transferring and
therefore its validation in case the system extends.
So, we assume the existence of a distributed system of wired sensors in a
clean room area. We assume that our sensors collect the data mentioned
previously and that they contain a clock to timestamp the data when
collected. The alarm and the warning (flashlight) are also time stamped. We
wish to examine the applicability of the publish/subscribe paradigm in order to
develop a decoupled event-based system, which is easier to extend, than the
one in use now.
The sensors would publish their measurements to an event bus, which would
route them to their final destination. There is a log server and an alarm
system subscribed to events of the event bus and therefore receiving the
ones they are interested in. The alarm system subscribes to all the events
and examines whether any measurement values above the permitted limits
exist, but he doesn’t store anything. In case of exceeding values, he
publishes back to the event bus an alarm event. Both sensor measurements
and alarm events would be logged in the log server, which would subscribe to
both types of events. The logging should be done in a secure way so that no
one can tamper later with the log file undetected.

To validate the proposed solution in this thesis we have gone through the
FDA regulations to see if and how they would comply with the publish-
subscribe paradigm. We also investigated the possible ways to implement the
publish-subscribe paradigm and chose the one that would best fit our solution
functionality. We, then, investigated the possible attacks in such kind of
logging system and chose the security scheme that would prevent those
attacks so that we can provide in the end a secure, tamper-free log in
accordance with FDA requirements. To show how our suggested solution
would work, we have developed a prototype that demonstrates this
functionality.

From the results of this thesis we’ve learned that it is possible to decouple the
existing communication system between sensors and database from the
monitoring one. So, the use of a new network architecture based on the
publish-subscribe method, makes the FDA validation easier and quicker,
which implies that our system can scale easier.

 14

CHAPTER 2

State of the Art

In the clean rooms of many pharmaceutical companies nowadays the data
exchange is performed over a wired, soft-real time system. The term real-
time, refers to a system where the correctness of its behavior depends not
only on its results, but also on the physical time. Soft-real time is called a
system that has to meet no hard deadlines of when a result is produced. [46]
The sensors are connected to Programmable Logic Controllers (PLCs) and,
usually, a Facility Monitoring System (MFS) is placed between the PLCs and
the server log. The FMS, which is SCADA based, is a control system that
reads the sensor value was sent to the PLCs and then analyses the receiving
data in real time. In case a measured value exceeds a predefined limit for a
certain amount of time, which could render the drug product unsuitable for
use, an alarm is produced. Afterwards, both the data and the alarm
notifications are sent to the database server to be saved.

2.1 Message exchange methods
In this section we provide a short description of the methods currently used
regarding loosely coupled systems, unlike the ones used in the
communication networks of the pharmaceutical companies where the
interacting components are not always decoupled.

Distributed shared memory
This mechanism is used for sharing data in a system without inner-process
communication. All the processes share the same memory, which means that
any change to a value there by a process can be seen by any other process
of the system. There are two approaches of the memory from a programming
point of view. One is called Shared virtual memory and is very common in
mono-processor systems which use paged virtual memory. Every process
has a physical memory, but all these distributed memories share a single
address space and consequently act as one total memory. This approach is
used in the operating system layer. The other approach is called Object DSM
and can be used in message exchange communications. The user defines

 15

which objects will be shared and the DSM system takes care of the handling
of these objects, i.e. creation, modification, access [30].
The advantages of the DSM mechanism are that it provides scalability to the
system, it hides the messages exchanged between processes and it can
handle large data bases without creating double messages or sending
messages to processes. On the other hand, it has also some disadvantages;
the programmer doesn’t have much control on the messages being
generated by DSM, there may also exist problems in the mechanism
performance and there should be a protection mechanism against
simultaneous access to shared data [31]. Furthermore, the interacting
components of a shared space model are decoupled in space and time.
‘Space decoupling’ means that the interacting components are not aware of
each other’s existence. ‘Time decoupling’ means that the publisher and the
subscribers don’t need to run simultaneously [39].

Message Passing (point-to-point)
This message passing mechanism requires two parties, a sender and a
receiver of the message. The messages are exchanged asynchronously,
which means that the sender can send one or more messages without
waiting for a reception notification and the receiver can receive one or more
messages, even if the sender is not currently transmitting any. The messages
transferred are kept pending in a queue, until they are received. The receiver
processes are aware of all pending messages, but each message can be
received by only one receiver. Senders usually send messages
asynchronously, while receivers work synchronously. So, there is coupling of
the communicating components in space and time, but not in
synchronization. Point-to-point communication is provided by the Message
Passing Interface (MPI) library, which helps in implementing data exchange
between processes [32, 39].

Remote method Invocation (RMI)
This method is used to enable computers in a distributed network to
communicate with each other through objects. It is implemented in Java and
is a way of remote procedure call (RPC), but in our case one or more objects
are sent along with the request. The call mechanism is called object
serialization and an RMI request invokes the method of a remote object [33].
The advantages of this method are that it is easy to implement and, therefore,
the applications using it are more flexible and robust. Moreover, no
installation is needed on the client side and thus, the server-client
communication is decoupled. However, a disadvantage is considered that it
can be unsafe when using Dynamic class loading, because the client-side
methods can be overwritten by a malicious programmer. Moreover, the object
sending mechanism is less efficient than the Socket objects. Apart from this,

 16

when a connection is broken while the remote method is executed, then this
method won’t return and further action should be taken to prevent this
incident [34, 35]. Remote procedure calls are coupled in space, time and
synchronization, and this is also reflected in this method. ‘Coupling in
synchronization’ implies that the senders’ and receivers’ functions are
temporarily paused when they send or receive notifications respectively [39].

Finally, another communication method used in loosely-coupled system is the
publish-subscribe mechanism, which is described in the following section.

2.2 Publish-Subscribe
This technology was used by middleware products which required
asynchronous communication of distributed systems in an autonomous and
decoupled way. The idea is that applications, called publishers just send
messages without any previous knowledge of the receivers’ identity.
Similarly, receivers called subscribers, receive only messages they are
interested int. Receivers use subscription as a way to keep up-to-date with
the latest updates on a subject of their interest. This provides a low-latency
update processing but on the other hand the subscription management could
be of great complexity, depending on the application. There is usually an
entity between publishers and subscribers that provides this service [37].
A disadvantage is that there are few ways for the subscribers to define in
detail their interest criteria on a topic-based subscription model. [38].
The advantages of this paradigm are that it is scalable due to the loosely
coupled relation between the components. The decoupling property is
provided in both space and time, i.e. the communicating components don’t
know each other and don’t need to run simultaneously. Moreover, any other
functions/operations they may perform are not temporarily paused by the
publish-subscribe operation. It allows also the use of database which
provides a big capacity and its response time is considered good.
Additionally, a subscriber can register to more than one message types on a
topic-based subscription model. [39]

2.2.1 Event Bus
Event Bus is ideal for communication of decoupled components, because its
architecture is very loosely coupled. Thus, we can easily add and remove
modules of the network during run time without affecting its core functionality.
It can send directly or broadcast messages. It is easy to be tested and is
currently used in many applications [11] [21].
The architecture of the network that the event bus supports can be:

• Publish-Subscribe: The idea is that components do not communicate
and depend on each other. They don’t even know each other’s

 17

existence. They just publish (send) events, which are heading to the
event bus. These events after the event bus will be distributed to any
subscriber which has subscribed to them [13].

• Broadcast: a message/event sent from the event bus will be delivered
to all modules/recipients

• Point-to-point: a message/event is sent to only one module [21].

The event bus is considered an improvement of the observer pattern, where
a module, called ‘subject’, retains a list of the observers’/subscribers’
modules to events. The event bus keeps the loose coupling and broadcasting
properties of the observer pattern, but avoids others such as code
duplication, since the list of observers is kept in the event bus and not in each
module separately. The event management is performed by a few classes,
which makes debugging easier. Finally, the event wiring is easier, since
observers don’t search for subjects and the other way round, but everything
is based on event types [22].

Java Event Bus
It implements the publish/subscribe paradigm between java objects. Objects
don’t need to refer to each other to communicate. Subscribing to an event
includes class semantics and string matching. The version currently used and
tested for a long period is 1.x (e.g. in applications such as Swing, SWT, and
Apache Pivot), but version 2.x is also under development to include more
toolkits than the previous one (e.g. Ajax, GWT, and Flex) [11]. The latest
version currently available is 1.4, but it is considered to be relatively slow.
The listeners are defined through annotations and we have both strong and
weak references to store the subscribed listeners. It supports both
synchronous and asynchronous event dispatching. In the synchronous
dispatching the publication method is blocked until the event it sent is
received by all handlers, while in the asynchronous dispatching the
publication method returns immediately after the event is sent and the event
delivery runs in another thread in an asynchronous manner. Event bus
probably has a static filtering mechanism and also it makes it possible to
influence the handlers order by ordering criteria [12].
The JavaEventBus can be used by both user interface (or SWING)
applications and non-Swing applications. The basic interface in the
JavaEventBus library is the EventService. It can be implemented either as a
ThreadSafeEventService or as SwingEventService. In
ThreadSafeEventService implementation publishing and subscription of an
event is done on the same thread. We can use this implementation for multi-
threaded (or threadsafe) applications. The SwingEventService extends the
ThreadSafeEventService, providing the possibility of an event not published

 18

on a EventDispatchThread (EDT), to be later subscribed to it. The
SwingEventService implementation is the one used by default and should be
avoided in non-Swing applications, if we want them to perform as expected.
We can avoid this either by configuration or by using the API. In both cases,
we change the setting concerning the EventServiceLocator, which is a
registry of the EventServices [5]. Alternatively, we could create a new
EventService implementation, which “overrides the publish method and
routes the call to a thread in a thread pool” [4].
The EventService has two types of publications/subscriptions - Classes and
Strings. In the class-based type, a component publishes an event as an
object on the EventBus and then any component can be subscribed to the
class of that object in order to be notified. In the topic-based type, a
component publishes an event object using a String, called “topic”. Any other
component subscribed to that specific “topic” on the EventBus/EventService,
will be notified and receive the corresponding object.
Finally, there are two ways of subscription, weak and strong. Weak
subscription, which is used by default, is implemented by using Weak
References to manage the listeners and is applied when using the
subscribe() method. The disadvantage of this method is that the subscriber
can get garbage collected, even during his subscription. Strong subscription
avoids this problem and is implemented with the subscribeStrongly() method.
Its disadvantage, however, is that it generates memory leaks, if the
subscribers are not unsubscribed when needed [6].

Simpleeventbus
It implements also the publish/subscribe model, so that components can be
decoupled with each other. This way the communication among them is
much simpler and stable. It uses weak references to store internal subscriber
objects, which, on one hand avoids garbage to be collected in the event bus,
as it removes the objects if the subscriber misses its strong references, but
on the other hand it can result in events that are lost for subscribers without
strong references [13]. It is quite easy to implement and offers a fast delivery
of the events. The characteristic that differentiates it from the other
implementations is that the event delivery can be cancelled. The listeners are
stated via annotations. The event dispatching is only asynchronous and there
is no event filtering applied. Finally, we cannot apply ordering criteria to the
event handlers [12].

Google Guava Event Bus
It offers another way to implement the publish/subscribe architecture,
following the Observer Pattern instead of the Event Listener (followed in
Java). The difference here is that objects do not subscribe to other objects or

 19

the event bus, but to event types [14]. Components do not register with one
another and therefore are not aware of each other’s existence. This renders
this event bus not of general type [15]. Listeners are defined here also via
annotations. There is synchronous event dispatching, while the asynchronous
one is performed only via specialized classes. There is no event filtering and
handler prioritization. Finally a big disadvantage is that it uses strong
reference types, i.e. the client should take care of the unsubscription of the
subscribed listeners [12].

GWT (Google Web Toolkit) Event Bus
It is an event bus built as a GWT application, using usually the mvp4g
framework. As a web application it uses the Model-View-Controller pattern.
The Model, which contains data and methods, expects to receive requests by
the Controller and the View, to which it responds. The View renders the
Model. When we have more than one Views that have to cooperate with each
other, instead of having their Controllers communicate with one another, we
have them communicate via an event bus. Thus, the system is decoupled. A
Controller creates events and event handlers and provides the connection for
the Model and View to communicate. Below in figure 2.1 we can see the
model of a single view [16] [17].

Figure 2.1: A single view of the model of GWT Event Bus

MBassador
It is an event bus that models the publish-subscribe paradigm. It is not heavy
for the system and contains a lot of features. It is efficient in performance and
resource use. It copes well with concurrent applications. Some of its features
are: it annotates its message handlers (listeners); the events can be of any
type and their hierarchy is defined upon delivery; the event publishing can be
done either synchronously (the method blocks until the message is delivered)
or asynchronously (once the message is sent, we forget about it); it uses
static filtering and handlers prioritization; it uses weak references, thus there

 20

is no need to unsubscribe listeners when not used; it is designed in a way
extensible in the future for custom applications [18] [12].

Gum Tree Event Bus
It is based on the publish-subscribe method. Events are created upon state
change and then the event bus sends a StateChangeEvent to all the
subscribers. The limitation of this event bus is that it can only have one
thread in its pool. So, a delay may occur if one task is running for a long time
inside a HandleEvent method. It is better for the programmer to create his
own private event bus for handling critical events, rather than the global gum
tree [19].

JQuery as Global Event Bus
This event bus is mainly used in web development and not so often in other
systems. It uses also the publish-subscribe paradigm but it is used for
example to inform objects of a page about changes happening in an element
of the web page [20].

Other Event Bus implementations (UI toolkits):
Flex – Mate
Mate is a framework which is based on tags and its purpose is to handle
events created by our Flex application. It helps us find who handles the
events, whether we need to retrieve data from the server or to trigger an
event. Currently version 9.0 is released. The main functionality of Mate is
based on the EventMap, which consists of EventHandlers for each type of
event distributed, and it is usually implemented as a stand-alone mxml file
[23].

Java Server Faces
The JSF user interface is responsible for checking that an event occurred. It
creates then an instance of the event class related to this event and adds it to
an event list. A UI component fires an event to signal user actions. For firing
the event, a checking of the list of the event listeners is required and the
already registered handler or listener is notified.
The difference of JSF from the event model for standalone applications is that
since the user acts in a client, which doesn’t communicate always with the
server, some events arrive delayed (when there is a new connection). To
handle this, the creation and handling of events is performed in different
phases [24, 25].

 21

2.2.2 Java Messaging Service (JMS)
Messaging is a method used by different software components/clients, which
want to communicate. However, it is not necessary that the application clients
know with which ones to exchange messages, but only the message format
and destination. This way we achieve a loosely coupled communication.
There is a messaging agent, to connect with, that is responsible for creating,
reading, sending and receiving messages among components.
JMS is a Java application that provides interfaces and related semantics,
which can be used by client applications to exchange messages. JMS acts as
a messaging agent, i.e. creates, reads, sends and receives these messages.
The application clients should also be implemented in Java, in order to use
this technology. The communication it provides is loosely coupled,
asynchronous and reliable. Asynchronous messaging means that the JMS
provider delivers messages to the client, the moment they arrive and not
upon the client’s request. Reliable messaging means that a message is
delivered one time. However, it is possible to set up a messaging service,
which allows lost or double message delivery, if needed.
The current version of JMS is 1.1.
The JMS application can be proved very beneficiary for enterprises, who
want components communicating without any knowledge of other
components, and therefore can be easily replaced. Components send
messages and continue to operate without receiving any response. Finally, it
could be the case that not all components operate at the same time.
The JMS was first introduced in 1998 and was used for applications to
access messaging-oriented middleware systems (MOMs). However,
nowadays it can provider many more capabilities useful for enterprises. When
Java EE 1.3 platform was first released, JMS was a part of it. So, nowadays
Java EE platform contains the following components used for JMS;
application clients, Enterprise JavaBeans, web components, message-driven
beans and messages. Application clients can exchange message in both
synchronous and asynchronous way, while the Enterprise JavaBeans and the
web components only in a synchronous way. The message-driven beans are
used for asynchronous communication and finally message exchanges allow
also the exchange of JMS operations as well as the performance of database
access [7].

JMS Architecture
The architecture of the JMS API consists of the following components; a JMS
provider, JMS clients, messages and Administrated Objects. The way these
components interact is shown at figure 2.2. Administered objects are
preconfigured JMS objects and can be of two types; destinations and
connection factories. An administrator creates them to be used later by the

 22

clients. The Administrative Tool binds these objects to a JNDI namespace.
JMS clients are programs written in Java which produce and/or consume
messages. They inject resources to access the administrative objects in the
JNDI namespace. Finally the JMS clients establish a logical connection to the
administrative objects through the JMS provider. “The JMS Provider is a
messaging system that implements the JMS interfaces and provides
administrative and control features”. Both JMS Provider and JMS clients can
be implemented in Java EE platform [8].

Figure 2.2: JMS API Architecture

Messaging Domains
The JMS API provides two messaging domains, point-to-point and publish-
subscribe. A JMS provider can implement both of them and a client can use
both.
A point-to-point application contains the following components; senders,
clients and messaging queues. Senders send messages to a queue. Each
queue accepts a specific type of messages and keeps them until they are
consumed or expired. The client consumes the messages and acknowledges
the fact, but doesn’t have a time dependency with the producer. A message
can be consumed only by one consumer.
A publish-subscribe application contains the publishers, who address
messages to topics and the subscribers. The publishers are not aware of the
subscribers’ existence. There can be multiple publishers and multiple
receivers. In this case there is a timing dependency among these two
components, as a client needs to subscribe to a message topic, before the
message is send. Furthermore, the message consumption is done only if the
consumer is active. It is, however, possible to create durable subscriptions,
which receive messages even if the consumers are not active. In figure 2.3
we can see a scheme that shows how the publish-subscribe paradigm works.

 23

Figure 2.3: Topic-based Publish Subscribe paradigm [36]

The message consumption can be categorized as either synchronous or
asynchronous. In synchronous consumption, the client fetches the message
by calling the receiving method, which in turn blocks until the message
arrives or a time out occurs. In asynchronous consumption, the client
registers a message listener with a consumer. So, when a message arrives to
a destination, then the JMS Provider calls the onMessage method on the
client to deliver the message to the client [8].

JMS API Programming Model
We can see the JMS programming model in figure 2.4:

Figure 2.4: The JMS Programming Model

 24

First of all, we create the administrative objects in the JMS Provider. We can
use the Administration consol of Glassfish Server to do that.
The connection factory object can be created as an instance of either
ConnectionFactory.QueueConnectionFactory or
ConnectionFactory.TopicConnectionFactory interface. The client uses this
object to create a connection to a provider. The client program includes a
connection factory resource statement, which injects this resource to the
connection factory. We should remember to close the connection, so that the
JMS Provider releases the resources.
Using Glassfish we can also create a destination object (by specifying a JNDI
name). This object is the place where the producers send their messages,
and from where the receivers retrieve them. We call them queues in the PTP
domain and topics in the publish-subscribe paradigm. A JMS application can
use many queues or topics or even both. Apart from the destination defined
in the JNDI, we also need to specify a physical destination. In the client
program, we inject also a destination resource. “The resource names are
mapped to destination resources created in the JNDI namespace”. We
should not forget that a destination is connected to only one domain; queue
or topic. In order to allow both, we create an object of type “Destination”.
“A connection encapsulates a virtual connection with a JMS client”. It creates
one or more sessions. However, this option is only available for client
applications in Java EE.
A session is a “single-threaded context” and is used to create messages,
producers, consumers, queue browsers, queues and topics. When creating a
session, we can define it as transacted or not, and also specify whether the
messages get automatically acknowledged by the session when received
successfully or not [9].

2.3 Secure Logging
Audit log security includes protection from modification and deleting without
permission, so that it is possible later to detect and investigate the security
violations that occurred.
A very popular method for securing audit logs is Forward Security
mechanism.
It was first introduced by Bellare and Yee (1997) and the general idea is
using message authentication codes (MACs) to encrypt the logs in a way,
that even if the storage system is compromised (i.e. a MAC key becomes
known to the attacker) he cannot read or alter old entries. He can only delete
them, but not without being detected. More specifically, time is divided in
“epochs”. So, if a system is compromised in time Tc of an epoch Ej, i.e.
Tc∈EEj = {t:Tj<t<Tj+1}, then the attacker cannot see entries for time t<Tc.

 25

An attacker would ideally wish to modify and erase logs without being
detected. He tries to exploit bugs that a Trusted Computing Base (TCB)
possibly has and gain privileges that let him exploit log data. One of the ways
to prevent attacks till 1997, have been using remote logging, where the
logging host sends the data to a remote host, which hopefully the attacker
doesn’t have enough knowledge to exploit. Another method which can be
used additionally is log replication, where the data is copied from the host to
more than one remote hosts, so any erase action can be easily detected, as
the attacker won’t probably be able to intrude to all the remote hosts to cover
his actions. Of course, these two methods are based on assumptions. In case
these assumptions are not valid, e.g. the intruder gains access to all logging
hosts, then these two methods are not safe anymore. Another method used,
was writing the audit log to a printer. This requires filtering the log entries in
advance so as to avoid printer overwhelming. However, if the attacker gets
physical access to the printer, then no security can be applied. The same
thread exists for Write Once Read Multiple (WORM) drives, as long as the
attacker can access them physically.
MAC keys are used usually in a sender-receiver communication, but we
cannot apply the exact same scheme on a log stored locally, as the data can
be at risk in case the attacker learns the secret MAC key. The way we will
use the MAC coding is different now. Entries will be encrypted upon writing.
We initialize a log system LOG within epochs. The data will be logged in the
log system in an order. The MAC code will be different for every epoch. The
MAC key Ki of an epoch Ei will be created by a non-reversible function from
the key Ki-1, and when a new epoch starts, then, the key of the previous
epoch Ki-1 will be erased. The base key K0 will be able to verify all the log
data and thus will be saved in a secure remote verifier, assuming to be
uncompromised. This verifier is assumed to retain also all the keys and keeps
its privacy and integrity properties. As we mentioned we divide the time in
epochs, which are sequential and not overlapping in time. Every epoch has a
first and last message and there are no messages on the boundaries of the
epochs. The LOG creates a log entry for each message it receives, but they
are not verified immediately. A log entry is of type (mi, FIMACj(mi)), where
FIMAC is an authentication code which doesn’t transform the messages, but
just appends to them. The verifier computes the following:

Valid(m,j,x)=
_ _ ()

_
jtrue if x FIMAC m

false otherwise
=

The logger can add any data he wishes to the data log. In the end of every
epoch he adds an additional log entry. The key Ki of the FIMAC is generated
from the previous key Ki-1 using a one-way function. Afterwards the key Ki-1
is erased from the system.

 26

Let’s assume an algorithm A running for time t and creating maximum q log
messages of length maximum L. (q,t,L,e) FI secure is characterized a log
system if there is not such an algorithm, that can make an “open” request to
learn all secrets and outputs (m,j,s) with probability e, i.e. a false entry (m,s)
for an epoch Ej earlier than the time he intruded. This term is concerned only
with the attacker possibility of forging log entries but not deleting them.
Deleting of log entries is a denial-of-service attack and can only be detected.
A log system is characterized as (q,t,L,e) deletion detecting-FI secure (DD-FI)
if it is FI secure, according to the previous definition, and also the log verifier
can detect whether log entries were deleted, if he is given the log system
output and the epoch, during which the attacker compromised the system.
We use the prf-chain FI MAC to design MAC algorithms with forward integrity
(FI) property. The prf-chain functions by using block ciphers and standard
MACs. The initials stand for pseudo-random functions. In each epoch Ej, the
log system has a secret value sj. All the data messages of that epoch have
the MAC code: MACkj(mi), where kj=prfSj-1(0). When we move to a new epoch
Ej+1, then we generate both the new secret sj+1=prfSj(1) and the new MAC
key kj+1=prfSj(0), and finally we erase the secret sj and MAC key kj of the
previous epoch from memory. “The prf family can be broken with probability
d/n using 2 queries” and “its security downgrades linearly with the number of
epochs”.
To design MAC schemes with DD-FI security we need to include sequence
numbers and create a marker to denote when the log changes epoch, before
the change occurs. The log entries mj have a MACki(0|rel(j)|mj), where rel(j)
is the message sequence number inside the epoch, i.e. j-first(epoch(j))+1.
The symbol | shows concatenation. Upon a change to the next epoch we
have a marker MACki(1|rel(last(i))) and afterwards the creation of the new
secret and MAC key takes place. This marker is the way to detect when a
deletion occurs in the log system by an attacker.
As we mentioned previously the secrets are shared among the log system
and the verifier. This can be done encrypting them with the verifier’s public
key. Of course, this is not enough as an attacker can send false messages
encrypted with the verifier’s public key. So, we additionally use authentication
of the log system in the beginning of the log with either a timestamp protocol
or a signature mechanism with the forward non-reputability property using the
public key. An alternative of using secrets in the log system is having the
verifier to create the keys and send them to the log system by a cryptographic
mechanism with forward security.
In an attack network latencies play an important role on the speed an attacker
compromises a system and if his attack is automated. It is necessary that our
FI log system changes epoch with high frequency, so that the FI scheme can
be efficient. It may also be the case that the log entries have associated

 27

requirements such as keeping data about failed log-in trials. These may lead
to leaking the user’s identity. If we ignore covert channel and traffic analysis
attacks, then encrypting the log entries before sending them to the logger can
be an adequate security measure [29].

Another approach to secure logging is given by Schneier and Kelsey (1999).
Their solution method manages to prevent an intruder to read and alter
entries in a machine before the time he potentially compromises it and
detecting his actions of deleting old data. Still no guarantee can be given for
data logged after he has compromised the machine. We also assume that
there is not a reliable and secure communication channel between the
untrusted machine U, which initially stores the logs, and the trusted server T.
They also assume the existence of a partially trusted verifier V, who can read
but not change the records in U.
The method, in brief, is the following; U ensures a secure connection with T
and shares a secret key to create a log file. After every log entry, the log
authentication is hashed with a one-way function. Every new key is derived
from the previous one with a one-way function and overwrites the old one.
Every entry has an element in a hash chain, which can be used to
authenticate all the previous log entries any time, even remotely. Finally,
each log entry has a unique permission mask, which defines which entries
can be accessed by whom partially trusted user, since each of them has
different access rights.

Figure 2.5: Adding an entry to the log

In figure 2.5 we can see a scheme that describes how the security
mechanism works, i.e. how we can create the next secure log entry Lj based
on the previous one Lj-1. The letter Dj represents the data which we want to
enter in the next entry j. The letter Wj represents the log entry type, i.e. the

 28

permission mask for the verifier V. T determines which log entry types Wj will
V access. The letter Aj is the authentication key for the jth log entry. The first
key for the first log entry is Ao and is either generated by T and is securely
sent to U or the other way round. The way to generate keys for the following
entries is by applying the increment hash algorithm on the current key.
Immediately after creating the new key Aj, the previous one Aj-1 is deleted.
(We could create an Abnormal Shutdown message and store it in nonvolatile
storage. This message can be used in case of a system crash and will be
copied to the log file after system recovery). The letter Kj is the result of the
hash algorithm between the log entry type Wj and the authentication key Aj.
Kj is used as the encryption key to perform symmetric encryption of the data
Ekj(Dj) (e.g. DES, IDEA or Blowfish algorithm). Immediately after creating
the new key Kj, the previous one Kj-1 is deleted. Moreover, Kj is deleted also
after its use (i.e. after encrypting the data). The letter Yj is the hash chain,
generated by the hash algorithm applied on the previous hash chain Yj-1, the
encryption key of data Ekj(Dj) and the log entry type Wj. This chain allows V
to verify parts of the log, since he is based on Ekj(Dj) and not Dj. In the
beginning of the chain Y-1 is a 20-byte block of binary zeros. Finally, the
letter Zj is computed by applying the symmetric message authentication code
on the hash chain Yj, based on the authentication key Aj. So, a log entry Lj
consists of the following information; Wj, Ekj(Dj), Yj and Zj. With this scheme,
if an attacker compromised U at a time t, he will have a list of log entries and
the key At+1. He cannot calculate the previous authentication keys before t, so
he cannot read or modify the previous entries. He cannot create new ones
either, but he can delete old entries and learn about the new ones. However,
if he deletes old entries, T will detect when U will interact with it.
The start of this procedure is special, as U needs to establish a secure
connection with T using Diffie Hellman protocol. U forms the following values:
a random session key Ko=hash(Wo,Ao), a current timestamp d, a timestamp
of his timeout d+, an identifier for the logfile IDlog, it’s certificate from T Cu, a
random starting key Ao and a value X=p,d,Cu,Ao, where p is the protocol
step id. He sends then to T the message Mo=p,IDu, PKEpkT(Ko),
Eko(Xo,SIGNSKu(Xo)), where PKE is the public key encryption under T’s
public key and can be implemented with RSA or ElGamal algorithm, SIGN is
the digital signature with the private key of U and can be implemented with
RSA or DSA algorithm and finally, E is the symmetric encryption under the Ko
key. U then creates the first log entry Lo using Wo=LogfileInitializationType
and Do=d,d+,IDlog,Mo and stores Ao and hash(Xo) locally, while he waits T’s
response. T verifies the Mo message he received from U. For the message to
be correct it should decrypt correctly, include the valid signature of U and his
valid certificate. In the case of a correct message, T creates a random
session key K1 and sends back to U the message M1=p, IDt, PKEpku(K1),

 29

Ek1(X1,SIGNskt(X1)) where X1=p, IDlog, hash(Xo). Finally, U verifies the
message M1 he got from T and forms a new log entry Lj with log entry type
Wj=ResponseMessageType and Dj=Mj. He also calculates
A1=hash(“Increment Hash”, Ao). But in case M1 is invalid or sent after d+,
then U forms a log entry with W1=AbnormalCloseType and D1 containing the
current timestamp and a description of the reason of the closure.
Subsequently the file is closed. The purpose of writing down this last type of
message, is to prevent the case of an intruder deleting all log files of U after
compromise and then claiming that U didn’t ever receive M1 in the startup.
We have a specific procedure to end and close a Logfile. The final message
we write has entry code Wf=NormalCloseMessage and as data Df a
timestamp. The final authentication key Af and Kf are deleted and the file is
then closed. Afterwards, T can receive and validate the complete log, since
he has the hash chain and the Zf (because he knows Do). He can also find
the encryption keys and read the log entries.
In case some person or machine V moderately trusted wants to read or verify
some entries while still on U, then this is possible under the condition that T
has sent message M1 to U, T has received a copy of the log from U and the
log is not closed, yet. The reason for this is that if V is compromised in the
startup procedure of U and T, then it will access all data in U. The procedure
is the following; U sends a copy of the log entries to V, including message
M1. V verifies each entry of the hash chain and, then, creates a secure
connection with T, using a key. He makes a list Q of the log entries he wants
to read, which contains their log entry type Wj and the entry index, i.e.
Qj=j,Wj. Then he sends to T the message M2=p, IDlog, f, Yf, Zf, Q. T verifies
that the log originated from U is correct and V has the rights to learn it. T can
calculate Af from Ao and therefore verify that Zf=MACa(Yf). In case of a
problem, he sends an error message to V and records the problem which
could be caused either from the U’s IDlog or by V. In no problem occurs, T
creates a response list R for each Qj. The Rj contains either the decryption
key (which he computed based on Wj) or the reason for its refusal. He then
sends to V the message M3=p,R. V can read but not modify the log data.
Finally, V deletes the connection key he had established before to
communicate securely with T [40].

We also came into the approach suggested by Ma and Tsudik (2009), which
seems to find vulnerabilities in the two methods mentioned previously and so
they suggest a new one, which overcomes them. They found out that the
Schneier-Kelsey method has two security vulnerabilities; one is the truncation
attack, which means that an attacker can compromise U and delete the last
entries which are logged in U but not yet sent to T. And since the
communication between U and T is not continuous but in most cases event-

 30

driven, T cannot find out that some entries are missing from U. The other
security drawback of this scheme is the delayed detection of the attacker.
This is the occasion because V needs T to verify a log file and can happen if
the attacker compromises U, before T receives the latest log file and before U
closes the file. The attacker can then read the current authentication key Ai,
generate MACs from the current time and modify the related messages Mi
and values Yi, but not Zi. So, when V gets a copy of log entries and sends the
final values of his file Yf and Zf to T, the later verifies them successfully. The
attack will be detected only when U communicates with T, which can take a
while. Furthermore, the Schneier-Kelsey scheme has two architectural
limitations. There is a need of an online server, as we require continuous
communication between U and T and between V and T. Secondly, the
storage requirements of the scheme are inefficient, as we need in total at
least 512 bits per log entry (256bit for the hash value Yi and 256 bits for the
MAC Zi). This makes the scheme inappropriate for devices with limited
storage capacities, such as sensors, implantable medical devices etc.
Moreover, the use of multiple authentication tags, instead of a unique one,
may cause truncation attacks. The same security drawbacks and architecture
limitations characterize the Bellare-Yee scheme and therefore make it
unsuitable for use.
Ma and Tsudik suggest a scheme that overcomes the above problems and is
called “Forward Secure Sequential Aggregate (FssAgg) Authentication”.
Additionally, this scheme provides: (a) data integrity, since the attacker
cannot insert fake data or modify or delete the existing ones, (b) stream
integrity, since he cannot re-order the log entries, and (c) forward security,
since the signing key is produced by a one-way function and the attacker
cannot recover previous keys and signatures from the current key. The
components included in the scheme are FssAgg.Kg, FssAgg.Asig,
FssAgg.Upd and FssAgg.Aver. The first one is an algorithm for creating pairs
of public/private keys given the maximum number of time periods as input.
The second one is an algorithm which takes as input a private key, a
message and the aggregate signature so far and computes a new signature
to sign the message and combines this signature with the signature so-far to
generate the new aggregate signature. Then the FssAgg.Upd procedure
runs, which creates a new signing key for the next time period, using as input
the key for the current period. Finally, the fourth algorithm verifies whether a
signature is valid or not, by taking as input an aggregate signature, a set of
messages and a public key. This scheme satisfies also the property of
correctness, as an aggregated signature created by FssAgg.Asig is verified
by FssAgg.Aver, and the property of unforgeability, since an attacker cannot
make a valid forgery even if he know the current signature key.

 31

The scheme they suggest is implemented in two ways, each serving different
needs; a private-verifiable method and a public-verifiable one. The first one
uses again the players T, V, U but to avoid the online server, we use two
MACs, one verified by V and one used by T to verify log entries. Therefore,
any time an authenticated log file consists of two MACs and the log entry. In
the beginning T is online and U commits two random symmetric keys A1 and
B1, information about the log and the key update frequency UPD. This
frequency is fixed by T or U and can depend on time or activity, but here we
assume that we have an update for each log entry. We assume U is not
compromised in the beginning. After T receives those, he goes off-line. He
stores these two initial keys and knows that at least one log entry L1 exists in
U, so as to avoid total deletion by an attacker. U after sending these two
keys, he creates an entry log L1 which relates to a message, e.g. “START”,
creates two MACs from the two keys μΤ1=macA1(L1) and μV1=macB1(L1) and
uses a one-way hash function F to generate new keys A2=F(A1) and
B2=F(A1). The log entry generation process is as follows; before creating the
ith entry, U contains the log entries L1 to Li-1, the keys Ai and Bi and the
MACs μΤi-1 and μVi-1. At the ith entry, U creates the Li entry, the MAC for V
macAi(Li) and the value μvi=H(μVi-1||macAi(Li)), where H is a one-way hash
aggregation function, which unrolls as μvi=H(H(…H(μV1||macA1(L1))…||
macAi(Li)). Similarly, U creates the MAC for T μTi=H(μTi-1||macBi(Li)). U then
creates the keys Ai+1=F(Ai) and Bi+1=F(Bi) and deletes the keys Ai and Bi.
Finally, to close a log file U creates a log message Lf, updates the μVf and μTf,
deletes the keys Af and Bf and sends the closed file to T. When V wants to
validate a series of entries, he receives key A1 from t and a copy of entries
L1 to Lf’ and μVf’ from U. He computes keys A2 to Af’ and μ’Vf’ and checks if it
matches μVf’. T validates the final closed log file using B1 and μTf. With this
scheme V can verify a log file without T’s help, which make our scheme
efficient in matters of storage. However, we still cannot prevent a delayed
deletion attack.
The public-verifiable scheme is generated to achieve this. Instead of T we
use a Certification Authority (CA) to certify/register the public key of U. And V
belongs to the public domain, which means that anyone with a copy of the log
file can verify it. Therefore, it is suitable for scalable systems which require
public verification. Here a log file contains the log entries and a signature σ1,f.
In the beginning U uses the FssAgg.Kg algorithm to create a pair of private
sk1 and public pk keys. He registers the public one with a public CA. So, a
certificate of a log file IDlog is CERT(IDlog)=SIGNca(U, IDlog, t, T, pk,
timestamp, …), where U is the log creator, t the starting time and T the
maximum number of key update periods. He then creates the log entry L1,
sets it to the certificate, creates a signature σ1,1 on L1 using FssAgg.Asig
algorithm and the initial key sk1. He updates the key from sk1 to sk2 with

 32

FssAgg.Upd and deletes sk1. When creating a log entry i, the log file contains
so far the entries from L1 to Li-1, a signature σ1,i-1, his current private key ski.
When we have a new event, U creates a log entry Li, creates a new signature
σ1,i to sign Li, giving to the FssAgg.Asig algorithm as input Li, σ1,i-1 and ski. He
uses the FssAgg.Upd algorithm to update the secret key ski+1 and deletes ski.
In case we reach the T number of update periods, we can extend it. We can
create a special log entry LT, which contains the new batch of public keys.
We can create a public key for the new number T and use the initial skT
(created in the creation of LT) to certify a new set of public keys to be used in
the future. To close the log file U creates a respective log file Lf, updates the
signature and deletes the secret key. Validation of the log by a verifier V can
be done by extracting the public keys from the CERT(IDlog) value which is
included in the initial log entry L1 and by verifying CA’s signature on this
value. He finally verifies the log with the aggregate algorithm FssAgg.Aver.
There has been the need to extend the FssAgg scheme in a way that it
becomes immutable. The reason is that currently there is only one aggregate
tag. The individual ones are deleted after integrated in the aggregate.
Therefore, we can only verify the entire log and not individual logs. However,
this can be inconvenient and costly if individual verification is desired.
Moreover, using the aggregate verification we cannot derive any info about
the authenticity of its version. A solution would be keeping individual
signatures, but the aggregate methods are public. So, any revealing of either
the individual signatures or the MACs implies truncation attack. So, we
applying immutability to a private MAC scheme means that U will create a
phantom MAC in the beginning and compute μ1=macA1(L1) on the “start”
message L1, update A1 to A2, then compute μ2=macA2(L2) and aggregate
μV,2=H(μ1|| μ2). Both μ2 and μV,2 are stored, A2 is updated to A3, then μ1 and
A1 are deleted. Therefore, if a verifier wants to validate a specific log, then he
can use just μi. In the case of a signature FssAgg scheme, immutability is
applied differently. U computes both an individual signature σj for a log entry
Lj and an umbrella signature σj* for k+1 entries of Lj-k,..,Lj. The umbrella
signature is aggregated with the aggregate so-far one and then erased. The
time period this signature is created is called anchor point and the
corresponding entries anchor log entries. The individual signature is the one
used for individual verification of each log entry [41].

Ma and Tsudik provide the details on how to implement the FssAgg methods
in [43]. First, they explain the FssAgg MAC scheme, where H is a one-way
hash function of k-bit strings domain, Ha is also a one-way hash function of
arbitrary length input and h is a MAC, which takes as input a k-bit key x and a
message m and outputs a t-bit MAC hx(m). The FssAgg.Kg algorithm is
implemented as a symmetric key generation algorithm which creates a k-bit

 33

secret key. The FssAgg.Asig method, which takes a message Mi and an
aggregate so-far signature as inputs, firstly generates a MAC signature on Mi
using ski, σi=hski(Mi), and secondly calculates σ1,i=Ha(σ1,i-1||σi). The method
FssAgg.Upd functions as ski=H(ski-1). And finally, the FssAgg.Aver is used by
the verifier who has the initial secret key sko. He calculates the other keys
through the public update function, he then re-computes the signatures and
compares them with the original ones. If they match then the log is verified,
otherwise it is not.
As for the FssAgg signature scheme it is based on the BLS scheme. The last
one uses bilinear mapping of cyclic groups G1 x G2 -> GT. The hash function
H is used to generate the key Gi for each signer computing v=gix, where v is
his public key and x his private one. Then the FssAgg.Kg algorithm would
generate the key pair xi=H(xi-1) and v=gix. The FssAgg.Asig first computes a
signature σi=HXi(index||Mi), where Mi is the message to be signed and index
the position of Mi in storage, used for ordering. Then the method aggregates
the signature by multiplying σ1,i= σ1,i-1* σi and, afterwards, the signer updates
the key. The FssAgg.Upd updates a secret key by the hash function xi=H(xi-

1). Finally, the FssAgg.Aver function uses e(σ1,n)=Πi=1,n e(hi, vi) and the
public key to verify an aggregate signature. [43]
Ma has gone even further and explored the cons and pros of the above
aggregate signature scheme. Both of its schemes resist the truncation attack.
However, the one based on the MAC scheme provides message-level
forward security but doesn’t support non-repudiation and public transferrable
verification. The one based on the signature scheme, also called as BLS-
FssAgg provides interval-level forward security but requires a lot of space for
storing in the verifier’s side. In the case that an attacker obtains the signing
key then he can add and remove tags. Moreover, it is not suitable for use in
data intensive application such as databases. Instead he suggests two new
schemes BM-FssAgg and AR-FssAgg, which are better than the BLS-FssAgg
scheme in many factors, such as constant public key size, efficient aggregate
verification etc. It then explores two ways of using these signatures; the first
one is as soon as the message is generated which is not so secure in the
scenario that we have sensors storing their secret key together with their
data. The second way is to wait until we can move to the next interval and
then sign the data. This method prohibits the attacker to obtain the secret
signing key even if he compromises the system. However, the
implementation of these two schemes BM-FssAgg and AR-FssAgg is trivial.
The authors will search for a non-trivial one in the future. [44]

Stathopoulos et al. (2006) investigate the privacy and confidentiality
maintenance in public network providers such as telephony, either fixed or
mobile, and Internet Providers. They believe that secure logging plays a vital

 34

role in detecting any security attacks by internal or external malicious users.
Therefore, they suggest a secure logging method to ensure security in
telecommunications of public networks. They have already read the security
schemes for logging which have been proposed till that time by others,
including the ones of Bellare and Yee (1997) and Schneier and Kelsey
(1999). They noticed that most of these schemes assume that the host’s
Operating System is not compromised by an attacker.
The thread models considered by the previous schemes, include the log
Generators and the log Server and are two: (a) “Trusted Generators and
Marginally Trusted Log Server”, where disclosure and modification attacks
may occur in the log server, and (b) “Distributed Log Generators and
Marginally Trusted Log Server”, where we consider a distributed system
vulnerable to impersonation attacks against log generators and transmitted
log messages, as well as disclosure attacks on the messages transmission.
Stathopoulos et al. assume that all components involved in logging are semi-
trusted, i.e. the generators, the log server and the transmission channel.
Therefore, they also consider insider and collusion attacks between log
generator and server, which are not investigated by the previous thread
models. More specifically, they consider modification attacks (a) on saved
logs by attackers who have compromised the server, (b) from corrupted
generators and (c) from colluding generators and servers. They also assume
that a trusted Regulatory Authority RA exists which ensures the security and
privacy in the Provider. Finally, the security framework is considered to keep
the properties of availability and integrity of the logging procedures and log
files.
There are 5 phases that contribute to this framework constitution.
1. In the first phase, we define the network and operational events,

describing what is important to be logged in the Provider. In order to
define this, a Reference Model (figure 2.6) is used, where the logging
needs are analyzed from three views, called Planes; (1) the Functional
Plane, models the network and its operational events, without considering
information about architecture, implementation, design and topology
constraints. So, this plane is not limited only to a Provider environment.
This plane links functions to the log files that monitor them. The data that
should be logged here are security functions (such as system access
control, password and user management), service management functions
(such as monitoring and troubleshouting) and network management
functions (such as network configuration, connectivity and routing). (2)
The Service Plane models services executed within the network or the IT
nodes, such as password management, dsl, snmp etc. It discriminates
the system from the application services and it concerns the operating
system platform, the communication protocols, interconnections and the

 35

hardware. (3) The Logging Plane describes in log files, commands and
events of each service.

Figure 2.6: Log Reference Model

2. In the second phase of the framework, we define the operational and

security requirements of each log file, which depend on the agreement
between the Provider and the RA. More specifically, we define the file
structure, i.e. fields, its generation frequency and its storage
requirements, i.e. its form, storage duration and type (local or remote).

3. In the third phase, security measures against external attacks are taken.
Here the scheme of Schneier and Kesley is suggested, as it helps to
preserve forward integrity on the log files. This scheme holds under the
assumption that the authentication key is not compromised and,
therefore, modifications on log files don’t remain undetected.

4. In the fourth phase, security measures against internal attacks are taken.
We assume that the log server is compromised on time ti and so the
attacker learns the authentication key at that moment and all the next
ones. He decides though to make his files modification attack on time
tj>ti. He won’t be then detected, even if the MAC algorithms are replaced
by digital signatures. Stathopoulos et al. suggest using the Schneier and
Kesley security scheme enhanced with digital signatures in predefined
and random time and a trusted RA, which stores them. Additionally, there
will be limited interaction of the Provider with the RA. They assume that
the communication is secure between the RA and the Provider, which
has the server. They also assume that the server has two public/secret
key pairs PK1/SK1 and PK2/SK2 and the relative certificates. The
certificates are issued by a trusted certification authority, trusted by all
other parties. The signing can be manual and automated.

 36

a. The manual signing is performed at the log server by the
administrator in an isolated environment. He uses the secret key
SK1, which is not installed in the server, and the signatures are sent
to the RA. RA acknowledges the reception of the signature and
stores it. The procedure is performed periodically at recommended
time periods ranging from a day up to a week. RA can later verify
the signature with their certificate when he receives a copy of the log
file of the server. This way RA can detect any modification on the log
entries, which occurred after they have been signed by the Provider
and received at RA, even if the authentication keys Ai have been
compromised. However, it cannot detect the attack if it occurred
before the log entry was signed.

b. The automated signing can be done in two ways. One way concerns
signing of the event which RA has defined as critical, such as log file
modifications, change of users and user privileges, system restart
etc. When a critical event occurs, an alarm is generated. We assume
the existence of an Alarm Service, which handles the alarms and
communicates with RA. It signs the critical log entry and some of the
following ones with the secret key SK2 and sends the signature to
RA. The RA acknowledges the reception of the signature and saves
it. The other automated signing way concerns the RA which requests
at random times a signature from the current log entries of the log
file. This request is handled by the Alarm Service as alarm. With
automated signing, the probabilities that an attacker modifies a log
entry undetected are reduced even more, because it minimizes the
available time-period for an intruder to modify a log entry before it is
stored in RA.

 37

Figure 2.7: Extended secure log system

5. The fifth phase of the framework includes the implementation of the

security scheme.
6. Finally, the sixth phase includes the verification of the log files. RA will

compare the log files stored in his environment with those in the Provider
environment. First RA checks the validity of signatures created with SK1
and when they are all verified, then it checks the ones created with SK2.
If any signature is not verified, then this is evidence that the log file in the
Provider has been modified.

In an extended system more than one Providers and Alarm Services may be
used. So, if an intruder tried to perform an internal attack, he would have to
compromise all of these systems, so as to interfere in the automated signing
procedure. But even in that case, the probability that his actions will be
detected is still high.

 38

CHAPTER 3

System Analysis

In order to sell pharmaceuticals at the market, the producer must prove they
are in compliance with the regulations of the market. For the U.S. market the
regulations are set by FDA. Other markets will have regulations set by local
authorities, but FDA regulations are among the strictest worldwide and when
complying with them, most of the other markets are covered. FDA sets
regulations for various topics (mechanical, chemical etc.), but in this thesis
we will restrict ourselves to look at the IT/Automation part of pharmaceutical
production only. The producer will “compile” the FDA requirements to specific
requirements for the system he wants to build – the URS (User Requirements
Specification). To help the vendor of the system to design a system which
conforms to FDA regulations, ISPE has issued a comprehensive guideline,
GAMP, which introduces terminology and methods to create a system which
will be recognized as compliant during an inspection.

3.1 FDA Regulations
FDA are the Food and Drug Administration regulations in U.S. targeted to the
pharmaceutical industries, therefore our systems should also comply with
them. Furthermore, the relevant European Regulations on this field are
included in the FDA, so we consider the second ones as more general and
complete to follow.
Before we describe the regulations applied to our system, we should first
define whether our system is considered open or closed. According to the
definition in 21 CFR 11, “closed system means an environment in which
system access is controlled by persons who are responsible for the content of
electronic records that are on the system” [1]. When this is not the case, then
the system is considered open.

 39

3.1.1 Part 11 – Electronic Records; Electronic Signatures
One of the most prominent FDA regulations is securing of the electronic
records through the processes and controls of the system. The term
“electronic records” is defined as “any combination of text, graphics, data,
audio, pictorial, or other information representation in digital form that is
created, modified, maintained, archived, retrieved, or distributed by a
computer system” [1]. The other term that we are going to use is defined as
“digital signatures”, i.e. “electronic signature based upon cryptographic
methods of originator authentication, computed by using a set of rules and a
set of parameters such that the identity of the signer and the integrity of the
data can be verified” [1].

Figure 3.1: Scope of 21CFR Part 11 Requirements [41]

The scope of part 11 of the FDA regulations is to identify the criteria which
characterize the electronic records as trustworthy, reliable and in general
equivalent to paper records. The type of electronic records discussed here
includes those created, modified, archived, retrieved, transmitted, or
submitted to the FDA agency. But it does not refer to paper records. It also
concerns electronic signatures related with records and requires that they are
equivalent to hand written signatures. Finally, the scope includes the
computer systems, the controls and the documentation, as they affect directly
the electronic records, and therefore, should be available for inspection by
FDA any time [1].

 40

In case the electronic records are maintained but not submitted to the FDA
agency, they can still be used, if they satisfy the requirements of this part. In
case the records are submitted to the agency, they can be used, if, apart from
satisfying the requirements of this part, they fall into the submission type
accepted by the agency. More specifically it should be defined in the agency
which type of submissions can be accepted without paper form and by which
agency units they can be accepted. All these rules are documented, so that
people can easily find out how (i.e. method and media of transmission, file
format and technical protocols) and whether to process a record [1].
The requirements that should be fulfilled in an open system, according to 21
CFR 11 about electronic records and signatures, is ensuring their
authenticity, integrity and confidentiality (from their creation until their
reception). The way to do this is dealing with the following matters:

• We should be able to create accurate and complete copies of our
records for any use, e.g. inspection and review by FDA.

• Any operator entries and action that may affect (create, alter, delete)
the records should be also recorded with secure, time-stamped audit
trails automatically created by a computer system. Moreover, any
changes to records should not affect older entries.

• There should be written policies that account users responsible for
their actions over the records.

• The users with access to the records should be of limited
permissions.

• Persons who use, develop or maintain the records should have the
appropriate education.

• The system should be validated so that its performance is accurate,
reliable and consistent. It should also be able to find out whether a
record is altered or invalid.

• We should ensure the sequencing of the events in the system by
operational system checks.

• We should also perform authority checks to ensure that only
authorized users can perform actions to the system, such as its use,
signing or altering records, or accessing input and output devices.

• We should ensure the validity of the data source, by device checks.
• We should perform controls concerning the documentation of the

system operation and maintenance and the way it is distributed,
accessed and used. We should also ensure that its development in
an audit trail is time-sequenced.

• We should use document encryption and digital signatures for the
records. Signing relates a record with the signer’s name, the date and
time this happened and the reason.

 41

• The records should also be protected during their retention period, so
that we can accurately retrieve them.

Finally, we mention the most important requirements for the electronic
signatures:
• Electronic signatures should be unique and bound to an individual, which

means only he can use them. And they cannot be reused by anyone else.
• The individual’s identity should be verified before an organization

establishes and certifies his signature.
• Each signature should consist of at least two distinct components, a code

(id) and a password.
• In case a user performs a series of signing for a continuous period, then

the fist signing must be using all signature components (i.e. both id and a
password), but the subsequent ones can be performed using only one. In
any other case, both signature components should be used for signing.

• Security and integrity of ids and passwords should be controlled by
keeping their combination unique. They should also be checked, recalled
or revised periodically. Their transaction should be secured to prevent
their unauthorized use. Moreover, attempts for unauthorized use should
be detected and reported.

3.1.2 Part 820 - Quality System Regulation
The scope of this part of FDA regulations is mainly focused on the production
process of medical devices and not on drug products. This is also of interest
since a Facility Monitoring System (FMS) system is responsible for device
production as well.
It is mentioned that the systems that control the environmental conditions (i.e.
sensors) should be periodically checked to ensure that they are functioning
properly and accurately. The manufacturer should also ensure that they are
properly placed and installed in the area to be measured.
Finally, all the computerized systems used for automated processing of data
which are used in the production or quality control process should be
validated. They should be working according to the established protocol.
Moreover, in case of changes in the software, these systems should be
validated again and their results should be documented [2].

 42

3.1.3 Part 210 – Current Good Manufacturing Practice in
Manufacturing, Processing, Packing, or Holding of Drugs;
General
This section covers the methods, facilities and controls used for the
manufacturing, processing, packing or holding of drugs or biological products,
or human cells, tissues or their products (HCT/Ps). These processes also
include packaging, labeling, testing and quality control of the drug. In case a
failure to comply with these rules occurs, then the act, the drug and the
person responsible will be handled according to the regulations. The rules in
general should supplement and not conflict each other. In case of a conflict,
though, the more specific case supersedes the more general one.
This section also provides some definitions of terms used later in sections
211-226. The terms that interest us are the following:
“Act” refers to the Federal Food, Drug and Cosmetic Act.
“Batch” is used to characterize the quantity of a drug or material with uniform
behavior and quality (in specific limits). A batch is produced in a single
manufacturing cycle.
“Component” refers to an ingredient which will be used in the manufacture of
a drug product.
“Lot” means a batch or part of it or, in case of a drug, then it is an amount of
it, which has uniform behavior or quality in a certain time or quantity of its
production.
“Quality Control Unit” refers to any person or organization department
responsible for the quality control. It ensures that the facilities, practices,
records, personnel, methods and controls are following the regulations.
Among its responsibilities is ensuring that any deviations from the standard
procedures is done under proper authorization and is adequately
documented. It should also assure that the reports are accurately describing
the methods, procedures and raw data of the study. [27][10]

3.1.4 Part 211 – Current Good Manufacturing Practice for
Finished Pharmaceuticals
The scope of this regulations part includes the minimum good manufacturing
practice for drug and biological products, human cells, tissues and their
products (HCT/Ps).
First of all, as concerns the personnel, there should be a quality control unit to
examine the drug product during all its production phases and approve or
reject it. This unit has the authority to review the electronic records of the
production any time. Moreover, all the facilities for testing the product should

 43

be available to this unit, which should examine all the procedures that impact
the drug product on its identity, quality, purity and strength.
As concerns the facilities, there should be of suitable size so that the
equipment installed there later should not risk any mixing or contamination of
the drug product. Furthermore, there should be control systems in order to
prevent product contamination. So, among the procedures to be controlled,
the ones related to measuring equipment are:

• control procedures and laboratory operations, and
• aseptic procedures, which include the control of the temperature and

the humidity in the room, filtering of the air, a system to disinfect the
room, a system to monitor the environment conditions and a system,
which maintains the previous one.

Among the various control systems, there should be systems to control the
clean room temperature, humidity, air pressure, micro-organisms and dust
during the manufacturing, processing, packing or holding of the drug product.
As concerns the equipment, its design, size and location should be
appropriate for its use, cleaning and maintenance. Written procedures should
be followed for cleaning and maintenance and the results should be kept in
records. More specifically, automatic, mechanical or electronic equipment,
and computers can be used in production, packing and holding of drugs.
Therefore, they should be calibrated, inspected and checked to ensure that
their performance is the expected one and keep records of the results. Any
changes over the control and production records should be performed only by
authorized users of the computerized system. The input and output of these
systems should be checked for accuracy and the degree and frequency of
their verification should be based on the complexity and reliability of the
systems. We should keep a backup file of the data except for those
eliminated by a computerization, which should be written records.
As concerns the production and process controls, they should assure that the
product is produced properly. In case any changes occur, they should be
approved by the quality control. The procedures followed during the drug
production should be written and any deviation recorded and justified.
Moreover, all equipment, processing lines and containers should be ready
any time to identify their contents and the processing phase they are. The
identification can be done by id number or name, in case of only one
equipment piece.
We should take into consideration the laboratory controls used for test,
sampling, specifications and standards. Among others, the instruments,
apparatus, gauges and recording devices should be calibrated according to
written procedures. These procedures would include any schedules,
accuracy limits, remedial actions needed to be taken etc.

 44

Moreover, among the records of the drug products, we should also include
records for equipment cleaning, maintenance and use, which contain
information about the date, time, product and lot number of each product
batch [26].

3.2 User Requirements
In this section we describe shortly using an example of the user requirements
specifications provided by a large pharmaceutical company concerning a
Facility Monitoring System (FMS). The FMS system purpose is to document
the temperature, humidity, differential pressure, number of particles etc.
measured, and identify any excursion occurring. It consists of sensors
connected to the FMS system and being stored in the FMS Server. The
stored data can be viewed and operated by both the server and client
interface. The sub-modules between sensors and server can buffer the data
in case of failure in the communication of the other two modules. If a
temperature excursion occurs users are informed by both sensors and server
interface and the FMS system sends a notification to the Alarm system with
the alarm cause and the sensor ID it originated from.
The user requirements are categorized in qualification (Q) and non-
qualification, or in more correct terms into GMP-critical and non-GMP-critical.
The characterization GMP-critical is given according to whether they need to
be verified through qualification tests for GMP critical aspects. If GMP-critical
requirements are not followed, we would result in a patient life-threatening
situation. The previously mentioned requirements included in FDA 21 CFR
part 11 and EU GMP Guide Annex 11 are considered GMP-critical.
For example, automation of periodic tasks and screen interface are non-
GMP-critical requirements.
There are two types of measurements notifications, warnings and alarms.
Warnings have stricter limits than alarms, and are recording unwanted but
acceptable states, therefore are non-GMP-critical. Alarms are recording
unacceptable states and, in case they occur, the storage conditions stated in
GMP are not fulfilled and the product needs evaluation. So, they are
considered GMP-critical requirements.
There should be also system alarms indicating failures in communication
between modules of the FMS. As it is possible that records might get lost, so
these alarms are considered GMP-critical.
One more type of alarm is power failure, which is also GMP-critical as
records can be lost here, too.
Transmission of alarms to staff, though, is a non- GMP-critical requirement.
There are some things to be considered before we do the installation of an
FMS system. These are

• the Configuration Item List,

 45

• the Identification components,
• the equipment measuring temperature (and other environmental

properties),
• the software,
• the backup of the records,
• the physical layout and location of the network, and
• situations of power failure.

Every FMS should have a Configuration Item List (CIL), which consists a
qualification requirement. This list consists of documentation, software and
hardware components and settings of critical parameters on them (which can
often change), list of users and the rights each one has and finally a graph
scheme showing the layout of the hardware and software components. This
list should be always kept updated and controlled and is considered a
document for configuration management of FMS.
The components identification is also a qualification requirement and its
purpose is to label clearly and uniquely the components, so as to trace their
usage and maintenance, manage their configuration and control the change
of the system.
The equipment for measuring various environmental properties is
investigated in matters of accuracy and design. The accuracy of the sensors
is considered a critical requirement and includes (a) that they are calibrated
at values (e.g. temperatures) which are specified in the CIL and (b) that they
follow the requirements for the Maximum Permissible Error in CIL. The
design, however, of the equipment is a not critical requirement. The design
includes all type of equipment used for transmission, i.e. sensors, cables,
transmitters and aims at ensuring their usability.
As concerns the software, we should cover different aspects of it. The
operating system of the FMS server could be, for example, Windows 7 or
Windows Server 2003 and the one of the FMS client could be Windows 7.
However, which operating system is used depends mainly on the company
standard and how spread the system is and is not a Q-requirement. The FMS
server and client software should be though in accordance with the CIL and
thus are Q-requirements. The initiative behind this is that it can be under
configuration management and change control and therefore, should be able
to ensure that its usage and maintenance are traceable. Finally, the language
of the log screens and event logs should be either in the local language or
preferably in English to cover the usability needs of the operators. This
requirement covers also the need to present the above information to the
vendors and to any given inspector, such as US-FDA, EMA, Novo Nordic etc.
So, it consists a critical requirement.
An automatic periodic backup should be performed at least once per week
according to the user requirements, although not a critical one. We should be

 46

though careful to physically place the backup media in a location with
restricted access control and away from the FMS server, which contains the
original data. This is a critical requirement.
As concerns the physical location of the various network components, they
should be isolated from other systems with a firewall, and placed in a physical
isolation, where only authorized users and system can access the FMS and
its data. The FMS server should also be placed in a room with restricted
access. These consist Q-requirements. Finally, it is desirable but not
essential that the server is able to print out any data needed.
The ability to be robust against power failures of the FMS server, base and
sub-modules is a critical requirement. The goals are that we don’t miss any
electronic records, the alarms are fired immediately and logged in the alarm
log and that the monitoring and registration of environmental measurements
still keep being recorded even during a power failure.

Functional Requirements
There is also a list of functional requirements that should be satisfied. These
include system access, user groups, system reports, data security, system
time, data screening, print out of transferred data, alarms and warnings, and
staff alerting.
The access in the system should be authenticated through a username, and
a password, unique for each user. The password should contain at least 8
characters, both numbers and letters, both small and capital, and should
automatically expire after 70 days. This ensures data security and integrity
and therefore, is a Q-requirement for our system.
There should be user groups with different privileges on the system, so as to
avoid any misuse of the system either it is done intentionally or not.
Therefore, this consists a Q-requirement. The role “Viewer” can only see the
data of the FMS system displayed on a screen. The “Super User” can
additionally acknowledge and activate/deactivate alarms/warnings and
change their limits and print reports. Finally, the “Administrator” has all the
privileges in the system, including the right to grant user roles to users and
shut down the server.
It is critical that system reports exist, which contain information of the users
who logged in and out of the system, the time this occurred, and what
activities they performed, so that we can trace them later. Additionally, it
should contain user configuration data, with their privileges and also event
logs. User privileges should be reviewed periodically. Finally the reports
should be printed in a way that the pages are uniquely identified, as required
by the Good Documentation Practice. System report is Q-requirement.
Another requirement that is characterized as qualification one is the data
security. We should prevent any loss of electronic records by keeping a

 47

backup and/ or mirrored disks and by quickly restoring the system (Disaster
Recovery). The system should be self monitored and trigger alarms in case of
failures (e.g. lost communication), which should be logged in the alarm log.
Critical requirement is that the time of the system follows the local UTC time.
The system should be able to change time (a) whenever a change is
performed and (b) automatically from normal to daylight-saving time. Finally,
the system should ensure that the changes in time won’t result into
overwriting the time-stamped electronic records.
As concerns the data screening, we should ensure that the data on the
screen are valid. The information presented is the sensor ID, the value of the
environmental property measured and its unit. This is a Q-requirement.
Another important but not critical point is the format of data presentation,
which should be both in table and graphical format. Both of them should be
able to show alarms and moreover the value readings should at least contain
one decimal place.
Another issue to be considered is the print out of the measured
environmental property (e.g. temperature, humidity etc.). It is critical to be in a
readable format. This means that we should be able to print reports sent from
one or more sensors for a period of our choice. And such a report should
contain data about the sensors id, date and time in both tables and curves
format, with the related alarm events. It would be convenient for review
reasons if it is configurable in a way that it can create periodic reports and if
these reports can contain graphs collecting the measurements of the same
property (e.g. temperature) from all sensors, distinguished by color. However,
this is a non-Q requirement.
Alarms and warnings of measured values should also be considered. An
alarm or a warning is activated when the value of a measured property
exceeds the specified threshold limit for longer than a certain period
(suppression time). The alarms should display on user’s screen and get
registered in the alarm log, with data of the sensor ID, measured value and
time. It should be possible to change the alarm or warning threshold and the
suppression time. The alarms are considered critical requirements because
they should be working and displayed correctly. The warnings though are not
GMP-critical and are only useful from a business perspective.
The last functional requirement mentioned in the URS is the alerting of the
staff in case of an alarm/warning. This is not though GMP-critical. We should
ensure that the alarm event is transferred from the FMS Base to the
Gatekeeper/Watch Staff, who in turn have a procedure to follow to handle it
and an updated call list of persons to inform about the alarm. There should be
also an acoustic and visual indication triggered in case of an alarm to inform
users about it. Apart from that, an sms should be sent to the personnel
responsible for handling the alarms, containing the id of the component which

 48

triggered the alarm, the date and time, a description of the reason of the
alarm and a configurable text. We should also keep track of user actions
concerning the alarms. This includes logging the username of the person who
saw the alarm (login/logout) and the alarm acknowledgement, the relevant
actions (alarm activation/deactivation) and the date and time of this action.
This is stored in a separate place in the log server.

Performance Requirements
The data sent from the sensors should be stored in FMS server as electronic
records and should contain information about the sensor ID, the measured
value and a timestamp on it. The interval between two sensor readings
should be of specific time period for time-triggered type of sensors. The time
period depends on the type of the measurement, e.g. 5minutes for
temperature, 10sec for differential pressure etc. However, this is not the case
in event-triggered sensors, where the requirement is to receive a reading if
the measurement varied for more than some specific time period. The
logging and storage of data is Q-requirement. It is also desirable that the
FMS system can handle at least 10 sensors, but it is not GMP-critical. In case
the FMS system covers a big area, such as a factory, the number of sensors
could be up to several hundreds.

Finally, there are some critical requirements concerning the electronic
records, which are compliant with 21 CFR part 11 and GMP Annex 11. These
requirements include that the system should create accurate and complete
copies of electronic records, which contain audit trail and metadata, such as,
timestamp, sensor ID, unit of measure). The format in which data are saved
should be non-proprietary, such as .xml, .csv, .pdf, and the data presentation
is preferred in a tabular form. Their retention period should be at least 18
months and they should be available for retrieval any time. The retention
period reflects the time expected the drug to be used in total from its storage
until it reaches the pharmacy and later the patient’s home, which is on
average 10-15 years. This time period could be split into period when one
has immediate access to the product (e.g. 18 months) and a period where
one has access to the product back-up. Of course, it is probable that in such
a long retention period (of 10-15 years) the FMS system is replaced.
However, the data should be kept in the database server and be available for
retrieval even if the FMS is replaced. The access to the records should be
restricted to authorized users. They should be the only ones who can create
and modify an electronic record. And in case a user creates, changes or
deletes an electronic record, then his Id and actions should be recorded and
time stamped. Any change in a registration should not obscure previous
ones. As long as a record is stored, the system should continue keeping an

 49

audit trail. User passwords should automatically expire after 70 days and can
also be changed, if needed, by the system administrator. Attempts of using
the system after a long period of inactivity should be prohibited. Moreover,
any unauthorized access attempts should be prevented and logged.

It is GMP-critical that there is written documentation about procedures of
system operation and maintenance, which include the password change, the
creation and removal of users in the system (FMS and Operating System),
the backup of stored records, the re-establishment of a disaster recovery
backup, the report generation of the user setup and the system time
synchronization.
Finally, it would also be useful if the installed software, were be available on a
CD-R/DVD-R, but this does not consist a Q-requirement [28].

3.3 GAMP
The GAMP (Good Automated Manufacturing Practice) guide has been based
on the GxP and therefore describes how a system should be in order to
comply with the FDA regulations through validation plans and operational
controls. In other words it examines how the validation framework of a
computerized system complies with GxP specifications through its life cycle.
It ensures that the system is scalable and includes the control of Quality Risk
Management. We can evaluate the risk either on the whole system or on
each component separately. However, in case a computerized system is part
of an automated or a big manufacturing system, the validation should be
applied as a whole to the system and not on the computerized system as a
separate component.
The figure 3.2 shows the approach through which a computerized system can
comply with its intended use in its life cycle. We should note that specification
procedure should always be addressed by verification. Of course factors such
as risk, complexity and system novelty may affect and cause variations to the
above approach.

 50

Figure 3.2: Life cycle of a computerized system

The Life Cycle of a computerized system, includes 4 phases; concept,
project, operation and retirement.
1. Concept involves the activities needed to take place before starting a

project, including initialization and justification. They are, however, out-of-
scope for GAMP.

2. Project is divided in 4 sub-phases:
• Planning:
Here we specify all the user requirements (maybe we have made a short
start at the concept level, but here is the main level where we develop
them). They should take into account aspects such as risk assessment
(which in our case translates into ensuring the data integrity) and the
systems architecture, in matters of complexity and novelty. The
requirements should also take into account responsibilities, procedures
and timelines.
• Specification, configuration and coding:
The specification requirements should be provided by the customer and
should in adequate detail so that we can be able to develop our system
as we intended to, verify and maintain it. Configuration of the system
should be performed repeatedly, while coding should comply with defined
standards. The specification procedure could be either tightly coupled or
separate from system configuration and coding, depending on the
method the software is developed. In any case specifications should be
maintained and controlled.
• Verification:
It includes all the reviews and testing done through the development of
the system to ensure that the specifications have been met. Its purpose is

 51

to identify errors and defects, so that they are corrected early. There are
several types of testing and it is performed at different levels of the
system. It should include various cases, such as the normal and the
abnormal/invalid ones, system performance under normal and heavy load
etc. All in all it should cover software, hardware, system configuration and
acceptance.
• Reporting and release:
It involves the documentation process which should be approved before it
is released. This documentation should include a summary of validation
activities performed, any deviations from the plan and their corresponding
corrective actions, and a statement of how suitable the system is for its
intended use.

In any case, the requirements gathered should be of adequately detailed to
be able to define our system. The more detailed they are, the more
complicated and accurate our system will be.
Traceability has to do with the relation among products of the development
process and its main purpose is to ensure that the requirements are met.
Therefore, we should always keep traceability in mind when developing the
user requirements. It can also help identifying the potential impact of a
change in the system.

Functional Requirements:
They describe the system behavior and what functions and facilities it should
provide. For every function in the system we should consider its aim and its
impact on the other functions of the system, its performance (response,
distributed processing etc), its security (failures, input and output values
checking, access limitations, time-outs, redundancy, data recovery, self
checking), traceability to user requirements, and any error conditions, failure
actions, log files and diagnostics. As for the data handled in the system, we
should consider first of all the manner in which they are defined, their access
to data, the allowed range of their input and output values, any required
fields, the relationships among the data and their validation checks, their
integrity and security, their archiving and retention time. Finally, for the
system interface we should consider how it will interact with the users, who
will acquire roles to access it, how it will interact with equipment (e.g.
sensors), and how with the other systems (concerning timing, communication
policies etc.). For all kind of interfaces we should consider the “data
transmitted and received, their type, format, range and allowed values, the
interface timing, the transfer rate of the data, their communication protocol
(initiation and order of execution), mechanisms for initiation and interruption,
communication through parameters, common data areas, messages, direct

 52

access to internal data, error handling, recovery and reporting, access and
security”.
The system software can be categorized by GAMP in three types, in order to
select the appropriate life cycle activities for the system. The main
categories of computerized systems are 1) infrastructure software
(category 1), 2) non-configured product (category 3), 4) configured product
(category 4), and 4) custom application (category 5).

• Category 1 involves infrastructure software, consisting of software
parts linked together to form an environment, which supports other
applications. This category can be divided in two categories of
software; one is the “established or commercially available layered
software”, such as applications that run under the control of this
software, operating systems, programming languages. The other
category is “infrastructure software tools”, such as network monitoring
software, security software, antivirus.

• Category 3 includes commercially available software, which runs on
standard hardware components. These software products are used
off-the-self, i.e. they are not configurable for a specific business
process or we use the default configuration for this process (e.g.
firmware-based software). The life cycle activities of this category
include only User Requirements Specification and Requirements
Testing.

• Category 4 includes commercially available software, which runs on
standard hardware components. It meets the user’s requirements
and the business process and the code is not altered. Examples of
this category are the SCADA system, the data acquisition systems,
simple human machine interfaces, etc. Their life cycle activities, apart
from the activities for category 3, include also Functional
Specification and Testing as well as Configuration Specification and
Testing.

• Finally, category 5 of GAMP, includes software products which are
developed especially to meet/serve user requirements, for which no
commercial solution is available. However, when we use custom
software of hardware instead of standard then the risk of failure and
defects increases. The life cycle activities followed in this category
are as shown in figure 3.3 and include in general the specification of
the user and functional requirements, the design of the system and
the unit specification. Then we have the test that is relevant with
each of the previous steps/stages.

 53

Figure 3.3: Life cycle activities of a computerized system of category 5

3. Operation involves ensuring that the operational procedures and plans of

a system are implemented and work properly through the system’s
lifecycle. The operational processes that interest us mostly are those that
affect or are related to electronic records. One of them is management of
support services for the maintenance of the system, and monitoring of its
performance to detect system failures and avoid losing records. Another
important process is incident management, which involves capturing
events of abnormal behavior of the system. If a corrective or preventive
action is possible then we use the CAPA (Corrective and Preventive
Action) process to prevent the failure events from happening. Continuity
management is one more operational process, which ensures the safe
storing and easy retrieval of records as well as the existence of a
business continuity and a disaster recovery plan in case of a system
failure. We should also implement security management, including role-
based access, system access with usernames and passwords in order to
protect the data, with an administrator role being responsible for them.
Finally, we should mention the records management process, which
involves actions concerning records storing and retrieving as well as their
retention.
Let’s take a closer look at some of these operational procedures:

 54

• Performance monitoring is responsible for gathering data that can
be useful for identifying system problems on time. The parameters,
which should be monitored are all computerized systems (servers,
PCs, control systems, workstations), the network and the
applications. We should monitor computer systems in terms of CPU
and cache use, their response and transmission time, system error
messages, alarms, existence of critical processes etc. A network
should be examined on its load and broadcasts and the availability of
its components. Finally the applications should be monitored on their
error messages, response times, availability and number of users
using them concurrently. We should keep a monitoring plan for each
parameter we examine, to keep data about its occurrence frequency,
warning limit and notification mechanism, monitoring tool, secure
storage of results and its time period.

• Security Management is the process for ensuring confidentiality,
integrity and availability in an organization system. Its purpose is to
minimize any security vulnerabilities. The goal is to comply with the
GxP regulations and ensure that the data are protected against
failures that might cause their loss or damage, and also from
unauthorized editing. The general countermeasures that should be
taken are defining user roles with different access permissions,
performing periodic testing and security controlling of several security
critical aspects of the system (e.g. system access), keeping an
updated list of authorized users to our system, taking action against
any security weakness of the system. Other topics that should be
covered by security management are the physical safety of the data,
the systems used for sending messages, the shared network and
mobile computing resources, internet access and its use,
communication with external computing systems and anti-virus
policies.

• Records Managements involves the manipulation of the so called
Electronic Production Records (EPR). These are divided into two
categories Electronic Batch Records (EBR) and Electronic Device
History Record (EDHR). Their purpose is to ensure that the data are
collected as supposed to and that the equipment is manufactured
accordingly. One method to perform this procedure is Review By
Exception, where data from the manufacturing operation are
screened, so that we can later check that everything is as expected
(no exceptions, deviations etc). To implement this process we need
to define the system functionality, accuracy and reliability, retain data
intended for review, keep accurate computer means, review and
check periodically the RBE functionality, check its communication

 55

with other systems, check for any errors occurring. Any exception
should include information sufficient to recover any records needed.
Therefore, according to GAMP we should ensure the accurate
recording of data and events, that processes are within defined limits,
the monitoring of data and the process rates, correct generation of
alarms, accurate, trustworthy and secure electronic records.

4. Retirement includes the procedures undertaken when the system is too

old and needs to be replaced. This includes cancelling of all active
operations (e.g. users deactivation), shutting down of the system,
destruction of data, documentation, software and hardware, and, finally,
transfer of data to the new system.

Changing the management of the computerized system can improve its
efficiency, which includes several things such as our system being able to
scale and keeping the specifications current through it whole working life etc.
The system can become more efficient also by establishing requirements
concerning data archiving structure and format; the database may archive
records by retention period to make it easier retrieve data later on, but this
may involve a complex design.
As we already mentioned in the first paragraph of this chapter, every
computerized system should follow a validation plan to ensure that it is
compliant with the GxP specifications. As part of the validation plan for a
computerized system, we should have a system overview including its
business purpose and intended use and, finally, a high level description of the
system and its architecture.
Part of the validation procedure is the Quality Risk Management. Every
system should be analyzed in terms of quality risk, as part of its life cycle
activities. In order to perform Risk Analysis, generally, we should take into
consideration the system impact on the patients’ safety, product quality and
the data integrity. This is accompanied by identifying also the controls for
managing these risks, by either eliminating the probability that they happen or
managing their negative impacts quickly and effectively. More specifically, the
factors to be considered are (a) the possible failures of our
system/automation process, (b) their consequences, and (c) their impact on
the data integrity. We should also consider the way to detect the failure and
how to prevent it from happening or at least eliminate its possibilities. First of
all, we should verify if our system is GxP regulated. In this case, we should
mention the specific regulations and which parts of our system they affect.
This procedure is known as Initial Risk Assessment. Functional Risk
Assessment is the process needed afterwards to identify the risks on the data
integrity. It is focused mostly on the functions with the highest impact on the
system. Later on, it investigates how easy it is or not to detect a function or

 56

how probable it is to occur. This way we can use resources more effectively.
After all, our aim is to reduce the risk of a failure. In case we cannot prevent a
failure from happening, we then try to make it easier detectable. Usually
system controls are automatic, e.g. alarms, restrictions to data fields, data
prompts for identification/verification etc. Similar risk analysis we should
perform when scaling the system activities (e.g. code reviews, design reviews
etc), as it might impact the data integrity, the complexity of the system. We
can see the full risk analysis plan on figure 3.4.

Figure 3.4: Risk analysis plan

An example of a risk, could be a failed recording. It could either have a
medium impact as an inadequate change in documentation of a more severe
one such as loosing old versions of data or inadequate attribution of data
changes. Another example could be a failure of a function with acceptable
data (in a specific range), which could be of low risk if we accept normal data
only, of medium risk if we examine the boundary and null values, and of high
risk if apart from these we also examine decimal precision and alpha
characters [3].

3.4 Sensor Requirements
Here we describe the requirements of selected sensor and transmitter
equipment from several Danish and international vendors. The equipment is
just examples used to identify the requirements that they can impose to our
system.

 57

Testo
One famous equipment provider is Testo. More specifically, we will examine
the Testo 6351 Ethernet differential pressure transmitter and the P2A
software that accompanies it.
This transmitter is suitable for applications using Ethernet connection, such
as “Clean rooms, Complex room climate applications, Monitoring flow
velocities of volumetric flow rates in air conditioning systems” etc. Its
functionality includes transmitting the signal via analog outputs to a control
unit, recording, documenting and screening simultaneously the measured
data and producing an alarm, if needed.
According to the Guide to the Expression of Uncertainty in Measurement
(GUM) the measurement accuracy of the differential pressure has ±0.8% of
the measuring range of the final value and ±0.3 Pa intrinsic error. The
temperature deviation from the nominal temperature 22 oC is 0.03% of the
measuring range per degree Kelvin. Finally, the corresponding temperature
deviation for zeroing with solenoid valve is 0%.
The measurement cycle is 1 per second. The interface is given via the P2A
software. The voltage supply for the 4 wires is 20 to 30 V AC/DC and the
electric current consumption 300mA. Its resolution is 12bits. The operating
temperature of the device is from -5 to 50oC and the storage temperature
from -20 to 60oC.
The relay properties (collective alarm, switching limits and hysteresis) are set
via the display or the P2A software. A Testo 3651 device has 4 relays. The
connectivity options are NC=normaly closed contact/root/pin, C=closed,
NO=normally open contact.
The parameters displayed by this equipment is differential pressure (in Pa,
hPa, kPa, mbar, bar, mmH2O, inch H2O, inch HG, kg/cm2, PSI), flow rate (in
m.s, ft/min) and volumetric flow rate (in m3/h, l/min, Nm3/h, NI/min). The flow
rate is expressed as differential pressure >0.2Pa or 0.1% of the respective
measuring range in order to avoid fluctuations of the flow rate at zero point.
As for the scaling, i.e. the minimum and maximum values, there are three
types. One is the measuring range, which defines the maximum performance
of the sensor included in it. However, any values outside it are not included,
but only sent as messages. The other type is the standard scaling, which
means that the output signals are assigned to the measuring range during
delivery and that this range is applied as standard after the exchange of the
unit. The transmitter keeps its scaling even if it is not connected to voltage.
The third one is the maximum settings for performing manual scaling, where
we can calculate the maximum limits as the difference between min and max
value and it is also possible to scale beyond the measuring range to adjust to
the standard values of a PLC.

 58

There is a light indicating whether the transmitter is switched on and either
expresses its status or is an alarm indication. It is not possible to monitor the
alarm circuit through the switch.
We can connect an Ethernet module on the transmitter. It provides two
functionalities which can be determined using a DIP switch. The one is that
the transmitter becomes a so called Saveris subscriber, defined and set as
default option by Testo, and the other one is that the transmitter can be
integrated into any Ethernet system, as an XML server. For the Saveris
subscriber an IP address should be set through the P2A software from its
menu. For the XML server functionality, the user should know how to read an
XML file, which will be downloaded and decoded. The communication in this
case resembles the client-server paradigm. The XML interface is accessed
through a URL, which gives us the IP address, the XML document path and
any related parameters, if required. Using the Ethernet module we can read
the measurements (value as numerical decimal number and unit in ASCII),
the instrument type (device id as numerical whole number), the firmware date
(year, month, day as numerical whole numbers) and version (in a 6
characters ASCII), the status (0 if no messages, otherwise 1) and related
messages (messages in ASCII and their serial number which has 8
characters ASCII), alarm messages (message in ASCII and state as
numerical whole number 0 or 1), service hour counter (numerical whole
number), as well as both read and write adjustment data, analog outputs,
relays data (channel, number 0 to 4 and delay as numerical whole numbers)
and user settings (pressure, min, max, mean readings as numerical decimal
numbers and connector and channel type in ASCII). An XML tag can also
contain other information like the units of the measured values, like Pa for
pressure, oC for temperature and %RH for humidity and all of them expressed
as numerical, decimal numbers. An example of a measurement of these
values is 50.0%RH humidity and 22.0oC temperature.
The properties that identify a transmitter are, therefore, the instrument type
(6351), the build number, the firmware version (1.02) and its serial number.
Furthermore, a transmitter can display three types of messages; status,
warning and error. They are all stored in the device with an operating hours
stamp. The status messages are related to initialization of the device and
changes in parameters, the warning messages are related to values limits
being exceeded and the error messages apart from exceeded limits
recognize also watchdog errors.
The alarm can be used in two modes; either to monitor limit values or as a
collective alarm. When used for setting limits we choose the min or max and
set the limit and delay of each alarm. A delay can be of 0 to 240 seconds and
has no effect on the collective alarm. If someone turns off the alarm status
then both visual alarm and relay connection are prevented. An alarm is

 59

turned off upon acknowledgement. Triggering of a new alarm is not
noticeable while the alarm status of another one is on. In case many alarms
are triggered simultaneously, only the last one will be shown.
The P2A software is installed separately from the transmitter and the
operating system required for the installation can be Windows 2000 SP4 or
XP Home/Professional or Vista. The P2A software is responsible for creating
an instrument and a parameter file. The first one contains historical logs of
the parameters of a transmitter and can be edited. The second one doesn’t
relate to only one transmitter and doesn’t contain any historic data. It contains
information of the parameters of transmitters of the same type. These files
are characterized by the instrument type, serial number and firmware version
of the instrument and the current date/time stamp. The readings are updated
every second. As for the analog output it is expressed in V or mA and has 1
decimal place. It also informs us whether the connection to the PLC is closed,
so a value is transmitted or not. It saves the maximum and minimum values
of a channel. Any parameterizations, adjustments and messages are time-
stamped with the operating hours. The first two are also related to the user
who performed them.
A stable current reading appears after around 20 seconds. [42]

 60

CHAPTER 4

Problem Analysis

4.1 Problem Overview
We have clean rooms in a building facility which is responsible for producing
pharmaceutical products. Every clean room contains a production line of a
specific product. We need to maintain stable the environmental conditions of
the room, which differ from room to room depending on the production phase
of the drug or the drug itself. Therefore, each room contains a set of sensors
to measure the environmental conditions in it and also some other equipment
that upon user’s action can change these conditions if necessary. The values
these sensors measure include usually temperature, pressure difference
(between the inside and the outside of the room), humidity and number of
particles.
The network architecture that is currently used by many pharmaceutical
companies is as follows; sets of sensors are connected to Programmable
Logic Controllers (PLCs), which sample the analogue signal of the sensors.
The sensors can measure one or more values at the same time, e.g.
temperature and humidity. The data after the PLCs are delivered to the
SCADA system, which is a control system that reads the value from the PLC
and analyses the incoming data in real time. The SCADA and PLC reading
frequencies are not synchronized and the second one runs much faster than
the first one. The FMS system, which is SCADA based can produce diagrams
showing the measured values which just arrived from the sensors and also
produce a warning if a measured value is approaching a limit which would be
dangerous for the drug in production. And in case the limit is extended for an
undesirable amount of time then it produces an alarm. These alarms can be
either flash light or a loud sound or a phone call to the personnel in charge of
interfering. In any case the alarm event is transferred to the user who can
interfere to save the product using the Control System. This system is
separate from the FMS system. The measurements as well as the warning
and alarm notifications are all transferred to a log server which contains a
database, where they are stored and kept there for as long as the retention

 61

period lasts. There are also other types of alarms, such as alarms for power
failures and alarms for failures in communication between modules of the
FMS.

Figure 4.1: Current System Architecture

The system we just described is wired, time-triggered and soft-real time, but
scaling is complicated. In case we need to extend the current system by
adding additional sensors for example, then we need to ensure that the new
system is compliant with the FDA regulations. This implies validation
procedures not only to the new sensor device but also to the SCADA system
it connects to until the measured values it sends are received by the
database server. This involves additional costs, paper work and working
hours and therefore is undesirable.
Once the data are transferred to the database, they are saved in the format
they were received. No encryption mechanisms are applied. Only authorized
users (e.g. administrators) have access to them, after they enter their user
credentials. We consider that the users are trustworthy and don’t tamper with
the saved data. However, there is theoretically the possibility for a malicious
user to log in and modify the saved data.

 62

4.2 Possible Solution

4.2.1 Network
The solution we shall provide would be a wired system loosely coupled, that
can be easily extended, and not include re-validation of the rest of the system
to comply with the FDA regulations. For this purpose we will exclude the
SCADA system from our network and consider an alarm application system
which will check the measured values and raise an alarm in case they exceed
their permitted limit. This alarm system would be separate from the database
server and won’t interfere between sensors and the log server. The system
would also be asynchronous i.e. the messages are sent when they are
published by the sensors and not upon the receivers request. Finally, we will
apply a security scheme to encrypt the data upon arrival at the Log Server.
In the State of the Art (Chapter 2) we have identified the possible methods
that would serve for the data transmission from the sensors to the database
in a loosely-coupled way. The methods pointed out were the distributed
shared memory, the message passing (point-to-point), the remote method
invocation and the publish-subscribe.
The distributed shared memory is mainly used for communications in the
system operation layer and is not suitable for distributed systems. The point-
to-point message passing provides an asynchronous sending mechanism,
and a synchronous receiving one. So, it is decoupled in the communicating
components that offer the advantage of easily scaling, but it is not decoupled
in synchronization. Furthermore, there can be multiple senders but only one
receiver for each message. This would not serve for the implementation of
the idea of having more than one possible receivers of the same message,
i.e. the alarm system and the log server. The remote method invocation has
many advantages such as easy implementation, flexibility and robustness
and the sender-receiver communication is decoupled. However, the remote
procedure calls used in the method are coupled in space, time and
synchronization. For this reason, we avoid using this method. Finally, the
publish-subscribe method provides an asynchronous communication in an
autonomous manner. The communicating components are decoupled in both
time and space. Moreover, each component can also perform other
operations while communicating. This implies that it is scalable. Moreover,
using the topic-based subscription the same message can be delivered to
more than one receivers. It is also considered to work well with a database
and provide good response times. The only disadvantage that we should
keep in mind is that there are few ways for the subscribers/receivers to define
in detail their interest criteria on a topic-based subscription model. However,
this inefficiency cannot be of much impact if the criteria are simple.
Based on the above mentioned advantages and disadvantage of these 5
systems, we decided to use the publish-subscribe method as a
communication method in our system. The sensors will be the publishers
sending messages or in terms of this scheme we can say “publishing events”.

 63

These events will be actually the new values the sensors have measured
from the environment. The reading of the values will be time-triggered from
the sensors. Theoretically, there could exist the possibility that the sensors
are event-triggered. But in the system we plan to build we will consider time-
triggered ones. The alarm system and the log server will be the subscribers
to the messages/events, according to some interest criteria. The publish-
subscribe model will be topic-based, as we need more than one modules to
receive the same message. We already know that there are few ways for the
subscribers to define in detail their interest criteria on a topic-based model,
but this doesn’t consist a problem in our case, because the interest criteria
we will use are quite simple.
After we had selected the communication, we examined in which way we
would implement it. We have identified two ways to implement this; the java
event bus and the java messaging service. In both of them the system
components are very loosely coupled, which implies that they can be easily
removed or added to a network at run time without affecting its core
functionality. The communication is asynchronous and reliable, meaning that
the event messages are sent when they occur and that they are delivered
only once to each receiver who subscribed to them. However, both its
publish() and subscribe() methods can only be called from the same thread,
i.e. they are processed only locally by the application client that runs them.
Also, we cannot have two separate applications calls, e.g. the sensor
publishing the event and the server log subscribing to it. On the contrary, the
java messaging service includes a messaging service which is responsible
for creating, reading, sending and receiving messages among components,
which connect to it. Moreover, it doesn’t face the problem the event bus
faces. So, this implementation will be chosen for our system in matters of
communication.

4.2.2 Secure Logging
In the State of the Art (Chapter 2) we have identified the possible security
schemes that could serve for logging the data in an encrypted way in the
database, once they have arrived in the Log Server. The possible attack
types that want to protect the log file from, are the following:

• insertion of a new entry
• alteration of an existing entry:

 replacement of just a value of the entry (e.g. the
measurement value, the sensor id)

 replacement of the whole entry by another one (of e.g. the
same time)

• reordering of entries
• deletion of an entry
• duplication of an entry

 64

The security scheme of Schneier and Kesley has some vulnerabilities,
which do not allow us to protect the log file from all the above attack types.
An attacker, who modifies the log entries, is detected only under the
assumption that the authentication key is not revealed to him. However, in
case an attacker compromises the server log, referred to as untrusted in this
scheme, it is unlikely that he learn the authentication key. So, he will then be
able to modify the entries except for the MAC values. The attack will be finally
detected by the Trusted Server, but only when he receives the log entries
from the untrusted server to verify it. Moreover, if the attacker instead of
modifying the entries in U, he just deletes the last ones, before they are sent
to T, the second one will not discover that they are missing. However, as
concerns the architectural requirements of this scheme, they are compliant
with our system, since (a) it is not a problem to provide an online server, if
necessary, and (b) the storage capacities a database offers should be
enough to satisfy the storage requirements for the hash values and MACs of
the log entries.
The Bellare-Yee security scheme has the same advantages and
disadvantages as the one previously mentioned, but is older.
Ma and Tsudik suggests two security scheme implementations to overcome
the limitations of the two schemes previously mentioned. One scheme is
based on a private key and the other one on a public key. The scheme based
on the private key is resilient to truncation attack, doesn’t need an on-line
server, it is storage efficient and provides message-level forward security.
However, it is not resilient to delayed detection attack, and does not provide
non-repudiation and public transferrable verification. The scheme based on
the public key is resilient both to the truncation and the delayed detection
attack, doesn’t need an online server and provides interval-level forward
security. Therefore, it should be preferred from the private one in case we
encounter attacks which are detected late. However, it requires storage
capacities on the verifier’s side. It is possible for an attacker to tamper with
tags, in case he obtains the signing key. Finally, this scheme is not suitable
for applications where the data use is intensive, such as databases, and
therefore is unsuitable for our system.
Instead Ma suggests two new schemes BM-FssAgg and AR-FssAgg, which
are better than the previous ones in many factors, such as constant public
key size, efficient aggregate verification etc. However, the implementation of
these two schemes is trivial and the author is investigating a non-trivial one.
Finally, Stathopoulos, Kotzanikolaou and Magkos extend the security
scheme of Schneier and Kesley so as to overcome its vulnerabilities. (a)
They use manual off-line signatures (created by the system administrator in
the Untrusted Server) to protect the log files from modifications after the file
has been signed and the signatures have been sent to the Regulatory

 65

Authority RA. This method protects our log files from external and some
internal attacks, but there is no guarantee for the security of the file before it
is signed. Therefore, in addition to (a), they suggest (b) automated signing of
critical log events, which are sent to RA for storage. This way the time
available for an attacker to modify the file before it is stored, is very low.
Additionally, the RA requests, at random time periods, signed versions of the
current log entries in the untrusted server. For an attacker to intercept the
automated signing and alter the log files before they are sent to RA, means
that he needs to compromise not only the Provider/-s, where the log server is,
but also the Alarm Services, responsible for handling the critical events. And
even if he compromises all these systems, it is still uncertain that his actions
remain undetected.
To sum up, because of their security vulnerabilities, the schemes of Schneier
and Kesley and Bellare-Yee are unsuitable for our log system. However, their
architectural requirements are compliant with it. As concerns the scheme of
Ma and Tsudik the version based on the private key seems to face also some
security issues, but the one based on the public key overcomes them.
However, the second one is not suitable for use in databases, and therefore
cannot be used in our system. Finally, as concerns the scheme of
Stathopoulos et al. it is based on the one of Schneier and Kesley, but extends
it so as to overcome its security issues. Therefore, we decide to choose this
scheme for our system.

4.3 Requirements Analysis
To validate the proposed solution we have presented the FDA regulations in
the System Analysis (Chapter 3) of this report and we want to see how they
would comply with the publish-subscribe paradigm and what they would
require from the solution we wish to implement, which we present below.
The FDA regulations in part 21 CRF 11 define the characterization of the
system into closed or open according to whether the system access is
controlled by persons who are responsible for the content of its electronic
records or not. In our case, the system access is controlled automatically by
the system itself, therefore we consider it as open system. This part 11
includes also the definition of electronic records as a combination of various
information, presented in a digital form, which is created, modified,
maintained, archived, retrieved, or distributed by a computer system. In our
case this includes mainly text and data, as this is the form the information is
transferred from the sensors until it is saved into the database. As concerns
the electronic signatures we will use them when the user performs specific
actions, such as changing the alarm limits, acknowledging an alarm etc. And
it will include the user’s input of a code, apart from his authentication in the
system.
Some more issues to consider related to 21 CRF 11 are:

 66

1. Our system is considered open; since it is wired there is no need of
encryption on the transmitted data, but security will be applied to the
record entries when logging them. However, data integrity and
authenticity must be validated, therefore digital signatures will be used
when needed.

2. Our system should be validated, which means that it should be accurate
and reliable and its performance should be consistent, so that it ensures
the transmission of data. This ensures that the data will be successfully
delivered to the server, without losses or alterations. Since we use a
wired network, the probability of making alterations to already generated
data while transmitted, is not very high in most situations. It could be
however the case that, since all our system components are wired,
someone with physical access to the sensors could connect a device to
the network and provide fake data. This can be traced later, when the
production is finished and we check the log files. We can then find out
whether there has been an extra sensor which wasn’t supposed to be
there. Finally, it could be the case that an invalid record is transmitted to
our server, for example a sensor malfunctioning and sending one value
which is extremely high, while the rest of the values are normal and
similar. In this case, the system should recognize the invalid record, both
by the alarm system and by checking at the log files of the records for
their reliability.

3. Another issue stated in FDA, related with the above, is the protection of
data from alterations after they are stored in the database. To ensure that
we develop a security mechanism when writing down the records. They
are encrypted in a way that if someone makes a change it will be easily
noticed. A factor that helps in this is the fact that our records are time-
stamped and therefore we can detect if a record is missing.

Furthermore in the GAMP guide the life cycle of a computerized system is
described in four phases. In this thesis report we include most parts that the
included in the project phase. In the planning phase we have defined most of
the user requirements. In the specification phase we include some of the
specification requirements concerning the sensors, but not the rest parts of
the system such as the database server. In this thesis the requirements are
given as general guidelines averagely requested by most of the clients, but
the further details depend each time on the client needs. This doesn’t allow
building a standard system for all cases, but on the other side it permits our
system be more flexible. We also perform configuration and coding of a
prototype showing the functionality of the final system to be developed later.
For the verification sub-phase the software application needs to be tested to
ensure it is working as expected. As for the reporting and release sub-phase

 67

it will not be included in the scope of this thesis. However, there will be a
summarizing validation report to check, if our software performs as expected.
Moreover, the computerized systems in GAMP are categorized in three types
to select the appropriate life cycle activities. Our software implementation
would be a mix of different categories, including operating system, database,
possible integrated Java applications. As concerns the operation phase, the
operational processes that interest us mostly are those that affect or are
related to electronic records.

 68

CHAPTER 5

System Design

5.1 Network
The system we want to build should be decoupled in space and time and
synchronization, which means that sensors can be added in and removed
from it without affecting the rest of the system. This way it can be easily
extended and the validation of the new system focuses only on validating the
new sensors, and not the entire system with all its components.

5.1.1 Architecture
In the figure 5.1 it is displayed the architecture of our system, after we applied
the publish-subscribe paradigm, which, in the Problem Analysis chapter, was
chosen as an ideal solution for a loosely coupled system. Using this message
exchange method, the messages are sent when they are published by the
sensors and not upon the receivers request. As we see in figure 5.1, the
sensors, the Alarm System and the Server communicate with the JMS, which
is provided through GlassFish server. GlassFish acts as an application server
and can run over any network, so we can connect (using wires) the rest of the
system components to a server which is running GlassFish and provides the
JMS.

 69

Figure 5.1: System architecture

5.1.2 Components
The components included in the above system architecture are described in
detail below.

Sensors
The system will contain sensors which are wired. They can be of various
types. In the market there are sensors which measure only one value type
(e.g. temperature), and others which measure more than one value types at
the same time (such as temperature and humidity). There are even more
advanced sensors, which can evaluate their own measurements and send an
alarm notification when a measurement exceeds a predefined threshold. So,
it is possible more than one type of sensors to be in one room and function
without causing any problems to the rest of the system. We also assume that
they contain a clock to timestamp the data when collected. Thus, we will
implement 3 different sensor applications that simulate the functionality of the
sensor types we mentioned. We also assume that the sensor with an
integrated alarm functionality, can notify only about alarms (but not about
warnings).

Java Messaging Service

 70

The Java Messaging Service (JMS) is a service provided by a server. In our
case, we will use the Glassfish server, because, as mentioned in the JMS
documentation, it works more efficiently with JMS. JMS acts as an event bus,
routing the messages it receives to their destinations. We should not confuse
JMS with the Java Event Bus. JMS is not aware of the ids or other details of
the sensors that are communicating with it. It just knows the administrative
objects in the JNDI namespace, which have been defined through the JMS
Provider with the use of the Glassfish server interface. The one object is the
connection factory, which we create as an instance of
ConnectionFactory.TopicConnectionFactory interface, because we want a
message in the JMS to be delivered to more than one subscriber. The other
objects, that we define through Glassfish, are the destination objects, i.e. the
objects where the publishers send their messages and from where the
subscribers receive them. In the publish-subscribe paradigm these
destination objects are called “topics”. The topics we shall define will be
simple, but able to serve our needs. We will use the name “Data” for any
information being sent by any of the sensor types we mentioned and the
name “Alarm” for any information sent by the Alarm System.

Alarm System
It is an application that reads all the sensor measurements after being sent by
the sensors and evaluates them. If they exceed their warning limits, the Alarm
System raises a warning notification. Similarly, if they exceed the alarm
threshold for a time period more than the expected, it raises an alarm
notification. These notifications can be a flash light, a horn sound, an email or
sms notifying the person who is responsible for performing an action that
would change the environmental conditions in the clean room and save the
product before it is unsuitable for use. These kinds of actions are not
performed through the alarm system application but another control system,
which is separate from our architecture. The only action that could be related
with the alarm system, could be the user acknowledging that he got informed
about the alarm. This could be also an action performed in the control
system. Apart from raising notifications the alarm system can also produce
graphical representations of the incoming values. However, the incoming
values are not saved in the alarm system, so these representations would be
only real-time, thus, one cannot see the graphic scheme once it is out of the
console output.
In the prototype we will build, we shall implement only the basic functionalities
of the alarm system, which include receiving the sensor measurements,
evaluating them and creating warning or alarm notifications when the
measurements exceed their predefined thresholds. We also assume that the
alarm and the warning (flashlight) are time stamped.

 71

Log Server
The server receives all the data from the sensors and the alarm system and
stores them in a database in an encrypted way. The goal is that no one can
tamper with the logged data undetected. The data should be also available
any time for retrieval by anyone upon request. The server should be able to
present the data in a tabular format as well as a graphical representation. The
server should also be connected to a printer to send a copy of its data. A
back up of the logged data should be taken periodically.
In our prototype, we will implement only the most important of the
functionalities described above, i.e. the server receiving the data sent by the
sensors and the alarm system, and also the security scheme of Stathopoulos
et al. that we chose in the Problem Analysis chapter. We will not use a
database here, due to simplicity, but we will apply the scheme to txt files,
where we will store our data.

5.1.3 Interfaces

Sensors
The sensor components would have a sensor interface application on top of
them. This interface will have as input the sensor measurements and other
data they provide and will publish these data, as a message to the JMS. A
way to test this, could be by connecting one sensor to a PC, in a wired way,
by using a USB Sensor Interface Module, such as those mentioned in [49]
and [50]. Then in the pc we could have the application which serves as the
sensor interface which will publish the data to JMS. However, considering
that in a clean room we have hundreds of sensors, this suggestion would be
a costly solution, so it is recommended only for testing reasons for a few
sensors.
A more efficient solution would be developing a hardware module which
contains the software that reads the sensor data and then connect to the JMS
to publish them. This module could be added on top of the sensor
components. Some sensor vendors, such as Testo, have already an Ethernet
module, through which the sensor can send data. It could be an idea that we
examined these kinds of modules and found out how we can use them to
provide data to our sensor interface application. However, this is out of the
scope of this thesis.

Alarm System
We will also develop an application which simulates some of the
functionalities of an alarm system. This could be integrated in an already
existing alarm system, to provide the interface for it to communicate with the
JMS.

 72

Server Log
The application we will develop will simulate the functionality of a sensor
performing the basic actions we mentioned before. This application could be
modified and part of it could be used by a server as an interface to
communicate with the JMS. The security aspects of our prototype may be
used in their present form, with the only exception of the file-based data
storage, which should be replaced by a proper database server.

5.1.4 Interactions

Sensor-JMS
Sensors will be connected to the Java Messaging Service (JMS), which is
provided through an application server running over any network. Therefore,
the sensors need to connect online to the Glassfish server, through which the
service is provided. The JMS is not aware of how many sensors are
connected to it and its functionality is not affected when a sensor is added or
removed from the system. Apart from the destination defined in the JNDI for
the JMS, we also need to specify a physical destination for the clients to
connect. In the client program, i.e. the interfaces of the sensors, the alarm
system and the server, we inject also a destination resource, whose name is
already defined in the respective resource in the JNDI namespace. These
resources are the connection factory name and the topics names. Each
sensor interacts with the JMS by publishing a message with one of the topic
names defined. We decided that the messages published from the sensors
will have the topic “Data”. A sensor doesn’t know what happens to a message
after it will have been published. JMS takes care of its routing to the correct
destination.

Alarm System – JMS
The Alarm System connects to the JMS to subscribe to the data it is
interested in. It subscribes to messages of topic “Data”, i.e. all the messages
the sensors send. After evaluating the sensor measurements, it publishes
back to the JMS a message when a measurement exceeds the warning or
alarm thresholds. The message contains the description of “WARNING” or
“ALARM” and all the information that was fed in the sensor message. The
messages the Alarm System publishes have the topic “Alarm”. The Alarm
System is not aware of either how many sensors exist and send messages or
who is subscribed to and reads the messages it publishes to the JMS.

Log Server - JMS

 73

The Log Server also communicates with the JMS service and is subscribed to
messages with topics “Data” or “Alarm”. Consequently, it receives the
messages that the sensors and the Alarm System send, without, though,
being aware of their existence.

Generally, we can connect any system to the JMS service, by just
subscribing it to the data it is interested in. And if the component wants to
send out some information, it can either publish it under one of the already
existing topics, if their names describe it, or create a new topic in the JNDI
namespace and publish data with this topic.

5.2 Secure Logging
In the figure 5.2 we see the complete secure logging scheme as described by
Stathopoulos et al. and part of it by Schneier and Kesley. The Server Log
mentioned above actually consists the so called Untrusted Server US in this
scheme. In practice the US consists an application through which the log
Server applies security to the log entries. It could be considered as a
functionality of the log Server. We adopt the term “Untrusted Server”,
because it is a server where the administrator and other users with access,
can tamper with the log files. The Trusted Server is considered another
server, separate from the Untrusted one, which is less likely to be
compromised. This server establishes its first communication with the US
before the second one starts saving the log entries. In this communication
they create the first two initialization messages to be logged in the database.
Moreover, TS learns the authentication key that US is going to use in his
encryption mechanism. TS communicates again with US in the end of the
logging procedure, to decrypt the data and verify the log entries according to
Schneier and Kesley mechanism. The Regulatory Authority RA and the Alarm
(Security) Service are also two different applications in different components,
described by Stathopoulos et al. The RA creates accesses the log file in the
database to create signatures of the current entries at random times. He
receives also signatures of the log entries that the US administrator manually
creates and sent to RA. Alarm (Security) Service creates automatically
signatures of the current log entries when a critical event occurs, such as
modification of the log files. He sends then these signatures to RA. In the end
of the logging procedure, RA verifies all the signatures and detects if any
attacks occurred to the log. All these systems can be wired among them.
According to Stathopoulos et al. it is possible to have more than one Alarm
Services, which detect critical events, such as log file modifications, system
restart, modifications of users and their privileges etc. In our prototype we
consider as critical event only the log file modifications.

 74

Figure 5.2: Secure logging scheme

Interactions
As we can notice in the scheme, the Untrusted Server communicates with the
Trusted Server and with the RA (for the manual signing). The Alarm Security
Service communicates with the RA and has also access to the storage area
of the Untrusted Server, which contains the log entries. Finally, the RA
component communicates with the Alarm Service as well as US and has
access to its storage area (i.e. log files or database).

Assumptions
We consider the same assumptions as Stathopoulos et al. for their scheme.
This means we assume that the communication interface between the
Untrusted Server and the RA are safe. We assume also that the Untrusted
Server has two public-private key pairs, which are not though stored in its
memory storage because we want to avoid an intruder learning them if he
compromises the Untrusted Server. In our prototype we have included these
key pairs in the storage of the Alarm (Security) Service, as it uses them to
sign the log entries of US. Finally, since in the prototype we will develop, we
perform the communication of the above components with files exchange, we
assume the existence of a common server or other computer area, where all
the components of this scheme have access to. In our prototype, we will use
Eclipse Workspace as this area and we will create separate folders
representing the local storage for the rest of the components of the security
scheme. In the future, in a complete system with database, we would
consider another way to communicate the information between the different
security components instead of files.

 75

CHAPTER 6

Implementation

6.1 Network (JMS)
JMS Configurarion
We use JavaEE Eclipse with jre 7 and sdk 7. We also use Glassfish 3.1.2 as
a server. After we have started the Glassfish server we use the Admin consol
to access and define the administrative objects in the JMS Resources. We
name the connection factory as:
JNDI name: “jms/GFConnectionFactory”
Physical name: “GFConnectionFactory”
And we characterize this object as an instance of
“ConnectionFactory.TopicConnectionFactory “.
Then we name two destination objects:

1. JNDI name: “jms/Data”, physical name: “Data”, Type: “Topic”
2. JNDI name: “jms/Alarm”, physical name: “Alarm”, Type: “Topic”

Therefore, we have binded the administrative objects to a JNDI namespace.
More information on how to install Glassfish and configure JMS can be found
on section 6.3. [47]

6.1.1 SimpleSensor.java
The SensorObject.java file is an application client which acts as a publisher in
the network, e.g. like a sensor publishing continuously data. We define the
names of the resources to be mapped later at the destination resources in
JNDI namespace
public static final String TOPIC1 = "jms/Data";

In the main() method we instantiate a sensor object and use it to get the
initial context of the JNDI namespace [48]:
Context InitialContext = sensor.getInitialContext();
The function getInitialContext() sets some properties in order for this client
application to connect to Glassfish server [48]:
properties.setProperty("java.naming.factory.initial",
"com.sun.enterprise.naming.SerialInitContextFactory");

 76

properties.setProperty("java.naming.factory.url.pkgs",
"com.sun.enterprise.naming");
properties.setProperty("java.naming.provider.url",
"$$op://localhost:3700");

After connecting to Glassfish server, we inject (inside the main function) the
administration objects created at the server, i.e. the destination resource
“jms/Data” and the connection factory resource “GFConnectionFactory” [48]:
Topic topic1 = (Topic)
InitialContext.lookup(SensorObject.TOPIC1);
TopicConnectionFactory topicconnectionfactory =
(TopicConnectionFactory)
InitialContext.lookup("GFConnectionFactory");

Using these resources it is possible to create a logical connection (of type
topic) to the JMS Provider, in other words after creating a connection factory
object “topicconnectionfactory”, we can use it to create a connection object.
And afterwards, start the actual connection [48].
TopicConnection topicconnection =
topicconnectionfactory.createTopicConnection();
topicconnection.start();

In the end of the main method we call the publish (TopicConnection
topicconnection, Topic topic) method, which we have created providing the
topicconnection object and the topic (“jms/Data”) as parameters.
Our publish method uses the connection object (“topicconnection”) to create
a session object (publishsession). In the parameters of this method, we
define that the session is not transacted (false) and that the
acknowledgement of messages when received is done automatically
(Session.AUTO_ACKNOWLEDGE) [48].
TopicSession publishsession =
topicconnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

We use the session object to create a publisher object (topicpublisher). This
line publishes an instance for the topic passed in the current method.
TopicPublisher topicpublisher =
publishsession.createPublisher(topic);

We then call the getProperties() method, which reads a sensor1.properties
file to get the properties (id and transmission period) of a sensor.
properties.load(new FileInputStream(PropertiesFileName));
ensorid = Integer.parseInt(properties.getProperty("ID"));
period = Integer.parseInt(properties.getProperty("PERIOD"));
vtype = properties.getProperty("TYPE");
vunit = properties.getProperty("UNIT");

 77

warnlimit =
Double.parseDouble(properties.getProperty("WARNING_THRESHOLD"))
;
alarmlimit =
Double.parseDouble(properties.getProperty("ALARM_THRESHOLD"));
alarmperiod =
Integer.parseInt(properties.getProperty("ALARM_PERIOD"));
The sensor1.properties file emulates a real sensor and the basic properties it
might contain as a piece of hardware.

Then, in the publish method, we read a txt file which contains some
measurement values in the way they would occur in a real environment. We
have created 4 different types of files to simulate different situations occurring
in a production environment. Assuming that we measure temperature we
have the NormalTempValues.txt which contains measurements in the range
of the normal temperature limits. The TestTemp.txt file is similar to the
previous one, but contains fewer values. The AlarmTempValues.txt contains
measurements which range from normal values up to values that exceed the
permitted warning and alarm limit, causing initially a warning and afterwards
an alarm. Finally, we have created theVariatingTempValues.txt files, which
contain temperature measurements which range from normal values up to
values of each the alarm limit, but quickly reduce, as if the system operator
has changed the conditions to save the drug being produced.
FileInputStream fis = new
FileInputStream("C:\\Users\\Anastasia\\EclipseWSworkspace\\Inpu
t \\TestTemp.txt");
byte[] TByte = new byte[fis.available()];
fis.read(TByte);
fis.close();
After we read the file we save the input in a String.
String TMsg = new String(TByte);
We then use the break line character “\n” to separate the measurement
values, which we save in a String array.
Tvalue = new String[0];
Tvalue = TMsg.split(new String("\n".getBytes()));

The publish method continues with a while loop, inside which we call the
TemperatureSensor2() method to constantly get temperature values as a
message:
message = TemperatureSensor2(count);
In case we don’t want to use the values from the files, but we wish to get
random temperature values each time we can call the TemperatureSensor()
which is now in comments:
message = TemperatureSensor();
And using again the session object we create a message object, which we
instantiate with the sensor ID and message, which was just created. The

 78

object is serializable, that means data are transferred as series of bytes. After
we have instantiated the serial message, we save in it the values which we
read from the sensor1.properties file about our sensor, such as the warning
and alarm limits etc. Finally, we call the publish method with the publisher
object we created before, and publish this message object. The message is
sent to the JMS API characterized under the topic “jms/Data” [48].
objectmessage = publishsession.createObjectMessage();
serialmessage = new SerialMsgObject(sensorID,message);
serialmessage.setValue(value);
serialmessage.setAlarm(alarmlimit);
serialmessage.setAlarmPeriod(alarmperiod);
serialmessage.setWarning(warnlimit);
objectmessage.setObject(serialmessage);
topicpublisher.publish(objectmessage);
In case we have used the TemperatureSensor2() method, then the while loop
continues to run until the measurement value it reads is “exit”. The message
is sent to the JMS, then, we close the topic connection and exit and, thus,
terminate the SimpleSensor.java application.
topicconnection.close();
System.exit(0);
In case we have used TemperatureSensor() method, the while loop continues
to run until we stop manually the SimpleSensor.java application.

As we mentioned before, we have created a TemperatureSensor() method
to take, periodically, temperature (and other) measurements, which are
created in a random way. Below we present how this method works:
After the method is called we pause for a period*1000 miliseconds, which will
be the time after reading each value:
Thread.sleep(period * 1000);
We then create an instance of a structure we defined called
temperatureReading, which will be used to hold information about a
temperature reading.
temperatureReading reading = new temperatureReading();
This entity contains information about the type of the value we measure, its
unit and its measurement. In this example, we measure only temperature, so
the type is “Temp”, but it can also be humidity (Humid), differential pressure
(DiffPress) or particles (Particles).
Therefore, having this structure we can get the temperature value, calling the
method getMeasurement(), which finds a random temperature with a mean
of 25 and standard deviation of 5:
reading.measurement = getMeasurement();
Finally, we call the printLogLine method, giving as input parameters part of
the information to be sent later, ie. the sensor id, the measurement type and
the measurement value. The method returns the final message string, which
is published as a message object.

 79

msg = printLogLine(sensorid, reading.type,
Integer.toString(reading.measurement), reading.unit);

We have also created another similar method called TemperatureSensor2
(int c), which, periodically, uses measurements that we had previously read
from the txt file and are now saved in a String array. This method reads a
String array value, periodically, every period of *1000 miliseconds, as
previously. And then the information is saved in a temperatureReading entity,
too. We use a counter to go through the string array values and we increase
by one the counter to read the next value of the string array every time the
TemperatureSensor2 method is called. Finally, we call the printLogLine
method, as before. When we reach the end of the string array, we will read
the “END” message. Then we save an empty measurement in the
temperatureReading entity and produce an “exit” message which will be used
later by the publish (TopicConnection topicconnection, Topic topic) method.
if(Tvalue[c].equals("END")){
 reading.measurement2 = "";
 msg = "exit";
} else {
 reading.measurement2 = Tvalue[c];
 count++;
 msg = printLogLine(sensorid, reading.type,
reading.measurement2, reading.unit);
}

Finally the printLogLine method creates a timestamp for the data to sent,
emulating the fact of having timestamp the data sent by the sensor the
moment it measures an environmental value (e.g. temperature).
SimpleDateFormat format = new SimpleDateFormat("yyyy/MM/dd
HHmmssSSSS");
Calendar calendar = Calendar.getInstance();
java.util.Date now = calendar.getTime();
String currentTime = format.format(now);

We then create an message object to hold locally all the values of a log line.
Logline log = new Logline();
We save in that object instance all the values of a final message [timestamp,
sensor id, measurement type, value, measurement unit]. We use it, firstly to
print the values to the console (so as to know what a sensor object publishes)
and secondly to create the message string to be sent later as a serializable
object.
String finalmessage = log.timestamp + "\t" + log.id + "\t" +
log.event_type + "\t" + log.value + "\t" + log.unit +"\n";

The Log line printed in the console, and therefore the message string sent
has the format:

 80

[timestamp (date and time) sensor_id measurement_type value
measurement_unit]

For example,
2013/08/02 1109290090 A11 Temp 22.0 Celsius
where:
timestamp (date and time) = 2013/08/02 1109290090
sensor_id = A11
measurement_type = Temp
value = 22.0
measurement_unit = Celsius

6.1.2 SerialMsgObject.java
This file represents the object to be transmitted (sent and received) in a
serialisable format. Its construction method saves the name of the client, who
sent the message and the message itself in a string format.
public SerialMsgObject (String name, String message){
 this.name = name;
 this.message = message;
}
It contains data in String format, which are the name of the message sender,
the message, the measurement value, the alarm period, the alarm and
warning limits. It also contains set() and get() methods, that can be used by
any other application to access these strings. This java file is exactly the
same in all the applications that exchange messages between them, because
it defines the format of the message, which should be exactly the same, when
passed from one application to the other through the JMS API.

6.1.3 SensorwithAlarm.java
It contains almost the same code as the SimpleSensor.java file, but it reads
another sensor properties file, sensor2.properties. It represents data
sent/published by another sensor. It has a different sensor id but the rest of
the properties could be either the same or different. This sensor application
simulates a sensor which can also produce alarms, when the measured
values exceed the alarm limit specified in the sensor2.properties file. This is
implemented in the printLogLine method as shown below and determines
the message being published:
if(Double.parseDouble(log.value)>(alarmlimit-1.0)){
 System.out.println(log.timestamp + "\t" + log.id + "\t" +
log.event_type + "\t" + log.value + "\t" + log.unit +"\t"+
"SensorALARM"+ "\n");

 81

 finalmessage = log.timestamp + "\t" + log.id + "\t" +
log.event_type + "\t" + log.value +"\t" + log.unit +"\t"+
"SensorALARM"+"\n";
}else{
 System.out.println(log.timestamp + "\t" + log.id + "\t" +
log.event_type + "\t" + log.value + "\t" + log.unit + "\n");
 finalmessage = log.timestamp + "\t" + log.id + "\t" +
log.event_type + "\t" + log.value +"\t" + log.unit + "\n";
}

The Log line printed in the console of a message, which contains an alarm
notification, has the format:
[timestamp (date and time) sensor_id measurement_type value
measurement_unit SensorALARM]
For example,
2013/08/01 2014370917 B12 Temp 29.1 Celsius
 SensorALARM

6.1.4 DoubleSensor.java
This sensor simulates the functionality of a sensor which measures and
publishes two values, e.g. temperature and humidity. We provide to the
application two different files: (i) sensor1a.properties, defining the properties
for the temperature, and (ii) sensor1b.properties defining the properties for
the humidity. The application publishes two different types of messages, one,
containing information about temperature and another, carrying information
about humidity. So, an example of the messages it sends could be:
2013/08/01 1836490300 C13 Temp 20.4 Celsius
2013/08/01 1836530303 C13 Humid 50.4 %RH

6.1.5 ServerObject.java
This application client represents the server who reads the messages from
the JMS API. It is part of the ServerApp project and is located in the package
com.javamsgservice. Its main method resembles a lot the corresponding one
in the SensorObject.java. We instantiate here a server object instead.
ServerObject server = new ServerObject();
Before that, though, we also initialize an untrusted server object, which starts
the procedures related with applying the security scheme we chose when we
log the data.
us = new UntrustedServer();
But we also inject resources in the JNDI namespace to create a connection
with the JMS Provider. The names of the administrative objects we define in

 82

this file are the same as previously. We use also the getInitialContext method
to connect to the GlassFish server and access the JNDI namespace.
The difference here is that instead of publishing data, we subscribe to them.
More specifically inside the main method we use the server object to call a
subscribe method we created
server.subscribe(topicconnection, topic1, topic2);
We pass the connection object (topicconnection) and the topic1 = “jms/Data”
and topic2 = “jms/Alarm” as parameters to this method. The Server
application subscribes to both topics, so as to receive messages published by
the sensors under topic1 and to messages published by the alarm system
under the topic2.
Inside the method we defined as subscribe(TopicConnection
topicconnection, Topic topic1, Topic topic2), we first create a session
object (subscribesession) using the connection object. We define that the
session is not transacted (false) and that the acknowledgement of messages
when received is done automatically [48]:
TopicSession subscribesession =
topicconnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);
Then using the session object we create the subscriber object, which is an
instance of the topic object (“jms/Data”) passed as parameter in this method
[48]:
TopicSubscriber topicsubscriber =
subscribesession.createSubscriber(topic);
The subscriber object calls the onMessage method every time a message
object is received [48]:
topicsubscriber.setMessageListener(this);
The same commands we use for topic2 [48]:
TopicSubscriber topicsubscriber2 =
subscribesession.createSubscriber(topic2);
topicsubscriber2.setMessageListener(this);

The onMessage method creates an instance of the serializable message
object and reads its values [48].
ObjectMessage objectmessage = (ObjectMessage) message;
SerialMsgObject serialmessage = (SerialMsgObject)
objectmessage.getObject();
String text = serialmessage.getMessage();

We print these values in the console to see directly if they are the expected
ones
System.out.println("Sender: "+ serialmessage.getName());
System.out.println("Message: "+ serialmessage.getMessage());
The output on the console should be of the format:
Sender: sensorID

 83

Message: Timestamp (date and time) sensorID MeasurementType
MeasurementValue
For example,
Sender: 11
Message: 2013/05/28 1123440115 11 Temp 30

Then, we save the received message as a string text line on a text file
output = new BufferedWriter(new FileWriter(file,true));
output.write(text);
Each log line saved should be of the save format as the way it is published on
the console by the SensorObject.java
[Timestamp (date and time) sensorID MeasurementType
MeasurementValue]
For example,
2013/05/28 1123440115 11 Temp 30.

Finally, we check each of the received messages, if they are the “exit” String.
If they are not, then we give them as input parameter to the saveEntry()
method of the untrusted server application, so as to save them in an
encrypted way. When we get the 1st exit message, we mark the file as closed
and we don’t let any more messages to be saved in the log file. Now the
“END” string in the end of the measurements files is the one which triggers
the “exit” message to be sent to the Server application. In real conditions of a
drug production, this “exit” message could be triggered manually by the
administrator.
if(text.equals("exit")){
 if(closed==false){
 us.saveEntry(text); //save last entry, ignore next ones
 closed=true;
 }
} else {
 if(closed==false){ //save it only if file isn’t closed
 us.saveEntry(text); // save entry using Untrusted Server
 }
}

6.1.6 AlarmObject.java
This application simulates the Alarm System, which is responsible for
recognizing measured values,
which exceed a predefined value limit. It subscribes to JMS events of Topic
"jms/Data" and evaluates them. If it recognizes an abnormal value it
publishes the msg back to JMS under the Topic "jms/Alarm". The object
messages it sends and receives are serializable.

 84

We first initialize the alarm object inside the main() method, and then we use
the getInitialContext() method to connect to the GlassFish server and access
the JNDI namespace and, thus, the 2 topics and the GFConnectionFactory
[48].
Context InitialContext = server.getInitialContext();
Topic topic1 = (Topic)
InitialContext.lookup(AlarmObject.TOPIC1);
topic2 = (Topic) InitialContext.lookup(AlarmObject.TOPIC2);
TopicConnectionFactory topicconnectionfactory =
(TopicConnectionFactory)
InitialContext.lookup("GFConnectionFactory");
Then we create and run a topic connection, which we use to subscribe to
events of topic1 = "jms/Data" using the method subscribe (TopicConnection
topicconnection, Topic topic).
topicconnection =
topicconnectionfactory.createTopicConnection();
topicconnection.start();
server.subscribe(topicconnection, topic1);

In the subscribe (TopicConnection topicconnection, Topic topic) method
we create a session, which we use to create a susbscriber object to call the
onMessage() method [48].
TopicSession subscribesession =
topicconnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);
TopicSubscriber topicsubscriber =
subscribesession.createSubscriber(topic);
topicsubscriber.setMessageListener(this);

In the onMessage() method, we create an instance of the serializable
message object and read its values [48].
ObjectMessage objectmessage = (ObjectMessage) message;
SerialMsgObject serialmessage = (SerialMsgObject)
objectmessage.getObject();
String text = serialmessage.getMessage();
String nameID = serialmessage.getName();
Among the values of the message object we get, are included the warning
and alarm limits and the alarm period (where as alarm period we define the
maximum time period we can have alarm conditions without exposing the
drug production in danger).
We then save in an AlarmSystemLog.txt file the log entries the alarm system
subscribes to.
Then we check for alarm events. If the measurement is above its warning
limit, but below its alarm limit, then we call the publish(topicconnection,
topic2, serialmessage) method, without counting continuous alarm events
with the count value. If, however, the value is above its alarm limit, then we
call the publish method and also save the value in alarmtime array, which
maintains the timestamps of the continuous alarm messages. We access

 85

them with the count value. If the time difference of the timestamp of the
current message since the 1st alarm event (in a series of continuous alarm
events) exceeds the alarm period, then we notify the administrator that the
product has been exposed to unsuitable conditions for time longer than it can
take and is potentially unsuitable for use. In any other case that the value
measured is normal, nothing happens.
if((value>(warninglimit-1.0))&&(value<alarmlimit)){
 server.publish(topicconnection, topic2, serialmessage);
 alarmtime = new long[100];
 count = 0;
} else if(value>(alarmlimit-1.0)){
 server.publish(topicconnection, topic2, serialmessage);
 alarmtime[count] = Long.parseLong(log2[0]);
 long difference = alarmtime[count]-alarmtime[0];
 if(difference>(alarmperiod*10000)) {
 System.out.println("Product exposed to
unappropriate conditions for over its time limit. Product is
potentially unsuitable.");
 }
 count++;
} else {
 alarmtime = new long[100];
 count = 0;
}

Finally, the publish (TopicConnection topicconnection, Topic topic,
SerialMsgObject serialmessage) method is called only on an alarm or
warning event and publishes message objects under topic2 = “jms/Alarm”.
Depending on whether the message informs about a warning or about an
alarm being exceeded, a related message is added in front of the data string
we received from the sensor.
if((value>(warninglimit-1.0))&&(value<alarmlimit)) {
 message = "AlarmSystem: WARNING: " +
serialmessage.getMessage();
} else {
 message = "AlarmSystem: ALARM: " +
serialmessage.getMessage();
}
Afterwards the alarm event is published, unless the data received from the
sensor is the “exit” message, which we ignore.
if (message.equalsIgnoreCase("exit")){
 topicconnection.close();
 System.exit(0);
} else {
 objectmessage = publishsession.createObjectMessage();
 objectmessage.setObject(new
SerialMsgObject(sensorID,message));
 topicpublisher.publish(objectmessage);
}

 86

6.2 Security

6.2.1 Package: com.Security.UntrustedServer
The following files are included in the package com.Security.UntrustedServer.
We have created the folder USstorage to represent the local storage of the
Untrusted Server. There we save some data such as keys that the Untrusted
Server (US) creates and uses later while it runs. The communication of the
US with Trusted Server is implemented with files exchange. The information
each server keeps on its own storage cannot be read by others. The only
exception consist the server public key, which can be accessed by everyone.
When the two servers communicate they place files in the EclipseWorkspace.
In a realistic scenario, instead of EclipseWorkspace we can use for example
another server, where both servers have access to.

6.2.1.1 UntrustedServer.java
The core functionality of this application is to encrypt the entries received at
the server. For encryption it follows the Schneier and Kesley security
scheme. More specifically, it creates log entries:
Li = [LogEntryType, AES(Di)_Ki, Yi, Zi]
where

• Di = [current_timestamp, timeout_timestamp, ID_logentry, Message]
where Message = the data we want to save

• AES(Di)_Ki = symmetric encryption of the Di string using the AES
algorithm and the encryption key Ki

• Yi = hash(Yi-1, AES(Di)_Ki, LogEntryType) i.e. a value produced by
applying a one-way hash function to 3 values

• Zi = MAC(Yi)_Ai i.e. Message Authentication Code, which is a one
way function applied on the Yi value using the Ai authentication key.

The constructor method of the UntrustedServer class starts the
secureserver.java application which waits input from the UntrustedServer.
Thread TS = new Thread() {
 public void run() { secureserver.main(); }
 };
TS.start();
It then instantiates an InitializeLog object, which performs all the initial
communication with the secureserver application and writes the first initial
messages in the log file, before any entry is saved there. We will describe
these methods in detail in the following sections.
InitializeLog ini = new InitializeLog();
ini.Init();

 87

Before we continue further, we check whether the message M1 that the
InitializeLog object received from the secure server application is verified.
M1verified = ini.getM1Ver();
If message M1 is not verified, then we get a notification and no logging
activity takes place. If it is verified, then this means that the Trusted and
Untrusted Servers exchanged their initial secret keys successfully and no
intruder tampered with the initial messages they exchanged. So, the rest of
the application continues running normally. Next the program asks the user to
define the date and time the untrusted server is expected to timeout and stop
working. This in real conditions could be the production end day.
System.out.println("Expected timestamp the Untrusted Server
will timeout (YYYY/MM/DD HHMM): ");
try{
 BufferedReader bufferRead = new BufferedReader(new
InputStreamReader(System.in));
 timeout = bufferRead.readLine();
 timeout = timeout + "000000";
 timeoutdate = new SimpleDateFormat("yyyy/MM/dd HHmmssSSSS",
Locale.ENGLISH).parse(timeout);
} catch(IOException | ParseException e){
 e.printStackTrace(); }
Then after preparing 4 different LogFiles we save the first two messages Mo
and M1, which were created from the 1st communication of the Trusted
Server (secureserver.java) with the UntrustedServer (InitializeLog.java).
saveEntry("MoMessage");
saveEntry("M1Message");
The main log file is the LogFile.txt. The others are just copies of it and are
used for other applications to access the log file, without interfering with the
functionality of saving log entries, because they result into problems when we
want to sign entries later.

The core functionality of this class, though, is performed in the saveEntry
(String entry) method. This method takes as input parameter a string, which
contains the message to be logged. If the log file is not closed (for some
reason), then we can proceed with encrypting and saving the entry. We then
create a timestamp to define when the entry message is going to be saved.
SimpleDateFormat format = new SimpleDateFormat("yyyy/MM/dd
HHmmssSSSS");
Calendar calendar = Calendar.getInstance();
java.util.Date now = calendar.getTime();
timestamp = format.format(now);
We also use a counter i to enumerate the current log entry. This counter is
very useful in other cases also, because there are special messages that
should be produced in the first two entries. If i=0 then the MoMessage should
be encrypted and saved and the log entry should be of type Wi =
“LogfileInitializationType”. If i=1, then it should be the M1Message to be
encrypted and saved and the log entry should be of type Wi =

 88

“ResponseMessageType”. In case the M1Message is verified as false or the
current timestamp exceeds the timestamp that the Untrusted Server will
timeout, then the log entry should be of type Wi = “AbnormalCloseType”. If
the entry string is the message “exit”, then we define the log entry of type Wi
= "NormalCloseMessage". Finally, if we have a normal message entry string,
then we characterize it as Wi = “LogEntryType”.
if(i==0){ //if it is MoMessage
 try {
 fis = new
FileInputStream("C:\\Users\\Anastasia\\EclipseWSworkspace\\MoMe
ssage");
 byte[] MoMsgByte = new byte[fis.available()];
 fis.read(MoMsgByte);
 fis.close();
 Message = new String(MoMsgByte);
 } catch (IOException e) { e.printStackTrace(); }
 Wi = "LogfileInitializationType"; //LogEntryType
} else if (i==1){ //if it is M1Message
 try {
 fis = new
FileInputStream("C:\\Users\\Anastasia\\EclipseWSworkspace\\M1Me
ssage");
 byte[] M1MsgByte = new byte[fis.available()];
 fis.read(M1MsgByte);
 fis.close();
 Message = new String(M1MsgByte);
 } catch (IOException e) { e.printStackTrace(); }
 Wi = "ResponseMessageType";
} else if (M1verified==false){
 Wi = "AbnormalCloseType"; //LogEntryType
 Message = ("M1 Message sent by Trusted Server is NOT
verified in Untrusted Server.");
 System.out.println(Message);
} else if (now.after(timeoutdate)) {
 Wi = "AbnormalCloseType"; //LogEntryType
 Message = "Timeout occured in Untrusted Server";
 System.out.println(Message);
} else if (entry.equals("exit")){
 Wi = "NormalCloseMessage";
 Message = "";
} else {
 Message = entry; //String received in ServerObject
 Wi = "LogEntryType";
}
We then define the string to be logged in an unencrypted format yet. The
information it includes are the current timestamp, the timestamp when the
Untrusted Server will timeout, the id of the log entry and the message it
received from either the sensor, or the alarm system, or an empty message in
case of an abnormal or normal close of the log file. So the logging format is:
[log_timestamp timeout_timestamp logentry_id message]
String Di = timestamp +" "+timeout+ " "+ID_logentry+" "+

 89

Message;
An example of such an entry is
2013/08/02 1109250079 2013/08/02 1130000000 4 2013/08/02
1109250079 A11 Temp 21.0 Celsius
where
Log_timestamp = 2013/08/02 1109250079
Timeout_timestamp = 2013/08/02 1130000000
Logentry_id = 4
Message = 2013/08/02 1109250079 A11 Temp 21.0 Celsius

Then we check if it is the 1st log entry we are going to save (if i=0). If this is
the case, then we read the Ao authentication key, which the InitializeLog.java
had created previously and saved locally in the Untrusted Server storage.
Furthermore we create a 20-byte array of zeros, which we are going to use
as value Yi-1, which we are going to use a bit later.
byte[] Y_minus1 = new byte[20];
for(int j = 0 ; j < Y_minus1.length ; j++) {
 Y_minus1[j] = 0; }
Yi = new String(Y_minus1);

We then create the encryption key Ki, applying a one-way hash function to
the authentication key Ai and the log entry type Wi.
String Ki = Ai +" "+ Wi;
int encki = Ki.hashCode();

Having the Di string message and the encryption key Ki, we can produce the
AES(Di)_Ki value, i.e. we can encrypt the Di value with the AES symmetric
encryption algorithm using the key Ki. The encryption method returns as
result a string with the encrypted data.
AES256 aesDi = new AES256();
try {
 AESDi_Ki = aesDi.encryptAES256(Di,
Integer.toString(encki));
} catch (Exception e) { e.printStackTrace(); }

We then create the Yi value, by hashing the values Yi-1, the output of the
AES encryption AESDi_Ki, and the key Ai.
String hashcurrent = Yi +" "+ AESDi_Ki+" "+Wi;
int Yint = hashcurrent.hashCode();
Yi = Integer.toString(Yint);

The last value we create for the encrypted log entry is a MAC (Message
Authentication Code) of the value Yi, using the key Ai.
byte[] AikeyBytes=Ai.getBytes();
SecretKey key = new SecretKeySpec(AikeyBytes, "HmacSHA1");

 90

Mac m;
try {
 m = Mac.getInstance("HmacSHA1");
 m.init(key);
 m.update(Yi.getBytes());
 mac = m.doFinal();
} catch (NoSuchAlgorithmException | InvalidKeyException e) {
 e.printStackTrace();
}

Therefore an encrypted log entry will contain the following information
[log_entry_type, encrypted_message, value_Yi, value_MACi]
String Li = Wi +" "+ AESDi_Ki +" "+ Yi +" "+ Zi + "\n\n";

For example,
LogEntryType
IJ6z0QgONqWemDWSqObwtvZ/DB0D6iFGVf3imoIp6i7AONa8IuJzP1o5w
kJEBNgtsXPpmrVjSw+2
AQT6nC09CuMwezCy15yafdzfX+IoY+5XbsT96EKbLxqDqnMcloWb -
834139319 1263724178
where
log_entry_type Wi = LogEntryType
encrypted_message AESDi_Ki=
IJ6z0QgONqWemDWSqObwtvZ/DB0D6iFGVf3imoIp6i7AONa8IuJzP1o5w
kJEBNgtsXPpmrVjSw+2
AQT6nC09CuMwezCy15yafdzfX+IoY+5XbsT96EKbLxqDqnMcloWb
 value_Yi = -834139319
value_MACi = 1263724178

Afterwards, we save the encrypted log entry in the LogFile.txt and LogFile 2,
3, 4 which are copies of the first one. The reason we save the log entries in
different files is to avoid simultaneous access to the same file by the US, the
Regulatory Authority and the Alarm Service, which causes errors (e.g.
incorrect signatures, when the Alarm Service tries to sign the logged entries).
In the complete system, instead of files, we'll have a database to save our
encrypted entries, so we'll have to manage access rights there instead.
Then we increment the authentication key Ai, replacing the one we just used.
The new key will be used at the new entry. The new key is created by
incrementing the old one and then hashing it.
int a1 = Integer.parseInt(Ai) + 1; //Ai+1
String A1 = Integer.toString(a1);
int aa1 = A1.hashCode();
Ai = Integer.toString(aa1);

In the end of the saveEntry method we check if we had previously received
an “exit” or an “AbnormalCloseType” message. In that case we log the

 91

current entry as the last one in our log file, we delete the keys Ai and Ki and
we mark the log file as closed.
if(entry.equals("exit")||Wi.equals("AbnormalCloseType")){
 Ai = "";
 Ki = ""; encki = 0;
 fileclosed = true;
}

6.2.1.2 InitializeLog.java
According to Schneier & Kelsey security scheme, before starting logging
entries, we should establish communication between Unstrusted (US) &
Trusted Server (TS). The InitializeLog class takes care of this. The actions
that are performed here are:
1. US sends MoMessage = [protocol_stepID, ID_US, PKE(Ko)_pubTS,
AES(Xo, Sign(Xo)_privUS)]
 where Xo = [protocol_stepID, timestamp, Ao]
 Ao = authentication key
 Ko = session key (US->TS)
 2. Then US waits for the response of TS, ie. M1Message.
 3. When US receives M1 it tries to verify it; it should decrypt correctly and
contain a valid signature Sign(X1).

The core method of this class is Init(). The first action to do in this method is
to create a private-public key pair for the Untrusted Server, which we store in
USstorage.
Key_Pair pairUS = new Key_Pair();
pairUS.create("USstorage\\USsk", "USstorage\\USpk");
privUS = pairUS.getPrivKey();

Then we create the first authentication key Ao in a random way and save it in
USstorage for later use.
Random rnd = new Random();
int ao = rnd.nextInt();
Ao = Integer.toString(ao);

Afterwards, we create a session key Ko to communicate 1st time with Trusted
Server. Defining as first log entry type Wo = “LogfileInitializationType”, the
key is generated by hashing Wo and Ao, i.e. Ko=hash(Wo,Ao).
String Wo= "LogfileInitializationType";
String hash = Wo + Ao;
sessionKo = hash.hashCode();

Then we create a timestamp of the message, to note when it was created
and sent first time.
SimpleDateFormat format = new SimpleDateFormat("yyyy/MM/dd
HHmmssSSSS");
Calendar calendar = Calendar.getInstance();

 92

java.util.Date now = calendar.getTime();
timestamp = format.format(now);

So, we are ready now to construct a part of the MoMessage, the Xo
message: (protocol_step_ID, Start_timestamp, Authentication_Key_Ao)
String XoMessage = protocol_stepID + " "+ timestamp + " " + Ao;

and then sign it with the private key of US
signature si0 = new signature();
si0.sign(XoByteArray, privUS);
byte[] Sig = si0.returnSign();

In order for the signature to be read from a file correctly, it needs to be saved
and read in a byte[] format. So, apart from the MoMessage file where we’ll
save it as a String, we save it also separately in a SignXo file, but we will let
TS access this file, only if it decrypts correctly the MoMessage.

In the following steps, we read the public key of Trusted Server, using the
local method readPK_TS().
pubKeyTS = readPK_TS();

We will use the public key of TS to perform a public key encryption PKE of
the session key Ko, using the RSA algorithm: PKE(Ko)_pkTS
PKE_RSA pkeKo = new PKE_RSA();
pkeKo.encryptPKE_RSA(pubKeyTS, Integer.toString(sessionKo));
PKEbytearray = pkeKo.EncryptPKERSA_Result();
PKEtextmsg = new String(PKEbytearray);

After that, we perform symmetric encryption with the algorithm AES-256 of
values Xo and its signature sign(Xo):
String signatureXo = new String(Sig);
String AESmsg = XoMessage + " " + signatureXo;
AES256 aesXoSignXo = new AES256();
AESresult = aesXoSignXo.encryptAES256(AESmsg,
Integer.toString(sessionKo));

The PKE(Ko)_pkTS value is saved also in a separate file PKE_Ko, because it
faces the same problem as the sign(Xo).
Finally, we create the MoMessage consisting of the following values:
MoMessagePrint = protocol_stepID + " " + ID_US + " " +
PKEtextmsg + " " + AESresult;

where ID_US is the id of the Untrusted Server.

Then the init() method waits until TS answers by creating the M1Message
file. When US receives the M1Message, it tries to decrypt it. The encrypted
values it contains are:
M1Message = [protocolstep_ID, TS_ID, PKE(K1)_pubUS,
AES(X1,Sign(X1)_privTS)]
First we decrypt the message encrypted with PKE using the RSA algorithm
and the public key of US:

 93

PKE_RSA pkeK1 = new PKE_RSA();

To decrypt it we need the private key of US. The decrypted value we get is
the session key K1 that TS created.
pkeK1.decryptPKE_RSA("USstorage\\USsk", pkek1);
sessionK1 = pkeK1.decryptPKERSA_Result();

Then we decrypt the message encrypted with AES256 (in value result[3]),
using the session key K1.
AES256 aes2 = new AES256();
String X1SignX1 = aes2.decryptAES256(result[3], sessionK1);

The result we get is the message X1 and its signature sign(X1).
Afterwards, we verify the signature sign(X1) that TS created with its private
key. To verify it, we use its public key TSpk. The result we get is a Boolean
variable which returns true if the signature is verified or false otherwise.
signature s1 = new signature();
boolean X1SignVerif =
s1.SignVerif("TSstorage\\TSpk","sigX1",X1);

If the signature above verifies correctly, then we consider that the message
M1Message is verified, too.
if (X1SignVerif == true){
 System.out.println("Message M1 sent signed by TS is
verified!\n");
 M1verified = true;
}

Previously, we had mentioned that the local method readPK_TS(), reads the
encoded public key bytes of the Trusted Server. First, we read the public key
of TS, which is located in its memory, TSstorage. In real conditions we should
place the public key in an area/server where both TS and US have access
and limit the permissions of TSstorage only to TS.
Then we define the key specification; the key was encoded according to the
X.509 standard for RSA by SUN. We create then a KeyFactory object to
instantiate a RSA public key from its encoding and finally we use the
KeyFactory object to generate a PublicKey from the key specification.
X509EncodedKeySpec pubKeySpec = new
X509EncodedKeySpec(encKeyTS);
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
pubKeyTS = keyFactory.generatePublic(pubKeySpec);

The method returns as result the public key of TS.

6.2.1.3 ManualSigning.java
This class performs the “manual signing" operation, as it is described in the
security scheme of Stathopoulos, Kotzanikolaou, Magkos. It is performed by
the administrator of US to manually sign log entries.
The recommended frequency for this operation is once per day or per week.

 94

First we read the private key SK1 that the Alarm Service (for Security) has
already generated. Then we create then a KeyFactory object to instantiate a
RSA private key from its encoding and then we define the key specification;
the private key was encoded according to PKCS8 standard.
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
EncodedKeySpec privateKeySpec = new
PKCS8EncodedKeySpec(privateKeyBytes);
privateKey1 = keyFactory.generatePrivate(privateKeySpec);

Afterwards we read the encrypted log file with the local method readFile(),
which reads actually a copy of the log file LogFile4.txt and save the
messages it read on the String variable str.
readFile();

So, we use the str variable to sign the current content of the log file with the
private key SK1.
signature s1 = new signature();
s1.sign(str.getBytes(), privateKey1);

We call the local method save(byte[] Signature), to save the signed log
entries in RAstorage (where RA stands for Regulatory Authority, as this is
defined in Stathopoulos et al. security scheme).
save(realSigstr);

Finally, we wait for RA to acknowledge the reception of the signature above,
i.e. to create an ACK1 file in Eclipse Workspace, i.e. the area of common
access to both US and RA. All the signatures sent to RA, are stored in
RAstorage and are enumerated.

6.2.2 Package: com.Security.TrustedServer
The following files are included in the package com.Security.TrustedServer.
We have created the folder TSstorage to represent the local storage of the
Trusted Server TS. There we save some data such as keys that the TS
stores. When TS wants to send a message to US, it creates a file in Eclipse
Workspace. In a realistic scenario, instead of Eclipse Workspace we can use
for example another server, where they have access all servers that want to
communicate.

6.2.2.1 secureserver.java
As we mentioned previously, according to Schneier & Kelsey security
scheme, before starting logging entries, we should establish the
communication between Unstrusted (US) & Trusted Server (TS). So, US first
sends a MoMessage to TS. TS verifies MoMessage, i.e. checks if it decrypts
correctly and if it has a valid signature. TS then creates M1Message and
sends it to US. The variables M1Message contains are:

 95

M1Message = [protocolstep_ID, TS_ID, PKE(K1)_pubUS,
AES(X1,Sign(X1)_privTS]
where X1 = [protocolstep_ID, ID_log, hash(Xo)]
 K1 = session key for TS sending a message to US
 TS_ID = the id of TS

First, Trusted Server creates his private-public key-pair, which he stores in
his memory TSstorage.
Key_Pair pairTS = new Key_Pair();
pairTS.create("TSstorage\\TSsk", "TSstorage\\TSpk");

Then TS waits until MoMessage is created by US in their common-access
area (EclipseWorkspace). Once it is created, we read it and try to decrypt it.

a) We decrypt the message pke0, encrypted with PKE using the RSA
algorithm and the private key of TS. The result we get is the session
key Ko.

 PKE_RSA pkeKo = new PKE_RSA();
 pkeKo.decryptPKE_RSA("TSstorage\\TSsk", pke0);
 sessionKo = pkeKo.decryptPKERSA_Result();

b) We decrypt the message encrypted with AES256 algorithm. To do
that we use the session key Ko. As result we get the Xo message
and its signature sign(Xo).
AES256 aesDo = new AES256();
String XoSignXo = aesDo.decryptAES256(result[3],
sessionKo);

Finally, we try to verify the signature of the sign(Xo). If the method returns
true, then the signature is verified.
signature si = new signature();
boolean XoSignVerif =
si.SignVerif("USstorage\\USpk","sigXo",Xo);

If the above signature is verified, then TS starts forming the M1Message to
reply to US.
First, it creates a random session key K1.
SecureRandom random = new SecureRandom();
sessionK1 = new BigInteger(80, random).toString(32);

Then it creates the X1 message, which contains the protocol_stepID, logID
and hash(Xo).
The protocol step id is created by incrementing the respective value we
received with MoMessage
int p = Integer.parseInt(protocol_stepID);
p = p + 1;
protocol_stepID = Integer.toString(p);

And the hash value of Xo is created as
int hashXo = Xo.hashCode();

 96

Then we can form our X1 message:
String X1 = protocol_stepID + " " +logID + " "+
Integer.toString(hashXo);

and sign it with the private key of TS
signature s1 = new signature();
s1.sign(X1.getBytes(), privTS);
realSigX1 = s1.returnSign();

Afterwards, we perform Public Key Encryption PKE (using RSA algorithm) of
the session key K1 with Untrusted Server's public key: PKE(K1)_pkUS. First
we read the public key of US, using the local method readPK_US().
pkUS = readPK_US();
PKE_RSA m1pke = new PKE_RSA();
m1pke.encryptPKE_RSA(pkUS, sessionK1);
M1_PKEbytearray = m1pke.EncryptPKERSA_Result();

After that, we perform symmetric encryption with AES-256 algorithm of the
variables X1 and sign(X1):
 try {
 String signatureX1 = new String(realSigX1);
 String AESmsgM1 = X1 + " " + signatureX1;
 AES256 m1aes = new AES256();
 AESresultM1 = m1aes.encryptAES256(AESmsgM1, sessionK1);

} catch (Exception e) { e.printStackTrace(); }

So, we are, finally, ready to form and save the M1Message:
String M1msg = protocol_stepID + " "+ Trusted_ID + "
"+M1_PKEtextmsg+ " "+ AESresultM1;

6.2.2.2 VerifyLog.java
After the US has created the log file containing all entries encrypted, the TS
server gets this file to decrypt it and verify it. An encrypted log entry contains
the values [LogEntryType, AES(Di)_Ki, Yi, MACi]
 (for more details see comments in UntrustedServer.java file). The TS learned
the authentication key Ao, when he decrypted MoMessage with
secureserver.java application. MoMessage contained Xo message, which
contained Ao key. According to Schneier & Kelsey security scheme, the way
to decrypt the log is the following:
1. Ki = hash(Wi, Ai), so he learns the encryption key Ki for AES algorithm
2. decrypt: AES(Di)_Ki, so he learns data Di, which contains among others

Mi, ie. the core message
3. verification: recreates Yi = has(Yi-1, AES(Di)_Ki, Wi) and compares value

to the received one
4. verification: recreates MACi = MAC(Yi)_Ai and compares value to the

received one

 97

The reason that TS recreates Yi and MACi values, instead of decrypting them
is that the hash and MAC are 1-way functions and, thus, cannot be
decrypted.

In the file we read the LogFile.txt (and its copies LogFiles 2,3,4) which
contains the encrypted entries and try to verify each entry one-by-one.
If it is the first entry then the authentication key Ai is Ao. Otherwise, we
calculate it by incrementing the previous key Ai-1 by 1 and hashing the sum.
int ai = Integer.parseInt(Ai) + 1;
String A1 = Integer.toString(ai);
int aa1 = A1.hashCode();
Ai = Integer.toString(aa1);

Then we calculate the key Ki by hashing the values entry log type Wi and the
key Ai
String Ki = Ai +" "+ Wi;
int keyi = Ki.hashCode();

After that, we decrypt the message encrypted with AES-256 algorithm, using
the key Ki and get as output the decrypted data Di.
AES256 aesDi = new AES256();
Di = Di + aesDi.decryptAES256(AESDi_Ki,
Integer.toString(keyi));

If the message cannot be decrypted, then someone has tampered with the
encrypted log entry in the log file.

Then we try to recreate value Yi. It is constructed as Yi = hash(Yi-1 ,
AES(Di)_Ki, Wi). If it is the first log entry then the Yi-1 value is a 20-byte array
of zeros.
String hashcurrent = Yi +" "+ AESDi_Ki +" "+Wi;
int Yi_int = hashcurrent.hashCode();
Yi = Integer.toString(Yi_int);

After we have created Yi, we compare it with the one contained in the
encrypted log entry. If they match, then Yi value is verified and we can
continue trying to verify the MAC value. If not, then someone tampered with
the encrypted log entry.
if(Yi_int==Integer.parseInt(entrypart[2])){
 System.out.println("Y["+i+"] = hash(Yi-1 ,AES(Di)_Ki, Wi)
is verified");
 Yi_verified = true;
}

If the Yi is verified, we create the MAC of the Yi value, using the Ai key:
byte[] AikeyBytes=Ai.getBytes();
SecretKey key1 = new SecretKeySpec(AikeyBytes, "HmacSHA1");
Mac m;
try {
 m = Mac.getInstance("HmacSHA1");

 98

 m.init(key1);
 m.update(Yi.getBytes());
 mac = m.doFinal();
} catch (NoSuchAlgorithmException | InvalidKeyException |
IllegalStateException e) {
 e.printStackTrace();
}

We compare the MAC created with the MAC included in the encrypted log
entry, after transforming them into integer format. Other formats cause
problems in the comparison.
bi = Integer.parseInt(MACi);
if (bytesToInt(mac)==bi){ // best format to compare MACs is int
 System.out.println("MAC["+i+"] = MAC(Yi)_Ai is
verified\n");
 MACi_verified = true;
}

If the MAC is not verified, then the encrypted log entry has been changed by
an intruder.
Finally, we save the decrypted entries into two different files. The one called
DecryptedLogDi.txt including the Di messages, which include the Mi
messages. (The Mi message is the one received to Server by either the
sensors or the Alarm System). The other file is called DecryptedLogMi.txt and
contains only the Mi messages.

6.2.2.3 CleanFiles.java
We run this application before we start any other application, to clean the
EclipseWorkspace and the RAstorage folder from the files they contain,
because this will cause problems to run a new test. More specifically, we
delete the acknowledgement files created from the automated and manual
signing, then we delete the files created from the 1st and 2nd message
exchange between US and TS. We then delete all the files in the RAstorage,
i.e. all the manual signatures, the automated signatures. Then we the
encrypted log files in USstorage and the corresponding decrypted log files in
TSstorage. Finally, we delete the files ServerLog.txt and AlarmSystemLog.txt,
which contain the messages that the ServerApp and AlarmSystem objects
receives respectively.

6.2.3 Package: com.Security.AutomatedSigning
The following files are included in the package
com.Security.AutomatedSigning. We have created the folder ASstorage to
represent the local storage of the Alarm Service. This service is related to
security and not to the Alarm System. That’s the reason we named the
package this way. In ASstorage we save some data, such as the two private-

 99

public keys-pairs that the Alarm Service creates. The Alarm Serive also
communicates with other applications through files in EclipseWorkspace. In a
realistic scenario, instead of EclipseWorkspace we can use for example
another server, where servers, that want to communicate, have access.

6.2.3.1 AlarmService4AutoSignRequests.java
Here we perform the "automated Signing” operation for random requests of
Regulatory Authority RA, as described by Stathopoulos, Kotzanikolaou,
Magkos in their security scheme. The action performed here, simulate the
Alarm Service receiving and handling random requests (sent by RA) for
signing the encrypted log entries currently existing in the log file. The log file it
accesses is a copy of LogFile.txt, which is called LogFile3.txt.
In the main method we examine if the file Sign2Request is created by RA, to
request a signature of the current log file. If this is the case, we call the
method ActionOnAlarm(). In this method, we read the private key SK2, that
the Alarm Service created for this specific signing purpose. We create a
KeyFactory object to instantiate an RSA private key from its encoding and
then in the key specification we define, that the private key was encoded
according to PKCS8 standard.
KeyFactory keyFactory = KeyFactory.getInstance("RSA");
EncodedKeySpec privateKeySpec = new
PKCS8EncodedKeySpec(privateKeyBytes);
privateKey2 = keyFactory.generatePrivate(privateKeySpec);

We then call the method readFile() to read the LogFile3.txt containing a copy
of the current encrypted entries and sign them, using the private key SK2.
signature s1 = new signature();
s1.sign(str.getBytes(), privateKey2);
byte[] realSigstr = s1.returnSign();

Then we run the save(byte[] Signature) method to save the signature in a file,
called “Sign2_random”, and thus notify the RA that the Alarm Service created
the signature it requested.
Then it waits for RA to create the file “ACK2_randomsign”, which means that
it received the new signature. All the signatures sent to RA, are stored in
RAstorage and are enumerated.

6.2.3.2 AlarmService4SecurityAlarms.java
This application simulates the Alarm Service which "automated signing” for
security alarms it receives, as described by Stathopoulos, Kotzanikolaou,
Magkos. We recognize critical events, sign the current encrypted log file and
send the signatures to RA. Here as critical events we consider only the
modifications on the log file. We use a copy of the main log file, called
LogFile2.txt.

 100

First, we create two private-public key pairs and store them in ASstorage.
One pair SK1-PK1 will be used for “manual signing” and the other Sk2-PK2
for “automated signing”.
The application runs a TimerTask which runs every second and calls the
FileWatcher function, which checks if any changes happened to the log file
during that time. If the file changed, we call the ActionOnAlarm() local
method. In this method, we read the entries contained in the current log file,
sign them with the private key SK2 and create a file “Sign2”, which contains
the signature and notifies the RA about it. Then the Alarm Service waits for
RA to acknowledge the reception of the signature, by creating the file
“ACK2_alarm”. All the signatures sent to RA, are stored in RAstorage and are
enumerated.

6.2.3.3 FileWatcher.java
This file contains code that periodically watches a file for any change
happening on it. The code was found online at [52].

6.2.4 Package: com.Security.RegulatoryAuthority
The following files are included in the package
com.Security.RegularotyAuthority. We have created the folder RAstorage to
represent the local storage of the Regulatory Authority. In RAstorage we save
all the signed encrypted log entries. The RA communicates with other
applications through files in EclipseWorkspace, which serves as an area
where all application have access.

6.2.4.1 AutomaticSignRequest
Using this application RA generates signature requests to Alarm Service at
random times. The random times are generated as a random integer
between 1 and 10 and are counted in seconds:
Random rnd = new Random();
int r = rnd.nextInt(10);

The request is generated by creating the file “Sign2Request”, which the
Alarm Service will read.

6.2.4.2 RA4AutoSign2Ack.java
This is an RA service for acknowledging the automated signatures created by
the Alarm Service after Ra’s random requests. In the main() method the
FileWatcher function is used to check every half second if the
“Sign2_random” file has changed, which indicates the storage of a signature
in the RAstorage. The RA reads the signature and creates the

 101

“ACK2_randomsign” to notify the Alarm Service that the signature was
received.

6.2.4.3 RA4SecurityAlarms.java
This is an RA service for acknowledging the automated signatures created by
the Alarm Service after a critical event, i.e. a modification in the encrypted log
file. In the main() method the FileWatcher function is used to check every half
second if the “Sign2” file has changed, which indicates the storage of a
signature in the RAstorage. The RA reads the signature and creates the
“ACK2_alarm” to notify the Alarm Service that the signature was received.

6.2.4.4 RAService4ManualSigning.java
This is a service at RA for acknowledging receiving signatures of the log
entries, signed manually by the administrator of the Untrusted Server. In the
main() method the FileWatcher function is used to check every second if the
“Sign1” file has changed, which indicates the storage of a signature in the
RAstorage. The RA reads the signature and creates the “ACK1” to notify the
Untrusted Server that the signature was received.

6.2.4.5 Start_RA_AlarmService.java
This is a class which starts all the applications of RA and Alarm Security
Service, which should be running simultaneously as Threads, i.e. the java
files RA4SecurityAlarms, RAService4ManualSigning,
AlarmService4SecurityAlarms, AlarmService4AutoSignRequests and
RA4AutoSign2Ack.

6.2.4.6 VerifySignatures.java
When logging in Untrusted Server has finished, we run manually this
application to verify the signatures (of the log entries) received in RA
(RAstorage).
First we read the files Signs1_at_RA.txt and Signs2_at_RA.txt, to count how
many manual and automated signatures exist on RAstorage. Then it reads in
ASstorage the public keys PK1 and PK2 from the key-pairs that the Alarm
Service had created. After that it reads the encrypted log entries that the
LogFile.txt contains after the end of the logging procedure.
Afterwards, we try to verify the manual signatures. We know the public key
Pk1 and the signature, but we don’t know exactly which entries of the log file
were used to create a signature. So, for every signature, we try a string text
which consists of the log entries being attached gradually to the end of the

 102

text until the combination of signatures used to create that specific signature
is found and the verification returns true as a result.
for (int j = 0; j < logresult.length; j++){ //for every log
entry
 Log = Log + logresult[j]+"\n\n";
 ver = SignVerif(keyreceived1, signreceived, Log);
 if (ver==true){
 System.out.println("Singature1 entry["+i+"] is
verified\n");
 ver1[i] = 1; //true
 }
}

If the manual signatures are verified, then we proceed with the verification of
the automated ones. The procedure followed is similar with the one used for
the manual signature verification.

6.2.5 Package: com.Security.EncryptDecryptAlgorithms
The following files are included in the package
com.Security.EncryptDecryptAlgorithms.

6.2.5.1 AES256.java
It is an algorithm described by Advanced Encryption Standard (AES). It is a
symmetric-key encryption algorithm, ie. the same key is used for both
encrypting and decrypting data. The algorithm was found online at [53] and
was modified to serve our needs in this project. The encryption method
encryptAES256() takes as input parameters the data to be encrypted and the
encryption key and returns the encrypted value as a string. The decryption
algorithm decryptAES256 takes as input parameters the encrypted data and
the encryption key and returns the decrypted value as a string.
Both the encryption need to generate a key from the encryption key they
received as input. Thus, they call the local method generateKey.
Key key = generateKey(sessionkey);

In this method we examine the length of the session key and add zeros in the
end of it, because we need a key of length 16 for the AES-256 decryption.
After generating the key in the format that is suitable, we initialize in both
encryption and decryption methods an instance of the cipher, using the AES
algorithm:
Cipher c = Cipher.getInstance("AES");

And after that we perform encryption
c.init(Cipher.ENCRYPT_MODE, key);
byte[] encVal = c.doFinal(Data.getBytes());

 103

String encryptedValue = new
BASE64Encoder().encode(encVal);

Or decryption, depending on the method
c.init(Cipher.DECRYPT_MODE, key);
byte[] decordedValue = new
BASE64Decoder().decodeBuffer(encryptedData);
byte[] decValue = c.doFinal(decordedValue);

6.2.5.2 PKE_RSA.java
This file is used for Public Key Encryption (PKE) performed with the RSA
algorithm. The PKE requires a pair of keys (public-private), which are
mathematically linked. The algorithm was found online at [54] and was
modified to serve our needs. The method encryptPKE_RSA takes as input a
public key and a plaintext and encrypts the plaintext with the key. Inside the
method we initialize the cipher, using the “RSA” algorithm:
Cipher cipher;
cipher = Cipher.getInstance("RSA");

And then we encrypt the cipher with the public key:
cipher.init(Cipher.ENCRYPT_MODE, pk);
encryptedPKE_Key = cipher.doFinal(sessionkey.getBytes());

The decryptPKE_RSA method receives as input a private key and a
ciphertext and decrypts the ciphertext with the key. In this method we also
initialize a cipher and then perform its decryption with the private key:
cipher.init(Cipher.DECRYPT_MODE, priv);
byte[] decryptedMsg = cipher.doFinal(EncryptedData);

6.2.5.3 Key-Pair.java
This algorithm generates public and private keys (as pair). The algorithm was
created after combining two online sources [55], [56].
We first create a key-pair generator object, using the RSA as a sign algorithm
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

Then we initialize the Key-Pair Generator, using theSHA1PRNG pseudo-
random-number generation provided by SUN:
SecureRandom random = SecureRandom.getInstance("SHA1PRNG",
"SUN");

Finally, we generate the Pair of Keys & store them:
KeyPair pair = keyGen.generateKeyPair();
priv = pair.getPrivate();
pub = pair.getPublic();

 104

6.2.5.4 signature.java
This file contains algorithms for signing data and for verifying signed data.
The algorithms were found online and were modified.
The signature method sign gets as input the data to be signed in byte array
forma and the private key to sign them with. The signing algorithm used is
RSA.
We first create a key-pair generator object, using the RSA as a sign algorithm
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA");

Then we initialize the Key-Pair Generator, using theSHA1PRNG pseudo-
random-number generation provided by SUN:
SecureRandom random = SecureRandom.getInstance("SHA1PRNG",
"SUN");

We then apply the a length of 1024-bit to the key
keyGen.initialize(1024, random);

Finally, we sign the data by the following procedure:
We get a signature object:
Signature rsa = Signature.getInstance("SHA1withRSA");

We then initialize the signature object with the private key:
rsa.initSign(priv);

Then we supply the signature object the data to be signed:
rsa.update(bytearray);

In the end, we can generate the signature of the data, once all of them have
been supplied to the signature object
realSign = rsa.sign();

The signature verification method SignVerif takes as input the public key, the
signed data to be verified and the unsigned data. We define the key
specification: the key was encoded according to the X.509 standard for RSA
by SUN
X509EncodedKeySpec pubKeySpec = new X509EncodedKeySpec(encKey);

We then create a KeyFactory object to instantiate a RSA public key from its
encoding:
KeyFactory keyFactory = KeyFactory.getInstance("RSA");

We use the KeyFactory object to generate a PublicKey from the key
specification:
PublicKey pubKey = keyFactory.generatePublic(pubKeySpec);

Afterwards, we initialize the signature object for verification as following:
a) we create a signature object and use the same signature algorithm

as when generating the sign:
 Signature sig = Signature.getInstance("SHA1withRSA");

b) then we initialize the signature object with the public key:
 sig.initVerify(pubKey);

Then we supply the signature object with the data to be verified:
sig.update(Xmsg.getBytes());

 105

Finally, we verify the signature of Untrusted Server:
verifies = sig.verify(sigToVerify);

The sources for this java file are [57], [58].

6.3 Application Set-Up

6.3.1 Installation
The application prototype was installed and run on a laptop computer with an
64-bit operating system Windows 7 Home Premium, Service Pack 1,
processor Intel® Core™ i5-2410M CPU of frequency 2,3 GHz and RAM
memory 4GB.We used JavaEE Eclipse with jre 7 and sdk 7 to develop and
compile our code and Glassfish 3.1.2 as a server for configuring the JMS.
We needed to include the following libraries in our client applications, which
communicated with the JMS, i.e. the sensor applications, the alarm system
application and the server application, as following:

• Right click on the project name>Properties>Java Build Path>Tab:
Libraries>Add Library>Server Runtime>GlassFish 3.1.2

• Right click on the project name>Properties>Java Build Path>Tab:
Libraries>Add Library>JRE System Library>Workspace default JRE
(jdk 1.7.0_02)

• Right click on the project name>Properties>Java Build Path>Tab:
Libraries>External JARS:
Pathname: ../glassfish3/glassfish/lib/gf-client.jar.

Finally we added in the server application also the file “openjdk-6-b14.jar” as
an External JAR file, so that we can import the sun.misc.BASE64Encoder
and sun.misc.BASE64Decoder for the AES-256 encryption and decryption
algorithms [47].

6.3.2 JMS Configuration
We use Glassfish 3.1.2 as a server. After we have started the Glassfish
server we use the Admin consol to access and define the administrative
objects in the JMS Resources. We name the connection factory as:
JNDI name: “jms/GFConnectionFactory”
Physical name: “GFConnectionFactory”
And we characterize this object as an instance of
“ConnectionFactory.TopicConnectionFactory “.
Then we name two destination objects:

1. JNDI name: “jms/Data”, physical name: “Data”, Type: “Topic”
2. JNDI name: “jms/Alarm”, physical name: “Alarm”, Type: “Topic”

Therefore, we have binded the administrative objects to a JNDI namespace
[47].

 106

6.3.3 Running the applications
In order to perform a demonstration of our system prototype we need to run
some of the applications in the following order:

1. com.Security.TrustedServer.CleanFiles.java, located in the
ServerApp project file, to clean any remaining files created from the
previous times we run the prototype.

2. com.Security.RegulatoryAuthority.Start_RA_AlarmService.java,
located in the ServerApp project file, to start the RA and the Alarm
Security Service

3. com.javamsgservice.ServerObject.java, located in the ServerApp
project file, to start the log-server. This takes care of the initial
communication of the untrusted and the trusted server and
subscribes to the “Data” and “Alarm” topics waiting for incoming
messages from the JMS. We should enter the date and time that the
server will timeout, i.e. the logging will stop.

4. com.javamsgservice.AlarmObject.java, located in the AlarmSystem
project file, to start the Alarm System, waiting for sensor data.

5. com.javamsgservice.SimpleSensor.java, located in the SensorSimple
project file and/or com.javamsgservice.SensorwithAlarm.java, located
in the SensorWithAlarm project file and/or
com.javamsgservice.DoubleSensor.java, located in the
SensorDoubleValues project file. All these applications simulate a
sensor sending measurement data.

6. com.Security.RegulatoryAuthority.AutomaticSignRequest.java,
located in the ServerApp project file, to start RA performing
automated signature requests at random times

7. com.Security.UntrustedServer.ManualSigning.java, located in the
ServerApp project file, to perform at least one manual signing like the
US administrator would do.

8. When the sensor applications have stopped publishing messages,
we can stop the AlarmObject.java and the ServerObject.java
applications.

9. Then we should stop the Start_RA_AlarmService.java
10. We run the com.Security.TrustedServer.VerifyLog.java, located in the

ServerApp project file, to verify in TS and decrypt the log files that the
US created.

11. com.Security.RegulatoryAuthority.VerifySignatures.java, located in
the ServerApp project file, to verify the signature created by the
manual and automated signing, to ensure that no one tampered with
our log.

 107

CHAPTER 7

Evaluation

In order to evaluate the performance and the effectiveness of our solution, we
run some tests to examine how our algorithm behaves under different
conditions. The experiments are executed on a laptop computer with an 64-
bit Windows 7 Home Premium operating system, Service Pack 1, processor
Intel® Core™ i5-2410M CPU of frequency 2,3 GHz and RAM memory 4GB.

7.1 Performance
In order to examine the system performance we run it with 1, 5, 10 and 14
sensors. We use the simple sensors. If we used another type of sensor, it
would not make much difference in its performance. We keep stable the
sensors publish frequency to 4 seconds for all our experiments.
The tests are performed in two different scenarios. In one scenario, we use
temperature measurements that don’t produce an alarm, therefore the Alarm
System does not publish many data. In the other scenario, we use
temperature measurements that reach an alarm state and thus the Alarm
System publishes data together with the sensors.
The files used as input for our applications in the experiments are the
following and can be found in the Input folder:

• NormalTempValues.txt, contains 29 temperature values, which don’t
exceed 23.0 Celsius

• TestTemp.txt, contains 9 temperature values, which don’t exceed
26.0 Celsius

• AlarmTempValues.txt contains 20 temperature values, which start
from 20.3 and increase up to 34.8 Celsius

• sensor1.properties, contains data about the sensor, such as id,
transmission period, alarm limit etc.

• sensorAj.properties where j = b, c, d, …, o

Since in these experiments we want to focus on the system performance, we
don’t use the whole security scheme, but only part of it. So, we decide to

 108

exclude from these tests the manual signing performed by the administrator
of the Untrusted Server and the automatic requests for signing generated
randomly by the Regulatory Authority. Therefore, we don’t run the files
com.Security.UntrustedServer.ManualSigning.java and
com.Security.RegulatoryAuthority.AutomaticSignRequest.java respectively.
We only use the Schneier and Kesley security scheme and the automated
signing triggered by modification events on the encrypted log file. This is why
we use the com.Security.RegulatoryAuthority.Start_RA_AlarmService.java
file. Therefore we perform our experiments running the applications in the
following order:
• ServerApp project file including:

 com.Security.RegulatoryAuthority.Start_RA_AlarmService.java
 com.javamsgservice.ServerObject.java

• AlarmSystem project file including AlarmObject.java
• SensorSimple project file including SensorSimple.java
• SensorSimplej project file including SensorSimplej.java where j = 2, 3, ..,

15

The Server subscribes to all the messages types, but saves in the log only
those which it had received before the first exit message. All the sensors read
the measurement values from the same file, but we start them manually and
thus they don’t read the file temperature values simultaneously. An exit
message is produced when a sensor finishes reading the file. We stop the
logging after the first exit, because the conditions changed and we have less
sensors running, so we are not interested any more in the performance. In
real conditions the exit could be a message created and sent by the
administrator when the drug production is finished.
After the encrypted log file is produced, we verify (and decrypt) it in the
Trusted Server and we also verify the signatures created so far. This
practically means running the files com.Security.TrustedServer.VerifyLog.java
and com.Security.RegulatoryAuthority.VerifySignatures.java respectively.

7.1.1 Speed/ Latency
The speed at which all the sensors transmit is the same, i.e. every 4 sec
period time. Since we timestamp the time the data is sent from the sensors
and the time the data are logged, we are going to examine the second value
to evaluate the system performance when there is more than one sensors.
We are also going to observe the speed at which the data are received by the
Server.

Tests with Normal Temperature Measurements

Number of Sensors: 1

 109

One can see the decrypted log file after being verified at the Trusted Server
in Appendix A.1.1. (Files used: TestTemp.txt & sensor1.properties).
We have noted with blue the time the entry is logged and with orange the
time the entry was sent from the sensor. We see that the time difference (in
(1/10) milliseconds) between sending and logging varies at a range [4 – 84].
More specifically the time difference values (in (1/10) milliseconds) ordered
are [84, 4, 13, 4, 12, 4, 26(W), 4, 14, 4]. We notice that there is a bigger
delay in the first value, but afterwards it is not so high. We presume that this
happens until the new added sensor synchronizes his transmission period
with JMS. We should also mention that the value 26 consists the time the
data was transferred from the sensor to the alarm system, where it was
recognized as warning (W), and then to the Server, where it was logged in
the file. We calculate the average latency from the above ordered values,
excluding the 1st (8.4 milliseconds) and the warning (2.6 milliseconds). So the
result is 0.73 milliseconds (or 7.3*(1/10) milliseconds).
The time difference between two continuous measurements sent from the
sensor is on average 4 sec (or 4000 milliseconds). This is the case also
between two continuous entries in the log. The measurement identified by the
alarm system as warning, is saved twice in the server log, one time as a data
sent directly from the sensor and another sent as warning by the alarm
system. Therefore, the two log entries have the same sensor timestamp and
very close log timestamp.

Number of Sensors: 5

Files used: NormalTempValues.txt, sensor1.properties and
sensorAj.properties, where j = b, c, d, e.
We present, in the Appendix A.1.1, part of the decrypted log file after being
verified at the Trusted Server. This part contains the entries logged when all 5
sensors are running simultaneously. For space reasons, we don’t present the
complete file log here. One can find the complete log in the file
Tests/Latency/NormalValues/NoOfSensors_5/TSstorage/DecryptedLogDi.txt.
As in the case of 1 sensor, we notice that there is a bigger delay in the time
difference between sensor timestamp and log timestamp the first time a
sensor publishes a measurement. Here we can notice that the biggest
difference is when the 5th sensor (e) is added. The time differences,
measured in (1/10)*milliseconds, in the part of the log we present in Appendix
A.1.1, are shown in Table 7.1, where the letter in the parenthesis replaces the
letter j included in the id, A11j, of the sensor, which produced the
measurement. Sensor (a) id is just A11.

 110

Sensor (a) Sensor (b) Sensor (c) Sensor (d) Sensor (e)
101 14 11 13 9526

4 6 4 4 4
4 5 4 4 4
3 4 5 4 22
4 4 3 7 4

Table 7.1: Latency between sensor timestamp and log timestamp, when 5
sensors are used and the data are directly received by the Server

We observe that the majority of the latencies have most often one of the
values 0.4 or 1.4 milliseconds. However, the average latency for every sensor
is presented in Table 7.2 measured in (1/10) milliseconds. For sensor (e) we
exclude the value 952.5 milliseconds, because it occurs during the first
transmission of the sensor and we presume it happens because the new
added sensor needs some time to synchronize his transmission period with
JMS.

Sensor (a) Sensor (b) Sensor (c) Sensor (d) Sensor (e)
23.2 6.6 5.4 6.4 6.8

Table 7.2: Average latency between sensor timestamp and log timestamp,
when 5 sensors are used and the data are directly received by the Server

So, the average latency when we have 5 sensors is 9.68*(1/10) milliseconds,
which is bigger than in the case of 1 sensor.
Moreover, we observe, in the Appendix A.1.1, that the 5th sensor (e) sends
the first two measurements with time difference 4,9515 sec. until he
synchronizes afterwards to sending the data every 4 sec. We presume that
similar situation has occurred on some of the other sensors when they
published their first measurement.
Furthermore, the time difference among sensors publishing is stable on
average, but it depends when we start manually the sensor application.

Number of Sensors: 10

Files used: NormalTempValues.txt, sensor1.properties and
sensorAj.properties, where j = b, c, …, j.
We present in the Appendix A.1.1 part of the decrypted log file after it has
been verified by the Trusted Server. This part contains the entries logged
when all 10 sensors are running simultaneously. One can find the complete
log in the file Tests/Latency/NormalValues/NoOfSensors_10/TSstorage/
DecryptedLogDi.txt.
The time differences between the sensor timestamp and the log timestamp
for the above log part are presented in Table 7.3 measured in (1/10)

 111

milliseconds. In the first row we have the sensors. The letter in the
parenthesis replaces the letter j included in the id, A11j, of the sensor, which
produced the measurement. Sensor (a) id is just A11.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
4 14 4 5 4 6 5 4 4 15

12 4 12 31 56 4 53 4 15 4
3 3 4 4 4 4 33 3 4 4

Table 7.3: Latency between sensor timestamp and log timestamp, when 10
sensors are used and the data are directly received by the Server

The average latency for every sensor is presented in Table 7.4 measured in
(1/10)*milliseconds.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
6.3 7 6.6 13.3 21.3 4.6 30.6 3.6 7.6 7.6
Table 7.4: Average latency between sensor timestamp and log timestamp,
when 10 sensors are used and the data are directly received by the Server

So, the average latency when we have 10 sensors is 10.5*(1/10)
milliseconds, which is bigger than in the case of 5 and 1 sensors.
The sensors keep sending their measurements every 4 seconds. Observing
the reception of measurements on the Server, we see that many data arrive
with small time difference without causing any problem on the server
application.

Number of Sensors: 14

Files used: NormalTempValues.txt, sensor1.properties and
sensorAj.properties, where j = b, c, …, o.
We present in the Appendix A.1.1 part of the decrypted log file after being
verified at the Trusted Server. This part contains the entries logged when all
13 sensors are running simultaneously. One can find the complete log in the
file Tests/Latency/NormalValues/NoOfSensors_14/ TSstorage/
DecryptedLogDi.txt.
The time differences between the sensor timestamp and the log timestamp
for the above log part are presented Table 7.5 measured in
(1/10)*milliseconds. We can see how the sensors 12 (i), 13 (m) and 14 (n)
are added.

a b c d e f g h i j k l m n
62 31 146 18 191 27 133 139 7 14 30 36 - -

 112

5 7 9 6 4 10 6 19 5 7 10 8 17 -
exit 4 68 10 5 6 17 85 5 5 14 60 5 97
Table 7.5: Latency between sensor timestamp and log timestamp, when 14

sensors are used and the data are directly received by the Server.

The first measurement of 14th sensor (n) arrives in the Server when the 1st
sensor (a) sends an “exit” message and logging stops. The average latency
for every sensor is presented in Table 7.6 measured in (1/10) milliseconds.

a b c d e f g h i j k l m n

33.5 14 74.3 11.3 66.6 14.3 52 81 5.6 8.6 18 34.6 11 97

Table 7.6: Average latency between sensor timestamp and log timestamp,
when 14 sensors are used and the data are directly received by the Server.

 We will exclude from the total average latency calculation, the latency of
sensor (n), since it is its 1st measurement, we don’t have any more
measurements of this sensor in our log entries and it is quite different from
the average latencies of the other sensors. So, the average latency when we
have 13 sensors is 32.6*(1/10) milliseconds, which is bigger than in the case
of 10, 5 and 1 sensors.
The sensors send their measurements every 4 seconds. The reception of
measurements on the Server has small time difference between them,
without causing any problem on the server application subscription.

Tests with Alarm Temperature Measurements

Number of Sensors: 1

Files used: AlarmTempValues.txt & sensor1.properties
Part of the decrypted log-file after being verified at the Trusted Server is
presented in the Appendix A.1.1. The complete log-file is in the file:
Tests/Latency/AlarmValues/NoOfSensors_1/TSstorage/ DecryptedLogDi.txt.
We present the measurements when they start causing alarms.
When the data has been through the Alarm System before arriving to the
Server we include a warning (W) or alarm (A) next to it. Usually an entry
received in the Server directly by a sensor (and has the JMS topic “jms/Data”)
is followed by the same entry which has passed through the Alarm System
before it arrived to the Server and, therefore, has been marked as alarm or
warning (and has the JMS topic “jms/Alarm”). Time differences between the
sensor timestamp and the log timestamp for the above log part are presented
in Table 7.7. The values are presented in pairs measured in (1/10)
milliseconds. Each pair is the same measurement, but on the left we have the

 113

time difference for the entry with topic “jms/Data”, while on the right it is the
difference for the same entry with topic “jms/Alarm”. We read Table 7.7 row-
by-row from left to right.

0 –
47(W)

0-0(W) 0-0(W) 0-48(W) 0-0(W) 0-35(W) 0-0(A)

0-36(A) 0-0(A) 0-0(A) 0-0(A) 0-16(A) 0-9052(A) 0-0(A)
Table 7.7: Latency between sensor timestamp and log timestamp, when 1

sensor is used and the data are directly (left value) and indirectly (right value)
received by the Server

The time difference cannot of course be zero, but it is very small. We see that
the subscribing in the Server has changed its speed so as to capture all the
incoming events. The sensor still sends its measurements every 4 sec. The
average latency is 11*(1/10) milliseconds for sensor values marked as alarms
or warnings and 0 for the others. So, in total, the average latency is 6.5*(1/10)
milliseconds.

Number of Sensors: 5

Files used: AlarmTempValues.txt, sensor1.properties and
sensorAj.properties, where j = b, c, d, e.
We present in the Appendix A.1.1 part of the decrypted log file after being
verified at the Trusted Server. This part contains the entries logged when all 5
sensors are running simultaneously. The complete log-file is in the file
Tests/Latency/AlarmValues/NoOfSensors_5/TSstorage/DecryptedLogDi.txt.
An entry sent directly by a sensor is followed by the same entry which has
passed through the Alarm System before and therefore has been marked as
alarm (A) or warning (W). Time differences between the sensor timestamp
and the log timestamp for the above log part are presented in Table 7.8
measured in (1/10) milliseconds.

(a) (b) (c) (d) (e)
0 – 15 (A) 0 – 33 (W) 0 – 15 (W) 1 – 17 (W) 0 – 16 (W)
0 – 48 (A) 0 – 16 (A) 0 – 48 (W) 0 – 16 (W) 0 – 15 (W)
0 – 16 (A) 0 – 16 (A) 0 – 16 (A) 0 – 15 (W) 0 – 52 (W)
Table 7.8: Latency between sensor timestamp and log timestamp, when 5
sensors are used and the data are directly (left value) and indirectly (right

value) received by the Server

From the above results we observe that the time difference between the
sensor timestamp and the log timestamp is not significant when the data are
sent directly to the Server. The average latency for every sensor is presented
in Table 7.9 measured in (1/10) milliseconds.

 114

(a) (b) (c) (d) (e)

0– 26.3(A) 0– 21.6(A/W) 0– 26.3(A/W) 0.3– 16(W) 0 – 27.6 (W)
Table 7.9: Average latency between sensor timestamp and log timestamp,
when 5 sensors are used and the data are directly (left value) and indirectly

(right value) received by the Server

The average latency, when the Alarm System first subscribes to the sensor
data and then publishes them back to JMS, is 23.6*(1/10) milliseconds. So, in
total, the average latency is 11.8*(1/10) milliseconds for all the sensor data
until they arrive to the Server, either directly or indirectly through the Alarm
System. This latency is bigger than the one for 1 sensor.

Number of Sensors: 10

Files used: AlarmTempValues.txt, sensor1.properties and
sensorAj.properties, where j = b, c, …, j.
We present in the Appendix A.1.1 part of the decrypted log file after it has
been verified by the Trusted Server. This part contains the entries logged
when all 10 sensors are running simultaneously. One can find the complete
log in the file Tests/Latency/AlarmValues/NoOfSensors_10/TSstorage/
DecryptedLogDi.txt.
An entry, sent directly by a sensor, is followed by the same entry which
before had passed through the Alarm System and therefore was marked as
alarm (A) or warning (W). Time differences between the sensor timestamp
and the log timestamp for the above log part are presented in Table 7.10
measured in (1/10) milliseconds.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
0–

48(A)
0–

15(A)
0-

16(A)
0-

16(A)
0–

16(A)
0-

16(W)
0–

16(W)
0-

16(W)
0-

16(W)
81
-

0–
16(A)

0–
16(A)

0-
16(A)

0-
15(A)

0–
16(A)

0-
16(A)

0–
15(W)

0-
16(W)

0-
15(W)

1
-

Table 7.10: Latency between sensor timestamp and log timestamp, when 10
sensors are used and the data are directly (left value) and indirectly (right

value) received by the Server

From the above results we observe that the time difference between the
sensor timestamp and the log timestamp is not significant when the data are
sent directly to the Server. The average latency for every sensor is presented
in Table 7.11 measured in (1/10) milliseconds.

 115

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
0–

32(A)
0–

15.5(A)
0-

16(A)
0-

15.5(A)
0–

16(A)
0-

16(W/A)
0–

15.5(W)
0-

16(W)
0-

15.5(W)
41
-

Table 7.11: Average latency between sensor timestamp and log timestamp,
when 10 sensors are used and the data are directly (left value) and indirectly

(right value) received by the Server

The average latency, when the Alarm System first subscribes to the sensor
data and then publishes them back to JMS, is 17.5*(1/10) milliseconds. We
will exclude sensor (j) because we have only his latency when sensor data
are sent directly to the Server, which is significantly different from the
corresponding latencies of the rest of the sensors. So, in total, the average
latency is 8.7*(1/10) milliseconds for all the sensor data until they arrive to the
Server, either directly or indirectly through the Alarm System. This latency is
bigger than the one for 1 sensor, but smaller than the one for 10 sensors.

Conclusions
We wanted to examine the latency between the sensor timestamp when it
sends a measurement and the log timestamp when this measurement is
saved in the log file. When we have in majority sensor measurements of
normal temperature, then the average latency values measured in (1/10)
milliseconds, are 7.3 for 1 sensor, 9.6 for 5 sensors, 10.5 for 10 sensors and
32.6 for 14 sensors running simultaneously. So, we conclude that as the
number of sensors increases, the latency also increases. Moreover, we
notice that, in all cases, as the number of sensor increases, latency values
which are bigger (e.g. 36, 56, 100) than the average ones, appear more
often.
When we have in majority sensor alarm measurements of temperature, then
the latency decreases significantly for the data that are send directly from the
sensors to the Server (we get values of zero, which mean that the latency is
very low). It is the case now that the Server uses both topics it is subscribed
to, i.e. “Data” and “Alarm” and, thus, subscribes with a higher speed to the
measurement events. The latency that is presented in these experiments is
mostly because the alarm system has first subscribed to the measurements
and then published them back to JMS as alarm or warning events. So, the
average latency values for the measurements, tagged as of “Alarm” topic and
measured in (1/10) milliseconds, are 13 for 1 sensor, 23.6 for 5 sensors and
17.5 for 10 sensors. So, the average latency values for the measurements,
tagged as of “Data” topic and measured in (1/10) milliseconds, are zero,
which means that they are very small. Therefore, in total, the average latency
measured in (1/10) milliseconds is 6.5 for 1 sensor, 11.8 for 5 sensors and
8.7 for 10 sensors, when we consider all the sensor data until they arrive to

 116

the Server, either directly or indirectly through the Alarm System. We see the
latency increasing as the number of sensors increases from 1 to 5. But this is
not the case when from 5 we add up to 10 sensors. The reason for this could
be related with a throughput problem that the alarm system faced in the case
of 10 sensors, which we describe in the next section.
We notice that there are also here latency values which are bigger (e.g. 35,
48, 52) than the average ones. It seems that their appearance frequency is
higher in the cases of 1 and 5 sensors than in the case of 10 sensors. As we
already mentioned previously, the reason for this could be related with a
throughput problem that the alarm system faced in the case of 10 sensors,
which we describe in the next section.

7.1.2 Throughput
We notice that in all cases the server application adjusts the subscription
speed and thus manages to subscribe to all the incoming data and not miss
any of them.
As for the alarm system, it subscribes successfully to all the data, as well.
However, we get a problem in publishing an alarm event when the sensors
increase to 10. In Appendix A.1.1 we can see two of the errors we got in that
specific case.
We noticed that the alarm system cannot publish all the alarm events but we
get an error com.sun.messaging.jms.JMSException, followed by the
message that the “producer cannot be added to destination Alarm [Topic],
limit of 100 producers would be exceeded user”. In our case we don’t have
100 publishing events occurring simultaneously in the alarm system.
However, the combination of the subscribe and publish functions in the same
application, could be the cause that the publishing is not allowed to run more
efficiently.

7.2 Security
In the Problem Analysis chapter we had identified a list of simple attacks that
a malicious user having access to the Untrusted Server could perform:

1. insertion of a new entry
2. alteration of an existing entry:

a) replacement of just a value of the entry (e.g. the
measurement value, the sensor id)

b) replacement of the whole entry by another one (of e.g. the
same time)

3. reordering of entries
4. deletion of an entry
5. duplication of an entry

 117

Here we take over the role of the malicious user and try to perform these
attacks. We want to examine against which of these attacks our security
scheme detects.
We use the simple sensor. We prefer to use measurements that don’t
produce many alarms, because we want to focus on the security scheme in
these experiments. So, the files used as input for our applications in the
experiments are the following:

• TestTemp.txt
• Sensor1.properties

Tests Set-Up
Since the aim of these experiments is to examine how efficient our security
scheme is, we shall use the whole security scheme possibilities. This
includes the Schneier and Kesley security scheme and both manual and
automated signing; the manual signing is performed by the administrator of
the (Untrusted) Server, the automatic requests for signing generated
randomly by the Regulatory Authority and scheme and the automated signing
triggered by modification events on the encrypted log file. Therefore we
perform our experiments running the applications in the following order:
• ServerApp project file including:

 com.Security.TrustedServer.CleanFiles.java to clean any
remaining files created from the previous times we run the
application

 com.Security.RegulatoryAuthority.Start_RA_AlarmService.java to
start the RA and the Alarm Security Service

 com.javamsgservice.ServerObject.java to start the log Server
which will wait for incoming messages from the JMS. We should
enter the date and time that the Server will timeout, i.e. the
logging will stop.

• AlarmSystem project file including AlarmObject.java
• SensorSimple project file including SimpleSensor.java
• ServerApp project file:

 com.Security.RegulatoryAuthority.AutomaticSignRequest.java to
start RA performing automated signature requests at random
times

 com.Security.UntrustedServer.ManualSigning.java to perform at
least one manual signing like the US administrator would do.

The Server subscribes to all the message types and stops logging when it
receives the first exit message.
After the encrypted log file is produced, we verify (and decrypt) it in the
Trusted Server and, then, we verify in the Regulatory Authority RA the
signatures created so far. This practically means running the files
com.Security.TrustedServer.VerifyLog.java and
com.Security.RegulatoryAuthority.VerifySignatures.java respectively.

 118

Insertion of a new entry/ Duplication of an entry

In Appendix A.1.2 we can see the event messages as they arrived in the
(Untrusted) Server and as they were logged as entries Li in the log file
LogFile.txt. After the events are logged we copy the log entry L10 and paste it
as next entry (L11). So, entry L11, becomes L12 and so on. The files in the
encrypted log file after the attack are shown in Appendix A.1.2. We have
marked with blue color the duplicate entry. One can also find the file at:
Tests\SecurityAttacks\Insertion\USstorage\LogFile.txt. To verify the data
received, we run first the log verification procedure at the Trusted Server and
then the signature verification at the RA.

Log Verification at Trusted Server
We see that there was a problem in the file verification. The problem was
traced in the Log entry L10 in the creation of the MAC and is related to the
MAC value received from the log file. So, the Schneier and Kesley scheme
detected the attack. One can find the complete verification console output in
Appendix A.1.2.
...
L[10]:
LogEntryType
DEm++Oswr7c5wIrgExVb7K2NPrdQ3MaMQ6K4srA/TS5vaago2VZsbn0bgD6Mkd3c9r+7O
F0CRc/r
6O2s9R7R9cTcMdumAy5FuMAPLQZJevWufQ8b4mhMeb7p9r0yCKdy -830774920
1494439717
LogEntryType
Decrypted_AESmsg D[10]: LogEntryType 2013/08/02 1109450132 2013/08/02
1130000000 10 2013/08/02 1109450132 A11 Temp 23.6 Celsius
M[10]: LogEntryType 1130000000 10 2013/08/02 1109450132 A11 Temp
 23.6 Celsius
Yi: -830774920
Yi2: -830774920
Y[10] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1494439717
Number Format Exception! The reason is that someone tampered with
entry[10].
...
In file LogFile.txt the MACs in following entry positions were found
false
10

Signature Verification at RA
While the entries were being saved in the log file by the (Untrusted) Server,
we ran 1 manual signing on the file and the RA did 16 random automated
requests for signing the data of the file. We also had 12 automated signatures
of the data, triggered by modifications on the log file. We notice that not all
signatures created are verified; only 8 of the 14 random signatures and 9 out

 119

of the 12 automatically triggered ones, are verified. So, this implies that there
was an attack on the log file. One can see exactly which signatures were
verified in Appendix A.1.2

Replacement of an entire entry

We have replaced the log entry L9 with another one. The new entry is
marked with blue. The log file is located at
Tests\SecurityAttacks\Replacing1entry\USstorage\LogFile.txt. In the
Appendix A.1.2 we can see the Server Log, as it created the log entries, the
log verification at the Trusted Server, which presents also the log entries after
the attack, and the signatures verification in the Regulatory Authority.

Log Verification at TS
The log verification procedure finds that the log entry L9 has been changed,
since it cannot decrypt the AES message, AES(D9)_K9, received from the
log file, where D9 are the data encrypted with AES algorithm and K9 key.
This is because this value was changed in the log file and the key K9, which
TS created, cannot decrypt it. Therefore, the value Y9 = hash(Y8,
AES(D9)_K9, W9), which TS generates, where W9=LogEntryType, is false
and cannot be verified because it doesn’t match the Y9 value of the log file.
Consequently, the MAC9=MAC(Y9)_A9, where A9 is a key that TS created,
is also false and cannot be verified either. Since the Y9 created is false, all
the next Yi values that TS creates after this one will also be false. That’s why
the decryption and verification problem in log entry L9 causes verification
problems in the Yi and MAC values for the entries following L9 (i.e. 10, 11,
12). The errors output on the verification of the entries L11 and L12 are
similar to the one in L10 log entry presented below. One can see details in
Appendix A.1.2.
...
L[9]:
LogEntryType
BJx1O1v2YQA8lNi32hMO5VHJo4aYi+uE7fLU8N0DQO90abol5YP5HZSpkNGOn3m3DCLad
AjtwWrs
FmTiWTvZ5Tldz+yepHDWe1gOR/pJDEMyIZF2cgQwhQnwxEQKysRP -475431498 -
456700380
AES message cannot be decrypted! Someone changed log entry [9].
Yi: 2082583920
Yi2: -475431498
L[10]:
LogEntryType
4YMw9cd6w6Deu5GixS3BWN11WB02tkPVeAll3jOlS+xUwlGpp12A/EvxH18RwiBvDKZMO
8QMDVVX
YvWDZXMSXIb8Hd6KfvWIUNkcOnx3QSiha3ZbzlLFnTE65X6h8x+v 1461733865 -
725012515

 120

Decrypted_AESmsg D[10]: LogEntryType 2013/08/02 1738160326 2013/08/02
1759000000 10 2013/08/02 1738160322 A11 Temp 23.6 Celsius
M[10]: LogEntryType 1759000000 10 2013/08/02 1738160322 A11 Temp
 23.6 Celsius
Yi: 1088389658
Yi2: 1461733865
...
In file LogFile.txt the MACs in following entry positions were found
false
9
10
11
12

Signature Verification at RA
During the creation of the log entry file, we performed 1 manual signing and
there were performed 21 random ones and 12 automated ones, triggered by
log file modifications. Only 5 are verified from the random ones and 8 of the
triggered ones, which indicates that an attack had been performed on the log.

Replacement of just a value of the entry

Here we replaced the Yi value of the entry L10 with another one, marked with
blue color, i.e. Y10=hash(Y9, AES(D10)_K10, W10), where D10 is the data
encrypted with AES algorithm and K10 key and W10=LogEntryType. The log
file is located at Tests\SecurityAttacks\Replacing1valueof1entry\
USstorage\LogFile.txt. The Server Log, the log file after the attack, the log
verification at the Trusted Server and the signatures verification in the
Regulatory Authority are presented in the Appendix A.1.2.

Log Verification at TS
Since the Y10 value in the entry at the log file (marked with blue) is different
from the one produced locally in the Trusted Server as Y10 = hash(Y9,
AES(D9)_K9, W9), where W9=LogEntryMessage, AES(D9)_K9 are the data
D9 encrypted with AES algorithm and key K9. So, the Y10 value and, thus,
the MAC are not verified in the log entry L10.
...
L[10]:
LogEntryType
2mKlDqJCE6q/5Uals0nM+FuUb45zPI3DQ7Ex2j0w9h1rFDuEVzZ+1J7dxYYi0urrV3ux9
btBd+2f
2msM1IFU90oS/JfFkopqBie7AM5yYzDTTp5LYMLIAXm580A8nwfp 1557320632
867721926
Decrypted_AESmsg D[10]: LogEntryType 2013/08/02 1718070850 2013/08/02
1745000000 10 2013/08/02 1718070836 A11 Temp 23.6 Celsius
M[10]: LogEntryType 1745000000 10 2013/08/02 1718070836 A11 Temp
 23.6 Celsius

 121

Yi: 1800467982
Yi2: 1557320632
...
In file LogFile.txt the MACs in following entry positions were found
false
10

Signature Verification at RA
During the entries logging 1 manual signing, 17 random automated signing
requests and 12 automated signatures, triggered by log file modifications,
have been performed. We observe that some signatures have not been
verified, which indicates that an attack occurred in the log file. (Only 9
automatically triggered and 7 randomly requested signatures were verified).

Reordering of entries

The log entries L4 and L5 have been reordered. We mark them with blue
color. The log file after the attack can be found at
Tests\SecurityAttacks\Reordering\USstorage\LogFile.txt. The Server Log, the
log verification at the Trusted Server, which presents also the log entries after
the attack, and the signatures verification in the Regulatory Authority are
presented in the Appendix A.1.2.

Log Verification at TS
The log verification procedure finds that the log entries L4 and L5 have been
changed, since it cannot decrypt their AES messages, i.e. values
AES(D4)_K4 and AES(D5)_K5, where Di are the data encrypted with AES
algorithm and Ki key (here i=4,5). The reason for this is that the attacker has
changed the encrypted AES messages in the log file and the keys K4 and K5,
which TS created for each value respectively, cannot decrypt them. As a
result, the value Y4 = hash(Y3, AES(D4)_K4, W4), where W4=LogEntryType,
is false and cannot be verified. Consequently, the MAC4=MAC(Y4)_A4,
where A4 is a key that TS created, is also false and cannot be verified either.
Similar problem faces log entry L5. Since the Y5 created is false, all the next
Yi values created after it will also be false. That’s why the decryption and
verification problem in log entry L5 causes verification problems in the Yi and
MAC values for the entries following L5 (i.e. L6, …, L12). The errors output
on the verification of the entries L7 to L12 are similar to the one in L6 log
entry presented below. One can see details in Appendix A.1.2.
...
L[4]:
LogEntryType
X5yZhmdZoiJs6UouYhNqjqolzP3KYTVI7ld0ymJev5hBbrST+N6vFRJuqzFx3xR35zcQx
gutCX0C

 122

lssbAcrp1LFgyWG8GrURStMVrUxoYMPKuQNqp2K05PS3LYTxjpyc 1763019560 -
1774162090
AES message cannot be decrypted! Someone changed log entry [4].
Yi: 1190319881
Yi2: 1763019560
L[5]:
LogEntryType
mqvgvLAWMntj9weq3+bMjhdH3g9rLqbaHsIAOIzgXJAzaVelquBhmtIVMmVjGkCrO67Dj
j/mgqCD
TcBUXMf0HPmPWJ+51lJyj5atjDAvelgHOzwjngr1JAiDlsL1Cdfh -1178753234
1092979152
AES message cannot be decrypted! Someone changed log entry [5].
Yi: 875957742
Yi2: -1178753234
L[6]:
LogEntryType
qiaccfor4ZornhF6KmFSyqoyKKcfbMCEYXkBkYD7q1cj61KnBerM0ee/pEpD0ca/MLAK/
+pBlxcj
/Lck7+aVHz7U3s0rCycL2i46q7dwfmd5vCmqAOEJwgQd7dNbN2Xb -953235483
1556122196
Decrypted_AESmsg D[6]: LogEntryType 2013/08/08 1547220174 2013/08/08
1700000000 6 2013/08/08 1547220174 A11 Temp 24.0 Celsius
M[6]: LogEntryType 1700000000 6 2013/08/08 1547220174 A11 Temp
 24.0 Celsius
Yi: -1579941509
Yi2: -953235483
...
In file LogFile.txt the MACs in following entry positions were found
false
4
5
6
7
8
9
10
11
12

Signature Verification at RA
While saving the log entries 1 manual, 30 random automated signatures and
12 automated ones, triggered by log file modifications, were created.
However, only the manual, 5 random and 4 automatically triggered signatures
were finally verified, which implies an attack on the log entries.

Deletion of an entry

We delete the last 3 entries, i.e. L10, L11, L12. The Server Log, the log
verification at the Trusted Server and the signatures verification in the
Regulatory Authority are presented in the Appendix A.1.2. The log file after

 123

the attack can be found at Tests\SecurityAttacks\Deleting\USstorage\
LogFile.txt

Log Verification at TS
As expected, the deletion attack is not detected by the Schneier and Kesley
security scheme.

Signatures Verification at RA
While saving the log entries, 1 manual signing, 16 random automated
signature requests and 12 automated ones, triggered by log file
modifications, were performed. We see that only 6 of the automatically
created signatures were verified and only 9 of the triggered ones, therefore,
we detect that an attack has occurred on the log file.

Conclusions
To sum up, all the types of simple manual attacks which were performed on
the log file were detected by the Stathopoulos et al. security scheme, while
the deletion attack was not detected by the Schneier and Kesley, as
expected. However, the second one gives us a better indication on what
entries have been tampered by the attacker, compared to the first one. The
combination of these two schemes is sufficient for detecting an attack. Here
the attacks were detected on a txt, but this gives us an indication that the
security scheme should also detect the alterations occurring in a database.

 124

CHAPTER 8

Conclusions

The problem we are dealing with in this thesis concerns the difficulties the
pharmaceutical companies face, when they need to extend the system they
use for producing pharmaceutical products. These systems are usually wired,
time-triggered, soft real-time systems and need extended re-validation when
we want to change them by adding or removing sensors from them. The
reason is to ensure whether the new system is compliant with FDA
regulations as a whole, because its components are coupled. This procedure
is costly, as it requires a lot of time and paperwork.

The solution we have proposed in this thesis is a decoupled system network
that facilitates the communication dependencies between the sensors, which
send the data, and the log Server, which receives it. This way we can extend
the system network by adding or removing sensors, without affecting the rest
of the components of the system. Therefore, the FDA validation of the new
system, after scaling will concern only the new sensors and not the other
components.
We decided to design a prototype that will show how the new system network
would behave. We assume that we have a distributed system of wireless
sensors in a clean room area. We also assume that the sensors measure the
environmental conditions of the room and contain a clock to timestamp the
data they collect. There is also an alarm and a warning (flashlight) notification
provided by an Alarm System. These are also time stamped. And finally there
is a log Server where all the data are gathered and saved. We want to
investigate which would be the ideal message exchange method in order to
develop a decoupled components network.

To validate the proposed solution we have carried out a literature study of the
FDA regulations to verify what requirements they impose on our system.
Most of them concerned the safety of the electronic records before and after
they are logged in the log Server. We also studied an example of the most

 125

common user requirements of a Facility Monitoring System and the sensor
requirements given by a known sensor vendor. Then we investigated the
possible data transferring methods and we chose the publish-subscribe
paradigm, as it is decoupled in space, time and synchronization, which
implies scalability for the system. Moreover, its topic-based implementation
ensures that a message is delivered to more than one receiver. Then we
investigated the possible implementations of the publish-subscribe paradigm
and chose the Java Messaging Service, which is responsible for creating,
reading, sending and receiving messages among the components which
communicate with it. We chose this approach because the publish and
subscribe methods can be called from different threads and, thus, different
components.
Furthermore, to ensure the safety of the data, after they had been sent to the
Server, we have investigated several security schemes for logging the data in
an encrypted way in the database. After identifying the possible attacks on
the database, and vulnerabilities and limitations of each security scheme, we
chose the one suggested by Stathopoulos et al., which includes the scheme
of Schneier and Kesley, but extends it so that it overcome its vulnerabilities.
The reason we chose this scheme is because it can work well with databases
and it has very low intrusion probabilities.

From the results of this thesis we’ve learned that it is possible to decouple the
existing communication system between sensors and log Server. This way
the FDA validation is easier and quicker and our system scales faster.
We examined the latency between the sensor timestamp when it sends a
measurement and the log timestamp when this measurement is saved in the
log file. When the majority of our measurements include normal values, which
don’t produce warnings or alarms, then the average latency values are
increasing as the number of sensors we run simultaneously increases.
When the majority of our measurements includes values which produce
warnings or alarms, then the latency time decreases significantly for the data
that are sent directly from the sensors (with topic “Data”) to the Server. And
this is reasonable, since the rest of the data passes through the alarm system
first and, if it exceeds their thresholds, they it published again to the JMS with
a new topic (“Alarm”). So, the average latency values for the data with topic
“Alarm” increases as the number of sensors increases. The same happens
with the frequency that values, deviating from the average ones appear. In all
cases, the Server adjusts the subscription speed and thus manages to
subscribe to all the incoming data and not miss any of it. However, the alarm
system subscribes successfully to all the data, but cannot publish all the
alarm events, most likely because the combination of the subscribe and
publish functions in the same application, decreases the efficiency of the

 126

second one. So, we should not include both functionalities on the same
application.
Finally, we examined the effectiveness of Stathopoulos et al. security scheme
against the attacks we identified for our log Server. The manual and
automated signing method they suggest detects all the attacks we performed,
but cannot inform us exactly which entries were compromised. The Schneier
and Kesley scheme included in the above scheme cannot detect the deletion
attacks, as its authors inform us, but gives a good indication which entries
have been tampered by the intruder. So, the scheme of Stathopoulos et al.,
which extends the one of Schneir and Kesley, is sufficient for detecting an
attack. The efficiency of the scheme on a text file gives us an indication that
the security scheme can also detect security attacks on the entries when they
are saved in a database.

 127

CHAPTER 9

Future Work

In this chapter we consider aspects and methods we can improve and add in
our system.
We should consider the way the encrypted logging must proceed after the
system recovers from a sudden shut-down. Moreover, we should consider
how to face situations when communication is lost temporarily between a
component and the JMS. A watchdog timer [51] could be used, in this case,
to detect when a computer application malfunctions and to notify the system
administrator. We should also include more of the critical events for the Alarm
Security Service. According to Stathopoulos et al. these are system restart
and modifications of users and their privileges. For this purpose, more than
one Alarm Service applications could be used.
We could also connect the Untrusted Server to a database, instead of the text
file we currently use to store the encrypted log entries. Using a database
application must also imply a management of access rights for the
applications which are needed to access the encrypted log entries. These are
the Untrusted Server, the Regulatory Authority and the Alarm Security
Service.
As concerns the problem that the Alarm System faces when it has to both
subscribe and publish data, it could be handled by using mostly sensors that
evaluate their own data and raise alarms. These data will still be logged on
the Server. The Alarm Server can be used only for subscribing to sensor
measurements, evaluating and raising alarms and warnings, sending sms or
email notifications to the user responsible for controlling the environmental
conditions in the clean room. Although, we have already mentioned that
sensors will raise their own alarms, it is good to have a system more reliable
and secure than a sensor to detect for alarm events. However, we should
avoid using the publish action, too.
In case we want to save the user actions, upon acknowledging an alarm, on
the Server, we can publish them from another component (e.g. Control
System) under a new topic “UserActions”, to which the Server will be

 128

subscribed. These actions can be logged either together with the encrypted
log entries, or in a separate log.
Finally, implementing our solution in an entire distributed system is also part
of future work, as we should examine what hardware is needed (sensors,
servers), how it is connected and design a network architecture (e.g. where to
place the servers, the routers and other hardware components).

 129

Abbreviations

FDA - Food and Drug Administration
FMS – Facility Monitoring System
GAMP - Good Automated Manufacturing Practice
GMP – Good Manufacturing Practice
GUM - Guide to the Expression of Uncertainty in Measurement
GWT - Google Web Toolkit
JMS – Java Messaging Service
JSF – Java Server Faces
PLC – Programmable Logic Controller
SCADA - Supervisory Control And Data Acquisition

 130

Bibliography

[1] Food and Drug Administration (FDA), 21 CFR Part 11 – Electronic
Records; Electronic Signatures, Ch. 1, U.S.A., pages 110-113, (4–1–2006).
[2] Food and Drug Administration (FDA), 21 CFR Part 820 – Quality Systems
Regulation, Ch. 1, U.S.A., pages 138-151, (4–1–2006).
[3] ISPE, GAMP 5, A Risk-Based Approach to Compliant GxP Computerized
Systems, (2008).
[4] http://eventbus.org/usage.html, last accessed: 28-04-2013.
[5] http://eventbus.org/api/org/bushe/swing/event/package-summary.html, last
accessed: 28-04-2013.
[6] http://eventbus.org/api/index.html, last accessed: 28-04-2013.
[7] http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html, last-accessed: 27-
05-2013.
[8] http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html, last-accessed: 27-
05-2013.
[9] http://docs.oracle.com/javaee/6/tutorial/doc/bnceh.html. last-accessed: 28-
05-2013.
[10] Food and Drug Administration (FDA), 21 CFR Part 210 – Current Good
Manufacturing Practice in Manufacturing, Processing, Packing or Holding of
Drugs; General, Ch. 1, U.S.A., pages 132-134, (4–1–2006).
[11] http://eventbus.org/, last accessed: 28-04-2013.
[12] http://codeblock.engio.net/?p=37, last accessed: 28-04-2013.
[13] https://code.google.com/p/simpleeventbus/, last accessed: 28-04-2013.
[14] http://spin.atomicobject.com/2012/01/13/the-guava-eventbus-on-guice/,
last accessed: 28-04-2013.
[15] https://code.google.com/p/guava-libraries/wiki/EventBusExplained, last
accessed: 28-04-2013.
[16] http://alextretyakov.blogspot.dk/2011/11/gwt-event-bus-basics.html, last
accessed: 28-04-2013.
[17] http://tv.jetbrains.net/videocontent/gwt-event-bus-basics, last accessed:
28-04-2013.
[18] https://github.com/bennidi/mbassador#readme, last accessed: 28-04-
2013.
[19]
http://docs.codehaus.org/display/GUMTREE/How+to+use+the+GumTree+Ev
ent+Bus, last accessed: 28-04-2013.
[20] http://jumping-duck.com/tutorial/jquery-as-a-global-event-bus/, last
accessed: 28-04-2013.
[21] http://www.dossier-andreas.net/software_architecture/eventbus.html, last
accessed: 28-04-2013.

http://eventbus.org/usage.html
http://eventbus.org/api/org/bushe/swing/event/package-summary.html
http://eventbus.org/api/index.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnceh.html
http://eventbus.org/
http://codeblock.engio.net/?p=37
https://code.google.com/p/simpleeventbus/
http://spin.atomicobject.com/2012/01/13/the-guava-eventbus-on-guice/
https://code.google.com/p/guava-libraries/wiki/EventBusExplained
http://alextretyakov.blogspot.dk/2011/11/gwt-event-bus-basics.html
http://tv.jetbrains.net/videocontent/gwt-event-bus-basics
https://github.com/bennidi/mbassador#readme
http://docs.codehaus.org/display/GUMTREE/How+to+use+the+GumTree+Event+Bus
http://docs.codehaus.org/display/GUMTREE/How+to+use+the+GumTree+Event+Bus
http://jumping-duck.com/tutorial/jquery-as-a-global-event-bus/
http://www.dossier-andreas.net/software_architecture/eventbus.html

 131

[22] http://northconcepts.com/blog/2011/07/05/use-dynamic-proxies-to-
create-a-simple-powerful-event-bus-part-1/, last accessed: 28-04-2013.
[23] http://mate.asfusion.com/, last accessed: 28-04-2013.
[24] http://www.tutorialspoint.com/jsf/jsf_event_handling.htm, last accessed:
28-04-2013.
[25]
http://www.onjava.com/pub/a/onjava/excerpt/JSF_chap8/index.html?page=1,
last accessed: 28-04-2013.
[26] Food and Drug Administration (FDA), 21 CFR Part 211 – Current Good
Manufacturing Practice for Finished Pharmaceuticals, Ch. 1, U.S.A., pag.
134-155, (4–1–2006).
[27] Food and Drug Administration (FDA), 21 CFR Part 58 – Good Laboratory
Practice for Nonclinical Laboratory Studies, Ch. 1, U.S.A., pag. 301-315, (4–
1–2006).
[28] GAMP5, “The Good Automated Manufacturing Practice (GAMP) Guide
for Validation of Automated Systems in Pharmaceutical Manufacture”, ISPE
(International Society for Pharmaceutical Engineering), 2008.
[29] Bellare M., Yee B.S., Forward Integrity For Secure Audit Logs, Dept. of
Computer Science & Engineering, University of California, San Diego, USA,
pages 1-16, (23-11-1997).
[30] http://perso.ens-lyon.fr/laurent.lefevre/DOSMOS/DSM.html, last
accessed: 17-06-2013.
[31] B. Wilkinson & M. Allen, Slides for Parallel Programming Techniques &
Applications Using Networked Workstations & Parallel Computers 2nd ed.,
Pearson Education Inc, slides 1-51, 2004.
[32] PACS Training Group, Introduction to MPI, Board of Trustees of the
University of Illinois, NCSA Access, pages 1-28, 2001.
[33] http://searchsoa.techtarget.com/definition/Remote-Method-Invocation,
last accessed: 17-06-2-13.
[34] http://careerride.com/RMI-Defined.aspx, last-accessed: 17-06-2013.
[35] http://stackoverflow.com/questions/2339853/benefits-and-disadvantages-
of-using-java-rmi, last-accessed: 17-06-2013.
[36] http://www.codeproject.com/Articles/34333/Topic-based-publish-
subscribe-design-pattern-imple, last-accessed: 18-06-2013.
[37]http://docs.oracle.com/cd/A97630_01/appdev.920/a96590/adg15pub.htm,
last-accessed: 18-06-2013.
[38] http://c2.com/cgi/wiki?PublishSubscribeModel, last-accessed: 18-06-
2013.
[39] http://www.slideshare.net/ishraqabd/publish-subscribe-model-overview-
13368808, last-accessed: 18-06-2013.
[40] Schneier B., Kelsey J., Secure Audit Logs to Support Computer
Forensics, ACM Transactions on Information and System Security, Vol. 2,
No. 2, Pages 159–176, May 1999.
[41] http://www.metricstream.com/insights/sys_validation.htm, last-accessed:
10-07-2013.
[41] Ma D, Tsudik G., A New Approach to Secure Logging, ACM
Transactions of Storage (TOS), volume 5, issue 1, article no.2, New York,
USA, March 2009.

http://northconcepts.com/blog/2011/07/05/use-dynamic-proxies-to-create-a-simple-powerful-event-bus-part-1/
http://northconcepts.com/blog/2011/07/05/use-dynamic-proxies-to-create-a-simple-powerful-event-bus-part-1/
http://mate.asfusion.com/
http://www.tutorialspoint.com/jsf/jsf_event_handling.htm
http://www.onjava.com/pub/a/onjava/excerpt/JSF_chap8/index.html?page=1
http://perso.ens-lyon.fr/laurent.lefevre/DOSMOS/DSM.html
http://searchsoa.techtarget.com/definition/Remote-Method-Invocation
http://careerride.com/RMI-Defined.aspx
http://stackoverflow.com/questions/2339853/benefits-and-disadvantages-of-using-java-rmi
http://stackoverflow.com/questions/2339853/benefits-and-disadvantages-of-using-java-rmi
http://www.codeproject.com/Articles/34333/Topic-based-publish-subscribe-design-pattern-imple
http://www.codeproject.com/Articles/34333/Topic-based-publish-subscribe-design-pattern-imple
http://docs.oracle.com/cd/A97630_01/appdev.920/a96590/adg15pub.htm
http://c2.com/cgi/wiki?PublishSubscribeModel
http://www.slideshare.net/ishraqabd/publish-subscribe-model-overview-13368808
http://www.slideshare.net/ishraqabd/publish-subscribe-model-overview-13368808
http://www.metricstream.com/insights/sys_validation.htm

 132

[42] Testo, 6351 Ethernet - Differential Pressure Transmitter, P2A software -
Parameterizing, Adjusting and Analyzing Software, Instruction Manual.
[43] Ma D., Tsudik G., Forward-Secure Sequential Aggregate Authentication,
IEEE Symposium on Security and Privacy, 2007 (SP '07), University of
California, Irvine, pag. 1-10, 2007.
[44] Ma D., Practical Forward Secure Sequential Aggregate Signatures, in the
Proceedings of the 2008 ACM symposium on Information, computer and
communications security (ASIACSS ’08) in Tokyo, Japan, University of
California, Irvine, pag. 341- 350, 2008.
[45] Stathopoulos V., Kotzanikolaou P., Magkos E., A Framework for Secure
and Verifiable Logging in Public Communication Networks, Springer-Verlag,
LNCS 4347, Berlin, Heidelberg, pag.273-284, 2006.
[46] Kopetz H., Real-Time Systems, Design Principles for Distributed
Embedded Applications, Springer, 2nd ed., XVIII, 378 p, 2011.
[47] http://www.youtube.com/watch?v=H7ecAAVUUZg, last accessed: 08-08-
2013.
[48] http://www.youtube.com/watch?v=KUFn4wjFUb0, last accessed: 08-08-
2013.
[49] http://www.hydronix.com/products/usb_module.php, last accessed: 08-
08-2013.
[50] https://www.mfg-labs.com/mfg-
labs/MetalMAX/sensor_interface_module.htm, last accessed: 08-08-2013.
[51]http://www.pcmag.com/encyclopedia/term/54224/watchdog-timer, last
accessed: 08-08-2013.
[52] http://www.rgagnon.com/javadetails/java-0490.html, last accessed: 20-
07-2013.
[53]http://www.digizol.com/2009/10/java-encrypt-decrypt-jce-salt.html, last
accessed: 20-07-2013.
[54]http://liguoliang.com/2013/java-rsa-key-generationencryptiondecryption-
rsa/, last accessed: 20-07-2013.
[55] http://docs.oracle.com/javase/tutorial/security/apisign/step2.html, last
accessed: 20-07-2013.
[56]http://stackoverflow.com/questions/1709441/generate-rsa-key-pair-and-
encode-private-as-string, last accessed: 20-07-2013.
[57] http://docs.oracle.com/javase/tutorial/security/apisign/, last accessed: 20-
07-2013.
[58] http://docs.oracle.com/javase/tutorial/security/apisign/versig.html, last
accessed: 20-07-2013.

http://www.youtube.com/watch?v=H7ecAAVUUZg
http://www.youtube.com/watch?v=KUFn4wjFUb0
http://www.hydronix.com/products/usb_module.php
https://www.mfg-labs.com/mfg-labs/MetalMAX/sensor_interface_module.htm
https://www.mfg-labs.com/mfg-labs/MetalMAX/sensor_interface_module.htm
http://www.pcmag.com/encyclopedia/term/54224/watchdog-timer
http://www.rgagnon.com/javadetails/java-0490.html
http://www.digizol.com/2009/10/java-encrypt-decrypt-jce-salt.html
http://liguoliang.com/2013/java-rsa-key-generationencryptiondecryption-rsa/
http://liguoliang.com/2013/java-rsa-key-generationencryptiondecryption-rsa/
http://docs.oracle.com/javase/tutorial/security/apisign/step2.html
http://stackoverflow.com/questions/1709441/generate-rsa-key-pair-and-encode-private-as-string
http://stackoverflow.com/questions/1709441/generate-rsa-key-pair-and-encode-private-as-string
http://docs.oracle.com/javase/tutorial/security/apisign/
http://docs.oracle.com/javase/tutorial/security/apisign/versig.html

 133

APPENDIX A

Appendix

A.1 Output of the Evaluation Tests

A.1.1 Performance

Tests with Normal Temperature Measurements

The sensor timestamp is marked with blue color, while the log timestamp with
orange.

Number of Sensors: 1
LogfileInitializationType 2013/08/02 1809580223 2013/08/02 1830000000 0 0
4444 ÅŠ2c,T;P\ÅÉW5x'ß`½ÄÃtdùd±VÜ?£i:*Tf¥H?¢»+-??œ"”xáæöå¸Ýõ²L±:Òq-
ÉKì6-JÞè|â#ÒÝ‰JðO”Ÿ´—Sìs´yI°àþò—-´ ÕD7A{ä]DY
š=lypÛ{ˆ¯c

6Xja49WYWo1cHq0AJy47hkynzWkK/lmtSFTZDpnuWA1AhWVkrOdew/7DuHqYrOOVRyi8S/oDO+OG
Jv30PCQpTvxKR1QlO4c7upIuto4UCl9VyUcZ9YpP/dqonn0OtUifFv2f85kxoBittnLXSCJ7qI3u
4umTiE+fdusGJsYw1x0wVTIgzK+tply/5dorSn+MkoNESgCGzIDDtLSxeAY2DlNKlRldTRHGUQLm
JPb7na8=
ResponseMessageType 2013/08/02 1809580244 2013/08/02 1830000000 1 1 1234
lKý¾’•P0 àÅñbC (!ê´ÖÖÇ¿»UC]™x¤˜™§]‚—
˜‡9³?Y#ŽÌÊÿ
p·¯ÈÀ»cÓˆh?’¤Xð/{ ª?@b’äçR-nãá†ÀM¬Œ¶í±){$ô…æ{|þô‰úUäÈ
Ëí.1Õ‚C.inYF
Uu8glnmhbKNExbgqR18RWtImIinuIQvQUKR/2DpMgpY+Svmb6HFW1q4hjVGVLuxHMNF7pLzeQanq
fp4I/b9Oj4p/iKn9uFrLlm77xlf9DIwqnoNwBy7BsnbCrXPkifDSO/yRAAQBqnvfZeZY2/bWGmnX
D4u2tL5BadJwF7M4bf1Up7NVWc4+t1Egr5JQMO7vBWjHGuv65UZkYurAut+AHQ==
LogEntryType 2013/08/02 1810250249 2013/08/02 1830000000 2 2013/08/02
1810250165 A11 Temp 20.0 Celsius
LogEntryType 2013/08/02 1810290209 2013/08/02 1830000000 3 2013/08/02
1810290205 A11 Temp 20.4 Celsius
LogEntryType 2013/08/02 1810330219 2013/08/02 1830000000 4 2013/08/02
1810330206 A11 Temp 21.0 Celsius
LogEntryType 2013/08/02 1810370214 2013/08/02 1830000000 5 2013/08/02
1810370210 A11 Temp 22.0 Celsius
LogEntryType 2013/08/02 1810410223 2013/08/02 1830000000 6 2013/08/02
1810410211 A11 Temp 24.0 Celsius
LogEntryType 2013/08/02 1810450217 2013/08/02 1830000000 7 2013/08/02
1810450213 A11 Temp 25.4 Celsius
LogEntryType 2013/08/02 1810450239 2013/08/02 1830000000 8 AlarmSystem:

 134

WARNING: 2013/08/02 1810450213 A11 Temp 25.4 Celsius
LogEntryType 2013/08/02 1810490218 2013/08/02 1830000000 9 2013/08/02
1810490214 A11 Temp 24.0 Celsius
LogEntryType 2013/08/02 1810530230 2013/08/02 1830000000 10 2013/08/02
1810530216 A11 Temp 23.6 Celsius
LogEntryType 2013/08/02 1810570223 2013/08/02 1830000000 11 2013/08/02
1810570219 A11 Temp 22.2 Celsius
NormalCloseMessage 2013/08/02 1811010239 2013/08/02 1830000000 12

Number of Sensors: 5
LogEntryType 2013/08/02 1840230326 2013/08/02 1859000000 23 2013/08/02
1840220800 A11e Temp 20.0 Celsius
LogEntryType 2013/08/02 1840230522 2013/08/02 1859000000 24 2013/08/02
1840230508 A11b Temp 21.2 Celsius
LogEntryType 2013/08/02 1840230653 2013/08/02 1859000000 25 2013/08/02
1840230642 A11c Temp 20.9 Celsius
LogEntryType 2013/08/02 1840240227 2013/08/02 1859000000 26 2013/08/02
1840240214 A11d Temp 20.6 Celsius
LogEntryType 2013/08/02 1840260502 2013/08/02 1859000000 27 2013/08/02
1840260401 A11 Temp 22.4 Celsius
LogEntryType 2013/08/02 1840270319 2013/08/02 1859000000 28 2013/08/02
1840270315 A11e Temp 20.3 Celsius
LogEntryType 2013/08/02 1840270517 2013/08/02 1859000000 29 2013/08/02
1840270511 A11b Temp 21.6 Celsius
LogEntryType 2013/08/02 1840270649 2013/08/02 1859000000 30 2013/08/02
1840270645 A11c Temp 20.9 Celsius
LogEntryType 2013/08/02 1840280221 2013/08/02 1859000000 31 2013/08/02
1840280217 A11d Temp 20.8 Celsius
LogEntryType 2013/08/02 1840300406 2013/08/02 1859000000 32 2013/08/02
1840300402 A11 Temp 22.8 Celsius
LogEntryType 2013/08/02 1840310320 2013/08/02 1859000000 33 2013/08/02
1840310316 A11e Temp 20.6 Celsius
LogEntryType 2013/08/02 1840310519 2013/08/02 1859000000 34 2013/08/02
1840310514 A11b Temp 22.0 Celsius
LogEntryType 2013/08/02 1840310650 2013/08/02 1859000000 35 2013/08/02
1840310646 A11c Temp 21.2 Celsius
LogEntryType 2013/08/02 1840320232 2013/08/02 1859000000 36 2013/08/02
1840320218 A11d Temp 20.9 Celsius
LogEntryType 2013/08/02 1840340407 2013/08/02 1859000000 37 2013/08/02
1840340403 A11 Temp 21.1 Celsius
LogEntryType 2013/08/02 1840350339 2013/08/02 1859000000 38 2013/08/02
1840350317 A11e Temp 20.8 Celsius
LogEntryType 2013/08/02 1840350520 2013/08/02 1859000000 39 2013/08/02
1840350516 A11b Temp 22.4 Celsius
LogEntryType 2013/08/02 1840350652 2013/08/02 1859000000 40 2013/08/02
1840350647 A11c Temp 21.6 Celsius
LogEntryType 2013/08/02 1840360225 2013/08/02 1859000000 41 2013/08/02
1840360221 A11d Temp 20.9 Celsius
LogEntryType 2013/08/02 1840380408 2013/08/02 1859000000 42 2013/08/02
1840380405 A11 Temp 21.5 Celsius
LogEntryType 2013/08/02 1840390323 2013/08/02 1859000000 43 2013/08/02
1840390319 A11e Temp 20.9 Celsius
LogEntryType 2013/08/02 1840390522 2013/08/02 1859000000 44 2013/08/02
1840390518 A11b Temp 22.8 Celsius
LogEntryType 2013/08/02 1840390652 2013/08/02 1859000000 45 2013/08/02
1840390649 A11c Temp 22.0 Celsius
LogEntryType 2013/08/02 1840400229 2013/08/02 1859000000 46 2013/08/02
1840400222 A11d Temp 21.2 Celsius

 135

LogEntryType 2013/08/02 1840420410 2013/08/02 1859000000 47 2013/08/02
1840420406 A11 Temp 21.2 Celsius

Number of Sensors: 10
LogEntryType 2013/08/02 1925070195 2013/08/02 1945000000 92 2013/08/02
1925070180 A11j Temp 20.0 Celsius
LogEntryType 2013/08/02 1925070368 2013/08/02 1945000000 93 2013/08/02
1925070354 A11b Temp 21.0 Celsius
LogEntryType 2013/08/02 1925080482 2013/08/02 1945000000 94 2013/08/02
1925080478 A11h Temp 20.9 Celsius
LogEntryType 2013/08/02 1925080564 2013/08/02 1945000000 95 2013/08/02
1925080558 A11f Temp 22.0 Celsius
LogEntryType 2013/08/02 1925090287 2013/08/02 1945000000 96 2013/08/02
1925090283 A11i Temp 20.8 Celsius
LogEntryType 2013/08/02 1925090302 2013/08/02 1945000000 97 2013/08/02
1925090297 A11g Temp 21.2 Celsius
LogEntryType 2013/08/02 1925090539 2013/08/02 1945000000 98 2013/08/02
1925090535 A11 Temp 22.0 Celsius
LogEntryType 2013/08/02 1925090586 2013/08/02 1945000000 99 2013/08/02
1925090582 A11e Temp 22.8 Celsius
LogEntryType 2013/08/02 1925100182 2013/08/02 1945000000 100 2013/08/02
1925100178 A11d Temp 21.5 Celsius
LogEntryType 2013/08/02 1925100422 2013/08/02 1945000000 101 2013/08/02
1925100418 A11c Temp 20.7 Celsius
LogEntryType 2013/08/02 1925110197 2013/08/02 1945000000 102 2013/08/02
1925110193 A11j Temp 20.3 Celsius
LogEntryType 2013/08/02 1925110370 2013/08/02 1945000000 103 2013/08/02
1925110366 A11b Temp 21.2 Celsius
LogEntryType 2013/08/02 1925120484 2013/08/02 1945000000 104 2013/08/02
1925120480 A11h Temp 20.9 Celsius
LogEntryType 2013/08/02 1925120564 2013/08/02 1945000000 105 2013/08/02
1925120560 A11f Temp 22.4 Celsius
LogEntryType 2013/08/02 1925130300 2013/08/02 1945000000 106 2013/08/02
1925130285 A11i Temp 20.9 Celsius
LogEntryType 2013/08/02 1925130354 2013/08/02 1945000000 107 2013/08/02
1925130301 A11g Temp 21.6 Celsius
LogEntryType 2013/08/02 1925130550 2013/08/02 1945000000 108 2013/08/02
1925130538 A11 Temp 22.0 Celsius
LogEntryType 2013/08/02 1925130640 2013/08/02 1945000000 109 2013/08/02
1925130584 A11e Temp 21.1 Celsius
LogEntryType 2013/08/02 1925140213 2013/08/02 1945000000 110 2013/08/02
1925140182 A11d Temp 21.2 Celsius
LogEntryType 2013/08/02 1925140432 2013/08/02 1945000000 111 2013/08/02
1925140420 A11c Temp 21.0 Celsius
LogEntryType 2013/08/02 1925150198 2013/08/02 1945000000 112 2013/08/02
1925150194 A11j Temp 20.6 Celsius
LogEntryType 2013/08/02 1925150370 2013/08/02 1945000000 113 2013/08/02
1925150367 A11b Temp 21.6 Celsius
LogEntryType 2013/08/02 1925160484 2013/08/02 1945000000 114 2013/08/02
1925160481 A11h Temp 21.2 Celsius
LogEntryType 2013/08/02 1925160565 2013/08/02 1945000000 115 2013/08/02
1925160561 A11f Temp 22.8 Celsius
LogEntryType 2013/08/02 1925170292 2013/08/02 1945000000 116 2013/08/02
1925170288 A11i Temp 20.9 Celsius
LogEntryType 2013/08/02 1925170336 2013/08/02 1945000000 117 2013/08/02
1925170303 A11g Temp 22.0 Celsius
LogEntryType 2013/08/02 1925170548 2013/08/02 1945000000 118 2013/08/02
1925170545 A11 Temp 21.7 Celsius
LogEntryType 2013/08/02 1925170595 2013/08/02 1945000000 119 2013/08/02

 136

1925170591 A11e Temp 21.5 Celsius
LogEntryType 2013/08/02 1925180201 2013/08/02 1945000000 120 2013/08/02
1925180197 A11d Temp 20.7 Celsius
LogEntryType 2013/08/02 1925180427 2013/08/02 1945000000 121 2013/08/02
1925180423 A11c Temp 21.2 Celsius

Number of Sensors: 14
LogEntryType 2013/08/02 1955000794 2013/08/02 2015000000 163 2013/08/02
1955000787 A11i Temp 21.6 Celsius
LogEntryType 2013/08/02 1955010111 2013/08/02 2015000000 164 2013/08/02
1955010084 A11f Temp 20.7 Celsius
LogEntryType 2013/08/02 1955010280 2013/08/02 2015000000 165 2013/08/02
1955010089 A11e Temp 21.2 Celsius
LogEntryType 2013/08/02 1955010369 2013/08/02 2015000000 166 2013/08/02
1955010338 A11b Temp 22.4 Celsius
LogEntryType 2013/08/02 1955010685 2013/08/02 2015000000 167 2013/08/02
1955010671 A11j Temp 20.9 Celsius
LogEntryType 2013/08/02 1955020174 2013/08/02 2015000000 168 2013/08/02
1955020156 A11d Temp 22.0 Celsius
LogEntryType 2013/08/02 1955020322 2013/08/02 2015000000 169 2013/08/02
1955020189 A11g Temp 21.5 Celsius
LogEntryType 2013/08/02 1955020782 2013/08/02 2015000000 170 2013/08/02
1955020752 A11k Temp 20.8 Celsius
LogEntryType 2013/08/02 1955030282 2013/08/02 2015000000 171 2013/08/02
1955030246 A11l Temp 20.6 Celsius
LogEntryType 2013/08/02 1955030452 2013/08/02 2015000000 172 2013/08/02
1955030306 A11c Temp 21.9 Celsius
LogEntryType 2013/08/02 1955030501 2013/08/02 2015000000 173 2013/08/02
1955030439 A11 Temp 21.9 Celsius
LogEntryType 2013/08/02 1955030585 2013/08/02 2015000000 174 2013/08/02
1955030446 A11h Temp 22.8 Celsius
LogEntryType 2013/08/02 1955040059 2013/08/02 2015000000 175 2013/08/02
1955040042 A11m Temp 20.0 Celsius
LogEntryType 2013/08/02 1955040794 2013/08/02 2015000000 176 2013/08/02
1955040789 A11i Temp 22.0 Celsius
LogEntryType 2013/08/02 1955050114 2013/08/02 2015000000 177 2013/08/02
1955050110 A11e Temp 21.6 Celsius
LogEntryType 2013/08/02 1955050131 2013/08/02 2015000000 178 2013/08/02
1955050121 A11f Temp 21.0 Celsius
LogEntryType 2013/08/02 1955050348 2013/08/02 2015000000 179 2013/08/02
1955050341 A11b Temp 22.5 Celsius
LogEntryType 2013/08/02 1955050681 2013/08/02 2015000000 180 2013/08/02
1955050674 A11j Temp 21.2 Celsius
LogEntryType 2013/08/02 1955060167 2013/08/02 2015000000 181 2013/08/02
1955060161 A11d Temp 21.7 Celsius
LogEntryType 2013/08/02 1955060197 2013/08/02 2015000000 182 2013/08/02
1955060191 A11g Temp 21.2 Celsius
LogEntryType 2013/08/02 1955060782 2013/08/02 2015000000 183 2013/08/02
1955060772 A11k Temp 20.9 Celsius
LogEntryType 2013/08/02 1955070264 2013/08/02 2015000000 184 2013/08/02
1955070256 A11l Temp 20.8 Celsius
LogEntryType 2013/08/02 1955070318 2013/08/02 2015000000 185 2013/08/02
1955070309 A11c Temp 22.2 Celsius
LogEntryType 2013/08/02 1955070449 2013/08/02 2015000000 186 2013/08/02
1955070444 A11 Temp 21.8 Celsius
LogEntryType 2013/08/02 1955070471 2013/08/02 2015000000 187 2013/08/02
1955070452 A11h Temp 21.1 Celsius
LogEntryType 2013/08/02 1955080059 2013/08/02 2015000000 188 2013/08/02
1955080054 A11m Temp 20.3 Celsius

 137

LogEntryType 2013/08/02 1955080795 2013/08/02 2015000000 189 2013/08/02
1955080790 A11i Temp 22.4 Celsius
LogEntryType 2013/08/02 1955090116 2013/08/02 2015000000 190 2013/08/02
1955090111 A11e Temp 22.0 Celsius
LogEntryType 2013/08/02 1955090132 2013/08/02 2015000000 191 2013/08/02
1955090126 A11f Temp 21.2 Celsius
LogEntryType 2013/08/02 1955090346 2013/08/02 2015000000 192 2013/08/02
1955090342 A11b Temp 22.2 Celsius
LogEntryType 2013/08/02 1955090682 2013/08/02 2015000000 193 2013/08/02
1955090677 A11j Temp 21.6 Celsius
LogEntryType 2013/08/02 1955100172 2013/08/02 2015000000 194 2013/08/02
1955100162 A11d Temp 21.8 Celsius
LogEntryType 2013/08/02 1955100209 2013/08/02 2015000000 195 2013/08/02
1955100192 A11g Temp 20.7 Celsius
LogEntryType 2013/08/02 1955100789 2013/08/02 2015000000 196 2013/08/02
1955100775 A11k Temp 20.9 Celsius
LogEntryType 2013/08/02 1955110263 2013/08/02 2015000000 197 2013/08/02
1955110166 A11n Temp 20.0 Celsius
LogEntryType 2013/08/02 1955110317 2013/08/02 2015000000 198 2013/08/02
1955110257 A11l Temp 20.9 Celsius
LogEntryType 2013/08/02 1955110408 2013/08/02 2015000000 199 2013/08/02
1955110340 A11c Temp 22.4 Celsius
LogEntryType 2013/08/02 1955110539 2013/08/02 2015000000 200 2013/08/02
1955110454 A11h Temp 21.5 Celsius
NormalCloseMessage 2013/08/02 1955110657 2013/08/02 2015000000 201

Tests with Alarm Temperature Measurements

Number of Sensors: 1
LogEntryType 2013/08/02 2005180832 2013/08/02 2030000000 8 2013/08/02
2005180832 A11 Temp 24.5 Celsius
LogEntryType 2013/08/02 2005180879 2013/08/02 2030000000 9 AlarmSystem:
WARNING: 2013/08/02 2005180832 A11 Temp 24.5 Celsius
LogEntryType 2013/08/02 2005220843 2013/08/02 2030000000 10 2013/08/02
2005220843 A11 Temp 25.2 Celsius
LogEntryType 2013/08/02 2005220843 2013/08/02 2030000000 11 AlarmSystem:
WARNING: 2013/08/02 2005220843 A11 Temp 25.2 Celsius
LogEntryType 2013/08/02 2005260854 2013/08/02 2030000000 12 2013/08/02
2005260854 A11 Temp 25.7 Celsius
LogEntryType 2013/08/02 2005260854 2013/08/02 2030000000 13 AlarmSystem:
WARNING: 2013/08/02 2005260854 A11 Temp 25.7 Celsius
LogEntryType 2013/08/02 2005300865 2013/08/02 2030000000 14 2013/08/02
2005300865 A11 Temp 27.3 Celsius
LogEntryType 2013/08/02 2005300913 2013/08/02 2030000000 15 AlarmSystem:
WARNING: 2013/08/02 2005300865 A11 Temp 27.3 Celsius
LogEntryType 2013/08/02 2005340877 2013/08/02 2030000000 16 2013/08/02
2005340877 A11 Temp 28.2 Celsius
LogEntryType 2013/08/02 2005340877 2013/08/02 2030000000 17 AlarmSystem:
WARNING: 2013/08/02 2005340877 A11 Temp 28.2 Celsius
LogEntryType 2013/08/02 2005380889 2013/08/02 2030000000 18 2013/08/02
2005380889 A11 Temp 29.1 Celsius
LogEntryType 2013/08/02 2005380924 2013/08/02 2030000000 19 AlarmSystem:
WARNING: 2013/08/02 2005380889 A11 Temp 29.1 Celsius
LogEntryType 2013/08/02 2005420904 2013/08/02 2030000000 20 2013/08/02
2005420904 A11 Temp 30.0 Celsius
LogEntryType 2013/08/02 2005420904 2013/08/02 2030000000 21 AlarmSystem:
ALARM: 2013/08/02 2005420904 A11 Temp 30.0 Celsius
LogEntryType 2013/08/02 2005460918 2013/08/02 2030000000 22 2013/08/02

 138

2005460918 A11 Temp 30.6 Celsius
LogEntryType 2013/08/02 2005460954 2013/08/02 2030000000 23 AlarmSystem:
ALARM: 2013/08/02 2005460918 A11 Temp 30.6 Celsius
LogEntryType 2013/08/02 2005500933 2013/08/02 2030000000 24 2013/08/02
2005500933 A11 Temp 31.2 Celsius
LogEntryType 2013/08/02 2005500933 2013/08/02 2030000000 25 AlarmSystem:
ALARM: 2013/08/02 2005500933 A11 Temp 31.2 Celsius
LogEntryType 2013/08/02 2005540946 2013/08/02 2030000000 26 2013/08/02
2005540946 A11 Temp 32.4 Celsius
LogEntryType 2013/08/02 2005540946 2013/08/02 2030000000 27 AlarmSystem:
ALARM: 2013/08/02 2005540946 A11 Temp 32.4 Celsius
LogEntryType 2013/08/02 2005580957 2013/08/02 2030000000 28 2013/08/02
2005580957 A11 Temp 33.5 Celsius
LogEntryType 2013/08/02 2005580957 2013/08/02 2030000000 29 AlarmSystem:
ALARM: 2013/08/02 2005580957 A11 Temp 33.5 Celsius
LogEntryType 2013/08/02 2006020968 2013/08/02 2030000000 30 2013/08/02
2006020968 A11 Temp 33.8 Celsius
LogEntryType 2013/08/02 2006020984 2013/08/02 2030000000 31 AlarmSystem:
ALARM: 2013/08/02 2006020968 A11 Temp 33.8 Celsius
LogEntryType 2013/08/02 2006060980 2013/08/02 2030000000 32 2013/08/02
2006060980 A11 Temp 34.3 Celsius
LogEntryType 2013/08/02 2006070032 2013/08/02 2030000000 33 AlarmSystem:
ALARM: 2013/08/02 2006060980 A11 Temp 34.3 Celsius
LogEntryType 2013/08/02 2006100995 2013/08/02 2030000000 34 2013/08/02
2006100995 A11 Temp 34.8 Celsius
LogEntryType 2013/08/02 2006100995 2013/08/02 2030000000 35 AlarmSystem:
ALARM: 2013/08/02 2006100995 A11 Temp 34.8 Celsius
NormalCloseMessage 2013/08/02 2006150007 2013/08/02 2030000000 36

Number of Sensors: 5
LogEntryType 2013/08/02 2018380032 2013/08/02 2045000000 70 2013/08/02
2018380032 A11e Temp 24.5 Celsius
LogEntryType 2013/08/02 2018380048 2013/08/02 2045000000 71 AlarmSystem:
WARNING: 2013/08/02 2018380032 A11e Temp 24.5 Celsius
LogEntryType 2013/08/02 2018380236 2013/08/02 2045000000 72 2013/08/02
2018380236 A11b Temp 29.1 Celsius
LogEntryType 2013/08/02 2018380269 2013/08/02 2045000000 73 AlarmSystem:
WARNING: 2013/08/02 2018380236 A11b Temp 29.1 Celsius
LogEntryType 2013/08/02 2018380878 2013/08/02 2045000000 74 2013/08/02
2018380877 A11d Temp 25.7 Celsius
LogEntryType 2013/08/02 2018380894 2013/08/02 2045000000 75 AlarmSystem:
WARNING: 2013/08/02 2018380877 A11d Temp 25.7 Celsius
LogEntryType 2013/08/02 2018400114 2013/08/02 2045000000 76 2013/08/02
2018400114 A11c Temp 28.2 Celsius
LogEntryType 2013/08/02 2018400129 2013/08/02 2045000000 77 AlarmSystem:
WARNING: 2013/08/02 2018400114 A11c Temp 28.2 Celsius
LogEntryType 2013/08/02 2018410130 2013/08/02 2045000000 78 2013/08/02
2018410130 A11 Temp 31.2 Celsius
LogEntryType 2013/08/02 2018410145 2013/08/02 2045000000 79 AlarmSystem:
ALARM: 2013/08/02 2018410130 A11 Temp 31.2 Celsius
LogEntryType 2013/08/02 2018420036 2013/08/02 2045000000 80 2013/08/02
2018420036 A11e Temp 25.2 Celsius
LogEntryType 2013/08/02 2018420051 2013/08/02 2045000000 81 AlarmSystem:
WARNING: 2013/08/02 2018420036 A11e Temp 25.2 Celsius
LogEntryType 2013/08/02 2018420239 2013/08/02 2045000000 82 2013/08/02
2018420239 A11b Temp 30.0 Celsius
LogEntryType 2013/08/02 2018420255 2013/08/02 2045000000 83 AlarmSystem:
ALARM: 2013/08/02 2018420239 A11b Temp 30.0 Celsius
LogEntryType 2013/08/02 2018420881 2013/08/02 2045000000 84 2013/08/02

 139

2018420881 A11d Temp 27.3 Celsius
LogEntryType 2013/08/02 2018420897 2013/08/02 2045000000 85 AlarmSystem:
WARNING: 2013/08/02 2018420881 A11d Temp 27.3 Celsius
LogEntryType 2013/08/02 2018440116 2013/08/02 2045000000 86 2013/08/02
2018440116 A11c Temp 29.1 Celsius
LogEntryType 2013/08/02 2018440164 2013/08/02 2045000000 87 AlarmSystem:
WARNING: 2013/08/02 2018440116 A11c Temp 29.1 Celsius
LogEntryType 2013/08/02 2018450132 2013/08/02 2045000000 88 2013/08/02
2018450132 A11 Temp 32.4 Celsius
LogEntryType 2013/08/02 2018450180 2013/08/02 2045000000 89 AlarmSystem:
ALARM: 2013/08/02 2018450132 A11 Temp 32.4 Celsius
LogEntryType 2013/08/02 2018460039 2013/08/02 2045000000 90 2013/08/02
2018460039 A11e Temp 25.7 Celsius
LogEntryType 2013/08/02 2018460091 2013/08/02 2045000000 91 AlarmSystem:
WARNING: 2013/08/02 2018460039 A11e Temp 25.7 Celsius
LogEntryType 2013/08/02 2018460247 2013/08/02 2045000000 92 2013/08/02
2018460247 A11b Temp 30.6 Celsius
LogEntryType 2013/08/02 2018460263 2013/08/02 2045000000 93 AlarmSystem:
ALARM: 2013/08/02 2018460247 A11b Temp 30.6 Celsius
LogEntryType 2013/08/02 2018460888 2013/08/02 2045000000 94 2013/08/02
2018460888 A11d Temp 28.2 Celsius
LogEntryType 2013/08/02 2018460903 2013/08/02 2045000000 95 AlarmSystem:
WARNING: 2013/08/02 2018460888 A11d Temp 28.2 Celsius
LogEntryType 2013/08/02 2018480122 2013/08/02 2045000000 96 2013/08/02
2018480122 A11c Temp 30.0 Celsius
LogEntryType 2013/08/02 2018480138 2013/08/02 2045000000 97 AlarmSystem:
ALARM: 2013/08/02 2018480122 A11c Temp 30.0 Celsius
LogEntryType 2013/08/02 2018490140 2013/08/02 2045000000 98 2013/08/02
2018490140 A11 Temp 33.5 Celsius
LogEntryType 2013/08/02 2018490156 2013/08/02 2045000000 99 AlarmSystem:
ALARM: 2013/08/02 2018490140 A11 Temp 33.5 Celsius

Number of Sensors: 10
LogEntryType 2013/08/02 2042360571 2013/08/02 2059000000 173 2013/08/02
2042360490 A11j Temp 22.0 Celsius
LogEntryType 2013/08/02 2042360758 2013/08/02 2059000000 174 2013/08/02
2042360758 A11 Temp 34.3 Celsius
LogEntryType 2013/08/02 2042360806 2013/08/02 2059000000 175 AlarmSystem:
ALARM: 2013/08/02 2042360758 A11 Temp 34.3 Celsius
LogEntryType 2013/08/02 2042370008 2013/08/02 2059000000 176 2013/08/02
2042370008 A11e Temp 30.0 Celsius
LogEntryType 2013/08/02 2042370024 2013/08/02 2059000000 177 AlarmSystem:
ALARM: 2013/08/02 2042370008 A11e Temp 30.0 Celsius
LogEntryType 2013/08/02 2042370338 2013/08/02 2059000000 178 2013/08/02
2042370338 A11g Temp 27.3 Celsius
LogEntryType 2013/08/02 2042370354 2013/08/02 2059000000 179 AlarmSystem:
WARNING: 2013/08/02 2042370338 A11g Temp 27.3 Celsius
LogEntryType 2013/08/02 2042380447 2013/08/02 2059000000 180 2013/08/02
2042380447 A11b Temp 33.8 Celsius
LogEntryType 2013/08/02 2042380462 2013/08/02 2059000000 181 AlarmSystem:
ALARM: 2013/08/02 2042380447 A11b Temp 33.8 Celsius
LogEntryType 2013/08/02 2042390166 2013/08/02 2059000000 182 2013/08/02
2042390166 A11i Temp 24.5 Celsius
LogEntryType 2013/08/02 2042390182 2013/08/02 2059000000 183 AlarmSystem:
WARNING: 2013/08/02 2042390166 A11i Temp 24.5 Celsius
LogEntryType 2013/08/02 2042390432 2013/08/02 2059000000 184 2013/08/02
2042390432 A11f Temp 29.1 Celsius
LogEntryType 2013/08/02 2042390448 2013/08/02 2059000000 185 AlarmSystem:
WARNING: 2013/08/02 2042390432 A11f Temp 29.1 Celsius

 140

LogEntryType 2013/08/02 2042390794 2013/08/02 2059000000 186 2013/08/02
2042390794 A11d Temp 31.2 Celsius
LogEntryType 2013/08/02 2042390810 2013/08/02 2059000000 187 AlarmSystem:
ALARM: 2013/08/02 2042390794 A11d Temp 31.2 Celsius
LogEntryType 2013/08/02 2042400294 2013/08/02 2059000000 188 2013/08/02
2042400294 A11h Temp 25.7 Celsius
LogEntryType 2013/08/02 2042400310 2013/08/02 2059000000 189 AlarmSystem:
WARNING: 2013/08/02 2042400294 A11h Temp 25.7 Celsius
LogEntryType 2013/08/02 2042400483 2013/08/02 2059000000 190 2013/08/02
2042400483 A11c Temp 33.5 Celsius
LogEntryType 2013/08/02 2042400498 2013/08/02 2059000000 191 AlarmSystem:
ALARM: 2013/08/02 2042400483 A11c Temp 33.5 Celsius
LogEntryType 2013/08/02 2042400515 2013/08/02 2059000000 192 2013/08/02
2042400514 A11j Temp 22.5 Celsius
LogEntryType 2013/08/02 2042400765 2013/08/02 2059000000 193 2013/08/02
2042400765 A11 Temp 34.8 Celsius
LogEntryType 2013/08/02 2042400781 2013/08/02 2059000000 194 AlarmSystem:
ALARM: 2013/08/02 2042400765 A11 Temp 34.8 Celsius
LogEntryType 2013/08/02 2042410016 2013/08/02 2059000000 195 2013/08/02
2042410016 A11e Temp 30.6 Celsius
LogEntryType 2013/08/02 2042410032 2013/08/02 2059000000 196 AlarmSystem:
ALARM: 2013/08/02 2042410016 A11e Temp 30.6 Celsius
LogEntryType 2013/08/02 2042410345 2013/08/02 2059000000 197 2013/08/02
2042410345 A11g Temp 28.2 Celsius
LogEntryType 2013/08/02 2042410360 2013/08/02 2059000000 198 AlarmSystem:
WARNING: 2013/08/02 2042410345 A11g Temp 28.2 Celsius
LogEntryType 2013/08/02 2042420454 2013/08/02 2059000000 199 2013/08/02
2042420454 A11b Temp 34.3 Celsius
LogEntryType 2013/08/02 2042420470 2013/08/02 2059000000 200 AlarmSystem:
ALARM: 2013/08/02 2042420454 A11b Temp 34.3 Celsius
LogEntryType 2013/08/02 2042430174 2013/08/02 2059000000 201 2013/08/02
2042430174 A11i Temp 25.2 Celsius
LogEntryType 2013/08/02 2042430189 2013/08/02 2059000000 202 AlarmSystem:
WARNING: 2013/08/02 2042430174 A11i Temp 25.2 Celsius
LogEntryType 2013/08/02 2042430440 2013/08/02 2059000000 203 2013/08/02
2042430440 A11f Temp 30.0 Celsius
LogEntryType 2013/08/02 2042430456 2013/08/02 2059000000 204 AlarmSystem:
ALARM: 2013/08/02 2042430440 A11f Temp 30.0 Celsius
LogEntryType 2013/08/02 2042430803 2013/08/02 2059000000 205 2013/08/02
2042430803 A11d Temp 32.4 Celsius
LogEntryType 2013/08/02 2042430818 2013/08/02 2059000000 206 AlarmSystem:
ALARM: 2013/08/02 2042430803 A11d Temp 32.4 Celsius
LogEntryType 2013/08/02 2042440303 2013/08/02 2059000000 207 2013/08/02
2042440303 A11h Temp 27.3 Celsius
LogEntryType 2013/08/02 2042440319 2013/08/02 2059000000 208 AlarmSystem:
WARNING: 2013/08/02 2042440303 A11h Temp 27.3 Celsius
LogEntryType 2013/08/02 2042440491 2013/08/02 2059000000 209 2013/08/02
2042440491 A11c Temp 33.8 Celsius
LogEntryType 2013/08/02 2042440507 2013/08/02 2059000000 210 AlarmSystem:
ALARM: 2013/08/02 2042440491 A11c Temp 33.8 Celsius
LogEntryType 2013/08/02 2042440523 2013/08/02 2059000000 211 2013/08/02
2042440522 A11j Temp 23.7 Celsius

Throughput

Part of the Alarm System Console Output
Sender: A11d

 141

Subscribe to Message: 2013/08/02 2042590822 A11d Temp 34.8
 Celsius
Publish: AlarmSystem: ALARM: 2013/08/02 2042590822 A11d Temp 34.8
 Celsius

Sender: A11e
Subscribe to Message: 2013/08/02 2043010057 A11e Temp 34.3
 Celsius
Aug 02, 2013 8:43:01 PM com.sun.messaging.jmq.jmsclient.ExceptionHandler
logCaughtException
WARNING: [I500]: Caught JVM Exception: com.sun.messaging.jms.JMSException:
[ADD_PRODUCER_REPLY(19)] [C4036]: A broker error occurred. :[409] [B4183]:
Producer can not be added to destination Alarm [Topic], limit of 100 producers
would be exceeded user=guest, broker=localhost:7676(49652)
com.sun.messaging.jms.JMSException: [ADD_PRODUCER_REPLY(19)] [C4036]: A broker
error occurred. :[409] [B4183]: Producer can not be added to destination Alarm
[Topic], limit of 100 producers would be exceeded user=guest,
broker=localhost:7676(49652) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.throwServerErrorException(Prot
ocolHandler.java:4103) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.createMessageProducer(Protocol
Handler.java:1353) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.createMessageProducer(Protocol
Handler.java:1247) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.createMessageProducer(Protocol
Handler.java:1241) at
com.sun.messaging.jmq.jmsclient.MessageProducerImpl.<init>(MessageProducerImpl
.java:121) at
com.sun.messaging.jmq.jmsclient.TopicPublisherImpl.<init>(TopicPublisherImpl.j
ava:73) at
com.sun.messaging.jmq.jmsclient.UnifiedSessionImpl.createPublisher(UnifiedSess
ionImpl.java:430) at
com.sun.messaging.jms.ra.SessionAdapter.createPublisher(SessionAdapter.java:34
7) at com.javamsgservice.AlarmObject.publish(AlarmObject.java:124)
 at com.javamsgservice.AlarmObject.onMessage(AlarmObject.java:86) at
com.sun.messaging.jmq.jmsclient.MessageConsumerImpl.deliverAndAcknowledge(Mess
ageConsumerImpl.java:358) at
com.sun.messaging.jmq.jmsclient.MessageConsumerImpl.onMessage(MessageConsumerI
mpl.java:287) at
com.sun.messaging.jmq.jmsclient.SessionReader.deliver(SessionReader.java:119)
 at
com.sun.messaging.jmq.jmsclient.ConsumerReader.run(ConsumerReader.java:192)
 at java.lang.Thread.run(Unknown Source)
Caused by: com.sun.messaging.jms.JMSException: [ADD_PRODUCER_REPLY(19)]
[C4036]: A broker error occurred. :[409] [B4183]: Producer can not be added to
destination Alarm [Topic], limit of 100 producers would be exceeded
user=guest, broker=localhost:7676(49652) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.throwServerErrorException(Prot
ocolHandler.java:4088)
 ... 14 more

Sender: A11f
Subscribe to Message: 2013/08/02 2043030476 A11f Temp 33.8
 Celsius
Aug 02, 2013 8:43:03 PM com.sun.messaging.jmq.jmsclient.ExceptionHandler
logCaughtException
WARNING: [I500]: Caught JVM Exception: com.sun.messaging.jms.JMSException:
[ADD_PRODUCER_REPLY(19)] [C4036]: A broker error occurred. :[409] [B4183]:
Producer can not be added to destination Alarm [Topic], limit of 100 producers
would be exceeded user=guest, broker=localhost:7676(49652)

 142

com.sun.messaging.jms.JMSException: [ADD_PRODUCER_REPLY(19)] [C4036]: A broker
error occurred. :[409] [B4183]: Producer can not be added to destination Alarm
[Topic], limit of 100 producers would be exceeded user=guest,
broker=localhost:7676(49652) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.throwServerErrorException(Prot
ocolHandler.java:4103) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.createMessageProducer(Protocol
Handler.java:1353) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.createMessageProducer(Protocol
Handler.java:1247) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.createMessageProducer(Protocol
Handler.java:1241) at
com.sun.messaging.jmq.jmsclient.MessageProducerImpl.<init>(MessageProducerImpl
.java:121) at
com.sun.messaging.jmq.jmsclient.TopicPublisherImpl.<init>(TopicPublisherImpl.j
ava:73) at
com.sun.messaging.jmq.jmsclient.UnifiedSessionImpl.createPublisher(UnifiedSess
ionImpl.java:430) at
com.sun.messaging.jms.ra.SessionAdapter.createPublisher(SessionAdapter.java:34
7) at com.javamsgservice.AlarmObject.publish(AlarmObject.java:124)
 at com.javamsgservice.AlarmObject.onMessage(AlarmObject.java:86) at
com.sun.messaging.jmq.jmsclient.MessageConsumerImpl.deliverAndAcknowledge(Mess
ageConsumerImpl.java:358) at
com.sun.messaging.jmq.jmsclient.MessageConsumerImpl.onMessage(MessageConsumerI
mpl.java:287) at
com.sun.messaging.jmq.jmsclient.SessionReader.deliver(SessionReader.java:119)
 at
com.sun.messaging.jmq.jmsclient.ConsumerReader.run(ConsumerReader.java:192)
 at java.lang.Thread.run(Unknown Source)
Caused by: com.sun.messaging.jms.JMSException: [ADD_PRODUCER_REPLY(19)]
[C4036]: A broker error occurred. :[409] [B4183]: Producer can not be added to
destination Alarm [Topic], limit of 100 producers would be exceeded
user=guest, broker=localhost:7676(49652) at
com.sun.messaging.jmq.jmsclient.ProtocolHandler.throwServerErrorException(Prot
ocolHandler.java:4088)
 ... 14 more

Sender: A11d
Subscribe to Message: exit

A.1.2 Security Attacks
Insertion of a new entry/Duplication of an entry

Server
Here we see the data being logged as entries Li by the Untrusted Server in a
log file.

L0: LogfileInitializationType
UGVr2k9Tuq/n2UNSsebnvUhKS5J9x0MiyrE72+AsJsEJSW5//E+P5o23MvPCzT7d1nphNmSRzR78
EIAKp2FZNbZ211HocZAKoJsYC+Dpf6pb0Bk/pyt6vaQhmjC2VrD6NXq8kIxLEzzTU+7xLcyWAUIY
r9aSxcKd0EkHtLeYEM04cX6dDRHFbr+MyIrm5iAqSoFZTa9dblMU/CgfSk8z2juDxqAepn9AhrwN
BbEckA8draKbMYrNvSf1TS7rP7dD4oxWatjiSPuvA1yvZ0vQQFq4NHmcNl60OoQu1eNgA4BNJct1
fwRHlxUof2CqhGcvKUaHIb2Jm3h+AnkJlBikvMJjAQ3DMVm+KqWt9HiPLzYPeKeZqNFa2n2X/fTp
EwXaV5p3fLB1NLG+IuljQ9Yc+hI/+2Vvldv3jZcWXoKrdpKO+h5zUsfkdAKbSej79qvd01ZO3BSh
/Qltbt1vZzy8QbC2iF4gmy4o8L2b2JWArH12ZtMR6Iqf2ZgbBiD8y6wW1IaohczeB4W87C6PEPVO

 143

COtlYSgztDE5VMEIYEfC+dyTKmF/4WO34udRgJ2UmXiq -2131737990 -1788860721
L1: ResponseMessageType
gUywYu3ZjPTvlsYDsJIu5W+R3wG2pmazNmYXsCSGQTHL83HdStEqSiMb+G1exHsI36Y+TM8jHzwz
r9qBzKyVMRhZqjSfqay9XnfHEwrZBKUGTM2Q58lwczLzzB8MaEJhUYYlf7T7AXsR1a54oPJ6dcwB
zLecKhAhlj6vGn5P76RhYDsvVh5PxfwFNn6VzfylA2q3Fh+A/VO1ucBlnYR7qedj0Ct/j0teUQ9u
bA8nI8+zfM9jdYpCt95isTJod7suTn8Joz/THwsZNs9amfe4LStQdnjOGoQt1UFs5FCiB6jpKqcS
Qha8rsYkeWmsfDiusAFayvL99zUFpD8qfTlSqbWyhzoOZpPobGuF9DZgy0TIw4KdJoYiMepJgz14
9tHcekYi3V3H+Vmv42C1MCU7TcivMCVEEVijEna8it/pVOIDCHgiX/ZemkYEjGiMgAIx+9U6zhyr
QxB7vVWWQLseq2CFMBRu9d1qKbtiWJuLTtiB8GX/WrAktt5DVSRtmq1z3QZdc+Qwgbt9uKucjpBy
WUByX+UaHdXzGXR2mz7pHuM= -673921588 -1097811294
Sender: A11
Message: 2013/08/02 1109170037 A11 Temp 20.0 Celsius
L2: LogEntryType
G693AlsnQhBh/BVYr7pM95LK68SXCqRjgWQ7vDozihQ8goOLKU1zw0mUETHHUoaCPveptdw6oYfD
Ri7ZP14YWRD94+2GRZGugD0A2lvrYelXpIPG4DRtuFVoh2x/pB5F -1798661150 19329142
Sender: A11
Message: 2013/08/02 1109210067 A11 Temp 20.4 Celsius
L3: LogEntryType
IJ6z0QgONqWemDWSqObwtvZ/DB0D6iFGVf3imoIp6i7AONa8IuJzP1o5wkJEBNgtsXPpmrVjSw+2
AQT6nC09CuMwezCy15yafdzfX+IoY+5XbsT96EKbLxqDqnMcloWb -834139319 1263724178
Sender: A11
Message: 2013/08/02 1109250079 A11 Temp 21.0 Celsius
L4: LogEntryType
l4rAv3YGIDH6wpmf4+sN8RIcxdR3KxXJeW/z6b/P0ItlsyQK/fdOfB822wPfzCyiPkWK4C6bs+UR
rxX0bcvKxGkNJOusJyijphpxSm6V8SEV+PF+3ndwfACX/nO052Zx -2096999132 -
2078260828
Sender: A11
Message: 2013/08/02 1109290090 A11 Temp 22.0 Celsius
L5: LogEntryType
kDUiQUlJAeGH1v9dC/UnIG3dK4GBVEztaRDdTfxTJKhkfWi+uOlPeUUOtAryiXpbVpJZrh1K1y9S
zS5493giqthlO0Q2QefU36aGxNwK+gP5OBopCiOrdPk7h9SfuZqT 989650785 1385486530
Sender: A11
Message: 2013/08/02 1109330092 A11 Temp 24.0 Celsius
L6: LogEntryType
5DcZft5wiQt8W90pC2vWETCDg0/kjIefs1qwM4El+r1xYVz3Qyk1IcztLyEveyNHTL3QoRxFsadF
E02w9MGTRAP9oiPc9uHksv6KbB4sf8w2sSLPk/eTePAME3RW4n0/ -816886799 2080965872
Sender: A11
Message: 2013/08/02 1109370105 A11 Temp 25.4 Celsius
L7: LogEntryType
Fc7bF6KLQqSAg5llsGDcn7OWLJ8A5+cQSOGRMRKsCCorKdEjUIuUg2PqfMQ2cY1uW+hs/KxUKvlM
oq2v3dEp+ULODkZDpKahPOR6COvNk9Vy3ihHCQG9mxKISEqzH3KU -745156940 678947021
Sender: A11
Message: AlarmSystem: WARNING: 2013/08/02 1109370105 A11 Temp 25.4
 Celsius
L8: LogEntryType
4fJmgbU8G7aCCNErd5rWFJLYg8CDdR2lZpmMJEPwEtbrT+L5thSS+XFtItxCzvXNqCif9o7YiKNk
HAW2RXU4JbvyQNkOerLue1Y6rYqJDr12O+wE1xzGfgphAoCjIb+vSpDjy43Q+AvmdL7fAoV7KpWT
P70sSwtSAYYm9jE3aao= -1856995104 1778848661
Sender: A11
Message: 2013/08/02 1109410119 A11 Temp 24.0 Celsius
L9: LogEntryType
Q1R2vWoIXG7N9aSxQdJ+hzZMZLcYoPoj2SEdAQoYBTv2b+M6LOWqWSgREBOKOuOZ+C41pO6Xo5lJ
+KPzaOM9+o5zG43M11GU8krWKzth8dlDfqSlLx6xUZF/ByfofnR4 -289471064 1402134062
Sender: A11
Message: 2013/08/02 1109450132 A11 Temp 23.6 Celsius
L10: LogEntryType
DEm++Oswr7c5wIrgExVb7K2NPrdQ3MaMQ6K4srA/TS5vaago2VZsbn0bgD6Mkd3c9r+7OF0CRc/r
6O2s9R7R9cTcMdumAy5FuMAPLQZJevWufQ8b4mhMeb7p9r0yCKdy -830774920 1494439717
Sender: A11
Message: 2013/08/02 1109490142 A11 Temp 22.2 Celsius

 144

L11: LogEntryType
NtlWKXcAHU2zo+GDc8vGcdl+Y3ilJ8mLtHkcVxDQlq8zE8R3fhDdzTd9ZE0uSgGZLJX1VbAgv4oO
iVlXsKR80NMQW73qb2z2PkJR1IlgODWgtdMncV2wvehempTleT2c 1041793453 -589096981
Sender: A11
Message: exit
L12: NormalCloseMessage
a/SO8PCchzIIPMOW7cW4FWuFePmMmIYkfBvV4eejDJHnCeIYYza1DH0mRqWnyNsi 862931347
-1702989854

Log Verification at Trusted Server
We mark with red color the problems that occurred in the verification and with
blue color the duplicate entry.
Verification of : LogFile.txt
L[0]:
LogfileInitializationType
UGVr2k9Tuq/n2UNSsebnvUhKS5J9x0MiyrE72+AsJsEJSW5//E+P5o23MvPCzT7d1nphNmSRzR78
EIAKp2FZNbZ211HocZAKoJsYC+Dpf6pb0Bk/pyt6vaQhmjC2VrD6NXq8kIxLEzzTU+7xLcyWAUIY
r9aSxcKd0EkHtLeYEM04cX6dDRHFbr+MyIrm5iAqSoFZTa9dblMU/CgfSk8z2juDxqAepn9AhrwN
BbEckA8draKbMYrNvSf1TS7rP7dD4oxWatjiSPuvA1yvZ0vQQFq4NHmcNl60OoQu1eNgA4BNJct1
fwRHlxUof2CqhGcvKUaHIb2Jm3h+AnkJlBikvMJjAQ3DMVm+KqWt9HiPLzYPeKeZqNFa2n2X/fTp
EwXaV5p3fLB1NLG+IuljQ9Yc+hI/+2Vvldv3jZcWXoKrdpKO+h5zUsfkdAKbSej79qvd01ZO3BSh
/Qltbt1vZzy8QbC2iF4gmy4o8L2b2JWArH12ZtMR6Iqf2ZgbBiD8y6wW1IaohczeB4W87C6PEPVO
COtlYSgztDE5VMEIYEfC+dyTKmF/4WO34udRgJ2UmXiq -2131737990 -1788860721
Decrypted_AESmsg D[0]: LogfileInitializationType 2013/08/02 1108530188
2013/08/02 1130000000 0 0 4444
¶_!Ñ,_>ÚØQg¿ÁÀbØ³žz?_‹Œ}ž+_«Á_LSà›Ì_âãa„¥ë°_˜«ø_ŸÙ#Ë¸_"wÚÕ�ºó_ëÛ»½¥ÇŸ_¸~êÊNeLM
n°Ë¢A_‚‡B–Ôž‚8éì’Ž«__B¡Q}_J
Œhe_éÒÜŠ?ÚA1révo_¿Ln^_
2pbMnzc7vTq9kGz2sWxNDqxY+kEQNjzMMKCAoqmWnHDn8wWSS0HwUPnQYsyToH7uIVjzhioQ8DWz
GEF58AZnhbA9X8c86ScunClLGKo8+tmXfHMMonnYME6CMDQYaAVq+RDMzo7BqWNweOPLuQjf+yGl
i3JWvo39Q/Lb+4RNiV+AvOTmA8Bnsjnyv/OYvnNCNCgBkjyt7fBTs/pt4W0sHiyKy1LUQJmDIYOn
q4+2tbA=
M[0]: LogfileInitializationType 1130000000 0 0 4444
¶_!Ñ,_>ÚØQg¿ÁÀbØ³žz?_‹Œ}ž+_«Á_LSà›Ì_âãa„¥ë°_˜«ø_ŸÙ#Ë¸_"wÚÕ�ºó_ëÛ»½¥ÇŸ_¸~êÊNeLM
n°Ë¢A_‚‡B–Ôž‚8éì’Ž«__B¡Q}_J
Œhe_éÒÜŠ?ÚA1révo_¿Ln^_
2pbMnzc7vTq9kGz2sWxNDqxY+kEQNjzMMKCAoqmWnHDn8wWSS0HwUPnQYsyToH7uIVjzhioQ8DWz
GEF58AZnhbA9X8c86ScunClLGKo8+tmXfHMMonnYME6CMDQYaAVq+RDMzo7BqWNweOPLuQjf+yGl
i3JWvo39Q/Lb+4RNiV+AvOTmA8Bnsjnyv/OYvnNCNCgBkjyt7fBTs/pt4W0sHiyKy1LUQJmDIYOn
q4+2tbA=
Yi: -2131737990
Yi2: -2131737990
Y[0] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1788860721
mac2: -1788860721
MAC[0] = MAC(Yi)_Ai is verified

L[1]:
ResponseMessageType
gUywYu3ZjPTvlsYDsJIu5W+R3wG2pmazNmYXsCSGQTHL83HdStEqSiMb+G1exHsI36Y+TM8jHzwz
r9qBzKyVMRhZqjSfqay9XnfHEwrZBKUGTM2Q58lwczLzzB8MaEJhUYYlf7T7AXsR1a54oPJ6dcwB
zLecKhAhlj6vGn5P76RhYDsvVh5PxfwFNn6VzfylA2q3Fh+A/VO1ucBlnYR7qedj0Ct/j0teUQ9u
bA8nI8+zfM9jdYpCt95isTJod7suTn8Joz/THwsZNs9amfe4LStQdnjOGoQt1UFs5FCiB6jpKqcS
Qha8rsYkeWmsfDiusAFayvL99zUFpD8qfTlSqbWyhzoOZpPobGuF9DZgy0TIw4KdJoYiMepJgz14
9tHcekYi3V3H+Vmv42C1MCU7TcivMCVEEVijEna8it/pVOIDCHgiX/ZemkYEjGiMgAIx+9U6zhyr
QxB7vVWWQLseq2CFMBRu9d1qKbtiWJuLTtiB8GX/WrAktt5DVSRtmq1z3QZdc+Qwgbt9uKucjpBy
WUByX+UaHdXzGXR2mz7pHuM= -673921588 -1097811294

 145

Decrypted_AESmsg D[1]: ResponseMessageType 2013/08/02 1108530204 2013/08/02
1130000000 1 1 1234 _Sá€•Ø”xœ)ˆ0_‡_¡_’È«Q__–KA_+(LßÁ_`HÞ{Q*Už¡÷J–
‰&D“Ê:Æ÷_?=Š3ß!œ`yY_9ÄÐ®^_?él2Ï?_öÀ_Pñ4ÇfgËZ«Z\¤¹˜Ìž‰€cH?T_¬ršs5
 _Eú¨~x+ÕµœwRf¥,ÆZ
4wNQ+odd7avRi2ygBqqDvDoePKPvF+3gT7ixN5GqIwTflljr0veCnG6voaTEZF5KlDJ/q9fUUMCs
n546cMo7IXZmp/T51X6rLhnnOhjsoz3dGKdEPaQpcFVUVufeN2HeN/C28Mzx2JEnfzym3U8Y4Ok8
AsYTDjdLxP1AqB3nMfGXWLH7Gqzf8T4/ueAs1xqjuT/14f9Pp/vgHAk4gET4AQ==
M[1]: ResponseMessageType 1130000000 1 1 1234 _Sá€•Ø”xœ)ˆ0_‡_¡_’È«Q__–
KA_+(LßÁ_`HÞ{Q*Už¡÷J–
‰&D“Ê:Æ÷_?=Š3ß!œ`yY_9ÄÐ®^_?él2Ï?_öÀ_Pñ4ÇfgËZ«Z\¤¹˜Ìž‰€cH?T_¬ršs5
 _Eú¨~x+ÕµœwRf¥,ÆZ
4wNQ+odd7avRi2ygBqqDvDoePKPvF+3gT7ixN5GqIwTflljr0veCnG6voaTEZF5KlDJ/q9fUUMCs
n546cMo7IXZmp/T51X6rLhnnOhjsoz3dGKdEPaQpcFVUVufeN2HeN/C28Mzx2JEnfzym3U8Y4Ok8
AsYTDjdLxP1AqB3nMfGXWLH7Gqzf8T4/ueAs1xqjuT/14f9Pp/vgHAk4gET4AQ==
Yi: -673921588
Yi2: -673921588
Y[1] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1097811294
mac2: -1097811294
MAC[1] = MAC(Yi)_Ai is verified

L[2]:
LogEntryType
G693AlsnQhBh/BVYr7pM95LK68SXCqRjgWQ7vDozihQ8goOLKU1zw0mUETHHUoaCPveptdw6oYfD
Ri7ZP14YWRD94+2GRZGugD0A2lvrYelXpIPG4DRtuFVoh2x/pB5F -1798661150 19329142
Decrypted_AESmsg D[2]: LogEntryType 2013/08/02 1109170052 2013/08/02
1130000000 2 2013/08/02 1109170037 A11 Temp 20.0 Celsius
M[2]: LogEntryType 1130000000 2 2013/08/02 1109170037 A11 Temp 20.0
 Celsius
Yi: -1798661150
Yi2: -1798661150
Y[2] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 19329142
mac2: 19329142
MAC[2] = MAC(Yi)_Ai is verified

L[3]:
LogEntryType
IJ6z0QgONqWemDWSqObwtvZ/DB0D6iFGVf3imoIp6i7AONa8IuJzP1o5wkJEBNgtsXPpmrVjSw+2
AQT6nC09CuMwezCy15yafdzfX+IoY+5XbsT96EKbLxqDqnMcloWb -834139319 1263724178
Decrypted_AESmsg D[3]: LogEntryType 2013/08/02 1109210067 2013/08/02
1130000000 3 2013/08/02 1109210067 A11 Temp 20.4 Celsius
M[3]: LogEntryType 1130000000 3 2013/08/02 1109210067 A11 Temp 20.4
 Celsius
Yi: -834139319
Yi2: -834139319
Y[3] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1263724178
mac2: 1263724178
MAC[3] = MAC(Yi)_Ai is verified

L[4]:
LogEntryType
l4rAv3YGIDH6wpmf4+sN8RIcxdR3KxXJeW/z6b/P0ItlsyQK/fdOfB822wPfzCyiPkWK4C6bs+UR
rxX0bcvKxGkNJOusJyijphpxSm6V8SEV+PF+3ndwfACX/nO052Zx -2096999132 -2078260828
Decrypted_AESmsg D[4]: LogEntryType 2013/08/02 1109250079 2013/08/02
1130000000 4 2013/08/02 1109250079 A11 Temp 21.0 Celsius
M[4]: LogEntryType 1130000000 4 2013/08/02 1109250079 A11 Temp 21.0
 Celsius
Yi: -2096999132

 146

Yi2: -2096999132
Y[4] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -2078260828
mac2: -2078260828
MAC[4] = MAC(Yi)_Ai is verified

L[5]:
LogEntryType
kDUiQUlJAeGH1v9dC/UnIG3dK4GBVEztaRDdTfxTJKhkfWi+uOlPeUUOtAryiXpbVpJZrh1K1y9S
zS5493giqthlO0Q2QefU36aGxNwK+gP5OBopCiOrdPk7h9SfuZqT 989650785 1385486530
Decrypted_AESmsg D[5]: LogEntryType 2013/08/02 1109290090 2013/08/02
1130000000 5 2013/08/02 1109290090 A11 Temp 22.0 Celsius
M[5]: LogEntryType 1130000000 5 2013/08/02 1109290090 A11 Temp 22.0
 Celsius
Yi: 989650785
Yi2: 989650785
Y[5] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1385486530
mac2: 1385486530
MAC[5] = MAC(Yi)_Ai is verified

L[6]:
LogEntryType
5DcZft5wiQt8W90pC2vWETCDg0/kjIefs1qwM4El+r1xYVz3Qyk1IcztLyEveyNHTL3QoRxFsadF
E02w9MGTRAP9oiPc9uHksv6KbB4sf8w2sSLPk/eTePAME3RW4n0/ -816886799 2080965872
Decrypted_AESmsg D[6]: LogEntryType 2013/08/02 1109330092 2013/08/02
1130000000 6 2013/08/02 1109330092 A11 Temp 24.0 Celsius
M[6]: LogEntryType 1130000000 6 2013/08/02 1109330092 A11 Temp 24.0
 Celsius
Yi: -816886799
Yi2: -816886799
Y[6] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 2080965872
mac2: 2080965872
MAC[6] = MAC(Yi)_Ai is verified

L[7]:
LogEntryType
Fc7bF6KLQqSAg5llsGDcn7OWLJ8A5+cQSOGRMRKsCCorKdEjUIuUg2PqfMQ2cY1uW+hs/KxUKvlM
oq2v3dEp+ULODkZDpKahPOR6COvNk9Vy3ihHCQG9mxKISEqzH3KU -745156940 678947021
Decrypted_AESmsg D[7]: LogEntryType 2013/08/02 1109370105 2013/08/02
1130000000 7 2013/08/02 1109370105 A11 Temp 25.4 Celsius
M[7]: LogEntryType 1130000000 7 2013/08/02 1109370105 A11 Temp 25.4
 Celsius
Yi: -745156940
Yi2: -745156940
Y[7] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 678947021
mac2: 678947021
MAC[7] = MAC(Yi)_Ai is verified

L[8]:
LogEntryType
4fJmgbU8G7aCCNErd5rWFJLYg8CDdR2lZpmMJEPwEtbrT+L5thSS+XFtItxCzvXNqCif9o7YiKNk
HAW2RXU4JbvyQNkOerLue1Y6rYqJDr12O+wE1xzGfgphAoCjIb+vSpDjy43Q+AvmdL7fAoV7KpWT
P70sSwtSAYYm9jE3aao= -1856995104 1778848661
Decrypted_AESmsg D[8]: LogEntryType 2013/08/02 1109370153 2013/08/02
1130000000 8 AlarmSystem: WARNING: 2013/08/02 1109370105 A11 Temp 25.4
 Celsius

 147

M[8]: LogEntryType 1130000000 8 AlarmSystem: WARNING: 2013/08/02 1109370105
 A11 Temp 25.4 Celsius
Yi: -1856995104
Yi2: -1856995104
Y[8] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1778848661
mac2: 1778848661
MAC[8] = MAC(Yi)_Ai is verified

L[9]:
LogEntryType
Q1R2vWoIXG7N9aSxQdJ+hzZMZLcYoPoj2SEdAQoYBTv2b+M6LOWqWSgREBOKOuOZ+C41pO6Xo5lJ
+KPzaOM9+o5zG43M11GU8krWKzth8dlDfqSlLx6xUZF/ByfofnR4 -289471064 1402134062
Decrypted_AESmsg D[9]: LogEntryType 2013/08/02 1109410122 2013/08/02
1130000000 9 2013/08/02 1109410119 A11 Temp 24.0 Celsius
M[9]: LogEntryType 1130000000 9 2013/08/02 1109410119 A11 Temp 24.0
 Celsius
Yi: -289471064
Yi2: -289471064
Y[9] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1402134062
mac2: 1402134062
MAC[9] = MAC(Yi)_Ai is verified

L[10]:
LogEntryType
DEm++Oswr7c5wIrgExVb7K2NPrdQ3MaMQ6K4srA/TS5vaago2VZsbn0bgD6Mkd3c9r+7OF0CRc/r
6O2s9R7R9cTcMdumAy5FuMAPLQZJevWufQ8b4mhMeb7p9r0yCKdy -830774920 1494439717
LogEntryType
Decrypted_AESmsg D[10]: LogEntryType 2013/08/02 1109450132 2013/08/02
1130000000 10 2013/08/02 1109450132 A11 Temp 23.6 Celsius
M[10]: LogEntryType 1130000000 10 2013/08/02 1109450132 A11 Temp 23.6
 Celsius
Yi: -830774920
Yi2: -830774920
Y[10] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1494439717
Number Format Exception! The reason is that someone tampered with entry[10].

L[11]:
LogEntryType
NtlWKXcAHU2zo+GDc8vGcdl+Y3ilJ8mLtHkcVxDQlq8zE8R3fhDdzTd9ZE0uSgGZLJX1VbAgv4oO
iVlXsKR80NMQW73qb2z2PkJR1IlgODWgtdMncV2wvehempTleT2c 1041793453 -589096981
Decrypted_AESmsg D[11]: LogEntryType 2013/08/02 1109490142 2013/08/02
1130000000 11 2013/08/02 1109490142 A11 Temp 22.2 Celsius
M[11]: LogEntryType 1130000000 11 2013/08/02 1109490142 A11 Temp 22.2
 Celsius
Yi: 1041793453
Yi2: 1041793453
Y[11] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -589096981
mac2: -589096981
MAC[11] = MAC(Yi)_Ai is verified

L[12]:
NormalCloseMessage
a/SO8PCchzIIPMOW7cW4FWuFePmMmIYkfBvV4eejDJHnCeIYYza1DH0mRqWnyNsi 862931347 -
1702989854
Decrypted_AESmsg D[12]: NormalCloseMessage 2013/08/02 1109530154 2013/08/02
1130000000 12

 148

M[12]: NormalCloseMessage 1130000000 12
Yi: 862931347
Yi2: 862931347
Y[12] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1702989854
mac2: -1702989854
MAC[12] = MAC(Yi)_Ai is verified

In file LogFile.txt the MACs in following entry positions were found false
10

Signature Verification at RA
Singature1 entry[0] is verified
Manual Signatures verification: true
Singature2 entry[0] is verified
Singature2 entry[1] is verified
Singature2 entry[2] is verified
Singature2 entry[3] is verified
Singature2 entry[4] is verified
Singature2 entry[5] is verified
Singature2 entry[6] is verified
Singature2 entry[7] is verified
Singature2 entry[11] is verified
Singature2_random entry[12] is verified
Singature2_random entry[13] is verified
Singature2_random entry[14] is verified
Singature2_random entry[15] is verified
Singature2_random entry[16] is verified
Singature2_random entry[23] is verified
Singature2_random entry[24] is verified
Singature2_random entry[25] is verified

Replacement of an entire entry

Server
L0: LogfileInitializationType
h7MemoeQfSqnOXQsd1GItR6s84Bk2/3S91VCHn2Y1qG3NDa9qL1MpvMCkdOzLtQ9wWI3cWP80bMs
JrNOAWshdrSqcAnC/VjYhSdRfNYjs3YyaBH/QcZeSrJ2ewC/5Scx30aWK1448k53XbkfdkcOebWf
bOcBSjG5v6igWlSI8c4P4AaTUVtsO8IzftG12UkdZAOgGp4h5/40DSDZAbRX0NDL/yrrzWyw2F3S
2h48wNyhJWs0CysfSs8AhT8FdXmvDwCDe2I/cRRXd0xB2OEmJ3WyQu3k49xFUp80JI0hnpCItrEx
+fh+mOCuPpMG+K5J7f6zYhtAlEXXQCSOdoQkP0fNvlGoAO+Hn6ZzIrGbEpc5XhonmmQwnIOYz7L2
uRZ/2VHsMi/c5ariOyLVjsqhPIARBfQvNEuOZfZe8BVL7uevZFPNQcLLn/iYF9jh3aM1NxQnxLrR
VttGlzq24GC9mvzSwOJ6rkG1gcmTf0dYixHrGvYdMMx4f98TH3W+yiQfIW3s8VySdnwxu0DAru64
uIxWyBUxMcScuw0f9PZlZ2y2cYja2FBmt72PlF09/Q49 -1685051933 -1917753776
L1: ResponseMessageType
2bTduCdyxfQUcmOa61aOz2QbpmQa5aq2RXXVtXUp3bxqfIrwtp5ZDFt01QfKP67AQ+hp7clcuz/5
5GXHe64oJDEq7sfUKRqRQsj7MPERsM3dMou9YSMUnL+5hk/Gx+3llW4jewmwXk+bWuhqBA/s7deq
NruakPgOFCNI4BDJ9SQqonlrqZnDlpHsUAw7yqHA5sQA5VssczUYyq9tFyGpCBCu5IVhD+hOh6cn
qqnsxKO7X1Toa6Fn91i+JwR7NzjGHph1C+p3B5Er+fCv8frypY3748Pm4DtvDsYXqhOHIDnT3gwU
mz9JgYqzP46O98sDyIdIaW20n8Vop7YDnSowPSKX7qalVM2tWC7OE6aC1a16P+3ASis7XdGkDc+Y
d1qDiQXrjfzuTpm18XPDSrnUlULKri7YzTvzJi3t1pNdLPALt16gKSQXYZ9Hewf2GPWc5VbYnLs6
0vTjmTwzy5q8OwVJ2Aem0Q0vLCsRckp/P8bVuIEapzoYJSMx0xtMZSNzWj9SDbSXopEn9YNVeOcI
+GWBWAniLa91t3+Npj4i52U= -1230973750 -1595473668
Sender: A11
Message: 2013/08/02 1737480301 A11 Temp 20.0 Celsius
L2: LogEntryType
NXSYGdXlAhV7KTgp2Hk9KDXzWM5/Q6Aihe4NCxY97qHnBIVnlO7PKOJx3V2yMsRpOxCDv9LRVkBd
kCfcB+T6HMvr8U/kzN79kA2YPFngV9RfqmrPup2lFdRBqJidr3Kr 276872671 1950180975

 149

Sender: A11
Message: 2013/08/02 1737520313 A11 Temp 20.4 Celsius
L3: LogEntryType
7PrnrJ0KGffrFA8RSvDY4cn5h6DYNhBKJMI8zoT+/1fPaIlq4CaFAimErmVde0zEQcs8cUN2rqYT
WuBzCkVX8neTS8H8ubX/OLFYEcfjz05Bn3scQ112v8mRNxBhyf6a 1390648148 -339556863
Sender: A11
Message: 2013/08/02 1737560314 A11 Temp 21.0 Celsius
L4: LogEntryType
C4Bq6+bzLtvAwm3qlXbm+/gL/Mapq15pECcVJEUEF9+JMmI5AHk/DyU2AqRthzWl9Bm/aCAgL14s
gSwzAfjoAt9XLhtAWuwJr7e0nzap9p5hfBf4fIWE5H2P8UFr/B87 -2090064901
1426447832
Sender: A11
Message: 2013/08/02 1738000316 A11 Temp 22.0 Celsius
L5: LogEntryType
jYGod8gAZwxu6bbHGaS59uD/xyVO6ysuIuV/LPqf9F975vaPB08mgyxJgzUNhP4St0VHkSSynnH9
oSpugqjM2how/mItuiNx3BGQN+nznrJG7f2z0duQP0DY8Qram9xG -1550202999 122174429
Sender: A11
Message: 2013/08/02 1738040318 A11 Temp 24.0 Celsius
L6: LogEntryType
dxBrtRZfC6NzCEtJoTUpbjKnZsp6GMDyRBxnBK3vsDavDeYDddUTMM7ARHxKXCvus5f8nBGhYW9P
2lv1SsRMpkk/SS2RrimtZBKo5oVdYNBvXnmRd+hVwY6I+ylQilAQ 1745297055 2052256232
Sender: A11
Message: 2013/08/02 1738080319 A11 Temp 25.4 Celsius
L7: LogEntryType
rK2d3vFuXhxJLnieUQDH2zisNuwgiPq88gHzrbsNXyr59qi4mNbdECu04bK1rd9PLhQr7EQyuLAy
fl3wdcrUwLXWZMRRQkRWlBhA/V3Nx0C+CPWNDNJeCBA0wtwd1X7J 77055538 1221522561
Sender: A11
Message: AlarmSystem: WARNING: 2013/08/02 1738080319 A11 Temp 25.4
 Celsius
L8: LogEntryType
luDIaX93Ax0Lmj6Y9j9ws77zpx01RVFmmvz+ec/f/V+oMmOZai+ISS/3SuBV5y+MEOvXouctifPR
jxjGyWxVGkLsDP/p63tt99dowjfpxBFZSMeeG6UPDBfzKpRap++7xi+lvO/g3/aip95Qve2t23UM
siKE9dXWZkhX4btZ5Nw= 158211288 -1975095810
Sender: A11
Message: 2013/08/02 1738120320 A11 Temp 24.0 Celsius
L9: LogEntryType
p7aK087UHOWuu4sUMSfB9sKqLPT5ph+DJxQdAADVtBQSIVBKrvrpgqY0by5eqkZR6gFM+5dljGCG
/TqHPMAP7BSAMZzti9Ba+Ks3mpo9IHRvGkIXWUUaiDZW10q1a7f6 147449289 1786230764
Sender: A11
Message: 2013/08/02 1738160322 A11 Temp 23.6 Celsius
L10: LogEntryType
4YMw9cd6w6Deu5GixS3BWN11WB02tkPVeAll3jOlS+xUwlGpp12A/EvxH18RwiBvDKZMO8QMDVVX
YvWDZXMSXIb8Hd6KfvWIUNkcOnx3QSiha3ZbzlLFnTE65X6h8x+v 1461733865 -725012515
Sender: A11
Message: 2013/08/02 1738200323 A11 Temp 22.2 Celsius
L11: LogEntryType
5RNIPpFlp7C8qnEHvYdSKPUBPxHFpoGxI8P3MnmPTjgGESk0Ao8C9uzdnbKXH9gds58Hc8FhGwsW
WBWjjEWdeeCFF+8xOKzbSt5CTujjemeSEu5rZdxAT3dbvWGisFfF 1150163232 -
1863768431
Sender: A11
Message: exit
L12: NormalCloseMessage
WWa1XwKhl0FfX8zQPC84mHvPjCBn/hjJcic5yQd1XHG05a4HN0EV6hZVRJ39xgAo -1294127047
1542216267

Log Verification at TS
The attack performed on the log file was replacing the log entry L9 with
another one. The new entry is marked with blue.

 150

Verification of : LogFile.txt
L[0]:
LogfileInitializationType
h7MemoeQfSqnOXQsd1GItR6s84Bk2/3S91VCHn2Y1qG3NDa9qL1MpvMCkdOzLtQ9wWI3cWP80bMs
JrNOAWshdrSqcAnC/VjYhSdRfNYjs3YyaBH/QcZeSrJ2ewC/5Scx30aWK1448k53XbkfdkcOebWf
bOcBSjG5v6igWlSI8c4P4AaTUVtsO8IzftG12UkdZAOgGp4h5/40DSDZAbRX0NDL/yrrzWyw2F3S
2h48wNyhJWs0CysfSs8AhT8FdXmvDwCDe2I/cRRXd0xB2OEmJ3WyQu3k49xFUp80JI0hnpCItrEx
+fh+mOCuPpMG+K5J7f6zYhtAlEXXQCSOdoQkP0fNvlGoAO+Hn6ZzIrGbEpc5XhonmmQwnIOYz7L2
uRZ/2VHsMi/c5ariOyLVjsqhPIARBfQvNEuOZfZe8BVL7uevZFPNQcLLn/iYF9jh3aM1NxQnxLrR
VttGlzq24GC9mvzSwOJ6rkG1gcmTf0dYixHrGvYdMMx4f98TH3W+yiQfIW3s8VySdnwxu0DAru64
uIxWyBUxMcScuw0f9PZlZ2y2cYja2FBmt72PlF09/Q49 -1685051933 -1917753776
Decrypted_AESmsg D[0]: LogfileInitializationType 2013/08/02 1737240829
2013/08/02 1759000000 0 0 4444 •³º®_í_ð4/oºvT
÷V?ô?EŸÑýÖñS¡ÃÙc8_Pº_3•_ø%Ë´0Èe,7Þ,�0v_w_O!Î™í�ª *Á_(ü7Žl2(þ?U:óÑ)Æ�_=ÔK?PZÝƒ
ü«ç"f�^L_gAFÖ|@[±.0¢ZÎ~ÿ_X–Q„‡L_[y/
yRljp32M2qx5ukdawoi4nnLywhPmnFnhGOgJXMshhB/2swzTcZ5T6TaRen7wUkezh1f5RvGRudAn
+2ygGGRd2zmcNI0vw07SXAMuR5w2Ye1k6hzkNNcbxU3UIrXA1mQEEcLP+oDzZg9ciN89ch5/bGAP
JHyotKqPsWAn1qfppEkBUpXkaLGRp94oHNjAD8LfTGyEstWQDvgrSREy120mFYaQ6FxLYxOaSqth
dH9y8cw=
M[0]: LogfileInitializationType 1759000000 0 0 4444 •³º®_í_ð4/oºvT
÷V?ô?EŸÑýÖñS¡ÃÙc8_Pº_3•_ø%Ë´0Èe,7Þ,�0v_w_O!Î™í�ª *Á_(ü7Žl2(þ?U:óÑ)Æ�_=ÔK?PZÝƒ
ü«ç"f�^L_gAFÖ|@[±.0¢ZÎ~ÿ_X–Q„‡L_[y/
yRljp32M2qx5ukdawoi4nnLywhPmnFnhGOgJXMshhB/2swzTcZ5T6TaRen7wUkezh1f5RvGRudAn
+2ygGGRd2zmcNI0vw07SXAMuR5w2Ye1k6hzkNNcbxU3UIrXA1mQEEcLP+oDzZg9ciN89ch5/bGAP
JHyotKqPsWAn1qfppEkBUpXkaLGRp94oHNjAD8LfTGyEstWQDvgrSREy120mFYaQ6FxLYxOaSqth
dH9y8cw=
Yi: -1685051933
Yi2: -1685051933
Y[0] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1917753776
mac2: -1917753776
MAC[0] = MAC(Yi)_Ai is verified

L[1]:
ResponseMessageType
2bTduCdyxfQUcmOa61aOz2QbpmQa5aq2RXXVtXUp3bxqfIrwtp5ZDFt01QfKP67AQ+hp7clcuz/5
5GXHe64oJDEq7sfUKRqRQsj7MPERsM3dMou9YSMUnL+5hk/Gx+3llW4jewmwXk+bWuhqBA/s7deq
NruakPgOFCNI4BDJ9SQqonlrqZnDlpHsUAw7yqHA5sQA5VssczUYyq9tFyGpCBCu5IVhD+hOh6cn
qqnsxKO7X1Toa6Fn91i+JwR7NzjGHph1C+p3B5Er+fCv8frypY3748Pm4DtvDsYXqhOHIDnT3gwU
mz9JgYqzP46O98sDyIdIaW20n8Vop7YDnSowPSKX7qalVM2tWC7OE6aC1a16P+3ASis7XdGkDc+Y
d1qDiQXrjfzuTpm18XPDSrnUlULKri7YzTvzJi3t1pNdLPALt16gKSQXYZ9Hewf2GPWc5VbYnLs6
0vTjmTwzy5q8OwVJ2Aem0Q0vLCsRckp/P8bVuIEapzoYJSMx0xtMZSNzWj9SDbSXopEn9YNVeOcI
+GWBWAniLa91t3+Npj4i52U= -1230973750 -1595473668
Decrypted_AESmsg D[1]: ResponseMessageType 2013/08/02 1737240856 2013/08/02
1759000000 1 1 1234 ¤Y¢_CŽÃÕš__õä>kê†Ê8Oã,ÑÃì(
óæ¿¿å?ø|N?Jmî+’_¶[_´j¬_«©ÝíBJOk£±_Œ_yn~zÓ_nËòŠºÑæû0²¤*ô~½ýr”¿[á
_öÆ__DŠ½¸‰H^~O ö]_öÞVïçÃÜv¥S#÷@ 8S.n
ty9vTk3LcbCf33KJVntfnj7xrVAo6UyEULWxIvhBHr9YNlKt4/Kp7gWVxjUiwjPiSplF3kKfkPb0
9hlSV8F5tOlXineC0frmFZLRfgfW11H8uCGDwTcdG5vQjzG6fuBQsh/4k3gqqht1vRxxPr+3ldNx
zEBA3PvSbWyQC1aqPfiRVVwpcSOFAuxItEigJOrnpPXBORdL79ZujTjvtkpptw==
M[1]: ResponseMessageType 1759000000 1 1 1234 ¤Y¢_CŽÃÕš__õä>kê†Ê8Oã,ÑÃì(
óæ¿¿å?ø|N?Jmî+’_¶[_´j¬_«©ÝíBJOk£±_Œ_yn~zÓ_nËòŠºÑæû0²¤*ô~½ýr”¿[á
_öÆ__DŠ½¸‰H^~O ö]_öÞVïçÃÜv¥S#÷@ 8S.n
ty9vTk3LcbCf33KJVntfnj7xrVAo6UyEULWxIvhBHr9YNlKt4/Kp7gWVxjUiwjPiSplF3kKfkPb0
9hlSV8F5tOlXineC0frmFZLRfgfW11H8uCGDwTcdG5vQjzG6fuBQsh/4k3gqqht1vRxxPr+3ldNx
zEBA3PvSbWyQC1aqPfiRVVwpcSOFAuxItEigJOrnpPXBORdL79ZujTjvtkpptw==
Yi: -1230973750
Yi2: -1230973750
Y[1] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1595473668

 151

mac2: -1595473668
MAC[1] = MAC(Yi)_Ai is verified

L[2]:
LogEntryType
NXSYGdXlAhV7KTgp2Hk9KDXzWM5/Q6Aihe4NCxY97qHnBIVnlO7PKOJx3V2yMsRpOxCDv9LRVkBd
kCfcB+T6HMvr8U/kzN79kA2YPFngV9RfqmrPup2lFdRBqJidr3Kr 276872671 1950180975
Decrypted_AESmsg D[2]: LogEntryType 2013/08/02 1737480327 2013/08/02
1759000000 2 2013/08/02 1737480301 A11 Temp 20.0 Celsius
M[2]: LogEntryType 1759000000 2 2013/08/02 1737480301 A11 Temp 20.0
 Celsius
Yi: 276872671
Yi2: 276872671
Y[2] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1950180975
mac2: 1950180975
MAC[2] = MAC(Yi)_Ai is verified

L[3]:
LogEntryType
7PrnrJ0KGffrFA8RSvDY4cn5h6DYNhBKJMI8zoT+/1fPaIlq4CaFAimErmVde0zEQcs8cUN2rqYT
WuBzCkVX8neTS8H8ubX/OLFYEcfjz05Bn3scQ112v8mRNxBhyf6a 1390648148 -339556863
Decrypted_AESmsg D[3]: LogEntryType 2013/08/02 1737520317 2013/08/02
1759000000 3 2013/08/02 1737520313 A11 Temp 20.4 Celsius
M[3]: LogEntryType 1759000000 3 2013/08/02 1737520313 A11 Temp 20.4
 Celsius
Yi: 1390648148
Yi2: 1390648148
Y[3] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -339556863
mac2: -339556863
MAC[3] = MAC(Yi)_Ai is verified

L[4]:
LogEntryType
C4Bq6+bzLtvAwm3qlXbm+/gL/Mapq15pECcVJEUEF9+JMmI5AHk/DyU2AqRthzWl9Bm/aCAgL14s
gSwzAfjoAt9XLhtAWuwJr7e0nzap9p5hfBf4fIWE5H2P8UFr/B87 -2090064901 1426447832
Decrypted_AESmsg D[4]: LogEntryType 2013/08/02 1737560318 2013/08/02
1759000000 4 2013/08/02 1737560314 A11 Temp 21.0 Celsius
M[4]: LogEntryType 1759000000 4 2013/08/02 1737560314 A11 Temp 21.0
 Celsius
Yi: -2090064901
Yi2: -2090064901
Y[4] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1426447832
mac2: 1426447832
MAC[4] = MAC(Yi)_Ai is verified

L[5]:
LogEntryType
jYGod8gAZwxu6bbHGaS59uD/xyVO6ysuIuV/LPqf9F975vaPB08mgyxJgzUNhP4St0VHkSSynnH9
oSpugqjM2how/mItuiNx3BGQN+nznrJG7f2z0duQP0DY8Qram9xG -1550202999 122174429
Decrypted_AESmsg D[5]: LogEntryType 2013/08/02 1738000328 2013/08/02
1759000000 5 2013/08/02 1738000316 A11 Temp 22.0 Celsius
M[5]: LogEntryType 1759000000 5 2013/08/02 1738000316 A11 Temp 22.0
 Celsius
Yi: -1550202999
Yi2: -1550202999
Y[5] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 122174429

 152

mac2: 122174429
MAC[5] = MAC(Yi)_Ai is verified

L[6]:
LogEntryType
dxBrtRZfC6NzCEtJoTUpbjKnZsp6GMDyRBxnBK3vsDavDeYDddUTMM7ARHxKXCvus5f8nBGhYW9P
2lv1SsRMpkk/SS2RrimtZBKo5oVdYNBvXnmRd+hVwY6I+ylQilAQ 1745297055 2052256232
Decrypted_AESmsg D[6]: LogEntryType 2013/08/02 1738040322 2013/08/02
1759000000 6 2013/08/02 1738040318 A11 Temp 24.0 Celsius
M[6]: LogEntryType 1759000000 6 2013/08/02 1738040318 A11 Temp 24.0
 Celsius
Yi: 1745297055
Yi2: 1745297055
Y[6] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 2052256232
mac2: 2052256232
MAC[6] = MAC(Yi)_Ai is verified

L[7]:
LogEntryType
rK2d3vFuXhxJLnieUQDH2zisNuwgiPq88gHzrbsNXyr59qi4mNbdECu04bK1rd9PLhQr7EQyuLAy
fl3wdcrUwLXWZMRRQkRWlBhA/V3Nx0C+CPWNDNJeCBA0wtwd1X7J 77055538 1221522561
Decrypted_AESmsg D[7]: LogEntryType 2013/08/02 1738080323 2013/08/02
1759000000 7 2013/08/02 1738080319 A11 Temp 25.4 Celsius
M[7]: LogEntryType 1759000000 7 2013/08/02 1738080319 A11 Temp 25.4
 Celsius
Yi: 77055538
Yi2: 77055538
Y[7] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1221522561
mac2: 1221522561
MAC[7] = MAC(Yi)_Ai is verified

L[8]:
LogEntryType
luDIaX93Ax0Lmj6Y9j9ws77zpx01RVFmmvz+ec/f/V+oMmOZai+ISS/3SuBV5y+MEOvXouctifPR
jxjGyWxVGkLsDP/p63tt99dowjfpxBFZSMeeG6UPDBfzKpRap++7xi+lvO/g3/aip95Qve2t23UM
siKE9dXWZkhX4btZ5Nw= 158211288 -1975095810
Decrypted_AESmsg D[8]: LogEntryType 2013/08/02 1738080365 2013/08/02
1759000000 8 AlarmSystem: WARNING: 2013/08/02 1738080319 A11 Temp 25.4
 Celsius
M[8]: LogEntryType 1759000000 8 AlarmSystem: WARNING: 2013/08/02 1738080319
 A11 Temp 25.4 Celsius
Yi: 158211288
Yi2: 158211288
Y[8] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1975095810
mac2: -1975095810
MAC[8] = MAC(Yi)_Ai is verified

L[9]:
LogEntryType
BJx1O1v2YQA8lNi32hMO5VHJo4aYi+uE7fLU8N0DQO90abol5YP5HZSpkNGOn3m3DCLadAjtwWrs
FmTiWTvZ5Tldz+yepHDWe1gOR/pJDEMyIZF2cgQwhQnwxEQKysRP -475431498 -456700380
AES message cannot be decrypted! Someone changed log entry [9].
Yi: 2082583920
Yi2: -475431498

L[10]:

 153

LogEntryType
4YMw9cd6w6Deu5GixS3BWN11WB02tkPVeAll3jOlS+xUwlGpp12A/EvxH18RwiBvDKZMO8QMDVVX
YvWDZXMSXIb8Hd6KfvWIUNkcOnx3QSiha3ZbzlLFnTE65X6h8x+v 1461733865 -725012515
Decrypted_AESmsg D[10]: LogEntryType 2013/08/02 1738160326 2013/08/02
1759000000 10 2013/08/02 1738160322 A11 Temp 23.6 Celsius
M[10]: LogEntryType 1759000000 10 2013/08/02 1738160322 A11 Temp 23.6
 Celsius
Yi: 1088389658
Yi2: 1461733865

L[11]:
LogEntryType
5RNIPpFlp7C8qnEHvYdSKPUBPxHFpoGxI8P3MnmPTjgGESk0Ao8C9uzdnbKXH9gds58Hc8FhGwsW
WBWjjEWdeeCFF+8xOKzbSt5CTujjemeSEu5rZdxAT3dbvWGisFfF 1150163232 -1863768431
Decrypted_AESmsg D[11]: LogEntryType 2013/08/02 1738200355 2013/08/02
1759000000 11 2013/08/02 1738200323 A11 Temp 22.2 Celsius
M[11]: LogEntryType 1759000000 11 2013/08/02 1738200323 A11 Temp 22.2
 Celsius
Yi: 1625993030
Yi2: 1150163232

L[12]:
NormalCloseMessage
WWa1XwKhl0FfX8zQPC84mHvPjCBn/hjJcic5yQd1XHG05a4HN0EV6hZVRJ39xgAo -1294127047
1542216267
Decrypted_AESmsg D[12]: NormalCloseMessage 2013/08/02 1738240330 2013/08/02
1759000000 12
M[12]: NormalCloseMessage 1759000000 12
Yi: 1045309149
Yi2: -1294127047

In file LogFile.txt the MACs in following entry positions were found false
9
10
11
12

Signature Verification at RA
Singature1 entry[0] is verified
Manual Signatures verification: true
Singature2 entry[0] is verified
Singature2 entry[1] is verified
Singature2 entry[2] is verified
Singature2 entry[3] is verified
Singature2 entry[4] is verified
Singature2 entry[5] is verified
Singature2 entry[6] is verified
Singature2 entry[11] is verified
Singature2_random entry[12] is verified
Singature2_random entry[13] is verified
Singature2_random entry[14] is verified
Singature2_random entry[15] is verified
Singature2_random entry[32] is verified

Replacement of just a value of the entry

Server

 154

L0: LogfileInitializationType
26/7L70JfmWl+kkNmKDaDNZ35rEC5GbHz+KgWWJHdc+rEMffBwc+eJmEx1GTcnjrSV5uHhcVMsfw
fZG50P3hD0VQkqsPikGhZ7t8zAbZmA+cUuYezEuNk2alHTfdqlV0QiBYeTZuEEGFmEolt9vss1FM
7+zvUVYb/lt+o/84RCIJri3xf2OgKG51lGlmeP95mobX9IypJojouZY1yvOauZM3EjjT36dts3rD
wKemkHi9rdjq8J8wPWoMBZ59fXN/UuuDVvxDvVKQ+CXZC8dU00UUJ7pMlY8hoxScnvt77Nhg6Van
AT9T+kT/8mnRApna3NDCJ/rF3omlnfancH3AdrYAphMdoYHyBT8B6zkB3+F+RpeSyo3pnfYruKSZ
SxoUKRSSH9/t8Xhs+E4V9OWuAcW0n+V2Pu1SJIrqJDAg+cvGeu94rypiBQ5mMbr+LkjghHvxxAoP
yjaSaarNzfZrFJMMzeVbEuzSHUgLL+ztIOTc/ik1kM7LULWZ+hQhJHhxdWFf7yXy3SjfwIzBM+nn
AdfOfbZyyAbMwQx9gxFQZ+E+2rUTXXv6LQ8Zfb3+cqNu -2028916008 -1748646915
L1: ResponseMessageType
yth9+uYyf3eXeOuTKetkruDz1hIPRQxmpgozBEJeC8b8XeAsbs/inwILycOU0futWIXC0BM2VBTk
XQ0nDkJ4aOS7nmGc72DWiB7Z/ab1RaXqf7WzJ2JSifxOPJyhWiTx7DWteNi4U3SDYW8W76IuVyTw
UaosbOQKqxiztGDpdDhvEcgTafrbEMabaQCqBbYaEcqPosuRy282iSCnTNv2G86Wu01YjUCHWQyH
i8BQrdX4PHkuatOXbcYn7VjgGPZDLlRc53Zhq6oTk4/k41+ZtSLaqDYrFsf7xX3shU/K83ej0eJ1
68DrtebZ34X0vubwRn6AGvAc9+Zc7SuOvrEoLDgc5XTOn0PoYpon0HCSeqF7YEW3pYg7cfr/VchE
O4x5DrCzgPngCznWtCob4eQSpQkWrMi9cRXp95fLfSXlgykThg3MI+Gu0LeRu5RzJgkC4J/xACta
FGUl2zh3JdnUZvxDj0ZiWoBFerty1Yp2I/X6UxXCg3UCDk3bg8fplThKz+EZ01OneFDAArTTZGIJ
evhONCOs6BlIeSkhgZ5KkUs= 1668274918 1316783358
Sender: A11
Message: 2013/08/02 1717390813 A11 Temp 20.0 Celsius
L2: LogEntryType
gGfHqpMFiL3Eu9iHneAh2SXcSdlJNIjCpswJLd9N/LTMotWmiLOX68Y8RdQsW8LfFYy2JkUSgeEq
2IyHwcA/TYJ0E7BymwIPcCjv/2kCK4msiKh4Iqf2GoxcyAgKItrh -289087486 -736976821
Sender: A11
Message: 2013/08/02 1717430825 A11 Temp 20.4 Celsius
L3: LogEntryType
tjRsJTiSKf/dDtl77s/6mSngCpy20nJjm+VbTRNjTNG68K/AhqXW5+/AzGc3JWQgiM3oxAf3PbxR
R+dHlQuLgHkZdmKWt81stzM9H4YlyyG/DuH5kTm9+5jiRZq94YYz -1473285691 491059733
Sender: A11
Message: 2013/08/02 1717470826 A11 Temp 21.0 Celsius
L4: LogEntryType
VZxtozjm8r6ZDgT8CIh+o1/Q3/UPJ3DfeiR0cY6KaSIabuhhwWWI0ckBB0GUBGS0cIMXZlTocx+V
r4D2HlvYVQUpp5/GM/foT91BDEImx9TFbjI6bcaxD8j6dqn6Uh4g 1825419175 1985086190
Sender: A11
Message: 2013/08/02 1717510828 A11 Temp 22.0 Celsius
L5: LogEntryType
l6DS3l3Csob6+uIUQj3I+GClaf5/RZn/CsL+nH5T0L/7xqG/lbz/UKNbXH94+sXAn5LLCEBHMBSz
AJ+V7e+epISPsIzpUbaqYFMd0qr1UWhEw2S8Yi9hug0BAOQWU/ym 1631633144 2125718670
Sender: A11
Message: 2013/08/02 1717550831 A11 Temp 24.0 Celsius
L6: LogEntryType
O8CsUgaYIQVBCMk/8xKsfcFPelS1AVEyUJXyrtRGsAfDjDGZLl6A77PxUKKTd/f53/C4+AX3oPCX
CDXKGejjVNE5MmcYoiv3TMZlRf7vyiPLgrHTHI2SrhK29cWsN9wJ 1193776054 -
1473755810
Sender: A11
Message: 2013/08/02 1717590832 A11 Temp 25.4 Celsius
L7: LogEntryType
iO+Rb0gHhmbV8HEEmaD1jLjzV0bWGqRW5DBLPaxQZs0S7SYHh2ts0mEm9AdhnC75fWAFgR/KC6g5
IRQU3Pp4czkWoehA5opCuNzLEclhU+Og5WpgJCBEnzooXyLXEzBb 914446864 -1726915664
Sender: A11
Message: AlarmSystem: WARNING: 2013/08/02 1717590832 A11 Temp 25.4
 Celsius
L8: LogEntryType
tn4uUUoCYFGt0wezpME4hcCLZ3spSqdczOaJEqe6VXDK0CQy8lUoAqbSEYbBUlotfRuKjoZIHKFU
lTdUsk1TF8DNfXvmmYNJEc09KjjIruOoqeIi88fnaD6/qyZ7T4hdQhHgaA49NlEOqZLZiJPFsz97
dSS74dzl4v/ScndqYmY= 836145177 931247676
Sender: A11
Message: 2013/08/02 1718030835 A11 Temp 24.0 Celsius
L9: LogEntryType
BJx1O1v2YQA8lNi32hMO5VHJo4aYi+uE7fLU8N0DQO90abol5YP5HZSpkNGOn3m3DCLadAjtwWrs

 155

FmTiWTvZ5Tldz+yepHDWe1gOR/pJDEMyIZF2cgQwhQnwxEQKysRP -475431498 -456700380
Sender: A11
Message: 2013/08/02 1718070836 A11 Temp 23.6 Celsius
L10: LogEntryType
2mKlDqJCE6q/5Uals0nM+FuUb45zPI3DQ7Ex2j0w9h1rFDuEVzZ+1J7dxYYi0urrV3ux9btBd+2f
2msM1IFU90oS/JfFkopqBie7AM5yYzDTTp5LYMLIAXm580A8nwfp 1800467982 867721926
Sender: A11
Message: 2013/08/02 1718110840 A11 Temp 22.2 Celsius
L11: LogEntryType
pqNHI1/Rwkgl+STs74cZXL+wGjlcqD4u1stJRZ1R90KHmBO9V6Atxldc2qOqv6CKPUfERet9VubL
xpFKRlT3WeWVOnJV6dxDWh3sV6crz/4wfho6TTR/0c4V1PI8ELfM -963140695 858046017
Sender: A11
Message: exit
L12: NormalCloseMessage
XkWfyJ6VuCqUhXZSOhpdbZUhwurrDjEK8ikNbsIiYr5hZ4kVVaTtwOstGoXvG5q8 -2096724193
-1026114158

Log Verification at TS
The attack performed at the log file was replacing the Yi value of the entry
L10 with another one, marked with blue color.
Verification of : LogFile.txt
L[0]:
LogfileInitializationType
26/7L70JfmWl+kkNmKDaDNZ35rEC5GbHz+KgWWJHdc+rEMffBwc+eJmEx1GTcnjrSV5uHhcVMsfw
fZG50P3hD0VQkqsPikGhZ7t8zAbZmA+cUuYezEuNk2alHTfdqlV0QiBYeTZuEEGFmEolt9vss1FM
7+zvUVYb/lt+o/84RCIJri3xf2OgKG51lGlmeP95mobX9IypJojouZY1yvOauZM3EjjT36dts3rD
wKemkHi9rdjq8J8wPWoMBZ59fXN/UuuDVvxDvVKQ+CXZC8dU00UUJ7pMlY8hoxScnvt77Nhg6Van
AT9T+kT/8mnRApna3NDCJ/rF3omlnfancH3AdrYAphMdoYHyBT8B6zkB3+F+RpeSyo3pnfYruKSZ
SxoUKRSSH9/t8Xhs+E4V9OWuAcW0n+V2Pu1SJIrqJDAg+cvGeu94rypiBQ5mMbr+LkjghHvxxAoP
yjaSaarNzfZrFJMMzeVbEuzSHUgLL+ztIOTc/ik1kM7LULWZ+hQhJHhxdWFf7yXy3SjfwIzBM+nn
AdfOfbZyyAbMwQx9gxFQZ+E+2rUTXXv6LQ8Zfb3+cqNu -2028916008 -1748646915
Decrypted_AESmsg D[0]: LogfileInitializationType 2013/08/02 1717160020
2013/08/02 1745000000 0 0 4444 ŒÇ0ßùÚ)œ«7’qd)ƒ¤«ªs0ÁÖ÷#†>‰·LÅY_k§_–
o?8g]îÂ‰\wT½Ê&œ¢„2w¨ú§Ñ_@¯_¦!_}qªZûÐ__¡µn·x½[]9;_—Ü´4_5_…_Nu”²j_7ÖÀã_¢€hÂ_…8…W
…lYt¶—_-ã{ëC
k3b1IDN6mCDKAwYDuWm/BKMhRalFpNrVjphnj7OwSBdFDpO+UYXwS2iRg562o5gMdoJvUhXMSsFS
2wN/mzCVTYc+3FuZB6QLTttwBZS7NgUgq4FDcgm5gvNRXuIq24aZToNwG+jdPBFvrM/+c4BbNx5w
jlfyOxfF2MyRxLER0KX63+lP5XH8ZArWATZbU01VBqg3lTzSlvhn0l0IsEmwcLhanMxj83QVjnNx
3TvnLm0=
M[0]: LogfileInitializationType 1745000000 0 0 4444
ŒÇ0ßùÚ)œ«7’qd)ƒ¤«ªs0ÁÖ÷#†>‰·LÅY_k§_–
o?8g]îÂ‰\wT½Ê&œ¢„2w¨ú§Ñ_@¯_¦!_}qªZûÐ__¡µn·x½[]9;_—Ü´4_5_…_Nu”²j_7ÖÀã_¢€hÂ_…8…W
…lYt¶—_-ã{ëC
k3b1IDN6mCDKAwYDuWm/BKMhRalFpNrVjphnj7OwSBdFDpO+UYXwS2iRg562o5gMdoJvUhXMSsFS
2wN/mzCVTYc+3FuZB6QLTttwBZS7NgUgq4FDcgm5gvNRXuIq24aZToNwG+jdPBFvrM/+c4BbNx5w
jlfyOxfF2MyRxLER0KX63+lP5XH8ZArWATZbU01VBqg3lTzSlvhn0l0IsEmwcLhanMxj83QVjnNx
3TvnLm0=
Yi: -2028916008
Yi2: -2028916008
Y[0] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1748646915
mac2: -1748646915
MAC[0] = MAC(Yi)_Ai is verified

L[1]:
ResponseMessageType
yth9+uYyf3eXeOuTKetkruDz1hIPRQxmpgozBEJeC8b8XeAsbs/inwILycOU0futWIXC0BM2VBTk
XQ0nDkJ4aOS7nmGc72DWiB7Z/ab1RaXqf7WzJ2JSifxOPJyhWiTx7DWteNi4U3SDYW8W76IuVyTw

 156

UaosbOQKqxiztGDpdDhvEcgTafrbEMabaQCqBbYaEcqPosuRy282iSCnTNv2G86Wu01YjUCHWQyH
i8BQrdX4PHkuatOXbcYn7VjgGPZDLlRc53Zhq6oTk4/k41+ZtSLaqDYrFsf7xX3shU/K83ej0eJ1
68DrtebZ34X0vubwRn6AGvAc9+Zc7SuOvrEoLDgc5XTOn0PoYpon0HCSeqF7YEW3pYg7cfr/VchE
O4x5DrCzgPngCznWtCob4eQSpQkWrMi9cRXp95fLfSXlgykThg3MI+Gu0LeRu5RzJgkC4J/xACta
FGUl2zh3JdnUZvxDj0ZiWoBFerty1Yp2I/X6UxXCg3UCDk3bg8fplThKz+EZ01OneFDAArTTZGIJ
evhONCOs6BlIeSkhgZ5KkUs= 1668274918 1316783358
Decrypted_AESmsg D[1]: ResponseMessageType 2013/08/02 1717160029 2013/08/02
1745000000 1 1 1234 ió¯={k_Â_-)F]MFáWËÃ_–
uU}á_Ìö!^ö?÷Ï£zzg_a_5Ñ_€€ÍÞÁX_Ió½cÜoƒ\1éêÎÌ²ëy‘[_²O³á__Ÿ_æw_žù) _Õ
‹V~õ_Añ]û0È(åX_ÄÓ$›Q_£¹_Úœ«°Ù÷lÉø°
?_Ÿ>
E8hDITp4okjPr1ghbAHrwGxuw8WGMZF1XVjTa/mO/KD30TZ5K8Dew315OAoWMOrrQGAbsHg9XB0p
VkrPLujcWVrEeOmIVX22shovc3aZg/T4czJrqO3JaOn71CZXpxUkFUrM3vESAkI4Hz0IOeKIwa6H
lDjN+CBiV43vD4V9tw5g/MUk0/RCEkOvjRoPp4BFUSMDrRhNNTp2jkZL5yR5dA==
M[1]: ResponseMessageType 1745000000 1 1 1234 ió¯={k_Â_-)F]MFáWËÃ_–
uU}á_Ìö!^ö?÷Ï£zzg_a_5Ñ_€€ÍÞÁX_Ió½cÜoƒ\1éêÎÌ²ëy‘[_²O³á__Ÿ_æw_žù) _Õ
‹V~õ_Añ]û0È(åX_ÄÓ$›Q_£¹_Úœ«°Ù÷lÉø°
?_Ÿ>
E8hDITp4okjPr1ghbAHrwGxuw8WGMZF1XVjTa/mO/KD30TZ5K8Dew315OAoWMOrrQGAbsHg9XB0p
VkrPLujcWVrEeOmIVX22shovc3aZg/T4czJrqO3JaOn71CZXpxUkFUrM3vESAkI4Hz0IOeKIwa6H
lDjN+CBiV43vD4V9tw5g/MUk0/RCEkOvjRoPp4BFUSMDrRhNNTp2jkZL5yR5dA==
Yi: 1668274918
Yi2: 1668274918
Y[1] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1316783358
mac2: 1316783358
MAC[1] = MAC(Yi)_Ai is verified

L[2]:
LogEntryType
gGfHqpMFiL3Eu9iHneAh2SXcSdlJNIjCpswJLd9N/LTMotWmiLOX68Y8RdQsW8LfFYy2JkUSgeEq
2IyHwcA/TYJ0E7BymwIPcCjv/2kCK4msiKh4Iqf2GoxcyAgKItrh -289087486 -736976821
Decrypted_AESmsg D[2]: LogEntryType 2013/08/02 1717390838 2013/08/02
1745000000 2 2013/08/02 1717390813 A11 Temp 20.0 Celsius
M[2]: LogEntryType 1745000000 2 2013/08/02 1717390813 A11 Temp 20.0
 Celsius
Yi: -289087486
Yi2: -289087486
Y[2] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -736976821
mac2: -736976821
MAC[2] = MAC(Yi)_Ai is verified

L[3]:
LogEntryType
tjRsJTiSKf/dDtl77s/6mSngCpy20nJjm+VbTRNjTNG68K/AhqXW5+/AzGc3JWQgiM3oxAf3PbxR
R+dHlQuLgHkZdmKWt81stzM9H4YlyyG/DuH5kTm9+5jiRZq94YYz -1473285691 491059733
Decrypted_AESmsg D[3]: LogEntryType 2013/08/02 1717430829 2013/08/02
1745000000 3 2013/08/02 1717430825 A11 Temp 20.4 Celsius
M[3]: LogEntryType 1745000000 3 2013/08/02 1717430825 A11 Temp 20.4
 Celsius
Yi: -1473285691
Yi2: -1473285691
Y[3] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 491059733
mac2: 491059733
MAC[3] = MAC(Yi)_Ai is verified

L[4]:

 157

LogEntryType
VZxtozjm8r6ZDgT8CIh+o1/Q3/UPJ3DfeiR0cY6KaSIabuhhwWWI0ckBB0GUBGS0cIMXZlTocx+V
r4D2HlvYVQUpp5/GM/foT91BDEImx9TFbjI6bcaxD8j6dqn6Uh4g 1825419175 1985086190
Decrypted_AESmsg D[4]: LogEntryType 2013/08/02 1717470830 2013/08/02
1745000000 4 2013/08/02 1717470826 A11 Temp 21.0 Celsius
M[4]: LogEntryType 1745000000 4 2013/08/02 1717470826 A11 Temp 21.0
 Celsius
Yi: 1825419175
Yi2: 1825419175
Y[4] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1985086190
mac2: 1985086190
MAC[4] = MAC(Yi)_Ai is verified

L[5]:
LogEntryType
l6DS3l3Csob6+uIUQj3I+GClaf5/RZn/CsL+nH5T0L/7xqG/lbz/UKNbXH94+sXAn5LLCEBHMBSz
AJ+V7e+epISPsIzpUbaqYFMd0qr1UWhEw2S8Yi9hug0BAOQWU/ym 1631633144 2125718670
Decrypted_AESmsg D[5]: LogEntryType 2013/08/02 1717510841 2013/08/02
1745000000 5 2013/08/02 1717510828 A11 Temp 22.0 Celsius
M[5]: LogEntryType 1745000000 5 2013/08/02 1717510828 A11 Temp 22.0
 Celsius
Yi: 1631633144
Yi2: 1631633144
Y[5] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 2125718670
mac2: 2125718670
MAC[5] = MAC(Yi)_Ai is verified

L[6]:
LogEntryType
O8CsUgaYIQVBCMk/8xKsfcFPelS1AVEyUJXyrtRGsAfDjDGZLl6A77PxUKKTd/f53/C4+AX3oPCX
CDXKGejjVNE5MmcYoiv3TMZlRf7vyiPLgrHTHI2SrhK29cWsN9wJ 1193776054 -1473755810
Decrypted_AESmsg D[6]: LogEntryType 2013/08/02 1717550835 2013/08/02
1745000000 6 2013/08/02 1717550831 A11 Temp 24.0 Celsius
M[6]: LogEntryType 1745000000 6 2013/08/02 1717550831 A11 Temp 24.0
 Celsius
Yi: 1193776054
Yi2: 1193776054
Y[6] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1473755810
mac2: -1473755810
MAC[6] = MAC(Yi)_Ai is verified

L[7]:
LogEntryType
iO+Rb0gHhmbV8HEEmaD1jLjzV0bWGqRW5DBLPaxQZs0S7SYHh2ts0mEm9AdhnC75fWAFgR/KC6g5
IRQU3Pp4czkWoehA5opCuNzLEclhU+Og5WpgJCBEnzooXyLXEzBb 914446864 -1726915664
Decrypted_AESmsg D[7]: LogEntryType 2013/08/02 1717590844 2013/08/02
1745000000 7 2013/08/02 1717590832 A11 Temp 25.4 Celsius
M[7]: LogEntryType 1745000000 7 2013/08/02 1717590832 A11 Temp 25.4
 Celsius
Yi: 914446864
Yi2: 914446864
Y[7] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1726915664
mac2: -1726915664
MAC[7] = MAC(Yi)_Ai is verified

L[8]:

 158

LogEntryType
tn4uUUoCYFGt0wezpME4hcCLZ3spSqdczOaJEqe6VXDK0CQy8lUoAqbSEYbBUlotfRuKjoZIHKFU
lTdUsk1TF8DNfXvmmYNJEc09KjjIruOoqeIi88fnaD6/qyZ7T4hdQhHgaA49NlEOqZLZiJPFsz97
dSS74dzl4v/ScndqYmY= 836145177 931247676
Decrypted_AESmsg D[8]: LogEntryType 2013/08/02 1717590891 2013/08/02
1745000000 8 AlarmSystem: WARNING: 2013/08/02 1717590832 A11 Temp 25.4
 Celsius
M[8]: LogEntryType 1745000000 8 AlarmSystem: WARNING: 2013/08/02 1717590832
 A11 Temp 25.4 Celsius
Yi: 836145177
Yi2: 836145177
Y[8] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 931247676
mac2: 931247676
MAC[8] = MAC(Yi)_Ai is verified

L[9]:
LogEntryType
BJx1O1v2YQA8lNi32hMO5VHJo4aYi+uE7fLU8N0DQO90abol5YP5HZSpkNGOn3m3DCLadAjtwWrs
FmTiWTvZ5Tldz+yepHDWe1gOR/pJDEMyIZF2cgQwhQnwxEQKysRP -475431498 -456700380
Decrypted_AESmsg D[9]: LogEntryType 2013/08/02 1718030839 2013/08/02
1745000000 9 2013/08/02 1718030835 A11 Temp 24.0 Celsius
M[9]: LogEntryType 1745000000 9 2013/08/02 1718030835 A11 Temp 24.0
 Celsius
Yi: -475431498
Yi2: -475431498
Y[9] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -456700380
mac2: -456700380
MAC[9] = MAC(Yi)_Ai is verified

L[10]:
LogEntryType
2mKlDqJCE6q/5Uals0nM+FuUb45zPI3DQ7Ex2j0w9h1rFDuEVzZ+1J7dxYYi0urrV3ux9btBd+2f
2msM1IFU90oS/JfFkopqBie7AM5yYzDTTp5LYMLIAXm580A8nwfp 1557320632 867721926
Decrypted_AESmsg D[10]: LogEntryType 2013/08/02 1718070850 2013/08/02
1745000000 10 2013/08/02 1718070836 A11 Temp 23.6 Celsius
M[10]: LogEntryType 1745000000 10 2013/08/02 1718070836 A11 Temp 23.6
 Celsius
Yi: 1800467982
Yi2: 1557320632

L[11]:
LogEntryType
pqNHI1/Rwkgl+STs74cZXL+wGjlcqD4u1stJRZ1R90KHmBO9V6Atxldc2qOqv6CKPUfERet9VubL
xpFKRlT3WeWVOnJV6dxDWh3sV6crz/4wfho6TTR/0c4V1PI8ELfM -963140695 858046017
Decrypted_AESmsg D[11]: LogEntryType 2013/08/02 1718110844 2013/08/02
1745000000 11 2013/08/02 1718110840 A11 Temp 22.2 Celsius
M[11]: LogEntryType 1745000000 11 2013/08/02 1718110840 A11 Temp 22.2
 Celsius
Yi: -963140695
Yi2: -963140695
Y[11] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 858046017
mac2: 858046017
MAC[11] = MAC(Yi)_Ai is verified

L[12]:

 159

NormalCloseMessage
XkWfyJ6VuCqUhXZSOhpdbZUhwurrDjEK8ikNbsIiYr5hZ4kVVaTtwOstGoXvG5q8 -2096724193 -
1026114158
Decrypted_AESmsg D[12]: NormalCloseMessage 2013/08/02 1718150846 2013/08/02
1745000000 12
M[12]: NormalCloseMessage 1745000000 12
Yi: -2096724193
Yi2: -2096724193
Y[12] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1026114158
mac2: -1026114158
MAC[12] = MAC(Yi)_Ai is verified

In file LogFile.txt the MACs in following entry positions were found false
10

Signature Verification at RA
Singature1 entry[0] is verified
Manual Signatures verification: true
Singature2 entry[0] is verified
Singature2 entry[1] is verified
Singature2 entry[2] is verified
Singature2 entry[3] is verified
Singature2 entry[4] is verified
Singature2 entry[5] is verified
Singature2 entry[6] is verified
Singature2 entry[7] is verified
Singature2 entry[11] is verified
Singature2_random entry[12] is verified
Singature2_random entry[13] is verified
Singature2_random entry[14] is verified
Singature2_random entry[15] is verified
Singature2_random entry[16] is verified
Singature2_random entry[27] is verified
Singature2_random entry[28] is verified

Reordering of entries

Server
L0: LogfileInitializationType
KwlqUB6JTFfWO9XhyzkmEmnjhVQoUZK4mlBS532z1a4RP0775ctQe5PM2pIgV5+GU4k0GxW6Dh4t
mg5dSis/YTdzmxXNmfp3nBlcvMgXVcU3DuBWNo7WTsUNGX41a8jZ6xUXlP2Y1R0+oq/GEPV7WzHT
AXP+RwQgrmKmYVF6uc/BSIneaMgjqx3a/3wohcFDgshvJviLqnF2Yd/bTab188wCNj6Wu0XH3FUH
MQssLZv23rrYqDNaI5auRMk63ZmWO3BuKFw0K0G5RaK4jAObXAITTPanhWR9YYxLS5Yb0tttcB+S
n6RDNlFB7oo/DUYLMR7lekOiusIievAyzGOUgtqO/6X50P9OJQChTbjDrMu6hEM7p/OqadL6Exhp
B5xxQlj06MrB1SMemkHmB3iFePNASD2IRzgcJs4cDAbh4ro9j1k24uXbkszcSS9VLA3tvuHdPntX
W4w41oZpWLcKm7ag6XpTF09ijdDOiVSCfbc03V0xWCKE1E2EVJz5lCME+O9d9uLGlijcemZmix82
KQtTb/adEzPsjHvPRFT+Sx483uch5XTass8uEitiNv7S 1065272843 -1689420931
L1: ResponseMessageType
ge/k4e+xKmNsMLusRcVkREx51OpAi1SytDvt9xXUEZDnKxiNPzvBdRJ9pWwbzFwDXYj4oRQBb2/A
Q7yq3WqlorrGZe1j6a+hw3ce0OD9cq7lHP9FwmQJ9MhITpwkuFUkAruDeAleopzaUD4Ov7/vbDEC
hr7TcQ/NTmTaXBXtQ9NrbFKOj/IgizRGOHLMv5tF81yFhrO+GPXudROL94zVvMSXaVFMD+EKuTZt
MTy9g/WX16GbYkrtr2RZTY9LEUM94v1EwjA9BTF4vOA5JiKwpS2cSq5eLti3qJIrdIAeN84v63er
ubvk50twRzikAQCGRDs673uya7dwOrK2WmhTzcypvuN5qPbUT+3DJnlB5TXYXbSgcIZEKmy1C3uC
JuvZNtK5/TomHMWg0QDcdJr1W82CfLHpvYXsub3MvzB7sROU04X6YBf1sGEfacyohbrI4q1V/VwR
MWjrGe5by9HT6n0OrtLlMKRpKYuNXZvk8OV/rW5XHJiIhTM7FMc1z1jF8x78gWlhCV334kXyXwrQ
GGJ7dYNmkmfkCtwWrAiIOdE= -243663288 -359316197
Sender: A11

 160

Message: 2013/08/08 1547060078 A11 Temp 20.0 Celsius
L2: LogEntryType
LJG+wXHBEOQzlobuXXQ6uDEElIJ0KlmIoIcdRFSjBzKm4XE9vCfb/a7nnCG+cmhD7qWmkHRvQ3HM
BP+9V8sRuG5aHBfMFWQquFsGSIGb5Rv16/05jpRlJ5UbW2ov7Igk -1858318454 -
1617516675
Sender: A11
Message: 2013/08/08 1547100141 A11 Temp 20.4 Celsius
L3: LogEntryType
W8EiswqHWxWKfsq3+/UhWC6Aesuz0cMEaSpbwNlVvEpr72KP5ZqMM7e2fuMTFAHDEAWzNn3O38tv
ekSVkZAb62jTtnHP5DsaX15hdClnB5hMrKcuyxrinYVcDfOggx1d -419961772 -
1836305766
Sender: A11
Message: 2013/08/08 1547140146 A11 Temp 21.0 Celsius
L4: LogEntryType
mqvgvLAWMntj9weq3+bMjhdH3g9rLqbaHsIAOIzgXJAzaVelquBhmtIVMmVjGkCrO67Djj/mgqCD
TcBUXMf0HPmPWJ+51lJyj5atjDAvelgHOzwjngr1JAiDlsL1Cdfh -1178753234
1092979152
Sender: A11
Message: 2013/08/08 1547180160 A11 Temp 22.0 Celsius
L5: LogEntryType
X5yZhmdZoiJs6UouYhNqjqolzP3KYTVI7ld0ymJev5hBbrST+N6vFRJuqzFx3xR35zcQxgutCX0C
lssbAcrp1LFgyWG8GrURStMVrUxoYMPKuQNqp2K05PS3LYTxjpyc 1763019560 -
1774162090
Sender: A11
Message: 2013/08/08 1547220174 A11 Temp 24.0 Celsius
L6: LogEntryType
qiaccfor4ZornhF6KmFSyqoyKKcfbMCEYXkBkYD7q1cj61KnBerM0ee/pEpD0ca/MLAK/+pBlxcj
/Lck7+aVHz7U3s0rCycL2i46q7dwfmd5vCmqAOEJwgQd7dNbN2Xb -953235483 1556122196
Sender: A11
Message: 2013/08/08 1547260187 A11 Temp 25.4 Celsius
L7: LogEntryType
VE5AVbaMM2ogXijrDoULVvhJifbPMTLDK2RReImBSBrAEMYO//vONfNslnU18cOnNyhuuzy//u4S
5Zd1AqMyrMInqpILsyV1c9CaqqInzVx7JNhVrec0NYqvqY6p9Ye+ -1166300104
1698578123
Sender: A11
Message: AlarmSystem: WARNING: 2013/08/08 1547260187 A11 Temp 25.4
 Celsius
L8: LogEntryType
tmQwlsok2WICUB9HWa2DPkCv2zGfUezM4e2DyuUQvZY8VqBAgeq115wdWCj7vdT1b7K1kuM82piD
fyL1YRJ1yyEgwMU7Ym/lCqxAL42aU2QRzbUy+aVQv06NFul/3VOFTOJXASTdLAHNMbCce8Hj3Mhp
/a6eszSU2sRdemwu68s= 1351742253 1386614301
Sender: A11
Message: 2013/08/08 1547300198 A11 Temp 24.0 Celsius
L9: LogEntryType
5f+kDdTn3qZKg5ml434ZDOvFeoVQdWqU+Uc8gFowcny1K41lvpoNtK3xP57A1+X8dQyvihnxAuvC
E6icrprhoZ/j5a0rDivlpCnEA9ssGKZQ5cUioY5sDf038BjwgsKG 893092105 1322186465
Sender: A11
Message: 2013/08/08 1547340212 A11 Temp 23.6 Celsius
L10: LogEntryType
JSLPuEE2QNuw6mtHOuc6qo+eJuhrpbjswpwGOD6SqYGW69Thfcg+LJ65zfSG4Y0CM3sHCwN27W38
iMJIg6UDCMJRJMqAg2L2KPQtbA0cDstjvxDxDC5z6ck8YkX20Ekj -729911469 812367851
Sender: A11
Message: 2013/08/08 1547380224 A11 Temp 22.2 Celsius
L11: LogEntryType
/3km+OZAZcJhw2pW3dxpoge2CPdNJFNhOKZ/cgrcf4OZImrxKTQIOJFIEGiXvwLY3dpbVfBiBGcO
Tk7FLokntU2t/3rKpCBvCNMuio0GcB3m19CaD/CFlnAXI2+wsKH7 1977346094 1057321247
Sender: A11
Message: exit

 161

L12: NormalCloseMessage
hB3sYH8L8l4CLGvaffTpj/scFqC8NC3b3uw7NwQgS1S42yOQiDU7sKZiUf45H5X7 1886200846
1127868429

Log Verification at TS
The log entries L4 and L5 have been reordered at the log file. We mark them
with blue color here.
Verification of : LogFile.txt
L[0]:
LogfileInitializationType
KwlqUB6JTFfWO9XhyzkmEmnjhVQoUZK4mlBS532z1a4RP0775ctQe5PM2pIgV5+GU4k0GxW6Dh4t
mg5dSis/YTdzmxXNmfp3nBlcvMgXVcU3DuBWNo7WTsUNGX41a8jZ6xUXlP2Y1R0+oq/GEPV7WzHT
AXP+RwQgrmKmYVF6uc/BSIneaMgjqx3a/3wohcFDgshvJviLqnF2Yd/bTab188wCNj6Wu0XH3FUH
MQssLZv23rrYqDNaI5auRMk63ZmWO3BuKFw0K0G5RaK4jAObXAITTPanhWR9YYxLS5Yb0tttcB+S
n6RDNlFB7oo/DUYLMR7lekOiusIievAyzGOUgtqO/6X50P9OJQChTbjDrMu6hEM7p/OqadL6Exhp
B5xxQlj06MrB1SMemkHmB3iFePNASD2IRzgcJs4cDAbh4ro9j1k24uXbkszcSS9VLA3tvuHdPntX
W4w41oZpWLcKm7ag6XpTF09ijdDOiVSCfbc03V0xWCKE1E2EVJz5lCME+O9d9uLGlijcemZmix82
KQtTb/adEzPsjHvPRFT+Sx483uch5XTass8uEitiNv7S 1065272843 -1689420931
Decrypted_AESmsg D[0]: LogfileInitializationType 2013/08/08 1546260079
2013/08/08 1700000000 0 0 4444
¿Nš²N¾¹°°LâkDÞßá®Æ�ÿ_<ÞÉ¶ê]‡”÷ƒ{"_¸*ª/_Ï?_àE?BŒT“hÆ_¼?æ?›ë¶äºÐcÂâ²è_6|m
"‹8uß_¥¸Š€c_)n¬Sá___»n¬³?LˆN{Ÿœ V&__ú_’?D³Ö¢ú*nYŒ)´Æ¿í]?
pJx1wpW2ixbz5gSvYPUxpKYbRaNGDcvcHOB1afB8kkQygbrhfLEUBoCeRBBLn6URniM/7rzHnPxj
5CjiEaIdO3DfCmTnCYwCtJAY6OK8ZB/uR1AmRFqdXrI6hV+ODohbZpyyYmXKicGQkwJ9P+pzOBdZ
swxR/PDoIpAiLQTHL564H6fJTUrsBsEEjoh2ovyf78bnxLP4bvAY5qEgYFLBlxDN5BUlNz+ozFh3
FIKbLOQ=
M[0]: LogfileInitializationType 1700000000 0 0 4444
¿Nš²N¾¹°°LâkDÞßá®Æ�ÿ_<ÞÉ¶ê]‡”÷ƒ{"_¸*ª/_Ï?_àE?BŒT“hÆ_¼?æ?›ë¶äºÐcÂâ²è_6|m
"‹8uß_¥¸Š€c_)n¬Sá___»n¬³?LˆN{Ÿœ V&__ú_’?D³Ö¢ú*nYŒ)´Æ¿í]?
pJx1wpW2ixbz5gSvYPUxpKYbRaNGDcvcHOB1afB8kkQygbrhfLEUBoCeRBBLn6URniM/7rzHnPxj
5CjiEaIdO3DfCmTnCYwCtJAY6OK8ZB/uR1AmRFqdXrI6hV+ODohbZpyyYmXKicGQkwJ9P+pzOBdZ
swxR/PDoIpAiLQTHL564H6fJTUrsBsEEjoh2ovyf78bnxLP4bvAY5qEgYFLBlxDN5BUlNz+ozFh3
FIKbLOQ=
Yi: 1065272843
Yi2: 1065272843
Y[0] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1689420931
mac2: -1689420931
MAC[0] = MAC(Yi)_Ai is verified

L[1]:
ResponseMessageType
ge/k4e+xKmNsMLusRcVkREx51OpAi1SytDvt9xXUEZDnKxiNPzvBdRJ9pWwbzFwDXYj4oRQBb2/A
Q7yq3WqlorrGZe1j6a+hw3ce0OD9cq7lHP9FwmQJ9MhITpwkuFUkAruDeAleopzaUD4Ov7/vbDEC
hr7TcQ/NTmTaXBXtQ9NrbFKOj/IgizRGOHLMv5tF81yFhrO+GPXudROL94zVvMSXaVFMD+EKuTZt
MTy9g/WX16GbYkrtr2RZTY9LEUM94v1EwjA9BTF4vOA5JiKwpS2cSq5eLti3qJIrdIAeN84v63er
ubvk50twRzikAQCGRDs673uya7dwOrK2WmhTzcypvuN5qPbUT+3DJnlB5TXYXbSgcIZEKmy1C3uC
JuvZNtK5/TomHMWg0QDcdJr1W82CfLHpvYXsub3MvzB7sROU04X6YBf1sGEfacyohbrI4q1V/VwR
MWjrGe5by9HT6n0OrtLlMKRpKYuNXZvk8OV/rW5XHJiIhTM7FMc1z1jF8x78gWlhCV334kXyXwrQ
GGJ7dYNmkmfkCtwWrAiIOdE= -243663288 -359316197
Decrypted_AESmsg D[1]: ResponseMessageType 2013/08/08 1546260079 2013/08/08
1700000000 1 1 1234 _?H#‹:?z?ÑÞ_v¬'øVâÒeÿ_º’¶Ø/ê,*a\üCø$4š_?—
½¢»õ_a__ë6qÊ_ÆÏ§¼ÇË}_r,N_MÊµŒ½å÷dv:@BUÆcÂ…ú÷ýd>ðÝ„¦
 `/_D¡’¾Î|;YUû_xàoƒ›rƒ÷vËi_78?û½]_m©
tMpT2d4GMGV8+/gab8InLjrv486ay+wzHFcGApwDyWBAcv0kAeVDERZtcuW6OOfSrhWXaPSqFbU9
aQgmFPw92HKOPegA3AkxPx/AwPp8t5BLaXBzSYtVwbj9ChvJ5WaO22u1PjxebOVp0bADI2AqPN9x
58MsJ9/B2T+13dplLjHlGCuxexowKjYfUdyDyjWBTZRtwxven61MOpYEU/e9Zw==

 162

M[1]: ResponseMessageType 1700000000 1 1 1234
_?H#‹:?z?ÑÞ_v¬'øVâÒeÿ_º’¶Ø/ê,*a\üCø$4š_?—
½¢»õ_a__ë6qÊ_ÆÏ§¼ÇË}_r,N_MÊµŒ½å÷dv:@BUÆcÂ…ú÷ýd>ðÝ„¦
 `/_D¡’¾Î|;YUû_xàoƒ›rƒ÷vËi_78?û½]_m©
tMpT2d4GMGV8+/gab8InLjrv486ay+wzHFcGApwDyWBAcv0kAeVDERZtcuW6OOfSrhWXaPSqFbU9
aQgmFPw92HKOPegA3AkxPx/AwPp8t5BLaXBzSYtVwbj9ChvJ5WaO22u1PjxebOVp0bADI2AqPN9x
58MsJ9/B2T+13dplLjHlGCuxexowKjYfUdyDyjWBTZRtwxven61MOpYEU/e9Zw==
Yi: -243663288
Yi2: -243663288
Y[1] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -359316197
mac2: -359316197
MAC[1] = MAC(Yi)_Ai is verified

L[2]:
LogEntryType
LJG+wXHBEOQzlobuXXQ6uDEElIJ0KlmIoIcdRFSjBzKm4XE9vCfb/a7nnCG+cmhD7qWmkHRvQ3HM
BP+9V8sRuG5aHBfMFWQquFsGSIGb5Rv16/05jpRlJ5UbW2ov7Igk -1858318454 -1617516675
Decrypted_AESmsg D[2]: LogEntryType 2013/08/08 1547060157 2013/08/08
1700000000 2 2013/08/08 1547060078 A11 Temp 20.0 Celsius

M[2]: LogEntryType 1700000000 2 2013/08/08 1547060078 A11 Temp 20.0
 Celsius

Yi: -1858318454
Yi2: -1858318454
Y[2] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1617516675
mac2: -1617516675
MAC[2] = MAC(Yi)_Ai is verified

L[3]:
LogEntryType
W8EiswqHWxWKfsq3+/UhWC6Aesuz0cMEaSpbwNlVvEpr72KP5ZqMM7e2fuMTFAHDEAWzNn3O38tv
ekSVkZAb62jTtnHP5DsaX15hdClnB5hMrKcuyxrinYVcDfOggx1d -419961772 -1836305766
Decrypted_AESmsg D[3]: LogEntryType 2013/08/08 1547100174 2013/08/08
1700000000 3 2013/08/08 1547100141 A11 Temp 20.4 Celsius

M[3]: LogEntryType 1700000000 3 2013/08/08 1547100141 A11 Temp 20.4
 Celsius

Yi: -419961772
Yi2: -419961772
Y[3] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -1836305766
mac2: -1836305766
MAC[3] = MAC(Yi)_Ai is verified

L[4]:
LogEntryType
X5yZhmdZoiJs6UouYhNqjqolzP3KYTVI7ld0ymJev5hBbrST+N6vFRJuqzFx3xR35zcQxgutCX0C
lssbAcrp1LFgyWG8GrURStMVrUxoYMPKuQNqp2K05PS3LYTxjpyc 1763019560 -1774162090
AES message cannot be decrypted! Someone changed log entry [4].
Yi: 1190319881
Yi2: 1763019560

L[5]:
LogEntryType
mqvgvLAWMntj9weq3+bMjhdH3g9rLqbaHsIAOIzgXJAzaVelquBhmtIVMmVjGkCrO67Djj/mgqCD
TcBUXMf0HPmPWJ+51lJyj5atjDAvelgHOzwjngr1JAiDlsL1Cdfh -1178753234 1092979152

 163

AES message cannot be decrypted! Someone changed log entry [5].
Yi: 875957742
Yi2: -1178753234

L[6]:
LogEntryType
qiaccfor4ZornhF6KmFSyqoyKKcfbMCEYXkBkYD7q1cj61KnBerM0ee/pEpD0ca/MLAK/+pBlxcj
/Lck7+aVHz7U3s0rCycL2i46q7dwfmd5vCmqAOEJwgQd7dNbN2Xb -953235483 1556122196
Decrypted_AESmsg D[6]: LogEntryType 2013/08/08 1547220174 2013/08/08
1700000000 6 2013/08/08 1547220174 A11 Temp 24.0 Celsius
M[6]: LogEntryType 1700000000 6 2013/08/08 1547220174 A11 Temp 24.0
 Celsius
Yi: -1579941509
Yi2: -953235483

L[7]:
LogEntryType
VE5AVbaMM2ogXijrDoULVvhJifbPMTLDK2RReImBSBrAEMYO//vONfNslnU18cOnNyhuuzy//u4S
5Zd1AqMyrMInqpILsyV1c9CaqqInzVx7JNhVrec0NYqvqY6p9Ye+ -1166300104 1698578123
Decrypted_AESmsg D[7]: LogEntryType 2013/08/08 1547260187 2013/08/08
1700000000 7 2013/08/08 1547260187 A11 Temp 25.4 Celsius
M[7]: LogEntryType 1700000000 7 2013/08/08 1547260187 A11 Temp 25.4
 Celsius
Yi: -94812402
Yi2: -1166300104

L[8]:
LogEntryType
tmQwlsok2WICUB9HWa2DPkCv2zGfUezM4e2DyuUQvZY8VqBAgeq115wdWCj7vdT1b7K1kuM82piD
fyL1YRJ1yyEgwMU7Ym/lCqxAL42aU2QRzbUy+aVQv06NFul/3VOFTOJXASTdLAHNMbCce8Hj3Mhp
/a6eszSU2sRdemwu68s= 1351742253 1386614301
Decrypted_AESmsg D[8]: LogEntryType 2013/08/08 1547260202 2013/08/08
1700000000 8 AlarmSystem: WARNING: 2013/08/08 1547260187 A11 Temp 25.4
 Celsius
M[8]: LogEntryType 1700000000 8 AlarmSystem: WARNING: 2013/08/08 1547260187
 A11 Temp 25.4 Celsius
Yi: -1095276413
Yi2: 1351742253

L[9]:
LogEntryType
5f+kDdTn3qZKg5ml434ZDOvFeoVQdWqU+Uc8gFowcny1K41lvpoNtK3xP57A1+X8dQyvihnxAuvC
E6icrprhoZ/j5a0rDivlpCnEA9ssGKZQ5cUioY5sDf038BjwgsKG 893092105 1322186465
Decrypted_AESmsg D[9]: LogEntryType 2013/08/08 1547300198 2013/08/08
1700000000 9 2013/08/08 1547300198 A11 Temp 24.0 Celsius
M[9]: LogEntryType 1700000000 9 2013/08/08 1547300198 A11 Temp 24.0
 Celsius
Yi: 426818653
Yi2: 893092105

L[10]:
LogEntryType
JSLPuEE2QNuw6mtHOuc6qo+eJuhrpbjswpwGOD6SqYGW69Thfcg+LJ65zfSG4Y0CM3sHCwN27W38
iMJIg6UDCMJRJMqAg2L2KPQtbA0cDstjvxDxDC5z6ck8YkX20Ekj -729911469 812367851
Decrypted_AESmsg D[10]: LogEntryType 2013/08/08 1547340212 2013/08/08
1700000000 10 2013/08/08 1547340212 A11 Temp 23.6 Celsius
M[10]: LogEntryType 1700000000 10 2013/08/08 1547340212 A11 Temp 23.6
 Celsius
Yi: -197065343
Yi2: -729911469

 164

L[11]:
LogEntryType
/3km+OZAZcJhw2pW3dxpoge2CPdNJFNhOKZ/cgrcf4OZImrxKTQIOJFIEGiXvwLY3dpbVfBiBGcO
Tk7FLokntU2t/3rKpCBvCNMuio0GcB3m19CaD/CFlnAXI2+wsKH7 1977346094 1057321247
Decrypted_AESmsg D[11]: LogEntryType 2013/08/08 1547380224 2013/08/08
1700000000 11 2013/08/08 1547380224 A11 Temp 22.2 Celsius
M[11]: LogEntryType 1700000000 11 2013/08/08 1547380224 A11 Temp 22.2
 Celsius
Yi: -104617180
Yi2: 1977346094

L[12]:
NormalCloseMessage
hB3sYH8L8l4CLGvaffTpj/scFqC8NC3b3uw7NwQgS1S42yOQiDU7sKZiUf45H5X7 1886200846
1127868429
Decrypted_AESmsg D[12]: NormalCloseMessage 2013/08/08 1547420236 2013/08/08
1700000000 12
M[12]: NormalCloseMessage 1700000000 12
Yi: 1338924421
Yi2: 1886200846

In file LogFile.txt the MACs in following entry positions were found false
4
5
6
7
8
9
10
11
12

Signature Verification at RA
Singature1 entry[0] is verified
Manual Signatures verification: true
Singature2 entry[0] is verified
Singature2 entry[1] is verified
Singature2 entry[2] is verified
Singature2 entry[11] is verified
Singature2_random entry[12] is verified
Singature2_random entry[13] is verified
Singature2_random entry[39] is verified
Singature2_random entry[40] is verified
Singature2_random entry[41] is verified

Deletion of an entry

Server
L0: LogfileInitializationType
+ukhe3ocWUwZ5KyeEXFPeOiPS3A334mK1ihubDkdamkMjgPI8MUay6q5aHn+LHViz/pCzuamg7Mf
OBNR85Na6uIvFNsgb78MeyFqBZ94GcfWiR4iEi0tD37rQYZLx48ObPbPI+DU4uuXILd64/0N5Gdp
dQnupD/LfdldL423EtOaN6R/Vw5gh18O4grJJCMhcWX8hzUm768ArGZw/oftr1yLp/L6wScWOXWI
tve8hCUQf8+9LeAXh8bNIWpD/WVeSxBitrI5afVXHoTLF6Yg725ZWbnY9P3kP+C6MeQVw6n5UVbX
+69zkGX1MlRb9ZWjEQDGwyUMuv8lkPV4pePzP3EcEBQ0iZkaqkwv58R5GbULM0OVNlFBGc13gxAa
BSxpEvRrr1Y5Y4rYhI/rrw8hl96akx9wesjboA84l/xTx+efahM1B+a+Ob66AbAWloMoqzwXZFFk
mv3r+J/e1Y4Jn2TmhkYMuPtEmDxv2qdqQUVfPfnfBkhYtOtIZXObI9hUjybT6uWcf5TJ6e4zqUEh
UaCQl7PEIaNOUXJ2xoSlT6/Doc2IN3iuosm4xdvYkxRO -831566549 604785157

 165

L1: ResponseMessageType
bJzxDJZqto455UtT/0TZ4q1rQSUjaFTm8Bp5KzVDQ1ErbZurZKKYd3FDqBG6lJaeciEnLBJHtfxj
LBP5Sj5qWh8r5vkwpj2I72Hxk24v8+k60JCLUaMYqfneBNjirfvM91CAKdJXbgZDcL0fUgKWc/qX
zEX1w4mq4Fgs4rH9ZBf+XZqE1voirBWprRhaFHxg1Xl0b1oFdulbKs0FHW9Em++e49grM1fQEY/m
bh6WszvuWD73mFk0n/jBX2k2+SMgJqSgLaowNQe5EAAA2qpyBPPrMFEl3KDMSUJ0jMdZVCbS3nRI
M/tX0V8BbjIr2Fv/HTcyeeLZz/VuHUhPXq9xaeE/xQPkHpsginwkunhR98NkMrfBqgxVYqEQf5XA
LqiG6nxXoAtg5cC3UlGSSIwu3pIsVeUs9jk7CwXDhYjFsKY+Uw/M2wY829+X/SWFwKoWlm/1a6S3
B/C96AA5SJyrHv3c8PIHjfo5kIJViWEv4q8VRYTnLZxlclSajSdaCDVPt3GraS0R+PByGtSsuFWe
QDKply6Nehkg6A1DcvxWF2c= -1930519867 -400813681
Sender: A11
Message: 2013/08/02 1257530815 A11 Temp 20.0 Celsius
L2: LogEntryType
9nSXW92jbZUBK9bDKdw31Ef2xKpc48rx4pcSuA4CP5cPWib430CW2l6enYYXvDCxHD3CyBqn+ENI
iv4XD/h57M4T53wlMMjcGCmlSyChApT7E1L8UDbzYXFLtaD7Xvn9 -1671185904
1902346479
Sender: A11
Message: 2013/08/02 1257570828 A11 Temp 20.4 Celsius
L3: LogEntryType
BW23Fto4md697G2onEoK0ZjNwRiGmi6jy2sK3fFStyxNKriRdvBtM6tpzsS0Gw9L76eEaarQQRUQ
7JNgxCAq0WobjtAUa129PQGRk/cgRdJoeRqDtXa1SwSm7X1lc71t 1374022861 -
2010687340
Sender: A11
Message: 2013/08/02 1258010839 A11 Temp 21.0 Celsius
L4: LogEntryType
ccleLTCC8yJuq5RIF+IOjdjKIWfdUDNw/eIWNt3jCqYXus/MWvNHTMFOE/UIMng0SRabLu0IL73I
1KlzGedPdiVYeH07Yyy4vxNSL/ntmVRgVBhAB6RQZTOnzdpYGIv1 11442941 -820787939
Sender: A11
Message: 2013/08/02 1258050853 A11 Temp 22.0 Celsius
L5: LogEntryType
LlEWZFdoMrkp88d5OIIR2SxZp6fTCGFO6wu6TWr8Qbi7GdvzokUYNXkKIRCpM5AS9ko8Y8LJ5fBJ
h4xa4v+/2HMcxHE1zqvP3iMpzcS1jAt96tNxyUa/HkdKjEs95yFc -1940249984 -
304847547
Sender: A11
Message: 2013/08/02 1258090864 A11 Temp 24.0 Celsius
L6: LogEntryType
0TcHf50+eMAwVl1j0u12xaLisIIcDYQUkJtS0eJfYgdqXjdjxxpHqfRBeyhajt+eTYHEQNg0xuaX
+xkjzdYeuIuZa4ea8/yHCXAa/5vB9NkANbyoZcuGcne0ieaFV3nG -2001192187 -
745038720
Sender: A11
Message: 2013/08/02 1258130877 A11 Temp 25.4 Celsius
L7: LogEntryType
Xe6ykapmHGzb4FEdcRUklv44JOkTw7PRxwyMREoTQ1DU1mNpaRPZVP2SjNwpEf87OevdDr3O0VXX
k+h9xrK67myJbSSTUeyA8j4AeMiYD0jb9Wvl7roycsno4srAfSzR 1637110083 -414528027
Sender: A11
Message: AlarmSystem: WARNING: 2013/08/02 1258130877 A11 Temp 25.4
 Celsius
L8: LogEntryType
vkpEnnrl5n4KxdPW9vvnM+jhzRVRGmDCioqpASFAR+mUWjszio2miec30AfcbkLRnUcxlCd3XtW2
eLNaEqChlIRxHPYWo6imwh13CtFesYt6+9apM4gq1tUJK5vMEMNp4MpaoR80rUSfXY1XMzJDD7GF
JBfr9Rl/HmSXzXgc/Ds= 1188695447 216820858
Sender: A11
Message: 2013/08/02 1258170890 A11 Temp 24.0 Celsius
L9: LogEntryType
T4S41aum+oLO1suZ5G7YeMDd59fAoL0JrResukyyf2yjbqN265zeCtkQq0dYnDyh67xngnps530t
gytnYHsJjgE4l6HNTIr7GIKZPSiitPpeu1uKZE22nw1U0xeTQ+4e 1876567101 1103409306
Sender: A11
Message: 2013/08/02 1258210903 A11 Temp 23.6 Celsius
L10: LogEntryType
qvEqamktwH+Nb14ifwU+xP+kSnGRLmQo+CRAWu/43ZORfnycCM1tSoclJh8lMHa8PPQUWFbYUHxx

 166

foEIYTN3+GnVpTIZbPQMwpDmDa1XVZ2cAx6D1m6xFk1MriYuK3I8 -1479660103 -
1610056578
Sender: A11
Message: 2013/08/02 1258250914 A11 Temp 22.2 Celsius
L11: LogEntryType
48ncJi8fWIgrvECWrUWBUEIMmrqTfdHIal5oTRGiXbmLbpC7bWobnnEGce8ri1fDe3W4xWIKNR5I
xEzXwDosMaDqgKr7c8aD4pY45nXipdI0Qgdn148asq/htmYlY0WD -1746053275 569341126
Sender: A11
Message: exit
L12: NormalCloseMessage
LH2gGm7jOeHMFgQLjl7L+dfTDYAQ1tr76Yqbe3NVnAfMLrK/ZWPyZedvGEQs13VS -1712145935
1034890612

Log Verification at TS
The attack performed at the log file was deleting the last 3 entries, i.e. L10,
L11, L12.
Verification of : LogFile.txt
L[0]:
LogfileInitializationType
+ukhe3ocWUwZ5KyeEXFPeOiPS3A334mK1ihubDkdamkMjgPI8MUay6q5aHn+LHViz/pCzuamg7Mf
OBNR85Na6uIvFNsgb78MeyFqBZ94GcfWiR4iEi0tD37rQYZLx48ObPbPI+DU4uuXILd64/0N5Gdp
dQnupD/LfdldL423EtOaN6R/Vw5gh18O4grJJCMhcWX8hzUm768ArGZw/oftr1yLp/L6wScWOXWI
tve8hCUQf8+9LeAXh8bNIWpD/WVeSxBitrI5afVXHoTLF6Yg725ZWbnY9P3kP+C6MeQVw6n5UVbX
+69zkGX1MlRb9ZWjEQDGwyUMuv8lkPV4pePzP3EcEBQ0iZkaqkwv58R5GbULM0OVNlFBGc13gxAa
BSxpEvRrr1Y5Y4rYhI/rrw8hl96akx9wesjboA84l/xTx+efahM1B+a+Ob66AbAWloMoqzwXZFFk
mv3r+J/e1Y4Jn2TmhkYMuPtEmDxv2qdqQUVfPfnfBkhYtOtIZXObI9hUjybT6uWcf5TJ6e4zqUEh
UaCQl7PEIaNOUXJ2xoSlT6/Doc2IN3iuosm4xdvYkxRO -831566549 604785157
Decrypted_AESmsg D[0]: LogfileInitializationType 2013/08/02 1257270689
2013/08/02 1320000000 0 0 4444 k_—GB³_Øp´ÑÙ#__=[n
‰_«Ô_”:óà?7Õ5R_zìš¼;_@_~_í´e
vÄØbO§d_ú_š<Í&é€|%5<¡Ö;®a_Ÿ__µÄu_@’_ò<•_˜Ì@@Éç_Ž?Û__æ…w÷_4²ÿÌè³W
_¡__5bVof‘•×¡H_
X3WUiYq8PiiPLLzJuuuoKgaqWlym7S21LI5rjFy9beTLth0Uxf6I68ZsoYVwz6lXSXLEzZCTC4BL
2/CeA2HeSnGitC+Nk8Fau3Lw2p9VUUYtxwLjNRCUT48UwMf5FyFGwA993sakWJrSfXZ3MTXwmqKz
KisJEubjtrKxhYDA6KbL7JMwVqPerFCbDWNckMFPTTcGT4/7513hcC+0L9Zd3fTvBLsllwWgB68w
XDY5yt4=
M[0]: LogfileInitializationType 1320000000 0 0 4444 k_—GB³_Øp´ÑÙ#__=[n
‰_«Ô_”:óà?7Õ5R_zìš¼;_@_~_í´e
vÄØbO§d_ú_š<Í&é€|%5<¡Ö;®a_Ÿ__µÄu_@’_ò<•_˜Ì@@Éç_Ž?Û__æ…w÷_4²ÿÌè³W
_¡__5bVof‘•×¡H_
X3WUiYq8PiiPLLzJuuuoKgaqWlym7S21LI5rjFy9beTLth0Uxf6I68ZsoYVwz6lXSXLEzZCTC4BL
2/CeA2HeSnGitC+Nk8Fau3Lw2p9VUUYtxwLjNRCUT48UwMf5FyFGwA993sakWJrSfXZ3MTXwmqKz
KisJEubjtrKxhYDA6KbL7JMwVqPerFCbDWNckMFPTTcGT4/7513hcC+0L9Zd3fTvBLsllwWgB68w
XDY5yt4=
Yi: -831566549
Yi2: -831566549
Y[0] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 604785157
mac2: 604785157
MAC[0] = MAC(Yi)_Ai is verified

L[1]:
ResponseMessageType
bJzxDJZqto455UtT/0TZ4q1rQSUjaFTm8Bp5KzVDQ1ErbZurZKKYd3FDqBG6lJaeciEnLBJHtfxj
LBP5Sj5qWh8r5vkwpj2I72Hxk24v8+k60JCLUaMYqfneBNjirfvM91CAKdJXbgZDcL0fUgKWc/qX
zEX1w4mq4Fgs4rH9ZBf+XZqE1voirBWprRhaFHxg1Xl0b1oFdulbKs0FHW9Em++e49grM1fQEY/m
bh6WszvuWD73mFk0n/jBX2k2+SMgJqSgLaowNQe5EAAA2qpyBPPrMFEl3KDMSUJ0jMdZVCbS3nRI
M/tX0V8BbjIr2Fv/HTcyeeLZz/VuHUhPXq9xaeE/xQPkHpsginwkunhR98NkMrfBqgxVYqEQf5XA

 167

LqiG6nxXoAtg5cC3UlGSSIwu3pIsVeUs9jk7CwXDhYjFsKY+Uw/M2wY829+X/SWFwKoWlm/1a6S3
B/C96AA5SJyrHv3c8PIHjfo5kIJViWEv4q8VRYTnLZxlclSajSdaCDVPt3GraS0R+PByGtSsuFWe
QDKply6Nehkg6A1DcvxWF2c= -1930519867 -400813681
Decrypted_AESmsg D[1]: ResponseMessageType 2013/08/02 1257270705 2013/08/02
1320000000 1 1 1234
:[Š¹Ã_Ö°JõµêU=_kž!nÔ_:U__]_âÓØ]niþ&½1£Žë9èwÊ†ˆ_Hë__§ã?tòÐÔv\!œPž¼àtv_*U|Ò6_•F;
Ë@/ã™É__ptP_Q(á{¹ûú¸üãªb<ÜðRéÝaX_zbŸr|¼Ó¸/úÎ_YÇ³Çz
X9BrOi1y+dobkbqTCJbR9XFPZlfowhujkdDl1k138Qvwm/tFLCa/FmHt4oh6OS8urUcHZdST3wKZ
jUuuwLb1GxCE5pR5xufTY4osFvrBssFQn8jHcvsTDGJwIpa81GMRj3fztfOIlyYrUA460dviwaG6
OlICVs+9NbsExj7hxRQmszSkT8NDIsX0UJeluVdkxKvH5U/3u7aIgNYA0EAeNg==
M[1]: ResponseMessageType 1320000000 1 1 1234
:[Š¹Ã_Ö°JõµêU=_kž!nÔ_:U__]_âÓØ]niþ&½1£Žë9èwÊ†ˆ_Hë__§ã?tòÐÔv\!œPž¼àtv_*U|Ò6_•F;
Ë@/ã™É__ptP_Q(á{¹ûú¸üãªb<ÜðRéÝaX_zbŸr|¼Ó¸/úÎ_YÇ³Çz
X9BrOi1y+dobkbqTCJbR9XFPZlfowhujkdDl1k138Qvwm/tFLCa/FmHt4oh6OS8urUcHZdST3wKZ
jUuuwLb1GxCE5pR5xufTY4osFvrBssFQn8jHcvsTDGJwIpa81GMRj3fztfOIlyYrUA460dviwaG6
OlICVs+9NbsExj7hxRQmszSkT8NDIsX0UJeluVdkxKvH5U/3u7aIgNYA0EAeNg==
Yi: -1930519867
Yi2: -1930519867
Y[1] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -400813681
mac2: -400813681
MAC[1] = MAC(Yi)_Ai is verified

L[2]:
LogEntryType
9nSXW92jbZUBK9bDKdw31Ef2xKpc48rx4pcSuA4CP5cPWib430CW2l6enYYXvDCxHD3CyBqn+ENI
iv4XD/h57M4T53wlMMjcGCmlSyChApT7E1L8UDbzYXFLtaD7Xvn9 -1671185904 1902346479
Decrypted_AESmsg D[2]: LogEntryType 2013/08/02 1257530830 2013/08/02
1320000000 2 2013/08/02 1257530815 A11 Temp 20.0 Celsius
M[2]: LogEntryType 1320000000 2 2013/08/02 1257530815 A11 Temp 20.0
 Celsius
Yi: -1671185904
Yi2: -1671185904
Y[2] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1902346479
mac2: 1902346479
MAC[2] = MAC(Yi)_Ai is verified

L[3]:
LogEntryType
BW23Fto4md697G2onEoK0ZjNwRiGmi6jy2sK3fFStyxNKriRdvBtM6tpzsS0Gw9L76eEaarQQRUQ
7JNgxCAq0WobjtAUa129PQGRk/cgRdJoeRqDtXa1SwSm7X1lc71t 1374022861 -2010687340
Decrypted_AESmsg D[3]: LogEntryType 2013/08/02 1257570828 2013/08/02
1320000000 3 2013/08/02 1257570828 A11 Temp 20.4 Celsius
M[3]: LogEntryType 1320000000 3 2013/08/02 1257570828 A11 Temp 20.4
 Celsius
Yi: 1374022861
Yi2: 1374022861
Y[3] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -2010687340
mac2: -2010687340
MAC[3] = MAC(Yi)_Ai is verified

L[4]:
LogEntryType
ccleLTCC8yJuq5RIF+IOjdjKIWfdUDNw/eIWNt3jCqYXus/MWvNHTMFOE/UIMng0SRabLu0IL73I
1KlzGedPdiVYeH07Yyy4vxNSL/ntmVRgVBhAB6RQZTOnzdpYGIv1 11442941 -820787939
Decrypted_AESmsg D[4]: LogEntryType 2013/08/02 1258010839 2013/08/02
1320000000 4 2013/08/02 1258010839 A11 Temp 21.0 Celsius

 168

M[4]: LogEntryType 1320000000 4 2013/08/02 1258010839 A11 Temp 21.0
 Celsius
Yi: 11442941
Yi2: 11442941
Y[4] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -820787939
mac2: -820787939
MAC[4] = MAC(Yi)_Ai is verified

L[5]:
LogEntryType
LlEWZFdoMrkp88d5OIIR2SxZp6fTCGFO6wu6TWr8Qbi7GdvzokUYNXkKIRCpM5AS9ko8Y8LJ5fBJ
h4xa4v+/2HMcxHE1zqvP3iMpzcS1jAt96tNxyUa/HkdKjEs95yFc -1940249984 -304847547
Decrypted_AESmsg D[5]: LogEntryType 2013/08/02 1258050853 2013/08/02
1320000000 5 2013/08/02 1258050853 A11 Temp 22.0 Celsius
M[5]: LogEntryType 1320000000 5 2013/08/02 1258050853 A11 Temp 22.0
 Celsius
Yi: -1940249984
Yi2: -1940249984
Y[5] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -304847547
mac2: -304847547
MAC[5] = MAC(Yi)_Ai is verified

L[6]:
LogEntryType
0TcHf50+eMAwVl1j0u12xaLisIIcDYQUkJtS0eJfYgdqXjdjxxpHqfRBeyhajt+eTYHEQNg0xuaX
+xkjzdYeuIuZa4ea8/yHCXAa/5vB9NkANbyoZcuGcne0ieaFV3nG -2001192187 -745038720
Decrypted_AESmsg D[6]: LogEntryType 2013/08/02 1258090864 2013/08/02
1320000000 6 2013/08/02 1258090864 A11 Temp 24.0 Celsius
M[6]: LogEntryType 1320000000 6 2013/08/02 1258090864 A11 Temp 24.0
 Celsius
Yi: -2001192187
Yi2: -2001192187
Y[6] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -745038720
mac2: -745038720
MAC[6] = MAC(Yi)_Ai is verified

L[7]:
LogEntryType
Xe6ykapmHGzb4FEdcRUklv44JOkTw7PRxwyMREoTQ1DU1mNpaRPZVP2SjNwpEf87OevdDr3O0VXX
k+h9xrK67myJbSSTUeyA8j4AeMiYD0jb9Wvl7roycsno4srAfSzR 1637110083 -414528027
Decrypted_AESmsg D[7]: LogEntryType 2013/08/02 1258130877 2013/08/02
1320000000 7 2013/08/02 1258130877 A11 Temp 25.4 Celsius
M[7]: LogEntryType 1320000000 7 2013/08/02 1258130877 A11 Temp 25.4
 Celsius
Yi: 1637110083
Yi2: 1637110083
Y[7] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: -414528027
mac2: -414528027
MAC[7] = MAC(Yi)_Ai is verified

L[8]:
LogEntryType
vkpEnnrl5n4KxdPW9vvnM+jhzRVRGmDCioqpASFAR+mUWjszio2miec30AfcbkLRnUcxlCd3XtW2
eLNaEqChlIRxHPYWo6imwh13CtFesYt6+9apM4gq1tUJK5vMEMNp4MpaoR80rUSfXY1XMzJDD7GF
JBfr9Rl/HmSXzXgc/Ds= 1188695447 216820858

 169

Decrypted_AESmsg D[8]: LogEntryType 2013/08/02 1258130892 2013/08/02
1320000000 8 AlarmSystem: WARNING: 2013/08/02 1258130877 A11 Temp 25.4
 Celsius
M[8]: LogEntryType 1320000000 8 AlarmSystem: WARNING: 2013/08/02 1258130877
 A11 Temp 25.4 Celsius
Yi: 1188695447
Yi2: 1188695447
Y[8] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 216820858
mac2: 216820858
MAC[8] = MAC(Yi)_Ai is verified

L[9]:
LogEntryType
T4S41aum+oLO1suZ5G7YeMDd59fAoL0JrResukyyf2yjbqN265zeCtkQq0dYnDyh67xngnps530t
gytnYHsJjgE4l6HNTIr7GIKZPSiitPpeu1uKZE22nw1U0xeTQ+4e 1876567101 1103409306
Decrypted_AESmsg D[9]: LogEntryType 2013/08/02 1258170890 2013/08/02
1320000000 9 2013/08/02 1258170890 A11 Temp 24.0 Celsius
M[9]: LogEntryType 1320000000 9 2013/08/02 1258170890 A11 Temp 24.0
 Celsius
Yi: 1876567101
Yi2: 1876567101
Y[9] = hash(Yi-1 ,AES(Di)_Ki, Wi) is verified
mac: 1103409306
mac2: 1103409306
MAC[9] = MAC(Yi)_Ai is verified

In file LogFile.txt the MACs in following entry positions were found false

Signatures Verification at RA
Singature1 entry[0] is verified
Manual Signatures verification: true
Singature2 entry[0] is verified
Singature2 entry[1] is verified
Singature2 entry[2] is verified
Singature2 entry[3] is verified
Singature2 entry[4] is verified
Singature2 entry[5] is verified
Singature2 entry[6] is verified
Singature2 entry[7] is verified
Singature2 entry[11] is verified
Singature2_random entry[12] is verified
Singature2_random entry[13] is verified
Singature2_random entry[14] is verified
Singature2_random entry[15] is verified
Singature2_random entry[26] is verified
Singature2_random entry[27] is verified

	Summary
	Preface
	Acknowledgements
	Introduction
	State of the Art
	2.1 Message exchange methods
	2.2 Publish-Subscribe
	2.2.1 Event Bus
	2.2.2 Java Messaging Service (JMS)

	2.3 Secure Logging

	System Analysis
	3.1 FDA Regulations
	3.1.1 Part 11 – Electronic Records; Electronic Signatures
	3.1.2 Part 820 - Quality System Regulation
	3.1.3 Part 210 – Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs; General
	3.1.4 Part 211 – Current Good Manufacturing Practice for Finished Pharmaceuticals

	3.2 User Requirements
	3.3 GAMP
	3.4 Sensor Requirements

	Problem Analysis
	4.1 Problem Overview
	4.2 Possible Solution
	4.2.1 Network
	4.2.2 Secure Logging

	4.3 Requirements Analysis

	System Design
	5.1 Network
	5.1.1 Architecture
	5.1.2 Components
	5.1.3 Interfaces
	5.1.4 Interactions

	5.2 Secure Logging

	Implementation
	6.1 Network (JMS)
	6.1.1 SimpleSensor.java
	6.1.2 SerialMsgObject.java
	6.1.3 SensorwithAlarm.java
	6.1.4 DoubleSensor.java
	6.1.5 ServerObject.java
	6.1.6 AlarmObject.java

	6.2 Security
	6.2.1 Package: com.Security.UntrustedServer
	6.2.1.1 UntrustedServer.java
	6.2.1.2 InitializeLog.java
	6.2.1.3 ManualSigning.java

	6.2.2 Package: com.Security.TrustedServer
	6.2.2.1 secureserver.java
	6.2.2.2 VerifyLog.java
	6.2.2.3 CleanFiles.java

	6.2.3 Package: com.Security.AutomatedSigning
	6.2.3.1 AlarmService4AutoSignRequests.java
	6.2.3.2 AlarmService4SecurityAlarms.java
	6.2.3.3 FileWatcher.java

	6.2.4 Package: com.Security.RegulatoryAuthority
	6.2.4.1 AutomaticSignRequest
	6.2.4.2 RA4AutoSign2Ack.java
	6.2.4.3 RA4SecurityAlarms.java
	6.2.4.4 RAService4ManualSigning.java
	6.2.4.5 Start_RA_AlarmService.java
	6.2.4.6 VerifySignatures.java

	6.2.5 Package: com.Security.EncryptDecryptAlgorithms
	6.2.5.1 AES256.java
	6.2.5.2 PKE_RSA.java
	6.2.5.3 Key-Pair.java
	6.2.5.4 signature.java

	6.3 Application Set-Up
	6.3.1 Installation
	6.3.2 JMS Configuration
	6.3.3 Running the applications

	Evaluation
	7.1 Performance
	7.1.1 Speed/ Latency
	7.1.2 Throughput

	7.2 Security

	Conclusions
	Future Work
	Abbreviations
	Bibliography
	Appendix
	A.1 Output of the Evaluation Tests
	A.1.1 Performance
	A.1.2 Security Attacks

